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ABSTRACT

A SNAKE-LIKE ROBOT FOR SEARCHING, PASSAGES FROM
DEBRIS AND DRAGGING VICTIMS

CAGLAV, Engin
MSc., Department of Electrical and Electronics Engineering
Supervisor: Prof. Dr. Aydan M. ERKMEN
Co-Supervisor: Prof. Dr. Ismet ERKMEN
November 2006, 190 pages

In this thesis, a snake like robot is implemented for search and rescue
applications. The “snake” is intentionally selected as a reference for their
ability to move on various environments, but due to the mechanical limitations
the implemented snake-like robot design could not be close to the biological
counterparts. Although the implemented snake like robot is not a replica of
biological snakes; it captured key aspects of snakes such as flexibility,

redundancy and high adaptation.

To depart from the mechanical limitations; a model of the implemented robot is
designed in MATLAB - SIMMECHANICS including a model for the
environment. The implemented model is based on the implemented snake like
robot but possessed extra features. The model is controlled to perform common

snake gaits for navigation. Obstacle avoidance, object (debri or victim)
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reaching and object dragging behaviors are acquired for the implemented gaits.
Object dragging is accomplished by pushing an object by head or the body of
the robot without lifting.

For effective navigation, appropriate snake gaits are conducted by the model.
All control operations such as obstacle avoidance for each gait and gait
selection; a network of self tunable FACL (fuzzy actor critic) fuzzy controllers
is used. Although the adapted snake gaits result in the movements which have
properties that are not a replica of the real snake gaits, self tunable controllers

offered best available combination of gaits for all situations.

Finally, truncated version of the controller network, where the implemented
mechanical robot’s abilities are not breached, is attached to the mechanical

robot.

Keywords: SAR Robots, FACL, Snake/Inchworm Gaits, Object Dragging
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ENKAZ TEMIZLEYEN, YOL ACAN VE KAZAZEDE SURUKLEYEN
YILAN ROBOT

CAGLAV, ENGIN
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Aydan M. ERKMEN
Tez Ortak Danisman: Prof. Dr. ismet ERKMEN
Kasim 2006, 190 sayfa

Bu tezde arama ve kurtarma faaliyetleri i¢in kullanilmak {izere bir “yilan
robot” gerceklestirilmistir. Yilanlarin referans olarak secilmelerindeki neden
ise degisik ortamlardaki iistiin hareket yetenekleridir. Mekanik kisitlamalar
nedeniyle gerceklestirilen yilan robot, gercek yilanlarin birebir kopyasi
olamamustir. Fakat bu tezin konusu yapay bir yilan ger¢eklestirilmesi olmadigi
icin; gerceklestirilen robotun, yilanlarin tiim 6zelliklerinin yerine bazi énemli
ozelliklerine sahip olmasi yeterlidir. Bu 6zellikler esneklik, yol tutus, kiigiik 6n

kesit ve ¢evreye uyum olarak siralanabilir.

Gergeklenen yilan robottaki var olan mekanik kisitlar1 agsmak ve tasarimdan
daha u¢ noktalarda sonuglar almak ig¢in; gerceklenen yilan robot referans
alimarak MATLAB SIMMECHANICS’de bir model gergeklestirilmis ve bu
modele, referansinda  olmayan baska  Ozellikler de eklenmistir.
Gergeklestirilmis bu modele bazi yilan hareketleri adapte edilerek uygulanmus,

modelin ¢evresel kosullara gore en uygun yilan hareketini se¢mesi
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saglanmistir. Ayrica gergeklestirilen yilan hareketlerine “engelden sakinma” ve
“tespit edilen objeye (bir enkaz parcasina veya bir kazazedeye) ulasma”, “obje
siiriikleme” davraniglar1 kazandirilmistir. Kontrol islemleri (engelden sakinma,
ve yilan hareketi se¢cimi) FACL tipi 6grenme kullanarak kendi kendini
ayarlayabilen bulanik mantik denetleyicilerinden olusan bir ag ile
gergeklestirilmektedir. Tasarim farkliliklarindan 6tiirli adapte edilmis yilan
hareketleri, ger¢ek yilanlarin yaptig1 hareketlerden farkli 6zellikler gosterse de,

adaptif denetleyiciler her zaman en dogru hareketler silsilesini gerceklestirip

her durumda etkili seyriisefer saglanmaktadirlar.

Son olarak gerceklenen denetleyici agi, mekanik robotun kaabiliyetlerini

asmayacak sekilde sadelestirilip, mekanik robotun kontrolii saglanmustir.

Anahtar Kelimeler : Arama & Kurtarma Robotlari, FACL, Yilan/Solucan
Hareketleri, Obje Stiriikleme
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CHAPTER 1

INTRODUCTION

1.1. Motivation

Search and rescue operations are commonly performed to save human life in
case of disasters, accidents, terrorist attacks, etc. For search and rescue
operations, time is very critical. For example, the crew of a sunken submarine
or a person in a collapsed building can survive for a limited period. As time
passes the probability of survival for a victim decreases rapidly. For an ideal
search and rescue operation a victim has to be searched and found very quickly
and then has to be saved as soon as possible in order to minimize traumas and

limit casualties.

For many cases, an efficient search and rescue (SAR) operations require
abilities which are beyond that of a human, thus necessitating usage of
instruments. SAR instruments assist searching and rescuing. For example a
thermal camera can help find a human, which is not possible with naked eye. A
crane can help clear out a passage for retrieval of a person who is trapped in a
collapsed building. A chopper on the either side can help both searching and

rescuing.



The utilization of autonomous intelligent robots in search and rescue
operations (SAR) is a rather new and challenging field of robotics, dealing
with tasks in extremely hazardous and complex disaster environments.
Autonomy, high mobility, robustness and modularity are critical design issues
of rescue robotics, requiring the ability to learn from prior rescue experience,
compliant to environmental and victim conditions. Intelligent, biologically
inspired mobile robots and, in particular, serpentine mechanisms have turned
out to be widely used robot types, providing effective, immediate, and reliable

responses to many SAR operations.

1.2. Objectives

Biological snakes can be found at various locations on earth. Their motion
modes make them superbly adaptable for a wide variety of terrains,
environments and climates that they live in. Biological snakes are a result of
millions of year’s evolutions so it would be very advantageous to imitate these
movement types and use their capability in artificial snakes. After centuries of
development wheeled and walking machines are still limited in the types of
terrain they can be used. A snake robot which is able to glide, slide and slither
can open many applications in exploration, hazardous environments,

inspection.

A snake robot is able to wriggle into confined areas and cross terrain that
would show many problems for traditional wheeled or legged robots. Some of
the useful features of snake robots are:

e stability,

e terrain ability,

e good traction,

e high redundancy,

e sealed mechanisms.



Robots having these properties can open up several critical applications areas
in exploration, reconnaissance and inspection. The main issue in a snake — like
robot is to have flexibility and being able to perform more general snake

movements.

The objective of this thesis work is to implement a snake/inchworm-like robot
to be used in SAR operations that will be equipped with features of its
biological counterpart found in nature. The implemented snake/inchworm -like
robot will be able to conduct snake/inchworm gaits up to a certain limited
similarity with its biological counterpart, since the imitation of biological
snakes i1s not in the scope of this thesis and usually infeasible due to
mechanical limitations. Although the snake-like robot will not have the
complete capabilities of biological snakes; capturing the main features will be
very advantageous over other types of robots in most of the environments. We
aim at capturing not only serpentine and/or inchworm locomotion capabilities
but also add to them the object (debri or victim) dragging capability that is not
intentionally found in nature for such type of locomotion. Object dragging
capabilities offers very useful tasks for SAR operations such as cleaning debri
from the disaster environment, or relocation of an unconscious victim in the

disaster area.

A control hierarchy will be built for implemented snake/caterpillar-like robot
locomotion in unknown and unstructured environments by performing

adaptable snake gaits according to surface friction but also drag objects.

A SIMULINK model of the hardware robot will be realized to help
visualization of complex motion on hypothetical surfaces of unstructured
terrains. The SIMULINK model will possess identical dynamical and
kinematical properties with the mechanical snake robot, without the physical
implementation restrictions of the hardware. Thus the model can be equipped

with additional gaits and abilities that the mechanical robot lacks.
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1.3. Goals

The proposed snake/ inchworm-like robot is controlled to implement:
e Accordion like,
o Rectilinear,
e Sidewinding,

e Lateral undulation gaits.

These mentioned gaits are adapted to the proposed snake/ inchworm-like robot.
After adaptation, each of the adapted gaits is equipped by “obstacle avoidance”
and “object reaching” behaviors which enable the robot to select among these
behaviors while navigating by the described gaits. The robot selects one

behavior at a time.

Each of the adapted gaits has different frictional characteristics, so the robot is
controlled to select the best gait due to the varying friction of environment.
Navigation in an unknown environment with varying friction is solved by first
selecting the appropriate gait, then conducting the selected gait with
determined behavior. Gait and behavior selection is accomplished by the

controller hierarchy of the implemented snake/caterpillar-like robot.

The proposed snake/ inchworm-like robot can also perform debri cleaning and
victim dragging. For debri cleaning and victim dragging tasks, new dragging
behaviors are generated and added to the controller hierarchy of the robot.
These new behaviors are rule base triggered as the robot encounters a victim or
debri. With these described behaviors, the robot drags any encountered object
(victim or debri) and carries the objects along. The robot switches back to
“obstacle avoidance” behavior and leaves the objects behind after sensing a
nearby obstacle. By following the described strategy; the robot can collect all

distributed debris to the nearby obstacles, or push a debri away from its side

4



thus opening gaps where bigger robots or victims can pass through. Dragging
scheme can also be applied to an unconscious victim for his/her/its relocation

in the site where removal of the victim from the site is possible or easier.

1.4. Methodology

All control operations are based on a hierarchy of fuzzy logic controllers
equipped with fuzzy actor critic learning (FACL) enabling the proposed design

to adapt itself to variable conditions of unknown environments.

The control hierarchy is formed of fuzzy logic controllers connected in two
layers. First layer of fuzzy logic controllers handles “obstacle avoidance” and
“object reaching” behaviors of the adapted gaits. Each gait has separate
controllers for “obstacle avoidance” and “object reaching” behaviors. The
selection between the behaviors of a gait is done by a rule based bi-stable
selection. Bi-stable switches prevent the oscillations for selection of the
behaviors. The controller on the second layer selects the best applicable gait

due to environmental conditions.

This flexible controller architecture is trained on the SIMULINK model of the
robot to effectively solve the navigation in unknown environment problem.
The training is done on the SIMULINK model because non-tuned controller
network probably leads to failures or bad situations, which are usually
unrecoverable for the hardware mechanical robot in real world. Since the
SIMULINK model of the robot possesses identical dynamic and kinematic
properties, the trained controllers should also be able to handle the control task
of the physical robot or at least would be a good beginning policy and shorten

training time without major failures.

In the simulations, dragging task is implemented by pushing an object via body

or head of the robot model without lifting the object. Since navigating with
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enwrapped or grasped objects exceeds the abilities of the hardware robot due to
mechanical limitations, for consistency, dragging is implemented by only
pushing in the simulations. In the simulations debri and victims will only be
considered as an object without any mass. Mass, inertia, shape and size
properties of debris or victims are ignored and will not be simulated explicitly
in this thesis. All debris and victims in an environment will be identified as an

“object” to be manipulated in this thesis.

Mechanical robot lacks some features of its model, so its abilities are limited.
The control of the mechanical robot is done by a truncated version of the
already tuned controller hierarchy via the model. Truncation of the controller

hierarchy is done according to the abilities of the mechanical robot.

1.5. Contribution

Implemented snake-like robots in the literature can be divided into two main
groups. Some works try to imitate or approximate a snake body motion in
specific gaits. But the hardware outcomes of these works are mechanically

ineffective in actual unstructured terrain of earthquake rubbles.

Other works focus on more mechanically effective designs with actuators that
are not consistent with mimicking biological snakes. But these designs called
“coupled bodies” are still based on serpentine motion. These last mentioned
works, which have active thrusters with active or passive joints, are also known
as coupled mobility vehicles in majority remotely controlled by a human.
Instead of snake gaits, coupled mobility vehicles in the literature perform
custom movements due to additional actuators that do not exist in biological

snakes.

In this work an autonomous snake/inchworm-like robot design is proposed as a

coupled mobility vehicle but enhanced with the ability to perform

6



snake/inchworm gaits which offer extra advantages, when confronted with
variable friction surfaces. Lateral undulation, accordion, rectilinear and
sidewinding are adapted and implemented in the proposed design and tested

under variable friction characteristics of the terrain.

In our approach terrainability or terrain adaptation to the presence of variable
friction is not only coupled to obstacle avoidance but also to routing, cleaning
of debris for accessing victims in SAR operations. Cleaning of debris is done
by object dragging with head or body of the robot until to a stationary obstacle.
Object dragging by head or by the body while conducting appropriate snake
gaits are another contributions of this thesis. A victim can also be dragged by
following the same scheme with debri dragging. But the complete task of
removal of a victim from the disaster area can not be accomplished by the
implemented robot, since no enwrapment or grasping behaviors are
implemented. The victim will be left behind when the robot encounters an

obstacle like in the debri dragging case.

1.6 Outline of the Thesis

In chapter 2 previously implemented snake — like robots in the literature will
be introduced. Also some main biological snake gaits will be stated. Finally
chapter 2 will end with theoretical background of fuzzy logic controllers with

FACL training scheme.

In chapter 3, the simulation model of the implemented hardware robot will be
introduced with its adapted snake gaits. Chapter 3 also includes the controller
network architecture of the simulation model. Chapter 3 ends with simulation

results and discussions.

In chapter 4, implemented hardware robot structure, actuators, sensors and low

level controllers are introduced. Chapter 4 also includes the hardware
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implementation limitations and hardware high level controller structure.

Chapter 4 ends with hardware robot results and discussions.

Chapter 5 includes conclusions, future works and references.

In appendix part, the details of the microcontroller port connections,

implemented noise reduction schemes and a component list will be introduced.



CHAPTER 2

LITERATURE SURVEY

2.1. Implemented Snake-like Robots in Literature

2.1.1. Hirose’s Active Cord Mechanism (ACM)

In the early 1970’s work of Hirose and Umetami was among the first to
explore and develop limbless locomotors. Hirose was very interested in
limbless locomotion so he designed and developed many limbless robots. He
called his designs Active Cord Mechanisms or ACMs. Hirose focused on
developing robots that could perform lateral undulation which is a type of
snake movement in which the forward force is obtained by pushing the
surrounding the obstacles. In his later studies, he developed some wheel

coupled-mobility devices that followed from this work.

Hirose’s development of modeling and control first derived expressions of
force and power as functions of distance and torque along the curve described
by the snake. The curve was then derived and compared with results from
natural snake locomotion. The curve, termed serpenoid, has curvatures that

vary sinusoidal along the length of the body axis. The curvature equations are:
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This curve above is different from sinusoidal or even clothoid curves.
Comparisons with natural snakes across constant friction surfaces showed

close agreement between the serpenoid curve and the empirical data.

Hirose then went on to develop models for the distribution of actuator forces
along the body. This was done for normal and tangential forces as well as
power distribution. Again, the developed models closely correlated to muscle

exertion data and force measurements from natural snake movements. [1]

Figure 2.1. Hirose’s ACM with actuated link with passive wheels.
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Figure 2.2. Hirose’s ACM with tactile sensing.

Hirose examined the construction of mechanisms that were able to perform
lateral undulation. Several views of these machines are shown in the figure 2.1
and figure 2.2. By calculating torques, velocities and power required, Hirose
was able to provide design guidelines for the actuators and drive trains. The
next development was a distributed control scheme where in each link could
respond independently. In Hirose’s work, the control took the form of angle
commands at each joint. The variables were simply related closely to the
amplitude, wavelength and velocity of the body axis. Steering of the robot was
accomplished by biasing the control to adjust curvature in a section of the

body.

To accommodate unknown environments required tactile sensing; this was the
next step in Hirose’s work. Small contact switches provided this information to
the controller. As shown in the Figure 2.2, this robot could negotiate and
propel itself through winding tracks. The developments included a control
technique called lateral inhibition tactile signal processing, which provided for

contact and reflex motions. The shape of the body was varied according to the
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second derivative of the sensed contact pressure and responded appropriately

to provide forward progress.

All of Hirose’s locomotors used either powered wheels or passive casters and
the only locomotion mode studied was lateral undulation. Hirose and his
colleagues have gone on to develop an elastic elephant-like trunk, a large
serpentine mechanism for interior inspection of turbines and small
manipulators for surgical applications. It succinctly covers many years of
development in serpentine mechanisms. Hirose’s work in serpentine robots is
probably the most complete of all work in this area. He dealt with issues of
mechanism, control, sensing and modeling of natural animals. However, the
mechanisms used wheels, the terrains for the ACM’s were 2D only, and the
mechanism used only lateral undulation as the locomotion mode. The
configuration, while not practical for application use, was a great advance in

serpentine robots.

2.1.2. Masashi Saito, Masakazu Fukaya, and Tetsuya Iwasaki’s Serpentine

Locomotor

Masashi Saito, Masakazu Fukaya, and Tetsuya Iwasaki as analyzed lateral
undulation locomotion in more detail with formulating the steering. They also
built a robot which emphasizes their work. Their design did not use passive
wheels for generating high tangential friction with low normal friction (for
lateral undulation) like Hirose’s ACM, increasing ability in rough

environments. [2]
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Figure 2.4. Belly of the Robot.
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Figure 2.5. Motion of the Robot.

2.1.3. Karl Paap’s GMD

Karl Paap and his group at GMD (German National Research Center)
developed a snake-like device to demonstrate concepts and developments for
real-time control. The device is a tensor device that uses short sections with
cable winding mechanisms to control curvatures along several segments (figure

2.6). This snake robot is able to perform accordion movement. [3]
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Figure 2.6. GMD robot.

The GMD snake was designed to move in different surroundings as similar as
to real snakes without any wheels or legs. It consists of very flexible rubber
joints which are controlled individually. GMD robot is able to perform

movements that other implemented snake robots are unable to perform. [3]

Fig. 4 Coordinates Fig. 5 Kemnel unbent Fig. 6 Kernel bent

Figure 2.7. Flexible Joints

GMD robot’s hardware is consisted of three main parts:
e Head
e Body sections

e Tail

Some sensors are located at the head section; four of these sensors are LDRs

(light detecting resistors) and a touch sensor.
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The sections in the body are identical. Each section has two joints. The joints

are made of orthogonal aluminum plates which are connected by rubber pieces.

Figure 2.8. Body section of GMD robot

There are two drivers in each section which can bed the joint vertically and
horizontally. These drivers are the main actuators of the GMD snake. For good
manipulation these drivers should be properly monitored and controlled. For
control the drivers can be monitored by:

e Measuring elapsed time.

e Counting the number of rotations of the driver.

e Measuring the angle between the innermost and the outermost plates.

Measuring the angle between the innermost and the outermost plates is the
most effective monitoring type. But in GMD snake the monitoring is done by
counting the numbers of rotations of the driver. For counting; each driver is
coupled with a pair of reed contacts to count the rotation. These reed contacts
are the main sensors for monitoring the snake’s position; and the information
they deliver is central part of motion control. The motion is obtained by

adjusted and synchronized bending at all sections.
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2.1.4. Jorg Conradt, Paulina Varshavskaya’s Snake Robot

Jorg Conradt and Paulina Varshavskaya have built a biologically and neural
inspired autonomous mobile robotic worm. The main aim was controlling a
large D.O.F. and obtaining an elegant motion by using a simple neural system.
The most important property of their project is that while closely imitating
neural control of the lamprey, achieving a level of modularity. This snake robot

performs side pushing. [4]

Figure 2.9. First Version of WormBot.

(@) (b)

Figure 2.10. Version 2 of the WormBot. Modules are planar but exhibit true distributed control
with an individual microcontroller on each segment. (b) Close-up view of the head and the first
segment. The black bar in the image corresponds to 2cm.

The robot has segmented design (figure 2.9, 2.10). Each segment is identical
except the head and the tail. The batteries are located at the tail. At the head a
microcontroller (atmel megal63) is installed which drives eight CPGs.

(Control Pattern Generator) Each segment can rotate their neighbors.

The second version of the design has a microcontroller at each segment. The

motor of the joints are controlled by PWM signals. There are light and heat
17



sensors located at the head. A two wired communication interface is built
through the snake-robot. The head has a wireless connection to a PC. Each
motor is controlled by CPG oscillators coupled with each other with the

following relationship: [4]

W

H-J' =w; + Z&rﬁ Sin[ﬂj -8, —(-) {i‘lll

= 2.2)

Where:

o, : The frequency of the ith oscillator,
a;; - Coupling coefficient between segments,

6, : The state of ith oscillator,

¢ : The desired phase shift between neighbor oscillators.

For simplicity %i coefficient is set to zero for non-neighbor segments.

With this coupling algorithm they have successfully obtained highly accurate
motion in both prototypes. But with lack of tangential forces and special skin
which has different friction for different directions (like snakes have), the
forward motion was poor. With appropriate skinning forward motion can be

obtained.

Inoue, Ma and Jin [5] have followed a similar technique with Conradt [4]
where they develop a neural oscillator network (NON) for their implemented
snake-like robot. They control the yaw axis of their planar snake-like robot
with their NON and observed the result for different phase shifts of the

oscillators in the network.

2.1.5. Karl Paap’s GMD2

With the motivation of the first GMD robot GMD robot 2 was constructed by
Paap and his group. The first GMD robot had flexible rubber joints. These
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joints caused uncontrolled torsion effect which occurred when the snake lifted
some part of its parts. From this experience the second generation GMD snake

was built with universal (or cardanic) joints. [6]

The second generation GMD robot uses the serpentine locomotion. In
serpentine locomotion the body follows the trajectory of the head. This is a
very common way of snake movement. And this can only be done by
propagating the stimulation from head to tail. This observation yielded to this
procedure:

o The head motion is arbitrary determined. This can be done by an
operator or head can follow a path to avoid obstacles.

. Each segment determines their position on the trajectory and executes
the appropriate motion which is stored by the head. (The head stored the

movement for the segment to perform it)

The GMD?2 snake has five identical body segments (figure 2.11). There are two
ultra sonic sensors and a video camera located at the head such that the scene

can be monitored remotely. The batteries are at the tail section.

Figure 2.11. GMD 2.

A microcontroller is located at each body segment. These microcontrollers
drive the local sensors and controls each joints. At each joint there are three Sw
dc motors to control the wuniversal joint. The microcontrollers are

communicating with each other via a CAN bus.
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Many numerous types of movement performed by snakes was observed and it
is found that one essential technique was not implemented by snake-like robots
was the forward motion done by thousands of active scales under the snake’s
body. To realize an equivalent movement a ring of wheels is attached to each
joint. These wheels are driven by a separate dc motor so each segment can

control their forward force.

The motion control is done with the following procedure. For a joint segment
length “L” and wheel speed “v”; the actions are performed at discrete times
given by t0, t1, t1... .The head chooses the actions arbitrary or chooses them to
avoid obstacles. Then the body segments perform these motions with a certain
delay. For he wheel’s velocity, the delay is zero because the body moves with
the same velocity. [6]

31
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The section has to execute the head’s current action when it has traveled
“1*L” length, but meanwhile the speed can be changed causing the actions
being executed with a constant time delay. These delays must be modulated
with speed. This task can be accomplished by a large shift register. So each
segment completes their actions at determined time divisions and sends their

completed action to back, while receiving new ones from front. This method is

very close to biological snake’s neural system.

GMD2 snake is very flexible and efficient. It combines the advantages of the
serpentine movement and the wheeled movement. It can easily manipulate

places that are not possible for man or other vehicles to reach.

2.1.6. Hirose’s Genbu

The mobile robot Genbu is implemented by Hirose and his students. Since
1972 Hirose proposed the Active Cord Mechanism (ACM) and built many

robots based with this mechanism. Hirose’s previous robots usually consisted
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of passive wheel active joint robots. But Genbu is implemented in a different
manner that it is has active wheels with passive joints (figure2.12). By using
passive joints, the robot can change its posture quickly according to terrain.
Moreover, it is resistant to shocks from rough terrain because passive joints

have no vulnerable components such as gear head motor. [7]

Having passive joints has also same disadvantages. It is not possible pass over
wide gaps with passive joints and since joints are passive the control of the
robot is completely implemented only by the control of the active wheels
which is a challenging task. The high level control is done by a human operator

remotely.

Figure 2.12. Genbu.

Genbu is loaded by the motor driver and battery in each wheel, and micro
controller in each body. Pitch, roll and yaw angles are measured by using the
new rigid body joint arm mechanism. Stable torque measuring system is
accomplished with float differential mechanism in each wheel. In this robot
system, adaptive control for the terrain is possible by using posture of the
multi-wheeled robots. For practical use, this robot is waterproofed by using X-

ring in each joint.
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Figure 2.13. Inside of a wheel (Motor, gear head and batteries are included in a wheel system.).

2.1.7. Kohga by Kamegawa, Yamasaki, Igarashi, Matsuno

The snake-like robot Kohga is constructed by connecting multiple crawler
vehicles serially with passive joints. Kohga can also be classified by passive
joint active wheel robot like Genbu. Kohga is a rescue robot built especially to
investigate collapsed buildings. This robot is driven by a human operator

remotely. [8]

The main body joints are completely passive and have three degree of freedom.
Kohga has 2 DOF active joints only at its tail and head crawlers. Two cameras
are attached to the tail and head. By using active joints the view of cameras can
be controlled. (The tail joint is raised like a scorpion tail giving the back

camera a good view of scene with the robot as shown on figure 2.16.)

The robot is equipped with various sensors such as:
e Two CCD cameras attached at both ends of robot. Images are
transmitted to the operator by a 1.2 Ghz transmitter.
e IR distance sensors positioned to five directions (Front, top, bottom,
right, left directions) for the first and last crawlers; two directions for
(right, left) middle crawlers.

e Potentiometer equipped joints. (For obtaining joint positions)
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The operator of Kohga give commands corresponds to the first crawler and the
lagging crawlers follow the trajectory of the head which is main principle of
lateral undulation. Practically by this approach the robot can pass every narrow

space that its head can pass.

Figure 2.14. Kohga frontal view.

Figure 2.15. One segment of Kohga (Each segment includes a controller.).
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Figure 2.16. Kohga. CCD cameras are present in the tail and head. The tail and head joints are
actively driven whereas the joints between the body segments are totally passive. But Kohga
has sensors on passive joints to sense the body posture.

2.2. Object Dragging and Lasso Type Grasping or Enwrapment

Baris Atakan, Aydan Erkmen and Ismet Erkmen [9] solved the kinematic
problem of 3D lasso type grasping and dragging while performing serpentine
locomotion. The snake body model which they used in their work was a 3-
dimentinal snake-like robot formed by serially connected links. Each link in
their model had two degree of freedom rotated around local yaw and pitch axes
while some joint also had a pair of passive wheels. The work of Barig Atakan,
Aydan Erkmen and Ismet Erkmen also dealt with singular configurations,

which is a big issue for hyper-redundant robots.

Evrim Onur Ar1, Aydan Erkmen and Ismet Erkmen have worked on developing
a flexible controller structure of a 2D grasping snake-like robot [10]. The robot
model they used in their work was consisted of bodies interconnected by joints
rotating on local yaw axis. Later they improved their work to 3D grasping with
adding each joint the ability to rotate on local pitch axis [11]. The kinematic
problem of locomotion of such body was solved by Burdic [12]. Their flexible
controller structure was composed of fuzzy logic controllers utilizing FACL.

They had implemented three behaviors of “target reaching”, “obstacle
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avoidance” and “object grasping”. Each segment had one controller for each

behavior and can select a behavior at a time independently.

2.3. Snake Gaits

2.3.1. Accordion

This type of gait is used in narrow and flat places. For this type of locomotion
the snake folds and unfolds successively, while the whole body is touching the
ground. The friction property of the snake skin, which shows high friction to
the movements to backwards and low friction to the forward direction,

converts the accordion movement to a forward motion. [18]

2.3.2. Rectilinear

For this type of gait the snake lift a part of its body at tail; and moves the lifted
section along its body like a traveling wave. In fact the moving thing is not the
lifted section but the lifted attribute and this attribute move along the snake like
a traveling wave [18]. In other words, the snake simply fixes several body
points by touching the ground and moves the part of the body in between the
fixed points [19]. This gait is applicable because it requires less energy and can

be used when there is no urgent situation for the snake.

2.3.3. Sidewinding

This gait is used on soft ground like sand. For this gait, snake only contacts the
ground on two points which is very useful when the ground is very hot.

Sidewinding is conducted by the snakes which live in deserts. [18]
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Figure 1.17. Side Winding [http://www.worldwidesnakes.com/anatomy/sidewinding1.jpg]

The snake touches the ground at only two points and then moves the touch
point like a wave on its body to its side. At the right time snake touches the
ground at new point. The direction of the movement has also a component on
perpendicular direction of the head (figure 1.17). By this gait a snake can reach

three kilometers per hour.

2.3.4. Lateral Undulation (Serpentine Locomotion)

Lateral undulation is most commonly used gait; almost all kind of snakes
perform it. The body of snake moves in waves of muscular contraction from
head to tail. The forward force is generated with the different friction
coefficients of the snake body in the direction of tangent and the normal
directions (figure 1.18). With this gait the snakes can also use stationary
obstacles to help forward motion. There is no static contact. The most
important feature of this gait is that the body of the snake follows the trajectory
of the head. The characteristics of lateral undulation make it efficient in

bumped grounds for long snakes. [18]
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Figure 1.18. Lateral Undulation [http://chabin.laurent.free.fr/sn4.gif]

2.4. Theoretical Background

The implemented snake robot and its model use fuzzy logic controllers with
fuzzy actor critic learning (FACL). Fuzzy actor critic learning is a solution of
“reinforcement learning problem”. There many alternative former techniques
to implement a self-tuning fuzzy logic controller such as [13] and [14] in the
literature. But usually only a reinforcement is available in real life applications
for tuning. Self tunable fuzzy logic controller of [13] requires the knowledge of
the desired trajectory of the system which is usually unknown, thus it is not
utilized in this thesis. Due to the ease of implementation, Jouffe’s actor critic
learning scheme [16] preferred rather than GARIC architecture of [14]. In the
preceding section, the mathematical background of “reinforcement learning

problem” and FACL will be introduced.

2.4.1. Reinforcement Learning

Learning can take place with an absence of a direct teacher. In nature such

learning always takes place. An infant can learn the consequence of actions in
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order to achieve a goal just by interaction with the environment. Or an infant

can learn not to do certain actions for such situations he/she faces.

“Reinforcement learning” is learning what to do in a specific situation; in other
words mapping actions to situations to maximize a reinforcement which is
obtained by interaction with the environment. Reinforcement does not specify
the correct actions, but it represents the goodness or badness of what have been
done. For “reinforcement learning”, the learner has to discover what to do for
all possible situations by a “trial and error” method to maximize the
reinforcement. While the reinforcement increases, the leaner learns to achieve
the goal. The control problem is in fact doing the correct actions in all possible

situations so a reinforcement learner is a controller. [15]

“Reinforcement learning” attacks the learning problems by dividing the
situations in the environment to discrete states and developing an experience
by performing discrete set of actions for all possible states. Reinforcement
learning works in discrete time; it has discrete set of actions, discrete states but

can handle continuous learning problems.

One important feature of “reinforcement learning” is that the current taken
actions of the learner not only effects the immediate reinforcement but also it
effects the reinforcement which will be received over time. This is because in
practice there is a strong relationship between the subsequent actions; only one
action’s affect can be considered alone. This concept is called “delayed
reward”. “Delayed reward” and “trial & error” are the most important features

of reinforcement learning. [15]

Reinforcement learning is different than supervised learning. Supervised
learning requires an external supervisor which supplies the correct actions for
all situations in which the learner might be in. But for practical applications it
is impractical or sometimes impossible to obtain correct actions for all possible
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situations. Usually the only thing the learner has is a priory experience and an
interaction with environment for learning. The learner has to learn to achieve

the goal by this two means.

The main problem which arises for “reinforcement learning” is the trade off
between exploration and exploitation. Exploration is the learning search for
seeking better actions for maximizing the received reinforcement; but
exploration may result in failure. For exploitation the learner follows its
experience for taking an action, where in its experience the corresponding
action has caused a high reinforcement, but this reinforcement is not guarantied
to be the highest one. While the learner exploits from its current knowledge, if
the current knowledge is good enough it will not fail as frequently as in
exploration. But during exploration the learner missed actions which cause
higher reinforcements. Neither exploration nor exploitation can be conducted
without a failure. For reinforcement learning the learner somehow has to

balance the exploration and exploitation. [15]

A reinforcement learning system has four main elements:
e Policy
e Reward function
e Value function

e Model of environment

Policy defines the learner’s behavior for the all possible situations which the
learner might be in. As the learner learns, the policy might change in time.

Policy can take any from a look up table to a stochastic process.

Reward function maps the visited states of the environment, (situations of the
environment) to a scalar reward which represents desirability of the current
state. Reward is the numerical representation of the reinforcement. The learner

can calculate the current reward by using the reward function.
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Reward function defines the goodness and the badness of a state, so it can be
used to alter the policy so better states can be visited. For example if the policy
that the learner is following leads the learner to states which have low rewards,
then the policy can be modified so in the future the leaner will not visit the low

rewarded states again.

It should be noted that by the “delayed reward” concept the current reward
might be a result of not only the last action, but the consequence of actions that
the learner have performed. So it is wise to modify not only the current states
policy, but also the policies of visited states which the learner has learner

visited to reach its current state.

The value function defines the goodness of a state in long term. This value
function is needed because the state goodness can not be defined only with the
immediate reward. A state can have a low immediate reward, but after visiting
that state the learner might experience states with high rewards in future which
mean that the state is in fact a good state. Vice versa the immediate reward
might be high but that state leads to states with bad reward in future which

means the state is bad.

The learner’s aim is not to maximize the immediate reward, the aim is to
maximize the total reward which be received over time. The value function
defines the state goodness over long time, so the value function should be used
for modifying the policy instead of the immediate reward. Unfortunately the
value function is not as straightforward as the reward function. The reward
function can be directly extracted from the environment. Usually there is no
way to know or calculate the value function, but it can be estimated by
calculating the received rewards after visiting that state. The value of a state
changes as the policy changes. So during the learning process where the policy
is modified due to the value function at that time, the value function has to be
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estimated from the observations of the learner for the new policy.
Reinforcement learning problem is modifying the policy according to the
current estimate of the value function and at the same time re estimating the
value function for the modified policy. The value function can be in various

forms which will be induced later.

In reinforcement learning, the learner consists of an action (or policy) modifier
& state evaluator and an action performer. The composition of these two

components will be referred as “agent”.

There are techniques which can solve reinforcement learning problems without
estimating a value function. The most known of this type learning is the
genetic algorithms. This type of learning method directly searches the policy
space or finding a more skilled agent. This technique is analogous to the
biological evolution where evolution produces more skilled agents as well as
less skilled agents but only more skilled agents survive making the specie more
skilled. In practice if the policy space is small or there are many good policies
(or both) genetic algorithms works effectively or else it would take too much
time to learn. These techniques are also very effective when the learner cannot
sense its state in the environment accurately. Besides genetics algorithm’s
advantages, they ignore most of the useful structure of the reinforcement. The
evolutionary methods are more like producing agents which better suits the
environment instead of performing learning operation for individual behaviors
with interactions thus genetic algorithms and evolution can not be considered
as learning. In nature both the evolution and reinforcement learning takes place
at he same time. A biological being can learn to accomplish many tasks in its
life time, but evolution takes many life time of a biological being to create

more skilled specie. [15]

The last element of reinforcement learning is the model of environment. The
model mimics the behavior of the environment so using the model; the learner
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can foresee the next states thus next rewards corresponding to all applicable
actions in a specific state. If the model of the environment is completely
known, the agent can utilize a DP (dynamic programming) technique to plan its
next consequence of actions to be performed to maximize the incoming reward
in long run; no experience is needed. But needlessly to say the model of the
environment can not be known precisely for most of the cases. DP techniques
can still be applicable for such cases, where the agent first approximates the
model of the environment then utilizes the DP techniques over the
approximated model. Also there methods which do need any model, these

methods will be discussed in detail at section 2.4.9.

2.4.2. Action Selection

For the “reinforcement learning” problem the learner has to have a policy for
action selection for all possible states. The most trivial action selection method

is to use an “action quality” function for all actions which will be donated as
Q (a) where “a” stands for action which is any element of all actions. The
agent holds separate Q (a) for all states. The optimum action quality which
the agent is seeking for will be donated by Q" (a) which is unknown but can be
approximated. For now consider the case where the agent only faces one sate.
The agent can approximate Q°(@)function by averaging the rewards after

performing action “a”.

n+r+n+..+r1,

Q@)= " : @. 1)

a

Subscript t is used for Q (a) because Q (@) changes as the new rewards are

averaged. For the initial case Q, (a) should be started arbitrary. As the k,

approaches to infinity Q, (a) converges toQ " (a).
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The most trivial action selection method is to select the action which has the
highest quality. This method always exploits the current knowledge; but does
not seek for a better alternate action. This method is also called “greedy action
selection” where the agent tries to maximize the immediate reward. But as
mentioned earlier the agent needs to improve long term reward, so it has to do
some exploration. A better thing to do is to exploit the current knowledge
(select the action which has the highest quality) but sometime with a small
probability ¢explore actions in random. This method is called “¢& greedy
action selection”. When time goes to infinity; this method guaranties that every

action is performed. Since all actions will be tried, Q, (a) will converge to
Q" (a) when infinite time steps passes. But even the optimum quality function

Q’(a) is reached, the probability of selecting the correct actions will bel—¢ .

The classical ¢ greedy action selection has a drawback because it explores
each action with equal probabilities. This means during the exploration the
agent can also select worse actions which may be undesirable for the tasks
where selecting bad actions can not be tolerated. A better way to explore

among all actions is to weight the probability of each action by their qualities.

Qt—l (a)
>.Q. ()

beall _actions

p,(a) = 2.2)

Selection of an action can be done by a random process depending on the
probabilities of the actions. Note that the action selection is done with the last
time instant’s (reinforcement learning works in discrete time.) action qualities.

After the action is selected, the agent has to calculate the current action

quality Q, (a) which is done by (2. 1).
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Calculating the average of rewards by (2. 1) is not memory efficient because
the agent has to memorize all past rewards, as the time goes to infinity such
task require infinite memory. Implementing a sliding average will solve this

problem.

1 t+1 1 t 1
aA=—-D>rL=——|r,+ ) |=—, +t
Qt+1() t+1iZ:1:| t+1|:t+1 |Z:1: |:| t+1[t+1 Qt] (2 3)

1 1
:m[rm +1Q, +Q _Qt]:Qt +m[rt+1 _Qt]

The equation above is equivalent to the average. Note that the effects of
rewards decreases as time increases. The new update method can be interpreted

as follows:

new Estimate = old Estimate + step_size[t arget - old Estimate] 2. 4)

Update mechanisms that are dealt so far only considered one situation, state.
But if the environment is changing over time, it is wiser to give recent rewards

more weights. One way to do so is to use a fixed step size.

Qi =Q + a[rm - Qt] (2.5)

Where «is a fixed step size which is0 < o <1. With this scheme the learner

can also adapt itself to the slowly changing environments.

2.4.2.1. Reinforcement Comparison

Determining if a reward is big or small is an important problem in
reinforcement learning. An wupdate mechanism with “reinforcement
comparison” can be utilized in order to avoid this problem. The reinforcement

comparison method does not maintain a Quality value for the actions but an
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overall level for the received reward for comparison. This is useful to

determine if the reward is low or high. Let 7,(a) be the preference of the

action “a” for time “t”.

P (a
P@= _ @ . 6)
2P (D)
bealla _ actions
After each play, the preference should be updated as:
Pu(@=PR(@+A(r -F) @7

The term [, stands for the reference reward and S is the update step.
(0 < B £1) This update encourages the preference of the selected action if the

reward is higher than the reference reward.

Also the reference reward should be updated at each time step.

fan@=F@+a(r-F); 0<a<l 2.8)

2.4.2.2. Pursuit Methods

Pursuit methods have both action value estimates and action preferences.
Preferences always pursuits the action which is greedy according to the current

action value estimate.

Just before the selecting the greedy action, the probability of selecting that

action is enforced. Let a, be the greedy action

7@ =, @)+ All-7, @) 0<p<I 2.9)
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r(a) =7 (a)+pB0-7. @) Forall @ # a, 2. 10)

The selected action’s preference is increase to 1 and the preferences of other

actions are decreased to zero.

2.4.3. Agent — Environment Interface

The most basic concept of the reinforcement learning is to learn from
interaction to achieve a goal. The learner and the decision maker are called the
agent, and everything outside the learner is environment. The agent selects new
actions and the environment responds the actions by representing new states to

the agent. The environment also represents rewards to the agent.

Environment

-

Action
a

Reward State

t -
! t+1 5 t+1

Fs

Agent

Figure 2.19. Typical Environment & Agent Interface

The agent takes action “a@” at time “t” and the environment responds to that
action with new state and reward at t+1 time instant according to the last state.
The 2.1 section had focused on the problems which had stationary states,
dealing with only one state, but for the general reinforcement learning problem
the agent may face many states, so it has to associate actions with each state, in

other means the agent has to learn a policy. In the figure 2.17, the action taken
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by the agent with the last state forms the new state and new state creates the
new reward. The system in the figure 2.19 may address the full reinforcement

learning problem.

At each time step the learner uses its policy to select what actions to apply. The

z.(s,a)

policy will be denoted as which hold the probabilities of selecting the

action “@” at state “s”. The "t (s,a) term depends on “t” because during the

reinforcement learning it will be tuned to reach the optimal policy (S’a)

which produces the maximum reward at long run.

2.4.4. Goals and Rewards

As mentioned before, the purpose of the reinforcement leaner is to maximize
the total reward in long run. So far a reinforcement learning, the reward
determines the goal. The agent should be supplied with a reward signal such
that; when the learner maximizes the reward in long time period, the leaner
reaches the goal. This type of may seem very indirect and limiting, but in fact it

is very flexible and applicable.

Suppose the goal of a robot is to go to a specific point but on the way it must
avoid obstacles. During the robot run in the environment the reward should be
kept 0, when it reaches the goal without colliding the reward can be set to +1.
If it moves away from the goal point a reward of punishment) -1 should be

supplied.

One important property of reward signal is that it has to be prepared to achieve
the main goals; not sub goals. For the reaching goal point without colliding
example if the reinforcement is set to sub goals of avoiding the obstacles and
getting near to the goal point is not suitable. Because the agent can find a way

to both avoid obstacles while getting near to the goal point but without ever

37



reaching the goal point. This is analogous to taking opponent’s pieces in
expense of losing the game. The rewards should always be set for the mail

goal, not how the main goal is achieved.

2.4.5. Return

The reward which will be received in long run is called “return” and will be
donated by “R”. The agent’s aim is to maximize the return. In the simplest way

return can be calculated by summing all the rewards.

R =l +h,+lh,+. .+ (2.11)

The R, term is the total return after time instant “t”. The term I; stands for the

reward while reaching the terminal state. Terminal state is a terminating state
such that it captures the agent, so the agent can not leave that state. And after
the terminal state is reached, the reward will be zero. Only “episodic tasks”
have terminal state where the task ends at some specific sates. Blackjack card
game can be an example of episodic tasks. If a player reaches 21 the game ends
and the player wins, if a player exceeds 21 again the game ends but this time

player loses. At both cases the game has to be restarted.

However most of the time tasks are not episodic, they can not be broken into
subsequences. Such common tasks are called “continuous tasks”. For
continuous tasks rewards until infinity should be summed; but doing so
produces infinite return. To avoid infinite return, recent rewards are weighted

in the sum.

2 3 S k
Rt = r-t+1 +7rt+2 +7/ rt+3 +7/ rt+4 .= Zy rt+k+1 0< Y <1 (2' 12)
k=0
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The y term stands for the discount rate. If » approaches 0, the return will be
equal to immediate reward, if y approaches 1 the return will be very far

sighted.

2.4.6. Value Functions

All reinforcement learning algorithms use a value function for states (or state-
action pairs) to estimate how good it is to be in a given state (or how good it is
to perform an action at a given state). “How good” measure is defined in terms
of the expected future return since the actual future return can not be known.
All value functions depend on the policy which is followed by the agent. The

quality of a state is:

V7(s)=E, RS, :s}:E”{gyerMSt = s} 2.13)
“E” stands for expected value. The quality of a state — action is:
Q*(s,a)=E,{R[S, =s,a =aj= E”{gy"m“dst =s,a, = a} (2. 14)

Both V” and Q" are depended on the future rewards which are not available

to the agent at time “t”. Fortunately both V”* and Q" functions can be
estimated using experience. The agent can keep the averages of the rewards
after visiting each state; as time instances reaches infinity the averages will
converge to the actual state qualities. Likewise for state — action quality, the
agent can keep averages of rewards after performing each action at a state.
Again when the number of time instances reaches to infinity the average will

converge to actual state — action qualities. This estimation type is called Monte
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— Carlo. Another way of estimating V” and Q" is to use a parameterized

functions for V* andQ”, then adjust the functions to best fit the received

rewards.

2.4.7. Optimal Value Functions

A policy 7 is optimal if and only if V*(s)>V7*'(s) for allse€S. In other

word a policy is optimal if there is no other policy which has a higher state
quality for any actions. And the optimal property will be donated with a star

superscript.

V'(s)=maxV " (s) Forall seS (2.15)

Likewise for state — action quality:

Q' (s,a)=maxQ7(s,a) Forall S€S and a e A(S) (2.16)

The V' (s) term can be written in terms of Q" (s, a).
V'(s)=maxQ” (s.a) 2.17)

For reinforcement learning problem the agent have estimates of Q"(s,a) or

V" (s) which help the agent to judge the policy which is followed. If the policy
leads to a low quality states or selects low qualified actions for an action, the

policy should be modified. V* (estimates of V'(s))function depends on the
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policy which is followed by the agents; so also it has to be modified for

becoming a better estimate.

2.4.8. Temporal Difference (TD) Learning

The reinforcement problem is formulated in sections 2.4.1 through 2.4.7. There

are three main approaches for solving the reinforcement learning problem.

e Dynamic Programming
e Monte Carlo methods

e Temporal Difference Models

In this thesis “Temporal Difference Models with Actor Critic Learning” is used
[16]; Q- learning technique of TD ([16] and explicitly in [17]) will not be

introduced since it is not utilized.

Temporal difference is in fact a combination of Dynamic Programming and
Monte Carlo ideas. Such that TD can learn from experience without an
environment model, also it can update estimates without waiting for final
(episode) outcome. TD methods can update the value function at each time step

without waiting for the final outcome.

V(s,) < V(s)+alr,, +N(s,)-V(s,)] . 18)

The term r,,, stands for the observed reward. The upper update is called TD
(0) and it updates the value function of state “s” (V(s,)) towards the
targetr,,, + W (S,,,) . If the observed reward and new state value is higher than

the value of the old estimate then the value of old state is increased else it is

decreased. Since the whole value function is estimate (both V(s,) andV(s,,,));
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TD uses the experience (I,,,) on another estimate to obtain a new estimate.

This is called bootstrapping.

It was shown that:

V7(s)=E,{Rs, =5} (2.19)

S, :s}

= E;z'{rtﬂ + 727krt+k+2|st = S} =E, {rm + N7 (S, )|St = S}(Z' 20)
k=0

= Ezr {z 7k rt+k+l
k=0

MC method uses the equation (2. 19) as a target. MC target is an estimate

because the real expected return R, is not known, but a sampled return is used

instead. DP methods use the equation (2. 20) for a target. DP methods know
the expected return, because it is supplied with a complete model of the

environment, but V7 (S,,,;) is unknown for the current policy 7 and the

estimate V,(S,,,) is used instead so the DP target is also an estimate.

TD also uses the equation (2. 20) for a target. For both the expected value of

., and the term V *(S,,,) are unknown estimates are used instead so the TD

target is also an estimate.

2.4.8.1. Actor Critic Learning

For actor critic methods the action selection (policy) is separated from the
value function. The policy structure is called as actor, the estimated value
function is known as critic. This learning is performed by the critiquing the

actor by the critic.
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Figure 2.20. Fuzzy Actor Critic Learning

The critic forms an error signal called TD error, which tunes the policy and the

critic both (figure 2.20). The TD is calculated by: [16]
TD _error =r,, + N (S.,)—V(s,) (2.21)
The critic is updated as usual:

V(s,) <V (s,)+alD _error (2.22)

Where

o : Learning rate

Suppose the policy is in form:

p(s,a)
>, p(s.b)

r.(s,a) = (2.23)

Where

p(s,a): Probability of selecting action “a” is state “S”.

Then this policy can be updates as:
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p(s,,a,) < p(s,,a,)+ BTD _error (2.24)

Where

p : Learning rate

2.4.9. FACL Controller

The state of the learner is calculated by use of a fuzzy inference system (FIS).
The input to the FIS is the sensors which sense the state of the learner, the
output of the FIS is the rule truth values which describe the state of the learner.
The fuzzy inference system consists of fuzzy membership functions and rule

conclusions:

Om
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s1 S12

e Sk

L
L
&
Inputs Membership Rule
Functions Conclusions
Figure 2.21. FIS
The first layer of the fuzzy inference system multiplexes the corresponding

input to each fuzzy membership function. Membership functions calculate the

membership degree of the input to the corresponding fuzzy label. [16]
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Figure 2.22. Membership Functions

The fuzzy membership functions illustrated above are in triangular, but infact it
can be in various forms like trapezoidal, sigmoid. The triangular shape is

selected for simplicity.

After the membership values of all labels are calculated, fuzzy inference
system calculates the rule conclusions which are just a “multiplication”
operation. If always any of the two fuzzy membership labels are activated at a

time, the sum of rule conclusions will be guarantied to be 1.

The main structure of a FIS is the shape and the number of fuzzy membership

function and the number of inputs. The total number of output rule conclusions
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is determined by the number of inputs and the number of fuzzy labels for each

input.

m=] ]k Where, (2.25)
i=l

m : Number of rules

N : Number of inputs

K : The number of fuzzy label for the ith input

For proper state determination FIS with sufficient number of inputs (sensors)
and sufficient number of fuzzy labels with appropriate membership shapes
should be used. For g-learning the FIS (fuzzy inference system) is not trained,
it should be constructed by a supervisor. Fortunately this is not a very
challenging task, with a priori knowledge of the sensors which will be used to
sense the state of the learner, the number and the shape of the fuzzy
memberships can be easily be constructed. Since the FIS will not be trained,
use of simple discontinuous membership functions will not be

disadvantageous. [16]

The action selection for each rule is done by a random process, in which the
selection probability of an action is determined by its action quality. The

probability of selecting the action “a” for the ith rule is:

P(wla]) = wlal (2. 26)

3 wix]

x=1

If the state — action vector has non zero values for all actions, all actions will
have a non zero selection probability. This rule selection guaranties exploration
if the state — action vector is initiated with non zero values for all actions.

Finally the total output is a weighted sum of the rules’ selected actions:
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Y, =Y UWHRi 2.27)
i=1

Y, : Total action output.

Ri . ith rule strength.

U(w') : Selected action for ith rule.

Fuzzy actor critic learning has a separate state evaluator which evaluates the
states visited by the learner due to the policy followed by the learner as stated
in section 2.4.1. In FACL the learner learns how to evaluate the states and at
the same time the policy will be modified to visit better states. While the policy

is being modified, the state evaluator is updated for the new policy.

Inputs Membership Rule
Functions Conclusions

Figure 2.23. The Action Evaluator.

The critic output is:

Critic =V (S) = > Ry, (2. 28)

i=1
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For FACL, action selection vectors exist which are called as ‘“‘state — action

quality vector” and will be referred as action selection vector. [16]

R1 O win’' | wpp' | wir! e o o0 wia]"

L ]
L ]
Rm Q witl™ | wi2)" | wBl s o v wia™

Rule
Conclusions

Figure 2.24. Action Selector.

Where: W[k]i k=1,2,3,..., A : Discrete actions.

W[A]': The quality of the action A in state i.

TD error for FACL is:

E =Ty T V(S =V, (S,) (2.29)

[ : External reinforcement received at time t+1.

S, = [th R; R;an] : The state of the machine at time t.

V,(S,) : The critic for state S, which is calculated by
(2.29).
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Both the state evaluator and the action selector are tuned by the TD error:

Vig = Vi + Be, b (2. 30)

W, (U) =wi U +e,e;U") (2.31)

The eligibility traces at and €' are calculated as:

¢ =+ 24, (2.32)
a : Eligibility trace of the rules at time t.

@ = [Rlt RRIR;....... thn]T : The vector of rule strengths at time t.

A : Eligibility rate.

The eligibility rate weights the old time steps. For t = 0 the eligibility trace is
the strength of the rules at that time:

4, =[R'RIROR!....RY[ 2.33)

After the eligibility of the rules is calculated, the eligibility of the state-action

vector can be calculated as:

Ao, (U +¢, U =U))

R _ (2.34)
Ae., (U"),otherwise

()=
A : Eligibility rate.

So the state — action vectors update becomes:
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we,, (U) =w U)+ Be,ef U (2.35)

Note that there is no learning rate term for action selection vector training in

(2. 31). The reason for this absence is that the learning rate task is

accomplished by the action evaluator. Action evaluator function determines not

only the sign of TD error but also the magnitude; thus it plays a learning rate

role.

The implementation of FACL is as follows: [16]

Suppose that the robot is in time t+1, with and applied action U, and received

reinforcement I,.The fuzzy g-learning is implemented as follows:

Current rule strengths are calculated by fuzzyfying current sensor
outputs.

New TD error is computed. (2. 26)

The state-action vectors are updated with the TD error and the old
action eligibility which was calculated at time t. (2. 28)

New actions are elected with new updated state — action vectors and
total action is calculated by taking the weighted average of the elected
actions (2. 36).

New actions and the rule strengths are readjusted by the eligibility for
the actions are recalculated by the old eligibility. The new calculated

eligibility will be used at time t+2 as old action eligibility.

2.4.10. Proposed Update Mechanism

For the controllers whose output is a linear combination of the values of same

kind; it is not always true to apply the update to the last selected actions.

Following situation is with seven discrete actions:
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Figure 2.25. Selected Actions for Rules.

In the figure above, three rules are active; and the marked actions are selected
for each rule. The output is a weighted linear combination of the selected
actions of the rules which appears to be 0.048 which is marked with red in the

figure.
Total Action = 0.6 * 0.06 + 0.3 * 0.02 + 0.1 * -0.06 = 0.048

In the situation above rule 3’s action is conflicting with the total output action.
If the total selected 0.048 action was good, it is not wise to straighten the rule
3’s conflicting action which itself probably is not a good action or vise versa if
the total selected action was wrong, it is not wise to weaken the rule 3’s

conflicting action which is a good action.
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An update technique which applies the updates to the neighbor actions instead
of elected actions will be proposed. Suppose the same situation where the total

output was 0.06; the neighbor actions are 0.06 and the 0.04.

Actions : 0.06 0.04 0.02 0 0.02 0.04 0.06

E]

Heighbor = 0.06 Heighbor = 0.04
Total Action = 0.048

Figure 2.26. Action Neighbors

Total action is a linear combination of its neighbors. The weight of the

neighbors to produce the total output determined the strength of the neighbors:

Right neighbor strength = (total action — left neighbor) / (right neighbor — left neighbor)

Left neighbor strength = 1 — right neighbor strength (2.37)
In the case above:

Right neighbor strength = 0.6
Left neighbor strength = 0.4

All selected actions of the active rules will be reset to the neighbor, which is

nearer to themselves.
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Figure 2.27. Actions Member to the corresponding Neighbors

The strength of the neighbor actions will be shared among their members. The

sharing will be done by

Total Action - old_Uti * Rit

new Rit — . k t
_ Z‘Total Action-old U, |*R,

ke all rules having the same
neighbor membership

(2.38)

Note that rules with more radical actions (which are away from the total rule)

are weighted more during the neighbor strength sharing.

For the example, new rule strengths for new selected actions:
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Figure 2.28. New adjusted Actions and Shared Strengths

From this point on the eligibility trace for the state — action vector update can
be calculated by the new rule strengths and new selected actions. Note that new
proposed action selection and rule strength calculation does not disturb the
total action and updates the state — action vectors smoothly. With the smooth
updating the controller will not seek all linear combinations of the action set
which won’t make any output difference. With truncated action set search, the

learning will speed up.

In the succeeding chapter, a controller hierarchy composed of fuzzy logic
controllers utilizing FACL learning scheme will be constructed based on the
theoretical background explained in this chapter. Also if applicable, the
proposed update scheme (section 2.4.10) will be integrated to the update
mechanism of controllers, but a performance analysis will not be done for the
new update mechanism. Each controller in the hierarchy will be trained on the

simulation model of the implemented hardware robot.

54



CHAPTER 3

CONTROLLER ARCHITECTURE ILLUSTRATED WITH
SIMULATION RESULTS

A simulation model of the mechanical snake robot is developed based on
MATLAB — SIMMECHANICS equipped with more additional features than
those of the hardware robot prototype, to overcome some mechanical
limitations and to be able perform further gaits. The simulation model
possesses both kinematic and dynamic properties overcoming any limitations
that the hardware has and is able to perform extra gaits than the ones the

hardware has.

3.1. Robot Simulation Model

Due to consistency with the hardware snake robot, its simulation is also
composed of interconnected bodies in series but to have better visualization of
the control capabilities of our architecture the number of segments is doubled

to a number eight (figure 3.1).
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Figure 3.1. Robot model view from —z direction with SimMechanics visualization.

Figure 3.2. 3-D view of robot model with SimMechanics visualization.
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3.1.1. Body

Each of the body segments is identical to each other with same inertia having a

mass of 100g, a length of 22 cm and 9 cm for width.

3.1.2. Joints & Actuators

Body segments are connected with two degree of freedom joints that can rotate
around a local z axis (marked with blue lines in figure 3.3); translate along a
local x axis. The rotation angle of the joints about the z axis is limited with +/-
70 degrees; the translation length is limited to 8§ cm. Joints are actuated actively
and independently in all degree of freedoms. There are no constraints on the
actuators of the joints; it is assumed that each actuator in the joints has

sufficient force or torque to actuate the joints at all conditions.

e

-

local z axis

Figure 3.3. Close view of a body segment with SimMechanics visualization.
The dual actuators as clearly labeled in figure 3.3 can supply forces up to the

friction force of the environment in positive or negative local x axis direction.
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These dual actuators will be referred to as “tip end actuators” in the successive
sections. In the y axis of the tip end actuators which is marked green in figure
3.3, the segments are directly under the effect of environmental friction. The
“tip end actuators” in the model are to simulate the effects of robot segment
palettes of the hardware robot in variable friction environments. The friction
force magnitude is modeled in the environment which will be dealt in detail in

section 3.1.3.

All of the actuators of the simulated robot are controlled separately. The
positions of the actuators in the joints are controlled via constant angular or
linear speeds, and the speed of the body segments are controlled via the tip end
actuators (figure 3.4) in each body segments. All low level control is assumed
to perform perfectly. The inputs to the specified low level controllers are
derived from the upper level controllers which will be introduced in sections

3.3.1and 3.3.2.

D erivatived

Desired

10z

= Output to Body

= Add10
Actuall Subtiacd o Feonz e ActuatorForce {N)
Velocity in local x
axis

(emisn)
in local x
axis

Friction (From Env.)

(a)

Welacity in Local v Axis
ZainiG

o

Friction Fram Env.

(b}

Figure 3.4. a). Low level controller of the tip end actuators at local x axis. (b) Low level
controller of the tip end actuators at local y axis.

The low level controller in figure 3.4a responds correctively to any deviations
between the desired and the actual speed along the local x axis by generating a

force which is equal to the friction value obtained from the interaction between
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the palette and the environment surface. The controller in figure 3.4b directly
responds to motions along the local y axis with a value in reverse direction,
whose magnitude is equal to the friction force. Hyperbolic tangent is used to
scale the output of the controllers in figure 3.4. The rationale of using a
hyperbolic tangent as a limiter is to avoid use of discontinuous functions, such

sign function, thus improves the performance of the SIMULINK solver.

The proportional coefficients of the PID controllers in figure 3.4, which were
10, 0, 0 for P, I, D respectively, are determined intuitively in order to
approximate a sign function. The rationale of approximating the sign function
comes from the friction model of simulations which will be introduced in detail
in section 3.1.3.1. Higher coefficients better approximate to sign function but
in cost of oscillations at high frequencies. High frequency oscillations degrade
the performance of the SIMULINK solver, so the proportional coefficient
selected due to the performance of the solver. These controllers in figure 3.4 all
together simulate the behavior of a robot segment palette due to the
environmental friction. The control of the actuator (dc motor) of a palette is not
simulated and assumed to be performing perfectly. The details of the friction
model and the rationale of palette simulation will be discussed in 3.1.3.1

section.

Although the model is seemingly planar; any body segment can be modeled as
lifting by setting all friction forces acting on the particular segment to zero.

Lifting scheme will be used for some gaits (refer to 3.2.).

3.1.3. Environment

For simulation, 1021 by 702 pixels colored bitmap environments are used
where a pixel corresponds to two cm. These environments have regions of
different frictions indicated by the color intensity of that domain. Full bright
(white) region corresponds to maximum available friction, whereas the

decrease in intensity means a lower scale friction value. Environments also
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contain obstacles indicated by pure black color (refer to figure 3.5). The
number, shape, size of the obstacles and friction domains can be totally

arbitrary.

Obstacles

S

Ohject

Diifferent Frictioned
Areas

Figure 3.5. The environment. The friction is determined by the intensity of the domains. The
total black areas are considered to be obstacles.

The maximum friction force exerting on the model is set to be 5 N (Newton)
which is almost half the weight of the hardware model. The color intensity of a
domain is normalized by the maximum friction force which is applied to the
robot model segments. During simulations each robot model segments faces
the friction of the corresponding domain which they are in. Also an object is

located in the environment which is indicated with pure blue color.

The IR range detector positions and orientations are modeled identical to the
implemented hardware snake robot so as to have a range of 200 pixels; and ten
degree of beam width. The accelerometers are simply modeled by body sensor
attached to each body segments measuring the planar accelerations in local x

and y axes.
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Figure 3.6. Custom Visualization of the Robot model in an environment.

The visualization of the simulated model is represented in figure 3.6. The lifted
parts of the body are drawn with light blue, where the parts touching on the
ground are drawn with solid black color. The IR sensors orientations are
represented by blue lines on the segments. The red lines at the sides of the
segments represent the palette force direction. The red line’s length is
determined by its corresponding palette’s desired speed, 0.5 pixel length for

one cm/sec.

3.1.3.1. Friction Model

Coulomb friction model is used in the model as shown in figure 3.7. [20]

61



Friction force +

o Fy

_P.
Slhiding velocity

Figure 3.7. Coulomb Friction.

The magnitude of the friction force is scaled by the environment and is an
input to the tip end actuators (refer to 3.1.2). The magnitude of friction force is
assumed to be coming from the environment directly so it is not calculated

through the weight of the robot segments.

The nature of the friction model in figure 3.7 is a sign function scaled by the
magnitude of environment friction. Thus the response of a segment palette to
motions which is not equal to its turning speed is simply the magnitude of the

environment friction force.

3.2. Application of Snake Gaits

The proposed snake robot model can perform the snake gaits introduced in
section 1.6.2 with proper inputs to the model’s low level controllers. The gaits
are performed by making the snake robot model imitate biological snakes’
overall movements. The proposed snake-like robot model differs from
biological snakes, so its resultant gaits show difference in dynamical and
frictional characteristics. The detailed simulation result of the implemented
snake gaits’ characteristics can be found in section 3.4.1. We will now

concentrate on models for creation of the gaits.
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3.2.1. Lateral Undulation

Lateral undulation is performed by the coordinated control of the speed and
orientation in steering body segments; no translation motion is used. For lateral
undulation linear velocity of the segments are identical; but steering depends
on body curvature. Tip end actuators are also involved in the steering of the

body segments.

Vleft Viight

Tip Fnds
i\ | R

Figure 3.8. The steering of a body segment.

Any differences between the speeds (Vi ,V iy ) at the tip end actuators causes

the segment to rotate in a circle as shown in figure 3.8. The mentioned circle’s
radius is determined by the amount of the difference between tip end speeds
and the width of the segment (figure 3.8). If no slippage occurs, the two

following conditions are always held:

+V,. V V.
Vlinear — (Vleft rlght% (3' 1) Ie%-’_ a — rlg% (3' 2)
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Where

R : Radius of the circle.
a : Width of the segment.

\ : The linear speed of the segment.

linear

After determining linear speed and steering of a segment, and using the two

conditions of (3. 1), (3. 2); the necessary speeds of the tip ends (Vi ,Vy )

actuators can easily be calculated.

For lateral undulation it is assumed that each body segments has its own
turning radius when chasing predecessor segment’s radius as shown

schematically in figure 3.9.

Eel
Change Points

R2

Figure 3.9. The path of the segments during lateral undulation.
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Each segment moves as closely matching as possible to its corresponding
radius. After reaching the change points which are infact the touching points of
the circles; the corresponding circle changes, thus its radius, yielding the
steering of the body segment through the adaptation changes to the radius of its
predecessor (figure 3.9).

Joint angles between the segments are calculated according to the radius of the
circle that segments are affected at that instant. If two consecutive segments
are under the affect of the same circle (having same radius) the joint angle is
kept at a fixed value which can by calculated from a simple trigonometric

analysis in figure 3.10.

Half Robot Lenght

Figure 3.10. The angle between the consecutive segments.

If two consecutive segments are in different circles, the target angle is
calculated as if they were in the same (the leading segment’s) circle and the
joint is turned to meet this target angle with a constant speed which is derived

to be:
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o= _V (3.3)

Where
V : Linear velocity of the segments.
r : The radius of the leading segment.

r' : The radius of the lagging segment.

6 : Joint angle speed in rad/sec.

The induced lateral undulation scheme is for constant speed motion. But this

scheme will also hold if same acceleration is applied to all of the segments and

the angle speeds changes (é) are also accelerated according to linear

acceleration.

The steering is done for the head segment, down to the successive body
segments which follows the head. The head steering is determined
independently since it has no predecessor. If the head segment is steered by
alternatively changing its turn radius of motion, the resulting motion will be

(Y954
S

the most known “s” shaped lateral undulation.

Lateral undulation begins from straight body. So before lateral undulation gait,
the body is reformed by setting all servo angles (rotational axis along z axis)

and prism joint lengths to zero as shown in figure 3.11.

O (|

Figure 3.11. Reformation move for Lateral Undulation
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3.2.2. Accordion

This gait is performed by induced translations from the joints along the local x
axis direction. The skin friction properties of biological snakes exhibit a low
friction in the forward motion while it has a high friction in the backward
direction. This characteristic results in forward propagation. The skin
characteristics of the biological snakes are simulated by actively control of the

tip end actuators so as to exert a force in the forward direction.

Figure 3.12. Accordion Gait. The red lines indicates the forward forces applied by the body
tip actuators. The forward force exerted on the translating body segments results in forward
body motion.

&2 = BN

N

Figure 3.13. Steering for Accordion Gait. The steering is accomplished by setting all the joint
angles according to the desired turn radius at the same time equally. The tip end actuators are
driven according to the turn radius which was discussed in 3.2.1 lateral undulation.

Figure 3.14. Reformation move for accordion. The joint servo angles are set to zero, but
prismatic joints are set to alternating 0 and 8 cm.
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3.2.3. Rectilinear

This gait is similar to the accordion gait; but this time the forward propagating
segments are lifted by properly setting the friction values effecting at the
corresponding segment to zero. For rectilinear gait no special skin friction is

necessary; so tip end actuators are not used for this gait.

- — = — A—

Figure 3.15. Rectilinear Gait. The body segments being translated are lifted as shown by blue
segments.

FOET
oy

Figure 3.16. Steering for Rectilinear Gait. The steering is similar to the accordion gait.

For rectilinear gait, same reformation scheme is used than the one used for the

accordion gait which was given in figure 3.14.

3.2.4. Sidewinding

Sidewinding is similar to the lateral undulation but, the body only touches the

ground at two segments; other segments are lifted. The segments which have
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the largest heading angle difference with respect to the head direction touch the
ground, other segments are lifted. The body can be moved to either left or right
while navigating in the forward direction. The rotation motions in two different

directions are illustrated in figure 3.17 and 3.18.

Figure 3.17. Sidewinding to left side. Segments having positive slope with respect to head
position touch the ground.

18
Ie:?Hr

Figure 3.18. Sidewinding to right side. Segments having negative slope with respect to head
position touch the ground.

The resulted motion is expected to be in the resultant direction of the touching
segments (marked with red lines in figure 3.17 and figure 3.18.). No steering

strategy is used for side winding.
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For reformation, a priori curvature is given to the body as shown on figure

3.19.

T o éj
- s =t

Figure 3.19. Reformation schemes for sidewinding.

3.3. Controller Network

The rectilinear, accordion and lateral undulation gaits have steering capability
that can as well be used for obstacle avoidance or object reaching. The main
purpose of the snake robot is to combine obstacle avoidance and object
reaching behaviors while selecting the best applicable gait for the local
environmental conditions. These tasks are carried out by a 2 layer controller
architecture. The first layer selects the gait to be performed; while controllers
in the second layer conduct obstacle avoidance behavior and object reaching.

(Figure 3.20)

High Level FACL Controller
(for gait selection)

ilinear Accordion

Lateral
Undulation

Obs. Avoidance (_'unt.l Obs. Avoidance lf.'l:mt.l

leWinding Positive Slope

Object Reaching C unt.l Object Reaching C‘unt.l

ileWinding Negative Slop

_ILU Obs. Avoidance (.'unt.l

_|I.U Object Reaching C unt.l

Figure 3.20. Controller Network.
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The controllers responsible for obstacle avoidance and object reaching will
called as “middle level controllers” throughout this thesis and the gait selector
controller will be referred as “high level controller” throughout this thesis. For
each of the lateral undulation, rectilinear and accordion gaits, there exist two
middle level controllers for obstacle avoidance and object reaching. One
behavior, thus one middle level controller, is activated at a time for each gait,
due to object proximity and sensed obstacle distances. The activation of a
behavior is accomplished by a bi-stable switch to avoid oscillations between
behaviors (refer to 3.3.1.1.). The main structure of the middle level controllers

of each gait is similar to [21].

It should be noted that Sidewinding (marked with red in figure 3.15) to either
left or right side (with positive or negative slope) is an extension of lateral
undulation and does have an explicit steering. This gait does not need any
middle level controllers, thus it is added to lateral undulation for being selected
as a preset gait by the high level controller as a derivative of lateral undulation

as shown on figure 3.20.

The middle level controllers determine the steering of the mode due to their
purposes. The total linear speed of the model is not explicitly controlled;
instead it is taken as a constant input considering the limitations of the
hardware mechanical robot. In the simulations a speed of 15cm/sec is used

which corresponds to 7.5 pixel/sec.

3.3.1. Middle Level Controllers

3.3.1.1. Obstacle Avoidance Controllers

All three of the obstacle avoidance controllers are fuzzy logic controllers

emphasizing FACL learning. All obstacle avoidance controllers for each gait
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are identical but tuned to handle their corresponding gaits for obstacle
avoidance (Marked with red in figure 3.21.). Obstacle avoidance controllers
operate with a frequency of 1Hz. With the 7.5 pixel/sec speed, 1Hz operation is

long enough in the application of the selected steering.

High Level FACL Controller
(for gait selection)

Lateral
Undulation

Rectilinear

Accordion

—I SideWinding Positive Slope I 1] Obs. Avoidance Cont.

=] Obs. Avoidance Cont. .

Object Reaching C‘unt.l

—l SideWinding Negative Slope I Object Reaching Cont.

LU Obs. Avoidance Cont. .

_ILU Object Reaching (_‘unt.l

Figure 3.21. Controller Network.

Each controller has first four of the IR distance sensors as an input (two
sensors looking forward, the minimum one of left sensors and the minimum of
right sensors); which are fuzzified by 5 fuzzy sets leading to 625 states (figure
3.21). The reason of selecting only first four of the sensors is that the head’s
sensory information is sufficient to represent the states of the robot for
navigation and to keep the input state space small enough to shorten training
time. The fuzzyfication of the sensors is done based on triangular membership
functions uniformly distributed between 0 to 200 pixels where only two of
fuzzy label memberships are possible to occur simultaneously. The selection of

the number of sensory fuzzy sets is manually done as stated in section 2.3.9.
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Figure 3.22. Fuzzy Membership Functions of IR Sensors

Each of the middle level controllers is based on seven identical steering radii

vectors such that they output a combination of them.

ro[-33 -22 -11 0 11 22 33] (3.4)

Steering

d1.d2,d3,d4 o o
Obstacle Avoldance r= -33 <-> +33 (em)

+ +

Controller

Figure 3.23. Middle Lever Obstacle Avoidance Controller

The actions set of controller in figure 3.23 represents the radius of the circle
which the head segment is on. With 15cm/sec speed, a radius of 33cm
corresponds to 26 degree/sec heading change speed. With maximum steering,

the model can make al80 degree turn in 7 seconds.

3.3.1.1.1. Training of Obstacle Avoidance Controllers
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Each of the obstacle avoidance controllers (marked with red in figure 3.21)

utilizes the FACL learning architecture.

Table 3.1. FACL Parameters

FACL Parameters for Obstacle Avoidance Controller [ yA4, 5, ]

[0.10.30.30.1]

The following reinforcement scheme is used:

+1if (d,,d, >100 and min(d,,...,d,) > 40)
reinforcement =| —1if (d,,d, <40 or min(d,,...,d,) < 20) (3.4)

0 otherwise

If a collision occurs the model is taken back to a previous “safe” location, and
the navigation is maintained while giving a “-1“reward for the colliding action.
The trainings are done in a 5 N friction environment which supplies 5N friction
to each of the robot segments that is a force threshold enough for properly

achieving any of the gaits available.

During the training phase, the update mechanism induced in 2.2.1 is used. The
trainings of each obstacle avoidance controllers are continued in arbitrary

environments until 100 successive good reinforcements are received.

3.3.1.2. Object Reaching Controller

Object reaching controllers for any selected gait are fuzzy logic controllers
with preset LUT (look-up table) where no tuning is necessary (figure 3.21 and
3.22). Reaching of the object in the environment is quite an easy task when
compared to obstacle avoidance so a simple controller is used with a

predetermined LUT for each gait.
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Figure 3.24. Object Reaching Controller for Lateral Undulation. The LUT ,visible in the
constant value boxes marked with red, are populated by 1/r values.
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Figure 3.25. Object Reaching Controller for Accordion and Rectilinear

3.3.1.3. Selection of Behavior

The selection among obstacle avoidance and object reaching behaviors is
accomplished by a bi-stable switch which works based on object heading,
distance and the distance to the nearest sensed obstacle. The switching

parameters are determined intuitively in this thesis.
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object reaching; if min(d,,d,) > 80 & obj.dist < 150 & abs(obj.bear) < 40
behaviour ——{ obs. avoidance; if min(d,,d,) < 30 or obj.dist > 200 or abs(obj.bear) > 60
else maintain previous selection
(3.5)

Switches identical in all controllers determine the behaviors of the gaits. When
“obstacle avoidance” behavior is active; the explicit selection of sidewinding
or lateral undulation gaits are done by high level controller. Even though
sidewinding gaits can not steer, they can still be used to avoid the obstacles in
some situations. But when “object reaching” behavior is selected, sidewinding
gaits are suppressed and are replaced automatically by “lateral undulation with
object reaching” regardless of the high lever controller’s output since

sidewinding gait can not reach an object.

3.3.2. High Level Controller

High level controller has four IR sensor inputs; two for head, other two
represent data from right and left side sensors sensing the nearest obstacles.
The sensors are fuzzified generating three fuzzy membership functions instead
of five. The robot segments are assumed to sense the friction of the
environment and the controller also has an input the average of the friction
forces affecting the robot segments. Each input is fuzzified by three fuzzy sets
generating 243 input states. The main reason for the generation of three fuzzy
set for each sensory input is to limit the total number of the states which

guaranties to shorten the training time.

The high level controller selects five actions (gaits) at each phase which are
lateral undulation, sidewinding, accordion and rectilinear. The combination of
actions is not applicable because they can not be super-positioned. The
controller selects the most preferred action at a time. Thus the output is the gait

which has the greatest support from the valid states at a time.
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3.3.2.1 Training of High Level Controller

The high level controller is also a FACL controller which is tuned throughout
the reinforcements. The training of high level controller is done with already
trained middle level controllers which were induced in section 3.3.1.1. High
level controller aims to select the best gait which stays away from the sensed
obstacles without slippage. The best gait is chosen based on maximizing the

reinforcement which is calculated as:

+1if min(d;,...d,;) > 20 and min(d,,d, ) > 50 and not skidding
reinforcement = —1 if min (d,,...d ;) <10 or min(d,, d,) <30 or skidding
else 0
3.6)

The slippage is determined by monitoring the instantaneous linear velocity by
the body sensors attached to each body segment of each segment along local y
axis (perpendicular to the segment direction), where the linear velocity should
be zero when proper traction is achieved. If the linear velocity along local y
axis exceeds a predetermined threshold, the robot is assumed to be slippage.
The threshold will be derived in section 3.4.1.5 while observing the friction
characteristics of the gaits. In section 3.4.1.5 also a minor modification will be
done to the (3.6) reinforcement. The training is conducted until 50 successive
high reinforcements are received in an arbitrary environment where selection

of 50 gaits is sufficient to visit almost every state of the controller.

The following FACL parameter set is used during the trainings:

Table 3.2. FACL Parameters of High Level Controller

FACL Parameters for Obstacle Avoidance Controller [ yA4, 5, |

[0.50.10.10.5]
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3.3.3. Object Dragging

The object is modeled as a massless 7 pixel diameter circle in the environment.
The robot can sense the distance and the direction of the object with respect to
the each segment center. The object can be pushed and translated by any part

of the robot.

When the robot reaches the object, it drags the object by pushing with its head
while continuing with the object reaching behavior. The pushing continues
until the robot senses a nearby obstacle. Robot can sometimes loose the object
from the front of its head while performing lateral undulation due to the

undulations. The robot ceases “object pushing” behavior for also these cases.

Figure 3.26. Object Push by head.
The manipulation of the object is still possible by using the snake body when

the head misses the object. For manipulation with body; the following preset

additions, which are rule based modules, are made in the control architecture.
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Figure 3.27. Body Push Extensions

For lateral undulation, an object on the body side can be manipulated with the
body curvatures along the motion path by performing sidewinding gait in the
corresponding direction as shown on the left of the figure 3.28. For rectilinear
and accordion gaits it is not possible to manipulate the object along the robot
motion direction, but the object can be pushed away by the body in order to
clear a passage for the robot as shown on the left side of figure 3.28. The
details of object push methods will be demonstrated and discussed in section

3.44.

Figure 3.28. Body Push methods.

These schemes are triggered when rule based criteria is met. For simulations
this criterion is considered to be 90 degrees or higher object direction angles
with respect to the head segment (the object is not in front of the body) and a

maximum of 5 pixels from the nearest body segment. This criterion is
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determined by intuition but it is obvious that the object should be on the side

and close enough to the body.

Table 3.3. Object Push Activation Criteria

Distance to the nearest segment Bearing w.r.p. to head

<5 pixels (10 cm) > 90 degrees

Object interaction is utilized only on the simulation model. Implemented
mechanical robot can not perform interaction with an object because it lacks

the sensors for detecting an object and determining its distance and orientation.

3.4. Simulation Results

3.4.1. Gait Friction Characteristics

In this section, implemented gaits will be introduced and their corresponding
friction characteristics will be observed. Each gait requires some amount of
friction force from the environment to be conducted properly. In absence of the
required friction a particular gait will may not manage to navigate the robot.
Due to insufficient friction, the robot may begin slipping resulting in loss of

stability and ineffective navigation.

The friction susceptibility of each gait is determined by measuring the scalar
sums of linear speeds of the segments along the local y axis, which is
perpendicular to the palette direction, for environments with different frictions.
When the segments are not slipping, due to the nature of the palettes, the linear
speeds along local y axis of the each body segments should be zero. A nonzero
linear speed along local y axes indicates slippage and results in unwanted
heading change. Nevertheless body segment’s inertia will always cause

slippage. In the end of this section, a threshold for the determination of the
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slippage will be determined; this threshold will be the main criteria for

reinforcement of the high lever controller.

The scalar sums of all body segments’ perpendicular speeds (along local y
direction) may show noisy characteristics. To have better determination of
slippage, perpendicular speeds can be integrated to calculate the amount of
slippage in distance quantity. The sum of the all segments’ slippage distances
for a period of time instance gives a brief idea about the gaits friction

characteristics.

Slippage is very closely related to the linear speed and steering of the body,
where sharp steering may cause slippage; so the worst case scenario (figure

3.29) is used for friction analysis. The speed is fixed at 15cm/sec.

I:I_LI:TI':-‘ m_f:?q} N,

o=

Figure 3.29. The scenario for lateral undulation where the model makes a sharp turn.

Rectilinear and accordion gaits are steered by curving the whole body as stated
in 3.2.2 and 3.2.3. The curving of the body yields to local y axis speeds on each
body segment as shown on the figure 3.30. So for proper friction analysis, the
local y axis speeds are not taken into consideration while rectilinear and

accordion gaits are steering. During steering of rectilinear and accordion gaits,
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local y axis speeds are simply not monitored for slippage. Since the steering of
accordion and rectilinear is not continuous, ignoring local y axis speeds does

not degrade detection of slippage.

Figure 3.30.The steering for rectilinear gait, same scheme is also done for accordion.

The lifted part’s perpendicular speeds are disregarded since the lifted parts do
not touch the ground thus they do not slip.

3.4.1.1. Accordion

The visualization of the snake-like robot model performing accordion gait over
a terrain with 5 N friction without any steering is illustrated in figure 3.31.
Forward motion is generated by use of the translation motion of the joints
where all segments touches the ground. The segments which are propagating
forward are supported by their actuators (indicated by red lines by their
corresponding segments in figure 3.31), simulating the frictional effects of a

snake skin.
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Figure 3.31. Accordion gait resultant motion in environment with 5 Newton friction force.
The body propagates forward steadily but the speed is reduced to half.
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Figure 3.32. Slippage distance of accordion on 20N friction. The amount of slippage does not
exceed 0.25cm per half second.

Figure 3.33. Slippage of accordion on 2 N friction. A maximum of 0.3cm slippage occurs per
half seconds.
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Figure 3.34. Slippage of accordion on 0.02 N friction. A maximum of 0.35cm slippage occurs
per half seconds.

Accordion gait’s slippage distance per half seconds is illustrated in figures
3.32, 3.33, 3.34 in environments with 20, 2, 0.02 N friction respectively for the

scenario identical with that of figure 3.29.

Accordion gait slips 0.35 cm in 0.5 seconds during steering in an environment
modeled with 0.02N friction. Under 20N friction the slippage distance is
almost the same, yielding an accordion gait that is not significantly affected by
friction change. Accordion gait is applicable in environments with low friction

without significant slippage.
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3.4.1.2. Rectilinear

The visualization of the snake-like robot model performing rectilinear gait over
a terrain with 5 N friction without any steering is illustrated in figure 3.35. The
forward motion is generated by the translation motions of the joints along body
direction. The segments which are propagating forward are lifted shown with

light blue borders in figure 3.35. The tip end actuators are not used.

T g O O L1

Figure 3.35. Rectilinear gait in environment of SN. The linear speed of the whole body is half
of the segments speed like the rectilinear gait.
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Figure 3.36. The slippage distance on 20N friction environment. The total amount of slippage
does not exceed 0.025 cm for 0.5 seconds.

Figure 3.37. The slippage distance on 2N friction environment. The total amount of slippage
does not exceed 0.04 cm for 0.5 seconds.
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Figure 3.38. The slippage distance on 0.02N friction environment. The total amount of
slippage does not exceed 0.08 cm for 0.5 seconds.

Results show that rectilinear gait can be conducted on very slippery surfaces.
As the friction force of the environment is decreased from 2 to 0.02N, the
slippage distance only doubles. For example, even a 0.02N friction
demonstrates a slippage distance of only 0.08 cm which is a negligible distance

compared to the size of the robot.

The slippage distance of the rectilinear gait is smaller than the accordion gait
because for rectilinear gait, half of the body parts are raised eliminating
slippage. The translation of prismatic joints is the main source of slippage. It
should be noted that as the friction drops, the forward speed of the rectilinear
gait is greatly reduced; due to insufficient friction the stationary segments repel
back as the lifted sections are advancing. This can also be considered as
slippage but it does not result in unwanted heading angle change and therefore

it is not taken into account within the slippage analysis.
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3.4.1.3. Lateral Undulation

The visualization of the snake-like robot model performing lateral undulation
gait over a terrain with 5 N friction is illustrated in figure 3.39. All segments
touch the ground, and forward motion is obtained by use of tip end actuators

shown with red lines in figure 3.39.

e

Pra— —_—

Dmmmmmﬂf}/

Figure 3.39. Lateral undulation in environment with 5N friction. The undulation amplitude is
a simulation parameter. The undulation amplitude and the frequency of the simulation are
selected for obtaining the best curvature of the body. Higher amplitude and frequency of
undulation requires smaller body segments.
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Figure 3.40. Slippage of LU on 20N friction. The peak of slippage distance is about 0.65cm in
0.5 seconds.

Figure 3.41. Slippage of LU on 2N friction. The peak of slippage distance is about 1.4 cm in
0.5 seconds which occurred during sharp steering.
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Figure 3.42. Slippage of LU on 0.02N friction. The peak of slippage distance is about 2.1 cm
in 0.5 seconds.

During locomotion using lateral undulation gait on a 0.02N frictional areas, the
robot slips 2 cm in half second, which is also noticeable with naked eye. This
slippage is not unexpected for this gait since the linear speed of the robot is the
double than that for the accordion and rectilinear gaits. Also in lateral
undulation gait, during sharp steering the body segments may push each other

in the y axis direction.

However if the friction is around 20N, the lateral undulation gait results with
slippage distances similar to that of the accordion gait. The worst case scenario
used in the analysis let to a sharp turn caused a maximum of 0.65cm/0.5sec
slippage but it must be noted that less sharp steering will result in less slippage.
Also the undulation amplitude and the frequency also effects slippage where
undulations will less amplitude and lower frequencies will decrease the amount

of slippage.
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3.4.1.4. Sidewinding

The visualization of the snake-like robot model performing sidewinding gait to
its right side over a terrain with 5 N friction is illustrated in figure 3.43. The
body touches the ground only on two segments which are indicated by solid
black borders in figure 3.43. Forward motion is obtained by use of the

actuators of the segments which are touching the ground.

Figure 3.43. Sidewinding in environment with 10N friction. The body moves in the direction
of the segments touching the ground.
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Figure 3.44. Slippage of SW on 20N friction. The peak of slippage distance is about 0.18 cm
in 0.5 seconds.

Figure 3.45. Slippage of SW on 2 N friction. The peak of slippage distance is about 0.35 cm
in 0.5 seconds.
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Figure 3.46. Slippage of SW on 0.02 N friction. The peak of slippage distance is about 1 cm
in 0.5 seconds.

Since sidewinding gait does not steer, so it has less slippage distance due to the
lateral undulation. When the friction is around 20N, the slippage of the
sidewinding is negligible. As the friction drops the slippage of the sidewinding
increases because only two (sometimes three) of the body segments receives
friction from the ground. Even though the snake does not steer, the forces
generated by the inertia of the body segments can overcome the friction forces

acting only on two of the body segments.

3.4.1.5 Threshold Determination

The maximum slippage distance per 0.5 seconds does not exceed 2cm for
lateral undulation whereas it always below 0.3cm for accordion and rectilinear.
The threshold for determination of the slippage is considered to be 0.9 cm/0.5
sec. The slippage distances higher than 0.9cm in 0.5 seconds will be
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considered as slippage and result in a “-1” reinforcement for the high level

controller.

Since rectilinear and accordion gaits have superior friction performance than
lateral undulation and sidewinding, these gaits could be performed at every
part of the environment. But the speeds of rectilinear and accordion gaits are
half of the other gaits; so when applicable performing lateral undulation and
sidewinding is preferred. To accomplish this preference, the positive rewards
of lateral undulation and sidewinding gaits are doubled to “+2” if they do not

skip and stay away from the obstacles.

3.4.2. Simulation Results with Obstacle Avoidance

Accordion, rectilinear and lateral undulations gaits are performed with their
respective already trained obstacle avoidance controllers on environments with

different obstacle distribution.

3.4.2.1. Accordion

Accordion gait with “obstacle avoidance” behavior is illustrated in figures 3.47
and 3.48. The environment in the figures 3.47 and 3.48 5 provides a constant

5N friction and has obstacles.
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Figure 3.47. Accordion for Obstacle Avoidance.
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Figure 3.48. Accordion for Obstacle Avoidance.

The simulation model propagates forward by performing accordion gait while
avoiding the obstacles on its way. In figures 3.47 and 3.48 the model goes
through two nearby obstacles without colliding, which proves the success of

(13

the accordion gait’s “obstacle avoidance” controller.



3.4.2.2. Rectilinear

Rectilinear gait is performed with its “obstacle avoidance” behavior in figures
3.49 and 3.50. The environment provides a constant 5 N friction and contains

obstacles.

Figure 3.49. Accordion for Obstacle Avoidance
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Figure 3.50. Accordion for Obstacle Avoidance (continued)
As seen in figures 3.49 and 3.50, obstacle avoidance controller of rectilinear

gait successfully manages to steer the simulation model through an area

surrounded by obstacles.
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3.4.2.3. Lateral Undulation

Lateral undulation gait with obstacle avoidance behavior is illustrated in
figures 3.51 and 3.52. The environment provides a constant 5 N friction and

contains randomly distributed obstacles.

’é?x’/ <

Figure 3.51. Lateral Undulation with obstacle avoidance.
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Figure 3.52. Lateral Undulation with obstacle avoidance (continued).
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Lateral undulation gait’s obstacle avoidance controller manages to steer the

body to avoid the obstacles successfully as seen in figures 3.51 and 3.52.

3.4.3. Simulation Results with Arbitrary Environment

Simulation result of the model in an environment which has two regions with
different frictions and randomly distributed obstacles is illustrated through
figures 3.53 — 3.67. Gray region of the environment has 0.4N friction and white
region has 5 N friction. Since the environment does not contain any objects, all
controllers and preset actions related with objects are not activated. Simply all
gaits with their corresponding obstacle avoidance controllers (except
sidewinding) are combined by a high level controller which makes selections
among available gaits. Although sidewinding gait does not have an obstacle
avoidance controller, it is still available to the high level controller as

mentioned in section 3.3.

The reason for using an environment containing two regions with distinct

frictions is clearly illustrating gait preference of the high level controller.
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Figure 3.53. Navigation in a variable friction environment. The model begins with performing
lateral undulation by avoiding the obstacle on its front.
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Figure 3.54. The model continues lateral undulation and avoids the frontal obstacle.

In the figures 3.53 and 3.54, the high level controller selects lateral undulation

gait and the model avoids the obstacle in the front of the model’s head.
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Figure 3.55. The model begins to perform sidewinding gait against its left side (with positive
slope), since the head is cleared of obstacles, sidewinding is applicable.

After clearing the head of model from the previously encountered obstacle,
model performs sidewinding against its left side (with positive slope) to get

away from the previously encountered obstacle while propagating forward as

seen in figure 3.55.
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Figure 3.56. The model momentarily switches to lateral undulation and then selects
sidewinding again but this time with negative slope.

The model senses the upper obstacle wall and temporarily switches to lateral
undulation to avoid it. After the head of the model is clear from the obstacle
wall, the model continues to perform sidewinding gait but this time against its
right side (negative slope) as shown on figure 3.56. Sidewinding against right

side allow the model to get away from the upper obstacle wall.
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Figure 3.57. The model begins to perform rectilinear gait on the low friction portion of the
environment.

As the model passes to the region with low friction (0.4 N), it switches to
rectilinear gait. Rectilinear gait’s obstacle avoidance controller makes the
necessary steering in order to prevent collision with obstacles as seen in the

figure 3.57.
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Figure 3.58. The model continues to perform rectilinear gait and avoids the obstacles.

The model continues to perform rectilinear gait while successfully avoiding

obstacles as shown in figure 3.58.
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Figure 3.59. The model momentarily switches to accordion gait, and then it continues with
rectilinear gait. But high level controller prefers to select rectilinear gait more in slippery
portion of the environment. This preference may result from the better obstacle avoidance
performance of the rectilinear gait’s middle level controller.

As the model advances in the region with low friction, it momentarily switches
to accordion gait, but then continues with rectilinear gait as seen in figure 3.59.
Both gaits have obstacle avoidance controllers, so the obstacle avoidance

behavior is maintained during gait change.
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Figure 3.60. Model continues its navigation by rectilinear, on its way it again switches to
accordion gait momentarily. On both gaits, the model shows obstacle avoidance behavior.

The oscillations in the selection of the gaits shown on figures 3.59 and 3.60
prove the existence of exploration of the high level controller. But rectilinear
gait is preferred more than accordion gait although they have similar
properties. This bias may be resulted from insufficient exploration or better

obstacle performance of rectilinear gait.
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Figure 3.61. Model leaves the slipper portion of the environment with rectilinear gait. Model

selects sidewinding on the area with high friction. Although the front of the model is blocked

by an obstacle, the high level controller has learned that performing sidewinding may be used
to avoid the obstacles at certain orientations.

As the model leaves the region with low friction, it switches to sidewinding
gait against its left side to pass between the two frontal obstacles. The selection
represented in lower part of figure 3.61 shows that the high level controller
found a suitable situation for sidewinding to avoid front obstacles although

sidewinding did not posses any obstacle avoidance controller.
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Figure 3.62. Model enters between the wall (surrounding wall is also considered as an
obstacle) and the obstacle. Model performs lateral undulation when nearby obstacle are present
on the sides of the robot.

When the model senses obstacles at both sides, it switches to lateral undulation

as seen in lower part of the figure 3.62.
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Figure 3.63. The model passes between the obstacles with lateral undulation gait. While
passing between the obstacles, the amplitude of the undulation is suppressed by lateral
undulation’s obstacle avoidance controller. Since undulation moves the model nearer to one of
the surrounding obstacles, the avoidance controller gives opposite steering eliminating the
undulation. After the passing between the obstacles the model performs sidewinding.

As the model is passing between two obstacles, undulations of lateral
undulation gait bring the model nearer to one of the obstacle. The obstacle
avoidance controller of lateral undulation gait tires to avoid this situation by
steering the model in the reverse direction of the undulation thus suppresses the

undulations as seen in the upper part of figure 3.63.
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Figure 3.64. The model senses the corner of the environment and switches to lateral
undulation to turn the head of the robot. After the head is clear of obstacles, robot continues to
perform sidewinding.

The high level controller selects lateral undulation when the model encounters
an obstacle in front of its head, sidewinding when only one side of the model
encounters an obstacle. In figures 3.63 and 3.64, the model switches back and
forth between lateral undulation and sidewinding gaits as the described

situations alternates.

115



Figure 3.65. The model switches to lateral undulation to avoid the corner..

When the model senses the wall (obstacle) in front of its head, it switches to
lateral undulation and makes a very sharp steering in order not to collide into
the wall as seen in the figure 3.65. Performing sidewinding without fully
avoiding the corner moves the model dangerously near to the corner which is a
bad situation. This situation may result from insufficient training, or badly

defined rewards.
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Figure 3.66. After the obstacle is avoided, the model performs sidewinding and moves away
from the sidewall.

As the head of the robot is cleared from an obstacle and obstacles are near only
at the side of the model, model performs sidewinding against its right side as

shown in figure 3.66.



Figure 3.67. The model continues to perform sidewinding until it confronts an obstacle. The
model switches to lateral undulation to avoid the encountered obstacle.

In figure 3.67, the model encounters an obstacle and switches to lateral

undulation to avoid the obstacle as shown on figure 3.67.

In the region with low friction, the high level controller prefers to select

accordion and rectilinear, whereas in the region with high friction, it selects
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among sidewinding and lateral undulation. This selection is expected due to the

friction properties of the gaits, introduced in section 3.4.1.

High level controller makes decisions also due to the obstacle situation of the
robot. Since sidewinding gait can not be steered, high level controller selects
lateral undulation instead of sidewinding when sharp steering is necessary to
avoid a very near obstacle like the case in figure 3.67. High level controller
also found suitable situations where sidewinding can be used to avoid obstacles

like the case of figure 3.61.

In fact, rectilinear and accordion gaits can also be performed without any
slippage and collision where lateral undulation and sidewinding gaits are
performed. But since speed of the body is reduced to half for rectilinear and
accordion gaits; the selection of sidewinding and lateral undulation gaits are
reinforced more when they are applicable as stated in section 3.4.1.5. This bias
to the gait selection yields to selection of lateral undulation or sidewinding

gaits if the friction is high; rectilinear or accordion gaits if the friction is low.

3.4.4. Simulation Results with Object

The simulation result of the model, being controlled with the complete
functional controller hierarchy (introduced in figure 3.27) will be illustrated
through figures .3.68 — 3.84. Interaction with the object on high friction (5 N)
will be shown through figures 3.68 — 3.73, on low friction (0.4 N) will be
shown through figures 3.74 — 3.84.
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Figure 3.68. The model performs lateral undulation to reach the object. With the scheme
described in section 3.3.1.3, selection of sidewinding is suppressed; instead lateral undulation
with object reaching is performed.
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Figure 3.69. The model performs lateral undulation to reach the object.

The model performs lateral undulation to reach the object as seen on the
figures 3.68 and 3.69. Normally in the absence of any object, the model would
prefer sidewinding; but the scheme described in 3.3.1.3 suppresses the
selection of sidewinding since no steering can be applied to sidewinding to

reach an object.
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Figure 3.70. The model performs lateral undulation to reach the object.

The model reaches the object any manipulates it by pushing with its head as
seen in figure 3.70. But the undulations of the gait prevent the manipulation by
head to take place for a long period of time. The model looses the object from

front of its head because of undulations as shown on the upper part of figure

3.71.
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Figure 3.71. After the object is reached; the model will manipulate the object by pushing it
with its head. But the object is too near and the undulation of the gait will make the head miss
the object. After the head misses the object, the criteria induced in 3.3.3 are met, and the model
executes sidewinding to manipulate the object with its body along its motion direction.

After the model looses the object from the front of its head, the criterion at
section 3.3.3 is met triggering the manipulation by the body scheme. Dragging

by the body is illustrated in figures 371, 372 and 3.73.
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Figure 3.72. The object is pushed along the body.
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Figure 3.73. Since sidewinding gait does not grasp, the object will be left behind as it reaches
the tail of the model. After the object is left, the model continues its ordinary navigation.

The object manipulated by the body can not be manipulated continuously, has
to be leaved behind as shown on figure 3.73. But this scheme is useful because
at the passes of the model from the object site will bring the object near to a
stationary obstacle cleaning the path. Also by using this scheme, the model
manipulates the objects in the direction of its body which can take the object

away opening passages.

The environment seen in figure 3.74 is used for object interaction in low

friction (0.4 N). The model begins at a region with high friction.
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Figure 3.74. The object is in the slippery portion of the environment. The gray part has 0.4N
friction while the white part has 5 N friction. The model begins with lateral undulation for
object reaching.

The model performs lateral undulation gait with object reaching behavior as
shown in figure 3.74, which is expected since lateral undulation gait is

preferred in the high friction regions.
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Figure 3.75. In the slippery portion of the environment the model switches to rectilinear, and
approaches the object.

The model switches to rectilinear gait as it passes to low friction region of the
environment as seen in figure 3.75. Despite of the gait change, object reaching
behavior is maintained. The model begins to manipulate the object by pushing

with its head as seen in the lower part of the figure 3.75.
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Figure 3.76. The model continues to push the object with its head whiling switching between
accordion and rectilinear gaits.

In the low friction area of the environment, the model switches back and forth
on rectilinear and accordion. This issue was discussed in section 3.4.3. But the
model continues to push the object without loosing it from the front of its head

as seen in figure 3.76.
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Figure 3.77. Since no undulation is present the model will keep pushing the obstacle with its
head until the criteria in the 3.3.3 becomes invalid by a nearby obstacle or by loss of the object
from the front side. In this next scenario this situation will be simulated.

Since accordion and rectilinear gait have no undulations, the model continues
to push the object as seen in figure 3.77. The criterion in section 3.3.3 will be
never met without encountering any obstacle. To illustrate the activation the

criterion in section 3.3.3, the environment in figure 3.78 is used.

Figure 3.78. The model begins with lateral undulation.
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Figure 3.79. The model enters low friction area.

Figure 3.80. In the low friction portion of the environment, the model reaches the object by
rectilinear gait.

The model approaches the object as usual through figure 3.78 — 3.80.
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Figure 3. 81. The model senses the nearby obstacle, and ceases object reaching behavior. The
model tries to avoid the obstacle with accordion gait.

The model senses the obstacle in figure 3.81 and switches to obstacle
avoidance behavior. The model ceases pushing the object and makes a left

steering to avoid the obstacle as shown in figure 3.81.
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Figure 3.82. During the avoidance of the obstacle, the object get too near to the side of the
model body triggering the criteria induced in 4.3.3. The model suspends obstacle avoidance,
and pushes the object by curving its body.

During obstacle avoidance, the object gets too near to the body as seen in the

figure 3.82 and the criterion in 3.3.3 is satisfied.
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Figure 3.83. After the object is pushed to a safe distance, the model resumes accordion gait
with obstacle avoidance.

The model pushes the object away by curving the body as seen in lower part of
figure 3.82 and upper part of figure 3.83. After the object is pushed away,

model continues its obstacle avoidance process.
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Figure 3.84. Without the object, ordinary navigation due to the environment takes place.

Since the body shape of the rectilenar and accordion gaits are not suitable for
taking the object along the body, pushing it away is the only option which may
help to minimize the interferene of the body with the object. Also this scheme
may help to push the object nearer to the stationary obstacles, opening up more

free space in narrow passages on low friction areas.
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CHAPTER 4

MECHANICAL IMPLEMENTATION

4.1. Robot Structure

Mechanical design of the proposed snake robot consists of four tank chassis
interconnected to each other by a three degree of freedom joints (Roll, pitch,
and yaw) (figure 4.1). Each of the tank palettes are actuated by separate dc
motors. The joints are passive except for yaw axis. Yaw axis of the joints is
actuated by separate servos. This design, which is similar to the “Kohga”,
purposefully selected for the ease of implementation and mechanically

effective propulsion.

Figure 4.1. Proposed Snake-Like Robot (Only two sections visible).

135



4.1.1. The Body

The tank chassis are the main body of the proposed snake robot (figure 4.2).
Each tank chassis is identical for each robot element consisting two dc motors

with separate gearboxes driving 2 tank palettes.

Figure 4.2. Tank Chassis with dc motors and gearboxes.

Gearboxes have 203/1 gear ratio. The dc motors are standard, operating under

3 volts; but unfortunately the precise model of the dc motor is not known.

The palettes of the tank have good grip through a large frictional surface

providing good traction necessary for navigation on surfaces that may as well

be slippery.

4.1.2. Joints

Robot elements (wagons) are connected by rotational joints having three
degree of freedom each in the direction of roll, pitch and yaw. The roll and

pitch axes are passive and free which permits the robot element to adapt itself
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to 3D terrains. The yaw axis is driven by a servo allowing its angular motion

control (figure 4.3).

[/

Figure 4.3. A joint between the tank chassis. Roll & Pitch axes are free; servo drives the yaw
axis.

4.2. Microcontroller Architecture

The proposed snake-like robot consists of eight low level dc motor controllers,
three servos and ten IR sensors which should be handled electronically to
control the whole robot. This handling task should be conducted by a
microcontroller. In the proposed implementation; this task is accomplished by
an ATMEL 89C52 (figure 4.4) microcontroller. ATMEL 89C52 has features as
two timers, 40 I/O ports, serial port, that make it very applicable to the task.
For 89C52 an 8052 assembler code up to 8k can be embedded.

Although 89C52 is very flexible and has a moderate processing power, still its

processing power is not sufficient to conduct the high level control specified in
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2.3.9 FACL Controller section so the high level control is conducted in a PC
instead of 89C52.

Figure 4.4. The 89C52 Microcontroller. The 89C51 marked with red in the figure is located at
the head of the robot; and it drives all servos, all low level dc motor controllers

4.1.1. Sensors for the Controller

The proposed snake-like robot is equipped with ten SHARP infra-red detectors
(figure 4.5). SHARP GP2D120 can sense distances between 80 and 10 cm; and

produces a non-linear analog output (figure 4.6).

Figure 4.5. SHARP GP2D120 IR range sensor.
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Figure 4.6. Distance, IR Sensor Output Voltage Relationship. [From datasheet of GP2D120.]

The orientations of the sensors are shown on figure 4.7.
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Figure 4.7. Orientation of sensors. Upper segment with four sensors is the head.

Each four segments of the robot is also equipped with identical ADXL320
accelerometers which measures accelerations in two dimensions (planar) up to

+/-2 g. (figure 4.8).
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Figure 4.8. Accelerometers with two axes. Accelerometers are positioned to set the +x
direction parallel with the corresponding robot segment forward direction. [Picture taken from
www.sparkfun.com]

The output characteristic of the accelerometers depends on the user
configuration. A low pass filter can be coupled to the output of the
accelerometers to limit the bandwidth of the accelerometers rejecting most of
the noise caused by the vibrations of the tank segments. The outputs of the
used accelerometers are limited with 50 Hz by externally attached low pass

filters.

4.2.2. Microcontroller to IR Sensor Interface

The microcontroller samples and quantizes the analog outputs of IR sensors
and accelerometers through an analog to digital converter (ADC) and an
analog switch which are shown on figure 4.9. For ADC an ADC0831 and for

analog switch a 74HC4051 integrated circuits are used.
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Figure 4.9. The ADC and the analog switch marked with red.

The interface of ADC, analog switch, and the microcontroller is as follows:

Channel Selection

Serial 8 hit

80C51

Analog Signal 7§

ADCO831

Analog Switch

Outputs of 8 IR sensors

Figure 4.10. Interface of 89C51 and IR sensors and Accelerometers.

4.3.3. Joint Servos

The servos (figure 4.11) used to actuate the yaw axis of the joints produce 45

kg per meters torque and 240 degrees per second speed.

141



Figure 4.11. Servo used in joints.

The position of a servo can be adjusted by a pulse width modulated (PWM)

signal as shown on figure 4.12.

1-2msec < 25 msec

Figure 4.12. Servo input signal.

The peak of the signal which is at 5 volts determines the position of a servo. A
5 volt pulse with 1 milliseconds width takes servo to zero degrees; a pulse
width of 2 milliseconds takes the servo to the maximum degree which is 180
degrees for a standard servo. A pulse width between 1 and 2 milliseconds can
adjust the position of the servo to any degree within in its operation angles.
The logic low part of the signal which is at 0 volts must not be greater than 25
milliseconds; because after 25 milliseconds the servo enters sleep mode. If a
servo is fed with a valid control signal which has off part smaller than 25
milliseconds; the servo changes its position to the desired angle and holds its
desired position. If servo enters sleep mode; it releases its position and

becomes free.
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4.2.4. Microcontroller to Servo Interface

The interface between the 89C52 and the servos is quite straightforward; since
servos have control inputs which are pulse modulated signals which are digital.

Servos can directly be connected to the microcontroller (figure 4.13).

b

80C52

Figure 4.13. 89C52 Servo interface. (Servo power inputs are not shown.)

The control signal is produced as specified in 4.3.2 Joint Servos section.

4.2.5. Microcontroller to PC Interface

The high level control is conducted in a PC, the output of the high level
controller should be sent to the robot; and the sensor outputs in the robot
should be sent to the PC for input to the high level control (figure 4.15). The
best interface is to use a RF (radio frequency) modem between the robot and

the computer.
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Figure 4.14. Half duplex RF modem.

Identical RF modems shown on figure 4.14 is used on both robot and the
computer. The modem supports serial rs232 communication with 9600 baud

rate.

The RF modem is half duplex which means both modems can not transmit and
receive simultaneously. Only one of the PC or robot can speak at a time so a

very simple protocol is used in the interface. The protocol is as follows:

1. PC sends eight palettes speeds in order,
2. PC send three servo angles in order,
3. After receiving 1 or 2 the robot samples all fourteen of the sensors and

sends all sensor output to the PC in order.

Wireless Link

4= RF Modem j/ \L RF Modem | se—

—-
PC Servos Angles
Pal Speeds

Robot

p—
Sensor Outputs

Figure 4.15. PC & robot interface.
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4.2.6. Microcontroller to DC Motor Controller Interface

All of the eight dc motor (low level) controllers require an analog input so a
DAC (digital to analog) converter is necessary to interface the 89C52 and the
low level controllers. DACO080S is used for digital to analog conversion which
has 8 bit parallel input and corresponding 256 level resolution. For proper low
level control, the analog input signal must be continuously fed to the low level
controllers so all low level controllers have separate DACs. All eight of the
DACs are interfaced to the 89C52 via a data bus (figure 4.16; 4.17). On the
databus the 89C52 can address any of the eight DACs and set its output voltage

level.

8 bit Latch Control
2

8 it data 1 bit Latch Enable 1 bit Latch Enable
4 o b
data  Latch data  Latch
Enable Enable . * & @
Latch Latch
80C52
8 bit data 8 bit data

DACOS08 DACOS08

Analog Signal Amnalog Signal

D<= +5v 0<-=+5v
LM324N LM324N

Amnalog Signal Analog Sigmal

SSe-= 48y Se=48v
. .
. .
. .
To low level DC motor To low level DC motor
controller controller

Figure 4.16. Databus and low level control interface topology. The 89C52 can address any of
the eight DACs and set and hold their output voltage through a latch.
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Figure 4.17. Dual DACO0808 on a tank segment fed through a databus. The outputs of DACs
are configured to be between 0 — 5 volts.) For two directional DC motor control, the output of
each DAC:s are readjusted between -5 <—> +5 volts by a quad operational amplifier LM324N
marked with blue in this figure. The adjustment operation is done by first amplifying the DAC
output by a gain of 2 then adding a -5v offset.

4.3. Low Level Control

The implemented snake-like robot has a total eight dc motors (two per each
robot element) which are electronically speed controlled and three servos

which are position controlled.

4.3.1. Palette Speed Control

The speed of each robot element, called segments thereafter, is generated at the
palettes by the corresponding DC motor and coupled gearboxes. For proper
realization of snake gaits, the speed of the segment palettes must be speed
controlled via dc motors, but unfortunately the precise dc motor model is not
known. Building a low level controller with complicated feedback such as a

feedback of actual speed counting the RPM of the palette is very cumbersome
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so a different and basic approach is followed. Consider the electrical model of

a dc motor:

Vhackemf

Figure 4.18. DC Motor Model

The back electromotor force potential V.. 1S proportional with the turning

speed (RPM) of the motor. So the speed can be controlled by a feedback

ofV, It should be noted that a controller can be built to control the speed

backemf *

'

: but the

backemf »

by reducing the error by the desired V. and the actualV

backem

relationship between actualV,,,.., and the speed of the motor is not precisely

known.

The gearboxes coupled to the dc motors have a gear ratio of 201:1 which has a
very high low pass effect. This very high gearbox ratio decreases the maximum
speed of the robot but enables the use of more basic controllers. In this case a
very simple proportional controller is sufficient to control the speed keeping

the low control of the robot more basic and reliable.
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Figure 4.19. DC Motor Low Level Controller.

The proportional controller is realized by an operational amplifier. The serial
resistance with 10 ohms is much greater than the internal armature resistance
of the dc motor which is about 2 ohms so the voltage drop on the internal
armature resistance can be neglected. For simplicity the inductance of the dc
motor can also be omitted, thus with this scheme the back emf is obtained

between the terminals of dc motor, which connect to the inverting input (-) of

the operational amplifier (figure 4.19). The desired back emf (Vo) iS

supplied to the non-inverting input of the amplifier, and the amplifier assures

'

the actual V.« 1S equal to V. 10 its saturation limits.

backem backem
The dc motors require high input currents which can not be supplied with a
standard operational amplifier, so a push — pull type of buffer is used to assist
the operational amplifier. The push — pull type of buffer consists of two pnp
and npn type of bjt (bipolar junction transistor) transistors (figure 4.20).
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Figure 4.21. DC motor low level controller. In the figure a dual low level DC motor controller
is shown which controls the dc motors of a tank segment. The integrated circuit (LM 324) in
the figure contains dual operational amplifiers. The two big heat sinks are used to cool two
pairs of BD 125 and BD126 bjt transistors.
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4.3.1.1 Input — Output Relation

One of main drawbacks of the low level control induced for palette speed
control is that it focuses on the measurement of a desired back emf voltage. But
the relation between back emf and the actual speed of the palettes are still

unknown.
The relation between the back emf values and the resultant palette speeds are

derived by taking samples running from segment palettes and fitting a separate

fifth order polynomial to the corresponding samples.

Table 4.1. Back EMF versus Speed

cm/sec Back EMF (V)

010681076084 (096 |1.04 |1.12|1.2|1.28|136|1.44|1.52

Palette |0 1.2 | 1.3 | 1.5 | 1.7 | 2.1 | 23 |25] 28 | 33 | 3.5 | 3.7
1

Palette (0| 14 | 1.7 | 2 |21 |23 |28 |3 |32 34| 35| 38
2

Palette |0 | 1.11(1.14| 12 | 1.5 | 1.9 | 22 (24| 27 | 28 | 3.1 | 33
3

Palette |O| 1.1 | 1.3 | 1.6 | 1.8 2 23 (24|27 | 3.1 | 35 | 3.7
4

Palette |0 1.7 | 1.9 | 2.1 | 22 | 2.7 | 29 (3.1 | 33 | 34 | 3.8 | 4.1
5

Palette | 0| 0.6 | 0.7 1 14| 15|17 |18 22|25 |26 |29
6

Palette | 0| 0.9 1 |101] 1.1 |16 | 1.7 | 1.8] 22 | 232|238 285
7

Palette |0 1.2 | 1.3 | 14 | 1.7 | 1.9 | 2 |23 | 25 |256|2.85]|3.22
8
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4.5. Control of the Mechanical Robot

Since the simulation mode possesses all the mechanical robot’s all dynamic
and kinematic properties in addition to the low level control, if we tune
controllers in the simulation environment those trained controllers should be
able to control the mechanical robot. However the hardware has severe
limitations such as lacking the ability of rising specific segments, or not being
equipped of prismatic joints that enables elongation. Because of these
limitations, the controller network of the robot model has to be suitably

truncated.

The robot is equipped with accelerometers on each segment, but these
accelerometers practically can not be used to detect slippage as it is in the
simulation. In the simulation environment, simply integration of outputs of the
accelerometers gives linear speed; integration of linear speed gives the position
so the slippage can easily be determined in a simulated case. But in practical
realization, due to noise and vibrations; the outputs of the accelerometers are
noisy and integration of these noisy outputs will result in errors growing in
time. Also the electronic realization of the robot which utilizes a “sample and
send” strategy is not suitable for processing the outputs of the accelerometers.
The processing of the accelerometer outputs, rejecting noise, is a signal
processing problem and should be handled onboard the robot. Due to the
limitations and unsuitability, the slippage detection and its coupled extension

to selecting the best gait will not be utilized on the mechanical robot.

To summarize, the mechanical robot;
e (Can not perform rectilinear and sidewinding gaits since no segments
can be lifted up,
e Can not sense the friction of the environment,
e (an not detect, or track an object (debri) or goal point.

e Can perform lateral undulation with obstacle avoidance,
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e Can perform an adapted accordion gait with obstacle avoidance,
e (an sense the tilt orientation of each tank segment through the two

dimensional accelerometers.

In addition to the mechanical limitations, the robot also has imperfect low level
control, joints with low stiffness, IR sensors with noisy and short ranged
output. With all these induced impairments, the mechanical robot will only be
controlled to conduct lateral undulation and accordion gaits with obstacle

avoidance behavior.

4.5.1. Lateral Undulation for Mechanical Robot

Mechanical robot is technically able to perform identical lateral undulation as
the robot model. The impairments of the low level control of tank palettes

would be compensated by actively driven yaw axis of the joints.

One of the main problem is that the sensors on the mechanical robot has a
range of 80cm with noisy output, where in the simulations IR sensors could be
able to detect obstacles from a maximum distance of 200 cm without any noise.
The interface of the mechanical robot and the obstacle avoidance controllers of
simulation model can be made by multiplying the outputs of the IR sensors
according to fulfill input range of the controller. Since the outputs of the IR
sensors are continuous no states will be overlooked. But the controller may
need to be set more “reactive” by increasing its steering actions. The sensor

issue will be discussed in results section.

4.5.2. Accordion for Mechanical Robot

The accordion gait can not be directly performed by the mechanical robot since
no prismatic joints are present. But a similar motion can be obtained by

moving the pallets of the tank segments at the same time. The steering can be
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done as the original accordion gait by giving the body a constant curvature.
This gait is advantageous because the tank segments push each other at the

steering direction directly generating a high forward force.

The steering of accordion gaits requires high servo torque, because for steering
the joint servos should overcome the friction force on the tank palettes, and
give a curvature shape to the body. In the simulations, the servos were assumed
to be ideal whereas in the rail life application it is not the case. The problem of

insufficient joint servos will be discussed in the results section.

4.6. Mechanical Results

4.6.1 Accordion Gait

Accordion gait is implemented on the hardware robot using the obstacle
avoidance controller developed and trained on the simulation model. The robot
is set to move at 3cm/sec speed, and the steering is determined by the
aforementioned obstacle avoidance controller that is run at every five seconds
since the robot is moving slower than its simulation model. Unfortunately the
joint servos of the robot did not produce enough torque to change the curvature
of the body. So the servos are assisted by the palette motion which is

introduces in figure 4.22.
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Figure 4.22. The steering of accordion gait. The joint servos are assisted by the palette motion
indicated with red arrows.

The palettes move in specific directions to help the servos rotate the body.
Assistance is provided to the servos for one second. After that one second, the

palettes continue their ordinary corresponding motion.
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Figure 4.23. The robot performs accordion gait while avoiding the obstacles.

The robot performs accordion gait as demonstrated in figure 4.23. The robot

senses the blue box, and steers left to avoid it.
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Figure 4.24. Accordion gait. The robot avoids the blue box.

The robot fully avoids the obstacle of blue box as seen in figure 4.24.
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Figure 4.25. Accordion gait.

The robot continues its motion without any steering change since it did not

sense a nearby obstacle as seen in figure 4.25.
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Figure 4.26. Accordion gait. The robot detects the door, and steers to avoid it.

In figure 4.26 the robot senses the door in the front and steers right. But this
steering brings the robot dangerously close to the wall as seen in the lower part

of the figure 4.26.
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Figure 4.27. Accordion gait. After encountering the other side of the door entrance, the robot
steers again to opposite direction.

The robot immediately steers to left in order not to collide with the wall as

shown in upper part of figure 4.27.
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Figure 4.28. Accordion gait. The robot passes through the door way.

The robot makes a final right steering to go through the door passage as shown

in figure 4.28.
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Figure 4.29. Accordion gait. The robot passes through the door way.

As seen in the figures 4.23 — 4.29, the robot is able to avoid surrounding
obstacles by the accordion gait using the controller developed and first tested
on the simulation model. But it must be noted that the mechanical robot can not
handle obstacle avoidance problem for every situation it encounters. Especially
if the robot encounters an obstacle ahead, it can not avoid it because the front
sensors can not detect the obstacle until it is too late for the robot to avoid it.
This issue was also present in the simulations but solved with increased IR

sensor range and detection cone.

The robot’s structure prevents sharp steering, which was achievable by a single

robot segment itself, so perfect obstacle avoidance should not be expected.
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4.6.2 Lateral Undulation Gait

The lateral undulation is performed with the same scheme which was

introduced in section 3.2.1.

Figure 4.30. Lateral Undulation Gait without obstacle avoidance behavior.
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Figure 4.31. Lateral Undulation Gait without Obstacle Avoidance behavior.

Head segment steers to left and right alternatively as its successor segments

follows the head’s path as shown on figure 4.31.
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Figure 4.32. Lateral Undulation Gait without Obstacle Avoidance behavior.

The robot continues performing lateral undulation as shown in figure 4.32.
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Figure 4.33. Lateral Undulation Gait without Obstacle Avoidance behavior.

165



The lateral undulation scheme worked on the mechanical robot as illustrated in
figures 4.30, 4.31, 4.32, 4.33. Each segment followed the path of its
predecessor as the head segment propagated by alternating steering. The
success of the simulation model’s lateral undulation scheme on hardware

proves the fidelity of the model.

The lateral undulation obstacle avoidance controller of the model runs at 1Hz

rate.

Figure 4.34. Lateral Undulation Gait with Obstacle Avoidance behavior.
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Figure 4.35. Lateral Undulation Gait with Obstacle Avoidance behavior.

As the robot undergoes undulations it senses the wall in its front and steers left

in figure 4.35.
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Figure 4.36. Lateral Undulation Gait with Obstacle Avoidance behavior.

The robot goes through the doorway as seen in figure 4.36. Steering of obstacle
avoidance controller disturbs the body curvature yielding to a strait body

segment orientation.
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Figure 4.37. Lateral Undulation Gait with Obstacle Avoidance behavior.

The robot leaves the door passage in figure 4.37.
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Figure 4.38. Lateral Undulation Gait with Obstacle Avoidance behavior.

The robot continues ordinary lateral undulation as it senses no nearby obstacles

in figure 4.38.
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Figure 4.39. Lateral Undulation Gait with Obstacle Avoidance behavior. The robot crashes
into the wall.

As seen in figures 4.34 — 4.39, the robot avoids obstacles and goes through the
door way. But when it encounters a frontal wall, it collides even though it tries

to avoid by steering to left as shown on figure 4.39.

Undulations are sometimes suppressed by the obstacle avoidance controller.
The obstacle avoidance controller gives outputs which contradicts with the
lateral undulations, and makes the robot move in a strait direction. In the
simulations, the frontal range sensors of the robot head were modeled so as to
always sense in the frontal direction as shown in figure 4.40. The mechanical
robot lacks this adjustment, so it treats undulation as a steering. As the
mechanical robot makes undulations, its frontal sensors momentarily sense the
nearby obstacles as frontal obstacles which were infact not on the global

direction of the robot. Thus the obstacle avoidance controller steers the robot

171



on the opposite direction of the undulation so it suppresses the undulations

even though the robot was not proceeding to an obstacle.

o
EE‘E‘E‘DE':-&-"
o
I "

Figure 4.40. Lateral Undulation of the model. Frontal sensor directions are indicated by long
blue lines.
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CHAPTER 5

CONCLUSIONS

This thesis aims at the construction and control of a mechanical snake robot for
SAR operations. A snake robot as described in section 4.1 which has
similarities with “Kohga” (section 2.1.7) is realized and a simulation model of
the realized robot is constructed with SIMULINK. The control mechanism for
the hardware robot solves the problem of navigation in an unknown, variable
friction environment by applying appropriate snake gaits. Also some extra
capabilities are given to the robot such as debri (object) reaching and

manipulation.

The main reasons for performing snake gaits are to capture some of the
biological snake’s features and to have a platform which is suitable for SAR
operations. The architecture of the implemented mechanical snake robot is
built of interconnected tank segments; and a mechanical design possessing
coupled mobility architecture achieve to have similarities with biological

snakes for motion and navigation.

Considering mechanical limitations of the hardware robot, its simulation model
is developed as a demonstrator of its full capabilities. Avoiding some

limitations and impairments of the physical implementation, the simulation
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robot model possessed extra features such as being able to lift specific body
parts and sensing slippage. But despite the addition of extra features, the
simulation is kept to have similar dynamical and kinematical properties than its

mechanical counterpart.

Several snake gaits which are derived and adapted from the real snakes’
motions are applied to the hardware robot model and resultant motions are
observed and discussed. Gaits showed different characteristics due to the clear
difference of the hardware robot model from that a biological snake. These
different characteristics are not unexpected, and these differences are
acceptable since a snake robot strictly similar to the biological counterpart is

beyond the aim of this thesis.

For the control task of the snake robot, obstacle avoidance and object reaching
behaviors are integrated to the adapted gaits. The uncertainty in obstacle
avoidance behavior is solved by self trainable FACL controllers for each gait.
The object reaching behavior problem is solved by manually setting the look-
up tables of the fuzzy controllers. Since object reaching is a simple task, usage

of simple controller reduced the complexity of the simulation.

For the high level control of the snake robot, each adapted gaits with two
behaviors are selected by a high level controller. The high level controller aims
to “select the best applicable gait”. The high level controller is also a fuzzy
logic controller utilizing FACL learning scheme which is equipped with a
reinforcement indicating the handling of slippage. For this indication first an
examination of the adapted gaits is carried out by observing the friction
characteristics of the adapted gaits on surfaces with variable friction. After the

observation a threshold is determined to handle slippage.

Finally after training all controllers, some rule based actions are added to the
controller network to manipulate an object using robot body under specific
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situations. The rules of object manipulation did not generate uncertainties, and

are defined by user intuition.

The training of controllers is performed by a lower to upper procedure. First
the lower level controllers are trained standalone. The higher level controller is

trained using the already trained low level controllers.

The results of the simulations are obtained in arbitrary environments, which
may include obstacles of any shape, size and number and variable friction. The
controller network accomplished to solve the navigation problem derives an
optimal policy. The derived policy didn’t possess a single dominated choice for
all situations. This is because applications of different choices are
advantageous in some situations proving the usefulness of richness of
information: With proper exploration of the FACL controllers, no choice is
dominated. The examples of such situations are when friction is high and all
obstacles are far away, selection of both sidewinding and lateral undulation is
equally preferable. Another example of these situations occurs when friction is
low and a nearby obstacle is present. In such case, the high level controller
may select among rectilinear or accordion gaits. If one desires to avoid
switching between gaits and have one gait selection per situation, the
exploration and exploitation balance of the high lever controller should be

broken toward favoring exploitation.

The object manipulation capability of the implemented model is very useful in
SAR (search & rescue) operations. The location of disasters like collapsed
building includes debris where navigation by treating debris as obstacle and
trying to avoiding them may be impossible. The proposed control scheme
approaches detect debris and manipulates them to a nearby stationary obstacle,
clearing the environment from distributed debris. If the manipulation somehow

becomes impossible or a pop up debris appear on the side of robot, the robot is
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also able to push away the debris by its body to a safer distance where the

debris does not interfere with the subsequent robot navigation.

Some features of the simulation are not implemented on the mechanical robot
such as debri detection and approaching or slippage detection because these
features are practically complex on hardware. Differentiating debris from a
stationary obstacle, tracking the debris in an unknown environment and
sensing slippage in the practical applications is a very big problem to be
solved. Although simulations had these practical capabilities, it opened a lot of

issues for future works.

The mechanical robot is premature when compared to the abilities of its
simulation. Despite these impairments, the mechanical robot is controlled to
perform lateral undulation and accordion gaits while avoiding obstacles. The
mechanical robot was directly controlled by a truncated controller of the
simulation. The obstacle avoidance controllers are not tuned and optimized on
the mechanical robot because the mechanical robot sensors had noisy
measurements. In real life applications, IR sensors working together jammed
the measurements of each other resulting in inconstant deviation on the
distance measurements. The IR sensors on the mechanical robot had not
enough range. With the current sensors and their orientations the robot can not

handle the obstacle avoidance problem for every possible situation.

Some main advantages of the snake gaits such as redundancy, traction, and
flexibility are tried to be captured making the proposed snake robot applicable

for SAR operations. In summary the mechanical hardware robot has:

e Good traction due to coupled mobility,
e Redundancy,

e High forward propulsion force,
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Penetration abilities, which are beyond the capabilities of single vehicle
robots, making itself suitable for SAR operations. A single vehicle
robot producing enough propulsion and traction has to be big in size
degrading the penetration abilities. But the implemented hardware
robot’s coupled mobility body properties allows generation of good
traction and high propulsion force while still keeping the frontal cross-
section of the hardware robot same with a segment of it body, ensuring

high penetration ability.

FUTURE WORK

Future work of this thesis can be focused on the implementation of the missing
features of the mechanical robot. In addition to the abilities of the robot
simulation, new features regarding SAR operations can also be developed and

adapted. Suggested features are as follows:

Slippage determination in real applications,

Goal point determination, and reaching by various sensors (e.g. a
camera or a directional microphone),

Palette speed controller with better accuracy, (shaft encoder)
Deployment of more rigid robot structure encapsulating electronic
components and own power source.

Actively driven joint pitch axis enabling stair climbing,

Grasping and enwrapment abilities.

The determination of slippage requires more than just an accelerometer. For
effective slippage determination, the outputs of the accelerometers should be
sampled and processes onboard the robot itself requiring a DSP card. The
control task of the robot can be carried on the onboard DSP card, making the

robot a standalone platform. Also for the speed control of the palettes, a shaft
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encoder can be coupled to the dc motors improving the accuracy of palette

speed control.

The proposed snake-like robot tries to navigate in the environment without
colliding and slippage by performing snake gaits. But in real life applications
the snake-like robot should chase an aim position or direction instead of
navigation around unconsciously. So as a future work an addition of goal point
or direction to the control of the snake robot is plausible. In simulation adding
a goal point or direction is quite easy but in the mechanical design it is
cumbersome. But a goal can be implemented on the robot, recognizing a
pattern such a human voice; this will yield a more useful robot for SAR. Also
different goal points/directions determination such as a path for evacuation
from the disaster site coupled with grasping or enwrapment techniques would

enable the robot to rescue a victim from the disaster site.

Navigation in unknown environments with obstacles can be conducted more
efficiently by interacting with obstacles instead of always trying to avoid them.
The motion of the body can be assisted by using support gained from the

obstacles as stated in [19].
In this thesis the energy consumption of the snake gaits selection was omitted.
Considering the energy consumption during selection of the gaits may result in

more effective navigation solutions.

Finally simulations can be made more realistic by 3D modeling.
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APPENDIX

A. MICROCONTROLLER DETAILED DESIGN

Atmel 89C52 is used to handle the sensor output sampling and, conduction of
data distribution on the robot. 89C52 communicates with a PC through a 9600

bout serial RF (radio frequency) link.

A.l. Port Connections of 89C52

89C52 has four 8 bit ports, which can be used for I/O purposes. Onboard
components are connected through these ports. Port interfaces are summarized
on figure A.1. Port 2 is used for addressing a latch, and port 0 is used to send
the data to the addressed latch. Port 0 is common to all latches, but only the
addressed latches captures the data sent by port 0. Latches of the each palette
are connected to one pin of port 2 as the indicated sequence on figure A.1. The
outputs of port 0 and port 2 form the data bus. The servos are connected and
controlled through first three bits of the port 1. Remaining of pl is used for
channel selection for the analog switch where selection among 32 channels is

182



possible. First two bits of port 3 is reserved for serial communications and
interfaced to the RF modem. The preceding three bits are used to control the

operation the ADC (analog digital converter).

Latch Data Latch Enables
Wagand Wagon 1
Right Latch Left Latch
LSB MSB T e i
01234567 76 543210
PO P2
ATMEL
89C52
P1 P3
|01234567 01,2 34567
Ll |
| [l |
Jomt 1 Jomit 3

Servo Servo ! ! !

Analog Switches
Serial Commn. ADC Interface

Serve Outputs
R/T

Figure A.1. Port interfaces of 89C52
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B. NOISE REDUCTION

B.1. DC Motor with Brushes

Dc motors with brushes usually consist of three groups of coils inside, oriented
with 120 degrees. Brushes carry the dc current to one of the three coils which
is perpendicular o the magnetic field direction. Coils are coupled to the
armature of the dc motor and they rotate as the armature rotates. While
operation of a dc motor, bushes make contact with the corresponding coil. Coil
characteristics does not permit the current passing through them to be zero
immediately, so sparking occurs on the brushes as the brushes loose contact
from a particular coil. These continuous sparking broadcasts radio frequency

noise and also ripples the supply lines of the motor.

When interfacing a dc motor to sensitive electronic equipment like a
microcontroller, special care must be taken. The robot built in this thesis has a
microcontroller and rf communications making the controller structure very

vulnerable to dc motors.

RF emissions from a dc motor can be reduced by shunting high frequencies on
the dc motor itself before they can be emitted. In this thesis shunting is
conducted by use of three 100nF capacitors as shown in the figure B.1. One
capacitor is connected between the terminals of the dc motor. Other two

capacitors are soldered between the terminals and the housing of the dc motor.
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Figure B.1. Shunting of a dc motor. Three 100nF capacitors used. One capacitor is attached
between the terminals of the dc motor. Other two capacitors are soldered between the housing
and each terminal.
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Shunting of rf emissions is not sufficient since a dc motor also ripples the
power supply lines. The best thing is to use separate power sources for the
microcontroller architecture and the dc motors. But sharing the same power
ground still allows the ripples to effect microcontrollers and connected
electronical devices. The power source of the dc motors must be separated

without having any common power or signal ground.

Dc motors of the robot built for this thesis have isolated power source from the
rest of the robot. The isolation is accomplished by use of optocouplers. (figure

B.2.)

A [ a3
GE}Z [5]c

NG [3] L’<E|E

Figure B.2. An optocoupler with phototransistor.

Optocoupler is a device which encapsulates a phototransistor (or sometimes a
photo resistor) and a light emitter diode. The light emitter diode converts the
electrical signals to light, while the phototransistor converts the light back to
electrical signal. The transformation of the signal allows interface between

electrical circuits without any electrical connections.

The circuitry shown on figure B.3 is used for each dc motor in the robot. The
used optocoupler is “4N25”. The resistor values are selected to be 350, 250,
250, 250 ohms (R1, R2, R3, and R4) respectively to have an output between

plus and minus five volts. Refer to the datasheet of “4N25” for more details.
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Figure B.3. Optocoupler circuitry for one DC motor. Isolation boarder is indicated by blue
line.

Figure B.4. Four optocouplers interfacing two dc motors on a tank segment.
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C. PARTS LIST

RF Modem Long Range (500m) 433MHz - Includes Antenna and Interface
Cable

9600 baud half duplex serial
connection.
Price : 40 $ each (Must be ordered

in pairs)

http://www.sparkfun.com/commerc

e/product info.php?products id=15
5

Infrared Proximity Sensor - Sharp GP2Y0A21YK

Price : 11 $ each

http://www.sparkfun.com/commerce/product info.php?products id=242
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Tank Treads

4

Price: $6.95

http://www.sparkfun.com/commerce/product info.php?products id=321

Dual Motor GearBox (Two dc motors included)

Price: $9.95

http://www.sparkfun.com/commerce/product info.php?products id=319
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Two Axes Planar Accelerometer - ADXL322 +/-2g

Price: $24.95

http://www.sparkfun.com/commerce/product info.php?products id=849
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