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ABSTRACT 
 
 

A NEW APPROACH TO GENERATING NON-PERMUTATION SCHEDULES 
FOR FLOWSHOPS WITH MISSING OPERATIONS 

 

 

 

TABALU, Metin 

M. Sc. Thesis, Department of Industrial Engineering 

Supervisor: Prof. Dr. Ömer KIRCA  

 

December 2006, 85 pages 

 
 
In this study, non-permutation flowshops with missing operations are considered. 

The primary performance criterion is the total cycle time (i.e. makespan) and 

secondary criterion is the total flowtime. In order to obtain the schedule with the 

minimum makespan and minimum total flowtime, non-permutation schedules are 

being generated instead of permutation ones by permitting multiple jobs bypassing 

stages where missing operations occur. A heuristic algorithm has been developed in 

order to generate non-permutation sequences through those stages. The heuristic 

algorithm has been compared with the existing heuristic methods in the literature, the 

ones generating permutation vs. the ones generating non-permutation schedules. 

Computational analysis is conducted to investigate the effects of certain parameter 

values such as the number of machines, the number of jobs and the percentage of 

missing operations. The results demonstrate slight improvement in the makespan as 

well as the significant improvement in total flowtime of schedules generated by the 

new heuristic procedure compared to leading non-permutation and permutation 

schedule generating heuristics, where the percentage of improvement gets higher 

with larger percentages of missing operations. 

 

Keywords: Non-permutation schedules, flowshops with missing operations. 
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ÖZ 
 

 

AKIŞ TİPİ ve EKSİK OPERASYONLAR İÇEREN ÇİZELGELEME 

PROBLEMLERİNDE PERMÜTASYON TİPİ OLMAYAN İŞ SIRALARININ 

OLUŞTURULMASINDA YENİ BİR YÖNTEM 

 

 

TABALU, Metin 

Yüksek Lisans Tezi, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Ömer KIRCA 

 

Aralık 2006, 85 sayfa 
 

Bu çalışmada eksik operasyonlar içeren akış tipi çizelgeleme problemleri 

incelenmiştir. Temel performans kriteri toplam çevrim zamanı olup, ikincil 

performans kriteri toplam akış zamanıdır. Permütasyon tipi iş sıraları yerine 

permütasyon tipi olmayan iş sıraları oluşturulmaya çalışılmış, ve bu esnada eksik 

operasyonlar içeren aşamalarda işlerin grup halinde öne geçişlerine izin verilmiştir. 

Aşamalar arası permütasyon tipi olmayan yeni iş sıraları oluşturan sezgisel bir de 

algoritma geliştirilmiştir. Yeni geliştirilen sezgisel algoritma literatürdeki 

permütasyon tipi ve permütasyon tipi olmayan iş sıraları oluşturan belli başlı sezgisel 

algoritmalar ile karşılaştırılmıştır. Toplam makine sayısı, toplam iş sayısı ve eksik 

operasyonların toplam operasyon sayısına oranı gibi parametrelere değişik değerler 

verilerek çeşitli sayısal değerlendirmeler yapılmıştır. Sonuçlar, yeni yöntemin 

oluşturulan permütasyon tipi olmayan çizelgelemeler ile toplam çevrim zamanını 

kısıtlı ölçüde, toplam akış zamanınını da önemli ölçüde azalttığını ve bu 

iyileştirmenin eksik operasyonların yüzdesine paralel olarak arttığını göstermektedir. 

 

Anahtar kelimeler: Permütasyon tipi olmayan çizelgelemeler, eksik operasyonlu akış 

tipi çizelgeleme problemleri. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 

 

A Flowline-Based Manufacturing System (FBMS) is a manufacturing environment 

where machines are arranged in the order in which jobs continue their operations, 

and have a unidirectional flow pattern. In a real manufacturing environment we often 

have the FBMS, where ‘cells’ are formed to manufacture ‘part families’ such that 

each family is, as much as possible, manufactured within the same cell. 

 

The urge for manufacturing part families in the same cell is mainly because of the 

need for minimizing material handling by minimizing inter-cell movements. The 

creation of manufacturing cells also enabled the manufacturers to form multi-

functional teams within each of those cells, where employees/units form more than 

one set of tasks on various part families coming to the cell. By doing so, some 

leading manufacturers have managed to increase the utilization of each of their 

employees and improved the capacity associated with manufacturing cells in order to 

reduce costs. In a cellular manufacturing system, all parts in a part-family need not 

be processed on all machines in a cell, thus a part may have missing operations on 

some machines.  

 

The configuration of a manufacturing cell may be either a flowline layout or a job-

shop layout. However, the formation of a flowline layout has definite advantages 

over the job-shop layout in the sense that; material flow is simplified with avoidance 

of back-tracking, less material handling activities performed, and better control of 

production activities are enabled (Dumolien and Santen, 1983). Especially in the 

electronics, automotive, chemicals and pharmaceuticals industry, leading 

manufacturers have developed FBMS both in parts manufacturing and assembly 

operations. Within those systems, part families are being processed in various sizes 
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of batches, requiring operations at different manufacturing cells. The important 

aspect of those is that all of the jobs flowing through machines more or less follow 

the same unidirectional flow with some existing missing operations for each distinct 

job family. Having this fact on their minds, researches have tried to find ways of 

modeling flowshops, given the economic importance of FBMS. 

 

The problem is then in order to utilize a FBMS in the most efficient way; one has to 

generate good solutions by modeling the system as a multi-product batch scheduling 

problem. The contents of this study includes a presentation of a study of the nature of 

a serial multi-product batch scheduling problem and tries to provide insights and 

justifications for considering flowshop scheduling problems (FSP) under a non-

permutation schedule (NPS) instead of permutation schedules, where jobs flow 

through machine with the same sequence at each stage leading to forced idleness of 

machines having missing operations for some jobs within the sequence. 

 

Throughout the following sections of this thesis, Chapter 2 first gives a brief 

explanation of flowshop by laying down the foundations of it together with a brief 

description of permutation schedules and their limits in terms of solutions to meet 

performance criterion. The mixed integer programming model used for permutation 

flowshops is also given in this chapter. Chapter 3 starts with a brief description of the 

Johnson’s algorithm together with the 2-machine flowshop problem in order to 

initiate the discussion for the heuristics developed for flowshops. After that, the 

second part of Chapter 3 involves a brief survey of flowshop heuristics –mostly 

generating permutation schedules– by paying special attention to improvement 

heuristics, as their notion will be employed at later stages in order to develop non-

permutation schedules for flowshop. The second part of Chapter 3 reveals the need 

for obtaining non-permutation schedules for the flowshop problem. Thinking in 

terms of the makespan as the primary performance criterion, a simple example shows 

the possibility of drastically decreasing the makespan of a schedule by employing 

non-permutation schedules.  
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Chapter 4, demonstrating the new heuristic approach developed using an existing 

heuristic, first draws out the benefits of enabling job-passing through stages in a 

permutation flowshop. Starting from an initial permutation flowshop, the use of job-

passing enables the problem-solver to decrease both the makespan and the total 

flowtime by making small interchanges in the permutation schedule and forming 

partially permutation sequences through following stages of a flowshop. In terms of 

the new approach, while obtaining partially permutation sequences at each stage, 

jobs with missing operations are passed ahead with small distortions of the 

permutation sequence for the current stage. In that sense job-passing as a tool for 

NPS generation is emphasized. Each job-passing is made by simultaneously 

considering all jobs as candidates to move ahead, and re-sorting the group of 

candidates within themselves in order to obtain ‘robust’ schedules for later stages. 

Simple dispatching rules have been brought into the discussion and further have been 

employed in order to make a reliable comparison of the new method by the other 

permutations. 

 

Chapter 5 summarizes the outcomes of the computational experimentations made in 

order to highlight the performance of the new heuristic compared to the existing 

methods for deriving permutation schedules and the NPS. Results of extensive 

computational experimentation, with makespan as the primary criterion and total 

flowtime as the secondary criterion are presented. Results are tabularized in order to 

see the effectiveness of the new approach in terms of producing NPS providing much 

less total flowtime with decreased makespan value as well. 

 

Chapter 6 sums up the purpose and contents of this study about developing a new 

heuristic approach for generating non-permutation schedules for flowline-based 

manufacturing systems with missing operations, which substantially decreases the 

total flowtime, as well as significant improvement in makespan. The computational 

results included in the previous chapter are analyzed and conclusions have been 

made based on the analysis of those results. Some key remarks for future research 

also have been proposed. 
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CHAPTER 2 
 
 

PROBLEM DEFINITION 
 

 

 

2.1. FLOWSHOP SCHEDULING 

A flowshop is a basic FBMS in which the machines (i.e. stages) are arranged in a 

series order. In such a shop, starting from an initial machine, jobs flow through 

several intermediary machines and ultimately get their operations done at a final 

completion machine. Traditionally, such designs are referred to as ‘flowshop’, even 

though an actual shop may comprise much more than a single configuration. 

Through a flowshop, the work in each job is broken down into separate tasks called 

operations and each operation is performed at a different machine. In particular, each 

operation after the first has exactly one direct predecessor and each operation before 

the last has exactly one direct successor, as shown below in Figure 2.1. Therefore, 

each job requires a specific sequence of operations to be carried out for the job to be 

complete. This type of structure is sometimes called a linear precedence structure 

(Baker 1995). 

 

 

Figure 2.1: The precedence structure of a job in a flowshop 

 

The shop contains m different machines, and in the “pure” flowshop model each job 

consists of m  operations, each of which requiring a different machine. The machines 

in a flowshop can thus be numbered m , .... 2, 1, ; and the operations of job j  

numbered ),(,   ...   ),,2(),,1( jmjj , so that they correspond to the machine required. 

For example, 53p  denotes the operation time on machine 5 for job 3. Figure 2.2 

represents the flow of work in “pure” flowshop, in which all operations require one 
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operation on each machine. 

 

Figure 2.2: Workflow in a pure flowshop 

Figure 2.3 represents the flow of work in a more general flowshop, which will be the 

subject matter of this thesis study. In the general case, jobs may require fewer than 

m  operations, their operations may not always require adjacent machines in the 

numbered order i.e. there might be some missing operations, and the initial and final 

operations may not always occur at machines 1 and m . Nevertheless, the flow of 

work is still unidirectional, and the general case can be represented as a pure 

flowshop in which some of the operations times are zero.  

 

 

Figure 2.3: Workflow in a general flowshop 

With machines in series, the five main properties of the flowshop model are similar 

to those of the basic single-machine model. 

Property 1: A set of n  independent, multiple-operation jobs is available for 
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processing at time zero. (Each job requires m  operations, and each operation 

requires a different machine.) 

Property 2: Setup times for the operations are sequence-independent and 

included in the processing times. 

Property 3: Job descriptors are known in advance. 

Property 4: All machines are continuously available. 

Property 5: Once an operation begins, it proceeds without interruption. 

 

One difference from the basic single-machine case is that inserted idle time may be 

advantageous. In particular, also for the case of missing operations the unidirectional 

sequences with partial changes through different stages provides various modeling 

advantages for flowshops. In the single-machine model with simultaneous arrivals 

the assumption that the “machine need never be kept idle when work is waiting” can 

be made. In the flowshop case, however, inserted idle time may be needed to achieve 

theoretical optimality. For example, consider the following two-job four-machine 

problem. 

Table 2.1: Processing times for two-job four-machine problem 

Job j  1 2 

jp1  1 4 

jp2  4 1 

jp3  4 1 

jp4  1 4 

 

Suppose that F  (total flow time: ∑ =
=

n

j jFF
1

) is the measure of performance. The 

two schedules shown in Figures 2.4a and 2.4b are the only schedules with no inserted 

idle time, and in either schedule F = 24. The schedule in Figure 2.4c instead is the 

optimal schedule, with F = 23. Note that in this third schedule, machine 3 is kept 

idle at time t = 5, when operations (3, 1) could be started, in order to await the 

completion of operation (2, 2). 
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Figure 2.4: Three schedules for the example problem 

For the single-machine model, it is trivial that there is a one-to-one relation between 

a job sequence and a permutation of the numbers n , .... 2, 1, . To find an optimum 

sequence, it was necessary to examine (at least implicitly) each of the sequences to 

the !n  different permutations. In the flowshop problem, there are !n  different job 

sequences possible for each machine, and as many as mn )!(  different schedules can 

be generated for the whole flowshop. While searching for the optimum, it would 

obviously be helpful if many of these possibilities could be ignored. Through the 

next section, the extent to which the search for an optimum can be reduced will be 

discussed under the name of permutation flowshops. Then, the case 2=m  will be 

discussed in order to show the interesting points in its own right and to obtain a 

building block for solving larger problems. The problem is generally formulated as 
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integer or mixed integer programming problems with makespan as the objective 

(Baker, 1995). However, throughout this thesis study, the minimization of total 

(weighted) flowtime is also considered as a secondary objective of scheduling, as this 

objective is more important and relevant than the objective of minimizing the 

makespan in real life situations (Pinedo, 2002). Models with due-date-related 

objectives are few and are out of the scope of this study. 
 

2.2. PERMUTATION SCHEDULES 

The example given in the previous section illustrates that it may not be sufficient to 

consider only schedules in which the same job sequence occurs on each machine. On 

the other hand, it is not always necessary to consider mn )!(  schedules in determining 

an optimum. The two dominance properties given below indicate how much of a 

reduction is possible in flowshop problems. 

 

Theorem 1:  With respect to any regular measure of performance in the flowshop 

model, it is sufficient to consider only schedules in which the same 

job sequence occurs on the first two machines (Baker, 1995). 

 

Consider a schedule in which the sequences on machines 1 and 2 are different. 

Somewhere in such a schedule a pair of jobs, i  and j  can be found such that 

operation ) ,1( i  preceding an adjacent operation ) ,1( j  but operation ) ,2( j  preceding 

) ,2( i , as in Figure 2.5(a). For this pair, the order of the jobs on machine 2 can be 

imposed to machine 1 ( j  before i ), without adversely affecting the performance 

measure (Baker 1995). If we interchange operations ) ,1( i  and ) ,1( j , resulting in the 

schedule shown in Figure 2.5(b), then 

• with the exception of ) ,1( i , no operation is delayed, 

• operation ) ,2( i  is not delayed, and 

• earlier processing of ) ,2( j  and other operations as well, may result. 
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Figure 2.5: A pair-wise interchange of two operations on machine 1 

Therefore, the interchange would not increase the completion time of any operation 

on machine 2 or on any subsequent machine. This means that no increase in any job 

completion time could result from the interchange, and hence no increase will occur 

in any regular measure of performance. Since the same argument applies to any 

schedule in which job sequences differ on machines 1 and 2, the property must hold.  

 

Theorem 2: With respect to the makespan of the flowshop model, it is sufficient to 

consider only schedules in which the same job sequence occurs on the 

last two machines (Baker, 1995).   

 

Consider a schedule in which the sequences on machines )1( −m  and m  are 

different. Somewhere in such a schedule a pair of jobs, i  and j  can be found such 

that, operation ),( jm  preceding an adjacent operation ),( im , but operation ),1( im −  

preceding ),1( jm − . As a result of interchanging operations ),( im  and ),( jm , 

• with the exception of ),( jm , no operation is delayed, 

• operation ),( jm  completes no later than ),( im  in the original schedule, 

• earlier processing of operations ),( im  and ),( jm  may result. 

Therefore, the interchange would not lead to an increase in the makespan of the 

schedule. Again, this type of argument applies to any schedule in which job 

sequences differ on machines )1( −m  and m . The implication of these two theorems 

is that in searching for an optimal schedule, it is necessary to consider different job 

sequences on different machines with these two general exceptions. 
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1. For the case of obtaining any regular performance measure, it is sufficient 

to keep the same job order to occur on the first two machines, so that 
1)!( −mn  schedules constitute a dominant set. 

2. For the problems with the makespan criterion, it is also sufficient for the 

same job order to occur on the last two machines, so that 2)!( −mn  

schedules constitute a dominant set for 2>m . 

 

The outcomes of these two theorems will lead to the basic problem statement of this 

thesis. Based on any regular performance measure, making partial pair wise 

interchanges in the job sequence of a permutation schedule (i.e. making it a non-

permutation schedule) schedule may lead to significant improvements in terms of 

that specific performance measure. For larger problems, a new heuristic approach has 

to be developed in order to improve the “makespan” together with the “total flow 

time” of the newly formed NPS (i.e. non-permutation schedule) based on an initial 

PS on hand. 

 

2.3. MATHEMATICAL FORMULATION 

The mathematical formulation developed for the permutation flowshop scheduling 

problem by Gupta and Tseng (2004) is as follows. Before the listed equations of the 

mathematical model, the notations used for the permutation flowshop MIP (mixed-

integer programming) model are as follows. The subscript symbols are for r  for 

machines, for )1( Mr ≤≤ ; i  and k  for jobs ),1( Nki ≤≤  where the parameters 

M and N  represent the number of machines and jobs, respectively. { }rjTT =  is the 

NM × matrix of job processing times, with =riT processing time of job i  on 

machine r . The variables of the MIP model are then defined as follows: 

 

rjB   start (begin) time of job in sequence position j  on machine r  

riC   completion time of job i  on machine r  

ikD  1, if job i  is scheduled any time before job k ; 0 otherwise; ki <  
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rjE   completion (end) time of the job in position j  on machine r  

riS   start time of job i  on machine r  

rjX  idle time on machine r  before the start of job in sequence position j  

rjY   idle time of job in sequence position j  after it finishes processing on    

  machine r  

ijZ   1, if job i  is assigned to sequence position j , 0 otherwise. 

maxC  maximum flowtime (makespan) of the schedule determined by the    

  completion time of the job in the last sequence position on the last machine. 

 

ikD  and ijZ  are binary integer variables. The others are real variables that take 

integer values when processing times are also given as integer values.  

 

Minimize (Makespan) MNCC == max             

subject to 

∑
=

=
N

j
ijZ

1
1;  Ni ≤≤1 ,              (2.1) 

∑
=

=
N

i
ijZ

1
1;  Nj ≤≤1               (2.2) 

∑ ∑
= =

++++++ =−+−+−
N

i

N

i
rjjrjrjrijirjiri YYXXZTZT

1 1
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N
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MpMiMN XTC

1 1

              (2.5) 

 

For this MIP model, the first two constraints (i.e. the equation groups (2.1) and (2.2)) 

ensure that each job is assigned to just one sequence position and each sequence 
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position is filled with one and only one job, respectively. Constraints (2.3) and (2.4) 

ensure that; 

a) the job in sequence position j  cannot begin processing on machine 1+r , 

until it has completed its processing on machine r ;  

b) the job in sequence position 1+j  cannot begin its processing on machine r  

until the job in sequence position j  has completed its processing on that 

machine. 

 

And the final constraint, namely equation (2.5) measures makespan of the set of jobs. 

There are various derivations and improvements on this basic MIP model developed 

by Wagner (1959). This basic notation can be extended in order to make it applicable 

also for the cases where non-permutation schedules are needed. This simple shift can 

be made by adding another index s  where )1( Ms ≤≤  indicating the sequence of 

jobs (which is differing in this case) through each machine. Therefore, with the 

addition of the new index, the new variables of the model in an updated form are as 

follows: 

 

rsjB  start (begin) time of job in sequence position j  in sequence s  on machine r  

riC   completion time of job i  on machine r  

iksD  1, if job i  is scheduled before job k  in sequence s ; 0 otherwise; ki <  

rjsE  completion (end) time of the job in position j  in sequence s  on machine r  

riS   start time of job i  on machine r  

rjsX  idle time on machine r  before the start of job in sequence position j , in 

sequence s  

rjsY   idle time of job in sequence position j , in sequence s  after it finishes 

processing on machine r  

ijsZ  1, if job i  is assigned to sequence position j , in sequence s ; 0 otherwise. 

maxC  maximum flowtime (makespan) of the schedule determined by the    

  completion time of the job in the last sequence position on the last machine. 
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Based on the new variables, the MIP model formulation (with the same objective 

function minimizing MNCC == max ) giving non-permutation schedules is as follows: 

 

subject to 

∑
=

=
N

j
isjZ

1
1 ;  Ni ≤≤1 , )1( Ms ≤≤           (2.6) 

∑
=

=
N

i
ijsZ

1

1;  Nj ≤≤1 , )1( Ms ≤≤           (2.7) 

∑ ∑
= =

++++++ =−+−+−
N

i

N

i
rjssjrsjrsjrijsirsjiri YYXXZTZT

1 1
,1,,1,1,1,,1,1, 0 ; 

 )11 ;11( −≤≤−≤≤ NjMr , )1( Ms ≤≤         (2.8) 

01,1,1
1

11 =+−+ +
=
∑ srsr

N

i
srsiri YXXZT ; 

 )11( −≤≤ Mr , )1( Ms ≤≤             (2.9) 

∑ ∑
= =

+=
N

i

N

p
MpMiMN XTC

1 1

              (2.10) 

 

This second model will ensure that ijZ  values are not necessarily the same for each 

distinct value of s  implying the generation of non-permutation sequences. However, 

two more constraints (i.e. 2.11 & 2.12) have to be added to ensure that job i  either 

precedes job k  or follows job k  in the sequence s  but not both. By taking P  as a 

very large number: 

 

riikikri TDPCC ≥×−− ; 

)1;1( NiMr <≤≤≤≤             (2.11) 

 

rkikikri TPDPCC −≥×−− ; 

)1;1( NiMr <≤≤≤≤             (2.12) 
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CHAPTER 3 
 
 

LITERATURE REVIEW & MOTIVATION FOR THIS STUDY 
 
 
 
 
3.1. HEURISTICS FOR THE FLOWSHOP SCHEDULING PROBLEM 

This section focuses on the different types of heuristics existing in the literature in 

order to create schedules with better performance in terms of makespan as the 

essential performance criterion. The complexity of the flowshop scheduling problem 

renders exact solution methods impractical for instances of more than a reasonable 

jobs and/or machines. Some of these heuristics are going to be employed in the core 

discussions of this study. The heuristics can be separated as either constructive 

heuristics or improvement heuristics, the former are heuristics that build a feasible 

schedule from scratch and the latter are heuristics that try to improve a previously 

generated schedule by normally applying some form of specific problem knowledge. 

 

3.1.1. CONSTRUCTIVE HEURISTICS 

Johnson’s algorithm (1954) is the earliest known heuristic for the PFSP, which 

provides an optimal solution for two machines. Moreover, it can be used as a 

heuristic for the m  machine case by clustering the m machines into two “virtual” 

machines. The computational complexity of this heuristic is )log( nnO . Other 

authors have used the general ideas of Johnson’s rule in their algorithms, for 

example, Dudek and Teuton (1964) developed an stagem −  rule for the permutation 

flowshop scheduling problem (PFSP) that minimizes the idle time accumulated on 

the last machine while processing each job by using Johnson’s approach.  

 

Campbell et al. (1970) developed a heuristic algorithm which is basically an 

extension of Johnson’s algorithm. In this case, several schedules are constructed and 

the best one is given as result. The heuristic is known as CDS and builds 1−m  

schedules by clustering the m original machines into two virtual machines and 
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solving the generated two machine problem by repeatedly applying the Johnson’s 

rule. The CDS heuristic has a computational complexity of )log( 2 nmnnmO + . In a 

more recent work, Koulamas (1998) reported a new two phase heuristic, called HFC. 

In the first phase, the HFC heuristic makes extensive use of Johnson’s algorithm. The 

second phase improves the resulting schedule from the first phase by allowing job 

passing between machines, i.e. by allowing non-permutation schedules. This is a 

very interesting idea, since it is known that permutation schedules are only dominant 

for the three-machine case. In the general m  machine case, a permutation schedule is 

not necessarily optimal anymore (Potts et al., 1991). The significance of this heuristic 

relies on the fact that it departs from the PFSP problem by allowing job passing. 

Therefore, it has been included in the discussion for comparison reasons since as for 

some instances job passing will be quite beneficial. The benefits of permitting job 

passing are furthermore extensively employed throughout the later stages of this 

thesis study. Taking into account both phases, the general computational complexity 

of this heuristic is roughly )( 22nmO . 

 

Another approach is to assign a weight or “index” to every job and then arrange the 

sequence by sorting the jobs according to the assigned index. This idea was first 

exploited by Palmer (1965) when he developed a very simple heuristic in which for 

every job a “slope index” is calculated and then the jobs are scheduled by non-

increasing order of this index, which leads to a computational complexity of 

)log( nnnmO + .  

 
3.1.1.1. NAWAZ ET AL.’S (NEH) HEURISTIC 

Nawaz et al.’s (1983) NEH heuristic is regarded as the best heuristic for the PFSP 

(Taillard, 1990). It is based on the idea that jobs with high processing times on all the 

machines should be scheduled as early in the sequence as possible. The procedure is 

straightforward: 

i. The total processing times for the jobs are calculated using the formulae:  

∑ =
==∀

m

j iji pPnii
1

,,.....,1  ,  job . 
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ii. The jobs are sorted in non-increasing order of iP . Then the first two jobs 

(those two with higher iP ) are taken and the two possible schedules 

containing them are evaluated. 

iii. Take job nii ,.....,3  , =  and find the best schedule by placing it in all the 

possible i  positions in the sequence of jobs that are already scheduled. For 

example, if 4=i  the already constructed sequence would contain the first 

three jobs of the sorted list calculated in step 2, then the fourth job could be 

placed either in the first, in the second, in the third or in the last position of 

the sequence. The best sequence of the four would be selected for the next 

iteration. 

 

Recalling the previous paragraphs, it is obvious that the NEH heuristic is based 

neither on Johnson’s algorithm nor on slope indexes. The only drawback is that a 

total of [ ] 12/)1( −+nn  schedules have to be evaluated, being n of those schedules 

complete sequences. This makes the complexity of NEH rise to )( 3mnO which can 

be lengthy for big problem instances. 

 

However, Taillard (1990) reduced NEH’s complexity to )( 2mnO  by calculating all 

the partial schedules in a given iteration in a single step. Sarin and Lefoka (1993) 

exploited the idea of minimizing idle time on the last machine since any increase in 

the idle time on the last machine will translate into an increase in the total completion 

time or makespan. In this way, the sequence is completed by inserting one job at a 

time and priority is given to the job that, once added to the sequence, would result in 

minimal added idle time on machine m . The method proposed compares well with 

the NEH heuristic but only when the number of machines in a problem exceeds the 

number of jobs.  

 

Pour (2001) proposed another insertion method. This new heuristic is based on the 

idea of job exchanging and is similar to the NEH method. The performance of this 

method is evaluated against the NEH, CDS and Palmer’s heuristics showing better 
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effectiveness only when a big number of machines is considered, and being the 

computational complexity )( 3mnO . More recently, Framinan et al. (2003) have 

published a study about the NEH heuristic where different initializations and 

orderings are considered. The study also includes different objective functions 

including makespan, idle-time and flowtime. Framinan et al. (2003) have proven that 

NEH heuristic as an insertion method outperforms most of the other heuristics based 

on all of the performance criteria mentioned. 

 

Other authors have proposed heuristics that use one or more of the previous ideas, for 

example, Gupta (1972) proposed three heuristic methods, named minimum idle time 

(MINIT), minimum completion time (MICOT) and MINIMAX algorithms, the first 

two are based on job pair exchanges and the MINIMAX is based on Johnson’s rule. 

These three algorithms were tested with the objectives of maxC  and mean flowtime 

)(F  and compared with the CDS algorithm, proving to be superior only when 

considering the F objective. Additionally, there are many other methods developed, 

which are neither based on Johnson’s nor Palmer’s ideas and not constructing 

sequences by job exchanges and/or insertions only. For example, King and Spachis 

(1980) evaluated various heuristics for the PFSP and for the flowshop with no job 

waiting (no-wait flowshop). For the PFSP, a total of five heuristics based on 

dispatching rules were developed. A different approach is shown in Stinson and 

Smith (1982) where the authors solve the permutation flowshop problem by using a 

well known heuristic for the Traveling Salesman Problem (TSP) as indicated by Ruiz 

and Maroto (2005). 

 

3.1.2. IMPROVEMENT HEURISTICS 

Contrary to constructive heuristics, improvement heuristics start from an already 

built schedule and try to improve it by some given procedure. Dannenbring (1977) 

proposed two simple improvement heuristics; these are Rapid Access with Close 

Order Search (RACS) and Rapid Access with Extensive Search (RAES). The reason 

behind these two heuristics is that Dannenbring found that simply swapping two 

adjacent jobs in a sequence obtained by the RA heuristic resulted in an optimal 
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schedule. RACS works by swapping every adjacent pair of jobs in a sequence (this is 

1−n  steps). The best schedule among the 1−n  generated is then given as a result. In 

RAES heuristic, RACS is repeatedly applied while improvements are found. Both 

RACS and RAES heuristics start from a schedule generated with the RA constructive 

heuristic. 

 

Ho and Chang (1991) developed a method that works with the idea of minimizing 

the elapsed times between the end of the processing of a job in a machine and the 

beginning of the processing of the same job in the following machine in the 

sequence. The authors refer to this time as ‘‘gap’’. The algorithm calculates the gaps 

for every possible pair of jobs and machines and then by a series of calculations, the 

heuristic swaps jobs depending on the value of the gaps associated with them. The 

heuristic starts from the CDS heuristic by Campbell et al (1970).  

 

Ho (1995) developed a heuristic composed of several iterations of an improvement 

scheme based on finding a local optimum by adjacent pairwise interchange of jobs, 

and improving the solution by insertion (or shift) movements. This heuristic 

performs significantly better than the others, although its main disadvantage is that it 

employs much higher CPU time. In fact, this heuristic seems closer to local search 

techniques like simulated annealing or taboo search and it probably has to be 

discarded for large problem sizes and/or in those environments where sequencing 

decisions are required in very short time intervals. 

 

Suliman (2000) developed an improvement heuristic, which in the first phase, 

generates a schedule with the CDS heuristic method. In the second phase, the 

schedule generated is improved with a job pair exchange mechanism. In order to 

reduce the computational burden of an exhaustive pair exchange mechanism, a 

directionality constraint is imposed to reduce the search space. For example, if by 

moving a job forward, a better schedule is obtained, it is assumed that better 

schedules can be achieved by maintaining the forward movement and not allowing a 

backward movement. 
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Table 3.1: Constructive and improvement heuristics for the PFSP 

Year  Author/s  Acronym  Typea Commentsb 

1954  Johnson  Johns  C Exact for two machine case 
1961  Page  Page  C Based on sorting  

1964  Dudek and 
Teuton   C Based on Johnson’s rule  

1965  Palmer  Palme  C Based on slope indexes  
1970  Campbell et al.  CDS  C Based on Johnson’s rule  
1971  Gupta  Gupta  C Based on slope indexes  
1972  Gupta   C Three heuristics considered  

1976  Bonney and 
Gundry   C Based on slope matching  

1977  Dannenbring  RA, RACS, 
RAES  C/I Three heuristics considered: 

RA, RACS, and RAES 

1980  King and 
Spachis   C 5 Dispatching rule based 

heuristics  

1982  Stinson and 
Smith   C 6 Heuristics, based on TSP  

1983  Nawaz et al.  NEH  C Job priority/insertion  

1988  Hundal and 
Rajgopal  HunRa  C Palmer’s based heuristic 

1991  Ho and Chang  HoCha  I Gap minimization in between 
jobs  

1993  Sarin and 
Lefoka   C Last machine idle time 

minimization 

1998  Koulamas  Koula  C/I 
Two phases, 1st Johnson-
based, 2nd phase improvement 
by job passing  

2000  Suliman  Sulim  I Job pair exchange  
2001  Davoud Pour  Pour  C Job exchanging  
2003  Framinan et al.   C Study on the NEH heuristic  

a C: Constructive, I: Improvement. 
b Makespan is the primary objective 

 

3.1.3. METAHEURISTICS FOR THE FSP 

Metaheuristics are general heuristic procedures that can be applied to many 

problems, and, in our case, to the PFSP. These methods normally start from a 

sequence constructed by heuristics and iterate until a stopping criterion is met. There 
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is plenty of research work done for the PFSP and metaheuristics. Table 3.5 includes a 

summary of the some of the noteworthy papers mainly dealing with simulated 

annealing (SA), Tabu search (TS) and genetic algorithms (GA) and other 

metaheuristics, as well as hybrid methods. Makespan is the primary criterion of 

performance also for these heuristics for the PFSP. 

Table 3.2: Metaheuristics for the permutation flow-shop problem 

Year Author/s Acronym Type Comments 
1989  Osman and Potts  SAOP  SA   

 Widmer and Hertz  Spirit  TS  Initial solution based on 
the OTSP  

1990  Taillard   TS   
 Ogbu and Smith   SA   
1993  Werner   Other  Path algorithms  
 Reeves   TS   
1995  Chen et al.  GAChen  GA  PMX crossover  
 Reeves  GAReev  GA  Adaptive mutation rate  
 Ishibuchi et al.   SA  Two SA considered  

 Zegordi et al.   SA  Combines sequence 
knowledge 

 Moccellin   TS  Based on SPIRIT  
1996  Murata et al.  GAMIT  Hybrid GA + Local Search/SA  

 Nowicki and 
Smutnicki   TS  Neighbourhood by blocks 

of jobs 
1998  Stützle  ILS  Other  Iterated Local Search  

 Ben-Daya and Al-
Fawzan   TS  Intensification + 

diversification 

 Reeves and Yamada   GA  GA operators with 
problem knowledge  

2000  Moccellin and dos 
Santos   Hybrid TS + SA  

2001  Ponnambalam et al.  GAPAC  GA  GPX crossover  

 Wodecki and 
Bozejko   SA  Parallel simulated 

annealing  

2003  Wang and Zheng   Hybrid GA + SA, multicrossover 
operators 

 

The methods listed in tables 3.4 and 3.5 are the most known heuristics and 

metaheuristics and also some original methods that are either recent and have not 

been evaluated before or some that incorporate new ideas not previously used by 

other algorithms.  
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3.2. COMPUTATIONAL EVALUATIONS AND INSIGHTS 

The discussion for the evaluation of various heuristics generating permutation 

schedules has given a lot of insight to the main direction followed throughout this 

thesis study. At this point, the outcome of the research done by Dannenbring (1977) 

provides valuable insights for the way of generating non-permutation schedules. 

Dannenbring evaluates the following 11 heuristics; 

• rapid access with closed order search (RACS), 

• rapid access with extensive search (RAES), 

• individual exchange heuristic (IE), 

• and the group exchange heuristic (GE), 

as the improvement procedures. Adding those four improvement procedures, he also 

considers the following five heuristics; 

• rapid access (RA), 

• slope order index (SO), 

• merging (M), 

• pairing (P), 

• linear branch and bound (LBB) 

as the solution-generating procedures which give a single solution. Additionally the 

two heuristics, namely CDS and random search (R) generate multiple solutions from 

which the best one is chosen.  

 

While making extensive testing over a total of 1580 problems with the derivation of 

solutions using each heuristic, Dannenbring divides the discussion of the results into 

two parts on the basis of the problem size. The problems having number of jobs in 

between 3 and 6 are treated as small, and the ones having number of jobs in between 

7 and 50 are referred to as large problems. It can be seen from Table 3.3 that RAES 

heuristic outperforms all other heuristics based on all criteria for the small problems. 

When the performance of RA with two of its derivations, namely RACS and RAES 

is compared, it is clearly evident that using a solution improvement routine is clearly 

advantageous. 
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Table 3.3: Evaluation results of heuristics on small problems (Dannenbring 1977) 

Solution 

Method 

Relative 

Error (%) 
Consistency 

Error 

Potential 

Ratio (%) 

PPrrooppoorrttiioonn  

OOppttiimmaall**  

((%%))  

IImmpprroovveemmeenntt  

PPootteennttiiaall  ((%%))  

Sampling 

Quality 

(%) 

RAES 0.64 3.18 2.32 7755..8866  11..3333  8.40 

RACS 1.30 7.87 4.66 6633..1133  33..0022  10.28 

CDS 1.73 11.66 5.68 5555..4477  33..0099  10.50 

M 1.74 11.31 5.97 5566..8888  33..9922  11.29 

R 2,03 14.52 7.12 4455..0000  44..1122  11.68 

GE 2.02 25.88 8.82 5500..3322  55..1199  13.15 

RA 3.65 33.34 13.57 3344..7777  1111..2211  18.36 

LBB 3.82 42.84 13.25 4422..8899  1100..1122  17.44 

SO 3.98 37.24 14.26 2299..7788  1100..4466  19.57 

P 4.38 42.51 13.77 2299..2222  99..0044  17.13 

IE 4.99 69.70 15.71 2299..2222  1111..9922  20.17 

Average  2.82 27.28 9.56 4477..6655  66..6677  14.36 
* Percentage of the solutions equaling the optimum or estimate of the optimum makespan. 
 

The RA heuristic, which examines a single solution, is below average in 

performance. The RACS and RAES procedures, which improved the output solution 

of RA, did considerably better. It has also to be noted that the four of the five worst-

performing algorithms are single-shot solution generating heuristics. This 

substantiates the intuitive notion that solution improvement heuristics are preferable 

to those that consider only one situation. The later stages will provide strong 

arguments for the benefits of the use of an initial schedule at hand prior to 

developing NPS, and employing simple sequencing rules while making partial 

interchanges (i.e. job-passing) in order to get the improved NPS for the flowshop. 

The jump made by R from being fifth to best indicates a decline in the performance 

of all heuristic methods, as the problem size is enlarged. RACS and RA together 

declined from second to fourth and seventh to eight respectively, as RACS uses RA’s 

output as the initial solution. 
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Table 3.4: Evaluation results of heuristics on large problems (Dannenbring 1977) 

Solution 

Method 

Maximum 

Relative 

Error (%) 

Estimated 

Relative 

Error (%) 

Minimum 

Relative 

Error (%) 

Consistency 

PPrroopp..  OOpptt..  

oorr  EEsstt’’dd..  

((%%))  

PPrroopp..  BBeesstt  

HHeeuurriissttiicc**  

((%%))  

RAES 4.96 1.58 1.52 7.67 1199..3388  7711..2255  

R 6.70 3.17 3.11 16.56 66..8888  1188..1133  

CDS 7.62 4.11 4.06 29.71 1122..5500  1155..0000  

RACS 7.80 4.26 4.20 31.53 1133..1133  1144..3388  

M 8.25 4.68 4.62 37.14 77..5500  1111..2255  

GE 9.27 5.68 5.63 48.83 00..6633  55..0000  

SO 9.76 6.18 6.12 54.96 22..5500  33..7755  

RA 10.21 6.61 6.55 65.55 55..0000  55..0000  

LBB 11.97 8.19 8.13 101.88 00..6633  00..6633  

P 12.09 8.40 8.34 93.90 99..3388  1100..0000  

IE 12.83 9.19 9.13 119.72 00..6633  11..2255  

Average  9.22 5.64 5.58 55.22 77..1111  1144..1155  
* Percentage of the solutions equaling the best heuristic solution (minimizing makespan). 
 

The further decline in RACS performance indicates that the enlarging solution space 

requires more number of interchanges rather than a single interchange, as RACS with 

a single interchange cannot get close to the optimum on larger problems. The RAES 

algorithm remains best (with an increasing gap over performance), which gives an 

insight that RAES is a good candidate for use in future comparisons with non-

permutation schedule generators executing in an ‘improvement’ manner. 

Dannenbring also declared that the hardest problems for heuristics to solve (i.e., 

more subject to error) are not necessarily the largest problems, but are in fact the 

intermediate-sized problems where the number of jobs is approximately equal to the 

number of machines. 

 

3.3. BASIC MOTIVATION FOR DEVELOPING NPS 

For the m-machine flow shop scheduling problem, most studies are performed in 

order to develop permutation schedules. Parallel to the discussion and research made 
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for the development of new heuristic methods, which generate permutation 

schedules, some researchers have emphasized the need for obtaining non-

permutation sequences through steps as they provide better solutions with 

performance indicators closer to optimal scenario. In their relevant paper, Potts et al. 

(1991) have shown that for the problem of minimizing maximum completion time, 

developing permutation schedules becomes very costly. Potts et al. proven this result 

by exhibiting a family of instances for which the value of best permutation schedule 

is worse than that of the true optimal schedule by a factor more than 2/m . 

 

The objective for the permutation flow shop problem is taken as to find a schedule, 

which minimizes the maximum completion time of any job, i.e. )(maxmax jj CC = . 

All schedules are; 

• non-preemptive schedules, 

• minimizing )(maxmax jj CC = . 

Most research has focused on permutation schedules, because of the relative 

combinatorial simplicity. Unfortunately, this simplicity is bought at the price of 

drastically inferior schedules in terms of minimizing maximum completion time (see 

Table 3.7). The purpose of the following derivations is to study the worst-case 

behavior of the ratio of the maximum completion time of an optimum permutation 

schedule, denoted by )(*
max πC , to the optimum value *

maxC . Potts et al. focused on the 

ratio of the outcome of permutation schedule to that of the optimal one, namely: 
*
max

*
max /)( CC π , and they have indicated: 

• =)(Ip ratio for instance I  (proven that not bounded by any constant) 

• ⎣ ⎦ 2/2/1)( +≥ mIp m  (where the instance mI  involves m machines). 

 

The example with case nI 2  is given in order the make things easy to grasp: 

• there are n  jobs to be processed in n2  machines 
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This guarantees that the processing time is 1 just for two operations per each job, and 

those two operations are distinct for each job to be processed. Also, when 0=ijp  , 

this value should rather be interpreted as an arbitrarily small positive constant. It is 

easy to see that 2*
max =C , as all the jobs are completed at the end of the second time 

unit. The fundamental insight into analyzing the length of the permutation schedules 

for these instances is the following easy fact: 

 
• For the instance nI 2 , 1max += nC  for the schedules given by either of the 

formulations n,........2,1   or 1,......1, −nn . Figure 3.4 involves a simple 

illustration of this fact on a Gantt chart. 

 

 
Figure 3.4: Gantt chart of the permutation schedule for the instance I2n 

This simple fact has important consequences; Potts et al. (1991) prove that if there is 

an increasing or decreasing subsequence of length s   in the permutation, then for this 

permutation schedule 1max +≥ sC . 
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3.4. A RECENT PAPER 

Just before the completion of this thesis study, a very recent study by Liao et al. 

(2006) has been effective on the directions of the computational evaluations. Liao et 

al. present an extensive computational investigation concerning the performance 

comparison between permutation and non-permutation schedules. The computational 

results indicate that in general, there is little improvement made by non-permutation 

schedules over permutation schedules with respect to completion-time based criteria, 

for the problem instances where percentage of missing operations are low.  

 

By making a comparison of the results of NPS-generating heuristics, namely 

Tandon’s Simulated Annealing (SA) based heuristic (Tandon et al. 1991) and 

Pughazhendhi et al.’s (2002) heuristic with the resultant values of permutation 

schedules and optimal values, Liao et al. point out that the percentage improvements 

of NPS generated by most of the heuristics is not that much (i.e. that significant) 

based on the makespan as the primary performance criterion. By using Taillard’s 

benchmark problems (Taillard 1993) and NEH heuristic as the PS generator for 

problem instances, Liao et al. have demonstrated the following results on the basis of 

computational experiments: 

 

a) The non-permutation schedule requires much more computation time than the 

permutation schedule. The CPU time required for obtaining the NPS for the 

same problem instance compared to the PS is 5 to 10 times more. 

 

b) The number of improved problems (i.e. non-permutation schedules better 

than permutation schedules) is small with respect to the maxC and maxT , but it 

is quite large with respect to the ∑ jC , ∑ jjCw , ∑ jT  and 

∑ jjTw (weighted tardiness) criteria. 

 

c) For the makespan as the primary performance criterion, the percentage 

improvements are rather small and limited. The percentage of problems that a 
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permutation schedule can be improved by a non-permutation schedule is 

high, except for the maxC criterion. 

 

These results actually have driven the contents of this thesis to also involve the flow-

time as the secondary performance criterion, in order to carefully assess the 

improvement made by the proposed heuristic approach generating NPS. 
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CHAPTER 4 
 
 

THE PROPOSED APPROACH 
 

 
 
4.1. JOB-PASSING: THE TOOL FOR NPS GENERATION 

As discussed earlier in detail; flowshop scheduling problems are usually handled as 

permutation flowshops, because of the computational complexity associated with the 

non-permutation schedules. However, the technical framework in real-life cases 

often allows jobs to pass each other during the execution of various operations 

through machines within a flowshop. Having a missing operation of a job on a 

machine, this ‘job passing’ becomes a natural way to process jobs unless the 

underlying system is not an inflexible flow-line. For the case of the generation of 

permutations schedules, missing operations are usually handled as zero processing 

time operations, in order not to allow job passing through machines. A study by 

Leisten and Kolbe (1998) has shown that even permitting job passing for missing 

operations, while keeping the permutation constraint improves total completion time 

only under rather specific circumstances. Leisten and Kolbe (1998) also propose 

‘partial permutation flowshop sequencing’ to overcome these specific formal 

requirements with respect to the real-world problem setting. 

 

The basic motivation for generation of non-permutation schedules based on the fact 

that for most of the flow-shops some jobs were not to be processed on every 

machine. The literature on flowshop sequencing (e.g. Graves 1981, Domschke et al. 

1993) has usually been handling the missing operations as 0-processing time 

operations. Nevertheless, a job with missing operations visits every machine, 

although Sridhar and Rajendran (1993) pointed out that there may be differences in 

completion times between zero-processing times and missing operations. In the a 

real-world flow-line based manufacturing setting, having a missing operation on a 

machine allows the job to pass by this machine, independent of whether the machine 

may be busy with another job or there may even be a queue of jobs in front of this 
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machine. This way of scheduling jobs with missing operations is closer to the real-

world problem, thus the strict permutation constraint has to be someway violated. 

The analysis of the situation of missing operations and the derivation of results for 

schedules of a (permutation) flowshop with missing operations follows.  

 

For a given job sequence, let ),( jiS  and ),( jiT  be the starting and finishing time, 

and ijp  the processing time of job i  in the job sequence [ ]Ii ,....,1∈  on machine j  in 

the machine sequence [ ]Ii ,....,1∈ , i.e. 

ijpjiSjiT += ),(),( . 

For a permutation flowshop, the conventional recursive formulation of operation 

finishing times ( CT ) is: 

[ ] ij
CCC pjiTjiTjiT +−−= )1,();,1(max),( . 

 

Instead of using this conventional recursive formula, Sridhar and Rajendran (1993) 

formulates the model where a job finished on one machine having a missing 

operation on the next machine is allowed to pass this next machine and go straight to 

the machine where it has its next non-missing operation, using the following 

formula: 

Compute ),( jiT SR  job by job and within the jobs, machine by machine according to  

[ ]

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=−
−

=
≠+−

=

mo  if                                  ),1(
 1,...,1 machineson   job of

operation   timeprocessing zero-non
last   theof  timefinishing With 

mo  if              );,1(max

),(

ij
SR

ijij
SR

SR

pjiT
ji

V
ppVjiT

jiT  

mo =ijp means that the operation ),( ji  is a missing operation. V  determines job 

s'i earliest availability for processing on machine j .  

 

The relative job-loading sequence on every machine remains constant as in 

permutation schedules. Sridhar and Rajendran (1993) show positive effects to the 

objective function’s makespan and total flowtime. However, if mo =ijp , then 
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mo 1,1 ≠+− jip  results in )1,1()1,( +−≥+ jiTjiS  to keep the permutation on machine 

1+j . Therefore, it is obvious that a necessary condition for an improvement 

(reduction of the makespan, or as also stated as ‘acceleration of the schedule’) by 

using the approach of Sridhar and Rajendran is mo 1,1 == +− jiij pp . The following 

iterations give the renewed recursive formula of ),( jiT SR  for mo 1,1 == +− jiij pp . 

 

Evidently, if mo 1,1 == +− jiij pp , 

[ ]
[ ][ ]

[ ]
[ ] 1,

1,

1,

)1,();,1();1,2(max                   

),1();1,2(max                   
)1,();,1(maxmax                   

)1,1();,(max)1,(

+

+

+

+−−+−=

+−+−=

−−=

++−=+

ji
CCC

ji
CC

CC

ji
CCC

pjiTjiTjiT

pjiTjiT
jiTjiT

pjiTjiTjiT

 

and  

[ ] ij
SRSRSR pjiTjiTjiT +−+−=+ )1,();1,2(max)1,( . 

Hence, 

[ ] )1,()1,()1,();1,2(max),1( +<+⇒−+−>− jiTjiTjiTjiTjiT CSR . 

 

To be more specific, for an acceleration of the schedule we need the following 

conditions: 

mo 1,1, == +− jiji pp  

and 

[ ])1,2();1,(max),1( +−−>− jiTjiTjiT . Figure 4.1 gives an illustration of the 

situation mentioned above. These specific requirements guarantee the permutation to 

be kept in the overall schedule while ‘improving’ the completion time (at least of job 

i  on machine j ). This is a good explanation for scheduling while keeping the 

relative job sequence (Leisten & Kolbe, 1998). 
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Figure 4.1: Necessary and sufficient conditions for )1,()1,( +<+ jiTjiT CSR  

The conditions are ‘necessary and sufficient’ for an additional acceleration 

overlaying possible effects caused by an identical situation ‘north-west’ of operation 

),( ji  in Figure 4.1. 

 

Allowing job-passing seems to be more adequate with respect to the real-world 

problem unless it is not an inflexible flowshop rather than keeping the strict 

permutation schedule through each machine.  

 

A job i  with missing operation on machine j can directly be appended to the queue 

in front of machine jjj ≥+ 'for  1' , where it has its next non-missing operation when 

it is finished on machine 1−j . Since from the real-world view it is obvious that this 

violation of permutation constraint might be allowed, we propose to keep the new 

sequence of jobs throughout the machines down the flowshop.  

 

To guarantee an at least myopic acceleration of the schedule, passing could be 

restricted to situations where job i  can start on machine 1'+j  before job 1−i  can 

start on this machine, i.e. 

[ ])1',2();1,(max)',1( +−−>− jiTjiTjiT  (see Figure 4.1).  (Equation 4.1) 

 

This relaxation of permutation flowshop is called ‘partial permutation flowshop’ by 

Leisten & Kolbe (1998), since job passing is allowed only in the appearance of 
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missing operations, whereas the permutation assumption is kept at every non-missing 

operation. 

 

If missing operations exist and the conditions stated above are satisfied, the 

advantages of job passing might occur when considering the objective functions total 

flowtime or makespan. However, the important thing is that; the effect of job passing 

usually cannot be evaluated without considering the whole schedule. Therefore, at 

every point of applicability, branching into job passing and non-job passing seems to 

be reasonable. If many missing operations occur, Leisten & Kolbe (1998) 

recommends the application of branch-and-bound procedures. The partial 

permutation therefore, is realizable with the following example algorithm as an 

example algorithm, which employs job-passing: 

 
Step 1: Generate a good initial permutation  [e.g. by one of the methods mentioned 

in King & Spachis 1980, Park et al. 1984, Lahiri et al. 1993, using, e.g. the 

classical approach (Step 2)]. 

Step 2: Search machine by machine and within the machines job by job for the next 

missing operation ),( ji . If this is the first iteration, start with job 1 on 

machine 1. 

Step 3: When the inequality [ ])1',2();1,(max)',1( +−−>− jiTjiTjiT  does not 

apply continue with Step 4. Else, using Step 3, calculate the finishing times 

up to the relevant finishing times )1',2(),',1(),1,( +−−− jiTjiTjiT with 'j  

being the machine where job i has last consecutive missing operation behind 

machine 1−j . Analyze whether necessary conditions for partial 

permutation are fulfilled. If not, continue with Step 2. 

Step 4: Branch: 

- keep the permutation unchanged up to the next node (next missing 

operation), 

- put job i  with missing operation on machine j  in front of its next 

machine 1'+j  with non-missing operation (using the FCFS-rule). 

Step 5: For each branch, continue with Step 2. 
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The algorithm given above in a simplistic manner will terminate when no more 

missing operations exist and every branch has been evaluated for all jobs. (The 

integration of a bounding procedure – if necessary – is obvious.) Here, it has to be 

noted that while calculating finishing times (via step 3), a further missing operation 

),( ** ji  with ji <* and '* jjj << might appear ‘north-east’ of operation ),( ji . 

Since without a decision how to treat this missing operation finishing times cannot be 

calculated, Steps (3) and (4) of the algorithm may be executed at this additional node 

),( ** ji  as an inner loop of the algorithm (Leisten & Kolbe, 1998). Alternatively, to 

reduce complexity it should be considered 

(a) to ignore the inequality [ ])1',2();1,(max)',1( +−−>− jiTjiTjiT  

at node ),( ji , or 

(b) to analyze whether at least myopic acceleration can be guaranteed 

by taking job i  only to machine *j . 

Then, “Equation 4.1” has to be modified as  

[ ])1,2();1,(max)',1( * +−−>− jiTjiTjiT   

in order to use this information at Step (4b). 

 

Tables 4.1, 4.2, and 4.3 include an illustration of the use of job-passing through 

flowshops. Table 4.1 includes the operation durations for a 4-job, 3-machine problem 

with missing operations of jobs. The missing operations for jobs are indicated by the 

zero processing times for the job on the corresponding machine. Tables 4.2 and 4.3 

include a permutation and non-permutation schedule of the jobs given at table 4.1 

respectively. A close look into the table 4.3 reveals that the permutation sequence 

could be changed so as to result in a feasible non-permutation schedule (i.e., a partial 

permutation schedule as discussed within the beginning of this section). This finding 

in fact forms the basics of the heuristic approach that has been developed and 

presented throughout this thesis study. 
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Table 4.1: Processing times for a 4-job, 3-machine problem 

Job Machine   

 1 2 3 

1 20 0 * 30 

2 0 * 10 10 

3 10 10 0 * 

4 20 70 80 

 

Looking at the Table 4.1 (and recalling the previous discussions) it is obvious that 

solutions obtained by employing permutation schedules (Table 4.2) need not be 

optimal for a problem with more than three machines with makespan objective. This 

finding, along with some job-passing through the schedule leads us to the timetable 

(indicating the start times and finishing times for each job) illustrated in Table 4.3. 

Table 4.2: Starting and finishing times of jobs in permutation sequence [4123] 

Job Job i  Machine   

  1 2 3 

1 4 0/20 20/90 90/170 

2 1 20/40 - 170/200 

3 2 - 90/100 200/210 

4 3 40/50 100/110 - 

Job sequence  [413] [423] [412] 

 

 

 
Figure 4.2: Gantt chart representing Table 4.2 
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Table 4.2 gives the representation of the schedule with the permutation sequence 

[4132] through each of the three machines with a makespan value of 210 and the 

total flowtime value of 690. The missing operations for jobs are not indicated within 

the job sequences for a given machine. In between machine 1 and machine allowing 

job 2 to pass before jobs 1 and 3, and in between machine 2 and machine 3, allowing 

job 1 to pass before job 4 gives the schedule in Table 4.3.  

 

Table 4.3: Starting and finishing times of jobs in non-permutation sequence 

Job Job i  Machine   

  1 2 3 

1 4 0/20 20/90 90/170 

2 1 20/40 - 40/70 

3 2 - 0/10 10/20 

4 3 40/50 90/100 - 

Job sequence  [413] [243] [214] 

 

 

 
Figure 4.3: Gantt chart representing Table 4.3 

 

The non-permutation schedule generated by a single move at each stage (machine) 

gives a total makespan value of 170, with a total flowtime value of 360. There has 

been a significant improvement due to both performance criteria even for the case of 

this simple illustrative example. 
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4.2. DERIVING NPS FROM A GIVEN PS 

The newly developed heuristic has a similar logic to the heuristic proposed by 

Pugazhendhi et al. (2002). The logic of the proposed heuristic (parallel to the 

discussions at section 4.1) is depicted at Figure 4.4. The heuristic first obtains a seed 

permutation sequence (which is obtained either by RAES of NEH heuristic) and tries 

to execute multiple job-passing tasks at various stages without violating the 

following feasibility restriction, namely each machine processes one and only one 

job at any point in time.  

 

In order to setup the heuristic, the following notation and terminology will be 

employed through later stages: 

 

n / m   Number of jobs/machines available at time zero 

),( jit   Processing time of job i  on machine j  

π    Set of jobs already scheduled, out of n  jobs, at a given time instant τ  

i    The job at hand, which is going to be scheduled 

),( jiST  Starting time for job i  on machine j  

),( jiFT  Finishing time for job i  on machine j  

{ }jSeq   Job sequence on machine j  (the sequence in which jobs are processed on 

machine j ). 

jn  Number of jobs processed on machine j  

j
ks  Job processed in the k -th position of { }jSeq  on machine j  

),( jkRST  On machine j , start time of job i  found in the k -th position of { }jSeq  

),( jkRFT  On machine j , finishing time of job i  found in the k -th position of 

{ }jSeq  
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Figure 4.4: Main schematic of the heuristic procedure proposed to generate NPS 
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jUS   Set of unscheduled jobs on machine j  

iCT   Completion time of the last operation of job i  

MS   Makespan of the scheduled job-set 

iw    Weight (or relative importance or relative holding cost) for job i  

πF    Total flowtime of jobs in  π  (i.e. sum of iCT ’s over all scheduled jobs) 

πW   Total weighted flowtime of jobs in  π  (i.e. sum of )( ii CTw × ’s over all  

   scheduled jobs) 

 

As depicted in Figure 4.4, the main principle of the heuristic procedure is that, one at 

a time jobs are taken from the permutation sequence (without violating the order 

assigned by the permutation sequence generating heuristic, namely RAES or NEH), 

and find a suitable place for that job in the earliest idle time interval ahead (which is 

sufficient for the completion of the job selected) in order to process the inserted job. 

 

4.2.1. INITIALIZATION 

The key steps involved in the proposed heuristic method are listed below. To 

initialize the procedure at time zero, we first set js0 for mj .....3,2,1=  as φ , the null 

job, i.e. { } { }φ=jSeq  for all machines. Let 0),(),( == jFTjST φφ  and 

0),0(),0( == jRFTjRST  for all machines. Let 0=jn , for ,,...3,2,1 mj =  (note that 

it is job φ  used in ST  and FT , and “0” is used in RST and RFT  in order to denote 

the job position number). 

 

A permutation sequence is obtained by using RAES (Dannenbring 1977) or NEH 

(Nawaz et al. 1983) in order to have the initial sequence prior to the execution of the 

procedure. 
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4.2.2. THE HEURISTIC PROCEDURE 

The heuristic procedure based on the initializing parameters in the previous section is 

as follows: 

 

STEP 1:  With respect to the NPS-set, let { }jSeq  be the sequence in which jobs 

are already scheduled on machine j . Having the initial permutation 

sequence at hand, take the unscheduled jobs, say job-set i , 

(unscheduled with respect to the NPS-set) be now taken up for 

scheduling in the NPS-set. 

 

STEP 2: Set 1=j  and 0=T . 

 

STEP 3: If 0),( >jit , then proceed to the next step; else go to STEP 10 (i.e., 

the job has a missing operation on machine j ). 

 

STEP 4: Set 1−=k .            (4.1) 

 

STEP 5: Let 

  1+= kk              (4.2) 

 ( k  is the job position in the sequence { }jSeq  on machine j ) 

 If jnk ≠ (the position in the sequence is not the same as the number of 

jobs processed on machine j )  

 then go to the next step; else go to STEP 9. 

 

STEP 6: At this step, check for the possible insertion of the chosen job i , i.e., 

processing job i  ahead of the preceding jobs (preceding in the 

permutation sequence) on machine j . 

 

 If { } ),1(),(),(;(max jkRSTjitjkRFTT +≤+    (4.3) 

 Then proceed to the next step; else return to STEP 5 for checking 
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possible insertion of job i  in the next position. 

 

STEP 7: Feasible insertion of job i , in { }jSeq  is done appropriately and all 

),( jkRST ’s  and ),( jkRFT ’s for all preceding jobs is done. 

 For 0=p  to k , do the following: 

 { 

 j
p

j
p ss =' ,             (4.4) 

 ),(),(' jpRSTjpRST =          (4.5) 

 and 

 ),(),(' jpRFTjpRFT =          (4.6) 

 } 

 Let 

 is j
k =+1' ,             (4.7) 

 });,(max{)1(' TjkRFTjkRST =+ ,      (4.8) 

 ),(),1(')1(' jitjkRSTjkRFT ++=+ ,     (4.9) 

 ),1('),( jkRSTjiST += ,         (4.10) 

),1('),( jkRFTjiFT += ,         (4.11) 

and 

 ),( jiFTt = ,            (4.12) 

 For )1( += kp to jn do the following: 

{ 
''

1 p
j

p ss =+              (4.13) 

 ),()1(' jpRSTjpRST =+         (4.14) 

),()1(' jpRFTjpRFT =+         (4.15) 

} 

Set 

1+= jj nn .            (4.16) 
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STEP 8:  For 0=p  to jn  do the following: 

    { 

    j
p

j
p ss '=              (4.17) 

    ),('),( jpRSTjpRST =          (4.18) 

and 

),('),( jpRFTjpRFT =          (4.19) 

} 

Reshaping the sequence of jobs on machine j . 

Then, go to STEP 11. 

 

STEP 9:  This step involves the computation of starting time and finishing time 

of job i  on machine j  is done without any insertion ahead being 

feasible. 

     

),(;max{),1( jnRFTTjnRST jj =+ ,     (4.20) 

    ),(),1(),1( jitjnRSTjnRFT jj ++=+ ,     (4.21) 

    ),1(),( jnRSTjiST j += ,         (4.22) 

    ),1(),( jnRFTjiFT j +=          (4.23) 

    and 

    ),( jiFTT = .            (4.24) 

    Increment 

    1+= jj nn             (4.25) 

    Set 

    is j
n j
= .             (4.26) 

    Go to STEP 11. 

 

STEP 10:  Set 

    B ),(),( == jiFTjiST          (4.27) 
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where B  is a large number implying that there is no operation of job 

i  on machine j . 

 

STEP 11:  Increment, 

    1+= jj              (4.28) 

    If mj ≤  then go back to STEP 3; else proceed to STEP 12. 

 

STEP 12:  Compute the schedule performance measures as scheduling of job i  is 

done. 

  Set 

 TCTi = ,             (4.29) 

 }max{ iCTMS =             (4.30) 

over all scheduled jobs in the NPS-set.  

 

STEP 13: STOP if all jobs are scheduled in the NPS-set; else go to STEP 1. 

 

4.2.3. THE PROPOSED HEURISTIC PROCEDURE 

A further improvement can be made over the performance of this procedure by 

making a slight shift in the main logic lying behind this algorithm (see Figure 4.5). 

For the case of the former procedure, the lacking thing was that at each stage, while 

creating the NPS-set of jobs to be scheduled for the remaining earliest idle time span 

of a given machine, the heuristic procedure strictly obeys to the previously formed 

permutation sequence coming from the previous machine. Namely, when the 

unscheduled jobs are being assigned to the earliest idle time span, the one with the 

preceding position in the permutation sequence is considered first. In other words, 

the jobs that will go through STEPS 3, 4, 5, 6, and finally 7 is already determined by 

the initial permutation sequence, as long as the computation of starting time and 

finishing time of job  i  on machine j   is done without any insertion ahead being 

feasible (see STEP 7). 
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In order to overcome this situation, the logic of the heuristic procedure is shifted, to 

enable the simultaneous consideration of unscheduled jobs (with missing operations) 

and assigning them to the earliest inserted idle time by a sequencing rule, a 

dispatching rule or by employment of a flowshop heuristic generating permutation 

sequences. The procedure applied at this step is intended to make the overall NPS 

schedule more robust enabling it to further minimize makespan by careful 

consideration of this criterion during the job-passing phase. 

 

As depicted in Figure 4.5 the procedure now considers all the candidates for job-

passing into any inserted idle time existing in the initial permutation schedule based 

on a so called dispatching rule working under the limitation of the Finishing Time of 

the first job ahead which the jobs move. With this new rule, STEPS 4 through 7 

within for the primal procedure undergoes the following change. 

 

STEP’ 3 For jobs with 0),( >jit , then proceed to the next step; else go to 

STEP 10 (i.e., the jobs have a missing operation on machine j ). 

STEP 4: Set 1−=k .             (4.31) 
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Figure 4.5: The reorganized procedure for generating NPS-set at each stage 
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STEP 5: Let 

  1+= kk               (4.32) 

 ( k  is the job position in the sequence { }jSeq  on machine j ) 

 If jnk ≠ (the position in the sequence is not the same as the number of 

jobs processed on machine j )  

 then go to the next step; else go to STEP 9. 

 

STEP 6: At this step, check for the possible insertion of the chosen jobs, i.e., 

processing jobs ahead of the preceding jobs (preceding in the 

permutation sequence) on machine j . 

 Apply the appropriate rule for sequencing those jobs within 

themselves.  

 For all *USi∈  

 If { } ),1(),(),(;(max jkRSTjitjkRFTT +≤+∑    (4.33) 

  

 Then proceed to the next step; else cut off the jobs beginning from 

reverse order in the sequence till (4.33) holds, and return to STEP 5 

for checking possible insertion of remaining (could not be inserted 

ahead) jobs in the next available position. 

 /* Set of candidate jobs which are sorted due to a rule before being 

inserted into the idle time ahead */ 

 

STEP 7: Feasible insertion of jobs for all *USi∈ , in { }jSeq  is done 

appropriately and all ),( jkRST ’s  and ),( jkRFT ’s for all preceding 

jobs is done. 

 For 0=p  to k , do the following: 

 { 

 j
p

j
p ss =' ,              (4.34) 

 ),(),(' jpRSTjpRST =           (4.35) 
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 and 

 ),(),(' jpRFTjpRFT =           (4.36) 

 } 

 Let 

 is j
k =+1' ,              (4.37) 

 });,(max{)1(' TjkRFTjkRST =+ ,       (4.38) 

 ),(),1(')1(' jitjkRSTjkRFT ++=+ ,      (4.39) 

 ),1('),( jkRSTjiST += ,          (4.40) 

),1('),( jkRFTjiFT += ,          (4.41) 

and 

 ),( jiFTt = ,             (4.42) 

 For )1( += kp to jn do the following: 

{ 
''

1 p
j

p ss =+               (4.43) 

 ),()1(' jpRSTjpRST =+          (4.44) 

),()1(' jpRFTjpRFT =+          (4.45) 

} 

Set 

1+= jj nn  .            (4.46) 

 

Chapter 5 includes the evaluation of the new heuristic procedure together with the 

conventional heuristic developed by Pugazhendhi et al. (2002). While comparing the 

heuristics, the upgraded form employs the following sequencing rules and/or 

algorithms in order to derive NPS from a given PS: 

• generation of initial PS  NEH heuristic for minimizing makespan and Ho’s 

heuristic for minimizing total flowtime, 

• intermediary sorting/dispatching rule  NEH heuristic for makespan 

problems, and Shortest Processing Time (SPT) Rule for problems based on 

total flowtime as the performance criterion 
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CHAPTER 5 
 
 

COMPUTATIONAL RESULTS 
 

 

 

In this chapter the new heuristic procedure first has been demonstrated with some 

illustrative examples in order to show the performance enhancement provided by the 

new approach for simplistic cases. The examples are than formalized with the 

generation of a large set of example problems by varying the number of jobs, number 

of machines and percentage of missing operations respectively in order to come up 

with an experimental design. The problem instances are then solved by using 

different heuristic methods together with the newly developed procedure and 

computational results have been tabularized at the end of the chapter based on both 

makespan and the total flowtime as the performance criterion. 

 

5.1. EXPERIMENTATION OF HEURISTIC PROCEDURES 

5.1.1. ILLUSTRATIVE EXAMPLES 

In order to visualize the conventional heuristic and the one derived from it, the 

following illustrative example would be beneficial. Consider the following 4-job, 5-

machine problem as viewed in Table 5.1 with job processing times given below. 

 

Table 5.1: Illustrative 4-job, 5-machine problem 

Job i  Machine  j     

 1 2 3 4 5 

1 13 0 50 12 12 

2 17 0 0 12 10 

3 34 50 0 12 20 

4 0 200 0 12 18 
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An entry of zero processing time indicates the missing operations for the job on the 

corresponding machine. Let us take the initial permutation sequence {4312} which 

has a makespan value of 304 (see Table 5.2) and a total flowtime value of 1110. 

When the conventional heuristic algorithm for generating non-permutation schedules 

is implemented over the permutation sequence {4312}, it is seen that non-

permutation schedules are generated with the timetable given in Table 5.3 (entries 

indicate the start time ( ST ) and finish time FT  of the job found in the i -th position 

in the sequence {4312}, i.e. job [ ]i  on machine j , when job [ ]i  is appended. These 

times are shown before and after the sign “/” respectively. 

 

Table 5.2: Starting and finishing time of jobs for the permutation sequence  

Job position Job Machine     

  1 2 3 4 5 

1 4 - 0/200 - 200/212 212/230 

2 3 0/34 200/250 - 250/262 262/282 

3 1 34/47 - 47/97 262/274 282/294 

4 2 47/64 - - 274/286 294/304 

Job loading sequence {312} {43} {1} {4312} {4312} 

 

 

Table 5.3: Starting and finishing time of jobs when NPS are adopted 

Machine     

1 2 3 4 5 

- 0/200 - 200/212 212/230 

0/34 200/250 - 250/262 262/282 

34/47 - 47/97 97/109 109/121 

47/64 - - 64/76 76/86 

Job loading sequence {312} {43} {1} {2143} {2143} 
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The resultant NPS are also presented in Tables 5.4 and 5.5. The makespan is 

observed to be 282 and the total flowtime has been drastically lowered down to 719, 

resulting in an improvement in the values of the performance measures obtained 

earlier by the adoption of the permutation sequence. Values of ),( jkRST  and 

),( jkRFT  for the scheduled job-set {43} can be seen in Table 5.4.  

 

Further we have 41 =js  for =j 2,4 and 5 (implying that job 4 is the first job to be 

scheduled on machines 2, 4, and 5), 31 =js  for =j 1 (implying that job 3 is the first 

job to be scheduled on machine 1), and 32 =js  for =j 2,4, and 5 (implying that job 3 

is the second job to be scheduled on machines 2, 4 and 5). A good example to job-

insertion, i.e. passing of a job ahead of the preceding job(s) can be seen when we 

consider job 1 for scheduling on machine 4. Corresponding to =j 4, invoking Step 5 

of the proposed algorithm, we look out for the possible insertion of job 1 ahead of the 

preceding jobs in the permutation schedule, namely jobs 4 and 3. We check for the 

following invoking Step 6: 

 

 If { } );4,1()4,1()4,0(;(max RSTtRFTT ≤+  i.e. if 20012}0;97max{ ≤+  (see 4.33). 

 

Actually, what the heuristic procedure does is that processing of job 1 on machine 4 

can be commenced and ended in between time units 97 and 109, respectively, 

because machine 4 remains idle during the time-span of 0 to 200. The fact that this 

check is satisfied indicates that job 1 can be processed prior to job(s) scheduled 

ahead of it on machine 4. This insertion brings re-computation of  RST  and RFT  

values of the jobs scheduled on the machine under consideration, leading to re-

sequencing of the partial job set {431} on machine 4 and resulting in the generation 

of NPS. Steps 7 through 10 have been essentially developed for this purpose (see 

equations 4.4 through 4.27 (for just one job insertion at a time) and equations 4.34 

trough 4.46 (for passing ahead of multiple jobs at a time). 
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Table 5.4: Values of ),( jkRST  and ),( jkRFT  for the scheduled job-set {43} 

Machine     
Job position k  

1 2 3 4 5 

0/0 0/0 0/0 0/0 0/0 

0/34 0/200 - 200/212 212/230 

0 

1 

2 - 200/250 - 250/262 262/282 

 

Table 5.5: Values of ),( jiST  and ),( jiFT  for the scheduled job-set {43} 

Machine     
Job i  

1 2 3 4 5 

- 0/200 - 200/212 212/230 

0/34 200/250 - 250/262 262/282 

4 

3 

Job loading sequence {3} {43} {φ } {43} {43} 

 

Similarly, applying the upgraded heuristic procedure brings us to the resultant NPS 

given in Table 5.6. For this case, the makespan value is kept as the level of 282 -still 

demonstrating improvement compared to the permutation schedule at hand- while 

the total flowtime is further improved (i.e. decreased), reaching a value of 649. 

 

Table 5.6: Starting and finishing time of jobs when new NPS are adopted 

Machine     

1 2 3 4 5 

- 0/200 - 200/212 212/230 

0/13 - 13/63 63/75 75/85 

13/30 - - 30/42 42/52 

30/64 200/250 - 250/262 262/282 

Job loading sequence {132}* {43} {1} {2143} {2143} 

* More than one insertion has been allowed at this stage. 
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5.1.2. GENERATION OF EXAMPLE PROBLEMS 

The example problems are generated by varying the number of jobs, number of 

machines and the percentage of missing operations respectively as indicated in Table 

5.7. For combination of number of jobs, number of machines and percentage of 

missing operations ( n , m  and p ) 10 instances are created in order to obtain mean 

values for each instance and also to ensure homogeneity of variance and 

independence of the outliers. In total, 800454)10( =×××  problem instances have 

been formed in order to be optimized using different heuristic techniques.  

 

Table 5.7: Values that each parameter takes per each experiment 

n = m = p = 

10 10 20% 

20 20 30% 

30 30 40% 

40 40 50% 

×10  instances for 

each combination 

of parameters

 50  

 

At this stage, the notion of Taillard’s (1993) benchmarking problems for flowshop 

schedules has been extensively employed. The computer code given in Appendix A 

is a modification of the C++ code used for generating Taillard’s example problems. 

The difference is in terms of the ranges of the values that parameters n , m  and 

p take; in the sense that instead of Taillard’s range of 20 to 500 for number of jobs, 

the range of 10 to 40 have been employed in order to be conservative in terms of 

computation time of the proposed heuristic. The heuristic procedure, which is 

employing a sequencing rule at each stage (i.e. machine) in order to decide the 

sequence and number of jobs to be passed ahead, will be prone to high values of n  

because of the growing completion time of jobs. 

 

The performance measues have been the maximum completion time (i.e. makespan) 

of jobs and secondarily the total flowtime of jobs flowing through machines. For the 
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total flowtime as the secondary criterion of assessment, the weights associated with 

each job is taken constant as 1, as no differentiation of relative holding cost has been 

assigned to any of the jobs.  

 

All computer codes have been developed in Visual C++ 6.0 and computational 

experiments are conducted on an Intel Pentium II 3.192 MHz PC (total physical 

memory 512 mb) under the Windows XP operating system. 

 

While evaluating the heuristic approaches, the following performance measures have 

been used: 

i) The relative performance improvement (RPI) of the NPS-set over a 

permutation schedule, with respect to makespan is given by 

'/100)'()( MMMMSRPI ×−= , where M and 'M  respectively are the 

values of makespan, as computed by the permutation sequence obtained 

by Nawaz et al.’s (1983) NEH heuristic and the NPS-set obtained by 

implementing the proposed heuristic. The reason that the comparison is 

made with NEH heuristic is that, it is by far the best heuristic among a 

large group of heuristic methods (Ruiz & Maroto, 2005) providing 

permutation schedules to improve the makespan as the primary 

performance criterion. NEH heuristic is selected as the best performer 

among SPT Rule, LPT Rule, Johnson’s Rule, Page’s Heuristic, Palmer’s 

Heuristic, Campbell, Dudek & Smith’s CDS Heuristic, Gupta’s 

Algorithm, Dannenbrings RA, RACS, and RAES and Ho and Chang’s 

heuristic (all focusing on makespan criterion). )(1 MSRPI  corresponds to 

the RPI of the heuristic developed by Pughazhendhi et al. (2002) and  

)(2 MSRPI  stand for the RPI of newly developed heuristic allowing 

intermediary sorting of multiple jobs prior to passing ahead of the other 

jobs in the permutation sequence. 

 

ii)  The relative performance improvement (RPI) of the NPS-set over a 

permutation schedule, with respect to total flowtime is given by 
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'/100)'()( FFFTFTRPI ×−= , where F and 'F  respectively are the 

values of total flowtime, as computed by the permutation sequence 

obtained by Ho’s algorithm (Ho, 1995) and the NPS-set obtained by 

implementing the proposed heuristic. For the objective of minimizing 

total flow time of jobs, heuristics have been developed by Miyazaki et al. 

(1978), Rajendran (1993) and Ho (1995). Of these heuristics, Ho’s 

heuristic is the best performing heuristic (Ho, 1995). This heuristic 

generates a seed sequence by arranging the jobs in the ascending 

∑ =
×+−

m

j ijtjm
1

)1(  values (Rajendran & Ziegler, 2001) .  

 

 Later, improvement schemes based on pairwise interchange and insertion 

 are employed until no significant improvement in the total flowtime of 

 jobs is obtained. This heuristic is computationally more cumbersome than 

 the heuristics of Miyazaki et al. And Rajendran, but it is more effective in 

 minimizing the total flowtime of jobs than the other two heuristics. 

 

iii) Mean RPI  is the average of 10 values of RPI  for a given problem set 

specified by ( n , m  and p ), whereas Max RPI  indicates the maximum 

RPI  value out of the 10 problems in each set. 

 

iv) Another performance measure is the number of problems ( N ), out of 10, 

for which an improvement in the performance criterion is realized for a 

given problem set defined by the parametric variables n , m  and p . 

 

5.1.3. EVALUATION OF THE HEURISTICS 

The evaluation of the heuristics and computational experimentations are done 

separately for two criterions, namely makespan and the total flowtime. The 

comparisons of the heuristics for each of the performance criterion has been then 

presented within the outcome section of this chapter. Results are summarized and 

tabularized based on differen values of n , m  and p . 
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5.1.3.1. MAKESPAN AS THE PRIMARY CRITERION 

Tables 5.8 through 5.11 illustrate the relative performance of the two proposed 

heuristics by taking NEH heuristic as the base in terms of getting the best 

permutation schedule due to “makespan” as the performance criterion. 

 

Table 5.8: Performance })max{( iCM = evaluation of both NPS-sets for p = 20% 

Pugazhendhi et al. (2002) New heuristic procedure n  m  

Mean 

1RPI  

Max

1RPI  1N     
Mean 

2RPI  

Max

2RPI  2N  

10 0,40 2,56 2 0,27 2,48 22** 

20 0,61 2,75 4 0,53 2,84 3 

30 0,64 2,71 6 0,59 2,72 5 

40 0,66 4,16 6 0,82 4,11 5 

10 

50 0,57 2,36 6 0,36 2,12 77  

10 0,53 2,65 5 0,42 3,24 66  

20 0,16 2,56 4 0,17 1,95 3 

30 0,42 2,42 4 0,28 1,83 3 

40 0,31 1,50 5 0,35 0,96 3 

20 

50 0,55 1,70 7 0,57 2,21 77  

10 0,35 1,38 2 0,25 1,23 22  

20 0,30 2,29 3 0,23 2,33 2 

30 0,38 1,97 6 0,23 2,15 77  

40 0,47 1,03 8 0,47 1,26 99  

30 

50 0,56 3,24 9 0,62 2,79 1100  

10 0,22 0,83 2 0,25 1,34 33  

20 0,36 1,77 5 0,35 1,48 66  

30 0,42 1,25 6 0,33 1,09 77  

40 0,42 1,18 8 0,44 1,57 7 

40 

50 0,36 2,12 7 0,45 1,42 77 

 * For 12 NN ≥ , values in the column are highlighted. 
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Table 5.9: Performance })max{( iCM = evaluation of both NPS-sets for p = 30% 

 

Pugazhendhi et al. (2002) New heuristic procedure n  m  

Mean 

1RPI  

Max

1RPI  1N     
Mean 

2RPI  

Max

2RPI  2N  

10 0,46 4,89 2 0,62 3,10 1 

20 0,94 4,51 5 1,09 3,36 4 

30 0,87 4,59 7 0,85 2,98 6 

40 1,15 3,38 8 1,34 4,71 88  

10 

50 0,63 4,78 6 0,75 2,89 66  

10 0,84 4,04 6 0,69 2,50 5 

20 0,89 4,87 6 1,00 4,19 66 

30 0,91 3,65 8 1,05 4,35 7 

40 0,97 3,40 9 1,08 4,70 8 

20 

50 1,07 2,56 9 0,95 3,96 99  

10 0,25 0,87 3 0,38 1,48 33  

20 0,70 3,18 9 0,72 3,88 99  

30 0,72 2,84 7 0,77 4,51 6 

40 0,72 1,42 8 0,77 2,76 88  

30 

50 1,06 2,75 9 0,85 4,08 99  

10 0,18 2,05 3 0,04 1,34 33  

20 0,71 2,66 9 0,98 4,12 7 

30 0,93 3,20 7 1,04 5,41 77  

40 0,95 2,34 10 1,10 4,09 1100  

40 

50 1,19 2,31 9 1,01 4,06 1100  
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Table 5.10: Performance })max{( iCM = evaluation of both NPS-sets for p = 40% 

 

Pugazhendhi et al. (2002) New heuristic procedure n  m  

Mean 

1RPI  

Max

1RPI  1N     
Mean 

2RPI  

Max

2RPI  2N  

10 0,74 6,63 2 0,81 2,48 22  

20 0,32 3,26 4 1,51 6,24 55  

30 1,14 9,63 6 2,07 7,43 66  

40 1,55 4,28 9 2,16 6,11 99  

10 

50 1,22 0,08 6 1,36 4,12 66  

10 0,59 1,02 3 0,39 3,24 44  

20 1,05 3,76 8 1,06 2,95 7 

30 1,35 1,09 7 1,48 5,83 99  

40 0,10 3,35 9 1,62 3,96 99  

20 

50 0,63 6,51 10 2,39 6,21 8 

10 0,25 1,34 3 0,15 1,23 2 

20 0,30 3,08 8 0,83 2,33 99  

30 0,70 2,01 10 1,33 3,15 1100  

40 1,04 2,38 10 1,74 3,26 9 

30 

50 0,28 0,97 10 1,88 4,79 1100 

10 0,08 1,49 3 0,16 1,34 2 

20 0,96 2,14 8 0,84 1,48 88  

30 0,97 3,07 8 1,36 4,09 99  

40 1,01 2,92 10 1,30 4,57 9 

40 

50 1,12 3,14 9 1,98 4,42 1100 
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Table 5.11: Performance })max{( iCM = evaluation of both NPS-sets for p = 50% 

 

Pugazhendhi et al. (2002) New heuristic procedure n  m  

Mean 

1RPI  

Max

1RPI  1N     
Mean 

2RPI  

Max

2RPI  2N  

10 0,89 3,71 3 0,81 1,48 44  

20 1,43 2,96 4 1,51 3,84 55  

30 2,40 5,72 9 2,07 4,72 7 

40 2,34 4,68 10 2,16 5,11 1100 

10 

50 1,43 3,26 10 1,36 3,12 8 

10 0,29 0,98 4 0,39 1,24 44  

20 1,26 3,71 8 1,06 2,95 99  

30 1,82 4,97 9 1,48 4,83 99  

40 1,53 4,26 7 1,62 4,96 88  

20 

50 2,52 5,32 10 2,39 5,21 9 

10 0,39 1,03 3 0,15 1,23 44 

20 0,95 2,10 10 0,83 2,33 9 

30 1,26 2,32 10 1,33 5,15 9 

40 2,10 2,54 6 1,74 3,26 66  

30 

50 1,97 4,11 9 1,88 4,79 1100  

10 0,32 1,01 3 0,16 1,34 2 

20 0,82 2,32 9 0,84 2,48 1100 

30 1,56 4,35 10 1,36 3,09 9 

40 1,31 4,59 10 1,30 3,57 1100 

40 

50 2,15 5,12 10 1,98 4,42 9 

 

 

The computational results gained from each run per different values of n , m  and p  

based on makespan criteria provide important insights. The discussions upon the 

results can me summarized as follows: 
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a) both heuristics start to dominate the NEH heuristic in terms of makespan as 

the performance criterion, when the percentage of missing operations is 

increased, namely over 20%; implying that for the flowshops with percentage 

of missing operations less than 20%, there is no significant need for obtaining 

NPS due to makespan as the primary performance criterion, parallel to what 

has been drawn out by Liao et al. (2006) in their very recent study, 

 

b) increasing the number of jobs, n , generally results in a lessened percentage 

improvement (in terms of makespan) by both heuristic procedures compared 

to NEH heuristic; implying that the need for obtaining NPS does not increase 

for a flowshop as the number of jobs increase, 

 

c) increasing the number of machines, m , while keeping the number of jobs 

constant, generally results in a higher percentage improvement in terms of the 

makespan as the primary criterion; implying that more number of machines 

with higher percentage of missing operations leads to higher need for 

obtaining NPS for a flowshop, 

 

d) when the proposed heuristic is compared to the heuristic method developed 

by Pugazhendhi et al. (2002) in terms of the Mean RPI , and Maximum 

RPI for each problem instance, it has been observed that the newly proposed 

approach does not provide clear dominance on the existing NPS-generating 

heuristic developed by Pugazhendhi et al. (2002), even for different levels of 

percentage of missing operations; implying that the two heuristics perform 

more or less the same in terms of makespan as the primary performance 

criterion (see table 5.16). 

 

Similar comparisons have been made for flowtime as the secondary performance 

criterion, in order to assess the outcomes obtained by the introduction of the new 

heuristic approach. 
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5.1.3.2. TOTAL FLOWTIME AS THE SECONDARY CRITERION 

Tables 5.12 through 5.15 illustrate the relative performance of the two proposed 

heuristics by taking Ho’s heuristic as the base in terms of getting the best 

permutation schedule due to “total flowtime” as the performance criterion. 

 

Table 5.12: Performance )( ∑= iCF  evaluation of both NPS-sets for p = 20% 

Pugazhendhi et al. (2002) New heuristic procedure n  m  

Mean 

1RPI  

Max

1RPI  1N     
Mean 

2RPI  

Max

2RPI  2N  

10 0,35 3,87 4 0,37 3,05 55**  

20 0,94 2,50 5 0,74 2,98 44  

30 0,69 3,93 6 0,37 3,45 66  

40 0,66 3,75 7 0,50 3,32 66  

10 

50 0,62 2,86 8 0,35 2,10 88  

10 0,18 2,53 4 0,25 2,04 66  

20 0,73 3,75 8 0,64 2,89 88  

30 0,90 3,93 8 0,66 2,72 1100  

40 0,65 3,09 8 0,94 4,62 1100  

20 

50 0,86 2,91 10 0,80 4,03 1100  

10 0,32 2,50 8 0,55 2,55 88  

20 0,55 2,55 7 0,76 2,73 77  

30 0,37 3,58 9 0,67 1,53 1100  

40 0,58 2,34 10 0,72 3,52 1100  

30 

50 0,78 1,67 8 0,95 2,29 99  

10 0,11 1,16 8 0,52 1,09 99  

20 0,56 3,26 10 0,77 1,86 1100  

30 0,70 3,02 10 0,88 3,43 1100  

40 0,63 2,97 10 0,45 2,53 1100  

40 

50 0,82 1,61 10 0,74 3,00 1100  

 * For 12 NN ≥ , values in the column are highlighted. 
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Table 5.13: Performance )( ∑= iCF evaluation of both NPS-sets for p = 30% 

 

Pugazhendhi et al. (2002) New heuristic procedure n  m  

Mean 

1RPI  

Max

1RPI  1N     
Mean 

2RPI  

Max

2RPI  2N  

10 0,61 7,82 3 0,43 9,46 44**  

20 0,98 5,30 6 1,37 5,86 77  

30 1,27 5,40 9 1,21 4,46 8 

40 1,17 6,24 9 1,17 5,69 99  

10 

50 1,09 4,89 8 1,18 5,68 88  

10 0,67 4,24 8 0,98 5,28 88  

20 1,01 5,19 8 1,02 6,27 1100  

30 1,19 5,00 10 1,33 6,45 1100  

40 1,27 5,08 9 1,45 5,18 99  

20 

50 1,52 5,15 9 1,80 8,08 1100  

10 0,62 1,43 9 0,31 1,86 99  

20 1,26 4,89 10 0,95 5,29 1100  

30 1,56 3,51 9 1,25 5,38 1100  

40 1,44 6,28 10 1,24 4,11 9 

30 

50 1,06 6,49 9 1,39 6,76 1100 

10 0,49 3,51 10 0,57 4,19 1100 

20 0,94 4,82 10 0,82 5,39 1100  

30 1,56 3,85 9 1,28 6,42 1100  

40 1,27 5,53 9 1,25 6,70 99  

40 

50 1,44 5,38 9 1,52 6,33 99  
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Table 5.14: Performance )( ∑= iCF  evaluation of both NPS-sets for p = 40% 

 

Pugazhendhi et al. (2002) New heuristic procedure n  m  

Mean 

1RPI  

Max

1RPI  1N     
Mean 

2RPI  

Max

2RPI  2N  

10 0,61 3,21 3 0,67 3,38 44** 

20 1,52 8,10 8 1,55 5,25 88  

30 1,95 5,76 8 1,97 5,07 99  

40 1,89 4,70 8 1,71 4,58 99  

10 

50 1,56 5,34 9 1,68 7,72 88  

10 0,56 2,19 5 0,44 3,00 77  

20 1,44 4,13 9 1,59 4,10 1100  

30 1,68 6,02 10 1,99 8,05 1100  

40 2,16 5,57 10 2,27 7,81 1100  

20 

50 2,45 7,47 9 2,59 6,76 1100  

10 0,51 2,43 7 0,47 2,26 88  

20 1,89 4,20 9 1,81 7,37 1100  

30 2,43 5,72 9 2,24 9,71 1100  

40 2,25 5,36 10 2,08 5,78 1100  

30 

50 2,33 5,39 10 1,92 9,27 1100  

10 0,55 1,55 9 0,75 2,88 1100  

20 1,84 3,68 9 1,83 5,66 1100  

30 2,10 4,46 10 2,32 7,21 1100  

40 2,46 5,34 9 2,30 7,77 1100  

40 

50 2,01 4,03 10 2,14 5,82 1100  
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Table 5.15: Performance )( ∑= iCF  evaluation of both NPS-sets for p = 50% 

 

Pugazhendhi et al. (2002) New heuristic procedure n  m  

Mean 

1RPI  

Max

1RPI  1N     
Mean 

2RPI  

Max

2RPI  2N  

10 1,03 4,26 6 0,67 3,35 88** 

20 1,73 5,89 7 1,93 4,14 88 

30 2,29 6,42 10 2,19 4,84 9 

40 1,90 4,10 10 2,45 5,96 1100  

10 

50 1,88 6,98 9 1,93 6,72 1100  

10 1,08 4,03 8 1,19 7,18 99  

20 1,36 4,45 9 1,47 5,80 1100  

30 2,37 5,35 10 2,32 8,41 1100  

40 2,23 5,98 10 2,24 6,47 1100  

20 

50 2,41 8,10 10 2,68 7,89 1100  

10 0,45 3,45 8 0,15 3,01 1100  

20 1,48 4,09 10 1,60 4,23 1100 

30 2,55 5,22 9 2,44 5,23 1100  

40 2,40 7,51 10 2,53 6,99 1100  

30 

50 1,96 3,90 10 1,99 3,83 1100  

10 0,80 3,33 10 0,54 3,38 1100 

20 1,96 6,54 10 1,71 4,01 1100  

30 2,45 8,52 10 2,15 8,79 1100  

40 2,39 7,21 10 2,16 7,27 1100  

40 

50 2,40 6,88 10 2,41 6,38 1100  

 

The computational results gained from each run per different values of n , m  and p  

based on makespan demonstrate significant improvement due to flowtime as the 

secondary performance criterion, compared to makespan as the primary performance 

indicator. The discussions upon the results can me summarized as follows: 
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a) increasing p  values more than %20 leads to both NPS-generating heuristics 

dominating NEH heuristic in terms of flowtime as the secondary performance 

criterion; implying that both NPS-generating heuristics, especially the 

proposed heuristic provides much better results due to flowtime as the 

secondary performance criterion for flowshops compared to permutation 

schedules,  

 

b) increasing number of jobs, n  does not significantly affect the percentage 

improvements made by both heuristics, in other words there is no correlation 

in between the number of jobs and the percentage improvement by both 

heuristic approaches, based on the flowtime criteria; however, increasing 

number of machines, m  leads to higher percentage improvement by both 

heuristic methods in terms of developing NPS for flowshops based on 

flowtime criteria, 

 

c) when the proposed heuristic is compared to the heuristic method developed 

by Pugazhendhi et al. (2002) in terms of the Mean RPI , and Maximum 

RPI for each problem instance, it has been observed that the newly proposed 

approach does provide considerable improvement for each of the problem 

instances; implying that the percentage improvement by introduction of the 

new NPS-generating heuristic is clear by increasing percentage of missing 

operations. 

 

The summary of section 5.1.3.1 and section 5.1.3.2 can be made with a simple table 

(Table 5.16) in order to assess the overall performance of the heuristic developed by 

Pugazhendhi et al. (2002) and the modification of it allowing multiple job-passing at 

a time. Table 5.16 includes the sum of the values of 1N  and 2N ’s for each distinct 

value of p . It can be seen that for the case of flowshop problems with p  values 

lower than 20%, the new heuristic as well as the heuristic of Pugazhendhi do not 

improve the makespan better than NEH heuristic does. However, the performance 
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enhancement by these heuristics is significant for p  values greater than or equal to 

30%.  

Table 5.16: Comparison of domination of heuristics over NEH* 

value of 
p  

New heuristic over 

NEH  

Pugazhendhi over 

NEH 

20% 104/96 107/93** 

30% 132/68 140/60 

40% 142/58 145/55 

1st 

Criterion: 

 

Makespan 

50% 151/49 153/47 

value of 
p  

New heuristic over 

Ho’s heuristic 

Pugazhendhi over 

Ho’s heuristic 

20% 166/34 158/42 

30% 179/21 173/27 

40% 183/17 171/29 

2nd 

Criterion: 

 

Flowtime 

50% 194/6 186/14 

* Over 200 instances for each value of p . 
** Bold values indicate the dominance of that approach over other two methods. 
$ # of instances the heuristic dominates / # of instances NEH or Ho’s heuristic dominates. 

 

For the case of total flowtime, the new heuristic outperforms Ho’s heuristic 

(especially for higher values of p ) also dominating the heuristic developed by 

Pugazhendhi et al. with significant improvement, which is getting larger as the 

percentage of missing operations is increased. 

 

5.1.3.3. COMPARISON OF CPU TIMES 

The mean CPU time taken for implementing the heuristics that generate the 

permutation schedules (namely NEH and Ho’s heuristic) as well as for implementing 

the new heuristic also has been tracked and analyzed for each specific problem 

instance corresponding to p  taking values 20% and 30% respectively (as number of 

missing operations increase, the CPU time will decrease for any algorithm) without a 

need to consider the instances for p = 40% and 50%. Table 5.17 shows that the total 



 65 

computational for implementing the proposed heuristic is negligible. Actually what 

the proposed heuristic does is a simple sequencing rule with at most )log( nnnmO +  

complexity. Compared to the NEH heuristic with complexity )( 3mnO  the new 

heuristic has a theoretical complexity of )())log(( 433 mnOmnnnmO =+  with the 

sequencing rule inserted into it (remaining as a polynomial time algorithm). 

 

Table 5.17: Comparison of CPU times* of both heuristics for each problem instance 

p = 20% p = 30% n  m  

NEH  
Pugaz 

et al. 

New 

Heuristic
NEH 

Pugaz 

et al. 

New 

Heuristic 

10 0,313 0,043 1,253 0,234 0,036 0,921 

20 0,375 0,017 2,207 0,286 0,017 2,039 

30 0,387 0,047 0,797 0,391 0,047 0,748 

40 0,419 0,039 0,978 0,485 0,032 0,729 

10 

50 0,472 0,026 0,092 0,379 0,025 0,074 

10 0,385 0,046 0,777 0,384 0,043 0,595 

20 0,446 0,008 0,845 0,474 0,007 0,681 

30 0,461 0,005 3,029 0,390 0,005 2,905 

40 0,524 0,004 2,485 0,522 0,004 2,206 

20 

50 0,548 0,031 2,912 0,506 0,026 2,879 

10 0,817 0,121 4,129 0,886 0,098 3,738 

20 0,822 0,065 2,778 0,733 0,055 2,003 

30 0,831 0,095 1,164 0,861 0,077 1,145 

40 0,963 0,096 5,377 1,023 0,091 5,031 

30 

50 1,006 0,131 5,927 0,921 0,127 4,421 

10 1,290 0,168 9,365 1,274 0,139 6,847 

20 1,529 0,219 4,613 1,575 0,197 4,170 

30 1,601 0,095 4,220 1,647 0,093 3,063 

40 1,849 0,108 8,111 1,753 0,101 7,098 

40 

50 1,994 0,203 10,970 2,038 0,190 8,986 

  * Time unit is seconds. 
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CHAPTER 6 
 
 

CONCLUSIONS 
 

 

 

In this study, a new heuristic procedure for flowshop problems has been proposed, 

with the intention to generate non-permutation schedules. The makespan and 

flowtime as the primary and secondary criterion of performance respectively have 

been considered with the newly proposed heuristic method.  

 

The new heuristic based on a primal version selected from the literature imposed 

good results for flowshops especially when the number of missing operations is 

relatively high. For the problem instances where the percentage of missing 

operations is lower than 20%, the new approach as well as the existing heuristic 

procedure of Pugazhendhi et al. (2002) does not improve the performance of the 

flowshop schedule thinking in terms of the “makespan” as the primary criterion. The 

permutation schedules generated by NEH heuristic for each example provide better 

makespan values up to 20% for percentage of missing operations. Over 20%, the 

newly proposed heuristic improves the makespan value compared to NEH heuristic, 

however the improvement is not higher than that of Pugazhendhi et al.’s heuristic. 

 

For the case of the secondary performance criterion, namely the total flowtime of 

jobs; the effects of the number of jobs, the number of machines, and the overall 

percentage of missing operations have also been analyzed. Basically, evident results 

have been gathered showing that with increasing percentage of missing operations 

and/or increasing number of jobs and/or increasing number of machines in a 

flowshop, the proposed heuristic outperforms all other permutation and non-

permutation schedule generating heuristics. The performance of the new heuristic 

procedure having intermediary sorting rules for multiple jobs bypassing the stages at 

a time was compared with the significant methods selected from the literature in 
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terms of solution performance. According to the outcomes of this thesis study and 

interpretations made upon those outcomes, the suggestions for further research 

directions might be as follows: 

 

a. The outcomes of this thesis study clearly demonstrate that there is room for 

improvement in terms of flowtime as the criterion of performance. Moreover, the 

computational results also show that even for low percentage of missing 

operations, non-permutation schedules provide better results. One has to analyze 

the percentage improvement provided by introduction of NPS for problems 

having percentage of missing operations less than 15% down to 0%. This task 

has been partially performed by Liao et al. (2006), however much clear 

evaluation is needed. 

 

b. Heuristic procedures that are capable of solving problems of larger sizes, 

presumably with the use of metaheuristics especially for large problems, have to 

be developed in order to obtain higher percentage improvement by bringing non-

permutation schedules into the scene. 

 

c. Further studies have to look for simple procedures or heuristics which are 

capable of generating non-permutation schedules by a similar approach with the 

newly proposed heuristic method, providing good performance in terms of 

makespan as the primary criterion, for the case of flowshops with missing 

operations. Other due date based criteria might be brought into the discussion for 

flowshops with missing operations, where the need for obtaining NPS is much 

more significant (Liao et al., 2006). 

 

d. More extensive use of dispatching rules at the intermediary steps for allowing 

job-passing might produce effective methodologies for generation of non-

permutation schedules based on various performance criteria. 
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APPENDICES 
 

 
APPENDIX A: C++ CODE FOR GENERATING EXAMPLE 

PROBLEMS 
 
 
 
/* 
 C++ code generating the 200 flow shop instances for each 
 p value (p: percentage of missing operations).  
  
 Processing times vary within the interval {0,99}. 
 
*/  
 
#define ANSI_C 0     /* 0:   K&R function style convention */ 
#define VERIFY 0     /* 1:   produce the verification file */  
#define FIRMACIND 0  /* 0,1: first machine index           */  
 
#include <stdio.h> 
#include <math.h> 
 
struct problem { 
  long rand_time;      /* random seed for jobs */  
  short num_jobs;      /* number of jobs */  
  short num_mach;      /* number of machines */  
}; 
 
#if VERIFY == 1 
 
struct problem S[] = { 
  {         0,  0, 0}, 
  { 873654221, 10, 10}, 
  {         0,  0, 0}}; 
 
#else /* VERIFY */  
     
struct problem S[] = { 
{         0,     0,  0}, 
                         /* 10 jobs  10 machines */  
{ 873654221,    10,  10},   
{ 379008056,    10,  10},  
{ 1866992158,   10,  10},  
{ 216771124,    10,  10},  
{ 495070989,    10,  10},  
{ 402959317,    10,  10},  
{ 1369363414,   10,  10},  
{ 2021925980,   10,  10}, 
{ 573109518,    10,  10},  
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{ 88325120,     10,  10},  
                          /* 20 jobs  10 machines */  
{ 587595453,    20, 10}, 
{ 1401007982,   20, 10}, 
{ 873136276,    20, 10},  
{ 268827376,    20, 10},  
{ 1634173168,   20, 10}, 
{ 691823909,    20, 10},  
{ 73807235,     20, 10},  
{ 1273398721,   20, 10},  
{ 2065119309,   20, 10},  
{ 1672900551,   20, 10}, 
                          /* 30 jobs 10 machines */ 
{ 479340445,    30, 10},   
{ 268827376,    30, 10}, 
{ 1958948863,   30, 10}, 
{ 918272953,    30, 10}, 
{ 555010963,    30, 10}, 
{ 2010851491,   30, 10}, 
{ 1519833303,   30, 10}, 
{ 1748670931,   30, 10}, 
{ 1923497586,   30, 10}, 
{ 1829909967,   30, 10}, 
                          /* 40 jobs  10 machines */   
{ 1328042058,   50,  5},  
{ 200382020,    50,  5}, 
{ 496319842,    50,  5}, 
{ 1203030903,   50,  5}, 
{ 1730708564,   50,  5}, 
{ 450926852,    50,  5}, 
{ 1303135678,   50,  5}, 
{ 1273398721,   50,  5}, 
{ 587288402,    50,  5}, 
{ 248421594,    50,  5}, 
                          /* 10 Jobs 20 machines */  
{ 1958948863,   10, 20}, 
{ 575633267,    10, 20}, 
{ 655816003,    10, 20},  
{ 1977864101,   10, 20}, 
{ 93805469,     10, 20}, 
{ 1803345551,   10, 20},   
{ 49612559,     10, 20}, 
{ 1899802599,   10, 20}, 
{ 2013025619,   10, 20}, 
{ 578962478,    10, 20}, 
                          /* 20 jobs 20 machines */  
{ 1539989115,   20, 20}, 
{ 691823909,    20, 20}, 
{ 655816003,    20, 20},  
{ 1315102446,   20, 20},  
{ 1949668355,   20, 20}, 
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{ 1923497586,   20, 20}, 
{ 1805594913,   20, 20}, 
{ 1861070898,   20, 20},  
{ 715643788,    20, 20},  
{ 464843328,    20, 20},  
                          /* 30 jobs  20 machines */  
{ 896678084,    30, 20}, 
{ 1179439976,   30, 20},  
{ 1122278347,   30, 20},  
{ 416756875,    30, 20}, 
{ 267829958,    30, 20},  
{ 1835213917,   30, 20},  
{ 1328833962,   30, 20},  
{ 1418570761,   30, 20},  
{ 161033112,    30, 20}, 
{ 304212574,    30, 20},  
                          /* 40 jobs 20 machines */  
{ 1539989115,   40, 20}, 
{ 655816003,    40, 20},  
{ 960914243,    40, 20},  
{ 1915696806,   40, 20}, 
{ 2013025619,   40, 20},  
{ 1168140026,   40, 20},  
{ 1923497586,   40, 20},  
{ 167698528,    40, 20},  
{ 1528387973,   40, 20},  
{ 993794175,    40, 20},  
                          /* 10 jobs 30 machines */ 
{ 450926852,    10, 30}, 
{ 1462772409,   10, 30},  
{ 1021685265,   10, 30},  
{ 83696007,     10, 30},  
{ 508154254,    10, 30},  
{ 1861070898,   10, 30},  
{ 26482542,     10, 30},  
{ 444956424,    10, 30},  
{ 2115448041,   10, 30},  
{ 118254244,    10, 30},  
                          /* 20 jobs 30 machines */  
{ 471503978,    20, 30}, 
{ 1215892992,   20, 30},  
{ 135346136,    20, 30},  
{ 1602504050,   20, 30},  
{ 160037322,    20, 30},  
{ 551454346,    20, 30},  
{ 519485142,    20, 30},  
{ 383947510,    20, 30},  
{ 1968171878,   20, 30},  
{ 540872513,    20, 30},  
                          /* 30 jobs 30 machines */ 
{ 2013025619,   30, 30}, 
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{ 475051709,    30, 30},  
{ 914834335,    30, 30},  
{ 810642687,    30, 30},   
{ 1019331795,   30, 30},  
{ 2056065863,   30, 30},  
{ 1342855162,   30, 30},  
{ 1325809384,   30, 30},  
{ 1988803007,   30, 30},  
{ 765656702,    30, 30},  
                          /* 40 jobs 30 machines */ 
{ 1368624604,   40, 30}, 
{ 450181436,    40, 30},  
{ 1927888393,   40, 30},  
{ 1759567256,   40, 30},  
{ 606425239,    40, 30},  
{ 19268348,     40, 30},  
{ 1298201670,   40, 30},  
{ 2041736264,   40, 30}, 
{ 379756761,    40, 30}, 
{ 28837162,     40, 30}, 
                          /* 10 jobs 40 machines */ 
{ 450926852,    10, 40}, 
{ 1462772409,   10, 40},  
{ 1021685265,   10, 40},  
{ 83696007,     10, 40},  
{ 508154254,    10, 40},  
{ 1861070898,   10, 40},  
{ 26482542,     10, 40},  
{ 444956424,    10, 40},  
{ 2115448041,   10, 40},  
{ 118254244,    10, 40},  
                          /* 20 jobs 40 machines */  
{ 471503978,    20, 40}, 
{ 1215892992,   20, 40},  
{ 135346136,    20, 40},  
{ 1602504050,   20, 40},  
{ 160037322,    20, 40},  
{ 551454346,    20, 40},  
{ 519485142,    20, 40},  
{ 383947510,    20, 40},  
{ 1968171878,   20, 40},  
{ 540872513,    20, 40},  
                          /* 30 jobs 40 machines */ 
{ 2013025619,   30, 40}, 
{ 475051709,    30, 40},  
{ 914834335,    30, 40},  
{ 810642687,    30, 40},   
{ 1019331795,   30, 40},  
{ 2056065863,   30, 40},  
{ 1342855162,   30, 40},  
{ 1325809384,   30, 40},  
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{ 1988803007,   30, 40},  
{ 765656702,    30, 40},  
                          /* 40 jobs 40 machines */ 
{ 1368624604,   40, 40}, 
{ 450181436,    40, 40},  
{ 1927888393,   40, 40},  
{ 1759567256,   40, 40},  
{ 606425239,    40, 40},  
{ 19268348,     40, 40},  
{ 1298201670,   40, 40},  
{ 2041736264,   40, 40}, 
{ 379756761,    40, 40}, 
{ 28837162,     40, 40}, 
 
                          /* 10 jobs 50 machines */ 
{ 450926852,    10, 50}, 
{ 1462772409,   10, 50},  
{ 1021685265,   10, 50},  
{ 83696007,     10, 50},  
{ 508154254,    10, 50},  
{ 1861070898,   10, 50},  
{ 26482542,     10, 50},  
{ 444956424,    10, 50},  
{ 2115448041,   10, 50},  
{ 118254244,    10, 50},  
                          /* 20 jobs 50 machines */  
{ 471503978,    20, 50}, 
{ 1215892992,   20, 50},  
{ 135346136,    20, 50},  
{ 1602504050,   20, 50},  
{ 160037322,    20, 50},  
{ 551454346,    20, 50},  
{ 519485142,    20, 50},  
{ 383947510,    20, 50},  
{ 1968171878,   20, 50},  
{ 540872513,    20, 50},  
                          /* 30 jobs 50 machines */ 
{ 2013025619,   30, 50}, 
{ 475051709,    30, 50},  
{ 914834335,    30, 50},  
{ 810642687,    30, 50},   
{ 1019331795,   30, 50},  
{ 2056065863,   30, 50},  
{ 1342855162,   30, 50},  
{ 1325809384,   30, 50},  
{ 1988803007,   30, 50},  
{ 765656702,    30, 50},  
                          /* 40 jobs 50 machines */ 
{ 1368624604,   40, 50}, 
{ 450181436,    40, 50},  
{ 1927888393,   40, 50},  
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{ 1759567256,   40, 50},  
{ 606425239,    40, 50},  
{ 19268348,     40, 50},  
{ 1298201670,   40, 50},  
{ 2041736264,   40, 50}, 
{ 379756761,    40, 50}, 
{ 28837162,     40, 50}, 
 
{          0,    0,  0}}; 
#endif /* VERIFY */ 
 
/* generate a random number uniformly between low and high */ 
int z=0; 
 
#if ANSI_C == 1 
int unif (long *seed, short low, short high) 
#else 
short unif (long *seed, short low, short high) 
//long *seed; short low, high; 
#endif 
{ 
  static long m = 2147483647, a = 16807, b = 127773, c = 2836; 
  double  value_0_1;               
 
  long k = *seed / b; 
  *seed = a * (*seed % b) - k * c; 
  if(*seed < 0) *seed = *seed + m; 
  value_0_1 =  *seed / (double) m; 
 
   
  return (short) (low + floor(value_0_1 * (high - low + 1))); 
 
} 
 
/* Maximal 40 jobs and 50 machines are provided. */ 
 
short d[21][501];                       /* duration */  
 
#if ANSI_C == 1 
void generate_flow_shop(short p)          /* Fill d and M according to S[p] */  
#else 
void generate_flow_shop(short p) 
//short p; 
#endif 
{ 
  short i, j; 
  long time_seed = S[p].rand_time; 
  
  for(i = 0; i < S[p].num_mach; ++i)      /* determine a random duration */  
    for (j = 0; j < S[p].num_jobs; ++j)   /* for all operations */  
      d[i][j] = unif(&time_seed, 0, 99);  /* 99 = max. duration of op. */ 
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} 
 
#if ANSI_C == 1 
void write_problem(short p)  /* write out problem */  
#else 
void write_problem(short p) 
//short p; 
#endif 
{ 
  short i, j; 
  FILE *f = NULL; 
  char name[6]; 
 
  sprintf(name,"p%03d", p);                 /* file name construction */  
  if(!(f = fopen(name,"w"))) {               /* open file for writing  */  
    fprintf(stderr,"file %s error\n", name); 
    return; 
  } 
  fprintf(f,"%d %d\n", S[p].num_jobs, S[p].num_mach); /* write header line */  
   
  for(j = 0; j < S[p].num_jobs; ++j) { 
    for(i = 0; i < S[p].num_mach; ++i) { 
       fprintf(f,"%2d %2d ", i+FIRMACIND, d[i][j]);   /* write machine and job */  
    } 
    fprintf(f,"\n");                         /* newline == End of job */  
  } 
  fclose(f);                                 /* close file */  
} 
 
int main()                                     
{ 
  short i = 1; 
  while(S[i].rand_time) {                    /* for i == 1 up to NULL entry */ 
    generate_flow_shop(i);                   /* generate problem i  */  
    write_problem(i);                        /* write out problem i */  
    ++i;                                     /* increment i */  
  } 
  return 0; 
} 
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APPENDIX B: C++ CODE FOR GENERATING NPS WITH THE 
NEW APPROACH 

 
   
  
#include <stdlib.h>  
#include <stdio.h>  
#include <conio.h>  
#include <math.h>  
 
// generating NPS with the makespan criterion  
// maximal size of problem: 50 machines, 40 jobs  
// current size of problem: m machines, n jobs  
// structure of pi[] is the same as for pibest[]  
// processing times p[1..m][1..n]; cells p[0][..] and p[..][0] are not used  
// completion times C[1..n][1..m] are the same as p[][]; cells C[0][..] and C[..][0] are set to 
zero  
 
#define N    50      // maximal number of jobs  
#define M    10          // maximal number of machines  
#define MAXL 6000000L        // max long value  
 
int pi[N+1];  
long p[M+1][N+1],C[M+1][N+1];  
int pibest[N+1];  
 
FILE *fe;                    // output file to be traced 
 
// templates 
// returns max(x,y)  
template <class number>  
  number max(number x, number y) { return (x>y)?x:y; }  
 
// returns min(x,y)  
template <class number>  
  number min(number x, number y) { return (x<y)?x:y; }  
 
// returns sign of number x  
template <class number>  
  int sign(number x) { return (x<=0)?-1:1; }  
 
// swaps two elements  
template <class vect>  
  void swap(vect *a, vect *b) { vect c=*a; *a=*b; *b=c; }  
 
// quicksort; returns permutation such that a[pi[i]]<=a[pi[i+1]] for a[n..m]  
template <class vect>  
  void sort(int n, int m, vect a[], int pi[])  
  {  int i,j; vect x;  
     if (m <= n) return;  
     i=n; j=m; x=a[pi[(i+j)/2]];  
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     do  
     {  while (a[pi[i]] < x) i++;  
      while (x < a[pi[j]]) j--;  
      if (i <= j) { swap(pi+i,pi+j); i++; j--; }  
     }  while (i < j);  
     sort(n,j,a,pi); sort(i,m,a,pi);  
  }  
 
// quicksort; returns permutation such that a[pi[i]]>=a[pi[i+1]] for a[n..m]  
template <class vect>  
  void _sort(int n, int m, vect a[], int pi[])  
  {  int i,j; vect x;  
     if (m <= n) return;  
     i=n; j=m; x=a[pi[(i+j)/2]];  
     do  
     {  while (a[pi[i]] > x) i++;  
      while (x > a[pi[j]]) j--;  
      if (i <= j) { swap(pi+i,pi+j); i++; j--; }  
     }  while (i < j);  
     _sort(n,j,a,pi); _sort(i,m,a,pi);  
  }  
 
// returns makespan for permutation pi[]  
long Cmax(int n, int m, long p[][N+1], int pi[])  
{ int i,j;  
 
  C[1][1]=p[1][pi[1]];  
  for (j=2;j<=n;j++) C[1][j]=C[1][j-1]+p[1][pi[j]];  
  for (i=2;i<=m;i++)  
  { C[i][1]=C[i-1][1]+p[i][pi[1]];  
    for (j=2;j<=n;j++) C[i][j]=max(C[i][j-1],C[i-1][j])+p[i][pi[j]];  
  }  
  return C[m][n];  
}  
 
// johnson's algorithm for F2//Cmax problem  
void johnson(int n, long aa[], long bb[], int pi[])  
{ int a=0,b=n+1,j;  
 
  for (j=1;j<=n;j++) { if (aa[j]<=bb[j]) pi[++a]=j; else pi[--b]=j; }  
  if (a>0) sort(1,a,aa,pi);  
  if (b<=n) _sort(b,n,bb,pi);  
}  
 
// insertion of Ho’s algorithm for F//Cmax problem  
void campbell(int n, int m, long p[][N+1], int pi[])  
{ int i,j,pp[N+1];  
  long ax[N+1],bx[N+1],cp,cmx=MAXL;  
 
  for (j=1;j<=n;j++) ax[j]=bx[j]=0;  
  for (i=1;i<m;i++)  
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  { for (j=1;j<=n;j++) { ax[j]+=p[i][j]; bx[j]+=p[m-i+1][j]; }  
    johnson(n,ax,bx,pp); cp=Cmax(n,m,p,pp);  
    if (cp<cmx) { cmx=cp; for (j=1;j<=n;j++) pi[j]=pp[j]; }  
  }  
}  
 
// insertion of gupta's algorithm for F//Cmax problem; algorithm 0  
void gupta(int n, int m, long p[][N+1], int pi[N+1])  
{ float eps = 0.001;  
  int i,j;  
  float ax[N+1],a;  
  long s;  
 
  for (j=1;j<=n;j++)  
  { s=MAXL; pi[j]=j;  
    for (i=1;i<m;i++) s=min(s,p[i][j]+p[i+1][j]);  
    s=sign(p[1][j]-p[m][j]);  
    if (!s) ax[j]=a/eps; else ax[j]=a/s;  
  }  
  _sort(1,n,ax,pi);  
}  
 
long alpha(int j, int k, int l)  
  { int i; long s=0;  for (i=k;i<=l;i++) s+=p[i][j]; return s; }  
 
long beta(int j, int k, int l) { return alpha(j,k+1,l+1); }  
 
float f(int j, int k, int l)  
{ long u=min(alpha(j,k,l),beta(j,k,l));  
  return u?sign(alpha(j,k,l)-beta(j,k,l))/((float)u):sign(alpha(j,k,l)-beta(j,k,l))*MAXL;  
}  
 
// (NEH) Nawaz, Enscore and Ham's algorithm for F//Cmax  
// problem, complexity O(n^3*m)  
void nawaz(int n, int m, long p[][N+1], int pi[])  
{ int i,j,k,t;  
  long c,cp,s;  
  long sump[N+1];  
 
  for (j=1;j<=n;j++) { s=0; for (i=1;i<=m;i++) s+=p[i][j]; sump[j]=s; }  
  for (j=1;j<=n;j++) pi[j]=j; _sort(1,n,sump,pi);  
 
  for (k=2;k<n;k++)  
  { cp=Cmax(k,m,p,pi); i=k;                             // insert on k  
    for (j=k;j>1;j--)  
    { swap(pi+j,pi+j-1);                                // shift left  
      c=Cmax(k,m,p,pi);                                 // set new cmax  
      if (c<cp) { cp=c; i=j-1; }                        // store best location  
    }  
    t=pi[1]; for (j=1;j<i;j++) pi[j]=pi[j+1]; pi[i]=t;  // adjust pi[]  
  }  



 83 

}  
 
// Nawaz, Enscore, Ham's algorithm for F//Cmax problem,  
// efficient implementation from Taillard's paper, complexity // O(n^2*m)  
void NEH(int n, int m, long p[][N+1], int pi[])  
{ int i,j,k,l,t;  
  long c,cp,s;  
  long r[M+1][N+1],q[M+2][N+2],d[M+1];  
  long sump[N+1];  
 
  for (j=1;j<=n;j++) { s=0; for (i=1;i<=m;i++) s+=p[i][j]; sump[j]=s; }  
  for (j=1;j<=n;j++) pi[j]=j; _sort(1,n,sump,pi);  
 
  for (i=0;i<=m;i++) r[i][0]=0;                         // r[][0] edge values  
  for (j=0;j<=n;j++) r[0][j]=0;                         // r[0][] edge values  
  d[0]=0;                                               // d[0] edge value  
 
  for (k=2;k<n;k++)  
  {  
    for (i=1;i<=m;i++) for (j=1;j<=k;j++)  
      r[i][j]=max(r[i][j-1],r[i-1][j])+p[i][pi[j]];     // set new r[][]  
 
    for (i=0;i<=m;i++) q[i][k]=0;                       // q[][k] edge values  
    for (j=0;j<=k;j++) q[m+1][j]=0;                     // q[m+1][] edge values  
    for (i=m;i>=1;i--) for (j=k-1;j>=1;j--)  
      q[i][j]=max(q[i][j+1],q[i+1][j])+p[i][pi[j]];     // set new q[][]  
 
    cp=r[m][k]; i=k; t=pi[k];                           // insert on k  
    for (j=k-1;j>=1;j--)  
    { for (l=1;l<=m;l++) d[l]=max(d[l-1],r[l][j-1])+p[l][t]; // set d[]  
      c=d[1]+q[1][j];  
      for (l=2;l<=m;l++) c=max(c,d[l]+q[l][j]);         // set new cmax  
      if (c<cp) { cp=c; i=j; }                          // store best location  
    }  
    for (j=k;j>i;j--) pi[j]=pi[j-1]; pi[i]=t;           // adjust pi[]  
  }  
}  
 
long power(int x, int n) { int i; long s=1; for (i=1;i<=n;i++) s*=x; return s; }  
 
long eps(int x, int n) { int i; long s=0; for (i=1;i<=n;i++) s+=power(x,i-1); return s; }  
 
// ad hoc generator of processing times  
void generator(int n, int m, long p[][N+1])  
{ int i,j;  
  for (i=1;i<=m;i++)  
    for (j=1;j<=n;j++) p[i][j]=1+random(99);  
}  
 
// Taillard's uniform generator [low,high]  
int unif(long *seed, int low, int high)  



 84 

{ static const long m=2147483647l,a=16807l,b=127773l,c = 2836l;  
  long k;  
  double value_0_1;  
 
  k=*seed/b; *seed=a*(*seed%b)-k*c;  
  if (*seed<0) *seed+=m;  
  value_0_1=*seed/(float)m;  
  return low+(int)(value_0_1*(high-low+1));  
}  
 
// Taillard's generator of instances with different p values 
void generate(int n, int m, int k, long p[][N+1])  
{ int i,j,t;  
  long x,y,r,q,sp,lbb,td,lb;  
  FILE *u;  
  long _seed;  
  char path[50];  
  sprintf(path,"c:\\tcpp\\my\\recipes\\dane\\%d_%d.gen",n,m);  
  u=fopen(path,"rt");  
  for (i=1;i<=k;i++) fscanf(u,"%ld%ld%ld",&_seed,&td,&lbb);  
  fclose(u);  
 
  for (i=1;i<=m;i++) for (j=1;j<=n;j++) p[i][j]=unif(&_seed,1,99);  
/*  
  lb=0;  
  for (i=1;i<=m;i++)  
  { r=MAXL; q=MAXL; sp=0;  
    for (j=1;j<=n;j++)  
    { x=0; for (t=1;t<i;t++) x+=p[t][j];  
      y=0; for (t=i+1;t<=m;t++) y+=p[t][j];  
      if (x<r) r=x; if (y<q) q=y;  
      sp+=p[i][j];  
    }  
    if ((r+sp+q)>lb) lb=r+sp+q;  
  }  
 
  for (j=1;j<=n;j++)  
  { x=0; for (i=1;i<=m;i++) x+=p[i][j];  
    if (x>lb) lb=x;  
  }  
*/  
}  
 
// shows permutation and non-permutation schedules  
void show_pi(int n, int pi[])  
{ int j;  
  clrscr(); for (j=1;j<=n;j++) printf("%4d",pi[j]); printf("\n"); getch();  
}  
 
void main()  
{  int i,j,n,m;  
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   long copt;  
   n=20; m=5;  
 
   generate(n,m,7,p);  
 
//   clrscr();  
//   nawaz(n,m,p,pi);  
//   clrscr(); printf("%ld\n",Cmax(n,m,p,pi)); getch();  
//   show_pi(n,pi);  
 
//   NEH(n,m,p,pi);  
//   clrscr(); printf("%ld\n",Cmax(n,m,p,pi)); getch();  
//   show_pi(n,pi);  
 
//   campbell(n,m,p,pi);  
//   clrscr(); printf("%ld\n",Cmax(n,m,p,pi)); getch();  
//   show_pi(n,pi);  
//   getch();  
 
//   rand_pi(n,pi);  
 
   clrscr();  
   fe=fopen("trace.txt","wt");  
   sa(n,m,p,pi,&copt,pibest);  
   fclose(fe);  
   show_pi(n,pi);  
 
//   clrscr();  
//   copt=Cmax(n,m,p,pibest);  
 
}  
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