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ABSTRACT 

A JAVA TOOLBOX FOR WAVELET BASED IMAGE DENOISING 

 

TUNCER, Güney 

M.Sc., Department of Geodetic and Geographic Information Technologies 

Supervisor: Assoc. Prof. Dr. Mahmut Onur KARSLIOĞLU 

 

December 2006, 108 pages 

 

Wavelet methods for image denoising have became widespread for the last 

decade. The effectiveness of this denoising scheme is influenced by many 

factors. Highlights can be listed as choosing of wavelet used, the threshold 

determination and transform level selection for thresholding. For threshold 

calculation one of the classical solutions is Wiener filter as a linear estimator. 

Another one is VisuShrink using global thresholding for nonlinear area. The 

purpose of this work is to develop a Java toolbox which is used to find best 

denoising schemes for distinct image types particularly Synthetic Aperture Radar 

(SAR) images. This can be accomplished by comparing these basic methods 

with well known data adaptive thresholding methods such as SureShrink, 

BayeShrink, Generalized Cross Validation and Hypothesis Testing. Some non-

wavelet denoising process are also introduced. Along with simple mean and 

median filters, more statistically adaptive median, Lee, Kuan and Frost filtering 

techniques are also tested to assist wavelet based denoising scheme. All of these 

methods on the basis of wavelet models and some traditional methods will be 
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implemented in pure java code using plug-in concept of ImageJ which is a 

popular image processing tool written in Java. 

 

Keywords:  Wavelet transforms, Noise reduction, Statistical methods, SAR, Java 
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ÖZ 

GÖRÜNTÜLERDEKİ GÜRÜLTÜLERİN TEMİZLENMESİ İÇİN 

DALGACIK TABANLI JAVA TAKIM KUTUSU  

 

TUNCER, Güney 

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Sistemleri Bölümü 

Tez Yöneticisi: Doç. Dr. Mahmut Onur KARSLIOĞLU 

 

Aralık 2006, 108 sayfa 

 

Görüntüler üzerinde gürültü temizleme için dalgacık yöntemlerinin kullanımı 

son zamanlarda oldukça yaygın bir hale gelmiştir. Dalgacık eşikleme (wavelet 

thresholding) olarak tabir edilebilecek bu işin başarısı pek çok değişkene 

bağlıdır. Bunların arasında uygun dalgacık modelinin seçimi, eşik hesaplama 

teknikleri ve eşik uygulama seviyesi en başta listelenebilir. Eşik hesabı için 

kullanılan “Wiener” filitresi doğrusal (linear) hesaplama tekniği kullanan klasik 

yöntemlerden biridir. Doğrusal olmayan (nonlinear) metotların en basit örneği 

ise evrensel eşik (global thresholding) mantığına dayalı VisuShrink’dir. Bu 

çalışmadaki amaç farklı görüntü tipleri için ve özellikle Synthetic Aperture 

Radar (SAR) görüntüleri için en başarılı gürültü temizleme kombinasyonlarını 

belirleyebilecek bir Java takım kutusu oluşturmaktır. Bu da bahsi geçen temel 

eşikleme hesapları ile gelişmiş istatiksel hesaplama teknikleri “SureShrink”, 

“BayeShrink”, “Generalized Cross Validation” ve “Hypothesis Test” 

kıyaslanmasıyla yapılacaktır. Bunların yanısıra çalışmaya yardımcı olmak 

amacıyla mean, medyan, uyarlamalı medyan, Lee, Kuan ve Frost gibi dalgacık 
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eşikleme yöntemi olmayan bazı hesaplamalara yer verilmektedir. Tüm bu 

dalgacık tabanlı hesaplama teknikleri ve bazı geleneksel yöntemler Java 

programlama dili kullanılarak popüler bir görüntü işleme uygulaması olan 

“ImageJ” altında geliştirilmektedir. 

 

Anahtar kelimeler:  Dalgacık dönüşümleri, Gürültü azaltma, İstatiksel yöntemler, 

SAR, Java 
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CHAPTER 1 

INTRODUCTION 

 

Denoising is one of the most important part of image processing. We are dealing 

with data which contain noise almost every time. Many scientific works have been 

done in this area. Wavelet theory relatively is the newest one though its 

mathematical underpinnings date back to the Fourier transformation. The main 

algorithm of wavelet theory dates back to the work of Stephane Mallat in [2, 5]. 

Since then, research on wavelets has spreaded out. Famous contributors in this 

decade can be listed as Ingrid Daubechies, Ronald Coifman, and Victor 

Wickerhauser [3, 6] .  

 

Denoising operations in wavelet transform domain (WTD) is the second part of 

wavelet denoising scheme. Donoho and Johnstone who proposed hard and soft 

thresholding schemes on WTD are well kown contributors [19]. On the basis of 

hard and soft thresholding schemes many advanced non linear statistical 

methods were applied to the WTD by Donoho and Jonhstone, Nason G.P., 

Odgen and Parzen [20, 26, 23, 24].  Well known non linear Bayesian estimator 

were applied to the WTD by Vidakovic and Ruggeri  [30]. In linear denoising 

case Wiener filtering was also introduced in WTD [18].  Later some of these 

statistical methods were modified to compute a separate threshold for each 

wavelet resolution level. 

 

In this work main focus is to develop a versatile wavelet denoising toolbox as 

bringing up popular wavelet models and denoising algorithms. Decimated wavelet 

transformation will be done using orthogonal and biorthogonal wavelet models. 

Denoising operations in wavelet domain will be studied in two groups as linear 

and non-linear. In the case of non-linear algorithms most popular data adaptive 
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methods such as SureShrink, BayesShrink, Generalized Cross Validation and 

Hypothesis testing will be applied along with VisuShrink as non-data adaptive 

method. On the other hand Wiener filtering will be employed in terms of linear 

algorithm. Non-wavelet filters such as traditional Mean, Median, and more 

statistically Adaptive Median, Lee, Kuan and Frost filters will be used also in this 

work. As a result using wavelet based filters with the aid of non-wavelet filters, 

the most appropriate denoising combinations are found out for different image 

types such as astronomical images, satellite images, magnetic resonance images 

(MRI), synthetic aperture radar (SAR) images or other ordinary images by using 

the toolbox generated.  Implemented wavelet models will also be tested with best 

denoising combinations for SAR images. 

 

 

In Chapter 2, image handling is discussed. ImageJ one of the most powerful image 

editing tool written in Java is being used for image handling and displaying. It is 

still under development and free licenced.  There are thousands of plugins written 

for ImageJ but no significant work available in wavelet theory in context with 

sophisticated denoising algorithm. This work will also be the most complete 

wavelet based denoising plugin for ImageJ. In chapter 3, wavelet transformation 

will be explained  and popular wavelet models will be compared.  In Chapter 4 

wavelet based denoising algorithms will be presented and results of these filters 

will be discussed. In Chapter 5, non-wavelet denoising filters will be applied. The 

new Toolbox generated throughout this work will be presented in Chapter 6. 

Finally, in Chapter 7 best combinations of wavelet models, wavelet based filters 

and non-wavelet filters will be found out for specific images.  
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CHAPTER 2 

IMAGE HANDLING AND DISPLAYING 

 

Wavelet based image denoising is based on obtaining pixel values of images as 

proper data sets. Ordinary images seen on the computer screen have two 

dimensions, in terms of  dx  and dy  representing data in the horizontal and 

vertical axes. A pixel called picture element is known as one of the many tiny dots 

that make up the representation of a picture in a screen of a computer. Each dot 

may have different values. With these explanations one can say that image with 

“256x512” resolution have “256” dots in dx  and “512” dots in dy . 

 

Wavelet transformation (WT) which will be treated in Chapter 3, was initially 

designed on linear “one dimensional” signal, however this method can be 

extended to signals for higher order dimensions successfully.  The base of multi-

dimensional WT is completely same with the one-dimensional WT. One 

dimensional WT is applied to each dimension respectively.   

x = dx                                                                                                                   (2.1) 

x  = dy                                                                                                                  (2.2) 

where dx , and dy  are noisy data set and x  represents the dataset used for WT. In 

(2.1) x  takes values of dx . In (2.2) x  takes again dy  values to make same 

process after WT on dx . 

Acquiring values of images in both dimensions can be done easily with integrated 

image processor libraries of ImageJ which will be discussed in the next sections. 

Displaying the image on the screen is also done with the same integrated libraries.  
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2.1 General Properties of ImageJ 

 

ImageJ is one of the world's fastest pure Java image processing program. It runs 

on most popular operating systems such as Linux, Mac OS 9, Mac OS X, 

Windows. ImageJ is written in Java so it needs a Java Runtime Environment 

(JRE) or Java Development Kit (JDK) to operate. ImageJ and its java source code  

are freely available and in the public domain [31]. No license is required. It can 

read, display, edit, analyze, process, save and print many of the well known 

images up to 32-bit color quality. It is multithreaded, so time-consuming 

operations such as image file reading can be performed in parallel with other 

operations.  

 

Custom acquisition, analysis and processing plugins can be developed using 

ImageJ's built-in editor and Java compiler. User written plugins make it possible 

to solve almost any image processing or analysis problem.  

 

2.2 Plug-in Concept of ImageJ 

 

The functions provided by ImageJ’s menu commands (most of them) can be 

extended by user plugins. These plugins are Java classes implementing the 

necessary placed in a certain folder. They can be conveniently compiled inside 

ImageJ or Windows environment. Plugins found by ImageJ are placed in the 

plugins menu. 

 

2.3 Methods and Classes of ImageJ 

 

ImageJ includes several classes and methods to operate on image.  Mostly used 

methods called ImageProcessor and ImagePlus contain all necessary objects for 
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creation of a new image and accessing or editing purposes. ImageWindow class 

can be used to display the image.   

 

2.3.1  Creating New Images 

 

In many cases it will make sense that a plugin does not modify the original 

image, but creates a new image that contains the modifications. ImagePlus’s 

createImagePlus() method returns a new ImagePlus with this ImagePlus's 

attributes, but no image. A similar function is provided by ImageProcessor’s 

createProcessor() method which returns a new, blank processor with specified 

width and height which can be used to create a new ImagePlus using the 

constructor ImagePlus(). The class NewImage offers some useful static methods 

for creating a new ImagePlus of a certain type. ImagePlus’s createByteImage() 

method creates a new 8-bit grayscale or color image with the specified title, 

width and height and number of slices.  

 

2.3.2  Accessing and Editing Pixel Values of Noisy Image 

 

Retrieving the pixel values of noisy image can be done by using an 

ImageProcessor’s GetPixels() object. It returns a reference to this image's pixel 

array. As the type of this array depends on the image type we need to cast this 

array to the appropriate type when we get it. 

 

To convert a position in this array to a (x,y) coordinate in an image, we need at 

least the width of a scanline. The width and height of an ImageProcessor can be 

retrieved using these methods: getHeight() and getWidth() object.  

 

ImageJ have two processor reading pixel values. These are ByteProcessors and 

ColorProcessors. In this work greyscale images  which have values from “0” to 
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“255”  will be used. Java’s byte data type used in ByteProcessor is perfect for 

grey scale images but has values ranging from “–128” to “127”. Sign bit must be 

eliminated. This can be done using a binary  AND.  

 

Other mostly used objects can be listed as fallows :  getPixel()  returns the value 

of the specified pixel.  putPixels()  sets the pixel at ( dx , dy ) to the specified 

value.  getColumn() returns the pixels down the column starting at ( dx , dy ).  

putColumn() inserts the pixels contained in data into a column starting at 

( dx , dy ). getRow() returns the pixels along the horizontal line starting at 

( dx , dy ).  putRow() inserts the pixels contained in data into a horizontal line 

starting at ( dx , dy ). getLine() returns the pixels along the line (
1dx ,

1dy ) / 

(
2dx ,

2dy ). 

 

2.3.3 Displaying Images 

 

ImageJ uses a class called ImageWindow to display ImagePlus images. 

ImagePlus contains everything that is necessary for updating or showing newly 

created images. Procedures in this class such as draw() displays this image, 

updateAndDraw() updates this image from the pixel data in its associated 

ImageProcessor, and displays it, updateAndRepaintWindow()   calls 

updateAndDraw() to update from the pixel data and draw the image, and also 

repaints the image window to force the information displayed above the image 

(dimension, type, size) to be updated. Show() opens a window to display this 

image and clears the status bar, hide() closes the window, if any, that is 

displaying this image. 
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2.4 Implementation Tips 

 

In this work input image was limited to 8-bit pixel value. Images with higher 

colors of dept such as 16-bit and 32 bit  can be handled with ImageJ but this will 

cause some performance lacks due to complex processing.  

 

Because of the wavelet filter’s nature, discreet wavelet transform mentioned in 

chapter 3 can be done on proper dataset.  Length of dataset in both dimension dx  

and dy  must be equal and power of 2 such as “128x128”, “512x512” or 

“2048x2048”.  Any other non power of two arbitrary length data set is converted 

to suitable length before the transform begin. Assume that there is an image with 

“345x850” resolution. After the conversion new image have “1024x1024” 

resolution.  Processed and reconstructed new image is again converted to original 

size at the end. 
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CHAPTER 3 

WAVELET TRANSFORM 

 

Wavelet theory has been one of the most useful development in the last decade 

that developed independently on several fronts. Different signal and image 

processing techniques had significant contributions in this theory [1].  Some of the 

major contributors to this area can be listed as: multi-resolution signal 

processing, wavelet series expansion in applied mathematics, sub-band coding 

used in image and voice compression [2, 3, 4]. 

 

The reason of the most wavelet research is to build more efficient wavelet 

function which gives precise description of the signal. It is very complicated 

process to develop best wavelet function. But on the basis of several 

characteristics of the wavelets, the most suitable one can be determined for a 

given application. 

 

In this chapter, the wavelet transformation is introduced, wavelet models are 

classified, multiresolution wavelet transformation on images is examined using the 

computational point of view.  Features of different wavelet transform filters are 

examined on different image types. 

 

3.1 Introduction to Wavelet Transform 

 

A wavelet is a small wave with finite energy, which has its energy concentrated 

in time or space area to give ability for the analysis of time-varying phenomenon 

in other words it provides a time-frequency representation of the signal.  

Comparison of a wave with a wavelet is shown in Figure 3-1.  Left graph is a 
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Sine Wave with infinite energy and the right graph is a Wavelet with finite 

energy.  

 

 
Figure 3-1 Comparison of a wave and a wavelet 

 

Wavelet transformation (WT) was developed to overcome the shortcoming of the 

Short Time Fourier Transform (STFT), which can also be used to analyze non-

stationary signals. While STFT gives a constant resolution at all frequencies, WT 

uses multi-resolution technique for non-stationary signals by which different 

frequencies can be analyzed with different resolutions [5].   

 

Wavelet theory is based on analyzing signals to their components by using a set 

of basis functions. One important characteristic of the wavelet basis functions is 

that they relate to each other by simple scaling and translation. The original 

wavelet function is used to generate all basis functions. It is generally designed 

with respect to desired characteristics of the associated function. For 

multiresolution transformation, there is also a need for another function which is 

known as scaling function. It makes analysis of the function to finite number of 

components.  

 

WT is a two-parameter expansion of a signal in terms of a particular wavelet 

basis functions or wavelets. Continuous wavelet transform (CWT) is written as: 

 

 

),( τγ s  = dtttf s )()( ,∫ τψ                                                                                   (3.1) 
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This equation shows how a function f(t) is decomposed into a set of basis 

functions )(, ts τψ , called the wavelets. The variables s and , scale and translation, 

are the new dimensions after the wavelet transform. 

 

Inverse wavelet transformation can be expressed as : 

 

)(tf  = ∫∫ dsdts s τψτγ τ )(),( ,                                                                              (3.2) 

 

The wavelets are generated from a single basic wavelet ψ (t), the so-called mother 

wavelet, by scaling and translation: 

 

)(, ts τψ  = ⎟
⎠
⎞

⎜
⎝
⎛ −

s
t

s
τψ1                                                                                        (3.3) 

 

For different integer values of s and , integer  represents translation of the 

wavelet function and represents time or space in WT. Integer s, however, is an 

indication of the wavelet frequency or spectrum shift and generally referred to as 

scale. For demonstration purposes, two different scaled versions of a wavelet 

along with the mother wavelet are shown in Figure 3-2. 

 

 
Figure 3-2  Mother wavelet and its two different scaled versions 

 

In Figure 3-2 the left graph is the mother wavelet ψ 12D , the middle one is the 

wavelet at scale s = −1 and the right one is the wavelet at scale s = −2. The other 

way to look at these graphs is: to assume that the right graph is the mother 

wavelet, the middle one is the wavelet at scale s = 1 and the left one is the 

wavelet at scale s = 2. 
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It is easily seen that different scales referred to different frequency spectrum. If 

we only look at the center frequency of each spectrum, it is seen that the center 

frequency changes by a factor of two for each increment or decrement of integer 

scale s. For simplicity, in wavelet transform reference to frequency is replaced 

by reference to scale. Higher scale corresponds to finer localization and vice 

versa [8]. 

 

3.2 Wavelet Properties 

 

There are two important properties of wavelets. These are the admissibility and 

the regularity conditions. It can be shown that square integrable functions ψ (t) 

satisfying the admissibility condition [7].  

 

dw
w
w

∫
2)(ψ

 < +∞                                                                                               (3.4) 

 

This can be used to first analyze and then reconstruct a signal without loss of 

information. In (3.4) ψ (w) stands for the Fourier transform of ψ (t). The 

admissibility condition implies that the Fourier transform of ψ (t) vanishes at the 

zero frequency, i.e. 

 

0

2|)(|
=w

wψ  =0                                                                                                    (3.5) 

 

This means that wavelets must have a band-pass like spectrum. A zero at the 

zero frequency also means that the average value of the wavelet in the time 

domain must be zero,  

dt∫ (t) ψ  = 0                                                                                                      (3.6) 
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and therefore it must be oscillatory. In other words, (t) must be a wave. 

According to (3.1) the WT of a one-dimensional function is two-dimensional. 

The time-bandwidth product of the wavelet transform is the square of the input 

signal. Some additional conditions are imposed on the wavelet functions in order 

to make the WT decrease quickly with decreasing scale s. These are the 

regularity conditions and they state that the wavelet function should have some 

smoothness and concentration in both time and frequency domains [10]. 

 

WT in (3.1) can be expanded into the Taylor series at t = 0 until order n (let = 0 

for simplicity) [7]: 

 

)0,(sγ  =  
s

1
⎥
⎦

⎤
⎢
⎣

⎡
++⎟

⎠
⎞

⎜
⎝
⎛∑ ∫

=

n

p

p
p nOdt

s
t

p
tf

0

)( )1(
!

)0( ψ                                          (3.7) 

 

Here f (p) stands for the pth derivative of f and O(n+1) means the rest of the 

expansion. Now, if moments of the wavelet is defined by Mp, 

 

pM  = ∫ dttt p )(ψ                                                                                          (3.8) 

 

then equation (3.7) can be rewritten as : 

 

)0,(sγ =                                                        (3.9) 

s
1

⎥
⎦

⎤
⎢
⎣

⎡
+++++ ++ )(

!
)0(...

!2
)0(

!1
)0()0( 21

)(
3

2

)2(
2

1

)1(

0
nn

n

n

sOsM
n

fsMfsMfsMf  

 

 

Admissibility condition states that at 0th moment M0 = 0 so that the first term in 

the right-hand side of (3.9) is zero. If  the other moments are maked as zero up to 

Mn  zero as well, then the wavelet transform coefficients (s, ) will decay as fast 

as sn+2 for a smooth signal f(t). This is known in literature as the vanishing 

moments or approximation order [33]. If a wavelet has N vanishing moments, 
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then the approximation order of the wavelet transform is also N. The moments 

do not have to be exactly zero, a small value is often good enough. In fact, 

experimental research suggests that the number of vanishing moments required 

depends heavily on the application [34].  

 

3.3 Discrete Wavelets 

 

As mentioned before the CWT maps a one-dimensional signal to a two-

dimensional time-scale joint representation that is highly redundant. The time-

bandwidth product of the CWT is the square of that of the signal and for most 

applications, which seek a signal description with as few components as 

possible, this is not efficient. To overcome this problem discrete wavelets have 

been introduced. Discrete wavelets are not continuously scalable and translatable 

but can only be scaled and translated in discrete steps. This is achieved by 

modifying the wavelet representation in (3.3) to create following equaiton [6]. 

 

ψ kj , (t) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
j

j

j s
skt

s 0

00

0

1 τ
ψ                                                                          (3.10)                             

 

Although it is called a discrete wavelet, it normally is a piecewise continuous 

function. In (3.10) j and k are integers and s0 > 1 is a fixed dilation step. The 

translation factor 0 depends on the dilation step. The effect of discretizing the 

wavelet is that the time-scale space is now sampled at discrete intervals. Value of 

s0 is usually equals to “2” so that the sampling of the frequency axis corresponds 

to dyadic sampling. This is a very natural choice for computers, as well as the 

human ear and music for instance. 0 which is known as the translation factor 

takes value “1” in order to achieve dyadic sampling of the time axis [10]. 
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Figure 3-3  Localization of the discrete wavelets in the time-scale space on a 

dyadic grid [10].  

 

When discrete wavelets are used to transform a continuous signal the result will 

be a series of wavelet coefficients, and it is referred to as the wavelet series 

decomposition. An important issue in such a decomposition scheme is of course 

about the reconstruction. It is all very well to sample the time-scale joint 

representation on a dyadic grid, but if it will not be possible to reconstruct the 

signal it will not be of great use. As it turns out, it is indeed possible to 

reconstruct a signal from its wavelet series decomposition. It is proven that the 

necessary and sufficient condition for stable reconstruction is that the energy of 

the wavelet coefficients must lie between two positive bounds [6]. 

 

∑ ≤≤
kj

kj fBffA
,

22

,
2 ,ψ                                                                      (3.11) 

 

where || f ||2 is the energy of f(t), A > 0, B <  and A, B are independent of f(t). 

When expression (3.11) is satisfied, the family of basis functions j,k(t) with j, k 

 Z is referred to as a frame with frame bounds A and B. When A = B the frame 

is tight and the discrete wavelets behave exactly like an orthonormal basis. 

When A B exact reconstruction is still possible at the expense of a dual frame. 
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In a dual frame discrete wavelet transform the decomposition wavelet is 

different from the reconstruction wavelet.  

 

The discrete wavelets can be made orthogonal to their own dilations and 

translations by special choices of the mother wavelet, which means:  

 

⎩
⎨
⎧ ==

=∫ otherwise
nkandmjif

dttt nmkj   0
        1

)()( *
,, ψψ                                                    (3.12) 

 

An arbitrary signal can be reconstructed by summing the orthogonal wavelet 

basis functions, weighted by the wavelet transform coefficients [33]:  

 

∑=
kj

kj tkjtf
,

, )(),( ) ( ψγ                                                                                   (3.13) 

 

Equation (3.13) shows the inverse wavelet transform for discrete wavelets. 

 

3.4 The Scaling Function 

 

The question is “How to cover the spectrum all the way down to zero ?” [10]. 

Because every time the wavelet is streched  in the time domain with a factor of 

2, its bandwidth is halved. In other words, with every wavelet stretch only half 

of the remaining spectrum is covered, which means that infinite number of 

wavelets will be needed to get the job done. 

 

The solution to this problem is simply not to try to cover the spectrum all the 

way down to zero with wavelet spectra, but to use a cork to plug the hole when it 

is small enough. This cork then is a low-pass spectrum and it belongs to the so-

called scaling function [10]. The scaling function was introduced by Mallat [2]. 
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Because of the low-pass nature of the scaling function spectrum it is sometimes 

referred to as the averaging filter.  

 

If we look at the scaling function as being just a signal with a low-pass 

spectrum, then we can decompose it in wavelet components and express it like 

in (3.13) . 

 

∑=
kj

kj tkjt
,

, )(),( ) ( ψγϕ                                                                                    (3.16) 

 

Since the scaling function (t) is selected in such a way that its spectrum neatly 

fitted in the space left open by the wavelets, the expression (3.16) uses an 

infinite number of wavelets up to a certain scale j seen in Figure 3.4. This means 

that if a signal is analysed using the combination of scaling function and 

wavelets, the scaling function by itself takes care of the spectrum otherwise 

covered by all the wavelets up to scale j, while the rest is done by the wavelets. 

In this way the number of wavelets are limited from an infinite number to a 

finite number. 

 

 

Figure 3-4  How an infinite set of wavelets is replaced by one scaling function 

[10]. 

  

Because of the low-pass spectrum of the scaling function admissibility condition 

can be expressed similar to (3.6)  
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∫ =1  )( dttϕ                                                                                                       (3.17) 

which shows that the 0th moment of the scaling function can not vanish [10]. 

 

3.5 Discrete Wavelet Transform 

 

In (3.16) the scaling function was expressed in wavelets from minus infinity up to 

a certain scale j. If wavelet spectrum is added to the scaling function spectrum, 

this will give a new scaling function, with a spectrum twice as wide as the first. 

The effect of this addition is that first scaling function can be easily expressed in 

terms of the second, because all the information needed to do this is contained in 

the second scaling function. It can be expressed formally in the so-called 

multiresolution formulation [33]. 

 

)2()( ) 2( 1
1 ktkht j

k
j

j −= +
+∑ ϕϕ                                                                          (3.18) 

 

The two-scale relation states that the scaling function at a certain scale can be 

expressed in terms of translated scaling functions at the next smaller scale.  

 

The first scaling function replaced a set of wavelets and therefore the wavelets 

can be expressed in this set in terms of translated scaling functions at the next 

scale. More specifically the wavelet can be written at level j:  

 

)2()( ) 2( 1
1 ktkgt j

k
j

j −= +
+∑ ϕψ                                                                         (3.19) 

 

which is the two-scale relation between the scaling function and the wavelet. 

 

Since signal f(t) could be expressed in terms of dilated and translated wavelets up 

to a scale j-1, this leads to the result that f(t) can also be expressed in terms of 

dilated and translated scaling functions at a scale j : 
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)2()( ) ( ktktf j

k
j −=∑ ϕλ                                                                                  (3.20) 

 

For the next scale j-1, wavelets have to be added in order to keep the same level 

of detail. As a result signal f(t) can be expressed as :  

 

) 2()( ) 2()( ) ( 1
1

1
1 ktkktktf j

k
j

j

k
j −+−= −

−
−

− ∑∑ ψγϕλ                                      (3.21) 

 

If the scaling function ϕ j,k(t) and the wavelets ψ j,k(t) are orthonormal or a tight 

frame, then the coefficients λ j-1(k) and γ j-1(k) are found by taking the inner 

products : 

 

λ j-1(k) =  )(),( , ttf kjϕ  

γ j-1(k) =  )(),( , ttf kjψ                                                                                     (3.22) 

 

If ϕ j,k(t) and ψ j,k(t) in the inner products are replaced with suitably scaled and 

translated versions of (3.18) and  (3.19) : 

 

∑ −=−
m

jj mkmhk )()2( ) (1 λλ                                                                           (3.23) 

∑ −=−
m

jj mkmgk )()2( ) (1 γγ                                                                              (3.24) 

 

These two equations state that the wavelet and scaling function coefficients on a 

certain scale can be found by calculating a weighted sum of the scaling function 

coefficients from the previous scale.  
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Discrete weighted sum like the ones in (3.23) and (3.24) is the same as a digital 

filter and since the coefficients λ j(k) come from the low-pass part of the splitted 

signal spectrum, the weighting factors h(k) in (3.23) must form a low-pass filter. 

And since the coefficients γ j(k) come from the high-pass part of the splitted 

signal spectrum, the weighting factors g(k) in (3.24) must form a high-pass filter. 

This means that (3.23) and (3.24) together form one stage of an iterated digital 

filter bank [10]. The coefficients h(k) is called scaling filter and the coefficients 

g(k) is called as  wavelet filter.  

 

 
Figure 3-5  One stage of an iterated filter bank. 

 

3.5.1 Mallat Algorithm 

 

The DWT is computed by successive low-pass and high-pass filtering of the 

discrete time-domain signal as shown in Figure 3-6. This is called the Mallat 

algorithm or Mallat-tree decomposition [2]. The low pass filter is denoted by oG  

while the high pass filter is denoted by oH . At each level, the high pass filter 

produces detail information, d[n], while the low pass filter associated with scaling 

function produces coarse approximations, a[n].  The half band low pass filtering 

removes half of the frequencies and thus halves the resolution, the decimation by 

two doubles the scale.  
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Figure 3-6  Mallat-tree decomposition 

 

The filtering and decimation process is continued until the desired level is reached. 

The maximum number of levels depends on the length of the signal.  This method 

is called decimated DWT in literature. There is also another method called 

undecimated DWT which has no decimate factor in scale calculation. In 

undecimated case, a signal is represented with the same number of wavelet 

coefficients at each scale. This means higher scales include coefficients of lower 

scales also.  It is known that the use of non-decimated transforms minimizes the 

artifacts in the denoised data [18]. However decimated DWT gives more memory 

efficient performance with respect to undecimated one.  

 

The DWT of the original signal is then obtained by concatenating all the 

coefficients, a[n] and d[n], starting from the last level of decomposition.  

 

Figure 3-7  Mallat-tree reconstruction 
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Figure 3-7 shows the Mallat-tree reconstruction of the original signal from the 

wavelet coefficients [2]. Basically, the reconstruction is the reverse process of 

decomposition. The approximation and detail coefficients at every level are up-

sampled by two, passed through the low pass and high pass synthesis filters and 

then added. This process is continued through the same number of levels as in the 

decomposition process to obtain and the original signal. The Mallat algorithm 

works equally well if the analysis filters, G
0 

and H
0
, are exchanged with the 

synthesis filters, 11G .   

 

3.6 Classification of Wavelets 

 

Wavelets can be divided in different classes in many different ways. For 

example, they can be divided based on their duration: infinite support wavelets 

and finite duration wavelets [8]. There are several infinite support wavelets such 

as Gaussian wavelets, Mexican Hat, Morlet, and Meyer. In this work infinite 

support wavelets will not be implemented. In practice, finite support (compact) 

wavelets are more popular due to their relations to multiresolution filter banks 

[8]. The most commonly used wavelets can be categorized into two classes: 

orthogonal and biorthogonal [5]. In orthogonal case the analysis and synthesis 

filters are not symmetric but this situation might be required in some 

applications.  Biorthogonal wavelets are more complicated and are defined based 

on a pair of scaling and wavelet functions. In this case, the analysis and 

synthesis filters can be forced to be symmetric. 

 

3.6.1 Features of Orthogonal Wavelets 

 

Orthogonal wavelets have regular structure which leads to easy implementation 

and scalable architecture [5]. For orthogonal wavelet systems with real functions, 

the following conditions should be satisfied. 
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ψ kj , (t). ψ nm, (t)dt = 1 (if j=m and k=n), 0 (Otherwise)                                   

ϕ kj , (t). ϕ nm, (t)dt = 1 (if j=m and k=n), 0 (Otherwise)                                (3.25)  

ϕ kj , (t).  ψ 0j (t)dt = 0                                                                                     

 

Orthogonality property is an important property in any signal analysis operation.  

Remember that DWT decomposes a signal into bands that vary in spatial 

frequency and orientation (see section 3.5). Uniform quantization of a single band 

of coefficients results in an artifact that is the sum of a lattice of random amplitude 

basis functions of the corresponding DWT’s wavelet function, which is called 

DWT uniform quantization error. The orthogonality property is required for the 

quantization error in the wavelet domain to be an exact indicator of the 

reconstructed image's final distortion [15]. 

 

Many functions exist that can satisfy the orthogonality requirements. Some of 

these functions are extraordinarily irregular, even fractal in nature. This may be 

an advantage in analyzing rough or fractal signals but it is likely to be a 

disadvantage for some signals and images. Orthogonal filters offer a high number 

of vanishing moments. This property is useful in many signal and image 

processing applications [8]. It has been shown that the number of vanishing 

moments of the wavelet, ψ(t), is related to the smoothness or differentiability of 

ϕ (t) and ψ(t). The representation and approximation of polynomials, which are 

often a good model for certain signals and images, are also related to the number 

of vanishing or minimized wavelet moments. On the other hand, the number of 

zero moments in the scaling function ϕ (t) is related to the goodness of the 

approximation of high resolution scaling coefficients by samples of the signal. 

This number also affects the symmetry and concentration of the scaling 

functions and wavelets [8]. 
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3.6.2 Features of Biorthogonal Wavelets 

 

Biorthogonal wavelets are known as two-band wavelets. They mean two different 

scaling functionsϕ ,ϕ~  which may generate different multiresolution analyses, and 

two different wavelet functions ψψ ~, . These functions provide the following 

conditions seen in (3.26) [12]. 

 

< ϕ ,ϕ~ > = 0, 

< ψ ,ψ~ > = 0,                                                                                                 (3.26) 

< ψ ,ϕ~ >  = < ϕ ,ψ~ > = 0, 

 

where ψ ,ϕ   are the wavelet and scaling function ψ~ ,ϕ~  are another functions 

called dual wavelet and dual scaling function respectively.  

 

In the case of the biorthogonal wavelets, wavelets and scaling functions do not 

have the same length. The scaling functions are always symmetric, while the 

wavelet function could be either symmetric or anti-symmetric.  

 

For perfect reconstruction, biorthogonal filter bank has all odd length or all even 

length filters. The two analysis filters can be symmetric with odd length or one 

symmetric and the other antisymmetric with even length [9]. 

 

3.7 Wavelet Families 

 

There are a number of bases functions that can be used as the mother wavelet for 

WT. Since the mother wavelet produces all wavelet functions used in the 

transformation through translation and scaling, it determines the characteristics of 

the resulting wavelet transform. Therefore, the details of the particular application 
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should be taken into account and the appropriate mother wavelet should be chosen 

in order to use the WT effectively.  

 

Figure 3-8 illustrates some of the commonly used wavelet functions. Haar (a), 

Daubechies-4 (b), and Coiflets-1 (c) are finite orthogonal wavelets (see sections 

3.7.1, 3.7.2 and 3.7.3) . Haar wavelet is one of the oldest and simplest wavelet [8]. 

Therefore, any discussion of wavelets starts with the Haar wavelet. These 

wavelets are capable of perfect reconstruction and they are chosen based on their 

shape and their ability to analyze the signal in a particular application [8].  

 

 
Figure 3-8  Various wavelet functions 

 

3.7.1 Haar Wavelets 

 

The Haar wavelet is the simplest and oldest one. It is a step function taking 

values 1 and -1.  Its scaling functions can be expressed as following: 

 

ϕ (t) = 1   :  0 ≤  t < 1 

ϕ (t) = 0   :  otherwise                                                                                    (3.28)          

Ψ(t) = 1    :  0 ≤  t < ½ 

Ψ(t) = -1   :  ½  ≤  t < 1                                                                                      (3.29) 

                             

 
Figure 3-9  Haar scaling function (left) and Haar mother wavelet. 
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Haar wavelet is the only orthogonal wavelet that has symmetric analysis and 

synthesis filters. This particular wavelet has been studied extensively in the 

image processing area as Haar transform [8]. Graphs of Haar scaling function on 

the left and mother wavelet are shown in Figure 3-9.  

 

3.7.2 Daubechies Wavelets 

 

For a given wavelet order, Daubechies developed wavelets with maximum 

regularity [6]. In this case, the number of zero moments for ψ (t) is maximized. 

Daubechies wavelets have the property of orthogonality, that is: 

 

< ϕ i ,ϕ j > = 0, for i ≠ j, 

< Ψ i , Ψ j > = 0, for i ≠ j,                                                                               (3.30) 

< Ψ i ,ϕ j > = 0, for i ≠ j, 

 

Several examples of Daubechies' wavelets and scaling functions are shown in 

Figure 3-10. The order of the wavelet filter for orthogonal wavelets is always an 

even number. The order of each wavelet filter is shown by the indices used on 

the corresponding ϕ (t) and ψ (t) functions. 

 

 
 

Figure 3-10  Examples of Daubechies scaling and wavelet functions 
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Daubechies wavelets have good compression property for wavelet coefficients 

but not for approximation coefficients. In other words, with reference to (3.21), 

the wavelet coefficientsγ 's have the best compression property under the 

circumstances while λ 's do not [3].  In order to resolve this issue, Coifman 

suggested to have as many zero moments for scaling function as for wavelets 

[6]. This modification resulted in what is referred to as Coiflets. 

 

3.7.3 Coifman Wavelets (Coiflets) 

 

The Coifman wavelets were proposed by R. Coifman in 1989 [6]. One of the 

relevant characteristics of Coifman wavelets is that the scaling function ϕ (t) is 

symmetric and vanishes fast as t goes to infinity. The following relations exist: 

 

dtt)(∫ϕ  = 1, 

dttt a∫ )(ϕ  = 0, a = 1,....,N-1;                                                                          (3.31) 

∫ dttt a )(ψ  = 0, a = 1,....,N-1; 

 

where N is called the order of the Coifman wavelets. Figure 3-11 shows several 

of the examples in this case. The order of each wavelet filter is shown by the 

indices used on the corresponding ϕ (t) and ψ (t) functions. 

 

 
Figure 3-11  Examples of Coiflets scaling and wavelet functions 
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3.7.4 Burt Adelson 

 

Burt Adelson wavelet is one of the well-known biorthogonal wavelets in wavelet 

literature. Because of its biorthogonal feature, it has two scaling and two wavelet 

functions where ϕ  ϕ~  and ψ ,ψ~  respectively.  

 

 
Figure 3-12  Example of two band Burt Adelson biorthogonal wavelet 

 

Burt Adelson wavelets are generated by a one “real” parameter familiy of 

symetric filters with small support but enough regularity and vanishing 

moments. 

 

3.7.5 Spline Wavelets 

 

In Spline cases wavelet ψ (t) and scaling ϕ (t)  functions are polynomial splines of 

degree n [9]. Spline wavelets can be classified to different types regarding to 

their orthogonality properties: othogonal, shift-orthogonal and biorthogonal are 

well known types. 

 

Orthogonal spline wavelets:  

 

The wavelets in this category were constructed independently by Battle and 

Lemarie [13] [14]. Battle-Lemaire wavelet is an example of orthogonal spline 

case.  Wavelet and scaling functions of orthogonal spline wavelet represented in 

Figure 3-10 are the same due to orthogonality feature.  
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Figure 3-13 Wavelet (left) and scaling (right) functions of orthogonal spline 

wavelet. 

 

Shift-orthogonal spline wavelets :  

 

This category explores a last possibility which is to retain the intra-scale 

orthogonality requirement alone. Their main advantage is that it is possible to 

reduce the decay of the wavelet while essentially retaining the orthogonality and 

approximation properties of the Battle-Lemarié spline wavelets. These features 

can potentially be of interest for subband coding. Note that orthogonality 

property is required for the quantization error (see Chapter 3.6.1). Wavelet and 

scaling functions of shift-orthogonal spline wavelet are represented in Figure 3-

11. 

 

  

Figure 3-14 Wavelet (left) and scaling (right) functions of shift-orthogonal spline 

with  ( n =3, n~ = 1) where n  represents the degree of synthesis and analysis 

spline. 

Shift-orthogonal splines wavelets are shorter synthesis filters. According to 

Lemarié this is advantageous for reducing reconstruction artifacts e.g., spreading 

of coding errors, ringing around sharp transitions [14]. 
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Biorthogonal spline wavelets :  

 

Biorthogonal wavelet basis shown in Figure 3-15 were introduced by Cohen-

Daubechies-Feauveau (CDF) in order to obtain wavelet pairs that are symmetric, 

regular and compactly supported [8]. Biorthogonal wavelets build with splines 

are especially attractive because of their short support and regularity. These 

wavelets turn out to be quite popular for coding applications [9]. In particular, 

the symmetry and short support (compactly supported with in a short interval) 

properties are very valuable for reducing truncation artifacts in the reconstructed 

images.  

 

 
Figure 3-15 Wavelet (left) and scaling (right) functions of biorthogonal spline 

wavelet with ( L  = 4, L~ = 6).  L  and L~ represent order of synthesis and analysis 

spline respectively. 
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3.8 Results 

 

There exist many different wavelet bases with different characteristics. Success 

of a given wavelet basis in a particular application does not necessarily mean 

that this set is efficient in other applications. In the same manner success of a 

given wavelet basis can vary on different image types.  Therefore, the freedom 

for choosing a particular wavelet should carefully be explored. 

 

In previous chapter classification of wavelet models was introduced. Number of 

order and orthogonality feature of different wavelet bases may affect the quality 

of reconstructed image. In order to see this behaviour, comparison of the input 

image with the wavelet transformed and reconstructed final image have to be 

done. All wavelet models implemented in this work can be seen in Appendix B. 

 

The Peak Signal to Noise Ratio (PSNR) is most commonly used as a measure of 

quality of reconstruction in image compression and image denoising works [16]. It 

comes from mean square error (MSE). MSE of two images are defined as  

 

MSE = mn
1 ( ∑

−

=

1

0

m

i
∑
−

=

−
1

0

2)),(),((
n

j
jiRjiI )                                               (3.11) 

 

where I and R can be interpreted as input and reconstructed images respectively. m 

and n defines number of pixel in vertical and horizontal dimension of images I and 

R. Then the PSNR is defined as 

 

PSNR = 10.log10 ( )MSEMAX I
2  = 20.log10 ⎟

⎠
⎞

⎜
⎝
⎛

MSE
MAX I                        (3.12) 

 

where MAXI is the maximum pixel value of the image I. When the pixels are 

represented using 8 bits per sample “grey scale”, MAXI  takes value “255”.  More 

generally, MAXI  is 2B-1 where B is a color dept “bit” of an image. 
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Comparing input image with reconstructed image (without denoising) is a good 

measure in order to evaluate success of wavelet reconstruction. PSNR of these two 

image can give significant information about quality of reconstruction.  Higher 

PSNR value means less difference between input and reconstructed image and 

vice versa. Different 8-bit noisy images can be seen in Figure 3-16. First image, 

MRI, is an example of magnetic resonance imagery. Second image, Roof, is an 

ordinary image. Third image SAR is an example of Synthetic Aperture Radar 

imagery. Last one, Lena, is one of the well known and mostly used portraits. 

 

  
a. MRI                                                      b. Roof 

  
c. SAR image                                          d. Lena 

 

Figure 3-16 Several 8-bpp noisy images 
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PSNR values of all wavelet models on various images shown in Figure 3-16 were 

calculated. Results are shown in Table 3-1. If final reconstructed image is totally 

identical or has very minor difference with respect to input image than PSNR 

value goes to infinity.  

      

Table 3-1 PSNR values of various wavelet models on different images 

MRI Roof SAR Lena  

Wavelet model PSNR values 

Haar 81.25 Infinity Infinity Infinity 

Daubechies 4 50.90 50.21 50.26 50.02 

Daubechies 6 49.21 48.15 48.14 48.15 

Daubechies 8 49.21 48.15 48.13 48.15 

Daubechies 10 49.21 48.15 48.13 48.15 

Daubechies 12 53.45 51.03 50.56 51.13 

Daubechies 20 Infinity Infinity Infinity Infinity 

Coiflet 2 78.10 90.01 93.29 94.53 

Coiflet 4 Infinity Infinity Infinity Infinity 

Coiflet 6 Infinity Infinity Infinity Infinity 

Pseudo Coiflet 4 86.75 86.75 Infinity Infinity 

Spline 2-2 84.25 Infinity Infinity Infinity 

Spline 2-4 68.47 68.43 71.31 70.64 

Spline 3-3 60.60 60.26 59.31 60.87 

Spline 3-7 25.39 23.04 28.24 22.82 

Battle Lemaire 48.31 47.41 50.58 47.13 

Burt Adelson 79.13 89.09 86.29 93.28 

CDF 2-4 52.91 52.42 53.03 52.47 
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3.9 Conclusion 

 

Table 3-1 shows that various wavelet models have different results on final 

reconstructed image. Lets deal with Haar wavelet known as the most simple and 

symmetrical one in orthogonal case. Despite its simple structure it has very good 

results and computationally very fast indeed. Due to simplicity and existence of 

fast computational algorithm, Haar transform can be a good choice for image 

processing for specific situations especially when the performance is needed. 

But due to its simple structure how good this wavelet can be combined with 

denoising scheme will be investigated.  

 

Next ones are Daubechies known as orthogonal wavelets which have more 

vanishing moments compared to Haar.  It is seen that Daubechie with order 20 

gives one of the best result in the test. Although other ones with lower orders are 

very close to each others, Daubechies with higher orders tend to give better 

results. 

 

There is a same situation for Coiflet. Higher order Coiflets have better results. In 

general Coiflets are superior than Daubeshies and Splines. This is probably from 

its structure which has more symmetrical properties and more vanishing points 

compared to Daubechies and Splines. In overall Coiflets seem to be best for all 

images used in this test.    

 

For the case of Spline, three types were compared in this test.  Battle Lemaire 

filter known as orthogonal spline wavelet, CDF known as biorthogonal spline 

wavelet and shift-orthogonal spline wavelets “spline 2-2, spline 2-4, spline 3-3 

and spline 3-7”. Between all of them spline 2-2 have the best results. Shift 

orthogonal splines have different behaviour with respect to other wavelet familes 

such as Daubechies or Coiflets. Shift orthogonal splines with lower orders tend 

to give better results. It is clearly seen that order of wavelet model has an impact 

on final image. 
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In this test there are two biorthogonal wavelet model used: CDF and Burt 

Adelson. Remember that biorthogonal wavelets have more symmetry than 

orthogonal ones. According to many wavelet works symmetry of wavelet is one 

of the most important feature for reducing truncation artifacts in the 

reconstructed images. Although Burt Adelson performed very well in this test, 

CDF had average results.  Note that there was no denoising scheme on wavelet 

domain. In real world how good the performance of this wavelets will also be 

studied in next chapters.  

 

Since the purpose of this work is comparing image denoising methods on the 

bases of wavelets, the next chapter is going to deal with denoising operations. 

Up to now only wavelet models have been compared on different images 

without any shrinkage or denoising. This could give some useful information 

about how wavelets act on different images. For example according to Table 3-1 

Daubechies seem to have better result on MRI. Also Coiflets and Burt Adelson 

are clearly better for Lena. CDF and Battle Lemaire are more usable for 

astronomical image. For all images Daubechies and Coiflets with higher order 

are giving the best results.  
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CHAPTER 4 

DENOISING OPERATIONS IN WAVELET DOMAIN 

 

 

In previous chapter wavelet theory was studied and wavelet coefficients (WC) of 

noisy image are found using wavelet models was also introduced. To summarize, 

splitting the signal into equally sized coarse and detail values lies on the bases of 

WT. Coarse and detail representation of signal is shown in Expression 3.21.  

Mallat’s decomposition tree in Figure 3-6 shows that in each iteration level of 

WT, low pass filter 0G , scaling function,  produce coarse approximations, and 

high pass filter 0H , wavelet function,  produces detail approximations. For the 

next level using output of low pass filter, coarse and detail approximations are 

produced again according to Expression 3.24.  In each iteration level so called 

scale, size of WC is halved so it is seen that number of wavelet scale depends on 

the signal length. Suppose X1 ….. X n are noisy data where jn 2=  for some 

integer J > 0.  If this condition does not meet then n  will be adapted to this 

condition which is mentioned in Section 2.4. Remember that, WC in different 

scales show image characteristics with different intensities. Because of the noise 

in the image, WC inevitably include information about noise.     

 

4.1 Introduction  

Decomposition of a function f  into wavelet components can be represented as :  

 

kj ,γ  = ∫
1

0 , )()( duuuf kjψ                                                                                       (4.1) 
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where kj ,γ  known as true wave coefficients is also called wavelet parameter 

values. In nonparametric regression (wavelet domain), the parameter values are 

unknown, so they must be estimated from the data. Empirical Wavelet 

Coefficients (EWC) are defined corresponding to the true coefficients  kj ,γ  as 

follows: 

 

)(
,
n
kjw  = ∫

1

0 , )()(~ duuuf kjψ                                                                                      (4.2) 

 

where ()~f  is the function estimated from data values X1 ….. X n  which are 

distributed as  iX ~ )),/(( 2σnifN . It is relatively straightforward to derive the 

approximate distribution of )(
,
n
kjw  from (4.2). In particular, )(

,
n
kjw  is normal with 

mean  

 

E[ )(
,
n
kjw ] = E ⎥⎦

⎤
⎢⎣
⎡∫

1

0 , )()(~ duuuf kjψ                                                                           (4.3) 
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)(ψ  

              =  ∑
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n

ni
kj n

Oninif )1()/()/( 2,ψ  

              =   ∫
1

0 , )()( duuuf kjψ + )1(
n

O  + )1( 2n
O  

              =   kj ,γ  + )1(
n

O                                                                                       (4.4)      

 

The EWC )(
,
n
kjw  is thus an estimator of the true coefficients kj ,γ  and it can be 

written in the form of (4.5) .  

 

( ) ,, kj
n

kjwn γ−  ~  ( )2,0 σN                                                                                (4.5) 

 

where 2σ is variance and N is the sample size.  
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As pointed out by Donoho and Johnstone, each set of EWC consist of a certain 

amount of noise, but only relatively few consist of significant signal [19]. The 

noise in the original sequence X1 ….. X n  is spread out uniformly among all EWC 

[19]. The question is “Which of the coefficients contain significant signal, and 

which are mostly noise ? ”.   

 

4.2 Wavelet thresholding 

 

Since the largest true coefficients kj ,γ  are the ones that should be included in a 

selective reconstruction, in estimating an unknown function it is natural to include 

only coefficients which have absolute value larger than some specified threshold 

value. Such a threshold value is found to distinguish between EWC that belong in 

the reconstruction (corresponding, one would hope, to true coefficients which 

contribute significant signal) and those that do not belong (corresponding to 

negligibility small true coefficients). Based on (4.5), the threshold estimator of the 

true coefficients kj ,γ  can be written as:  

 

kj ,γ̂  =  
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

σ
δσ )(

,
n
kj

Tc

wn

n
                                                                                    (4.6) 

 

where the function Tcδ  is called thresholding function, n is sample size and σ is 

noise level or in other words Standard Deviation (STD) of coefficients for specific 

level [16]. 

 

Here σ  is estimated for wavelet coefficients. Donoho and Johnstone propose an 

estimate of the noise level that is based only on the EWC at the highest level. The 

reason for considering only highest level of coefficients is that these tend to 

consist mostly of noise [20]. 
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σ̂   =  
6745.0

|))((| )(
,1

)(
,1

n
kj

n
kj wmedianwmedian −− −

                                                          (4.7) 

 

where )(log 2 nJ = .  This process is called Median of Absolute Deviation (MAD). 

 

Finding the threshold value cT  will be treated in the next sections. In this chapter, 

it is assumed that  cT  is known already. The question is how the threshold value is 

applied. There are different approaches for thresholding or so called shrinking on 

the WC. Hard and soft thresholding schemes which were proposed and studied 

by Donoho and Johnstone are well known ones [19][20].  

 

4.2.1 Hard thresholding 

 

The procedure in which small EWC )(
,
n
kjw  are removed while others are left 

untouched is called hard thresholding. Hard thresholding sets any coefficient less 

than or equal to the threshold cT  to zero.  

 

H
Tcδ  = 

⎩
⎨
⎧ >

otherwise
Txifx C

,   0
   ,   

                                                                                        (4.8) 

 

 

Figure 4-1 Transfer function of Hard thresholding 
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Hard threshold is a “keep or kill” procedure and is more intuitively appealing. 

This method generates spurious blips, better known as artifacts, in the images as a 

result of unsuccessful attempts of removing moderately large noise coefficients. 

Hard thresholding does not even work with some algorithms such as SureShrink 

(see Section 4.5.2.1). To overcome the demerits of hard thresholding, wavelet 

transform using soft thresholding was introduced. 

 

4.2.2 Soft thresholding 

 

In this scheme, EWC )(
,
n
kjw  above the threshold cT  are shrunk by the absolute 

value of the threshold itself. Soft thresholding sets any coefficient less than or 

equal to the threshold to zero then threshold is subtracted from any coefficient 

that is greater than the threshold.  

 

S
Tcδ  = 

⎪
⎩

⎪
⎨

⎧

−<+

≤

>−

CC

c

CC

TxifTx
Txif
TxifTx

   ,    
      ,         0
   ,    

                                                                               (4.9) 

 

 

Figure 4-2 Transfer function of soft thresholding 

 

While at first sight hard thresholding may seem to be natural, the continuity of soft 

thresholding has some advantages. Sometimes, pure noise coefficients may pass 
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the hard threshold and appear as annoying blips in the output. Soft thesholding 

shrinks these false structures. 

 

4.3 Estimating of the Threshold 

 

In many applications estimating of the threshold value is done for each wavelet 

scale individually. WC in each scale under this estimated threshold values are 

accepted as noise characteristic of image.   

 

Threshold estimators or so called filtering operators in the wavelet domain can be 

subdivided into linear and nonlinear methods as shown in Figure 4-3. 

 

 

 

 

 

 

 

 

 

 

Figure 4-3 Schematic diagram of filtering operations in the wavelet domain 

Threshold estimators on 
wavelet domain 

Linear  Non Linear 

Non Data-Dependent 
Adaptive 

Data-Dependent 
Adaptive 
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Generalized Cross Validation 
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SureShrink

VisuShrink 
(Universal Thresholding) 
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In this section, performances of distinct threshold estimators will be analyzed 

starting with fixed threshold value for all wavelet scales called universal 

thresholding which is the most primitive one and go on with the most advanced 

data adaptive statistical methods. Between these methods also the results of 

Wiener filtering will be tested. Wiener filtering is a kind of linear denoising 

algorithm which is very successful if the noise distribution of original noisy image 

is similar to Gaussian distribution with known standard deviation [16]. 

4.4 Linear Filters (Wiener Filter) 

 

Linear filters such as Wiener filter in the wavelet domain can give good results if 

the signal corruption can be modeled as a Gaussian process [17]. But designing a 

filter based on this assumption frequently results in a filtered image that is more 

visually displeasing than the original noisy signal. In a wavelet-domain spatially 

adaptive finite impulse response (FIR) Wiener filtering for image denoising is 

proposed [18]. It means that filtering is performed only within each wavelet scale, 

in other words threshold are calculated and applied for each scale separately. 

 

Algorithm of spatially adaptive FIR Wiener filter is giving : 

jcT =  
jmT  ×   

jSσ  ×  oσ                                                                              (4.10) 

where 
jcT , 

jmT , 
jSσ  and oσ  are threshold value, the threshold multiplier, the 

STD  of wavelet coefficients of simulated image for each wavelet level j and the 

STD of the noise in noisy data respectively.   

 

Because of the nature of linear filters, there is a need for a model to represent 

signal corruption of noisy image. This model with exactly the same size with 

original noisy image is called simulated image and created by adding noise to 

blank image using Gaussian process with STD “1”. Note that this model is created 
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independently and assumed that it has a similar noise characteristic with the 

original noisy image. Second step is to calculate WC of this simulated model. 

Remember that Wiener filter is executed in wavelet domain in this work. 

 

The STD of the WC of simulated data is found by the MAD process described in 

Equation 4.7 however this value is calculated for each wavelet level here. STD of 

noise in the noisy data is estimated also by the same way.  

 

oσ  = STD )~( xxi −                                                                                           (4.11) 

 

where x  is noisy data, x~  is the median of the noisy data and | x | is the absolute 

value of x . Note that oσ  is calculated once and used for filtering operations in all 

scales. 

 

STD of WC of simulated image “ sσ ” is not a single unchangeable value. It is 

calculated for every wavelet scale of simulated noise model.   

 

mT  is the standard deviation multiplier or in other words thresholding coefficient. 

It can be different in each scale. Value of mT  can be zero or any other positive 

number. When it is zero threshold value will become zero so there will be no 

denoising. Small values mean removing smaller noise.   

 

4.5 Non-linear Filters 

 

The most investigated domain in WT denoising is the non-linear coefficient 

thresholding based methods. The procedure exploits sparsity property of the 

wavelet transform and the fact that the WT maps white noise in the signal domain 

to white noise in the transform domain [19]. Thus, while signal energy becomes 

more concentrated onto fewer coefficients in the transform domain, noise energy 
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does not. It is this important principle that enables the separation of signal from 

noise [19]. 

 

4.5.1 Non Data-Dependent Adaptive Threshold (VisuShrink) 

 

Non data ataptive thresholding is done with fixed threshold value called Universal 

Threshold (UT) seen in Equation 4.12.   

 

cT   =  σ 2lnN                                                                                                   (4.12) 

 

where cT  is threshold value, N is the data length, σ  is the noise variance of data 

estimated according to Equation 4.11.  

 

Universal thresholding is non-data dependent because it is not inspecting each 

data statistically. However it is certainly an adaptive threshold method due to 

parameters such as N and σ in its expression.  Although universal thresholding is 

not the best method to determine a threshold, it can be useful to obtain a starting 

value when nothing is known about the signal condition. One can say that the 

universal threshold may give a better estimate for the soft threshold if the number 

of samples is larger since the threshold is optimal in the asymptotic sense.  

 

VisuShrink proposed by Donoho and Johnstone is another name of UT applied on 

wavelet coefficients [19]. This threshold is given by  : 

 

cT   = σ Mlog2                                                                                                (4.13) 

 

where σ is the noise variance estimated according to (4.11) and M (NxN) is the 

number of pixels in the image . It is proved that the maximum of any M values, 

N(0,σ 2 ) will be smaller than the universal threshold with high probability, with 

the probability approaching 1 as M increases. Thus, with high probability, a pure 



 

44

noise signal is estimated as being identically zero. However, for de-noising 

images, it is found out that VisuShrink yields an overly smoothed estimate [19]. 

This is because UT is derived under the constraint that with high probability, the 

estimate should be at least as smooth as the signal. So the UT tends to be high for 

large values of M, killing many signal coefficients along with the noise. Thus, the 

threshold does not adapt well to discontinuities in the signal. 

 

4.5.2 Data Dependent Adaptive Thresholding 

 

A data-dependent analysis assumes that almost all the information available to a 

researcher is contained within the observed data. Data-dependent methods for the 

analysis of WC are shown to provide significant advantages over conventional 

techniques mentioned in previous sections. There are plenty of works available in 

this area. Well known methods are SURE shrinking, Bayesian shrinking 

Generalized Cross validation, and Hypothesis testing. 

 

4.5.2.1 SURE Shrink 

 

Donoho & Johnstone introduce a scheme that uses the coefficients at each wavelet 

level j to choose a threshold 
jcT with which to shrink the coefficients at that level 

which is known as  the SureShrink wavelet thresholding technique [19, 20].  

 

The basic idea behind this scheme is to find an estimator f̂  for f  that will have 

small 2L  risk : 

 

 ),ˆ( ffR = ( ) ( )( ) ⎥
⎦

⎤
⎢
⎣

⎡
−∑

=

n

i
nifnif

n
E

1

2
//ˆ1                                                           (4.14) 

 

This quantity can be expressed in terms of the WC, 
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R ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−∝ ∑∑

j k
kjkjEff 2

,,ˆ  )   ,ˆ( γγ                                                                   (4.15) 

 

where kj ,γ  are true wavelet coefficients described in Section 4.1. 

 

The significance of this is that it is possible to transform the original data into its 

WC, and then attempt to minimize risk in the wavelet domain; doing so will 

automatically minimize risk in the original domain.  

 

In practical situation the risk ),ˆ( ffR  must be estimated from the data. This 

method employs an unbiased estimate of risk that is due to Stein called Stein 

Unbiased Risk Estimator (SURE) [27]. 

 

Minimization of estimated risk is done by choosing a threshold value for each 

wavelet scale. This method is illustrated by considering the following equivalent 

problem. Suppose (X1 …X d ) are independent observations with kX  ~ )1,( kN µ . 

The problem is to estimate the mean vector µ = )...( 1 ′dµµ  with minimum risk. 

This represents estimation of true WC at any level j, with )(
, n
kjk wnX =  and jd 2 =  

  

Since it is thought that most of the coefficients are zero, the estimator will be the 

soft thresholding function (see Section 4.4.2). Denoting the vector of observation 

X and letting µ̂  represent the resulting estimator of µ , the result of Stein states 

that the 2l  loss can be estimated unbiasedly for an estimator of µ  that can be 

written )(   ) (ˆ XgXX +=µ  where the function g : dd IRIR → is weakly 

differentiable : 

 
2)(ˆ µµµ −XE = { })(.2)( 2 XgXgEd ∇++ µ                                               (4-16) 

 



 

46

where ∑
= ∂

∂
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d
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k
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X

g
1

)(. , defining )...( 1 dggg = . Using the soft thresholding 

function δ gives that  
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so ∑
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k
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k
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, )(1. , so that 

Stein’s estimate of risk applied to this situation can be written for any set of 

observed data ( )′= dxxx ...1  : 

 

SURE ),( xTc  =  d – 2.#{ } ),(min  :
1

2
c

d

k
kck TxTxk ∑
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                       = -d + 2.# { } ),(min  :
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where #S for a set S denotes the cardinality of the set. Here, 

);( )(ˆ
2)( XTSUREEXE c

Tc
µµ µµ =− . 

 

The threshold level is set so as to minimize the estimate of risk for the given data 

( )dxx ...1  : 

 

);(  arg min  0 xtSURET tc ≥=                                                                              (4.19)                              

 

Such a method can reasonably be expected to do well in terms of minimizing risk, 

since for large sample sizes the Law of Large Numbers will guarantee that the 

SURE criterion is close to the true risk [23].  
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4.5.2.2 Generalized Cross Validation 

 

Cross-validation is widely used as an automatic procedure to choose the 

smoothing parameter in many statistical settings. The generalized cross-validation 

(GCV) method is performed by systematically expelling a data point from the 

construction of an estimate, predicting what the removed value would be and, 

then, comparing the prediction with the value of the expelled point [25].  

 

Based on the work of Nason, G.P., the minimizer of the GCV function for 

threshold selection has been used [26]. Base of GCV function depends on 

choosing a global threshold to minimize 2L  risk in recovering the unknown 

function f . Thus the objective function is given by  

 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∫ dxxfxfEtM t

21

0

)()(ˆ                                                                            (4.20) 

 

where tf̂  is the wavelet estimator that result from applying a threshold t globally 

to all WC. In practice, this can never be computed (as f is unknown), so M(t) must 

be estimated in some way. Discretized version of Expression 4.15 can be written 

as :  

 

)(tm = ( ) ( )( ) ⎥
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t nifnifE
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This can be expressed in the wavelet domain as : 
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where kj ,γ̂  represents the estimate of the true coefficients kj ,γ  described in 

Section 4.1 computed from the soft thresholding function with threshold t : 

 

)(1 ˆ )(
,,
n
kjt

t
kj wn

n
δγ =                                                                                            (4.23) 

 

The first question of interest in this approach involves the behavior of the 

objective function )(tm : In particular, given knowledge of f  (equivalently, given 

knowledge of the kj ,γ ’s) the question is  “is it possible to minimize the function 

)(tm  ?” [23]. Standard calculus concepts would suggest taking the first derivative 

of )(tm , solving for the 0t  which gives )( 0tm′  = 0, then verifying that 0t  is 

indeed a minimum by checking the sign of the second derivative of m at 0t . 

Unfortunately, this cannot be used, as the soft thresholding function tδ  applied to 

data values is not everywhere differentiable with respect to t. Nason examines this 

question at length, noting that the derivative )(tm′  is a piecewise linear with 

discontinuities at each || )(
,
n
kjwn  [26].  With high probability, however, the jumps 

at these points are small in the area where the minimum is likely to occur. By this 

and additional arguments about the behavior of )(tm for t=0, Nason concludes 

that the function )(tm′  is “almost convex” and can thus be effectively minimized 

[26]. 

 

The usual method of cross validation cannot be applied directly to estimation with 

wavelets because efficient algorithms are not yet available for computing the 

discrete wavelet transform using an orthogonal wavelet with non-uniform designs. 

Nason suggests breaking the original data set (X1 …X d ) into two subsets of equal 

size: one containing only the even indexed data, and the other, the odd indexed 

data. The odd data will be used to “predict” the even data, and vice versa. 

 

Let  ( o
n

oo XXX 2/21 ,...,, ) represent the re-ordered odd data points and 

( E
n

EE XXX 2/21 ,...,, ) the similarly renumbered even data values. The usual wavelet 
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estimator based on the even-indexed points, denoted Ef̂ , consist of estimates of 

the function f  at the points 1,2,...4,2
n

n
nn

− ; that using the odd data points Of̂  

estimates f  at  
n

n
nn

1,...3,1 − . To compare these estimated points directly with 

original data values, interpolated versions of each data set are employed as : 
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for the odd data, and  
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for the even data. Note that the indices on these interpolated versions of the data 

coincide with the indexing of the subsets of the data, and hence, of the estimators 

resulting from the subsets. Also, note that the interpolation scheme described 

above wraps the data around interval [0,1], which corresponds to periodic 

boundary handling. The cross validation approach will minimize the fallowing 

estimate of )(tm [25] : 
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Defining for the moment { E
kjw , } and { O

kjw , } to be the wavelet coefficients for the 

even and odd-indexed data respectively, with { E
kjw ,

~ } and { O
kjw ,

~ } representing the 
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WC resulting from the respective interpolated sequences, the expression (4.21) 

can be rewritten as : 
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This function can then be minimized over t, giving the “best” threshold for half 

sample prediction :  

 

)(ˆ arg min 0
2/ tmT t

n
CV ≥=                                                                                       (4.28) 

 

The selected threshold (4.28) is not the best to apply to the full data set, however. 

Remember the dependence of the universal threshold of Donoho and Johnstone. In 

Expression 4.8  with sample size M :  
ucT   = σ Mlog2 .         

                                                                                          

Since 2/n
Tu

T  = )2/log(2 n , the relationship between the two thresholds is  
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The final threshold to use with the full data set results from applying the 

Expression (4.24) to the cross-validation threshold for the half-samples [23].  

 

Standard GCV algorithm taken from Nason was modified to compute a separate 

threshold for each resolution level in this work [26]. This gives more adaptive 

results but still there may be some problems in low level coefficient sets. Low 

level coefficient sets include most important part of image characteristics. 

Capturing and applying GCV low level coefficient sets may be resulted with loss 

of image characteristics. 
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4.5.2.3 Hypothesis Testing 

 

The primary goal in the data dependent threshold selection is the division of WC 

into a group of “small” coefficients (those containing primarily noise) and one of  

“large” coefficients (those containing significant signal). A reasonable way for a 

statistician or a data analyst to go about this is to utilize statistical test of 

hypotheses, the large coefficients group consisting only of coefficients that “pass 

the test” of significance. This is the general approach taken by Odgen and Parzen  

[23, 24]. 

 

The general approach taken by Odgen and Parzen operates on a level-by-level 

basis, as does the SURE approach [23, 24]. At any particular level a single test is 

performed to determine if the set of coefficients at that level behave as white noise 

(small coefficents) or if there is a significant signal available. If it is determined 

that there is a signal present, the most likely candidate (the largest coefficients in 

absolute value) is removed from consideration, and the rest is repeated. 

Continuing recursively, at each level one will be left with two sets of coefficients : 

“large” coefficients thought to contain significant signal, and a set of “small” 

coefficients which is indistinguishable from pure white noise.  

 

Let dXX ,.....,1  represents the EWC )(
,
n
kjw  at level dj 2log=  and suppose that 

these coefficients have means dµµ ,.....,1  respectively. Initially, interest is in 

testing the null hypothesis that all the means are zero vs. a general alternative that 

some of the iµ ’s are non-zero. Specifically, let dI  represent a non-empty subset 

of the indices {1,…,d}. Then the hypothesis could be expressed as  
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                                                   (4.30) 

 

where oH  is null hypothesis and aH  is alternative hypothesis. 



 

52

 

A fundamental question that must be addressed in this approach is how to test the 

above set of hypothesis. p  value which is the probability that a test statistic at 

least as significant as the one observed would be obtained assuming that the null 

hypothesis were true. The smaller the value of p , the stronger the evidence against 

the null hypothesis. 

 

p = )|( vxF = ∫ Γ

−−x
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tv

v
et
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)2/(2
                                                                         (4.31) 

 

Function in (4.31) is called Chi-square distribution where Γ() is the Gamma 

function [28]. The result, p  is the probability that a single observation from a χ2 

distribution with ν degrees of freedom will fall in the interval [0,x]. The χ2 

density function with ν degrees-of-freedom is the same as the gamma density 

function with parameters ν/2 and 2. 

 

Value of p  is compared to an acceptable significance value α . If p  ≤  α, that 

the observed effect is statistically significant, the null hypothesis is ruled out, 

and the alternative hypothesis is valid.  

 

α = 1 – p                                                                                                            (4.32) 

 

Subtracting  p from positive integer “1” gives the significance probability. As 

the probability gets smaller truth of hypothesis gets doubtful. If the probability is 

extremely low like “0.0001”, it can be say that original assertion was wrong. If 

the probability is large “0.20” or greater than original assumption was 

reasonable.  

 

This method operates by testing the maximum of each set of squared wavelet 

coefficients to see if it behaves as the nth order statistic of a set of independent 
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Chi-squares. If not, it is removed, and the max of the remaining subset is tested, 

continuing in this fashion until the max of the subset is judged not to be 

significant.  If there is no significance at the end CT  is set to zero. If there is, CT  

takes the value of this wavelet coefficent.  

 

4.5.2.4 BAYES Shrink 

 

Bayes rules are shrinkers and their application on wavelet coefficients leads to 

effective estimators of unknown signals [22]. The proposed Bayesian model relies 

on Bayesian Adaptive Multiresolution Shrinker (BAMS), a technique recently 

proposed by Vidakovic & Ruggeri [30].  It is based on Bayesian estimation using 

each EWC )(
,
n
kjw  to estimate the corresponding true WC kj ,γ . 

 

Bayesian methods for function estimation with wavelets are different then simple 

threshold selection, in the sense that new shrinkage functions result from the 

Bayesian approach, different from either the soft or hard thresholding functions 

discussed previously.  

 

Let dXX ,.....,1  represents the EWC )(
,
n
kjw  at level dj 2log= .  Each coefficient 

X  is affected by normal errors, and thus the conditional distribution of X  given 

θ  and 2σ , d|θ , 2σ | is N (θ , 2σ ). In BAMS, the prior distributions on 2σ  and θ  

are chosen to be, respectively, an exponential one, Σ (µ ), and a mixture of a point 

mass at zero and a double exponential distribution, ∂ Σ  (0,τ ). 

 

The Bayes rule for each X in the set dXX ,.....,1  is : 
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where 

 

)( kXm  = 
µτ
µτ µτ

/12
)2/1(

2

2/

−
− −− kk cc ee

                                                           (4.34) 

 

 

It is seen that Bayesian rule is not a threshold estimator only. It is directly 

estimating kγ  without using soft or hard thresholding for a specific level.  The 

rule is close to a thresholding rule because it heavily shrinks small-in-magnitude 

arguments with minor influence on the larger arguments [23].  

 

4.6 Results 

 

In this section various noise free images and artificially noise added versions are 

used for wavelet denosing filters mentioned in Section 4.4 and Section 4.5. Note 

that noise added to images is known as Gaussian noise or so called white noise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

55

Results of Wiener Filter :  

 

Daubechie-20 wavelet model is used on noisy image shown in Figure 4-4 which is 

a noisy version of the original image with additive Gaussian noise. Denoising 

operation in wavelet domain is done only in the first three scale.  

 

   
a. Original image                                       b. Noisy img. gσ = 20, PSNR = 20.22 

   
c. Hard, mT (3,2,1)  PSNR = 26.95           d. Soft mT (1,0.5,0.25) PSNR = 26.95          

Figure 4-4 Results of Wiener Filter 
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Wiener filtering in both cases hard and soft thresholding works well for the image 

used, if mT  is carefully selected for each scale. High mT  values result in loss of 

some detail especially in soft one whereas low mT  values result in less smoothing. 

Remember that success of Wiener filtering depends on how the signal corruption 

looks like the model of Gaussian process.  If signal corruption can be modeled 

exactly, Wiener filter gives the best result in all wavelet denoising scheme without 

any doubt. But this is quite unusual. 
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Results of VisuShrink :  

 

Daubechie-20 wavelet model is used on the noisy image shown in Figure 4-5 

which is a noisy version of the original image with additive Gaussian noise. 

Denoising operation in wavelet domain is done only in the first three scale.  

 

   
a. Original image                                      b. Noisy img. gσ = 20, PSNR = 20.22 

   
c. Visu, PSNR =  21.45                             d. Visu, mT (2,1,0.5)  PSNR =  27.85 

Figure 4-5 Results of VisuShrink 
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It is easly seen that hard thresholding is more convenient than soft one for 

VisuShrink. In both cases soft and hard small denosing coefficient multipliers 

were selected. Remember that VisuShrink uses the universal threshold. Although 

this threshold is in normal level for the first scale it is very high for the upper 

scales. Look at the last image with no multiplier. In that case universal threshold 

was applied in all scale without any limitation, so it yields overly smoothed image. 

Results show that VisuShrink is not a good way for wavelet denoising.  
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Results of SureShrink :  

 

CDF 2-4 wavelet model is used on the noisy image shown in Figure 4-6 which is a 

noisy version of the original image with additive Gaussian noise. Denoising 

operation in wavelet domain is done only in the first three scale.  

 

   
a. Original image                                      b. Noisy img. gσ = 15, PSNR = 24.6 

   
c. SURE , PSNR =  28.31                         d. SURE + AM + DF, PSNR = 28.64 

Figure 4-6 Results of Sure Shrink 
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It is seen that hard thresholding is not appropriate for SureShrink. Because 

significant denoising did not occur in hard case. On the other side soft 

thresholding gives very good results while preserving lots of image detail. For the 

last image (d) besides the soft SureShrink, DF over adaptive AM filtering with 

“ iσ  = 1.6” was executed (see Chapter 5). It is seen image is slightly more superior 

due to small amount of positive contribution achieved using DF-AF filtering. 
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Results of Generalized Cross Validation :  

 

CDF 2-4 wavelet model is used on the noisy image shown in Figure 4-7 which is a 

noisy version of the original image with additive Gaussian noise plus speckles or 

so called Salt&Pepper type noise. Denoising operation in wavelet domain is done 

only in the first two scale.  

 

   
a. Original image                                      b. Noisy image gσ =20,PSNR = 16.18 

   
c. GCV (Hard 3 scale) + AM + DF          d. GCV (Soft, 2 scale) + AM + DF,  

    PSNR = 31.98                                        PSNR = 31.90 

Figure 4-7 Results of GCV 
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Both hard and soft thresholding methods are used here. Remember that original 

GCV was modified for level dependence.  Modified GCV gives good result in 

both hard and soft thresholding case. Note that although GCV with soft 

thresholding was executed only for first two scale it gave the same good result as 

well as hard threshold did for first three scale.  However several attempts for 

denoising higher resolution levels resulted with loss of image detail especially 

for soft thresholding.  It is seen that GCV works perfect with lower resolution 

levels but it fails in higer resolution levels. This is not a serious problem. The 

important thing is how the wavelet denoising schemes act on lower levels where 

most of the noise are expected.  Like in Sure thresholding, AM + DF filters are 

used here. It is seen image is slightly more superior due to small amount of 

positive contribution achieved using DF-AF filtering. For detailed information 

about these filters see Chapter 5. 
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Results of Hypothesis Testing :  

 

Spline 2-2 wavelet model is used on the noisy image shown in Figure 4-8 which is 

a noisy version of the original image with additive Gaussian noise. Denoising 

operation in wavelet domain is done only in the first three scale.  

 

    
a. Original image                                       b. Noisy img. gσ = 30, PSNR = 18.40 

    
c. Hypo. , PSNR =  23.48, α = 0.5             d. Hypo., α = 0.05 ,  + AM + DF, 

    Hypo.,  PSNR = 24.93,  α = 0.05           PSNR = 26.50 

Figure 4-8 Results of Hypothesis Test 
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Although thresholding with very minimum α values does work here for hard case, 

all tests were done with soft thresholding using two different α values “0.5” and 

“0.05” because of its better results with soft thresholding. For the last image (d) 

besides Hypothesis Test, double filtering (DF) over adaptive median (AM) 

filtering ( iσ  = 1.6) was executed. It is seen image is slightly more superior due to 

small amount of positive contribution achieved using DF-AF filtering. For 

detailed information about these filters see Chapter 5. 

 

The level of the hypothesis tests, significance level α has two values “0.5” and 

“0.05”.  It is seen that the choice of alpha controls the smoothness of the resulting 

wavelet estimator. In general, a relatively large alpha makes it easier to include 

coefficients, resulting in a more wiggly estimate; a smaller alpha will make it 

more difficult to include coefficients, yielding smoother estimates. Results show 

that smaller α  equal to “0.05” gives better result then “0.5”.  
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Results of Bayes Shrink : 

 

CDF 2-4 wavelet model is used on the noisy image shown in Figure 4-9 which is a 

noisy version of the original image with additive Gaussian noise. Denoising 

operation in wavelet domain is done in all scales except for highest one.  

 

  
a.Original image                                         b. Noisy img. gσ = 20, PSNR = 21.64 

  
c. BAYES, PSNR =  21.77                        d. BAYES + AM + DF, PSNR = 22.40 

Figure 4-9 Results of Bayes Shrink 
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Remember that Bayesian Shrink uses its own shrinkage method. In addition 

wavelet scale selection was disabled for this process. This means Bayesian Shrink 

works for all wavelet coefficients except for highest scale. Very high detailed 

image was used in this test in order to see response of this method which uses 

higher coefficient levels also. Look at the results seen in Figure 4-9. Denoising 

performance of Bayesian Shrink is reasonable but not very good. However it 

preserved almost all of the detail. It seems that Bayesian Shrink is perfect for 

denoising especially small-in-magnitude noise without smoothing. It sounds very 

good if preserving the image detail is very important. It is seen that image is 

slightly more superior due to a small amount of positive contribution achieved 

using DF and AF filtering. For detailed information about these filters see Chapter 

5. 

 

In this chapter various denoising operations have been studied on wavelet domain. 

In the next chapter some basic non-wavelet denoising methods will be introduced. 
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CHAPTER 5 

FURTHER PROCESES 

 

 

The wavelet filters mentioned in previous chapter can be used for removing 

random and Gaussian-type noise, but it can leave some kind of speckle noise,  

very hot pixels. In wavelet transformation very hot pixels are assumed as detail 

values and other ones below low pass filter are assumed as coarse 

approximations (see Section 3.1). All wavelet based denoising filters discuessed 

in Chapter 4 are executed on coarse approximations so another methods are 

needed for denoising speckles. This can be provided in the form of non-wavelet 

filters.  The idea behind these filters is that if an adequate sampling was chosen 

upon acquisition, no such outlying pixels with extreme values should be found. 

This idea can be useful for many image types. Note that all filtering operations 

in this chapter are directly related with real pixel values not on wavelet domain. 

In this chapter also a new tecnique called double filtering is introduced. 

 

5.1 Median and Mean Filtering 

 

Median filter is a kind of non linear filter to reduce noise in an image [32]. 

Among other applications, a median filter can be a useful tool for noise 

reduction. Why? There is a type of noise, known as impulsional noise, that is 

characterized by bright and/or dark high-frequency (small in relative 

scale) features appearing randomly over the image. Statistically, impulsional 

noise falls well outside the peak of the distribution of any given pixel 

neighborhood, so the median is well suited to learn where impulsional noise is 

not present, and hence to remove it by exclusion.  
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The idea is to examine a sample of the input and decide if it is representative of 

the signal. This is performed using a window which also be referred as “kernel” 

consisting of an odd number of samples. The size of window can be “3x3” pixel 

or more. In this work “3x3” are used default. The values in the window are sorted 

into numerical order; the median value, the sample in the center of the sorted list, 

is selected as the output. The oldest sample is discarded, a new sample acquired, 

and the calculation repeats.  

 

Figure 5-1  Calculating the median value of a pixel neighborhood. 

 

List of sorted pixel values of window is “{23,23,24,24,25,25,26,27,60}”. Median 

value wmed  is the center one and it is equal to “25”. In this example in Figure 5-1, 

according to median filter operation center value of window ix  which is equal to 

“60”  is replaced with wmed  [32]. 

 

Logic of mean filter is same with median filter. Only difference is that ix  is 

replaced with mean value of window wmean  instead of wmed .  
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5.2 Adaptive Median Filtering 

 

Adaptive median filter is a data adaptive version of median filter. This filter will 

detect pixels that differ from their context by more than a given multiple of the 

neighborhood's standard deviation. If marked as outlying, the pixel value is 

replaced by the median value of the neighborhood. According to adaptive median 

filtering process : 

 

ix̂   =  wmed    if  { wmed  > wmean + iσ ×  wσ  } 

                        if  { wmed  <  wmean - iσ ×  wσ  }                                               (5.1) 

 

where wmed , wmean  and wσ  is median value, mean value and STD of the kernel 

window respectively shown in Figure 5-1. iσ  is input standard deviation “user 

parameter” [29].  

 

Finding the wmed  is completely the same by the way of standard median filtering 

mentioned in Section 5.1 but when ix  is being replaced, neighborhood's STD 

value wσ  and a user parameter iσ  are taken account.  

 

5.3 Lee Filter 

 

The Lee filter is based on a linear speckle noise model and a minimum mean 

square error (MMSE) design approach [35]. It identifies regions with low and 

constant variance as areas for noise reduction. 

 

In a region with no signal activity, the filter outputs the local mean. When signal 

activity is detected, the filter passes the original signal through unchanged. This 

is achieved by implementing a filter of the form specified by equation (5.2). Like 
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filters mentioned in Section 5.1 and Section 5.2 Lee filter also uses 3x3 local 

regions called kernel.     

 

ix̂  = ww meanWcenterW *)1(* −+                                                                 (5.2) 

 

where wcenter  and wmean  is the central pixel and mean value of 3x3 kernel 

respectively shown in Figure 5.1. W  is the weighting function ranging between 

0 for at regions to 1 for regions with high signal activity. The weighting function 

is calculated according to equation (5.3). 
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where 
u

C u
u

σ
=  and 

I
C I

I
σ

=  are the coefficient of variation of the noise u  and 

the image I . σ  represents the STD. 

 

In the area where high variance are available, edges are assumed and little to no 

noise smoothing is done. In other words, the Lee filter smoothes away noise in 

this region, but leaves fine details unchanged. Therefore, its major drawback is 

that it leaves noise in the vicinity of edges and lines [38]. 

 

5.4 Kuan Filter 

 

In the Kuan Filter, the multiplicative noise model is first transformed into a 

signal-dependent additive noise model [36]. Then the MMSE criterion is then 

applied to this model. The resulting filter has the same form as the Lee filter but 

with a different weighting function as shown in equation (5.4).  
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The Kuan filter made no approximation to the original model. From this point of 

view, it can be considered to be superior to the Lee Filter [38]. The Kuan filter 

can be derived directly by applying the MMSE criterion to the multiplicative 

model. 
 

5.5 Frost Filter 

 

The Frost filter differs from the Lee and Kuan filters with respect that the ix̂  is 

estimated by convolving the observed image with the impulse response of the 

coherent imaging system [37]. The system's impulse response is calculated by 

minimizing the MSE between the observed image and the estimated model, 

assumed to be an autoregressive process. The resulting filter after some 

simplifications can be written like equation (5.5). 

 

ix̂  = ( )tKCI
2exp −                                                                                            (5.5) 

 

where K  is a constant controlling the damping rate of the impulse response 

function at the pixel to be filtered. When the variation coefficient 2
IC  is small, 

the filter behaves like an low pass filter smoothing out the speckles; when 2
IC   is 

large, it has a tendency to preserve the original observed image. 

 

 

 

 

 



 

72

5.6 Double Filtering 

 

Double filtering (DF) technique is a new image processing technique. It is not a 

work alone process. It simply forces to execute a selected non-wavelet denoising 

algorithm in two steps i.e. normal and reversed bases. 

 

In first step selected filter are executed with original pixel values of image. This is 

a process done in all denoising process. In second step in addition, selected filter 

are executed again on pixel values which is reversed. The question is how these 

are reversed. It is a very simple process actually. Assume that image has 8-bit 

pixel value.  Each pixel has value between “0” and “255”.  

 

ixr  = | ix – 255 |                                                                                                   (5.6) 

 

Where ix  is a specific value in noisy data set x  and i  is in the range from “0” to 

length of x . By this way if ix  is “0” than it becomes “255” and vice versa. Black 

becomes white and white becomes black.  After denoising work on reversed xr  

data set, same process in (5.2) applied on xr  to get ix . 

 

ix  = | ixr – 255 |                                                                                                   (5.7)       

                                                    

The purpose of this technique is to enhance non-wavelet denoising schemes 

especially for adaptive median filtering. It is clear that standard deviations of 

different images are not expected to be the same. Adaptive median filter uses 

standard deviation of image so denoising response of this filter for the white and 

black speckle noise will not be the same. It will more likely to denoise white noise 

or black.   

 

For evaluating the performance of double filtering, noise free and noise added 

images seen in Figure 5-2 are used. Initially PSNR evaluation is done between 
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these two images and then all non-wavelet filters are executed on noisy image and 

resulted (denoised) image are compared with noise free image. It is seen from the 

Table 5.1 that DF technique gives better result in all cases.  

 

   

Figure 5-2  Original Lena image and noisy Lena image with PSNR = 20.13  

 

 

Table 5-1 Comparing single and double non-wavelet filtering schemes. 

Filter type Single  Double    

 PSNR values 

Mean Filter 27,08 27,38 

Median Filter 23.68 24.18 

Adaptive Median Filter with iσ  = 0.7 23.78 24.20 

Lee Filter 27,72 28,08 

Kuan Filter 27,87 28,15 

Frost Fılter 26,18 26,39 
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5.7 Results 

  
Noisy input image                                     Mean Filter 

  
Kuan Filter                                                Frost Filter 

   
Median filter                                             Adaptive Median Filter ( iσ =2 ) 



 

75

  
e. Adaptive Median Filter  ( iσ = 1.6 )      f. Adaptive Median Filter ( iσ =0.7 ) 
Figure 5-3  Performances of non-wavelet filters on speckles 

 

In Figure 5-3 Traditional Mean, Median and more statistically Kuan, Frost, and 

Adaptive Median filter with various settings are compared visually.  

 

The image which has white speckles called “Noisy input image” in Figure 5-3 is 

taken account for this test. Speckle type of noise can be described as high 

intensive “high frequency” noise. In Figure 5-3 it is clearly seen that result of 

Mean filter based filters i.e. Mean, and Kuan looks more smoothed. Frost filter, a 

bit more sharper then Mean and Kuan, give similar result. Result of median filter 

seen in same Figure looks very good. All of the speckles except for very large 

ones are removed successfully without significant smoothing. For the adaptive 

case of Median filter, it is seen that while iσ  is getting smaller, result is 

approaching to standard median filter’s result. In the same Figure again image 

filtered by Adaptive Median with iσ =0.7 looks like to image filtered by Median. 

  

5.8 Conclusion 

 

In this chapter some basic and more advanced non-wavelet denoising algorithms 

were studied.  
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In Mean filter all pixels are replaced with mean value of neighborhoods. This filter 

have very good result shown in Table 5-1 but it  tends to smooth images more 

then other filters (see Figure 5-3). Other more advanced filters Frost and especially 

mean based Kuan filter seem to be slightly better (see Table 5-1 and Figure 5.3). 

 

Median based filters have preserve image detail more than mean filter but have 

pure denoising capability especially for images with various type of noise when 

executed in single mode (see Table 5-1). However in Figure 5-3 it is seen that this 

filter is very usable for high intensive noises for example some resident noises 

after wavelet denoising. Median filters are more likely to be an after filter. Main 

advantage of Adaptive Median filter lies on its input parameter which brings 

possibility to change intensity of threshold for specific conditions. For some image 

types especially for astronomical images stellar objects can be interpreted as a sort 

of impulsive noise in deep-sky images, especially when they are numerous: they 

are more or less randomly distributed, they are bright, and they are small. Taking 

advantage of this fact, the adaptive median filter can be used to remove or isolate 

stars on images while decreasing noise.  

 

Finally DF technique was introduced in this chapter. DF is not a process which 

works for all times perfectly but is needed due to weak response of adaptive 

median filter in some cases. Actually adaptive median filter is very good for 

denoising low or high intensity speckles. Its denoising intensity can be adjusted 

using input parameter. However due to its nature it hasn’t got same effect on both 

white and black noise. By means of DF black noises are eliminated after white 

noises or vice versa. 

 

As a result, two options seem to be better then others. These are Adaptive Median 

and Frost filters. These two filters which have different algorithms can be used for 

different purposes. Further queries will be done on Chapter 7. 
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CHAPTER 6 

TOOLBOX 

 

Wavelet Denoising Toolbox (WDT) version 1.0 was implemented over the 

ImageJ computing environment with graphical interface for developing wavelet 

and non-wavelet based algorithms for the analysis and denoising images [31]. 

 

ImageJ mentioned in Chapter 2 is a platform free pure multithreaded Java image 

processing program with many functions presented. According to its creator, It is 

the world's fastest pure Java image processing program. It includes all basic 

processes for the images such as reading, displaying, editing, saving and printing. 

It includes also many mathematical well known image process under the Process 

tab on the main interface window seen in Figure 6-1.  Analyze tab in the same 

Figure also contains some basic analyses tools.  

 

 

Figure 6-1 Main interface of ImageJ 

 

WDT was developed using ImageJ’s plugin extension. Because of the nature of 

ImageJ, WDT operates with pure java code.  Most important advantages of Java 

language such as object oriented feature, automatic memory management and of 

course its libraries were used. 
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Images must be opened before starting WDT. Opening the image (see Figure 6-2) 

is relatively easy by pressing Open option in File menu and selecting image from 

the file browser appeared on the screen.  

 

 

Figure 6-2 Opening image in ImageJ 

 

WDT is capable of loading only one image at the same time. If more than one 

opened image available only active “selected” one is loaded.  Batch process over 

the images is not possible.  

 

In order to start WDT, Image Denoising option of the Wavelet menu which is 

available under the Plugins tag must be selected (see Figure 6-3). Image opened is 

automatically loaded while starting of WDT. At the same time this image is 

analyzed automatically to check it is suitable or not prior to action. All images 

selected for WDT must have 8-bit data value.  Color images with larger scales 

above 8-bits are not allowed. They must be converted to 8-bit scale in order to 

operate. This can be done using ImageJ’s own image conversion option called 

Types available under the Image tag.  Physical size “height & width” of selected 

images is another issue that must be criticized. Due to limitations of ImageJ, WDT 
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can not handle images with larger than “2048 & 2048”.  Images equal or under 

this size are accepted but another criticism must be done at this point. Due to 

nature of wavelet transformation width & height of the image must be equal to 

each other. However this is not a problem for WDT. Images are converted 

automatically to suitable size if needed.   

 

 

Figure 6-3 Starting wavelet denoising plugin of ImageJ 
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In Figure 6-4 main interface of WDT screen are seen. SURE Shrinking process 

which use CDF 2-4 wavelet base is executed before the Adaptive Median 

Filtering with iσ  equals to “2” and Double Filtering enabled.  

 

 

Figure 6-4 Selecting denoising parameters  
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Interface of WDT consists of three sections. Among them Global thresholding, 

and Adaptive Thresholding include wavelet based methods other called Non-

wavelet Noise Removal includes traditional non-wavelet denoising methods.  

 

At the top of the interface window one of the wavelet base mentioned in Chapter 

3 can be selected for all wavelet based methods i.e Globa Thresholding and 

Adaptive Thresholding processes.  

 

Global thresholding processes including VisuShrink and Wiener Filter 

mentioned in Chapter 4 operate with user defined scale coefficents. These are 

K1, K2, K3 and K-ALL called first, second, third and forth scale coefficents 

respectively. If needed input value of  K-ALL  can be used for all resudual scales 

by simply checking the relevant box.  Note that although Wiener Filter needs 

pre-defined parameter for each scale it is not a global thresholding procedure 

exactly. But surely it is not a automatic procedure like ones listed in adaptive 

thresholding section also.  

 

Adaptive thresholding section includes all processes mentioned in Section 4.2. 

In order to operate these processes except for Bayesian Shrinking thresholding 

scales and thresholding method must be selected before. Note that Bayesian 

Shrinking was implemented as a fully automatic procedure. Alpha used for 

Hypothesis Test is another pre-defined parameter here. 

 

Non-wavelet noise removal processes mentioned in Chapter 5 are found below 

the interface of WDT. All pre-defined parameters in this section are used for 

Adaptive Median process. Double filtering process mentioned in Section 5.3 can 

be activated simply by checking the box at the left side of  Enable Black Noise 

tag while Enable White Noise tag is checked. The adaptive median process will 

not work if neither of them Enable Black Noise or Enable White Noise are 

selected. 
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All of the processes mentioned above can be operated in the specified order at 

the same attempt. Adaptive thresholding process which have the highest priority 

among them are in the first in queue, global thresholding processes are in the 

middle and non-wavelet denoising processes are at the end.  

 

 

Figure 6-5 Result; noisy input image, removed noise, and denoised image with 

summary window 
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In the result screen (see Figure 6-5) noisy input image, denoised image, and 

noises which were subtracted from noisy image are seen. Result window 

contains summary of operation with RMSE and PSNR values. Note that these 

two values simply indicate the difference between noisy input image and final 

denoised image. They can not be used as a performance indicator for processes. 
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CHAPTER 7 

TESTS AND CONCLUSION 

 

In previous chapters wavelet models as well as denoising algorithms were tested 

on demo images. Some information about performances of implemented 

algorithms were found out. However the question “Can these algorithms show 

different performances on different images ?” is still unknown. 

 

In this chapter combinations of wavelet models and denoising algorithms are 

tested on various images. For this purpose, in the first step, all denoising methods 

using same wavelet model are tested on artificially noise added versions of noise 

free images. The wavelet model used here is Coiflet-6 one of the most successful 

wavelet models implemented in this work (see Section 3.9).  

 

The second step is totally about SAR imagery. For this purpose different portions 

of an original SAR image are used. Note that SAR image used here is a raw type. 

It includes noise originally and no denoising modification was applied before. 

Best denoising combination(s) plus best wavelet model(s) are found out for SAR 

imagery.  

 

For the first step; in Figure 7-1 and Figure 7-2, noise free “reference” test images 

and noise added versions are shown respectively. Amount of Gaussian noise so 

called white noise added to each image and PSNR evaluation of noise free and 

noise added images are shown also in Figure 7-2. Speckle type of noise so called 

Salt&Peppers (SP) along with Gaussian noise is also added some images seen 

Figure 7-1 (d,g,h). The results based on PSNR value are shown on Table 7-1 and 

Table 7-2.  
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a. old movie b. historical c. Lena 

d. MRI e. peppers f. planet surface 

g. satellite image 

 

h. moon i. satellite image 

Figure 7-1 Noise free image set for final test. 
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a. noisy old movie 

gσ = 15, PSNR = 24.6 

 

b. noisy historical 

gσ = 20, PSNR = 21.64 

 

c. noisy Lena 

gσ = 20, PSNR = 20.22 

d. noisy MRI with SP 

gσ = 15, PSNR = 16.32 

 

e. noisy peppers 

gσ = 30, PSNR = 18.40 

 

f. noisy planet surface 

gσ = 20, PSNR = 21.46 

g.  noisy satellite image 
with SP 

gσ = 25, PSNR = 20.49 

 

h. noisy moon with SP 

gσ = 20,PSNR = 16.18 

 

i. noisy satellite city 
image  

gσ = 15, PSNR = 28.73 

Figure 7-2 Noisy image set for final test with additive several Gaussian noise with 

N(0, 2σ ) and Salt&Peppers (SP). 
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Table 7-1 Performance evaluations of wavelet filters (1) 

 

 

 

 

İmage Noisy Mean Visu  
 
hard,  
first 3 scale 

mT =(2,1,0.5) 

Wiener  
 
hard,  
first 3 scale 

mT =(3,2,1) 

a. old movie 24.6 27.08 26.15 27.10 

b. historical 21.64 20.47 20.05 
20.03 (F) 

21.23 
20.90 

c. Lena 20.22 27.68 
 

27.62 
27.85 (F) 

26.95 
27.64 (F) 

d. MRI (SP) 16.32 23.65 22.36 
24.10 (F) 

18.27 
20.18 (F) 

e. peppers 18.40 26.27 25.91 
26.26 (F) 

23.83 
24.76 (F) 

f. planet surface 21.46 20.59 20.01 
19.90 

21.50 
21.40 (F) 

g. satellite image 
(SP) 

15.91 16.40 16.15 
16.25 (F) 

15.98 
16.74 (F) 

h. moon (SP) 16.18 24.32 22.85 
25.07 (F) 

18.09 
26.81 (F) 

i. low noise sat. 
city image 

28.73 25.85 26.92 
28.10 (F) 

28.77 
28.94(F) 



 

88

Table 7-2 Performance evaluations of wavelet filters (2) 

 

Image Noisy Sure 
 
soft,  
first 3 scale 
 

Bayes 
 
soft 

GCV 
 
soft,  
first-2 scale 
 

Hypothesis 
 
soft,  
first-3 scale 
 

a. old movie 24.6 28.31 
28.64 (F) 

26.22 
27.09 (F) 

27.53 
27.47 (F) 

27.77, 
α=0.05 
28.59, α=0.5 
28.59 (F) 

b. historical 21.64 21.88 
21.95 (F) 

21.77 
22.40 (F) 

20.36 
20.09 (F) 

20.94,α=0.05 
22.13,α=0.5 
21.92 (F) 

c. Lena 20.22 23.33 
27.60 (F) 

22.36 
27.87 (F) 

27.53 
28.05 (F) 

27.65,α=0.05 
28.14 (F) 

d. MRI (SP) 16.32 17.12 
28.20 (F) 

16.46 
29.65 (F) 

17.03 
29.53 (F) 

18.39, α=0.5 
18.91, 
α=0.05 
27.57 (F) 

e. peppers 18.40 21.00 
26.12 (F) 

19.64 
25.56 (F) 

26.11 
26.45 (F) 

23.48,α=0.5 
24.93,α=0.05 
26.50 (F) 

f. planet surface 21.46 23.28  
23.35 (F) 

21.87 
22.60 (F) 

22.04 
22.10 (F) 

22.70 (F) 
23.03, 
α=0.05 
23.78, α=0.5 

g. satellite image 
(SP) 

15.91 16.96 
18.76 (F) 

16.89 
18.70 (F) 

16.55 
17.30 (F) 

17.00, α=0.5 
17.15, 
α=0.05 
18.16 (F) 

h. moon (SP) 16.18 18.14 
31.01 (F) 

16.3 
31.77 (F) 

16.55 
31.90 (F) 

18.04, α=0.5 
18.47, 
α=0.05 
30.40 (F) 

i. sat. city image 28.73 28.88 
28.13 (F) 

30.11 
30.10 (F) 

26.85 
26.94 (F) 

25.77, 
α=0.05 
27.08, α=0.5 
27.47 (F) 
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From Table 7-1 and Table 7-2 it is seen that data adaptive wavelet shrinkage 

methods are clearly winner. Also between all of these methods there is no one 

which is the best for all cases.  However the idea about the best shrinkage method 

for specific image can be found out.  

 

In the test above “F” character are shown with some results. This means that one 

of the non-wavelet denoising algorithms was applied along with wavelet 

denoising scheme. Here adaptive median filter with same parameter were used for 

all images. Results show that performance values of wavelet filters changed 

dramatically with the aid of non-wavelet methods.  

 

 The images used in this test can be classified into two categories. First is more 

detailed images such as Satellite images, Planet surface and Historical. Second is 

ordinary images i.e. old movie, Lena, Peppers, Moon and M.R.I.  For more 

detailed images Bayesian and Sure denoising methods works well. With 

combination of non-wavelet denoising algorithm, Bayesian filter has very good 

results. The reason can be explained that Bayesian filter has own shrinkage 

method using neither soft nor hard thresholding. Other methods using soft or hard 

thresholding schemes calculate a single threshold value for all coefficients in 

specific wavelet scale. Remember that Bayesian filter estimate each wavelet 

coefficients using distributions of prior coefficient. This means private threshold 

values for each wavelet coefficient. This feature is very helpful to obtain sensitive 

results for very detailed images. However for images including high intensive 

speckle type noise, it is seen that this feature fails.  On the other hand combination 

of adaptive median filter with Bayesian filter interestingly shows highest 

performance values for images with SP noise. The explanation is simple. Bayesian 

filter heavily shrinks small-in-magnitude coefficients. On the other hand adaptive 

median filter is very good for denoising large magnitude arguments when small-

in-magnitude arguments are low in number. Bayesian method gives perfect work 

area to adaptive median filter. These results can be very attractive for denoising 

SAR images. Note that SAR images contain speckle noise as well as other noise 

[39].  
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For the second type “ordinary images”, Sure shrinking and especially Hypothesis 

test work very well. Ordinary images used in this test i.e. Peppers, Lena, and 

M.R.I are not very detailed images. In each scale a single threshold value 

calculated by Hypothesis test and Sure works well for shrinking not only small-in-

magnitude arguments also larger ones. These methods give a bit smoother images 

then Bayesian filter but this is not important for low detailed images.  

   

For the second step; three different portions of SAR image are used. It can be 

assumed that these SAR images contain speckle type of noise as well as other 

noise. Remember that almost all of the white noises of a noisy image are resident 

on first three wavelet scale, mostly on the first scale. In many situation, denoising 

on first three wavelet scales can be enough for removing white noise. However for 

speckles, different methods must be considered. Because of the high intensity of 

these speckles, denoising with wavelet data adaptive methods were executed for 

all wavelet scales except for highest order.  Remember that high intensive 

characteristics of image are available on higher order scales. Also classical non-

wavelet algorithms which are well known for speckle denoising are used after 

denoising on wavelet domain to achieve further success. In figure 7.3, 7.4 and 7.5 

noisy image and denoised versions are shown. All denoising schemes use Coiflet-

6 wavelet model. Because of the very weak performance of universal thresholding 

scheme (see Section 4.6) VisuShrink are not used here.  

 

Performance evaluation of denoised SAR images is done by comparing Mean and 

STD of raw and denoised images and also visually. Remember that for the PSNR 

evaluation of a denoised image a reference noise free image is also used (see 

Section 3.8).  In real world applications like SAR imagery, no reference images 

available so different methods must be taken account.  
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Noisy image (22.96)                                  Bayesian with Frost filter  

  
SURE with Frost filter                              Hypothesis with Frost filter                    

  
GCV with Frost filter                                Wiener with Frost filter     
Figure 7-3 Denoising of a SAR image-1 
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Noisy image                                              Bayesian with Frost filter 

  
SURE with Frost filter                              Hypothesis with Frost filter 

  
GCV with Frost filter                                Wiener with Frost filter 
Figure 7-4 Denoising of a SAR image 2 
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Noisy image                                               Bayesian with Frost filter 

  
SURE with Frost filter                             Hypothesis with Frost filter 

  
GCV with Frost filter                                Wiener with Frost filter 
Figure 7-5 Denoising of a SAR image 3 
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Table 7-3 Standard deviation of SAR images with and without (NA) denoising 

Image-1  Image-2 Image-3 Method 

Mean - STD 

Sure + Frost 82.47  -  6.86 104.47  -  9.01 85.21  -  9.70 

Bayes + Frost 82.47  -  9.73 104.47  -  11.36 85.21  -  9.95 

Hypothesis + Frost 82.47  -  10.19 104.47  -  12.40 85.21  -  10.43

GCV + Frost 82.47  -  10.55 104.47  -  13.45 85.21  -  10.97

Wiener + Frost 82.47  -  10.90 104.47  -  13.47 85.21  -  11.24

GCV 82.72   -  12.23 104.78  -  15.40 85.50  -  12.37

Hypothesis 82.72   -  12.7 104.78  -  15.94 85.50  -  13.37

Wiener 82.72   -  13.6 104.78  -  16.45 85.50  -  13.75

Bayes 82.72   -  14.7 104.78  -  18.29 85.50  -  13.79

Sure  82.72   -  15.7 104.78  -  19.31 85.50  -  16.65

NA (Noisy Image) 82.72   -  22.96 104.78  -  27.58 85.50  -  24.20

 

 

In Table 7-3 Mean and STD of original SAR images (NA) and denoised SAR 

images seen in Figure 7-3, 7-4, and 7-5 are shown. For the purpose of evaluating 

the performance of the filters on SAR images, two quantities of Mean and STD 

are used. Based on these two quantities, the best performance filter is selected if 

the Mean of filtered image is close to the original image while the STD of 

filtered image has the minimum value [40]. 

 

Acording to the results shown in Table 7-3 it is clearly seen that for all of three 

portion of a SAR image, wavelet based denoising methods with combination of 

non-wavelet method give best results. Note that in each method, Mean values 

have very minor differences not accounted. Only significant differences are 

occurred when Frost filter is on. But this seems to be not important also.  The 

question is “Why does Wiener makes better then Bayes or Sure without using 

non-wavelet methods?”. The Answer is simple; Wiener filter is not a data adaptive 

method and also it is using a predefined threshold multiplier. It can be said that the 
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threshold value estimated by Wiener is not expected to be as sensitive as values of 

Bayes or Sure. Remember that SAR images include speckles. This sensitiveness 

sometimes makes better job like thresholding some of the speckles on images then 

Bayes or Sure can do alone. But it is seen that by the help of non-wavelet 

methods, Bayesian and especially Sure schemes are clearly winner. For SAR 

images non-wavelet methods seem a must for successful denoising. Other 

methods; i.e. GCV yields more smoothed results and Wiener filter has weak 

denoising potential. Performance of Hypothesis testing is on average. Although 

the results of Hypothesis test and Bayesian are very close to each other, Bayesian 

seem to be slightly more detailed with respect to results of Hypothesis testing.  

 

After this point tests will continue using Sure and Bayesian wavelet denoising 

schemes with different wavelet models.  

 

 

 

 

 

 

 

 

 

  
Noisy Image                                               Bayes with CDF (2-4) 
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Bayes with P. Coiflet 4                               Bayes with Battle Lemaire 
 

   
Bayes with Coiflet-6                                   Bayes with Spline 2-2 

  
Bayes with Daubechie-20                           Bayes with Daubechie-4 
Figure 7-6 Denoising SAR image-2 using Bayes scheme with different wavelet 
models. 
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Table 7-4 Standard deviation of SAR image-2 with and without Bayes scheme 

using various wavelet models 

Method  Image 2 

Mean - STD 

Bayes with Daubechie 20 104.78  -  18.05 

Bayes with Daubechie 12 104.78  -  18.15 

Bayes with Daubechie 4 104.78  -  18.23 

Bayes with Coiflet 6 104.78  -  18.29 

Bayes with Coiflet 4 104.78  -  18.29 

Bayes with Coiflet 2 104.78  -  18.31 

Bayes with Battle Lemaire 104.78  -  18.33 

Bayes with P.Coiflet 104.78  -  19.71 

Bayes with CDF 2-4 104.78  -  19.90 

Bayes with Spline 2-2 104.78  -  20.12 

NA 104.78  -  27.58 

 

In Table 7-4 STD of SAR image-2 seen in Figure 7-6 with and without applying 

Bayes schemes using various wavelet models are shown. Note that here not all of 

the wavelet models were used. Accordingly wavelet performance results shown in 

Section 3.8, wavelet models which have higher scores are used. In order to see 

performances of same wavelet model with low and high order, Daubechies and 

Coifflets with different orders were also used. It is seen that the highest order 

Daubechie works better than lower ones also same situation goes for Coiflets in 

this test. Because of the lower distortion capability of long filters, they have better 

denoising feature than short ones. Daubechies, Coiflets and Battle Lemaire 

wavelet models also have very good and similar results.   
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Noisy image                                                Sure with CDF-4 

   
Sure with P. Coiflet 4                                  Sure with Battle Lemaire 

  
Sure with Daubechie-20                             Sure with Coiflet-6 
 
Figure 7-7 Denoising SAR image-1 using Sure scheme with different wavelet 

models 
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Table 7-5 Standard deviation of SAR image-2 with and without Sure scheme 

using various wavelet models 

Method Image 1  

Mean - STD 

Sure with Daubechie 20 82.72   -  15.60 

Sure with Daubechie 12 82.72   -  15.69 

Sure with Coiflet 6 82.72   -  15.72 

Sure with Coiflet 4 82.72   -  15.73 

Sure with Coiflet 2 82.72   -  15.76 

Sure with Battle Lemaire 82.72   -  15.77 

Sure with Daubechie 4 82.72   -  15.81 

Sure with P.Coiflet 82.72   -  15.91 

Sure with Spline 2-2 82.72   -  15.97 

Sure with CDF 2-4 82.72   -  16.45 

NA 82.72   -  22.95 

 

In the test shown in Figure 7-7 and Table 7-5 various wavelet models are used 

with Sure denoising scheme. Like previous test with Bayes, Daubechies and 

Coifflets with different orders were also used here. Although most of the wavelet 

models have very similar results, the best performers seem to be Daubechies with 

higher orders.  In both cases, Sure and Bayes, higher order Daubechies and 

Coiflets give best overall results among all wavelet models.  

 

After these tests, the last step is to find best non-wavelet denoising scheme over 

these methods. Between all mean based filters i.e : Mean, Lee and Kuan, only 

Kuan is used in this test due to its superior results compared to others. Median and 

more statistically Frost and Adaptive Median filter are also used in this test.  

 

In Table 7-6 and Figure 7-8 results are shown. It is seen that Frost filter is the most 

successful one. Although STD value of Median filter is lower, Mean value has 

noticeable difference. Frost filter mathematically seems to best one. However 
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when the results are examined visually (see Figure 7-8) Kuan, Median, and also 

Frost filters yield more smoothed results with respect to adaptive median filter. 

Note that in this case also Frost filter gives better result over Kuan and Median 

filter.  

 

In image denoising works sharpness is much more valuable then smothness in 

some situation.  When any detail lost is unacceptable, adaptive median filter with 

appropriate parameter can be chosen. On the other hand if smoothness is more 

valuable then sharpness, Frost filter seems to be best one between all of the non-

wavelet based filters in this work. 

 

Table 7-6 Standard deviation of SAR image-2 with Bayes denoising scheme + 

Daubechie 20 and with and without non-wavelet filters. 

 

Method Image 2 

Mean - STD  

Bayes with Daubechie 20 + Median 95.74 -   8.19 

Bayes with Daubechie 20 + Frost 104.47  -  11.05 

Bayes with Daubechie 20 + Kuan 104.39  -  11.19 

Bayes with Daubechie 20 + A.Median ( iσ =1.2) + DF 100.63  -  12.01 

Bayes with Daubechie 20 + A.Median ( iσ =1.2) 101.09  -  12.55 

Bayes with Daubechie 20 104.78  -  18.05 

NA 104.78  -  27.58 

 

The Mean and STD values of Bayes plus non-wavelet methods are shown in 

Table 7-6. The images are also shown in Figure 7-8. 

 

 



 

101

  
Bayes with Daubechie20                           Bayes with Daubechie20+Kuan Filter 

   
Bayes with Daubechie-20+Frost Filter      Bayes with Daubechie20+A.Median  

  
Bayes with Daubechie20+Median              Bayes with 
Daubechie20+A.Median+DF 
Figure 7-8 Denoising SAR image-2 using Bayes+D20 and non-wavelet models 
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APPENDIX A 

PROCESS FLOW DIAGRAM 

 

 

 

 

 

1-  Image is handled, two-dimensional array created and its pixel values are copied 

2-  Wavelet transform is applied. Data sets created by smoothing and detail filters 

are kept. 

3-  Denoising process are done on data array contains wavelet coefficients 

(smoothing data).  

4- Inverse wavelet transform is done by using processed wavelet coefficients and 

detail values. Processed and transformed values are copied to the new two-

dimensional array. 

5- Further processing is done on new image data file which was reconstructed. 

6- Noise taking out from original image, wavelet coefficients and denoised image 

are displayed.  
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APPENDIX B 

IMPLEMENTED WAVELET MODELS 

 

 

Haar filter 

Daubechies filters (4, 6, 8, 10, 12, 20)  

Coiflet filters (2,  4, 6)  

Spline filters (2-2,  2-4, 3-3, 3-7) 

Pseudocoiflet filter-4  

Battle Lemarie filter 

Burt Adelson filter 

Cohen-Daubechies-Feauveau CDF (N=2,Ntilde=4)



 

 
 

 


