
ANOMALY DETECTION FROM

PERSONAL USAGE PATTERNS IN WEB APPLICATIONS

GÜRKAN VURAL

DECEMBER 2006

ANOMALY DETECTION FROM

PERSONAL USAGE PATTERNS IN WEB APPLICATIONS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÜRKAN VURAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

DECEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan ÖZGEN

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. Ayşe KİPER

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Dr. Onur Tolga ŞEHİTOĞLU

Co-Supervisor

Dr. Meltem Turhan YÖNDEM

Supervisor

Examining Committee Members

Prof. Dr. Faruk POLAT (METU, CENG)

Dr. Meltem Turhan YÖNDEM (METU, CENG)

Dr. Onur Tolga ŞEHİTOĞLU (METU, CENG)

Assoc. Prof. Dr. İ. Hakkı TOROSLU (METU, CENG)

Assist. Prof. Dr. Bilge SAY (METU, COGS)

I hereby declare that all information in this document has been obtained and pre-

sented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Lastname : Gürkan VURAL

Signature :

iii

Abstract

ANOMALY DETECTION FROM

PERSONAL USAGE PATTERNS IN WEB APPLICATIONS

Vural, Gürkan

M.Sc., Department of Computer Engineering

Supervisor: Dr. Meltem Turhan Yöndem

Co-Supervisor: Dr. Onur Tolga Şehitoğlu

December 2006, 78 pages

The anomaly detection task is to recognize the presence of an unusual (and poten-

tially hazardous) state within the behaviors or activities of a computer user, system,

or network with respect to some model of normal behavior which may be either hard-

coded or learned from observation. An anomaly detection agent faces many learning

problems including learning from streams of temporal data, learning from instances

of a single class, and adaptation to a dynamically changing concept. The domain

is complicated by considerations of the trusted insider problem (recognizing the dif-

ference between innocuous and malicious behavior changes on the part of a trusted

user).

This study introduces the anomaly detection in web applications and formulates

it as a machine learning task on temporal sequence data. In this study the goal is

to develop a model or profile of normal working state of web application user and to

detect anomalous conditions as deviations from the expected behavior patterns. We

focus, here, on learning models of normality at the user behavioral level, as observed

through a web application. In this study we introduce some sensors intended to

function as a focus of attention unit at the lowest level of a classification hierarchy

using Finite State Markov Chains and Hidden Markov Models and discuss the success

iv

of these sensors.

Keywords: Anomaly Detection, Web Application Security, Finite State Markov Chains,

Hidden Markov Models, Temporal Sequence Learning.

v

Öz

WEB UYGULAMALARINDA KİŞİSEL KULLANIM

ÖRÜNTÜLERİNDEN ANORMALLİK TESPİTİ

Vural, Gürkan

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Meltem Turhan Yöndem

Ortak Tez Yöneticisi: Dr. Onur Tolga Şehitoğlu

Aralık 2006, 78 sayfa

Anormallik tespiti, bilgisayar kullanıcısı, sistemi veya ağına ait davranış ve hareketler

içerisinde sabit olarak kodlanmış veya gözlemlerle öğrenilmiş normal davranış model-

lerini baz alarak, nadir görülen (ve potansiyel olarak riskli) davranış ve hareketlerin

varlığının algılanmasıdır. Anormallik tespit ajanı, geçici veri dizilerinden öğrenmeyi,

bir tek sınıfın örneklemelerinden öğrenmeyi ve dinamik olarak değişen bir ortama

adaptasyonu içeren bir çok öğrenme problemiyle karşılaşır. Bu alan, güvenlik kon-

trolünden geçmiş kötü niyetli bir kullanıcının değişimleri (güvenilirliği tespit edilmiş

kullanıcının zararsız ve zararlı değişimleri arasındaki ayrımının tespit edilmesi) göz

önüne alındığında karmaşıktır.

Bu çalışma web uygulamalarında anormallik tespitini tanımlar ve geçici veri dizisi

üzerinden çıkarım yapma problemi olarak formüle eder. Bu çalışmadaki hedef, web

uygulaması kullanıcısının normal kullanım durumuna dayalı bir model veya profil

oluşturmak ve beklenen davranış kalıplarından sapmalar olarak kabul edilen anormal

durumları tespit etmektir. Burada, web uygulamaları aracılığıyla gözlemlenen, kul-

lanıcı davranışı açısından normallik modelleri üzerinde durulmaktadır. Bu çalışmada,

Sonlu Durum Markov Zincirleri ve Gizli Markov Modeller vasıtasıyla en düşük sınıflan-

dırma hiyerarşisi düzeyinde işlev görmesi istenen bazi algılayıcılar sunuyor ve bu

vi

algılayıcıların başarımlarını ele alıyoruz.

Anahtar Kelimeler: Anormallik Tespiti, Web Uygulama Güvenliği, Sonlu Durum

Markov Zincirleri, Gizli Markov Modeller, Zamansal Dizi Öğrenme.

vii

To my love, Berivan,

and to my mother and father.

viii

Acknowledgments

The author wishes to express his deepest gratitude to:

• His supervisor, Dr. Meltem Turhan YÖNDEM and co-supervisor, Dr. Onur

Tolga ŞEHİTOĞLU for their guidance, advice, criticism, encouragements, and

insight,

• His partner in life, Ülker Berivan ÖZBAYRAM, for her love and endless confi-

dence,

• His parents and brother for their love and encouragements,

• His moral brother, Aydın BOZDEMİR for his support and encouragements,

• His colleagues for their support and encouragements,

• His company, Central Bank of the Republic of Turkey, for its support of aca-

demic researches,

• His psychologist, Dr. Gül Hınçal, for her guidance and encouragements,

throughout the research.

ix

Table of Contents

Plagiarism . iii

Abstract . iv

Öz . vi

Acknowledgments . ix

Table of Contents . ix

List of Tables . xiii

List of Figures . xiv

CHAPTER

1 Introduction . 1

1.1 Motivation and Background . 1

1.2 Goals of this Study . 2

2 Issues and Related Work . 5

2.1 Anomaly Detection . 5

2.1.1 Data Mining for Anomaly Detection 6

2.1.2 Decision Trees and Rules for Anomaly Detection 7

2.1.3 Genetic Programming for Anomaly Detection 7

x

2.1.4 Sequence Learning for Anomaly Detection 7

2.2 Analysis of Web Applications . 10

2.3 Markov Chains . 11

2.4 Hidden Markov Models . 12

3 Anomaly Detection in Web Applications . 15

3.1 Anomaly Detection from Usage Patterns 15

3.2 Observations through Web Application 16

3.3 The Proposed Approaches . 18

3.3.1 Markov Chain Model . 19

3.3.2 Hidden Markov Model . 19

3.3.3 Hidden Markov Model With State Transitions 20

3.4 Data Collection . 21

3.5 Prerequisites for The Proposed Approaches 22

3.6 Sequence Labeling for Anomaly Detection 23

4 Experimental Results . 24

4.1 Test Environment . 24

4.2 Structural Model Extraction of the Application 25

4.3 Data Collection . 29

4.4 Implementation . 30

4.5 Testing Procedure . 30

4.6 Test Results . 31

4.6.1 Markov Chain Model . 32

4.6.2 Hidden Markov Model . 36

4.6.3 Hidden Markov Model With State Transitions 41

4.6.4 Comparison . 45

5 Conclusion . 52

xi

5.1 Future Work . 53

References . 55

APPENDICES

A An Overview of Hidden Markov Models . 59

B Other Charts for Test Results . 63

xii

List of Tables

4.1 Possible identified observations. 25

4.2 Extracted HTML page classes. 28

4.3 Generated views. 29

xiii

List of Figures

2.1 Simple model of Sequence Learning for Anomaly Detection 8

3.1 Meta model of a generic Web application structure. 16

3.2 Overview of the proposed approach with prior estimation 20

4.1 Sample view and its generated view. 27

4.2 User history division for testing. 31

4.3 Percentage alarms and mean normal runs for Markov chain models

with different increment weights of USER8’s behaviors (Test Set 3 of 4). 34

4.4 Percentage alarms and mean normal runs for Markov chain models

with different increment weights of USER8’s behaviors (Test Set 4 of 4). 35

4.5 Percentage alarms (a) and mean normal runs (b) for HMMs with dif-

ferent state numbers of USER8’s behaviors (Test Set 3 of 4). 37

4.6 Percentage alarms (a) and mean normal runs (b) for HMMs with dif-

ferent state numbers of USER8’s behaviors (Test Set 4 of 4). 38

4.7 Percentage alarms (a) and mean normal runs (b) for HMMs with dif-

ferent state numbers of USER7’s behaviors (Test Set 1 of 2). 39

4.8 Percentage alarms (a) and mean normal runs (b) for HMMs with dif-

ferent state numbers of USER7’s behaviors (Test Set 2 of 2). 40

4.9 Percentage alarms (a) and mean normal runs (b) for HMMs with prior

estimation and different additional state numbers of USER8’s behav-

iors (Test Set 4 of 4). 42

4.10 Percentage alarms (a) and mean normal runs (b) for HMMs with prior

estimation and different additional state numbers of USER7’s behav-

iors (Test Set 1 of 2). 43

xiv

4.11 Percentage alarms (a) and mean normal runs (b) for HMMs with prior

estimation and different additional state numbers of USER7’s behav-

iors (Test Set 2 of 2). 44

4.12 Average percentage alarms (a) and mean normal runs (b) for HMMs

with prior estimation and normal HMMs of USER8’s behaviors. 47

4.13 Average percentage alarms (a) and mean normal runs (b) for HMMs

with prior estimation and normal HMMs of USER7’s behaviors. 48

4.14 Average percentage alarms (a) and mean normal runs (b) for HMMs

with prior estimation and normal HMMs of USER4’s behaviors. 49

4.15 Filtered average percentage alarms (a) and mean normal runs (b) for

HMMs with prior estimation and normal HMMs of USER7’s behaviors. 50

4.16 Total percentage alarms (a) and mean normal runs (b) for all proposed

approaches. 51

B.1 Percentage alarms and mean normal runs for Markov chain models

with different increment weights of USER8’s behaviors (Test Set 1 of 4). 64

B.2 Percentage alarms and mean normal runs for Markov chain models

with different increment weights of USER8’s behaviors (Test Set 2 of 4). 65

B.3 Percentage alarms and mean normal runs for Markov chain models

with different increment weights of USER7’s behaviors (Test Set 1 of 2). 66

B.4 Percentage alarms and mean normal runs for Markov chain models

with different increment weights of USER7’s behaviors (Test Set 2 of 2). 67

B.5 Percentage alarms and mean normal runs for Markov chain models

with different increment weights of USER4’s behaviors (Test Set 1 of 2). 68

B.6 Percentage alarms and mean normal runs for Markov chain models

with different increment weights of USER4’s behaviors (Test Set 2 of 2). 69

B.7 Percentage alarms (a) and mean normal runs (b) for HMMs with dif-

ferent state numbers of USER8’s behaviors (Test Set 1 of 4). 70

B.8 Percentage alarms (a) and mean normal runs (b) for HMMs with dif-

ferent state numbers of USER8’s behaviors (Test Set 2 of 4). 71

B.9 Percentage alarms (a) and mean normal runs (b) for HMMs with dif-

ferent state numbers of USER4’s behaviors (Test Set 1 of 2). 72

xv

B.10 Percentage alarms (a) and mean normal runs (b) for HMMs with dif-

ferent state numbers of USER4’s behaviors (Test Set 2 of 2). 73

B.11 Percentage alarms (a) and mean normal runs (b) for HMMs with prior

estimation and different additional state numbers of USER8’s behav-

iors (Test Set 1 of 4). 74

B.12 Percentage alarms (a) and mean normal runs (b) for HMMs with prior

estimation and different additional state numbers of USER8’s behav-

iors (Test Set 2 of 4). 75

B.13 Percentage alarms (a) and mean normal runs (b) for HMMs with prior

estimation and different additional state numbers of USER8’s behav-

iors (Test Set 3 of 4). 76

B.14 Percentage alarms (a) and mean normal runs (b) for HMMs with prior

estimation and different additional state numbers of USER4’s behav-

iors (Test Set 1 of 2). 77

B.15 Percentage alarms (a) and mean normal runs (b) for HMMs with prior

estimation and different additional state numbers of USER4’s behav-

iors (Test Set 2 of 2). 78

xvi

Chapter 1

Introduction

1.1 Motivation and Background

Today while sitting on our seats we can do a wide range of our tasks using computers.

Most of these tasks can be achieved by using web applications. Hence providing a

secure web environment has become a high priority for companies as e-businesses

have increased the amount and the sensitivity of information that can be accessed

through the Internet. Although the developers and maintainers of web applications

are trying to take all the precautions that satisfies the principal of ‘defense in depth’,

web applications stay hopeless against masqueraders, who can prove his identity to

the system with a password stolen by using social engineering or other methods.

Thus, most of the web applications ask unnecessary annoying security questions even

while you are doing a usual task which makes these applications less user friendly.

This evidently indicates that intelligent security systems are needed with the ability

to adjust security level according to anomalous conditions as deviations from expected

behavior patterns.

From a different point of view, human’s current actions and responses reflect the

unique demands of the current situation, but they are also shaped out of previously

learned behaviors and skills [1]. This ability to act by recycling previously gained

knowledge whenever possible while acquiring new knowledge or skills whenever nec-

essary is one of the greatest strengths of human intelligence and is one of the major

contributing factors to human adaptability. Therefore automated modeling of hu-

man behaviors is useful in the computer security domain of anomaly detection [2].

In the user modeling facet of the anomaly detection domain, the task is to develop

a model or profile of the normal working state of a user and to detect anomalous

1

conditions as deviations from this model or profile which is the actual needed thing

for contemporary web applications.

We take a personal assistant view of this domain, in which the task of the anomaly

detection sensor is to augment the security of a private individual’s account by moni-

toring usage activity for suspicious incidents that do not conform to known behavior

patterns of the account owner. Under this view, behavioral data are assumed to be

private and available only to the valid user’s assistant. Thus, training data are single

class representing only the behaviors of the profiled user. The following chapter will

introduce these concepts in more depth.

1.2 Goals of this Study

The general goal of anomaly detection is to model the state of a computer system,

network, or user and to detect later misuse in terms of deviations from the known

patterns. In this study we focus on a personal anomaly detection agent, which learns

the user’s behaviors in order to help protect his or her account from unauthorized

access. An adaptive learning model is a promising approach for profiling user behavior

for such anomaly detection systems. This domain is a particularly interesting learning

context as it presents a number of difficulties to an adaptive learning system: [1]

• The system must be both adaptable to change on the part of a valid user, yet

resistant to intruders masquerading as authorized users or attempting to train

the system away from the valid user’s profile.

• For reasons of privacy and practicality, it is often necessary to train such a

system with data from only valid interactions of a single user and we thus have

the task of inducing a concept from examples of only a single class.

• The anomaly detection domain presents us with a stream of discrete events

(commands, system calls, user requests, etc) from which we wish to induce

a concept. This task of learning from temporal sequence data has its own

issues that bear investigation such as learning on non-metric spaces and learning

relations within feature vectors.

Although the main goal of the anomaly detection domain is to produce a system

capable of distinguishing all intrusive anomalies from all normal behaviors, it is not

necessary to fully achieve this target to make substantial contribution in this domain

2

[3]. Our goal is not to produce a complete, stand-alone anomaly detection system

that would catch all impostors or to solve all security issues. Rather we are operating

within the context of two operational principles as stated in [3] , one drawn from the

computer security community and the other from the machine learning community:

• All security mechanisms are susceptible to some form of compromise, and sub-

stantially increasing the strength or reliability of any given mechanism may

require disproportionate effort or cost. Thus, it is desirable to construct a

layered network of imperfect but relatively cheap defenses. We can have high

confidence in the resulting system because of the redundancy of defenses even if

we have only moderate confidence in each individual mechanism. This principal

is known as defense in depth.

• It is well known in the machine learning literature that appropriate combination

of a number of weak classifiers can yield a highly accurate global classifier.

Although various forms of voting have been shown to be effective in many cases,

a natural alternative in data-intensive domains is multi-layer or hierarchical

classification. In such tiered decision systems, the function of the lowest layer

of classifiers is to provide focus of attention, that is, to reduce the enormous data

inputs to a manageable load for the more computationally intensive upper layers

of the hierarchy which are responsible for such tasks as feature identification

and final classification.

Thus, we do not aspire to provide a complete security solution but an incremental

benefit. The sensors we describe in this study is intended to function as a focus of

attention unit at the lowest level of a classification hierarchy; final decisions of hazard

level and notification of security officers is the responsibility of a higher level agent

with access to distilled results from many data sources. Nor do we intend to consider

all of the thousands of potentially relevant data sources;

The objective, therefore, for these sensors is threefold as stated in [3]:

• To provide a reasonable level of accuracy and data reduction to a higher level

classifier in the decision hierarchy.

• To provide results in a timely manner so that security actions can be taken

promptly.

• And to run efficiently, imposing little resource burden on the classification hi-

erarchy and the computer system as a whole.

3

In terms of accuracy, we focus on ability to discriminate impostors, recalling

that a false alarm on the valid user can potentially be discarded by a higher-level

decision maker but that an impostor missed by this sensor will never be available to

higher-level classifiers.

As a conclusion in this study we aim to develop a model or profile of normal

working state of web application user and to detect anomalous conditions as devia-

tions from the expected behavior patterns. In other words we aim to augment the

security of a private individuals account by monitoring usage activity for suspicious

incidents that do not conform to known behavior patterns of the account owner. For

this purpose we propose different approaches to develop sensors considering the re-

marks explained in this section. Moreover we discuss the success and the application

dependency of these sensors on a sample web application.

4

Chapter 2

Issues and Related Work

2.1 Anomaly Detection

Anomaly detection as an approach for Intrusion Detection Systems was first pro-

posed by Dorothy Denning [4] in 1987. It was suggested that by observing abnormal

behavior data, anomalies can be detected. This was based on concept that abnormal

data is in some way necessarily different from normal data, and if some measure of

normal/abnormal data can be deduced further anomalies can be detected. In [5]

anomaly detection was defined as follows: “Anomaly detection attempts to quantify

the usual or acceptable behavior and flags other irregular behavior as potentially in-

trusive”. Under this definition, the scope of anomaly detection encompasses not only

violations by an outsider but also anomalies arising from violations on the part of an

authorized user (the trusted insider threat) as stated in [1]. In the taxonomy of In-

trusion Detection Systems like [6] and [7], anomaly detection was generally classified

as an independent approach from other classical intrusion detection approaches.

Anomaly detection has historically been viewed as a difficult problem in computer

science. Conventional techniques to solve this problem have not yielded any satisfac-

tory solutions. One of these approaches is to develop a set of rules which describes

all possible misuse scenarios and to employ some form of pattern matcher to activate

appropriate rules. This form of detection is appealing because it can detect patterns

of attack quickly as it does not depend on aggregate data that must be acquired

over an extended time period such as statistics or behavioral profiles. However these

security policies are decided by humans and the number of possible states that a

computer system can be in is huge, complete partitioning of this space into ‘abusive’

and ‘normal’ is almost impossible. So, heuristic and machine learning approaches are

5

often looked upon as potential solutions for this problem.

The following sections will introduce these techniques and recent works briefly.

2.1.1 Data Mining for Anomaly Detection

Data mining generally refers to the process of extracting descriptive models from large

stores of data. Data mining techniques as an approach for anomaly detection was

first proposed by Wenke Lee [8]. His research aimed developing a set of tools that can

be applied to a variety of audit data sources to generate intrusion detection models.

He considered intrusion detection as a data analysis process. The main purpose of his

approach was to apply data mining techniques to extensively gathered audit data to

compute models that accurately capture the actual behavior of intrusions and normal

activities. Because of the huge volume of audit data, both in the amount of audit

records and in the number of system features, efficient and intelligent data analysis

tools were required to discover the behavior of system activities.

The recent rapid development in data mining has made available a variety of

algorithms, drawn from the fields of statistics, pattern recognition, machine learning,

and databases. Several types of algorithms are particularly useful for mining audit

data:

• Classification maps a data item into one of several predefined categories. An

ideal application in intrusion detection is to gather sufficient normal and abnor-

mal audit data for a user or a program, then apply a classification algorithm to

learn a classifier that can label or predict new unseen audit data as belonging

to the normal class or the abnormal class. Kang et. al. used bag of system calls

representation to classify normal and intrusive activities [9]. Their experimen-

tal results showed that standard machine learning techniques are surprisingly

effective in misuse detection when they were used to train misuse detectors

using simple bag of system calls representation.

• Link analysis determines relations between fields in the database records. Cor-

relation of system features in audit data can serve as the basis for constructing

normal usage profiles.

• Sequence analysis models sequential patterns and can discover what time-

based sequences of audit events are frequently occurring together. These fre-

quent event patterns provide guidelines for incorporating temporal statistical

6

measures into intrusion detection models. This concept will be discussed in the

Section 2.1.4.

2.1.2 Decision Trees and Rules for Anomaly Detection

Decision trees and rules are examples of disjunctive normal form (DNF) models.

Decision rules are similar in characteristics to decision trees, they however also have

some potential advantages brought front by being a stronger model and having better

explanatory capabilities. DNF rules, unlike trees, need not be mutually exclusive.

Thus, their solution space includes all tree solutions. In 1995 Weiss published the

most important study in this area on Machine Learning for predicting anomalies

using decision trees and rules [10].

In one of the recent works, Chan et. al. proposed an algorithm called LERAD

that can learn the characterization of normal behavior in the form of logical rules

[11].

2.1.3 Genetic Programming for Anomaly Detection

These techniques are based on the phenomenon of natural selection. A population

of solutions, which have not been created by the programmer explicitly, are tested

against each other using an evolution function. The next generation of solutions

is developed from the current generation using techniques such as mutation and

crossovers. The major problem in these techniques is to find an evaluation function

to judge the performance of various solutions. The first anomaly detection technique

using Genetic Programming was developed by Ludovic Me [12] in 1998. He applied

a genetic algorithm tool called GASSATA on a command sequence.

2.1.4 Sequence Learning for Anomaly Detection

There are two major ways in which the sequence learning problem differs from many

previously examined learning tasks. Temporal learning has been studied for time se-

ries data, but almost exclusively for numerical time series in which the existence of a

full ordering and a distance metric allow the application of many powerful mathemat-

ical techniques. Time series of discrete elements however, do not inherently possess

such distance properties so techniques such as spectral analysis, clustering, or neural

networks for temporal prediction are not directly applicable. Discrete, non-metric

7

Figure 2.1: Simple model of Sequence Learning for Anomaly Detection

spaces have been studied, but mostly for the atemporal case, in which an instance is

considered to be a feature vector in which element ordering is nor significant. Deci-

sion trees, summary statistics, rule learners have been used for learning on discrete

valued spaces but all of these methods consider each feature independently. That

is, the contribution of a single feature to the final classification depends only on its

value and not on its position within the sequence, its relation to the preceding and

succeeding features. Thus, a straightforward application of such techniques ignores

the information contained within the temporal relations among elements.

There also exists learning methods explicitly developed to model sequence data.

Methods for learning the structure of deterministic finite-state automata (DFA) have

been widely studied. DFA’s, however, are not well suited to modeling highly noisy do-

mains such as human-generated computer interaction data. The simplest extension of

DFA models to noisy domains are Markov Chain Models, which allow stochastic state

transitions. These models have the advantage that the Maximum-Likelihood estima-

tion for transition probabilities has a closed form. Markov Chain Models typically

emit symbols deterministically (requiring a state for each symbol of the alphabet).

When the alphabet is large, the dimensionality of the parameter space is high and the

amount of training data required to accurately estimate low probability transitions

is very large. Finally, deterministic output Markov models with unique states can

8

only represent a single context for any given symbol.

In late 90’s Lane and Brodley proposed a method that aroused great interest

in this area using Hidden Markov Models [13]. Their approach was based on the

following important assumptions:

• Human-Computer interaction is essentially casual in nature, which means that

a particular user always reacts in the same manner when faced with a particular

situation.

• A user’s behavior is characteristic and differs on a per user basis.

In studies [13], [2], and [1] they worked with historical data from UNIX command

usage patterns (extracted from UNIX Shell). This data was used to make profiles for

individual users in the system. For any such user, the system compared his current

behavior with his profile and classified it as being consistent with his past record or

not. If his current behavior were found significantly different from what was normal

for him, an alarm was raised indicating an anomaly. This relatively simple approach

yielded reasonably good results dependent on the number of optimal hidden states

which reflected the measure of the syntactic complexity present in the command line

data.

In 1996 it was founded that when a vulnerable UNIX system program or server

was attacked (for example, using a buffer overflow to open a root shell), the program

made sequences of system calls that differed from the sequences found in normal

operation [14]. In this work n-gram models (sequences of n = 3 to 6 calls), and

matching them to sequences observed in training were used. A score was generated

when a sequence observed during detection was different from those stored during

training. Later on there have been different additions to typical n-gram models that

solely relied on sequences of system calls [15].

In light of these studies, there have been other studies to model program behaviors

with Hidden Markov Models. This approach usually yielded reasonably good results.

For example, Cho and Park modeled privilege flows using Hidden Markov Models

[16], [17]. Another study modeled program sequences of system calls for anomaly

detection in UNIX programs [18].

9

2.2 Analysis of Web Applications

The World Wide Web, initially intended as a way to publish static hypertexts on the

Internet, is moving toward complex applications. Static web sites are being gradually

replaced by dynamic sites, where non trivial computation is performed before serving

the dynamic content. Massive amounts of web data are being collected and stored

everyday for different reasons, for example to detect fraud or malicious visitors, to

improve the organization of web site to better serve customers, or to identify hid-

den patterns and new trends in consumer behavior for improving profit. Growing

size of web applications make security considerations become more important while

analyzing web applications [19].

A variety of data mining techniques have been used to analysis web data. As-

sociation rule extraction, collaborative filtering, clustering, dependency modeling,

dynamic model extraction, and sequential pattern analysis are the most common

and noticeable of these methods.

• Association rule extraction has been used to identify sets of items that are

accessed together.

• Collaborative filtering algorithms have been used to find similar users

based on the overlap between their requested items, and then recommend the

given user items accessed by the like-minded users.

• Clustering has been used to group similar items or users with similar usage

patterns. This approach generally has been used within other methods.

• Dependency modeling has been used to discover and represent dependen-

cies among different variables such as, for instance, the effect of gender on

the shopping behavior. CleverSet [20] approached the web visitor behavior

modeling task using dynamic relational Bayesian modeling to infer motivation,

preferences, and the probability making a purchase. Their models provided

a rich vocabulary to describe the web visit in terms of customer-centric and

web-centric variables.

• Dynamic model extraction has been used for extraction of UML model of

a web application to solve problems related to traditional testing. Tonella and

Ricca extracted a model from an existing web application by means of a semi-

automatic procedure, requiring user involvement only in the specification of a

10

set of input values covering all the internal states of the application [21]. In

their work, partial models could still be constructed whenever full coverage of

all possible internal states was not granted by the available set of inputs.

• Sequential pattern analysis has been used to discover patterns such that

the current history of actions is evidence to the following action. The sequen-

tial pattern analysis has been widely used for behavioral prediction. Hafri et.

al. applied probabilistic exploration using Markov models and clustered these

models to make possible the prediction of future states to be visited [22]. Cadez

et. al. analyzed the sequences of URL categories traversed by users and made

model-based clustering by learning a mixture of first-order Markov models to

make possible the visualization of navigation patterns on a web site [23]. Man-

avoglu et. al. used maximum entropy based mixture models for generating

probabilistic behavior models [24]. They first built a global behavior model

for the entire population and then personalized this global model for the exist-

ing users by assigning each user individual component weights for the mixture

model. Kruegel and Vigna focused on structural inference from request at-

tributes and modeled query attributes with Hidden Markov Models to generate

probabilistic regular grammars for anomaly detection of web based attacks [25].

Chen et. al. defined session comparison measurements for masquerading detec-

tion [26]. Also behavioral modeling using sequential pattern analysis were used

in testing environments of web applications in the studies like [27] and [28].

Up to this section we have glanced at recent works related to this study. In the

following sections we will give brief information about some concepts used in this

study.

2.3 Markov Chains

A Markov chain is a discrete-state random process in which the only state that

influences the next state is the current state. In other words, we have a set of states

S = {s1, s2, . . . , sn}. The process starts in one of these states and moves successively

from one state to another. If the chain is currently in state si, then it moves to state

sj , at the next step with a probability denoted by pij , and this probability does not

depend upon which states the chain was in before the current state. A finite state

machine is an example of a Markov chain.

11

In a Markov chain the following conditions are satisfied:

pij > 0 ∀(si, sj) ∈ S2 (2.1)∑
sj∈S

pij = 1 ∀si ∈ S (2.2)

The transition matrix is defined as:

P =


p11 p12 · · · p1n

p21 p22 · · · p2n

...
...

. . .
...

pn1 pn2 · · · pnn


To be more precise, let (Xt)t∈IN0

be a sequence of random variables with values

in S. The sequence (Xt)t∈IN0
is called a Markov chain with discrete time, state space

S, and transition matrix P , if for every t ∈ IN0 the condition

P (Xt+1 = sj |X0 = si0 , . . . , Xt = sit) = P (Xt+1 = sj |Xt = sit) = pitj (2.3)

is satisfied for all (si0 , . . . , sit ∈ St+2), for which P (X0 = si0 , . . . , Xt = sit) > 0.

The first identity in the Equation 2.3 is called Markov property, and the second

identity assures that the transition probabilities do not vary with the time t.

Markovian systems appear extensively in physics, particularly statistical mechan-

ics, whenever probabilities are used to represent unknown or unmodelled details of

the system, if it can be assumed that the dynamics are time-invariant, and that no

relevant history need be considered which is not already included in the state de-

scription. Markov chains can also be used to model various processes in queueing

theory and statistics. Markov chains have also been used to analyze web navigation

behavior of users. A user’s web link transition on a particular website can be modeled

using first order Markov chains and can be used to make predictions regarding future

navigation and to personalize the web page for an individual user. Google also uses

Markov chains to calculate the page rank of a web page.

2.4 Hidden Markov Models

A Hidden Markov Model (HMM) is a doubly stochastic process with an underlying

stochastic process that is not observable, and can only be observed through another

12

set of stochastic processes that produce the sequence of observed symbols [29]. HMM

is a useful tool to model sequence information. This model can be thought of as a

graph with N nodes called ‘state’ and edges representing transitions between those

states. Each state node contains initial state distribution and observation proba-

bilities at which a given symbol is to be observed. An edge maintains a transition

probability with which a state transition from one state to another state is made.

Given an input sequence O = O1, O2, . . . , OT , HMM can model this sequence with

its own probability parameters using Markov process though state transition process

can not be seen outside. Once a model is built, the probability with which a given

sequence is generated from the model can be evaluated. A model λ is described as

λ = (A,B, π) using its characteristic parameters. The parameters used in HMM are

as follows:

T = length of observation sequence

N = number of states in the model

M = number of observation symbols

S = {S1, S2, . . . , SN}, set of states

qt = state at time t

Ot = observation at time t

V = {v1, v2, . . . , vN}, discrete set of possible symbol observations

A = {aij |aij = P (qt+1 = Sj |qt = Si)}, state transition probability distribution

B = {bi(k)|bi(k) = P (vk|qt = Si)}, observation probability distribution

π = {πi|πi = P (q1 = Si)}, initial state distribution

The HMM gets its name from two defining properties. First, it assumes that the

observation at time t was generated by some process whose state qt is hidden from

the observer. Second, it assumes that the state of this hidden process satisfies the

Markov property, that is, given the value of qt−1, the current qt is independent of all

the states prior to t− 1. In other words, the state at some time encapsulates all we

need to know about the history of the process in order to predict the future of the

process. The outputs also satisfy a Markov property with respect to the states, that

is, given qt, Ot is independent of the states and observations at all other time indices.

There are three fundamental problems associated with the practical implementa-

tion of HMMs as prediction or estimation models:

Observation Probabilities: Given a sequence of observations, O = O1, O2, . . . , OT ,

13

and a model, λ, calculate the probability of observing that sequence of obser-

vations under the model, P (O|λ).

State Sequence Selection: Given a sequence of observations, O = O1, O2, . . . , OT ,

and a model, λ, calculate the sequence of states, Q = q1, q2, . . . , qT , most likely

(under some optimality criterion) to have generated O.

Model Training: Given a sequence of observations, O = O1, O2, . . . , OT , select the

parameter set, λ = (A,B, π), that maximizes P (O|λ).

Previously mentioned approaches which use HMMs for anomaly detection are

generally interested in calculating observation probabilities and training model. Al-

gorithms to solve these problems and other detailed information about HMMs can

be found in the Appendix A.

Rabiner widely used HMMs in speech recognition and defined most of the con-

cepts explained in his studies [30], [31], and [32]. Besides speech recognition and

anomaly detection HMMs have been widely used in optical character recognition,

machine translation, prediction of protein-coding regions in genome sequences, mod-

eling families of related DNA or protein sequences and in many other domains.

14

Chapter 3

Anomaly Detection in Web

Applications

Up to this section we have investigated recent works and issues related to this study.

In this section we will focus on the solution of anomaly detection problem in web ap-

plications using personal usage patterns and present both differences and similarities

with other approaches to anomaly detection in other domains.

3.1 Anomaly Detection from Usage Patterns

We propose that anomalies can be detected from personal usage patterns based on

the following assumptions:

• Demands of web users from an application do not change rapidly and frequently.

• Current actions of web users and responses reflect the unique demands of the

current situation, but they are also shaped out of previously learned behaviors

and skills.

By means of these assumptions anomalies can be detected as deviations from the

expected behavior patterns in a web application. In other words we propose that

the security of a private individual’s account can be augmented by monitoring usage

activity for suspicious incidents that do not conform to known behavior patterns of

the account owner.

15

HTMLPage

+url: String

+isDynamic: Boolean

+input: Set<Couple>

+hidden: Set<Couple>

ServerProgram

+use: Set<Var>

Parameter

+p: Set<Couple>

Frame

+name: String

Form

+input: Set<Var>

+hidden: Set<Couple>

link

0..*

link

0..*

redirect

1

redirect

1

LoadPageIntoFrame
optional

+f: Frame
build

1

submit

0..*

split into

0..*

split into

0..*

initial page

1

(xor)

(xor)

Figure 3.1: Meta model of a generic Web application structure.

3.2 Observations through Web Application

The Figure 3.1 shows the meta model used to describe a generic Web application [21].

As a summary of this model stated in [21], the central entity in a web application is

named the HTMLPage. An HTML page contains the information to be displayed to

the user, and the navigation links toward other pages. Organization and interaction

facilities (e.g. frames and forms) are also included in an HTML page. Navigation from

page to page is modeled by the auto-association of class HTMLPage named link. Web

pages can be static or dynamic. While the content of a static web page is fixed, the

content of a dynamic page is computed at run time by the server and may depend on

the information provided by the user through input fields. The class ServerProgram

models the executable that runs on the server side and generates a dynamic HTML

output. When the content of a dynamic page depends on the values of a set of input

variables, the attribute use of class ServerProgram contains them. A server side

program can be executed by traversing a link from an HTML page whose target is

the server executable and whose attributes include a set of parameters, represented

as 〈name, value〉 or by submitting a form. The server program can either redirect the

request to another server program, build an output, dynamic HTML page, or simply

redirect to a static HTML page. The latter two cases can be distinguished only

because the resulting HTML page is respectively static or dynamic. When a server

program builds a dynamic page, the input and hidden variable values that have been

provided to it are stored in the attributes input and hidden of the resulting page, as

sets of couples 〈name, value〉.

16

A frame is in fact a rectangular area in the currently displayed page where naviga-

tion can take place independently. Moreover, the different frames into which a page

is decomposed can interact with each other, since a link in a page loaded into a frame

can force the loading of another page into a different frame. Organization into frames

is represented by the association split into, whose target is a set of Frame entities.

Today’s DHTML technology allows dynamic loading of not all of but some of the

parts in an HTML page. Hence, a frame can be considered as a virtual partition of

an HTML page in order to cover this new technology.

In HTML user input is gathered by exploiting a Form and is passed to a server

program, which processes it, through a submit link. A web page can include any

number of forms. Each form is characterized by the input variables that are provided

by the user through it. Additional hidden variables are exploited to record the state

of the interaction. They allow transmitting pairs of the type 〈name, value〉 from page

to page. Typically, the constant value they are assigned needs be preserved during

the interactive session for successive usage. Since the HTTP protocol is stateless, this

is the basic mechanism used to record the interaction state (a variant is represented

by the cookies).

In a web application, the same server program may behave differently, according

to the interaction state. To clarify this situation it is convenient to classify server

programs into two categories as stated in [21]:

• Server programs with state-independent behavior.

• Server programs with state-dependent behavior.

Servers programs in the first category always exploit the same mechanism to pro-

duce the output and generate a dynamic page whose structure and links are fixed.

The behavior of these server program is the same in every interaction state. On the

contrary, server programs in the second category behave differently when executed

under different conditions. A server program may, for example, two completely dif-

ferent computations and consequently different output pages according to the value

of a hidden flag recording a previous user selection.

In presence of server programs with state-dependent behavior, the paths in the

model can still be interpreted as navigation sessions, provided that server program

and related output page are replicated for all possible variants. The resulting model

is called an explicit state model. Tonella and Ricca suggested page merging heuris-

17

tic criteria to simplify this explicit state model [21] for dynamic model extraction

described in the Section 3.3.3. In this study we call each class of HTMLPage of

the explicit state model as a ‘state’ of web application. Moreover we call each class

of interaction, action request, between a HTMLPage and the ServerProgram as an

‘observation’. Besides one can always produce an exact action request that is listed

below manually, an observation can occur because of the following reasons:

• When user clicks a link or submits a form in a web page.

• When user enters a url to the browser to direct access to a web page.

• When user uses the back-forward buttons of the browser to repeat an action

request in the history.

• When the web application produces DHTML requests in the background.

Based on the following facts we propose that web users’ actions observed through

a web application can be seen as observations generated by a Markov chain which

satisfies the Markov property with hidden states:

• Based on the nature of web applications an action request observed through

a web application is independent of the states and observations at all other

time indices, since HTTP is a stateless protocol. Each request is executed

independently, without any knowledge of the requests that came before it.

• The request through a web application at time t was generated by some process

whose state qt is hidden from the server side.

The first fact should not be confused with the result of the request, because the

response may depend on previous actions. Moreover, the latter fact should not be

confused with the internal states of the web application, because as stated before one

can always produce an action request manually, which means web user’s requests do

not have to depend on the result of the last request. Hence the state at time t of the

process that generates the action requests is hidden.

3.3 The Proposed Approaches

In this section we will intoduce some approaches as solution candidates of the problem

described in this study. These approaches mainly depend on Markov chains and

18

hidden Markov models. The former proposed approach make use of Markov chains

to model normal working state of the web application user. This approach can be seen

as one of the simplest representation of the problem with some native disadvantages.

The latter approaches utilize hidden Markov models. These approaches are inspired

from Lane’s studies with Brodley to detect anomalies from Unix command usage

patterns. The first approach is the application of original study on Unix command

usage patterns to web application usage patterns. The last approach aims to give

solutions to problems of the original approach.

3.3.1 Markov Chain Model

At first glance one can expect that modeling actions of web applications as a Markov

chain constitutes a good approach. Because we can easily collect the statistical

information of how many times an action is observed after a specific action, which

can be used to calculate the transition probabilities.

Nevertheless Markov chain models typically emit symbols deterministically which

means |Σ|2 total transition probabilities to be learned for an alphabet of size |Σ| are

required and each state is emitting only a single symbol. Hence, they can only

represent a single context for any given symbol. In the anomaly detection domain

symbols can have multiple contexts. For example, in a Unix shell environment the

command vi can be employed for editing both source code and conference papers [2].

Analogically requests in a web application can have multiple contexts. For example,

in a music sharing application, the request for play in the main page can mean that

the user is willing to play popular choices brought by the application, which has a

different context from a regular play request resulting from a search.

3.3.2 Hidden Markov Model

By analogy with above facts in the Section 3.2, requests of web users can be consid-

ered as commands in a Unix shell environment. Reasoning by this analogy we can

approach to this problem with the approach that was used to detect anomalies from

Unix command usage patterns by Lane [1]. That is, we can train a hidden Markov

model with history of each user and use Forward-Backward algorithm to calculate

the probability of new sequences observed.

As stated before, Lane and Brodley’s studies [13], [2], and [1] yielded reasonably

good results dependent on the number of optimal hidden states which reflected the

19

Web ApplicationSecurity Officer

Request

Data Store

audit.log

transform

Observations

Model

train

alarm prior
estimationevaluate

Figure 3.2: Overview of the proposed approach with prior estimation

measure of the syntactic complexity present in the command line data. Considering

the fact that the view layer of the web application generally shapes the requests, in

general HMMs with the number of hidden states about the number of nodes in the

model of the application will be enough to represent the syntactic complexity of a

web user.

3.3.3 Hidden Markov Model With State Transitions

Lane and Brodley suffered from not only the number of optimal hidden states but

also the lack of prior estimation of transition probabilities of HMMs. Nevertheless

anomaly detection in web applications with the similar approach can go beyond this

problem. One can use the structure of the web application which can be extracted

by semi-automatic [21] or manual methods to estimate the number of optimal hidden

states and the initial transition probabilities. Because we know that most of the

time, web users’ requests will follow the view layer of the web application. With this

prior information HMMs are expected to be avoided getting stuck in a poor local

maximum and slow convergence problems.

For dynamic model extraction Tonella and Ricca suggested three page merging

heuristic criteria to simplify the explicit state model [21]:

• Dynamic and static pages that are identical according to a character-by-character

comparison are considered the same in the model.

20

• Dynamic pages that have identical structure, but different texts, according to

a comparison of the syntax trees of the pages are considered the same in the

model.

• Dynamic pages that have similar structure, according to a similarity metric,

such as the tree edit distance, computed on the syntax trees of the pages are

considered the same in the model.

Our approach will follow these conventions to produce a finite prior model of a

web application. These techniques require user involvement in the specification of

a set of input values covering all internal states of the application and can produce

partial models which are still of interest whenever full coverage of all possible internal

states is not granted by the available set of inputs. Hence adding some additional

nodes would be reasonable, because the extracted model can be partial or the user

may not follow the view layer.

In summary, when an action is requested from the application, a high level security

officer will collect the audit logs. These collected logs will be labeled as observations.

Using these labeled observations and prior explicit state model information from the

web application, a behavioral model is trained and evaluated against newly observed

actions informing the security officer about anomalities when necessary. The Figure

3.2 illustrates this approach.

Finally, different from the other approaches using HMMs for behavioral predic-

tion in Web applications, our approaches are completely personal view and deal with

task-centric observations (not deal with the semantic category of the requested data).

However some requests can be clustered into sub-categories to have better personal-

ization in behavioral usage. For example, a search request can be labeled with search

criteria tag in order to learn search habits.

3.4 Data Collection

To learn characteristic patterns of actions, our approach uses the sequence (an or-

dered, set of temporally adjacent actions in a user session) as the fundamental unit

of comparison. These sequences can be collected from audit logs or directly from the

application. As expected the latter case is easier way for this job. However usually it

is not possible to gain access to the application layer. Therefore understanding the

user behavior require discovering the valuable information within audit logs. This

21

involves several phases, details of which are out of the scope of this study:

• Data cleaning and preprocessing, where typically noise is removed, log files

are broken into sessions and users are identified.

• Data transformation, where useful features are selected to represent the data

and dimension reduction techniques are used to reduce the size of the data.

3.5 Prerequisites for The Proposed Approaches

In consequence of dealing only with requests, our approaches do not have any re-

quirements related to data collection as stated before. However, in order to apply

our approaches to a web application, the web application should satisfy the following

single assumption:

• The structure of the web application should have enough number of depths

and branching factors to be able to produce distinguishable models of usage

patterns.

Moreover in the training phase the following conditions should be satisfied to get

reasonable results from our approaches:

• The model of the application covering most of the internal states should be

extracted.

• The profile of a user should be trained with enough number of valid observations

covering the usage behavior from a single user.

The first item is required, because the prior information can affect the convergence

speed of hidden Markov models initialized with state transitions of the web applica-

tion, that is the number of observations to train. The latter is trying to make a point

of the quality of the observations. From the point of a user’s view, initial sessions in

a web application can be seen as the learning phase of the application. Hence HMMs

should be trained taking into account that observations from this learning phase can

produce incorrect behaviors.

22

3.6 Sequence Labeling for Anomaly Detection

We use similar techniques for sequence labeling from Lane and Brodley’s studies [2].

We construct a single model, λ, to model the observed behavioral patterns of the

valid user. The likelihoods of incoming data sequences are evaluated with respect to

λ and those judged insufficiently likely via a threshold test are labeled as anomalous.

The value of this ‘minimum acceptable likelihood’ is denoted tmin in their studies. A

feature of the anomaly detection domain is the threat of ‘replay attacks’ 1. However

in web applications observations are usually too similar to historical behaviors. Hence

we will not introduce an upper threshold to flag these attacks.The threshold tmin is

chosen from the lower r quantiles of the non-parametric distribution of observation

likelihoods on an independent, ‘parameter selection’, subset of the training data.

The parameter r corresponds to an ‘acceptable’ false alarm rate and its selection is

a site-specific issue related to security policy.

We wish to be able to label arbitrary subsequences of the observed data. For

models with Hidden Markov Model approach we can run the forward-backward like-

lihood estimation algorithm between every possible pair of subsequence start, s, and

termination, t time steps. However this turns out to be computationally expensive.

Hence we consider all fixed-length subsequences (t − s = l for some fixed l), de-

noted as ‘window size’. Similarly for Markov chains we consider the probability of

all fixed-length subsequences calculated with Bayes’ formula.

1A replay attack is one in which an attacker monitors a system and records information such

as user commands. These commands can then later be replayed back to the system literally (or

with the inclusion of a very few hostile actions). Because the vast majority of the data was, in fact,

originally generated by the valid user, it will appear perfectly normal to the detection sensors unless

some check is made for occurrences which are too similar to past behavior.

23

Chapter 4

Experimental Results

4.1 Test Environment

Considering the fact that the structure of the web application should satisfy some

criteria stated in the Section 3.5, choosing the right environment for testing is impor-

tant. The following remarks have been taken into consideration while constituting

the environment:

• It is preferable that in the chosen application, how the requested data to be

reached should depend on user preferences and habits. In such a case it is

expected that distinguishable models of usage patterns will be provided.

• It is not required but preferable that the application grant access to the source

code. Therefore action requests can be identified in the application layer with-

out the need of data cleaning, preprocessing and transformation.

• It is not possible to collect the data from a simulated environment. User pref-

erences are important, hence users should use the application without being

under pressure, that is, the data collection phase can take up long time. It is

important to choose an application that users are willing to use.

Taking into account above remarks we have decided to use a web based music

sharing application to test the proposed approach. The chosen application is an open

source PHP-based tool called ampache1 for managing, updating and playing various

music files via a web interface. It allows the users to save public and private playlists,

browse music files by album and artist, download song, album and playlist, random
1It can be reached from http://www.ampache.org/.

24

play on full song lists, albums, artists and genre, search on almost every field, choose

per user theme, view user statistics of song, album, artist and genre played and many

more features. We have installed the application in a LAN environment, where can

be used frequently in weekdays, with a music catalog of 3 GB mp3 files and a dozen

of users from different social profiles.

4.2 Structural Model Extraction of the Application

We have analyzed the application manually to extract the structural model. Using

the principles Tonella and Ricca suggested [21], we have identified all possible action

types and states that the application owned. After the identification phase, we have

split some action types into sub-categories for better personalization in behavioral

usage. We have labeled each search request with search criteria tag in order to learn

search habits. For example, in a financial web application one can label a payment

action with amount scale. Below is the labeled action types:

Table 4.1: Possible identified observations.

Observation Description

album browse Browse albums.

album detail Show album detail.

album match Show albums matching criteria.

album show all Show all albums.

artist browse Browse artists.

artist detail Show artist detail.

artist match Show artists matching criteria.

artist show all Show all artists.

artist show all songs Show all songs of the artist.

direct link Direct music file request to listen.

download Download music file.

download album Download album.

download playlist Download playlist.

flag view Show flag view.

flag song Flag song file.

login Login request.

Continued on Next Page. . .

25

Table 4.1 – Continued

Observation Description

logout Logout request.

main Show main page.

play album Play album.

play artist Play artist.

playlist add to Add song to playlist.

playlist remove from Remove song from playlist.

playlist browse Browse playlists.

playlist create Create playlist.

playlist delete Delete playlist.

playlist delete cancel Cancel playlist delete request.

playlist delete view Show playlist delete view.

playlist detail Show playlist detail.

playlist update Update playlist preferences.

playlist set track Set track numbers of playlist.

playlist view edit Show playlist edit view.

playlist view new Show create playlist view.

play playlist Play playlist.

play popular Play popular songs.

play random Play random songs.

play random album Play random album.

play random artist Play random artist.

play random playlist Play random playlist.

play selected Play selected songs.

play song Play song.

play uploaded Play uploaded song.

play your popular Play user popular songs.

preferences update Update user preferences.

preferences view Show preferences view.

search by album Search by album name.

search by artist Search by artist name.

search by song filename Search by song filename.

search by song title Search by song title.

Continued on Next Page. . .

26

Table 4.1 – Continued

Observation Description

search by genre Search by genre.

search view Show search view.

stats view Show statistics view.

unknown Unidentified action request.

upload Upload new song.

upload view Show upload view.

user change password Change user password.

user update profile Update user profile.

user clear stats Clear user statistics.

user profile view Show user profile view.

album list
view

show all
albums

browse
albums

match
album

album list
hidden

play
album

random play
album download

album

Figure 4.1: Sample view and its generated view.

Different from the regular web applications, this application has some actions

which are not handled directly by browsers or do not change the current view, like

downloading binary content and playing stream. We have handled these actions like

additional views generated from original view. Nodes representing these additional

views does not allow transition to other nodes representing additional generated

views. These nodes are only attainable from nodes of original views which generated

these views. For example, show all albums, browse albums, and match album ob-

servations lead up to a view listing albums. In this view user can play, or download

album which does not change the current view. So we represent these actions like

generated views with special transition probabilities. This situation is illustrated in

27

the Figure 4.1.

The following table illustrates the states in the application without generated

views:

Table 4.2: Extracted HTML page classes.

State Observations Emitted

album album browse, album match, album show all

album detail album detail

artist artist browse, artist match, artist show all

artist detail artist detail

flag view flag view, flag song

logout logout

main login, main

playlist playlist browse, playlist create

playlist detail playlist detail, playlist add to, playlist remove from,

playlist set track

playlist view delete playlist delete

playlist view edit playlist view edit, playlist update

playlist view new playlist view new

preferences view preferences view, preferences update

search view search view, search by song filename, search by artist,

search by album, search by genre, search by song title

stats view stats view

upload view upload view, upload

user profile view user profile view, user clear stats, user update profile,

user change password

28

The following table illustrates the generated views in the application:

Table 4.3: Generated views.

Generated From Observations Emitted

album play album, play random album, download album

album detail play album, play selected, play song, download album,

play random album, direct link, download

artist play artist, play random artist

artist detail download album, play album, play artist, play selected,

play random artist

main play song, play popular, play random

playlist play random playlist, download playlist

playlist detail play selected, play song, play playlist, direct link,

play random playlist

search view play album, play artist, play selected, play song,

play random album, play random artist, direct link,

download, download album

stats view play your popular

upload view play uploaded

4.3 Data Collection

We have deployed the application in a web server with a intrusion detection and

prevention engine called ModSecurity2. While collecting audit data from this mod-

ule, we have modified the controller layer of the application to identify observations

directly. We have recorded the observations in user history as broken into sessions.
2Detailed information can be obtained from http://www.modsecurity.org/.

29

4.4 Implementation

We have implemented the proposed HMM approaches using a HMM library in Java

called Jahmm3. For ordinary HMMs we have initiated a random initialized HMM

for each user. On the other side, for HMMs with prior estimations model, we have

initiated a HMM for each user with prior estimation from structural model. For

each node in the structural model a state in the HMM has created increasing the

probability of the observations emitted by this node. Transition probabilities of these

states have been adjusted as discrete uniform distribution except for the generated

nodes. The transition probabilities related to generated nodes have been adjusted

taking into account the remarks in the Section 4.2. Additional random initialized

states have been added to capture unknown states.

Additionally, we have modified the model training algorithm of HMMs to avoid

zero frequency problem, that is, the problem of preserving initial estimation. Even if

the model did not observe some of the observations, it should not forget the initial

estimation from structural model.

4.5 Testing Procedure

Because non-simulated human-level attack data has proved difficult to obtain, we

have profiled our techniques on the user differentiation problem. In this formulation,

data are gathered from valid system users under normal working conditions and

a user profile is constructed for each. The performance of the anomaly detection

sensor is evaluated with respect to the ability to correctly recognize the profiled user

and discriminate the other users as anomalous. This framework simulates only a

subset of the possible misuse scenarios that of a naive intruder gaining access to an

unauthorized account but it allows us to evaluate the approach.

Because user behaviors change over time, the effective lifetime of a static user

profile, as is employed in the work here, is limited. Thus we have constructed exper-

iments to evaluate the detector’s performance over a limited range of future activi-

ties. In order to test our proposed approaches we take an initial window of a user

history and divide it into three groups: training, parameter-selection, and testing.

After each testing phase we merge the sequences in the parameter-selection group

with the sequences in the training group and interchange the testing group with the
3For more information refer http://www.run.montefiore.ulg.ac.be/˜francois/software/jahmm/.

30

User History

Train

Train

Parameter
Selection

Parameter
Selection

Test

Test

...

Figure 4.2: User history division for testing.

parameter-selection group taking a new testing group as illustrated in the Figure

4.2. This procedure continues until there exists no sequences to create a new testing

group.

4.6 Test Results

After approximately three months of data collection period, we have chosen most

active three users with more than thousand observations. We have divided chosen

user histories into test sets according to the testing procedure and tested our models

with observations of the other users including the users which are not so active as

the chosen ones. All of these users are labeled from 1 to 12 successively. While

presenting test results users are referred to as USERn where n is the number of the

user. According to that our chosen users are USER4, USER7 and USER8.

In the following sections unless it is specified, the initial window of user histories

contain 500 observations of training group, 200 observations of parameter-selection

group and 200 observations of testing group approximately. These numbers are ap-

proximate since no user session is split while composing data sets. The thresholds

are calculated according to the acceptable false-alarm rate of 0.05 in our tests. Also

unless it is specified, the window size of subsequences is 20.

In the following sections we will compare our proposed approaches after presenting

test results of each model with possible variations. We have used two criteria to

compare our approaches:

• Percentage Alarms: This is the percentage of alarms in the test data that

the sensor has detected. As stated in [2], the goal in the anomaly detection task

is to identify potentially malicious occurrences while falsely flagging innocuous

31

actions as rarely as possible. In this study, the rate of incorrectly flagging

normal behaviors is denoted as ‘false alarm rate’ and the rate of failing to

identify abnormal behaviors is denoted as ‘the false acceptance rate’. Under

the null hypothesis that all behavior is normal, these correspond to Type I and

Type II errors, respectively. Moreover the converse accuracy rates are referred

to as ‘the true accept rate’ and ‘the true detect rate’. The ability to correctly

accept the profiled user as normal is denoted as the true accept rate, whereas

the ability to correctly detect an anomalous user is denoted as true detect rate.

Hence in percentage alarm charts it is expected that a good sensor should give

alarms to profiled user with low probabilities and give alarms to other users

with high probabilities.

• Mean Normal Runs: This is the average length of the consecutive runs in

the test data that the sensor have not produced any alarms. This is a measure

of how quickly an anomalous or hostile situation can be detected. Hence, we

wish the time to alarm to be short for hostile users so that they can be dealt

with quickly and before doing much harm, but long for the valid user so that

normal work is interrupted by false alarms as seldom as possible. Thus, in mean

normal runs charts it is expected that a good sensor should have longer normal

runs for profiled user than other users.

4.6.1 Markov Chain Model

As stated before to train a Markov model it is enough to collect simple statistics of

transitions. After generating transition matrix from training data, we have calculated

subsequences probabilities of parameterization data. We have chosen the threshold

tmin from the lower 5% quantiles of the non-parametric distribution of subsequences

probabilities of parameterization data.

Although generating transition matrix is simple, setting initial transition numbers

with zero forms a sparse transition matrix, which causes this model to give too many

false alarms. To avoid zero frequency problem, we have initialized transition numbers

as 1 and add each new transition to the statistics with a weight. We have tested this

model with weights 1, 2, 20 and 100.

As an interpretation of test results, in some conditions Markov chain models are

not able to differentiate profiled user from other users. Especially these models are

not so successful for differentiating USER8 from USER6 and USER7 from USER4.

32

The situation for USER8 is illustrated in the Figures 4.3 and 4.4 which show the

percentage alarms and the mean normal runs of these models. Generally the more

observations are trained, the better results are obtained. As an explanation of these

characteristics Markov chain models typically emit symbols deterministically which

means |Σ|2 total transition probabilities to be learned for an alphabet of size |Σ| is

required and each state is emitting only a single symbol as stated before. On the

other hand no meaningful results are obtained by changing the weights. Other charts

for these models can be found in the Appendix B.

33

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 8 - Test 3

chain w1
chain w2

chain w20
chain w100

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 8 - Test 3

chain w1
chain w2

chain w20
chain w100

(b)

Figure 4.3: Percentage alarms and mean normal runs for Markov chain models with

different increment weights of USER8’s behaviors (Test Set 3 of 4).

34

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 8 - Test 4

chain w1
chain w2

chain w20
chain w100

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 8 - Test 4

chain w1
chain w2

chain w20
chain w100

(b)

Figure 4.4: Percentage alarms and mean normal runs for Markov chain models with

different increment weights of USER8’s behaviors (Test Set 4 of 4).

35

4.6.2 Hidden Markov Model

As stated before there are certain problems in the use of HMMs. First problem

is the choice of the number of states. The second problem is the initial transition

and observation probabilities. Hence we have tested these models with 1, 2, 10

and 30 states and 10 different random initialization of transition and observation

probabilities.

We have trained our HMMs with observations from training data using Baum-

Welch Algorithm. We have calculated subsequences probabilities of parameterization

data using Forward-Backward Algorithm. We have chosen the threshold tmin from the

lower 5% quantiles of the non-parametric distribution of subsequences probabilities

of parameterization data.

The general performance of HMMs are reasonably good. When users with incom-

plex observations like USER8 and USER4 are considered, all of the HMMs behave

similar to each other. The Figures 4.5 and 4.6 illustrate the situation for USER8.

However when USER7 is considered, HMMs with smaller values of state number

suffer from confusing USER7 with USER9 as illustrated in the Figures 4.7 and 4.8.

Because USER7 has continued to use the web application while listening music which

causes some complex observations. Hence the only value of state number that can

correctly detect the difference between USER7 and USER9 is 30. On the whole as

the state number increases, both false alarm rates and true detect performance de-

crease. This trend agrees with the Lane and Brodley’s studies. As stated in [2], the

‘improved true accept coupled with degraded true detect performance’ can be viewed

as an indication that bigger values of state number are subject to the ‘everybody is

the profiled user’ difficulty with respect to smaller values of state number. General

reasonable performance of HMMs with 30 states agrees with our expectation that

HMMs with the number of hidden states about the number of nodes in the model of

the application will be enough to represent the syntactic complexity of a web user.

Because the view layer of the web application generally shapes these requests. Other

charts for these models can be found in the Appendix B.

36

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 8 - Test 3

lane s1
lane s2

lane s10
lane s30

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 8 - Test 3

lane s1
lane s2

lane s10
lane s30

(b)

Figure 4.5: Percentage alarms (a) and mean normal runs (b) for HMMs with different

state numbers of USER8’s behaviors (Test Set 3 of 4).

37

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 8 - Test 4

lane s1
lane s2

lane s10
lane s30

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 8 - Test 4

lane s1
lane s2

lane s10
lane s30

(b)

Figure 4.6: Percentage alarms (a) and mean normal runs (b) for HMMs with different

state numbers of USER8’s behaviors (Test Set 4 of 4).

38

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 7 - Test 1

lane s1
lane s2

lane s10
lane s30

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 7 - Test 1

lane s1
lane s2

lane s10
lane s30

(b)

Figure 4.7: Percentage alarms (a) and mean normal runs (b) for HMMs with different

state numbers of USER7’s behaviors (Test Set 1 of 2).

39

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 7 - Test 2

lane s1
lane s2

lane s10
lane s30

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 7 - Test 2

lane s1
lane s2

lane s10
lane s30

(b)

Figure 4.8: Percentage alarms (a) and mean normal runs (b) for HMMs with different

state numbers of USER7’s behaviors (Test Set 2 of 2).

40

4.6.3 Hidden Markov Model With State Transitions

Using dynamic model extraction methods we have produced a finite prior model of the

web application with 27 states. For each state we have recorded possible observations

and using this information initialized the observation probabilities. As stated before,

the extracted model can be partial or the user may not follow the view layer. Hence

we have tested these models with 1, 4 and 8 additional nodes and 10 different random

initialization of transition probabilities.

We have trained our HMMs with observations from training data using Baum-

Welch Algorithm. We have calculated subsequences probabilities of parameterization

data using Forward-Backward Algorithm. We have chosen the threshold tmin from the

lower 5% quantiles of the non-parametric distribution of subsequences probabilities

of parameterization data.

As the first interpretation of test results, the true accept and true detect per-

formance increase, when the number of additional nodes increases. When the test

number 4 of USER8 is considered as illustrated in the Figure 4.9, models with 1 and

4 additional nodes suffer from confusing USER8 with USER4. Only models with 8

additional nodes can truly detect the difference between these users. On the whole

the performance of the models are satisfactory. However when users like USER7

which have continued to use the web application while listening music breaking the

state diagram are considered, models with smaller number of additional nodes are

not enough. This situation is illustrated in the Figure 4.10 and 4.11. The structure

of this trend can be viewed as an indication that adding more additional nodes adds

the capability of ordinary HMMs. However increasing the hidden state number aug-

ments the variance between test trials. This situation can be seen as an indication

that depending on the random initialization of additional nodes these models can

oscillate between ordinary HMMs and HMMs with prior estimation. Other charts

for these models can be found in the Appendix B.

41

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 8 - Test 4

state s1
state s4
state s8

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 8 - Test 4

state s1
state s4
state s8

(b)

Figure 4.9: Percentage alarms (a) and mean normal runs (b) for HMMs with prior

estimation and different additional state numbers of USER8’s behaviors (Test Set 4

of 4).

42

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 7 - Test 1

state s1
state s4
state s8

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 7 - Test 1

state s1
state s4
state s8

(b)

Figure 4.10: Percentage alarms (a) and mean normal runs (b) for HMMs with prior

estimation and different additional state numbers of USER7’s behaviors (Test Set 1

of 2).

43

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 7 - Test 2

state s1
state s4
state s8

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 7 - Test 2

state s1
state s4
state s8

(b)

Figure 4.11: Percentage alarms (a) and mean normal runs (b) for HMMs with prior

estimation and different additional state numbers of USER7’s behaviors (Test Set 2

of 2).

44

4.6.4 Comparison

Upto this section we have investigated each models in detail. In this section we will

give brief comparison of two worthwile sensor models, ordinary HMMs and HMMs

with prior estimation. In this comparison Markov chain models are eliminated be-

cause of the poor performance differentiating some users. The Figures 4.12, 4.13, and

4.14 illustrate average percentage alarms and mean normal runs for USER8, USER7,

and USER4 respectively.

Although the acceptable false alarm rate parameter was tested as 0.05, some of

the observed false alarm rates are greater than this. This is a result of the training

and parameterization data failing to fully reflect the behavioral distribution present

in the testing data. Because the user has changed behaviors or tasks over the interval

between the generation of training and testing data, the profile does not include all

of the behaviors present in the test data. This is actually caused by the batch-mode

experimental setup used in this study.

If true detect capabilities are considered, HMMs with prior estimation have

slightly better performance. Also mean normal run differences between the profiled

user and the other users are slightly greater for this approach. However especially

for USER7 this approach produces too many false alarm rates (∼ 15%). As stated

before USER7 have continued to use the web application while listening music which

breaks the state diagram. If the file request actions while listening music are removed

from the training set, false alarm rates decrease to a reasonable value. The Figure

4.15 shows the average percentage alarms and mean normal runs when the test data

is filtered. For this data set, the initial window of user histories contain 500 ob-

servations of training group, 100 observations of parameter-selection group and 100

observations of testing group approximately and the window size of subsequences is

15. Since the testing data group is small, the mean normal run differences between

the profiled user and the other users appear minor. However general performances of

the sensors are acceptable. Again HMMs with prior estimation have slightly better

performance as expected.

Finally, we will focus on the Figure 4.16 that illustrates the total results of all

proposed approaches on all data sets. This figure can be interpreted as a different

point of view of the problem. It illustrates the problem as clustering of the data into

profiled user and other users. As it can be clearly seen from the figure, for Markov

chain models it is not possible to differentiate profiled user from other users. If we

45

consider percentage alarms, HMMs with prior estimation of state transitions clearly

discriminate profiled user with an imaginary line. Again for the mean normal runs

chart differentiation is clearly distinguishable excluding a data set that corresponds

to USER7. As a conclusion this last figure evidently shows the performance dif-

ference between HMMs with prior estimation and ordinary HMMs highlighting the

importance of prior estimation.

46

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 8 - Average

state s8
lane s30

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 8 - Average

state s8
lane s30

(b)

Figure 4.12: Average percentage alarms (a) and mean normal runs (b) for HMMs

with prior estimation and normal HMMs of USER8’s behaviors.

47

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 7 - Average

state s8
lane s30

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 7 - Average

state s8
lane s30

(b)

Figure 4.13: Average percentage alarms (a) and mean normal runs (b) for HMMs

with prior estimation and normal HMMs of USER7’s behaviors.

48

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 4 - Average

state s8
lane s30

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 4 - Average

state s8
lane s30

(b)

Figure 4.14: Average percentage alarms (a) and mean normal runs (b) for HMMs

with prior estimation and normal HMMs of USER4’s behaviors.

49

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 7 - Filtered Average

state s8
lane s30

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 7 - Filtered Average

state s8
lane s30

(b)

Figure 4.15: Filtered average percentage alarms (a) and mean normal runs (b) for

HMMs with prior estimation and normal HMMs of USER7’s behaviors.

50

 0

 0.2

 0.4

 0.6

 0.8

 1

ChainLaneState

P
er

ce
nt

ag
e

A
la

rm
s

Total Results

Profiled User
Other Users

(a)

 1

 10

 100

ChainLaneState

M
ea

n
N

or
m

al
 R

un
s

Total Results

Profiled User
Other Users

(b)

Figure 4.16: Total percentage alarms (a) and mean normal runs (b) for all proposed

approaches.

51

Chapter 5

Conclusion

Briefly, in this study we have aimed to develop a model or profile of normal work-

ing state of web application user and to detect anamolous conditions as deviations

from the expected behavior patterns. For this purpose we have collected audit data

from a music sharing application. We have preprocessed and transformed the data

labeling as observations and breaking into sessions. We have trained variations of

Markov chains and hidden Markov models and tested these models according to the

percentage alarms and the mean normal runs.

As a conclusion, we have demonstrated the use of Markov chains and hidden

Markov models for user profiling in the domain of anomaly detection in web appli-

cations. The key results of the empirical investigation are:

• Markov chains are insufficient to model user behaviors for anomaly detection.

Because these models can only represent a single context for any given symbol.

• HMMs can be used to identify users by their usage patterns.

• Larger HMMs were found to be more effective at identifying the valid user,

while smaller HMMs were generally better at discerning impostors.

• Although the optimal number of hidden states is user dependent and appears

to reflect a measure of syntactic complexity present in the data, in a web ap-

plication the number of states in the structural model of the application can be

good estimate for the number of hidden states in HMMs.

• Explicit state model of the web application can be used as prior estimation to

initialize HMMs.

52

Moreover our empirical investigation showed us that in a web application users

demands from an application do not change rapidly and frequently, and also their

current actions and responses reflect the unique demands of the current situation,

but they are also shaped out of previously learned behaviors and skills. Nevertheless

the training and parameterization data have failed to fully reflect the behavioral dis-

tribution present in the testing data. This is an evidence for the need of investigating

extensions of HMM anomaly detection sensors to online mode.

To use our proposed approaches in a real application, there are two important

points that should be taken into considerations:

• All possible action requests should be identified and labeled according to reflect

user preferences and habits. Some high level observations should be divided

into sub-categories to reflect additional user differentiation. As stated before

for example, in a financial web application one can label a payment action with

amount scale to classify users according to the scale of their payment amount.

• The structural model of the application covering most of the internal states

should be extracted. This will decrease the need of additional hidden states

in HMMs. Also prior estimation of initials in HMMs will affect the quality of

sensors.

5.1 Future Work

In this section we will focus on how can we extend these approaches to improve

anomaly detection performance in web applications and discuss possible future works

in this domain.

As stated in the previous section being not able to fully reflect the behavioral

distribution present in the testing data using the training and parameterization data

is a direct evidence for the need of investigating extensions of HMM anomaly detection

sensors to online mode [33]. Also we believe that sensors should not rely on least

recently observed actions, besides they should not forget the past. Because in a

web application sessions observed in the near future are likely to observed similarly

again. Hence it is expected that performance improvements will be realized by using

a weighted learning strategy.

The structure of all web applications do not need to have enough number of

depths and branching factors to be able to produce distinguishable models of usage

53

patterns. In such applications these models will not be enough to differentiate all

users. Hence combining other features with action request behaviors can help better

identification of users. For example, in a web application we can consider the time

difference between observations and relate them with the speed of filling forms.

Moreover modeling interaction with user interface is an open question. Client side

javascript can collect user interface interaction information about the web user. For

example, the use of keyboard or mouse while filling form elements like comboboxes

and checkboxes can be useful feature in this domain. Also mouse usage patterns are

not easily reproducible, hence modeling them can be valuable for user identification

and anomaly detection.

54

References

[1] Lane T. Machine Learning Techniques for the Computer Security Domain of

Anomaly Detection. PhD thesis, Purdue University, Department of Electrical

and Computer Engineering, 2000.

[2] Lane T. Hidden markov models for human/computer interface modeling. In

Proceedings of the IJCAI-99 Workshop on Learning About Users, pages 35–44,

1999.

[3] Lane T. and Brodley C. E. An empirical study of two approaches to sequence

learning for anomaly detection. Machine Learning, 51:73–107, 2003.

[4] Denning D. E. An intrusion detection model. IEEE Transactions on Software

Engineering, 13(2):222–232, 1987.

[5] Kumar S. Classification and Detection of Computer Intrusions. PhD thesis,

Department of Computer Sciences, Purdue University, 1995.

[6] Axelsson S. Research in intrusion-detection systems: A survey. Research survey,

The Swedish National Board for Industrial and Technical Development, 1999.

[7] Axelsson S. Intrusion detection systems: A survey and taxonomy. Research

survey, The Swedish National Board for Industrial and Technical Development,

2000.

[8] Lee W., Stolfo S., and Mok K. W. Mining audit data to build intrusion detection

models. In Knowledge Discovery and Data Mining, pages 66–72, 1998.

[9] Kang D., Fuller D., and Honavar V. Learning classifiers for misuse detection

using a bag of system calls representation. Technical report, Computer Science

Department, Iowa State University, 2005.

[10] Weiss S. M. Rule based machine learning methods for functional predicting.

Artifical Intelligence Research, pages 383–403, 1995.

55

[11] Chan P., Mahoney M. V., and Arshad M. H. A machine learning approach to

anomaly detection. Technical report, Department of Computer Sciences, Florida

Institute of Technology, 2003.

[12] Ludovic Me. Genetic algorithms, an alternative tool for security audit trails

analysis. 1st Workshop on Recent Advances in Intrusion Detection, 1998.

[13] Lane T. and Brodley C. E. Sequence matching and learning in anomaly de-

tection for computer security. In Proceedings of the AAAI-97 Workshop on AI

Approaches to Fraud Detection and Risk Management, pages 43–49, 1997.

[14] Forrest S., Hofmeyr S. A., Somayaji A., and Longstaff T. A. A sense of self for

unix processes. In Proceedings of the 1996 IEEE Symposium on Security and

Privacy, pages 120–128.

[15] Ghosh A. K., Schwartzbard A., and Schatz M. Using program behavior profiles

for intrusion detection. Proceedings of 1st Workshop on Intrusion Detection and

Network Monitoring, pages 51–62, 1999.

[16] Cho S. and Park H. Efficient anomaly detection by modeling privilege flows

using hidden markov model. Computers and Security, 22(1):45–55, 2003.

[17] Cho S. and Han S. Two sophisticated techniques to improve hmm-based in-

trusion detection systems. Lecture Notes On Computer Science, 2820:207–219,

2003.

[18] Hoang X. D., Hu J., and Bertok P. A multi-layer model for anomaly intrusion

detection using program sequences of system calls. The 11th IEEE International

Conference on Networks, pages 531–536, 2003.

[19] Pettit S. Anatomy of a web application: Security considerations. White paper,

Sanctum Inc., 2001.

[20] D’Ambrosio B. Modeling web visitor behavior: Real-time dynamic response

for 21st century e-commerce using relational bayesian models. White paper,

CleverSet Inc., 2004.

[21] Tonella P. and Ricca F. Dynamic model extraction and statistical analysis of

web applications. In Proceedings of the Fourth International Workshop on Web

Site Evolution, 2002.

56

[22] Hafri Y., Djeraba C., Stanchev P., and Bachimont B. A markovian approach

for web user profiling and clustering. Lecture Notes in Artificial Intelligence,

2637:191–202, 2003.

[23] Cadez I. V., Heckermen D., Meek C., Smyth P., and White S. Model-based

clustering and visualization of navigation patterns on a web site. Journal of

Data Mining and Knowledge Discovery, 7(4):399–424, 2003.

[24] Manavoglu E., Pavlov D., and Giles C. L. Probabilistic user behavior models.

In Proceedings of the Third International Conference on Data Mining, 2003.

[25] Kruegel C. and Vigna G. Anomaly detection of web based attacks. In Proceedings

of 10th ACM Conference on Computer and Communications Security, 2003.

[26] Chen Y., Ȧström M., and Wang L. Session comparison measurement and learn-

ing in masquerading detection. Technical report, Department of Business Ad-

ministration and Social Sciences, Division of Systems Sciences, Sweden, 2004.

[27] Huang Y., Huang S., Lin T., and Tsai C. Web application security assessment by

fault injection and behavior monitoring. In Proceedings of the 12th international

conference on World Wide Web, pages 148–159, 2003.

[28] Kıcıman E. and Fox A. Detecting application-level failures in component-based

internet services. IEEE Transactions on Neural Networks, 16(5):1027–1041,

2005.

[29] Rabiner L. R. A tutorial on hidden markov models and selected applications

in speech recognition. In Proceedings of The IEEE, volume 77, pages 257–286,

1989.

[30] Juang B. and Rabiner L. R. A probabilistic distance measure for hmms. AT&T

Technical Journal, 64(2):391–408, 1985.

[31] Rabiner L. R. and Juang B. An introduction to hidden markov models. IEEE

Acoustics, Speech, and Signal Processing Mag., 3(1):4–16, 1986.

[32] Juang B. and Rabiner L. R. The segmental k-means algorithm for estimating the

parameters of hidden markov models. IEEE Transactions on Acoustics, Speech,

and Signal Processing, 38(9):1639–1641, 1990.

[33] Digalakis V. V. Online adaptation of hidden markov models using incremental

estimation algorithms. IEEE Transactions on Speech and Audio Processing,

7(3):253–261, 1999.

57

[34] Zoubin Ghahramani. An introduction to hidden markov models and bayesian

networks. International Journal of Pattern Recognition and Artificial Intelli-

gence, 15(1):9–42, 2001.

[35] Dugad R. and Desai U. B. A tutorial on hidden markov models. Technical

report, SPANN Laboratory Indian Institute of Technology, Bombay, 2001.

58

Appendix A

An Overview of Hidden

Markov Models

In section 2.4, we have seen the notation and three main problems of HMMs. We

present brief descriptions of the commonly employed techniques for the solutions of

these problems here.

Calculation of Observation Probabilities: A most straightforward way to de-

termine P (O|λ) is to find P (O|Q,λ) for a fixed state sequence Q = q1, q2, . . . , qT then

multiply it by P (Q|λ) and then sum up over all possible Q’s. We have:

P (O|Q,λ) = bq1(O1)bq2(O2) · · · bqT (OT) (A.1)

P (Q|λ) = πq1aq1q2aq2q3 · · · aqT−1qT (A.2)

Hence we have:

P (O|λ) =
∑
Q

P (O|Q,λ)P (Q,λ) (A.3)

=
∑
Q

πq1bq1(O1)aq1q2bq2(O2) · · · aqT−1qT bqT (OT) (A.4)

where Q = q1, q2, . . . , qT .

This equation involves NT distinct possible state sequences I, which yields order

of 2TNT multiplications which is not feasible. This problem is solved with a dy-

namic programming algorithm called Forward-Backward Algorithm that employs the

Markov property (finite memory) to avoid computation of all possible state sequences.

Consider the forward variable αt(i) defined as:

αt(i) = P (O1, O2, . . . , Ot, qt = Si|λ) (A.5)

59

i.e. the probability of the partial observation sequence up to time t and the state Si

at time t, given the model λ. We can solve for αt(i) inductively, as follows:

1. Initialization:

α0(i) = πibi(O1) (A.6)

where 1 6 i 6 N .

2. Induction:

αt+1(j) =

[
N∑

i=1

αt(i)aij

]
bj(Ot+1) (A.7)

where 1 6 t 6 T − 1 and 1 6 j 6 N .

3. Termination:

P (O|λ) =
N∑

i=1

αT (i) (A.8)

In the induction step we want to compute the probability of partial observation

sequence up to time t + 1 and state Sj at time t + 1; state Sj can be reached (with

probability aij) independently from any of the N states at time t. The summation in

the induction step refers to this fact. Also the summand gives observation sequence

up to time t. In the termination step we just sum up all possible (independent) ways

of realizing the given observation sequence. The total number of multiplications

involved in this algorithm is N +N(N + 1)(T − 1) i.e. the order of N2T .

In a similar manner we may define a backward variable βt(i) as:

βt(i) = P (Ot+1, Ot+2, . . . , OT |qt = Si, λ) (A.9)

i.e. the probability of the observation sequence from t+ 1 to T given the state Si at

time t and the model λ. Again we can solve for βt(i) inductively as follows:

1. Initialization:

βT (i) = 1 (A.10)

where 1 6 i 6 N .

2. Induction:

βt(i) =
N∑

j=1

aijbj(Ot+1)βt+1(j) (A.11)

where 1 6 t 6 T − 1 and 1 6 i 6 N .

60

3. Termination:

P (O|λ) =
N∑

i=1

πibi(O1)β1(i) (A.12)

The computation of P (O|λ) using βt(i) also involves the order of N2T calcula-

tions.

Determination of Optimal State Sequences: There are several possible ways of

finding the optimal state sequence associated with the given observation sequence.

To choose the states qt which are individually most likely, we define the variable:

γt(i) = P (qt = Si|O, λ) (A.13)

i.e. the probability of being in state Si at time t, given the observation sequence

O and the model λ. This variable can be simply expressed by forward-backward

variables:

γt(i) =
αt(i)βt(i)
P (O|λ)

=
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

(A.14)

since αt(i) accounts for the partial observation sequence O1, O2, . . . , Ot and state Si at

t, while βt(i) accounts for the remainder of the observation sequenceOt+1, Ot+2, . . . , OT

given state Si at t. Using γt(i), we can solve for the individually most likely state qt
at time t, as:

qt = Sargmax16i6N [γt(i)] (A.15)

where 1 6 t 6 T . Although this maximizes the expected number of correct states

by choosing the most likely state for each t, there could be some problems with the

resulting state sequence. For example, when the HMM has state transitions which

have zero probability (aij = 0 for some i and j, the optimal state sequence may not

even be a valid sequence.

Hence we have to modify the optimality criterion. The most widely criterion is to

find the single best state sequence, i.e. to maximize P (Q|O, λ) which is equivalent to

maximizing P (Q,O|λ). A formal technique for finding this single best state sequence

exists, based on dynamic programming methods, and is called the Viterbi Algorithm.

We need to define a variable:

δt(i) = maxq1,q2,...,qi−1P (q1, q2, . . . , qt−1, qt = Si, O1, O2, . . . , Ot|λ) (A.16)

i.e. the best score along a single path, at time t, which accounts for the first t

observations and ends in state Si. By induction we have:

δt+1(j) = maxi [δt(i)aij] bj(Ot+1). (A.17)

61

To actually retrieve the state sequence, we need to keep track of the argument which

maximized above equation, for each t and j.We do this via the array ψt(j). The

complete procedure for finding the best state sequence can now be stated as follows:

1. Initialization:

δ1(i) = πibi(O1) (A.18)

ψ1(i) = 0 (A.19)

where 1 6 i 6 N .

2. Recursion:

δt(j) = max16i6N [δt−1(i)aij] bj(Ot) (A.20)

ψt(j) = argmax16i6N [δt−1(i)aij] (A.21)

where 2 6 t 6 T and 1 6 j 6 N .

3. Termination:

p∗ = max16i6N [γT (i)] (A.22)

q∗T = argmax16i6N [γT (i)] (A.23)

4. Path backtracking:

q∗t = ψt+1(q∗t+1) (A.24)

where t = T − 1, T − 2, . . . , 1.

A little reflection over the above steps will show that computationally the al-

gorithm is similar to the forward-backward procedure except for the comparisons

involved for finding the maximum value. Hence its complexity is also of the order

N2T .

Training the Model: The third, and by far the most difficult, problem of HMMs

is to determine a method to adjust the model parameters (A,B, π) to maximize the

probability of the observation sequence given the model. There is no known way to

analytically solve for the model which maximizes the probability of the observation

sequence. In fact, given any finite observation sequence as training data there is

no optimal way of estimating the model parameters. There are two methods for

solving this problem with some limitations, one chooses λ = (A,B, π) such that

P (O|λ) is locally maximized called Baum-Welch Algorithm and the other chooses λ =

(A,B, π) such that P (O,Q|λ) is maximized called Segmental K-Means Algorithm.

These methods are deeply explained in studies [31], [32], [34], and [35].

62

Appendix B

Other Charts for Test

Results

This section includes other charts for test results which are not directly referenced in

this study. All of these charts include both percentage and mean normal runs. These

charts are organized in the order of approaches presented in the Section 3.3. For each

approach charts are presented in the order of decreasing profiled user number and

increasing test set number.

63

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 8 - Test 1

chain w1
chain w2

chain w20
chain w100

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 8 - Test 1

chain w1
chain w2

chain w20
chain w100

(b)

Figure B.1: Percentage alarms and mean normal runs for Markov chain models with

different increment weights of USER8’s behaviors (Test Set 1 of 4).

64

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 8 - Test 2

chain w1
chain w2

chain w20
chain w100

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 8 - Test 2

chain w1
chain w2

chain w20
chain w100

(b)

Figure B.2: Percentage alarms and mean normal runs for Markov chain models with

different increment weights of USER8’s behaviors (Test Set 2 of 4).

65

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 7 - Test 1

chain w1
chain w2

chain w20
chain w100

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 7 - Test 1

chain w1
chain w2

chain w20
chain w100

(b)

Figure B.3: Percentage alarms and mean normal runs for Markov chain models with

different increment weights of USER7’s behaviors (Test Set 1 of 2).

66

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 7 - Test 2

chain w1
chain w2

chain w20
chain w100

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 7 - Test 2

chain w1
chain w2

chain w20
chain w100

(b)

Figure B.4: Percentage alarms and mean normal runs for Markov chain models with

different increment weights of USER7’s behaviors (Test Set 2 of 2).

67

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 4 - Test 1

chain w1
chain w2

chain w20
chain w100

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 4 - Test 1

chain w1
chain w2

chain w20
chain w100

(b)

Figure B.5: Percentage alarms and mean normal runs for Markov chain models with

different increment weights of USER4’s behaviors (Test Set 1 of 2).

68

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 4 - Test 2

chain w1
chain w2

chain w20
chain w100

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 4 - Test 2

chain w1
chain w2

chain w20
chain w100

(b)

Figure B.6: Percentage alarms and mean normal runs for Markov chain models with

different increment weights of USER4’s behaviors (Test Set 2 of 2).

69

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 8 - Test 1

lane s1
lane s2

lane s10
lane s30

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 8 - Test 1

lane s1
lane s2

lane s10
lane s30

(b)

Figure B.7: Percentage alarms (a) and mean normal runs (b) for HMMs with different

state numbers of USER8’s behaviors (Test Set 1 of 4).

70

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 8 - Test 2

lane s1
lane s2

lane s10
lane s30

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 8 - Test 2

lane s1
lane s2

lane s10
lane s30

(b)

Figure B.8: Percentage alarms (a) and mean normal runs (b) for HMMs with different

state numbers of USER8’s behaviors (Test Set 2 of 4).

71

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 4 - Test 1

lane s1
lane s2

lane s10
lane s30

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 4 - Test 1

lane s1
lane s2

lane s10
lane s30

(b)

Figure B.9: Percentage alarms (a) and mean normal runs (b) for HMMs with different

state numbers of USER4’s behaviors (Test Set 1 of 2).

72

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 4 - Test 2

lane s1
lane s2

lane s10
lane s30

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 4 - Test 2

lane s1
lane s2

lane s10
lane s30

(b)

Figure B.10: Percentage alarms (a) and mean normal runs (b) for HMMs with dif-

ferent state numbers of USER4’s behaviors (Test Set 2 of 2).

73

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 8 - Test 1

state s1
state s4
state s8

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 8 - Test 1

state s1
state s4
state s8

(b)

Figure B.11: Percentage alarms (a) and mean normal runs (b) for HMMs with prior

estimation and different additional state numbers of USER8’s behaviors (Test Set 1

of 4).

74

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 8 - Test 2

state s1
state s4
state s8

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 8 - Test 2

state s1
state s4
state s8

(b)

Figure B.12: Percentage alarms (a) and mean normal runs (b) for HMMs with prior

estimation and different additional state numbers of USER8’s behaviors (Test Set 2

of 4).

75

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 8 - Test 3

state s1
state s4
state s8

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 8 - Test 3

state s1
state s4
state s8

(b)

Figure B.13: Percentage alarms (a) and mean normal runs (b) for HMMs with prior

estimation and different additional state numbers of USER8’s behaviors (Test Set 3

of 4).

76

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 4 - Test 1

state s1
state s4
state s8

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 4 - Test 1

state s1
state s4
state s8

(b)

Figure B.14: Percentage alarms (a) and mean normal runs (b) for HMMs with prior

estimation and different additional state numbers of USER4’s behaviors (Test Set 1

of 2).

77

 0

 0.2

 0.4

 0.6

 0.8

 1

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

P
er

ce
nt

ag
e

A
la

rm
s

Profile 4 - Test 2

state s1
state s4
state s8

(a)

 1

 10

 100

user 12user 11user 10user 9user 8user 7user 6user 5user 4user 3user 2user 1

M
ea

n
N

or
m

al
 R

un
s

Profile 4 - Test 2

state s1
state s4
state s8

(b)

Figure B.15: Percentage alarms (a) and mean normal runs (b) for HMMs with prior

estimation and different additional state numbers of USER4’s behaviors (Test Set 2

of 2).

78

