

A NEW APPROACH TO GENERATING NON-PERMUTATION
SCHEDULES FOR FLOWSHOPS WITH MISSING OPERATIONS

METİN TABALU

DECEMBER 2006

 iii

A NEW APPROACH TO GENERATING NON-PERMUTATION SCHEDULES
FOR FLOWSHOPS WITH MISSING OPERATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

METİN TABALU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF

MASTER OF SCIENCE
IN

THE DEPARTMENT OF INDUSTRIAL ENGINEERING

DECEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Çağlar Güven
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Ömer Kırca
 Supervisor

Examining Committee Members

Prof. Dr. Meral Azizoğlu (METU IE)

Prof. Dr. Ömer Kırca (METU IE)

Prof. Dr. İhsan Sabuncuoğlu (BILKENT IE)

Assist. Prof. Dr. Sedef Meral (METU IE)

Assist. Prof. Dr. Esra Karasakal (METU IE)

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

 Name, Last Name:

 Signature:

 iv

ABSTRACT

A NEW APPROACH TO GENERATING NON-PERMUTATION SCHEDULES
FOR FLOWSHOPS WITH MISSING OPERATIONS

TABALU, Metin

M. Sc. Thesis, Department of Industrial Engineering

Supervisor: Prof. Dr. Ömer KIRCA

December 2006, 85 pages

In this study, non-permutation flowshops with missing operations are considered.

The primary performance criterion is the total cycle time (i.e. makespan) and

secondary criterion is the total flowtime. In order to obtain the schedule with the

minimum makespan and minimum total flowtime, non-permutation schedules are

being generated instead of permutation ones by permitting multiple jobs bypassing

stages where missing operations occur. A heuristic algorithm has been developed in

order to generate non-permutation sequences through those stages. The heuristic

algorithm has been compared with the existing heuristic methods in the literature, the

ones generating permutation vs. the ones generating non-permutation schedules.

Computational analysis is conducted to investigate the effects of certain parameter

values such as the number of machines, the number of jobs and the percentage of

missing operations. The results demonstrate slight improvement in the makespan as

well as the significant improvement in total flowtime of schedules generated by the

new heuristic procedure compared to leading non-permutation and permutation

schedule generating heuristics, where the percentage of improvement gets higher

with larger percentages of missing operations.

Keywords: Non-permutation schedules, flowshops with missing operations.

 v

ÖZ

AKIŞ TİPİ ve EKSİK OPERASYONLAR İÇEREN ÇİZELGELEME

PROBLEMLERİNDE PERMÜTASYON TİPİ OLMAYAN İŞ SIRALARININ

OLUŞTURULMASINDA YENİ BİR YÖNTEM

TABALU, Metin

Yüksek Lisans Tezi, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ömer KIRCA

Aralık 2006, 85 sayfa

Bu çalışmada eksik operasyonlar içeren akış tipi çizelgeleme problemleri

incelenmiştir. Temel performans kriteri toplam çevrim zamanı olup, ikincil

performans kriteri toplam akış zamanıdır. Permütasyon tipi iş sıraları yerine

permütasyon tipi olmayan iş sıraları oluşturulmaya çalışılmış, ve bu esnada eksik

operasyonlar içeren aşamalarda işlerin grup halinde öne geçişlerine izin verilmiştir.

Aşamalar arası permütasyon tipi olmayan yeni iş sıraları oluşturan sezgisel bir de

algoritma geliştirilmiştir. Yeni geliştirilen sezgisel algoritma literatürdeki

permütasyon tipi ve permütasyon tipi olmayan iş sıraları oluşturan belli başlı sezgisel

algoritmalar ile karşılaştırılmıştır. Toplam makine sayısı, toplam iş sayısı ve eksik

operasyonların toplam operasyon sayısına oranı gibi parametrelere değişik değerler

verilerek çeşitli sayısal değerlendirmeler yapılmıştır. Sonuçlar, yeni yöntemin

oluşturulan permütasyon tipi olmayan çizelgelemeler ile toplam çevrim zamanını

kısıtlı ölçüde, toplam akış zamanınını da önemli ölçüde azalttığını ve bu

iyileştirmenin eksik operasyonların yüzdesine paralel olarak arttığını göstermektedir.

Anahtar kelimeler: Permütasyon tipi olmayan çizelgelemeler, eksik operasyonlu akış

tipi çizelgeleme problemleri.

 vi

To my family & my love

 vii

ACKNOWLEDGEMENTS

I would like to express my gratitude to Prof. Ömer Kırca for his patient supervision

and continual understanding through the course of this study. This study could not

have been completed without his support.

I also would like to express my deepest thanks to my family for their endless

patience and understanding. The completion of this task would not have been

possible without their endless love and faith in me.

I want to express my thanks also to Dr. Sedef Meral for her support during the

preparation phase of the thesis and moreover during various instances of my study in

Middle East Technical University Industrial Engineering Master of Science program.

Special thanks go to my friends Halecan Tuncay, Fatma Kılınç and Alper

Karaduman for her reinforcement, sharing of her ideas with me while making

literature research, and his technical help to complete the thesis work, respectively. I

also acknowledge the continuous support of my other friends Aykut Mehmet Tutucu

and Vehbi Özer for their encouragement during the establishment of various parts of

this thesis.

 viii

TABLE OF CONTENTS

ABSTRACT... 0iv

ÖZ .. 1H1Hv

ACKNOWLEDGEMENTS .. 2H2Hvii

TABLE OF CONTENTS... 3H3Hviii

LIST OF TABLES ... 4H4Hx

LIST OF FIGURES ... 5H5Hxi

CHAPTER

1. INTRODUCTION.. 6H6H1

2. PROBLEM DEFINITION ... 7H7H4

2.1. FLOWSHOP SCHEDULING.. 8H8H4

2.2. PERMUTATION SCHEDULES ... 9H9H8

2.3. MATHEMATICAL FORMULATION ... 10H10H10

3. LITERATURE REVIEW & MOTIVATION FOR THIS STUDY................... 11H11H14

3.1. HEURISTICS FOR THE FLOWSHOP SCHEDULING PROBLEM 12H12H14

3.1.1. CONSTRUCTIVE HEURISTICS ... 13H13H14

3.1.1.1. NAWAZ ET AL.’S (NEH) HEURISTIC....................................... 14H14H15

3.1.2. IMPROVEMENT HEURISTICS .. 15H15H17

3.1.3. METAHEURISTICS FOR THE FSP .. 16H16H19

3.2. COMPUTATIONAL EVALUATIONS AND INSIGHTS................... 17H17H21

3.3. BASIC MOTIVATION FOR DEVELOPING NPS 18H18H23

 ix

3.4. A RECENT PAPER .. 19H19H26

4. THE PROPOSED APPROACH .. 20H20H28

4.1. JOB-PASSING: THE TOOL FOR NPS GENERATION 21H21H28

4.2. DERIVING NPS FROM A GIVEN PS ... 22H22H36

4.2.1. INITIALIZATION... 23H23H38

4.2.2. THE HEURISTIC PROCEDURE ... 24H24H39

4.2.3. THE PROPOSED HEURISTIC PROCEDURE................................ 25H25H42

5. COMPUTATIONAL RESULTS... 26H26H47

5.1. EXPERIMENTATION OF HEURISTIC PROCEDURES 27H27H47

5.1.1. ILLUSTRATIVE EXAMPLES ... 28H28H47

5.1.2. GENERATION OF EXAMPLE PROBLEMS.................................. 29H29H51

5.1.3. EVALUATION OF THE HEURISTICS... 30H30H53

6. CONCLUSIONS.. 31H31H66

REFERENCES... 32H32H68

APPENDICES ... 33H33H73

APPENDIX A: C++ CODE FOR GENERATING EXAMPLE PROBLEMS 34H34H73

APPENDIX B: C++ CODE FOR GENERATING NPS WITH THE NEW
APPROACH .. 35H35H80

 x

LIST OF TABLES

Table 2.1: Processing times for two-job four-machine problem.. 36H36H6

Table 3.4: Constructive and improvement heuristics for the PFSP 37H37H19

Table 3.5: Metaheuristics for the permutation flow-shop problem.. 38H38H20

Table 3.6: Evaluation results of heuristics on small problems (Dannenbring 1977) 39H39H22

Table 3.7: Evaluation results of heuristics on large problems (Dannenbring 1977).............. 40H40H23

Table 4.1: Processing times for a 4-job, 3-machine problem .. 41H41H34

Table 4.2: Starting and finishing times of jobs in permutation sequence [4123]................... 42H42H34

Table 4.3: Starting and finishing times of jobs in non-permutation sequence....................... 43H43H35

Table 5.1: Illustrative 4-job, 5-machine problem... 44H44H47

Table 5.2: Starting and finishing time of jobs for the permutation sequence 45H45H48

Table 5.3: Starting and finishing time of jobs when NPS are adopted 46H46H48

Table 5.4: Values of),(jkRST and),(jkRFT for the scheduled job-set {43}................ 47H47H50

Table 5.5: Values of),(jiST and),(jiFT for the scheduled job-set {43} 48H48H50

Table 5.6: Starting and finishing time of jobs when new NPS are adopted........................... 49H49H50

Table 5.7: Values that each parameter takes per each experiment .. 50H50H51

Table 5.8: Performance })max{(iCM = evaluation of both NPS-sets for p = 20%.......... 51H51H54

Table 5.9: Performance })max{(iCM = evaluation of both NPS-sets for p = 30%.......... 52H52H55

Table 5.10: Performance })max{(iCM = evaluation of both NPS-sets for p = 40%........ 53H53H56

Table 5.11: Performance })max{(iCM = evaluation of both NPS-sets for p = 50%........ 54H54H57

Table 5.12: Performance)(∑= iCF evaluation of both NPS-sets for p = 20% 55H55H59

Table 5.13: Performance)(∑= iCF evaluation of both NPS-sets for p = 30% 56H56H60

Table 5.14: Performance)(∑= iCF evaluation of both NPS-sets for p = 40% 57H57H61

Table 5.15: Performance)(∑= iCF evaluation of both NPS-sets for p = 50% 58H58H62

Table 5.16: Comparison of domination of heuristics over NEH* ... 59H59H64

Table 5.17: Comparison of CPU times* of both heuristics for each problem instance 60H60H65

 xi

LIST OF FIGURES

Figure 2.1: The precedence structure of a job in a flowshop ... 61H61H4

Figure 2.2: Workflow in a pure flowshop.. 62H62H5

Figure 2.3: Workflow in a general flowshop ... 63H63H5

Figure 2.4: Three schedules for the example problem... 64H64H7

Figure 4.1: Necessary and sufficient conditions for)1,()1,(+<+ jiTjiT CSR 65H65H31

Figure 4.2: Gantt chart representing Table 4.2 .. 66H66H34

Figure 4.3: Gantt chart representing Table 4.3 .. 67H67H35

 1

CHAPTER 1

INTRODUCTION

A Flowline-Based Manufacturing System (FBMS) is a manufacturing environment

where machines are arranged in the order in which jobs continue their operations,

and have a unidirectional flow pattern. In a real manufacturing environment we often

have the FBMS, where ‘cells’ are formed to manufacture ‘part families’ such that

each family is, as much as possible, manufactured within the same cell.

The urge for manufacturing part families in the same cell is mainly because of the

need for minimizing material handling by minimizing inter-cell movements. The

creation of manufacturing cells also enabled the manufacturers to form multi-

functional teams within each of those cells, where employees/units form more than

one set of tasks on various part families coming to the cell. By doing so, some

leading manufacturers have managed to increase the utilization of each of their

employees and improved the capacity associated with manufacturing cells in order to

reduce costs. In a cellular manufacturing system, all parts in a part-family need not

be processed on all machines in a cell, thus a part may have missing operations on

some machines.

The configuration of a manufacturing cell may be either a flowline layout or a job-

shop layout. However, the formation of a flowline layout has definite advantages

over the job-shop layout in the sense that; material flow is simplified with avoidance

of back-tracking, less material handling activities performed, and better control of

production activities are enabled (Dumolien and Santen, 1983). Especially in the

electronics, automotive, chemicals and pharmaceuticals industry, leading

manufacturers have developed FBMS both in parts manufacturing and assembly

operations. Within those systems, part families are being processed in various sizes

 2

of batches, requiring operations at different manufacturing cells. The important

aspect of those is that all of the jobs flowing through machines more or less follow

the same unidirectional flow with some existing missing operations for each distinct

job family. Having this fact on their minds, researches have tried to find ways of

modeling flowshops, given the economic importance of FBMS.

The problem is then in order to utilize a FBMS in the most efficient way; one has to

generate good solutions by modeling the system as a multi-product batch scheduling

problem. The contents of this study includes a presentation of a study of the nature of

a serial multi-product batch scheduling problem and tries to provide insights and

justifications for considering flowshop scheduling problems (FSP) under a non-

permutation schedule (NPS) instead of permutation schedules, where jobs flow

through machine with the same sequence at each stage leading to forced idleness of

machines having missing operations for some jobs within the sequence.

Throughout the following sections of this thesis, Chapter 2 first gives a brief

explanation of flowshop by laying down the foundations of it together with a brief

description of permutation schedules and their limits in terms of solutions to meet

performance criterion. The mixed integer programming model used for permutation

flowshops is also given in this chapter. Chapter 3 starts with a brief description of the

Johnson’s algorithm together with the 2-machine flowshop problem in order to

initiate the discussion for the heuristics developed for flowshops. After that, the

second part of Chapter 3 involves a brief survey of flowshop heuristics –mostly

generating permutation schedules– by paying special attention to improvement

heuristics, as their notion will be employed at later stages in order to develop non-

permutation schedules for flowshop. The second part of Chapter 3 reveals the need

for obtaining non-permutation schedules for the flowshop problem. Thinking in

terms of the makespan as the primary performance criterion, a simple example shows

the possibility of drastically decreasing the makespan of a schedule by employing

non-permutation schedules.

 3

Chapter 4, demonstrating the new heuristic approach developed using an existing

heuristic, first draws out the benefits of enabling job-passing through stages in a

permutation flowshop. Starting from an initial permutation flowshop, the use of job-

passing enables the problem-solver to decrease both the makespan and the total

flowtime by making small interchanges in the permutation schedule and forming

partially permutation sequences through following stages of a flowshop. In terms of

the new approach, while obtaining partially permutation sequences at each stage,

jobs with missing operations are passed ahead with small distortions of the

permutation sequence for the current stage. In that sense job-passing as a tool for

NPS generation is emphasized. Each job-passing is made by simultaneously

considering all jobs as candidates to move ahead, and re-sorting the group of

candidates within themselves in order to obtain ‘robust’ schedules for later stages.

Simple dispatching rules have been brought into the discussion and further have been

employed in order to make a reliable comparison of the new method by the other

permutations.

Chapter 5 summarizes the outcomes of the computational experimentations made in

order to highlight the performance of the new heuristic compared to the existing

methods for deriving permutation schedules and the NPS. Results of extensive

computational experimentation, with makespan as the primary criterion and total

flowtime as the secondary criterion are presented. Results are tabularized in order to

see the effectiveness of the new approach in terms of producing NPS providing much

less total flowtime with decreased makespan value as well.

Chapter 6 sums up the purpose and contents of this study about developing a new

heuristic approach for generating non-permutation schedules for flowline-based

manufacturing systems with missing operations, which substantially decreases the

total flowtime, as well as significant improvement in makespan. The computational

results included in the previous chapter are analyzed and conclusions have been

made based on the analysis of those results. Some key remarks for future research

also have been proposed.

 4

CHAPTER 2

PROBLEM DEFINITION

2.1. FLOWSHOP SCHEDULING

A flowshop is a basic FBMS in which the machines (i.e. stages) are arranged in a

series order. In such a shop, starting from an initial machine, jobs flow through

several intermediary machines and ultimately get their operations done at a final

completion machine. Traditionally, such designs are referred to as ‘flowshop’, even

though an actual shop may comprise much more than a single configuration.

Through a flowshop, the work in each job is broken down into separate tasks called

operations and each operation is performed at a different machine. In particular, each

operation after the first has exactly one direct predecessor and each operation before

the last has exactly one direct successor, as shown below in Figure 2.1. Therefore,

each job requires a specific sequence of operations to be carried out for the job to be

complete. This type of structure is sometimes called a linear precedence structure

(Baker 1995).

Figure 2.1: The precedence structure of a job in a flowshop

The shop contains m different machines, and in the “pure” flowshop model each job

consists of m operations, each of which requiring a different machine. The machines

in a flowshop can thus be numbered m , 2, 1, ; and the operations of job j

numbered),(, ...),,2(),,1(jmjj , so that they correspond to the machine required.

For example, 53p denotes the operation time on machine 5 for job 3. Figure 2.2

represents the flow of work in “pure” flowshop, in which all operations require one

 5

operation on each machine.

Figure 2.2: Workflow in a pure flowshop

Figure 2.3 represents the flow of work in a more general flowshop, which will be the

subject matter of this thesis study. In the general case, jobs may require fewer than

m operations, their operations may not always require adjacent machines in the

numbered order i.e. there might be some missing operations, and the initial and final

operations may not always occur at machines 1 and m . Nevertheless, the flow of

work is still unidirectional, and the general case can be represented as a pure

flowshop in which some of the operations times are zero.

Figure 2.3: Workflow in a general flowshop

With machines in series, the five main properties of the flowshop model are similar

to those of the basic single-machine model.

Property 1: A set of n independent, multiple-operation jobs is available for

 6

processing at time zero. (Each job requires m operations, and each operation

requires a different machine.)

Property 2: Setup times for the operations are sequence-independent and

included in the processing times.

Property 3: Job descriptors are known in advance.

Property 4: All machines are continuously available.

Property 5: Once an operation begins, it proceeds without interruption.

One difference from the basic single-machine case is that inserted idle time may be

advantageous. In particular, also for the case of missing operations the unidirectional

sequences with partial changes through different stages provides various modeling

advantages for flowshops. In the single-machine model with simultaneous arrivals

the assumption that the “machine need never be kept idle when work is waiting” can

be made. In the flowshop case, however, inserted idle time may be needed to achieve

theoretical optimality. For example, consider the following two-job four-machine

problem.

Table 2.1: Processing times for two-job four-machine problem

Job j 1 2

jp1 1 4

jp2 4 1

jp3 4 1

jp4 1 4

Suppose that F (total flow time: ∑ =
=

n

j jFF
1

) is the measure of performance. The

two schedules shown in Figures 2.4a and 2.4b are the only schedules with no inserted

idle time, and in either schedule F = 24. The schedule in Figure 2.4c instead is the

optimal schedule, with F = 23. Note that in this third schedule, machine 3 is kept

idle at time t = 5, when operations (3, 1) could be started, in order to await the

completion of operation (2, 2).

 7

Figure 2.4: Three schedules for the example problem

For the single-machine model, it is trivial that there is a one-to-one relation between

a job sequence and a permutation of the numbers n , 2, 1, . To find an optimum

sequence, it was necessary to examine (at least implicitly) each of the sequences to

the !n different permutations. In the flowshop problem, there are !n different job

sequences possible for each machine, and as many as mn)!(different schedules can

be generated for the whole flowshop. While searching for the optimum, it would

obviously be helpful if many of these possibilities could be ignored. Through the

next section, the extent to which the search for an optimum can be reduced will be

discussed under the name of permutation flowshops. Then, the case 2=m will be

discussed in order to show the interesting points in its own right and to obtain a

building block for solving larger problems. The problem is generally formulated as

 8

integer or mixed integer programming problems with makespan as the objective

(Baker, 1995). However, throughout this thesis study, the minimization of total

(weighted) flowtime is also considered as a secondary objective of scheduling, as this

objective is more important and relevant than the objective of minimizing the

makespan in real life situations (Pinedo, 2002). Models with due-date-related

objectives are few and are out of the scope of this study.

2.2. PERMUTATION SCHEDULES

The example given in the previous section illustrates that it may not be sufficient to

consider only schedules in which the same job sequence occurs on each machine. On

the other hand, it is not always necessary to consider mn)!(schedules in determining

an optimum. The two dominance properties given below indicate how much of a

reduction is possible in flowshop problems.

Theorem 1: With respect to any regular measure of performance in the flowshop

model, it is sufficient to consider only schedules in which the same

job sequence occurs on the first two machines (Baker, 1995).

Consider a schedule in which the sequences on machines 1 and 2 are different.

Somewhere in such a schedule a pair of jobs, i and j can be found such that

operation) ,1(i preceding an adjacent operation) ,1(j but operation) ,2(j preceding

) ,2(i , as in Figure 2.5(a). For this pair, the order of the jobs on machine 2 can be

imposed to machine 1 (j before i), without adversely affecting the performance

measure (Baker 1995). If we interchange operations) ,1(i and) ,1(j , resulting in the

schedule shown in Figure 2.5(b), then

• with the exception of) ,1(i , no operation is delayed,

• operation) ,2(i is not delayed, and

• earlier processing of) ,2(j and other operations as well, may result.

 9

Figure 2.5: A pair-wise interchange of two operations on machine 1

Therefore, the interchange would not increase the completion time of any operation

on machine 2 or on any subsequent machine. This means that no increase in any job

completion time could result from the interchange, and hence no increase will occur

in any regular measure of performance. Since the same argument applies to any

schedule in which job sequences differ on machines 1 and 2, the property must hold.

Theorem 2: With respect to the makespan of the flowshop model, it is sufficient to

consider only schedules in which the same job sequence occurs on the

last two machines (Baker, 1995).

Consider a schedule in which the sequences on machines)1(−m and m are

different. Somewhere in such a schedule a pair of jobs, i and j can be found such

that, operation),(jm preceding an adjacent operation),(im , but operation),1(im −

preceding),1(jm − . As a result of interchanging operations),(im and),(jm ,

• with the exception of),(jm , no operation is delayed,

• operation),(jm completes no later than),(im in the original schedule,

• earlier processing of operations),(im and),(jm may result.

Therefore, the interchange would not lead to an increase in the makespan of the

schedule. Again, this type of argument applies to any schedule in which job

sequences differ on machines)1(−m and m . The implication of these two theorems

is that in searching for an optimal schedule, it is necessary to consider different job

sequences on different machines with these two general exceptions.

 10

1. For the case of obtaining any regular performance measure, it is sufficient

to keep the same job order to occur on the first two machines, so that
1)!(−mn schedules constitute a dominant set.

2. For the problems with the makespan criterion, it is also sufficient for the

same job order to occur on the last two machines, so that 2)!(−mn

schedules constitute a dominant set for 2>m .

The outcomes of these two theorems will lead to the basic problem statement of this

thesis. Based on any regular performance measure, making partial pair wise

interchanges in the job sequence of a permutation schedule (i.e. making it a non-

permutation schedule) schedule may lead to significant improvements in terms of

that specific performance measure. For larger problems, a new heuristic approach has

to be developed in order to improve the “makespan” together with the “total flow

time” of the newly formed NPS (i.e. non-permutation schedule) based on an initial

PS on hand.

2.3. MATHEMATICAL FORMULATION

The mathematical formulation developed for the permutation flowshop scheduling

problem by Gupta and Tseng (2004) is as follows. Before the listed equations of the

mathematical model, the notations used for the permutation flowshop MIP (mixed-

integer programming) model are as follows. The subscript symbols are for r for

machines, for)1(Mr ≤≤ ; i and k for jobs),1(Nki ≤≤ where the parameters

M and N represent the number of machines and jobs, respectively. { }rjTT = is the

NM × matrix of job processing times, with =riT processing time of job i on

machine r . The variables of the MIP model are then defined as follows:

rjB start (begin) time of job in sequence position j on machine r

riC completion time of job i on machine r

ikD 1, if job i is scheduled any time before job k ; 0 otherwise; ki <

 11

rjE completion (end) time of the job in position j on machine r

riS start time of job i on machine r

rjX idle time on machine r before the start of job in sequence position j

rjY idle time of job in sequence position j after it finishes processing on

 machine r

ijZ 1, if job i is assigned to sequence position j , 0 otherwise.

maxC maximum flowtime (makespan) of the schedule determined by the

 completion time of the job in the last sequence position on the last machine.

ikD and ijZ are binary integer variables. The others are real variables that take

integer values when processing times are also given as integer values.

Minimize (Makespan) MNCC == max

subject to

∑
=

=
N

j
ijZ

1
1; Ni ≤≤1 , (2.1)

∑
=

=
N

i
ijZ

1
1; Nj ≤≤1 (2.2)

∑ ∑
= =

++++++ =−+−+−
N

i

N

i
rjjrjrjrijirjiri YYXXZTZT

1 1
1,1,11,,11, 0 ;

)11 ;11(−≤≤−≤≤ NjMr , (2.3)

011,1
1

11 =+−+ +
=
∑ rr

N

i
riri YXXZT ;

)11(−≤≤ Mr , (2.4)

∑ ∑
= =

+=
N

i

N

p
MpMiMN XTC

1 1

 (2.5)

For this MIP model, the first two constraints (i.e. the equation groups (2.1) and (2.2))

ensure that each job is assigned to just one sequence position and each sequence

 12

position is filled with one and only one job, respectively. Constraints (2.3) and (2.4)

ensure that;

a) the job in sequence position j cannot begin processing on machine 1+r ,

until it has completed its processing on machine r ;

b) the job in sequence position 1+j cannot begin its processing on machine r

until the job in sequence position j has completed its processing on that

machine.

And the final constraint, namely equation (2.5) measures makespan of the set of jobs.

There are various derivations and improvements on this basic MIP model developed

by Wagner (1959). This basic notation can be extended in order to make it applicable

also for the cases where non-permutation schedules are needed. This simple shift can

be made by adding another index s where)1(Ms ≤≤ indicating the sequence of

jobs (which is differing in this case) through each machine. Therefore, with the

addition of the new index, the new variables of the model in an updated form are as

follows:

rsjB start (begin) time of job in sequence position j in sequence s on machine r

riC completion time of job i on machine r

iksD 1, if job i is scheduled before job k in sequence s ; 0 otherwise; ki <

rjsE completion (end) time of the job in position j in sequence s on machine r

riS start time of job i on machine r

rjsX idle time on machine r before the start of job in sequence position j , in

sequence s

rjsY idle time of job in sequence position j , in sequence s after it finishes

processing on machine r

ijsZ 1, if job i is assigned to sequence position j , in sequence s ; 0 otherwise.

maxC maximum flowtime (makespan) of the schedule determined by the

 completion time of the job in the last sequence position on the last machine.

 13

Based on the new variables, the MIP model formulation (with the same objective

function minimizing MNCC == max) giving non-permutation schedules is as follows:

subject to

∑
=

=
N

j
isjZ

1
1 ; Ni ≤≤1 ,)1(Ms ≤≤ (2.6)

∑
=

=
N

i
ijsZ

1

1; Nj ≤≤1 ,)1(Ms ≤≤ (2.7)

∑ ∑
= =

++++++ =−+−+−
N

i

N

i
rjssjrsjrsjrijsirsjiri YYXXZTZT

1 1
,1,,1,1,1,,1,1, 0 ;

)11 ;11(−≤≤−≤≤ NjMr ,)1(Ms ≤≤ (2.8)

01,1,1
1

11 =+−+ +
=
∑ srsr

N

i
srsiri YXXZT ;

)11(−≤≤ Mr ,)1(Ms ≤≤ (2.9)

∑ ∑
= =

+=
N

i

N

p
MpMiMN XTC

1 1

 (2.10)

This second model will ensure that ijZ values are not necessarily the same for each

distinct value of s implying the generation of non-permutation sequences. However,

two more constraints (i.e. 2.11 & 2.12) have to be added to ensure that job i either

precedes job k or follows job k in the sequence s but not both. By taking P as a

very large number:

riikikri TDPCC ≥×−− ;

)1;1(NiMr <≤≤≤≤ (2.11)

rkikikri TPDPCC −≥×−− ;

)1;1(NiMr <≤≤≤≤ (2.12)

 14

CHAPTER 3

LITERATURE REVIEW & MOTIVATION FOR THIS STUDY

3.1. HEURISTICS FOR THE FLOWSHOP SCHEDULING PROBLEM

This section focuses on the different types of heuristics existing in the literature in

order to create schedules with better performance in terms of makespan as the

essential performance criterion. The complexity of the flowshop scheduling problem

renders exact solution methods impractical for instances of more than a reasonable

jobs and/or machines. Some of these heuristics are going to be employed in the core

discussions of this study. The heuristics can be separated as either constructive

heuristics or improvement heuristics, the former are heuristics that build a feasible

schedule from scratch and the latter are heuristics that try to improve a previously

generated schedule by normally applying some form of specific problem knowledge.

3.1.1. CONSTRUCTIVE HEURISTICS

Johnson’s algorithm (1954) is the earliest known heuristic for the PFSP, which

provides an optimal solution for two machines. Moreover, it can be used as a

heuristic for the m machine case by clustering the m machines into two “virtual”

machines. The computational complexity of this heuristic is)log(nnO . Other

authors have used the general ideas of Johnson’s rule in their algorithms, for

example, Dudek and Teuton (1964) developed an stagem − rule for the permutation

flowshop scheduling problem (PFSP) that minimizes the idle time accumulated on

the last machine while processing each job by using Johnson’s approach.

Campbell et al. (1970) developed a heuristic algorithm which is basically an

extension of Johnson’s algorithm. In this case, several schedules are constructed and

the best one is given as result. The heuristic is known as CDS and builds 1−m

schedules by clustering the m original machines into two virtual machines and

 15

solving the generated two machine problem by repeatedly applying the Johnson’s

rule. The CDS heuristic has a computational complexity of)log(2 nmnnmO + . In a

more recent work, Koulamas (1998) reported a new two phase heuristic, called HFC.

In the first phase, the HFC heuristic makes extensive use of Johnson’s algorithm. The

second phase improves the resulting schedule from the first phase by allowing job

passing between machines, i.e. by allowing non-permutation schedules. This is a

very interesting idea, since it is known that permutation schedules are only dominant

for the three-machine case. In the general m machine case, a permutation schedule is

not necessarily optimal anymore (Potts et al., 1991). The significance of this heuristic

relies on the fact that it departs from the PFSP problem by allowing job passing.

Therefore, it has been included in the discussion for comparison reasons since as for

some instances job passing will be quite beneficial. The benefits of permitting job

passing are furthermore extensively employed throughout the later stages of this

thesis study. Taking into account both phases, the general computational complexity

of this heuristic is roughly)(22nmO .

Another approach is to assign a weight or “index” to every job and then arrange the

sequence by sorting the jobs according to the assigned index. This idea was first

exploited by Palmer (1965) when he developed a very simple heuristic in which for

every job a “slope index” is calculated and then the jobs are scheduled by non-

increasing order of this index, which leads to a computational complexity of

)log(nnnmO + .

3.1.1.1. NAWAZ ET AL.’S (NEH) HEURISTIC

Nawaz et al.’s (1983) NEH heuristic is regarded as the best heuristic for the PFSP

(Taillard, 1990). It is based on the idea that jobs with high processing times on all the

machines should be scheduled as early in the sequence as possible. The procedure is

straightforward:

i. The total processing times for the jobs are calculated using the formulae:

∑ =
==∀

m

j iji pPnii
1

,,.....,1 , job .

 16

ii. The jobs are sorted in non-increasing order of iP . Then the first two jobs

(those two with higher iP) are taken and the two possible schedules

containing them are evaluated.

iii. Take job nii ,.....,3 , = and find the best schedule by placing it in all the

possible i positions in the sequence of jobs that are already scheduled. For

example, if 4=i the already constructed sequence would contain the first

three jobs of the sorted list calculated in step 2, then the fourth job could be

placed either in the first, in the second, in the third or in the last position of

the sequence. The best sequence of the four would be selected for the next

iteration.

Recalling the previous paragraphs, it is obvious that the NEH heuristic is based

neither on Johnson’s algorithm nor on slope indexes. The only drawback is that a

total of [] 12/)1(−+nn schedules have to be evaluated, being n of those schedules

complete sequences. This makes the complexity of NEH rise to)(3mnO which can

be lengthy for big problem instances.

However, Taillard (1990) reduced NEH’s complexity to)(2mnO by calculating all

the partial schedules in a given iteration in a single step. Sarin and Lefoka (1993)

exploited the idea of minimizing idle time on the last machine since any increase in

the idle time on the last machine will translate into an increase in the total completion

time or makespan. In this way, the sequence is completed by inserting one job at a

time and priority is given to the job that, once added to the sequence, would result in

minimal added idle time on machine m . The method proposed compares well with

the NEH heuristic but only when the number of machines in a problem exceeds the

number of jobs.

Pour (2001) proposed another insertion method. This new heuristic is based on the

idea of job exchanging and is similar to the NEH method. The performance of this

method is evaluated against the NEH, CDS and Palmer’s heuristics showing better

 17

effectiveness only when a big number of machines is considered, and being the

computational complexity)(3mnO . More recently, Framinan et al. (2003) have

published a study about the NEH heuristic where different initializations and

orderings are considered. The study also includes different objective functions

including makespan, idle-time and flowtime. Framinan et al. (2003) have proven that

NEH heuristic as an insertion method outperforms most of the other heuristics based

on all of the performance criteria mentioned.

Other authors have proposed heuristics that use one or more of the previous ideas, for

example, Gupta (1972) proposed three heuristic methods, named minimum idle time

(MINIT), minimum completion time (MICOT) and MINIMAX algorithms, the first

two are based on job pair exchanges and the MINIMAX is based on Johnson’s rule.

These three algorithms were tested with the objectives of maxC and mean flowtime

)(F and compared with the CDS algorithm, proving to be superior only when

considering the F objective. Additionally, there are many other methods developed,

which are neither based on Johnson’s nor Palmer’s ideas and not constructing

sequences by job exchanges and/or insertions only. For example, King and Spachis

(1980) evaluated various heuristics for the PFSP and for the flowshop with no job

waiting (no-wait flowshop). For the PFSP, a total of five heuristics based on

dispatching rules were developed. A different approach is shown in Stinson and

Smith (1982) where the authors solve the permutation flowshop problem by using a

well known heuristic for the Traveling Salesman Problem (TSP) as indicated by Ruiz

and Maroto (2005).

3.1.2. IMPROVEMENT HEURISTICS

Contrary to constructive heuristics, improvement heuristics start from an already

built schedule and try to improve it by some given procedure. Dannenbring (1977)

proposed two simple improvement heuristics; these are Rapid Access with Close

Order Search (RACS) and Rapid Access with Extensive Search (RAES). The reason

behind these two heuristics is that Dannenbring found that simply swapping two

adjacent jobs in a sequence obtained by the RA heuristic resulted in an optimal

 18

schedule. RACS works by swapping every adjacent pair of jobs in a sequence (this is

1−n steps). The best schedule among the 1−n generated is then given as a result. In

RAES heuristic, RACS is repeatedly applied while improvements are found. Both

RACS and RAES heuristics start from a schedule generated with the RA constructive

heuristic.

Ho and Chang (1991) developed a method that works with the idea of minimizing

the elapsed times between the end of the processing of a job in a machine and the

beginning of the processing of the same job in the following machine in the

sequence. The authors refer to this time as ‘‘gap’’. The algorithm calculates the gaps

for every possible pair of jobs and machines and then by a series of calculations, the

heuristic swaps jobs depending on the value of the gaps associated with them. The

heuristic starts from the CDS heuristic by Campbell et al (1970).

Ho (1995) developed a heuristic composed of several iterations of an improvement

scheme based on finding a local optimum by adjacent pairwise interchange of jobs,

and improving the solution by insertion (or shift) movements. This heuristic

performs significantly better than the others, although its main disadvantage is that it

employs much higher CPU time. In fact, this heuristic seems closer to local search

techniques like simulated annealing or taboo search and it probably has to be

discarded for large problem sizes and/or in those environments where sequencing

decisions are required in very short time intervals.

Suliman (2000) developed an improvement heuristic, which in the first phase,

generates a schedule with the CDS heuristic method. In the second phase, the

schedule generated is improved with a job pair exchange mechanism. In order to

reduce the computational burden of an exhaustive pair exchange mechanism, a

directionality constraint is imposed to reduce the search space. For example, if by

moving a job forward, a better schedule is obtained, it is assumed that better

schedules can be achieved by maintaining the forward movement and not allowing a

backward movement.

 19

Table 3.1: Constructive and improvement heuristics for the PFSP

Year Author/s Acronym Typea Commentsb

1954 Johnson Johns C Exact for two machine case
1961 Page Page C Based on sorting

1964 Dudek and
Teuton C Based on Johnson’s rule

1965 Palmer Palme C Based on slope indexes
1970 Campbell et al. CDS C Based on Johnson’s rule
1971 Gupta Gupta C Based on slope indexes
1972 Gupta C Three heuristics considered

1976 Bonney and
Gundry C Based on slope matching

1977 Dannenbring RA, RACS,
RAES C/I Three heuristics considered:

RA, RACS, and RAES

1980 King and
Spachis C 5 Dispatching rule based

heuristics

1982 Stinson and
Smith C 6 Heuristics, based on TSP

1983 Nawaz et al. NEH C Job priority/insertion

1988 Hundal and
Rajgopal HunRa C Palmer’s based heuristic

1991 Ho and Chang HoCha I Gap minimization in between
jobs

1993 Sarin and
Lefoka C Last machine idle time

minimization

1998 Koulamas Koula C/I
Two phases, 1st Johnson-
based, 2nd phase improvement
by job passing

2000 Suliman Sulim I Job pair exchange
2001 Davoud Pour Pour C Job exchanging
2003 Framinan et al. C Study on the NEH heuristic

a C: Constructive, I: Improvement.
b Makespan is the primary objective

3.1.3. METAHEURISTICS FOR THE FSP

Metaheuristics are general heuristic procedures that can be applied to many

problems, and, in our case, to the PFSP. These methods normally start from a

sequence constructed by heuristics and iterate until a stopping criterion is met. There

 20

is plenty of research work done for the PFSP and metaheuristics. Table 3.5 includes a

summary of the some of the noteworthy papers mainly dealing with simulated

annealing (SA), Tabu search (TS) and genetic algorithms (GA) and other

metaheuristics, as well as hybrid methods. Makespan is the primary criterion of

performance also for these heuristics for the PFSP.

Table 3.2: Metaheuristics for the permutation flow-shop problem

Year Author/s Acronym Type Comments
1989 Osman and Potts SAOP SA

 Widmer and Hertz Spirit TS Initial solution based on
the OTSP

1990 Taillard TS
 Ogbu and Smith SA
1993 Werner Other Path algorithms
 Reeves TS
1995 Chen et al. GAChen GA PMX crossover
 Reeves GAReev GA Adaptive mutation rate
 Ishibuchi et al. SA Two SA considered

 Zegordi et al. SA Combines sequence
knowledge

 Moccellin TS Based on SPIRIT
1996 Murata et al. GAMIT Hybrid GA + Local Search/SA

 Nowicki and
Smutnicki TS Neighbourhood by blocks

of jobs
1998 Stützle ILS Other Iterated Local Search

 Ben-Daya and Al-
Fawzan TS Intensification +

diversification

 Reeves and Yamada GA GA operators with
problem knowledge

2000 Moccellin and dos
Santos Hybrid TS + SA

2001 Ponnambalam et al. GAPAC GA GPX crossover

 Wodecki and
Bozejko SA Parallel simulated

annealing

2003 Wang and Zheng Hybrid GA + SA, multicrossover
operators

The methods listed in tables 3.4 and 3.5 are the most known heuristics and

metaheuristics and also some original methods that are either recent and have not

been evaluated before or some that incorporate new ideas not previously used by

other algorithms.

 21

3.2. COMPUTATIONAL EVALUATIONS AND INSIGHTS

The discussion for the evaluation of various heuristics generating permutation

schedules has given a lot of insight to the main direction followed throughout this

thesis study. At this point, the outcome of the research done by Dannenbring (1977)

provides valuable insights for the way of generating non-permutation schedules.

Dannenbring evaluates the following 11 heuristics;

• rapid access with closed order search (RACS),

• rapid access with extensive search (RAES),

• individual exchange heuristic (IE),

• and the group exchange heuristic (GE),

as the improvement procedures. Adding those four improvement procedures, he also

considers the following five heuristics;

• rapid access (RA),

• slope order index (SO),

• merging (M),

• pairing (P),

• linear branch and bound (LBB)

as the solution-generating procedures which give a single solution. Additionally the

two heuristics, namely CDS and random search (R) generate multiple solutions from

which the best one is chosen.

While making extensive testing over a total of 1580 problems with the derivation of

solutions using each heuristic, Dannenbring divides the discussion of the results into

two parts on the basis of the problem size. The problems having number of jobs in

between 3 and 6 are treated as small, and the ones having number of jobs in between

7 and 50 are referred to as large problems. It can be seen from Table 3.3 that RAES

heuristic outperforms all other heuristics based on all criteria for the small problems.

When the performance of RA with two of its derivations, namely RACS and RAES

is compared, it is clearly evident that using a solution improvement routine is clearly

advantageous.

 22

Table 3.3: Evaluation results of heuristics on small problems (Dannenbring 1977)

Solution

Method

Relative

Error (%)
Consistency

Error

Potential

Ratio (%)

PPrrooppoorrttiioonn

OOppttiimmaall**

((%%))

IImmpprroovveemmeenntt

PPootteennttiiaall ((%%))

Sampling

Quality

(%)

RAES 0.64 3.18 2.32 7755..8866 11..3333 8.40

RACS 1.30 7.87 4.66 6633..1133 33..0022 10.28

CDS 1.73 11.66 5.68 5555..4477 33..0099 10.50

M 1.74 11.31 5.97 5566..8888 33..9922 11.29

R 2,03 14.52 7.12 4455..0000 44..1122 11.68

GE 2.02 25.88 8.82 5500..3322 55..1199 13.15

RA 3.65 33.34 13.57 3344..7777 1111..2211 18.36

LBB 3.82 42.84 13.25 4422..8899 1100..1122 17.44

SO 3.98 37.24 14.26 2299..7788 1100..4466 19.57

P 4.38 42.51 13.77 2299..2222 99..0044 17.13

IE 4.99 69.70 15.71 2299..2222 1111..9922 20.17

Average 2.82 27.28 9.56 4477..6655 66..6677 14.36
* Percentage of the solutions equaling the optimum or estimate of the optimum makespan.

The RA heuristic, which examines a single solution, is below average in

performance. The RACS and RAES procedures, which improved the output solution

of RA, did considerably better. It has also to be noted that the four of the five worst-

performing algorithms are single-shot solution generating heuristics. This

substantiates the intuitive notion that solution improvement heuristics are preferable

to those that consider only one situation. The later stages will provide strong

arguments for the benefits of the use of an initial schedule at hand prior to

developing NPS, and employing simple sequencing rules while making partial

interchanges (i.e. job-passing) in order to get the improved NPS for the flowshop.

The jump made by R from being fifth to best indicates a decline in the performance

of all heuristic methods, as the problem size is enlarged. RACS and RA together

declined from second to fourth and seventh to eight respectively, as RACS uses RA’s

output as the initial solution.

 23

Table 3.4: Evaluation results of heuristics on large problems (Dannenbring 1977)

Solution

Method

Maximum

Relative

Error (%)

Estimated

Relative

Error (%)

Minimum

Relative

Error (%)

Consistency

PPrroopp.. OOpptt..

oorr EEsstt’’dd..

((%%))

PPrroopp.. BBeesstt

HHeeuurriissttiicc**

((%%))

RAES 4.96 1.58 1.52 7.67 1199..3388 7711..2255

R 6.70 3.17 3.11 16.56 66..8888 1188..1133

CDS 7.62 4.11 4.06 29.71 1122..5500 1155..0000

RACS 7.80 4.26 4.20 31.53 1133..1133 1144..3388

M 8.25 4.68 4.62 37.14 77..5500 1111..2255

GE 9.27 5.68 5.63 48.83 00..6633 55..0000

SO 9.76 6.18 6.12 54.96 22..5500 33..7755

RA 10.21 6.61 6.55 65.55 55..0000 55..0000

LBB 11.97 8.19 8.13 101.88 00..6633 00..6633

P 12.09 8.40 8.34 93.90 99..3388 1100..0000

IE 12.83 9.19 9.13 119.72 00..6633 11..2255

Average 9.22 5.64 5.58 55.22 77..1111 1144..1155
* Percentage of the solutions equaling the best heuristic solution (minimizing makespan).

The further decline in RACS performance indicates that the enlarging solution space

requires more number of interchanges rather than a single interchange, as RACS with

a single interchange cannot get close to the optimum on larger problems. The RAES

algorithm remains best (with an increasing gap over performance), which gives an

insight that RAES is a good candidate for use in future comparisons with non-

permutation schedule generators executing in an ‘improvement’ manner.

Dannenbring also declared that the hardest problems for heuristics to solve (i.e.,

more subject to error) are not necessarily the largest problems, but are in fact the

intermediate-sized problems where the number of jobs is approximately equal to the

number of machines.

3.3. BASIC MOTIVATION FOR DEVELOPING NPS

For the m-machine flow shop scheduling problem, most studies are performed in

order to develop permutation schedules. Parallel to the discussion and research made

 24

for the development of new heuristic methods, which generate permutation

schedules, some researchers have emphasized the need for obtaining non-

permutation sequences through steps as they provide better solutions with

performance indicators closer to optimal scenario. In their relevant paper, Potts et al.

(1991) have shown that for the problem of minimizing maximum completion time,

developing permutation schedules becomes very costly. Potts et al. proven this result

by exhibiting a family of instances for which the value of best permutation schedule

is worse than that of the true optimal schedule by a factor more than 2/m .

The objective for the permutation flow shop problem is taken as to find a schedule,

which minimizes the maximum completion time of any job, i.e.)(maxmax jj CC = .

All schedules are;

• non-preemptive schedules,

• minimizing)(maxmax jj CC = .

Most research has focused on permutation schedules, because of the relative

combinatorial simplicity. Unfortunately, this simplicity is bought at the price of

drastically inferior schedules in terms of minimizing maximum completion time (see

Table 3.7). The purpose of the following derivations is to study the worst-case

behavior of the ratio of the maximum completion time of an optimum permutation

schedule, denoted by)(*
max πC , to the optimum value *

maxC . Potts et al. focused on the

ratio of the outcome of permutation schedule to that of the optimal one, namely:
*
max

*
max /)(CC π , and they have indicated:

• =)(Ip ratio for instance I (proven that not bounded by any constant)

• ⎣ ⎦ 2/2/1)(+≥ mIp m (where the instance mI involves m machines).

The example with case nI 2 is given in order the make things easy to grasp:

• there are n jobs to be processed in n2 machines

 25

 ⎭
⎬
⎫

⎩
⎨
⎧ +=+=

=
otherwise 0

j-1n ior n ji if 1
ijp

This guarantees that the processing time is 1 just for two operations per each job, and

those two operations are distinct for each job to be processed. Also, when 0=ijp ,

this value should rather be interpreted as an arbitrarily small positive constant. It is

easy to see that 2*
max =C , as all the jobs are completed at the end of the second time

unit. The fundamental insight into analyzing the length of the permutation schedules

for these instances is the following easy fact:

• For the instance nI 2 , 1max += nC for the schedules given by either of the

formulations n,........2,1 or 1,......1, −nn . Figure 3.4 involves a simple

illustration of this fact on a Gantt chart.

Figure 3.4: Gantt chart of the permutation schedule for the instance I2n

This simple fact has important consequences; Potts et al. (1991) prove that if there is

an increasing or decreasing subsequence of length s in the permutation, then for this

permutation schedule 1max +≥ sC .

 26

3.4. A RECENT PAPER

Just before the completion of this thesis study, a very recent study by Liao et al.

(2006) has been effective on the directions of the computational evaluations. Liao et

al. present an extensive computational investigation concerning the performance

comparison between permutation and non-permutation schedules. The computational

results indicate that in general, there is little improvement made by non-permutation

schedules over permutation schedules with respect to completion-time based criteria,

for the problem instances where percentage of missing operations are low.

By making a comparison of the results of NPS-generating heuristics, namely

Tandon’s Simulated Annealing (SA) based heuristic (Tandon et al. 1991) and

Pughazhendhi et al.’s (2002) heuristic with the resultant values of permutation

schedules and optimal values, Liao et al. point out that the percentage improvements

of NPS generated by most of the heuristics is not that much (i.e. that significant)

based on the makespan as the primary performance criterion. By using Taillard’s

benchmark problems (Taillard 1993) and NEH heuristic as the PS generator for

problem instances, Liao et al. have demonstrated the following results on the basis of

computational experiments:

a) The non-permutation schedule requires much more computation time than the

permutation schedule. The CPU time required for obtaining the NPS for the

same problem instance compared to the PS is 5 to 10 times more.

b) The number of improved problems (i.e. non-permutation schedules better

than permutation schedules) is small with respect to the maxC and maxT , but it

is quite large with respect to the ∑ jC , ∑ jjCw , ∑ jT and

∑ jjTw (weighted tardiness) criteria.

c) For the makespan as the primary performance criterion, the percentage

improvements are rather small and limited. The percentage of problems that a

 27

permutation schedule can be improved by a non-permutation schedule is

high, except for the maxC criterion.

These results actually have driven the contents of this thesis to also involve the flow-

time as the secondary performance criterion, in order to carefully assess the

improvement made by the proposed heuristic approach generating NPS.

 28

CHAPTER 4

THE PROPOSED APPROACH

4.1. JOB-PASSING: THE TOOL FOR NPS GENERATION

As discussed earlier in detail; flowshop scheduling problems are usually handled as

permutation flowshops, because of the computational complexity associated with the

non-permutation schedules. However, the technical framework in real-life cases

often allows jobs to pass each other during the execution of various operations

through machines within a flowshop. Having a missing operation of a job on a

machine, this ‘job passing’ becomes a natural way to process jobs unless the

underlying system is not an inflexible flow-line. For the case of the generation of

permutations schedules, missing operations are usually handled as zero processing

time operations, in order not to allow job passing through machines. A study by

Leisten and Kolbe (1998) has shown that even permitting job passing for missing

operations, while keeping the permutation constraint improves total completion time

only under rather specific circumstances. Leisten and Kolbe (1998) also propose

‘partial permutation flowshop sequencing’ to overcome these specific formal

requirements with respect to the real-world problem setting.

The basic motivation for generation of non-permutation schedules based on the fact

that for most of the flow-shops some jobs were not to be processed on every

machine. The literature on flowshop sequencing (e.g. Graves 1981, Domschke et al.

1993) has usually been handling the missing operations as 0-processing time

operations. Nevertheless, a job with missing operations visits every machine,

although Sridhar and Rajendran (1993) pointed out that there may be differences in

completion times between zero-processing times and missing operations. In the a

real-world flow-line based manufacturing setting, having a missing operation on a

machine allows the job to pass by this machine, independent of whether the machine

may be busy with another job or there may even be a queue of jobs in front of this

 29

machine. This way of scheduling jobs with missing operations is closer to the real-

world problem, thus the strict permutation constraint has to be someway violated.

The analysis of the situation of missing operations and the derivation of results for

schedules of a (permutation) flowshop with missing operations follows.

For a given job sequence, let),(jiS and),(jiT be the starting and finishing time,

and ijp the processing time of job i in the job sequence []Ii ,....,1∈ on machine j in

the machine sequence []Ii ,....,1∈ , i.e.

ijpjiSjiT +=),(),(.

For a permutation flowshop, the conventional recursive formulation of operation

finishing times (CT) is:

[] ij
CCC pjiTjiTjiT +−−=)1,();,1(max),(.

Instead of using this conventional recursive formula, Sridhar and Rajendran (1993)

formulates the model where a job finished on one machine having a missing

operation on the next machine is allowed to pass this next machine and go straight to

the machine where it has its next non-missing operation, using the following

formula:

Compute),(jiT SR job by job and within the jobs, machine by machine according to

[]

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=−
−

=
≠+−

=

mo if),1(
 1,...,1 machineson job of

operation timeprocessing zero-non
last theof timefinishing With

mo if);,1(max

),(

ij
SR

ijij
SR

SR

pjiT
ji

V
ppVjiT

jiT

mo =ijp means that the operation),(ji is a missing operation. V determines job

s'i earliest availability for processing on machine j .

The relative job-loading sequence on every machine remains constant as in

permutation schedules. Sridhar and Rajendran (1993) show positive effects to the

objective function’s makespan and total flowtime. However, if mo =ijp , then

 30

mo 1,1 ≠+− jip results in)1,1()1,(+−≥+ jiTjiS to keep the permutation on machine

1+j . Therefore, it is obvious that a necessary condition for an improvement

(reduction of the makespan, or as also stated as ‘acceleration of the schedule’) by

using the approach of Sridhar and Rajendran is mo 1,1 == +− jiij pp . The following

iterations give the renewed recursive formula of),(jiT SR for mo 1,1 == +− jiij pp .

Evidently, if mo 1,1 == +− jiij pp ,

[]
[][]

[]
[] 1,

1,

1,

)1,();,1();1,2(max

),1();1,2(max
)1,();,1(maxmax

)1,1();,(max)1,(

+

+

+

+−−+−=

+−+−=

−−=

++−=+

ji
CCC

ji
CC

CC

ji
CCC

pjiTjiTjiT

pjiTjiT
jiTjiT

pjiTjiTjiT

and

[] ij
SRSRSR pjiTjiTjiT +−+−=+)1,();1,2(max)1,(.

Hence,

[])1,()1,()1,();1,2(max),1(+<+⇒−+−>− jiTjiTjiTjiTjiT CSR .

To be more specific, for an acceleration of the schedule we need the following

conditions:

mo 1,1, == +− jiji pp

and

[])1,2();1,(max),1(+−−>− jiTjiTjiT . Figure 4.1 gives an illustration of the

situation mentioned above. These specific requirements guarantee the permutation to

be kept in the overall schedule while ‘improving’ the completion time (at least of job

i on machine j). This is a good explanation for scheduling while keeping the

relative job sequence (Leisten & Kolbe, 1998).

 31

Figure 4.1: Necessary and sufficient conditions for)1,()1,(+<+ jiTjiT CSR

The conditions are ‘necessary and sufficient’ for an additional acceleration

overlaying possible effects caused by an identical situation ‘north-west’ of operation

),(ji in Figure 4.1.

Allowing job-passing seems to be more adequate with respect to the real-world

problem unless it is not an inflexible flowshop rather than keeping the strict

permutation schedule through each machine.

A job i with missing operation on machine j can directly be appended to the queue

in front of machine jjj ≥+ 'for 1' , where it has its next non-missing operation when

it is finished on machine 1−j . Since from the real-world view it is obvious that this

violation of permutation constraint might be allowed, we propose to keep the new

sequence of jobs throughout the machines down the flowshop.

To guarantee an at least myopic acceleration of the schedule, passing could be

restricted to situations where job i can start on machine 1'+j before job 1−i can

start on this machine, i.e.

[])1',2();1,(max)',1(+−−>− jiTjiTjiT (see Figure 4.1). (Equation 4.1)

This relaxation of permutation flowshop is called ‘partial permutation flowshop’ by

Leisten & Kolbe (1998), since job passing is allowed only in the appearance of

 32

missing operations, whereas the permutation assumption is kept at every non-missing

operation.

If missing operations exist and the conditions stated above are satisfied, the

advantages of job passing might occur when considering the objective functions total

flowtime or makespan. However, the important thing is that; the effect of job passing

usually cannot be evaluated without considering the whole schedule. Therefore, at

every point of applicability, branching into job passing and non-job passing seems to

be reasonable. If many missing operations occur, Leisten & Kolbe (1998)

recommends the application of branch-and-bound procedures. The partial

permutation therefore, is realizable with the following example algorithm as an

example algorithm, which employs job-passing:

Step 1: Generate a good initial permutation [e.g. by one of the methods mentioned

in King & Spachis 1980, Park et al. 1984, Lahiri et al. 1993, using, e.g. the

classical approach (Step 2)].

Step 2: Search machine by machine and within the machines job by job for the next

missing operation),(ji . If this is the first iteration, start with job 1 on

machine 1.

Step 3: When the inequality [])1',2();1,(max)',1(+−−>− jiTjiTjiT does not

apply continue with Step 4. Else, using Step 3, calculate the finishing times

up to the relevant finishing times)1',2(),',1(),1,(+−−− jiTjiTjiT with 'j

being the machine where job i has last consecutive missing operation behind

machine 1−j . Analyze whether necessary conditions for partial

permutation are fulfilled. If not, continue with Step 2.

Step 4: Branch:

- keep the permutation unchanged up to the next node (next missing

operation),

- put job i with missing operation on machine j in front of its next

machine 1'+j with non-missing operation (using the FCFS-rule).

Step 5: For each branch, continue with Step 2.

 33

The algorithm given above in a simplistic manner will terminate when no more

missing operations exist and every branch has been evaluated for all jobs. (The

integration of a bounding procedure – if necessary – is obvious.) Here, it has to be

noted that while calculating finishing times (via step 3), a further missing operation

),(** ji with ji <* and '* jjj << might appear ‘north-east’ of operation),(ji .

Since without a decision how to treat this missing operation finishing times cannot be

calculated, Steps (3) and (4) of the algorithm may be executed at this additional node

),(** ji as an inner loop of the algorithm (Leisten & Kolbe, 1998). Alternatively, to

reduce complexity it should be considered

(a) to ignore the inequality [])1',2();1,(max)',1(+−−>− jiTjiTjiT

at node),(ji , or

(b) to analyze whether at least myopic acceleration can be guaranteed

by taking job i only to machine *j .

Then, “Equation 4.1” has to be modified as

[])1,2();1,(max)',1(* +−−>− jiTjiTjiT

in order to use this information at Step (4b).

Tables 4.1, 4.2, and 4.3 include an illustration of the use of job-passing through

flowshops. Table 4.1 includes the operation durations for a 4-job, 3-machine problem

with missing operations of jobs. The missing operations for jobs are indicated by the

zero processing times for the job on the corresponding machine. Tables 4.2 and 4.3

include a permutation and non-permutation schedule of the jobs given at table 4.1

respectively. A close look into the table 4.3 reveals that the permutation sequence

could be changed so as to result in a feasible non-permutation schedule (i.e., a partial

permutation schedule as discussed within the beginning of this section). This finding

in fact forms the basics of the heuristic approach that has been developed and

presented throughout this thesis study.

 34

Table 4.1: Processing times for a 4-job, 3-machine problem

Job Machine

 1 2 3

1 20 0 * 30

2 0 * 10 10

3 10 10 0 *

4 20 70 80

Looking at the Table 4.1 (and recalling the previous discussions) it is obvious that

solutions obtained by employing permutation schedules (Table 4.2) need not be

optimal for a problem with more than three machines with makespan objective. This

finding, along with some job-passing through the schedule leads us to the timetable

(indicating the start times and finishing times for each job) illustrated in Table 4.3.

Table 4.2: Starting and finishing times of jobs in permutation sequence [4123]

Job Job i Machine

 1 2 3

1 4 0/20 20/90 90/170

2 1 20/40 - 170/200

3 2 - 90/100 200/210

4 3 40/50 100/110 -

Job sequence [413] [423] [412]

Figure 4.2: Gantt chart representing Table 4.2

 35

Table 4.2 gives the representation of the schedule with the permutation sequence

[4132] through each of the three machines with a makespan value of 210 and the

total flowtime value of 690. The missing operations for jobs are not indicated within

the job sequences for a given machine. In between machine 1 and machine allowing

job 2 to pass before jobs 1 and 3, and in between machine 2 and machine 3, allowing

job 1 to pass before job 4 gives the schedule in Table 4.3.

Table 4.3: Starting and finishing times of jobs in non-permutation sequence

Job Job i Machine

 1 2 3

1 4 0/20 20/90 90/170

2 1 20/40 - 40/70

3 2 - 0/10 10/20

4 3 40/50 90/100 -

Job sequence [413] [243] [214]

Figure 4.3: Gantt chart representing Table 4.3

The non-permutation schedule generated by a single move at each stage (machine)

gives a total makespan value of 170, with a total flowtime value of 360. There has

been a significant improvement due to both performance criteria even for the case of

this simple illustrative example.

 36

4.2. DERIVING NPS FROM A GIVEN PS

The newly developed heuristic has a similar logic to the heuristic proposed by

Pugazhendhi et al. (2002). The logic of the proposed heuristic (parallel to the

discussions at section 4.1) is depicted at Figure 4.4. The heuristic first obtains a seed

permutation sequence (which is obtained either by RAES of NEH heuristic) and tries

to execute multiple job-passing tasks at various stages without violating the

following feasibility restriction, namely each machine processes one and only one

job at any point in time.

In order to setup the heuristic, the following notation and terminology will be

employed through later stages:

n / m Number of jobs/machines available at time zero

),(jit Processing time of job i on machine j

π Set of jobs already scheduled, out of n jobs, at a given time instant τ

i The job at hand, which is going to be scheduled

),(jiST Starting time for job i on machine j

),(jiFT Finishing time for job i on machine j

{ }jSeq Job sequence on machine j (the sequence in which jobs are processed on

machine j).

jn Number of jobs processed on machine j

j
ks Job processed in the k -th position of { }jSeq on machine j

),(jkRST On machine j , start time of job i found in the k -th position of { }jSeq

),(jkRFT On machine j , finishing time of job i found in the k -th position of

{ }jSeq

 37

Figure 4.4: Main schematic of the heuristic procedure proposed to generate NPS

 38

jUS Set of unscheduled jobs on machine j

iCT Completion time of the last operation of job i

MS Makespan of the scheduled job-set

iw Weight (or relative importance or relative holding cost) for job i

πF Total flowtime of jobs in π (i.e. sum of iCT ’s over all scheduled jobs)

πW Total weighted flowtime of jobs in π (i.e. sum of)(ii CTw × ’s over all

 scheduled jobs)

As depicted in Figure 4.4, the main principle of the heuristic procedure is that, one at

a time jobs are taken from the permutation sequence (without violating the order

assigned by the permutation sequence generating heuristic, namely RAES or NEH),

and find a suitable place for that job in the earliest idle time interval ahead (which is

sufficient for the completion of the job selected) in order to process the inserted job.

4.2.1. INITIALIZATION

The key steps involved in the proposed heuristic method are listed below. To

initialize the procedure at time zero, we first set js0 for mj3,2,1= as φ , the null

job, i.e. { } { }φ=jSeq for all machines. Let 0),(),(== jFTjST φφ and

0),0(),0(== jRFTjRST for all machines. Let 0=jn , for ,,...3,2,1 mj = (note that

it is job φ used in ST and FT , and “0” is used in RST and RFT in order to denote

the job position number).

A permutation sequence is obtained by using RAES (Dannenbring 1977) or NEH

(Nawaz et al. 1983) in order to have the initial sequence prior to the execution of the

procedure.

 39

4.2.2. THE HEURISTIC PROCEDURE

The heuristic procedure based on the initializing parameters in the previous section is

as follows:

STEP 1: With respect to the NPS-set, let { }jSeq be the sequence in which jobs

are already scheduled on machine j . Having the initial permutation

sequence at hand, take the unscheduled jobs, say job-set i ,

(unscheduled with respect to the NPS-set) be now taken up for

scheduling in the NPS-set.

STEP 2: Set 1=j and 0=T .

STEP 3: If 0),(>jit , then proceed to the next step; else go to STEP 10 (i.e.,

the job has a missing operation on machine j).

STEP 4: Set 1−=k . (4.1)

STEP 5: Let

 1+= kk (4.2)

 (k is the job position in the sequence { }jSeq on machine j)

 If jnk ≠ (the position in the sequence is not the same as the number of

jobs processed on machine j)

 then go to the next step; else go to STEP 9.

STEP 6: At this step, check for the possible insertion of the chosen job i , i.e.,

processing job i ahead of the preceding jobs (preceding in the

permutation sequence) on machine j .

 If { }),1(),(),(;(max jkRSTjitjkRFTT +≤+ (4.3)

 Then proceed to the next step; else return to STEP 5 for checking

 40

possible insertion of job i in the next position.

STEP 7: Feasible insertion of job i , in { }jSeq is done appropriately and all

),(jkRST ’s and),(jkRFT ’s for all preceding jobs is done.

 For 0=p to k , do the following:

 {

 j
p

j
p ss =' , (4.4)

),(),(' jpRSTjpRST = (4.5)

 and

),(),(' jpRFTjpRFT = (4.6)

 }

 Let

 is j
k =+1' , (4.7)

 });,(max{)1(' TjkRFTjkRST =+ , (4.8)

),(),1(')1(' jitjkRSTjkRFT ++=+ , (4.9)

),1('),(jkRSTjiST += , (4.10)

),1('),(jkRFTjiFT += , (4.11)

and

),(jiFTt = , (4.12)

 For)1(+= kp to jn do the following:

{
''

1 p
j

p ss =+ (4.13)

),()1(' jpRSTjpRST =+ (4.14)

),()1(' jpRFTjpRFT =+ (4.15)

}

Set

1+= jj nn . (4.16)

 41

STEP 8: For 0=p to jn do the following:

 {

 j
p

j
p ss '= (4.17)

),('),(jpRSTjpRST = (4.18)

and

),('),(jpRFTjpRFT = (4.19)

}

Reshaping the sequence of jobs on machine j .

Then, go to STEP 11.

STEP 9: This step involves the computation of starting time and finishing time

of job i on machine j is done without any insertion ahead being

feasible.

),(;max{),1(jnRFTTjnRST jj =+ , (4.20)

),(),1(),1(jitjnRSTjnRFT jj ++=+ , (4.21)

),1(),(jnRSTjiST j += , (4.22)

),1(),(jnRFTjiFT j += (4.23)

 and

),(jiFTT = . (4.24)

 Increment

 1+= jj nn (4.25)

 Set

 is j
n j
= . (4.26)

 Go to STEP 11.

STEP 10: Set

 B),(),(== jiFTjiST (4.27)

 42

where B is a large number implying that there is no operation of job

i on machine j .

STEP 11: Increment,

 1+= jj (4.28)

 If mj ≤ then go back to STEP 3; else proceed to STEP 12.

STEP 12: Compute the schedule performance measures as scheduling of job i is

done.

 Set

 TCTi = , (4.29)

 }max{ iCTMS = (4.30)

over all scheduled jobs in the NPS-set.

STEP 13: STOP if all jobs are scheduled in the NPS-set; else go to STEP 1.

4.2.3. THE PROPOSED HEURISTIC PROCEDURE

A further improvement can be made over the performance of this procedure by

making a slight shift in the main logic lying behind this algorithm (see Figure 4.5).

For the case of the former procedure, the lacking thing was that at each stage, while

creating the NPS-set of jobs to be scheduled for the remaining earliest idle time span

of a given machine, the heuristic procedure strictly obeys to the previously formed

permutation sequence coming from the previous machine. Namely, when the

unscheduled jobs are being assigned to the earliest idle time span, the one with the

preceding position in the permutation sequence is considered first. In other words,

the jobs that will go through STEPS 3, 4, 5, 6, and finally 7 is already determined by

the initial permutation sequence, as long as the computation of starting time and

finishing time of job i on machine j is done without any insertion ahead being

feasible (see STEP 7).

 43

In order to overcome this situation, the logic of the heuristic procedure is shifted, to

enable the simultaneous consideration of unscheduled jobs (with missing operations)

and assigning them to the earliest inserted idle time by a sequencing rule, a

dispatching rule or by employment of a flowshop heuristic generating permutation

sequences. The procedure applied at this step is intended to make the overall NPS

schedule more robust enabling it to further minimize makespan by careful

consideration of this criterion during the job-passing phase.

As depicted in Figure 4.5 the procedure now considers all the candidates for job-

passing into any inserted idle time existing in the initial permutation schedule based

on a so called dispatching rule working under the limitation of the Finishing Time of

the first job ahead which the jobs move. With this new rule, STEPS 4 through 7

within for the primal procedure undergoes the following change.

STEP’ 3 For jobs with 0),(>jit , then proceed to the next step; else go to

STEP 10 (i.e., the jobs have a missing operation on machine j).

STEP 4: Set 1−=k . (4.31)

 44

Figure 4.5: The reorganized procedure for generating NPS-set at each stage

 45

STEP 5: Let

 1+= kk (4.32)

 (k is the job position in the sequence { }jSeq on machine j)

 If jnk ≠ (the position in the sequence is not the same as the number of

jobs processed on machine j)

 then go to the next step; else go to STEP 9.

STEP 6: At this step, check for the possible insertion of the chosen jobs, i.e.,

processing jobs ahead of the preceding jobs (preceding in the

permutation sequence) on machine j .

 Apply the appropriate rule for sequencing those jobs within

themselves.

 For all *USi∈

 If { }),1(),(),(;(max jkRSTjitjkRFTT +≤+∑ (4.33)

 Then proceed to the next step; else cut off the jobs beginning from

reverse order in the sequence till (4.33) holds, and return to STEP 5

for checking possible insertion of remaining (could not be inserted

ahead) jobs in the next available position.

 /* Set of candidate jobs which are sorted due to a rule before being

inserted into the idle time ahead */

STEP 7: Feasible insertion of jobs for all *USi∈ , in { }jSeq is done

appropriately and all),(jkRST ’s and),(jkRFT ’s for all preceding

jobs is done.

 For 0=p to k , do the following:

 {

 j
p

j
p ss =' , (4.34)

),(),(' jpRSTjpRST = (4.35)

 46

 and

),(),(' jpRFTjpRFT = (4.36)

 }

 Let

 is j
k =+1' , (4.37)

 });,(max{)1(' TjkRFTjkRST =+ , (4.38)

),(),1(')1(' jitjkRSTjkRFT ++=+ , (4.39)

),1('),(jkRSTjiST += , (4.40)

),1('),(jkRFTjiFT += , (4.41)

and

),(jiFTt = , (4.42)

 For)1(+= kp to jn do the following:

{
''

1 p
j

p ss =+ (4.43)

),()1(' jpRSTjpRST =+ (4.44)

),()1(' jpRFTjpRFT =+ (4.45)

}

Set

1+= jj nn . (4.46)

Chapter 5 includes the evaluation of the new heuristic procedure together with the

conventional heuristic developed by Pugazhendhi et al. (2002). While comparing the

heuristics, the upgraded form employs the following sequencing rules and/or

algorithms in order to derive NPS from a given PS:

• generation of initial PS NEH heuristic for minimizing makespan and Ho’s

heuristic for minimizing total flowtime,

• intermediary sorting/dispatching rule NEH heuristic for makespan

problems, and Shortest Processing Time (SPT) Rule for problems based on

total flowtime as the performance criterion

 47

CHAPTER 5

COMPUTATIONAL RESULTS

In this chapter the new heuristic procedure first has been demonstrated with some

illustrative examples in order to show the performance enhancement provided by the

new approach for simplistic cases. The examples are than formalized with the

generation of a large set of example problems by varying the number of jobs, number

of machines and percentage of missing operations respectively in order to come up

with an experimental design. The problem instances are then solved by using

different heuristic methods together with the newly developed procedure and

computational results have been tabularized at the end of the chapter based on both

makespan and the total flowtime as the performance criterion.

5.1. EXPERIMENTATION OF HEURISTIC PROCEDURES

5.1.1. ILLUSTRATIVE EXAMPLES

In order to visualize the conventional heuristic and the one derived from it, the

following illustrative example would be beneficial. Consider the following 4-job, 5-

machine problem as viewed in Table 5.1 with job processing times given below.

Table 5.1: Illustrative 4-job, 5-machine problem

Job i Machine j

 1 2 3 4 5

1 13 0 50 12 12

2 17 0 0 12 10

3 34 50 0 12 20

4 0 200 0 12 18

 48

An entry of zero processing time indicates the missing operations for the job on the

corresponding machine. Let us take the initial permutation sequence {4312} which

has a makespan value of 304 (see Table 5.2) and a total flowtime value of 1110.

When the conventional heuristic algorithm for generating non-permutation schedules

is implemented over the permutation sequence {4312}, it is seen that non-

permutation schedules are generated with the timetable given in Table 5.3 (entries

indicate the start time (ST) and finish time FT of the job found in the i -th position

in the sequence {4312}, i.e. job []i on machine j , when job []i is appended. These

times are shown before and after the sign “/” respectively.

Table 5.2: Starting and finishing time of jobs for the permutation sequence

Job position Job Machine

 1 2 3 4 5

1 4 - 0/200 - 200/212 212/230

2 3 0/34 200/250 - 250/262 262/282

3 1 34/47 - 47/97 262/274 282/294

4 2 47/64 - - 274/286 294/304

Job loading sequence {312} {43} {1} {4312} {4312}

Table 5.3: Starting and finishing time of jobs when NPS are adopted

Machine

1 2 3 4 5

- 0/200 - 200/212 212/230

0/34 200/250 - 250/262 262/282

34/47 - 47/97 97/109 109/121

47/64 - - 64/76 76/86

Job loading sequence {312} {43} {1} {2143} {2143}

 49

The resultant NPS are also presented in Tables 5.4 and 5.5. The makespan is

observed to be 282 and the total flowtime has been drastically lowered down to 719,

resulting in an improvement in the values of the performance measures obtained

earlier by the adoption of the permutation sequence. Values of),(jkRST and

),(jkRFT for the scheduled job-set {43} can be seen in Table 5.4.

Further we have 41 =js for =j 2,4 and 5 (implying that job 4 is the first job to be

scheduled on machines 2, 4, and 5), 31 =js for =j 1 (implying that job 3 is the first

job to be scheduled on machine 1), and 32 =js for =j 2,4, and 5 (implying that job 3

is the second job to be scheduled on machines 2, 4 and 5). A good example to job-

insertion, i.e. passing of a job ahead of the preceding job(s) can be seen when we

consider job 1 for scheduling on machine 4. Corresponding to =j 4, invoking Step 5

of the proposed algorithm, we look out for the possible insertion of job 1 ahead of the

preceding jobs in the permutation schedule, namely jobs 4 and 3. We check for the

following invoking Step 6:

 If { });4,1()4,1()4,0(;(max RSTtRFTT ≤+ i.e. if 20012}0;97max{ ≤+ (see 4.33).

Actually, what the heuristic procedure does is that processing of job 1 on machine 4

can be commenced and ended in between time units 97 and 109, respectively,

because machine 4 remains idle during the time-span of 0 to 200. The fact that this

check is satisfied indicates that job 1 can be processed prior to job(s) scheduled

ahead of it on machine 4. This insertion brings re-computation of RST and RFT

values of the jobs scheduled on the machine under consideration, leading to re-

sequencing of the partial job set {431} on machine 4 and resulting in the generation

of NPS. Steps 7 through 10 have been essentially developed for this purpose (see

equations 4.4 through 4.27 (for just one job insertion at a time) and equations 4.34

trough 4.46 (for passing ahead of multiple jobs at a time).

 50

Table 5.4: Values of),(jkRST and),(jkRFT for the scheduled job-set {43}

Machine
Job position k

1 2 3 4 5

0/0 0/0 0/0 0/0 0/0

0/34 0/200 - 200/212 212/230

0

1

2 - 200/250 - 250/262 262/282

Table 5.5: Values of),(jiST and),(jiFT for the scheduled job-set {43}

Machine
Job i

1 2 3 4 5

- 0/200 - 200/212 212/230

0/34 200/250 - 250/262 262/282

4

3

Job loading sequence {3} {43} {φ } {43} {43}

Similarly, applying the upgraded heuristic procedure brings us to the resultant NPS

given in Table 5.6. For this case, the makespan value is kept as the level of 282 -still

demonstrating improvement compared to the permutation schedule at hand- while

the total flowtime is further improved (i.e. decreased), reaching a value of 649.

Table 5.6: Starting and finishing time of jobs when new NPS are adopted

Machine

1 2 3 4 5

- 0/200 - 200/212 212/230

0/13 - 13/63 63/75 75/85

13/30 - - 30/42 42/52

30/64 200/250 - 250/262 262/282

Job loading sequence {132}* {43} {1} {2143} {2143}

* More than one insertion has been allowed at this stage.

 51

5.1.2. GENERATION OF EXAMPLE PROBLEMS

The example problems are generated by varying the number of jobs, number of

machines and the percentage of missing operations respectively as indicated in Table

5.7. For combination of number of jobs, number of machines and percentage of

missing operations (n , m and p) 10 instances are created in order to obtain mean

values for each instance and also to ensure homogeneity of variance and

independence of the outliers. In total, 800454)10(=××× problem instances have

been formed in order to be optimized using different heuristic techniques.

Table 5.7: Values that each parameter takes per each experiment

n = m = p =

10 10 20%

20 20 30%

30 30 40%

40 40 50%

×10 instances for

each combination

of parameters

 50

At this stage, the notion of Taillard’s (1993) benchmarking problems for flowshop

schedules has been extensively employed. The computer code given in Appendix A

is a modification of the C++ code used for generating Taillard’s example problems.

The difference is in terms of the ranges of the values that parameters n , m and

p take; in the sense that instead of Taillard’s range of 20 to 500 for number of jobs,

the range of 10 to 40 have been employed in order to be conservative in terms of

computation time of the proposed heuristic. The heuristic procedure, which is

employing a sequencing rule at each stage (i.e. machine) in order to decide the

sequence and number of jobs to be passed ahead, will be prone to high values of n

because of the growing completion time of jobs.

The performance measues have been the maximum completion time (i.e. makespan)

of jobs and secondarily the total flowtime of jobs flowing through machines. For the

 52

total flowtime as the secondary criterion of assessment, the weights associated with

each job is taken constant as 1, as no differentiation of relative holding cost has been

assigned to any of the jobs.

All computer codes have been developed in Visual C++ 6.0 and computational

experiments are conducted on an Intel Pentium II 3.192 MHz PC (total physical

memory 512 mb) under the Windows XP operating system.

While evaluating the heuristic approaches, the following performance measures have

been used:

i) The relative performance improvement (RPI) of the NPS-set over a

permutation schedule, with respect to makespan is given by

'/100)'()(MMMMSRPI ×−= , where M and 'M respectively are the

values of makespan, as computed by the permutation sequence obtained

by Nawaz et al.’s (1983) NEH heuristic and the NPS-set obtained by

implementing the proposed heuristic. The reason that the comparison is

made with NEH heuristic is that, it is by far the best heuristic among a

large group of heuristic methods (Ruiz & Maroto, 2005) providing

permutation schedules to improve the makespan as the primary

performance criterion. NEH heuristic is selected as the best performer

among SPT Rule, LPT Rule, Johnson’s Rule, Page’s Heuristic, Palmer’s

Heuristic, Campbell, Dudek & Smith’s CDS Heuristic, Gupta’s

Algorithm, Dannenbrings RA, RACS, and RAES and Ho and Chang’s

heuristic (all focusing on makespan criterion).)(1 MSRPI corresponds to

the RPI of the heuristic developed by Pughazhendhi et al. (2002) and

)(2 MSRPI stand for the RPI of newly developed heuristic allowing

intermediary sorting of multiple jobs prior to passing ahead of the other

jobs in the permutation sequence.

ii) The relative performance improvement (RPI) of the NPS-set over a

permutation schedule, with respect to total flowtime is given by

 53

'/100)'()(FFFTFTRPI ×−= , where F and 'F respectively are the

values of total flowtime, as computed by the permutation sequence

obtained by Ho’s algorithm (Ho, 1995) and the NPS-set obtained by

implementing the proposed heuristic. For the objective of minimizing

total flow time of jobs, heuristics have been developed by Miyazaki et al.

(1978), Rajendran (1993) and Ho (1995). Of these heuristics, Ho’s

heuristic is the best performing heuristic (Ho, 1995). This heuristic

generates a seed sequence by arranging the jobs in the ascending

∑ =
×+−

m

j ijtjm
1

)1(values (Rajendran & Ziegler, 2001) .

 Later, improvement schemes based on pairwise interchange and insertion

 are employed until no significant improvement in the total flowtime of

 jobs is obtained. This heuristic is computationally more cumbersome than

 the heuristics of Miyazaki et al. And Rajendran, but it is more effective in

 minimizing the total flowtime of jobs than the other two heuristics.

iii) Mean RPI is the average of 10 values of RPI for a given problem set

specified by (n , m and p), whereas Max RPI indicates the maximum

RPI value out of the 10 problems in each set.

iv) Another performance measure is the number of problems (N), out of 10,

for which an improvement in the performance criterion is realized for a

given problem set defined by the parametric variables n , m and p .

5.1.3. EVALUATION OF THE HEURISTICS

The evaluation of the heuristics and computational experimentations are done

separately for two criterions, namely makespan and the total flowtime. The

comparisons of the heuristics for each of the performance criterion has been then

presented within the outcome section of this chapter. Results are summarized and

tabularized based on differen values of n , m and p .

 54

5.1.3.1. MAKESPAN AS THE PRIMARY CRITERION

Tables 5.8 through 5.11 illustrate the relative performance of the two proposed

heuristics by taking NEH heuristic as the base in terms of getting the best

permutation schedule due to “makespan” as the performance criterion.

Table 5.8: Performance })max{(iCM = evaluation of both NPS-sets for p = 20%

Pugazhendhi et al. (2002) New heuristic procedure n m

Mean

1RPI

Max

1RPI 1N
Mean

2RPI

Max

2RPI 2N

10 0,40 2,56 2 0,27 2,48 22**

20 0,61 2,75 4 0,53 2,84 3

30 0,64 2,71 6 0,59 2,72 5

40 0,66 4,16 6 0,82 4,11 5

10

50 0,57 2,36 6 0,36 2,12 77

10 0,53 2,65 5 0,42 3,24 66

20 0,16 2,56 4 0,17 1,95 3

30 0,42 2,42 4 0,28 1,83 3

40 0,31 1,50 5 0,35 0,96 3

20

50 0,55 1,70 7 0,57 2,21 77

10 0,35 1,38 2 0,25 1,23 22

20 0,30 2,29 3 0,23 2,33 2

30 0,38 1,97 6 0,23 2,15 77

40 0,47 1,03 8 0,47 1,26 99

30

50 0,56 3,24 9 0,62 2,79 1100

10 0,22 0,83 2 0,25 1,34 33

20 0,36 1,77 5 0,35 1,48 66

30 0,42 1,25 6 0,33 1,09 77

40 0,42 1,18 8 0,44 1,57 7

40

50 0,36 2,12 7 0,45 1,42 77

 * For 12 NN ≥ , values in the column are highlighted.

 55

Table 5.9: Performance })max{(iCM = evaluation of both NPS-sets for p = 30%

Pugazhendhi et al. (2002) New heuristic procedure n m

Mean

1RPI

Max

1RPI 1N
Mean

2RPI

Max

2RPI 2N

10 0,46 4,89 2 0,62 3,10 1

20 0,94 4,51 5 1,09 3,36 4

30 0,87 4,59 7 0,85 2,98 6

40 1,15 3,38 8 1,34 4,71 88

10

50 0,63 4,78 6 0,75 2,89 66

10 0,84 4,04 6 0,69 2,50 5

20 0,89 4,87 6 1,00 4,19 66

30 0,91 3,65 8 1,05 4,35 7

40 0,97 3,40 9 1,08 4,70 8

20

50 1,07 2,56 9 0,95 3,96 99

10 0,25 0,87 3 0,38 1,48 33

20 0,70 3,18 9 0,72 3,88 99

30 0,72 2,84 7 0,77 4,51 6

40 0,72 1,42 8 0,77 2,76 88

30

50 1,06 2,75 9 0,85 4,08 99

10 0,18 2,05 3 0,04 1,34 33

20 0,71 2,66 9 0,98 4,12 7

30 0,93 3,20 7 1,04 5,41 77

40 0,95 2,34 10 1,10 4,09 1100

40

50 1,19 2,31 9 1,01 4,06 1100

 56

Table 5.10: Performance })max{(iCM = evaluation of both NPS-sets for p = 40%

Pugazhendhi et al. (2002) New heuristic procedure n m

Mean

1RPI

Max

1RPI 1N
Mean

2RPI

Max

2RPI 2N

10 0,74 6,63 2 0,81 2,48 22

20 0,32 3,26 4 1,51 6,24 55

30 1,14 9,63 6 2,07 7,43 66

40 1,55 4,28 9 2,16 6,11 99

10

50 1,22 0,08 6 1,36 4,12 66

10 0,59 1,02 3 0,39 3,24 44

20 1,05 3,76 8 1,06 2,95 7

30 1,35 1,09 7 1,48 5,83 99

40 0,10 3,35 9 1,62 3,96 99

20

50 0,63 6,51 10 2,39 6,21 8

10 0,25 1,34 3 0,15 1,23 2

20 0,30 3,08 8 0,83 2,33 99

30 0,70 2,01 10 1,33 3,15 1100

40 1,04 2,38 10 1,74 3,26 9

30

50 0,28 0,97 10 1,88 4,79 1100

10 0,08 1,49 3 0,16 1,34 2

20 0,96 2,14 8 0,84 1,48 88

30 0,97 3,07 8 1,36 4,09 99

40 1,01 2,92 10 1,30 4,57 9

40

50 1,12 3,14 9 1,98 4,42 1100

 57

Table 5.11: Performance })max{(iCM = evaluation of both NPS-sets for p = 50%

Pugazhendhi et al. (2002) New heuristic procedure n m

Mean

1RPI

Max

1RPI 1N
Mean

2RPI

Max

2RPI 2N

10 0,89 3,71 3 0,81 1,48 44

20 1,43 2,96 4 1,51 3,84 55

30 2,40 5,72 9 2,07 4,72 7

40 2,34 4,68 10 2,16 5,11 1100

10

50 1,43 3,26 10 1,36 3,12 8

10 0,29 0,98 4 0,39 1,24 44

20 1,26 3,71 8 1,06 2,95 99

30 1,82 4,97 9 1,48 4,83 99

40 1,53 4,26 7 1,62 4,96 88

20

50 2,52 5,32 10 2,39 5,21 9

10 0,39 1,03 3 0,15 1,23 44

20 0,95 2,10 10 0,83 2,33 9

30 1,26 2,32 10 1,33 5,15 9

40 2,10 2,54 6 1,74 3,26 66

30

50 1,97 4,11 9 1,88 4,79 1100

10 0,32 1,01 3 0,16 1,34 2

20 0,82 2,32 9 0,84 2,48 1100

30 1,56 4,35 10 1,36 3,09 9

40 1,31 4,59 10 1,30 3,57 1100

40

50 2,15 5,12 10 1,98 4,42 9

The computational results gained from each run per different values of n , m and p

based on makespan criteria provide important insights. The discussions upon the

results can me summarized as follows:

 58

a) both heuristics start to dominate the NEH heuristic in terms of makespan as

the performance criterion, when the percentage of missing operations is

increased, namely over 20%; implying that for the flowshops with percentage

of missing operations less than 20%, there is no significant need for obtaining

NPS due to makespan as the primary performance criterion, parallel to what

has been drawn out by Liao et al. (2006) in their very recent study,

b) increasing the number of jobs, n , generally results in a lessened percentage

improvement (in terms of makespan) by both heuristic procedures compared

to NEH heuristic; implying that the need for obtaining NPS does not increase

for a flowshop as the number of jobs increase,

c) increasing the number of machines, m , while keeping the number of jobs

constant, generally results in a higher percentage improvement in terms of the

makespan as the primary criterion; implying that more number of machines

with higher percentage of missing operations leads to higher need for

obtaining NPS for a flowshop,

d) when the proposed heuristic is compared to the heuristic method developed

by Pugazhendhi et al. (2002) in terms of the Mean RPI , and Maximum

RPI for each problem instance, it has been observed that the newly proposed

approach does not provide clear dominance on the existing NPS-generating

heuristic developed by Pugazhendhi et al. (2002), even for different levels of

percentage of missing operations; implying that the two heuristics perform

more or less the same in terms of makespan as the primary performance

criterion (see table 5.16).

Similar comparisons have been made for flowtime as the secondary performance

criterion, in order to assess the outcomes obtained by the introduction of the new

heuristic approach.

 59

5.1.3.2. TOTAL FLOWTIME AS THE SECONDARY CRITERION

Tables 5.12 through 5.15 illustrate the relative performance of the two proposed

heuristics by taking Ho’s heuristic as the base in terms of getting the best

permutation schedule due to “total flowtime” as the performance criterion.

Table 5.12: Performance)(∑= iCF evaluation of both NPS-sets for p = 20%

Pugazhendhi et al. (2002) New heuristic procedure n m

Mean

1RPI

Max

1RPI 1N
Mean

2RPI

Max

2RPI 2N

10 0,35 3,87 4 0,37 3,05 55**

20 0,94 2,50 5 0,74 2,98 44

30 0,69 3,93 6 0,37 3,45 66

40 0,66 3,75 7 0,50 3,32 66

10

50 0,62 2,86 8 0,35 2,10 88

10 0,18 2,53 4 0,25 2,04 66

20 0,73 3,75 8 0,64 2,89 88

30 0,90 3,93 8 0,66 2,72 1100

40 0,65 3,09 8 0,94 4,62 1100

20

50 0,86 2,91 10 0,80 4,03 1100

10 0,32 2,50 8 0,55 2,55 88

20 0,55 2,55 7 0,76 2,73 77

30 0,37 3,58 9 0,67 1,53 1100

40 0,58 2,34 10 0,72 3,52 1100

30

50 0,78 1,67 8 0,95 2,29 99

10 0,11 1,16 8 0,52 1,09 99

20 0,56 3,26 10 0,77 1,86 1100

30 0,70 3,02 10 0,88 3,43 1100

40 0,63 2,97 10 0,45 2,53 1100

40

50 0,82 1,61 10 0,74 3,00 1100

 * For 12 NN ≥ , values in the column are highlighted.

 60

Table 5.13: Performance)(∑= iCF evaluation of both NPS-sets for p = 30%

Pugazhendhi et al. (2002) New heuristic procedure n m

Mean

1RPI

Max

1RPI 1N
Mean

2RPI

Max

2RPI 2N

10 0,61 7,82 3 0,43 9,46 44**

20 0,98 5,30 6 1,37 5,86 77

30 1,27 5,40 9 1,21 4,46 8

40 1,17 6,24 9 1,17 5,69 99

10

50 1,09 4,89 8 1,18 5,68 88

10 0,67 4,24 8 0,98 5,28 88

20 1,01 5,19 8 1,02 6,27 1100

30 1,19 5,00 10 1,33 6,45 1100

40 1,27 5,08 9 1,45 5,18 99

20

50 1,52 5,15 9 1,80 8,08 1100

10 0,62 1,43 9 0,31 1,86 99

20 1,26 4,89 10 0,95 5,29 1100

30 1,56 3,51 9 1,25 5,38 1100

40 1,44 6,28 10 1,24 4,11 9

30

50 1,06 6,49 9 1,39 6,76 1100

10 0,49 3,51 10 0,57 4,19 1100

20 0,94 4,82 10 0,82 5,39 1100

30 1,56 3,85 9 1,28 6,42 1100

40 1,27 5,53 9 1,25 6,70 99

40

50 1,44 5,38 9 1,52 6,33 99

 61

Table 5.14: Performance)(∑= iCF evaluation of both NPS-sets for p = 40%

Pugazhendhi et al. (2002) New heuristic procedure n m

Mean

1RPI

Max

1RPI 1N
Mean

2RPI

Max

2RPI 2N

10 0,61 3,21 3 0,67 3,38 44**

20 1,52 8,10 8 1,55 5,25 88

30 1,95 5,76 8 1,97 5,07 99

40 1,89 4,70 8 1,71 4,58 99

10

50 1,56 5,34 9 1,68 7,72 88

10 0,56 2,19 5 0,44 3,00 77

20 1,44 4,13 9 1,59 4,10 1100

30 1,68 6,02 10 1,99 8,05 1100

40 2,16 5,57 10 2,27 7,81 1100

20

50 2,45 7,47 9 2,59 6,76 1100

10 0,51 2,43 7 0,47 2,26 88

20 1,89 4,20 9 1,81 7,37 1100

30 2,43 5,72 9 2,24 9,71 1100

40 2,25 5,36 10 2,08 5,78 1100

30

50 2,33 5,39 10 1,92 9,27 1100

10 0,55 1,55 9 0,75 2,88 1100

20 1,84 3,68 9 1,83 5,66 1100

30 2,10 4,46 10 2,32 7,21 1100

40 2,46 5,34 9 2,30 7,77 1100

40

50 2,01 4,03 10 2,14 5,82 1100

 62

Table 5.15: Performance)(∑= iCF evaluation of both NPS-sets for p = 50%

Pugazhendhi et al. (2002) New heuristic procedure n m

Mean

1RPI

Max

1RPI 1N
Mean

2RPI

Max

2RPI 2N

10 1,03 4,26 6 0,67 3,35 88**

20 1,73 5,89 7 1,93 4,14 88

30 2,29 6,42 10 2,19 4,84 9

40 1,90 4,10 10 2,45 5,96 1100

10

50 1,88 6,98 9 1,93 6,72 1100

10 1,08 4,03 8 1,19 7,18 99

20 1,36 4,45 9 1,47 5,80 1100

30 2,37 5,35 10 2,32 8,41 1100

40 2,23 5,98 10 2,24 6,47 1100

20

50 2,41 8,10 10 2,68 7,89 1100

10 0,45 3,45 8 0,15 3,01 1100

20 1,48 4,09 10 1,60 4,23 1100

30 2,55 5,22 9 2,44 5,23 1100

40 2,40 7,51 10 2,53 6,99 1100

30

50 1,96 3,90 10 1,99 3,83 1100

10 0,80 3,33 10 0,54 3,38 1100

20 1,96 6,54 10 1,71 4,01 1100

30 2,45 8,52 10 2,15 8,79 1100

40 2,39 7,21 10 2,16 7,27 1100

40

50 2,40 6,88 10 2,41 6,38 1100

The computational results gained from each run per different values of n , m and p

based on makespan demonstrate significant improvement due to flowtime as the

secondary performance criterion, compared to makespan as the primary performance

indicator. The discussions upon the results can me summarized as follows:

 63

a) increasing p values more than %20 leads to both NPS-generating heuristics

dominating NEH heuristic in terms of flowtime as the secondary performance

criterion; implying that both NPS-generating heuristics, especially the

proposed heuristic provides much better results due to flowtime as the

secondary performance criterion for flowshops compared to permutation

schedules,

b) increasing number of jobs, n does not significantly affect the percentage

improvements made by both heuristics, in other words there is no correlation

in between the number of jobs and the percentage improvement by both

heuristic approaches, based on the flowtime criteria; however, increasing

number of machines, m leads to higher percentage improvement by both

heuristic methods in terms of developing NPS for flowshops based on

flowtime criteria,

c) when the proposed heuristic is compared to the heuristic method developed

by Pugazhendhi et al. (2002) in terms of the Mean RPI , and Maximum

RPI for each problem instance, it has been observed that the newly proposed

approach does provide considerable improvement for each of the problem

instances; implying that the percentage improvement by introduction of the

new NPS-generating heuristic is clear by increasing percentage of missing

operations.

The summary of section 5.1.3.1 and section 5.1.3.2 can be made with a simple table

(Table 5.16) in order to assess the overall performance of the heuristic developed by

Pugazhendhi et al. (2002) and the modification of it allowing multiple job-passing at

a time. Table 5.16 includes the sum of the values of 1N and 2N ’s for each distinct

value of p . It can be seen that for the case of flowshop problems with p values

lower than 20%, the new heuristic as well as the heuristic of Pugazhendhi do not

improve the makespan better than NEH heuristic does. However, the performance

 64

enhancement by these heuristics is significant for p values greater than or equal to

30%.

Table 5.16: Comparison of domination of heuristics over NEH*

value of
p

New heuristic over

NEH

Pugazhendhi over

NEH

20% 104/96 107/93**

30% 132/68 140/60

40% 142/58 145/55

1st

Criterion:

Makespan

50% 151/49 153/47

value of
p

New heuristic over

Ho’s heuristic

Pugazhendhi over

Ho’s heuristic

20% 166/34 158/42

30% 179/21 173/27

40% 183/17 171/29

2nd

Criterion:

Flowtime

50% 194/6 186/14

* Over 200 instances for each value of p .
** Bold values indicate the dominance of that approach over other two methods.
$ # of instances the heuristic dominates / # of instances NEH or Ho’s heuristic dominates.

For the case of total flowtime, the new heuristic outperforms Ho’s heuristic

(especially for higher values of p) also dominating the heuristic developed by

Pugazhendhi et al. with significant improvement, which is getting larger as the

percentage of missing operations is increased.

5.1.3.3. COMPARISON OF CPU TIMES

The mean CPU time taken for implementing the heuristics that generate the

permutation schedules (namely NEH and Ho’s heuristic) as well as for implementing

the new heuristic also has been tracked and analyzed for each specific problem

instance corresponding to p taking values 20% and 30% respectively (as number of

missing operations increase, the CPU time will decrease for any algorithm) without a

need to consider the instances for p = 40% and 50%. Table 5.17 shows that the total

 65

computational for implementing the proposed heuristic is negligible. Actually what

the proposed heuristic does is a simple sequencing rule with at most)log(nnnmO +

complexity. Compared to the NEH heuristic with complexity)(3mnO the new

heuristic has a theoretical complexity of)())log((433 mnOmnnnmO =+ with the

sequencing rule inserted into it (remaining as a polynomial time algorithm).

Table 5.17: Comparison of CPU times* of both heuristics for each problem instance

p = 20% p = 30% n m

NEH
Pugaz

et al.

New

Heuristic
NEH

Pugaz

et al.

New

Heuristic

10 0,313 0,043 1,253 0,234 0,036 0,921

20 0,375 0,017 2,207 0,286 0,017 2,039

30 0,387 0,047 0,797 0,391 0,047 0,748

40 0,419 0,039 0,978 0,485 0,032 0,729

10

50 0,472 0,026 0,092 0,379 0,025 0,074

10 0,385 0,046 0,777 0,384 0,043 0,595

20 0,446 0,008 0,845 0,474 0,007 0,681

30 0,461 0,005 3,029 0,390 0,005 2,905

40 0,524 0,004 2,485 0,522 0,004 2,206

20

50 0,548 0,031 2,912 0,506 0,026 2,879

10 0,817 0,121 4,129 0,886 0,098 3,738

20 0,822 0,065 2,778 0,733 0,055 2,003

30 0,831 0,095 1,164 0,861 0,077 1,145

40 0,963 0,096 5,377 1,023 0,091 5,031

30

50 1,006 0,131 5,927 0,921 0,127 4,421

10 1,290 0,168 9,365 1,274 0,139 6,847

20 1,529 0,219 4,613 1,575 0,197 4,170

30 1,601 0,095 4,220 1,647 0,093 3,063

40 1,849 0,108 8,111 1,753 0,101 7,098

40

50 1,994 0,203 10,970 2,038 0,190 8,986

 * Time unit is seconds.

 66

CHAPTER 6

CONCLUSIONS

In this study, a new heuristic procedure for flowshop problems has been proposed,

with the intention to generate non-permutation schedules. The makespan and

flowtime as the primary and secondary criterion of performance respectively have

been considered with the newly proposed heuristic method.

The new heuristic based on a primal version selected from the literature imposed

good results for flowshops especially when the number of missing operations is

relatively high. For the problem instances where the percentage of missing

operations is lower than 20%, the new approach as well as the existing heuristic

procedure of Pugazhendhi et al. (2002) does not improve the performance of the

flowshop schedule thinking in terms of the “makespan” as the primary criterion. The

permutation schedules generated by NEH heuristic for each example provide better

makespan values up to 20% for percentage of missing operations. Over 20%, the

newly proposed heuristic improves the makespan value compared to NEH heuristic,

however the improvement is not higher than that of Pugazhendhi et al.’s heuristic.

For the case of the secondary performance criterion, namely the total flowtime of

jobs; the effects of the number of jobs, the number of machines, and the overall

percentage of missing operations have also been analyzed. Basically, evident results

have been gathered showing that with increasing percentage of missing operations

and/or increasing number of jobs and/or increasing number of machines in a

flowshop, the proposed heuristic outperforms all other permutation and non-

permutation schedule generating heuristics. The performance of the new heuristic

procedure having intermediary sorting rules for multiple jobs bypassing the stages at

a time was compared with the significant methods selected from the literature in

 67

terms of solution performance. According to the outcomes of this thesis study and

interpretations made upon those outcomes, the suggestions for further research

directions might be as follows:

a. The outcomes of this thesis study clearly demonstrate that there is room for

improvement in terms of flowtime as the criterion of performance. Moreover, the

computational results also show that even for low percentage of missing

operations, non-permutation schedules provide better results. One has to analyze

the percentage improvement provided by introduction of NPS for problems

having percentage of missing operations less than 15% down to 0%. This task

has been partially performed by Liao et al. (2006), however much clear

evaluation is needed.

b. Heuristic procedures that are capable of solving problems of larger sizes,

presumably with the use of metaheuristics especially for large problems, have to

be developed in order to obtain higher percentage improvement by bringing non-

permutation schedules into the scene.

c. Further studies have to look for simple procedures or heuristics which are

capable of generating non-permutation schedules by a similar approach with the

newly proposed heuristic method, providing good performance in terms of

makespan as the primary criterion, for the case of flowshops with missing

operations. Other due date based criteria might be brought into the discussion for

flowshops with missing operations, where the need for obtaining NPS is much

more significant (Liao et al., 2006).

d. More extensive use of dispatching rules at the intermediary steps for allowing

job-passing might produce effective methodologies for generation of non-

permutation schedules based on various performance criteria.

 68

REFERENCES

Baker, K.R. (1995). Introduction to Sequencing and Scheduling. John Wiley & Sons, New

York.

Bonney, M. and Gundry, S. (1976) “Solutions to the Constrained Flowshop Sequencing

Problem,” Operational Research Quarterly 27 (4), 869-883.

Campbell, H.G., Dudek, R.A., and Smith, M.L. (1970) “A Heuristic Algorithm for the n -

Job, m -Machine Sequencing Problem,” Management Science 16, 630-637.

Chen, C.-L, Vempati, V.S., and Aljaber, N. (1995) “An Application of Genetic Algorithms

for Flow Shop Problems,” European Journal of Operational Research 80, 389-396.

Conway, R.W., Maxwell, W.L., and Miller, L.W. (1967) Theory of Scheduling. Addison-

Wesley, Reading, MA.

Dannenbring, D. (1977) “An Evaluation of Flow Shop Sequencing Heuristics,” Management

Science 23, 1174-1182.

Davoud Pour, H. (2001) “A New Heuristic for the n -Job, m -Machine Flow-shop Problem,”

Production Planning and Control 12 (7), 648-653.

Dumolien, W.J., and Santen, W.P. (1983) “Cellular Manufacturing Becomes Philosophy of

Management at Component Facility,” Industrial Engineering 34, 72-76.

Framinan, J.M., Leisten, R., Rajendran, C. (2003) “Different Initial Sequences for the

Heuristic of Nawaz, Enscore, and Ham to Minimize Makespan, Idle-time or Flowtime in the

Static Permutation Flowshop Sequencing Problem,” International Journal of Production

Research 41 (1), 121-148.

Graves, S.C. (1981) “A Review of Production Scheduling,” Operations Research 29, 646-

675.

 69

Gupta, J.N. (1971) “A Functional Heuristic Algorithm for the Flowshop Scheduling

Problem,” Operational Research Quarterly 22 (1), 39-47.

Gupta, J.N.D. (1972) “Heuristic Algorithms for Multistage Flowshop Scheduling Problem,”

AIEE Transactions 4 (1), 11-18.

Gupta, J.N.D., Tseng, F.T., Stafford, E.F., (2004) “An Empirical Analysis of Integer

Programming Formulations for Permutation Flowshop,” OMEGA, The International Journal

of Management Science 32, 285-293.

Ho, J.C., Chang, Y.-L. (1991) “A New Heuristic for the n -Job, M -Machine Flow-Shop

Problem,” European Journal of Operational Research 52, 194-202.

Ho, J.C. (1995) “Flowshop Sequencing with Mean Flowtime Objective,” European Journal

of Operational Research 81, 571-578.

Hundal, T.S. and Rajpogal, J. (1988) “An Extension of Palmer’s Heuristic for the Flow Shop

Scheduling Problem,” International Journal of Production Research 26 (6), 1119-1124.

Ishibuchi, H., Misaki, S. and Tanaka, H. (1995) “A Modified Simulated Annealing

Algorithm for the Flowshop Sequencing Problem,” European Journal of Operational

Research 81, 388-398.

Johnson, S.M. (1954) “Optimal Two-and Three-Stage Production Schedules with Setup

Times Included”, Naval Research Logistics Quarterly 1, 61-68.

King, J.R. and Spachis, A.S. (1980) “Heuristics for Flow-Shop Scheduling,” International

Journal of Production Research 18 (3), 345-357.

Koulamas, C. (1998) “A New Constructive Heuristic for the Flow-Shop Scheduling

Problem,” European Journal of Operational Research 105, 66-71.

Lahiri, S., Rajendran, C., and Narendan, T.T. (1993) “Evaluation of Heuristics for

 70

Scheduling in a Flowshop: A Case Study,” Production Planning and Control 4, 153-158.

Leisten, R. and Kolbe, M. (1998) “A Note on Scheduling Jobs with Missing Operations in

Permutation Flowshops,” International Journal of Production Research 36 (9), 2627-2630.

Miyazaki, S. and Nishiyama, N., and Hashimoto, F. (1978) “An Adjacent Pairwise Approach

to the Mean Flowtime Scheduling Problem,” Journal of the Operations Research Society of

Japan 21, 287-299.

Murata, T., Ishibuchi, H., and Tanaka, H. (1996) “Genetic Algorithms for Flowshop

Scheduling Problems,” Computers and Industrial Engineering 30 (4), 1061-1071.

Nawaz, M., Enscore, E., and Ham, I. (1983) “A Heuristic Algorithm for the m -Machine, n -

Job Flow-shop Sequencing Problem,” OMEGA, The International Journal of Management

Science 11, 91-95.

Ogbu, F. and Smith, D. (1990) “The Application of the Simulated Annealing Algorithms to

the Solution of the max// Cmn Flowshop Problem,” Computers and Operations Research

17 (3), 243-253.

Osman, I. and Potts, C.N. (1989) “Simulated Annealing for Permutation Flow-Shop

Scheduling,” OMEGA, The International Journal of Management Science 17, 551-557.

Page, E.S. (1961) “An Approach to the Scheduling of Jobs on Machines,” Journal of the

Royal Statistical Society, B Series 23 (2), 484-492.

Palmer, D. S. (1965) “Sequencing Jobs Through a Multi-Stage Process in the Minimum

Flow Time – A Quick Method of Obtaining a Near Optimum,” Operational Research

Quarterly 16, 101-107.

Park, Y., Pegden, C.D., and Enscore, E.E. (1984) “A Survey and Evaluation of Static

Flowshop Scheduling Heuristics,” International Journal of Production Research 22, 127-

141.

 71

Pinedo, M. (2002) Scheduling: Theory, Algorithms and Systems. Second Ed. Prentice-Hall,

Englewood Cliffs, NJ.

Ponnambalam, S.G., Aravindan, P., and Chandrasekaran, S. (2001) “Constructive and

Improvement Flow Shop Scheduling Heuristics: An Extensive Evaluation,” Production

Planning and Control 12 (4), 335-344.

Potts, C.N., Shmoys D.B., and Williamson D.P. (1991) “Permutation vs. Non-permutation

Flow Shop Schedules,” Operations Research Letters 10, 281-284.

Pugazhendhi, S., Thiagarajan, S., Rajendran, C., and Anantharaman, N. (2002) “Performance

Enhancement by Using Non-permutation Schedules in Flowline-based Manufacturing

Systems,” Computers and Industrial Engineering 44, 133-157.

Pugazhendhi, S., Thiagarajan, S., Rajendran, C., and Anantharaman, N. (2004) “Relative

Performance Evaluation of Permutation and Non-Permutation Schedules in Flowline-Based

Manufacturing Systems with Flowtime Objective,” International Journal of Advanced

Manufacturing Technology 23, 820-830.

Rajendran, C. (1993) “Heuristic algorithm for scheduling in a flowshop to minimize total

flow time,” International Journal of Production Economics 29, 65-73.

Rajendran, C. and Ziegler, H. (2001) “A Performance Analysis of Dispatching Rules and a

Heuristic in static Flowshops with Missing Operations of Jobs” European Journal of

Operational Research 131, 622-634.

Reeves, C.R. (1993) “Improving the Efficiency of Tabu Search for Machine Sequencing

Problems,” Journal of the Operational Research Society 44, 375-382.

Reeves, C.R. (1995) “A Genetic Algorithm for Flow-Shop Sequencing,” Computers and

Operations Research 22, 5-13.

Ruiz, R. and Maroto, C. (2005) “A Comprehensive Review and Evaluation of Permutation

Flowshop Heuristics,” European Journal of Operational Research 165, 479-494.

 72

Sridhar, J. and Rajendran, C. (1993) “Scheduling in a Cellular Manufacturing System: a

Simulated Annealing Approach,” International Journal of Production Research 31, 2927-

2945.

Suliman, S. (2000) “A Two-phase Heuristic to the Permutation Flow Shop Scheduling

Problem,” International Journal of Production Economics 64, 143-152.

Taillard, E. (1990) “Some Efficient Heuristic Methods for the Flow Shop Sequencing

Problem,” European Journal of Operations Research 47, 65-74.

Taillard, E. (1993) “Benchmarks for Basic Scheduling Problems,” European Journal of

Operational Research 64, 278-285.

Tandon, E., Cummings, P.T., and LeVan, M.D. (1991) “Flowshop Sequencing with Non-

Permutation Schedules,” Computers & Chemical Engineering 15, 601-607

Wagner, H.M. (1959) “An Integer-Linear Programming Model for Machine Scheduling,”

Naval Research Logistics Quarterly 6, 131-140.

Wang, L., and Zheng, D.Z. (2003) “An Effective Hybrid Heuristic for Flow Shop

Scheduling,” The International Journal of Advanced Manufacturing Technology 21, 38-44.

Widmer, M. and Hertz, A. (1989) “A New Heuristic Method for the Flow Shop Sequencing

Problem,” European Journal of Operational Research 41, 186-193.

Zegordi, S.H., Itoh, K., and Enkawa, T. (1995) “Minimizing Makespan for Flowshop

Scheduling by Combining Simulated Annealing with Sequencing Knowledge,” European

Journal of Operational Research 85, 515-531.

 73

APPENDICES

APPENDIX A: C++ CODE FOR GENERATING EXAMPLE

PROBLEMS

/*
 C++ code generating the 200 flow shop instances for each
 p value (p: percentage of missing operations).

 Processing times vary within the interval {0,99}.

*/

#define ANSI_C 0 /* 0: K&R function style convention */
#define VERIFY 0 /* 1: produce the verification file */
#define FIRMACIND 0 /* 0,1: first machine index */

#include <stdio.h>
#include <math.h>

struct problem {
 long rand_time; /* random seed for jobs */
 short num_jobs; /* number of jobs */
 short num_mach; /* number of machines */
};

#if VERIFY == 1

struct problem S[] = {
 { 0, 0, 0},
 { 873654221, 10, 10},
 { 0, 0, 0}};

#else /* VERIFY */

struct problem S[] = {
{ 0, 0, 0},
 /* 10 jobs 10 machines */
{ 873654221, 10, 10},
{ 379008056, 10, 10},
{ 1866992158, 10, 10},
{ 216771124, 10, 10},
{ 495070989, 10, 10},
{ 402959317, 10, 10},
{ 1369363414, 10, 10},
{ 2021925980, 10, 10},
{ 573109518, 10, 10},

 74

{ 88325120, 10, 10},
 /* 20 jobs 10 machines */
{ 587595453, 20, 10},
{ 1401007982, 20, 10},
{ 873136276, 20, 10},
{ 268827376, 20, 10},
{ 1634173168, 20, 10},
{ 691823909, 20, 10},
{ 73807235, 20, 10},
{ 1273398721, 20, 10},
{ 2065119309, 20, 10},
{ 1672900551, 20, 10},
 /* 30 jobs 10 machines */
{ 479340445, 30, 10},
{ 268827376, 30, 10},
{ 1958948863, 30, 10},
{ 918272953, 30, 10},
{ 555010963, 30, 10},
{ 2010851491, 30, 10},
{ 1519833303, 30, 10},
{ 1748670931, 30, 10},
{ 1923497586, 30, 10},
{ 1829909967, 30, 10},
 /* 40 jobs 10 machines */
{ 1328042058, 50, 5},
{ 200382020, 50, 5},
{ 496319842, 50, 5},
{ 1203030903, 50, 5},
{ 1730708564, 50, 5},
{ 450926852, 50, 5},
{ 1303135678, 50, 5},
{ 1273398721, 50, 5},
{ 587288402, 50, 5},
{ 248421594, 50, 5},
 /* 10 Jobs 20 machines */
{ 1958948863, 10, 20},
{ 575633267, 10, 20},
{ 655816003, 10, 20},
{ 1977864101, 10, 20},
{ 93805469, 10, 20},
{ 1803345551, 10, 20},
{ 49612559, 10, 20},
{ 1899802599, 10, 20},
{ 2013025619, 10, 20},
{ 578962478, 10, 20},
 /* 20 jobs 20 machines */
{ 1539989115, 20, 20},
{ 691823909, 20, 20},
{ 655816003, 20, 20},
{ 1315102446, 20, 20},
{ 1949668355, 20, 20},

 75

{ 1923497586, 20, 20},
{ 1805594913, 20, 20},
{ 1861070898, 20, 20},
{ 715643788, 20, 20},
{ 464843328, 20, 20},
 /* 30 jobs 20 machines */
{ 896678084, 30, 20},
{ 1179439976, 30, 20},
{ 1122278347, 30, 20},
{ 416756875, 30, 20},
{ 267829958, 30, 20},
{ 1835213917, 30, 20},
{ 1328833962, 30, 20},
{ 1418570761, 30, 20},
{ 161033112, 30, 20},
{ 304212574, 30, 20},
 /* 40 jobs 20 machines */
{ 1539989115, 40, 20},
{ 655816003, 40, 20},
{ 960914243, 40, 20},
{ 1915696806, 40, 20},
{ 2013025619, 40, 20},
{ 1168140026, 40, 20},
{ 1923497586, 40, 20},
{ 167698528, 40, 20},
{ 1528387973, 40, 20},
{ 993794175, 40, 20},
 /* 10 jobs 30 machines */
{ 450926852, 10, 30},
{ 1462772409, 10, 30},
{ 1021685265, 10, 30},
{ 83696007, 10, 30},
{ 508154254, 10, 30},
{ 1861070898, 10, 30},
{ 26482542, 10, 30},
{ 444956424, 10, 30},
{ 2115448041, 10, 30},
{ 118254244, 10, 30},
 /* 20 jobs 30 machines */
{ 471503978, 20, 30},
{ 1215892992, 20, 30},
{ 135346136, 20, 30},
{ 1602504050, 20, 30},
{ 160037322, 20, 30},
{ 551454346, 20, 30},
{ 519485142, 20, 30},
{ 383947510, 20, 30},
{ 1968171878, 20, 30},
{ 540872513, 20, 30},
 /* 30 jobs 30 machines */
{ 2013025619, 30, 30},

 76

{ 475051709, 30, 30},
{ 914834335, 30, 30},
{ 810642687, 30, 30},
{ 1019331795, 30, 30},
{ 2056065863, 30, 30},
{ 1342855162, 30, 30},
{ 1325809384, 30, 30},
{ 1988803007, 30, 30},
{ 765656702, 30, 30},
 /* 40 jobs 30 machines */
{ 1368624604, 40, 30},
{ 450181436, 40, 30},
{ 1927888393, 40, 30},
{ 1759567256, 40, 30},
{ 606425239, 40, 30},
{ 19268348, 40, 30},
{ 1298201670, 40, 30},
{ 2041736264, 40, 30},
{ 379756761, 40, 30},
{ 28837162, 40, 30},
 /* 10 jobs 40 machines */
{ 450926852, 10, 40},
{ 1462772409, 10, 40},
{ 1021685265, 10, 40},
{ 83696007, 10, 40},
{ 508154254, 10, 40},
{ 1861070898, 10, 40},
{ 26482542, 10, 40},
{ 444956424, 10, 40},
{ 2115448041, 10, 40},
{ 118254244, 10, 40},
 /* 20 jobs 40 machines */
{ 471503978, 20, 40},
{ 1215892992, 20, 40},
{ 135346136, 20, 40},
{ 1602504050, 20, 40},
{ 160037322, 20, 40},
{ 551454346, 20, 40},
{ 519485142, 20, 40},
{ 383947510, 20, 40},
{ 1968171878, 20, 40},
{ 540872513, 20, 40},
 /* 30 jobs 40 machines */
{ 2013025619, 30, 40},
{ 475051709, 30, 40},
{ 914834335, 30, 40},
{ 810642687, 30, 40},
{ 1019331795, 30, 40},
{ 2056065863, 30, 40},
{ 1342855162, 30, 40},
{ 1325809384, 30, 40},

 77

{ 1988803007, 30, 40},
{ 765656702, 30, 40},
 /* 40 jobs 40 machines */
{ 1368624604, 40, 40},
{ 450181436, 40, 40},
{ 1927888393, 40, 40},
{ 1759567256, 40, 40},
{ 606425239, 40, 40},
{ 19268348, 40, 40},
{ 1298201670, 40, 40},
{ 2041736264, 40, 40},
{ 379756761, 40, 40},
{ 28837162, 40, 40},

 /* 10 jobs 50 machines */
{ 450926852, 10, 50},
{ 1462772409, 10, 50},
{ 1021685265, 10, 50},
{ 83696007, 10, 50},
{ 508154254, 10, 50},
{ 1861070898, 10, 50},
{ 26482542, 10, 50},
{ 444956424, 10, 50},
{ 2115448041, 10, 50},
{ 118254244, 10, 50},
 /* 20 jobs 50 machines */
{ 471503978, 20, 50},
{ 1215892992, 20, 50},
{ 135346136, 20, 50},
{ 1602504050, 20, 50},
{ 160037322, 20, 50},
{ 551454346, 20, 50},
{ 519485142, 20, 50},
{ 383947510, 20, 50},
{ 1968171878, 20, 50},
{ 540872513, 20, 50},
 /* 30 jobs 50 machines */
{ 2013025619, 30, 50},
{ 475051709, 30, 50},
{ 914834335, 30, 50},
{ 810642687, 30, 50},
{ 1019331795, 30, 50},
{ 2056065863, 30, 50},
{ 1342855162, 30, 50},
{ 1325809384, 30, 50},
{ 1988803007, 30, 50},
{ 765656702, 30, 50},
 /* 40 jobs 50 machines */
{ 1368624604, 40, 50},
{ 450181436, 40, 50},
{ 1927888393, 40, 50},

 78

{ 1759567256, 40, 50},
{ 606425239, 40, 50},
{ 19268348, 40, 50},
{ 1298201670, 40, 50},
{ 2041736264, 40, 50},
{ 379756761, 40, 50},
{ 28837162, 40, 50},

{ 0, 0, 0}};
#endif /* VERIFY */

/* generate a random number uniformly between low and high */
int z=0;

#if ANSI_C == 1
int unif (long *seed, short low, short high)
#else
short unif (long *seed, short low, short high)
//long *seed; short low, high;
#endif
{
 static long m = 2147483647, a = 16807, b = 127773, c = 2836;
 double value_0_1;

 long k = *seed / b;
 *seed = a * (*seed % b) - k * c;
 if(*seed < 0) *seed = *seed + m;
 value_0_1 = *seed / (double) m;

 return (short) (low + floor(value_0_1 * (high - low + 1)));

}

/* Maximal 40 jobs and 50 machines are provided. */

short d[21][501]; /* duration */

#if ANSI_C == 1
void generate_flow_shop(short p) /* Fill d and M according to S[p] */
#else
void generate_flow_shop(short p)
//short p;
#endif
{
 short i, j;
 long time_seed = S[p].rand_time;

 for(i = 0; i < S[p].num_mach; ++i) /* determine a random duration */
 for (j = 0; j < S[p].num_jobs; ++j) /* for all operations */
 d[i][j] = unif(&time_seed, 0, 99); /* 99 = max. duration of op. */

 79

}

#if ANSI_C == 1
void write_problem(short p) /* write out problem */
#else
void write_problem(short p)
//short p;
#endif
{
 short i, j;
 FILE *f = NULL;
 char name[6];

 sprintf(name,"p%03d", p); /* file name construction */
 if(!(f = fopen(name,"w"))) { /* open file for writing */
 fprintf(stderr,"file %s error\n", name);
 return;
 }
 fprintf(f,"%d %d\n", S[p].num_jobs, S[p].num_mach); /* write header line */

 for(j = 0; j < S[p].num_jobs; ++j) {
 for(i = 0; i < S[p].num_mach; ++i) {
 fprintf(f,"%2d %2d ", i+FIRMACIND, d[i][j]); /* write machine and job */
 }
 fprintf(f,"\n"); /* newline == End of job */
 }
 fclose(f); /* close file */
}

int main()
{
 short i = 1;
 while(S[i].rand_time) { /* for i == 1 up to NULL entry */
 generate_flow_shop(i); /* generate problem i */
 write_problem(i); /* write out problem i */
 ++i; /* increment i */
 }
 return 0;
}

 80

APPENDIX B: C++ CODE FOR GENERATING NPS WITH THE
NEW APPROACH

#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
#include <math.h>

// generating NPS with the makespan criterion
// maximal size of problem: 50 machines, 40 jobs
// current size of problem: m machines, n jobs
// structure of pi[] is the same as for pibest[]
// processing times p[1..m][1..n]; cells p[0][..] and p[..][0] are not used
// completion times C[1..n][1..m] are the same as p[][]; cells C[0][..] and C[..][0] are set to
zero

#define N 50 // maximal number of jobs
#define M 10 // maximal number of machines
#define MAXL 6000000L // max long value

int pi[N+1];
long p[M+1][N+1],C[M+1][N+1];
int pibest[N+1];

FILE *fe; // output file to be traced

// templates
// returns max(x,y)
template <class number>
 number max(number x, number y) { return (x>y)?x:y; }

// returns min(x,y)
template <class number>
 number min(number x, number y) { return (x<y)?x:y; }

// returns sign of number x
template <class number>
 int sign(number x) { return (x<=0)?-1:1; }

// swaps two elements
template <class vect>
 void swap(vect *a, vect *b) { vect c=*a; *a=*b; *b=c; }

// quicksort; returns permutation such that a[pi[i]]<=a[pi[i+1]] for a[n..m]
template <class vect>
 void sort(int n, int m, vect a[], int pi[])
 { int i,j; vect x;
 if (m <= n) return;
 i=n; j=m; x=a[pi[(i+j)/2]];

 81

 do
 { while (a[pi[i]] < x) i++;
 while (x < a[pi[j]]) j--;
 if (i <= j) { swap(pi+i,pi+j); i++; j--; }
 } while (i < j);
 sort(n,j,a,pi); sort(i,m,a,pi);
 }

// quicksort; returns permutation such that a[pi[i]]>=a[pi[i+1]] for a[n..m]
template <class vect>
 void _sort(int n, int m, vect a[], int pi[])
 { int i,j; vect x;
 if (m <= n) return;
 i=n; j=m; x=a[pi[(i+j)/2]];
 do
 { while (a[pi[i]] > x) i++;
 while (x > a[pi[j]]) j--;
 if (i <= j) { swap(pi+i,pi+j); i++; j--; }
 } while (i < j);
 _sort(n,j,a,pi); _sort(i,m,a,pi);
 }

// returns makespan for permutation pi[]
long Cmax(int n, int m, long p[][N+1], int pi[])
{ int i,j;

 C[1][1]=p[1][pi[1]];
 for (j=2;j<=n;j++) C[1][j]=C[1][j-1]+p[1][pi[j]];
 for (i=2;i<=m;i++)
 { C[i][1]=C[i-1][1]+p[i][pi[1]];
 for (j=2;j<=n;j++) C[i][j]=max(C[i][j-1],C[i-1][j])+p[i][pi[j]];
 }
 return C[m][n];
}

// johnson's algorithm for F2//Cmax problem
void johnson(int n, long aa[], long bb[], int pi[])
{ int a=0,b=n+1,j;

 for (j=1;j<=n;j++) { if (aa[j]<=bb[j]) pi[++a]=j; else pi[--b]=j; }
 if (a>0) sort(1,a,aa,pi);
 if (b<=n) _sort(b,n,bb,pi);
}

// insertion of Ho’s algorithm for F//Cmax problem
void campbell(int n, int m, long p[][N+1], int pi[])
{ int i,j,pp[N+1];
 long ax[N+1],bx[N+1],cp,cmx=MAXL;

 for (j=1;j<=n;j++) ax[j]=bx[j]=0;
 for (i=1;i<m;i++)

 82

 { for (j=1;j<=n;j++) { ax[j]+=p[i][j]; bx[j]+=p[m-i+1][j]; }
 johnson(n,ax,bx,pp); cp=Cmax(n,m,p,pp);
 if (cp<cmx) { cmx=cp; for (j=1;j<=n;j++) pi[j]=pp[j]; }
 }
}

// insertion of gupta's algorithm for F//Cmax problem; algorithm 0
void gupta(int n, int m, long p[][N+1], int pi[N+1])
{ float eps = 0.001;
 int i,j;
 float ax[N+1],a;
 long s;

 for (j=1;j<=n;j++)
 { s=MAXL; pi[j]=j;
 for (i=1;i<m;i++) s=min(s,p[i][j]+p[i+1][j]);
 s=sign(p[1][j]-p[m][j]);
 if (!s) ax[j]=a/eps; else ax[j]=a/s;
 }
 _sort(1,n,ax,pi);
}

long alpha(int j, int k, int l)
 { int i; long s=0; for (i=k;i<=l;i++) s+=p[i][j]; return s; }

long beta(int j, int k, int l) { return alpha(j,k+1,l+1); }

float f(int j, int k, int l)
{ long u=min(alpha(j,k,l),beta(j,k,l));
 return u?sign(alpha(j,k,l)-beta(j,k,l))/((float)u):sign(alpha(j,k,l)-beta(j,k,l))*MAXL;
}

// (NEH) Nawaz, Enscore and Ham's algorithm for F//Cmax
// problem, complexity O(n^3*m)
void nawaz(int n, int m, long p[][N+1], int pi[])
{ int i,j,k,t;
 long c,cp,s;
 long sump[N+1];

 for (j=1;j<=n;j++) { s=0; for (i=1;i<=m;i++) s+=p[i][j]; sump[j]=s; }
 for (j=1;j<=n;j++) pi[j]=j; _sort(1,n,sump,pi);

 for (k=2;k<n;k++)
 { cp=Cmax(k,m,p,pi); i=k; // insert on k
 for (j=k;j>1;j--)
 { swap(pi+j,pi+j-1); // shift left
 c=Cmax(k,m,p,pi); // set new cmax
 if (c<cp) { cp=c; i=j-1; } // store best location
 }
 t=pi[1]; for (j=1;j<i;j++) pi[j]=pi[j+1]; pi[i]=t; // adjust pi[]
 }

 83

}

// Nawaz, Enscore, Ham's algorithm for F//Cmax problem,
// efficient implementation from Taillard's paper, complexity // O(n^2*m)
void NEH(int n, int m, long p[][N+1], int pi[])
{ int i,j,k,l,t;
 long c,cp,s;
 long r[M+1][N+1],q[M+2][N+2],d[M+1];
 long sump[N+1];

 for (j=1;j<=n;j++) { s=0; for (i=1;i<=m;i++) s+=p[i][j]; sump[j]=s; }
 for (j=1;j<=n;j++) pi[j]=j; _sort(1,n,sump,pi);

 for (i=0;i<=m;i++) r[i][0]=0; // r[][0] edge values
 for (j=0;j<=n;j++) r[0][j]=0; // r[0][] edge values
 d[0]=0; // d[0] edge value

 for (k=2;k<n;k++)
 {
 for (i=1;i<=m;i++) for (j=1;j<=k;j++)
 r[i][j]=max(r[i][j-1],r[i-1][j])+p[i][pi[j]]; // set new r[][]

 for (i=0;i<=m;i++) q[i][k]=0; // q[][k] edge values
 for (j=0;j<=k;j++) q[m+1][j]=0; // q[m+1][] edge values
 for (i=m;i>=1;i--) for (j=k-1;j>=1;j--)
 q[i][j]=max(q[i][j+1],q[i+1][j])+p[i][pi[j]]; // set new q[][]

 cp=r[m][k]; i=k; t=pi[k]; // insert on k
 for (j=k-1;j>=1;j--)
 { for (l=1;l<=m;l++) d[l]=max(d[l-1],r[l][j-1])+p[l][t]; // set d[]
 c=d[1]+q[1][j];
 for (l=2;l<=m;l++) c=max(c,d[l]+q[l][j]); // set new cmax
 if (c<cp) { cp=c; i=j; } // store best location
 }
 for (j=k;j>i;j--) pi[j]=pi[j-1]; pi[i]=t; // adjust pi[]
 }
}

long power(int x, int n) { int i; long s=1; for (i=1;i<=n;i++) s*=x; return s; }

long eps(int x, int n) { int i; long s=0; for (i=1;i<=n;i++) s+=power(x,i-1); return s; }

// ad hoc generator of processing times
void generator(int n, int m, long p[][N+1])
{ int i,j;
 for (i=1;i<=m;i++)
 for (j=1;j<=n;j++) p[i][j]=1+random(99);
}

// Taillard's uniform generator [low,high]
int unif(long *seed, int low, int high)

 84

{ static const long m=2147483647l,a=16807l,b=127773l,c = 2836l;
 long k;
 double value_0_1;

 k=*seed/b; *seed=a*(*seed%b)-k*c;
 if (*seed<0) *seed+=m;
 value_0_1=*seed/(float)m;
 return low+(int)(value_0_1*(high-low+1));
}

// Taillard's generator of instances with different p values
void generate(int n, int m, int k, long p[][N+1])
{ int i,j,t;
 long x,y,r,q,sp,lbb,td,lb;
 FILE *u;
 long _seed;
 char path[50];
 sprintf(path,"c:\\tcpp\\my\\recipes\\dane\\%d_%d.gen",n,m);
 u=fopen(path,"rt");
 for (i=1;i<=k;i++) fscanf(u,"%ld%ld%ld",&_seed,&td,&lbb);
 fclose(u);

 for (i=1;i<=m;i++) for (j=1;j<=n;j++) p[i][j]=unif(&_seed,1,99);
/*
 lb=0;
 for (i=1;i<=m;i++)
 { r=MAXL; q=MAXL; sp=0;
 for (j=1;j<=n;j++)
 { x=0; for (t=1;t<i;t++) x+=p[t][j];
 y=0; for (t=i+1;t<=m;t++) y+=p[t][j];
 if (x<r) r=x; if (y<q) q=y;
 sp+=p[i][j];
 }
 if ((r+sp+q)>lb) lb=r+sp+q;
 }

 for (j=1;j<=n;j++)
 { x=0; for (i=1;i<=m;i++) x+=p[i][j];
 if (x>lb) lb=x;
 }
*/
}

// shows permutation and non-permutation schedules
void show_pi(int n, int pi[])
{ int j;
 clrscr(); for (j=1;j<=n;j++) printf("%4d",pi[j]); printf("\n"); getch();
}

void main()
{ int i,j,n,m;

 85

 long copt;
 n=20; m=5;

 generate(n,m,7,p);

// clrscr();
// nawaz(n,m,p,pi);
// clrscr(); printf("%ld\n",Cmax(n,m,p,pi)); getch();
// show_pi(n,pi);

// NEH(n,m,p,pi);
// clrscr(); printf("%ld\n",Cmax(n,m,p,pi)); getch();
// show_pi(n,pi);

// campbell(n,m,p,pi);
// clrscr(); printf("%ld\n",Cmax(n,m,p,pi)); getch();
// show_pi(n,pi);
// getch();

// rand_pi(n,pi);

 clrscr();
 fe=fopen("trace.txt","wt");
 sa(n,m,p,pi,&copt,pibest);
 fclose(fe);
 show_pi(n,pi);

// clrscr();
// copt=Cmax(n,m,p,pibest);

}

	 ABSTRACT
	ÖZ
	 ACKNOWLEDGEMENTS
	 TABLE OF CONTENTS
	 LIST OF TABLES
	
	LIST OF FIGURES
	CHAPTER 1
	INTRODUCTION
	CHAPTER 2
	
	PROBLEM DEFINITION
	2.1. FLOWSHOP SCHEDULING
	2.2. PERMUTATION SCHEDULES
	2.3. MATHEMATICAL FORMULATION
	CHAPTER 3
	
	
	LITERATURE REVIEW & MOTIVATION FOR THIS STUDY
	3.1. HEURISTICS FOR THE FLOWSHOP SCHEDULING PROBLEM
	
	3.1.1. CONSTRUCTIVE HEURISTICS
	3.1.1.1. NAWAZ ET AL.’S (NEH) HEURISTIC
	3.1.2. IMPROVEMENT HEURISTICS
	
	3.1.3. METAHEURISTICS FOR THE FSP
	3.2. COMPUTATIONAL EVALUATIONS AND INSIGHTS
	3.3. BASIC MOTIVATION FOR DEVELOPING NPS
	
	3.4. A RECENT PAPER

	
	
	CHAPTER 4
	THE PROPOSED APPROACH
	
	4.1. JOB-PASSING: THE TOOL FOR NPS GENERATION
	4.2. DERIVING NPS FROM A GIVEN PS
	
	4.2.1. INITIALIZATION
	4.2.2. THE HEURISTIC PROCEDURE
	
	4.2.3. THE PROPOSED HEURISTIC PROCEDURE

	CHAPTER 5
	COMPUTATIONAL RESULTS
	5.1. EXPERIMENTATION OF HEURISTIC PROCEDURES
	5.1.1. ILLUSTRATIVE EXAMPLES
	5.1.2. GENERATION OF EXAMPLE PROBLEMS
	5.1.3. EVALUATION OF THE HEURISTICS

	CHAPTER 6
	CONCLUSIONS
	
	REFERENCES
	
	
	APPENDICES
	
	APPENDIX A: C++ CODE FOR GENERATING EXAMPLE PROBLEMS
	APPENDIX B: C++ CODE FOR GENERATING NPS WITH THE NEW APPROACH

