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ABSTRACT 

 

 

A SOFTWARE ENVIRONMENT FOR 
BEHAVIOR-BASED  

MOBILE ROBOT CONTROL  
 
 
 
 

Bekmen, Onur 
M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Aydın ERSAK 
 

December 2006, 128 pages 
 

 
 
Robotic science can be defined as a modern multi-disciplinary branch of science, 

which hosts many technological elements with a huge theoretic base. From 

electrical and electronics engineering point of view, construction of intelligent 

agents that produce and/or collects information by interacting the surrounding 

environment and that can achieve some goal via learning, is investigated in robotic 

science. In this scope, behavior-based robotic control has emerged in recent years, 

which can be defined as a hierarchically higher control mechanism over classical 

control theory and applications.  

 

In this thesis, software which is capable of producing behavior-based control over 

mobile robots is constructed. Research encapsulates an investigation on behavior-

based robotic concept by comparison of different approaches. Although there are 

numerous commercial and freeware software products for robotics, the number of 

open source, detail documented software on behavior-based control concept 

together with easy usage is limited. Aimed to fulfill a necessity in this field, an 

open  source  software  environment  is  implemented in which different algorithms 
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and applications can be developed. In order to evaluate the effectiveness and the 

capabilities of the implemented software, a fully detailed simulation is conducted. 

This simulation covers multi-behavior coordination concept for a differential drive 

mobile robot navigating in a collision free path through a target point which is 

detected by sensors, in an unstructured environment, that robot has no priori 

information about, in which static and moving obstacles exists. Coordination is 

accomplished by artificial neural network with back-propagation training 

algorithm. Behaviors are constructed using fuzzy control concept. Mobile robot has 

no information about sizes, number of static and/or dynamic obstacles. All the 

information is gathered by its simulated sensors (proximity, range, vision sensors). 

Yielded results are given in detail. 

 

Keywords: Behavior-based robotics, behavior coordination, arbitration, command 

fusion, neural network, fuzzy control, navigation, obstacle avoidance. 
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ÖZ 
 
 

MOBİL ROBOTLAR İÇİN  
  DAVRANIŞA DAYALI KONTROL 

YAZILIM ORTAMI 
 
 
 

Bekmen, Onur 
Yüksek Lisans, Elektrik-Elektronik Mühendisliği  Bölümü 

Tez Yöneticisi: Prof. Dr. Aydın Ersak 
 

Aralık 2006, 128 sayfa 
 

 
 
Robotik bilimi, geniş bir teori tabanıyla teknolojik pek çok öğeyi içerisinde 

harmanlayan, çoklu disiplinli modern bir bilim dalı olarak tanımlanabilmektedir. 

Robotik biliminde elektrik-elektronik mühendisliği bakımından ele alınan ana 

konu, akıllı, görevleri öğrenerek yerine getirebilen, içerisinde bulunduğu ortamla 

etkileşerek bilgi yaratan elemanların geliştirilebilmesidir. Bu kapsamda, klasik 

kontrol teorisi sonrası, bir üst seviye kontrol mekanizması olarak tanımlanabilecek, 

yaşayan organizma ve organizma gruplarından esinlenilerek temelleri atılan, 

davranış tabanlı kontrol konsepti son yıllarda robotik camiasını meşgul etmektedir.  

 

Tez çalışmasının kapsamında; davranış tabanlı kontrol kavramının incelenmesi, 

farklı yaklaşımların karşılaştırılması, bilgi teorisi ve dağıtık kontrol kavramları 

bakımından incelenmeye uygun bulunan uygulamaların geliştirilebileceği açık 

kaynak bir yazılımın oluşturulması bulunmaktadır. Algoritma geliştirme ve robot 

kontrolü için geliştirilmiş bir çok yazılım bulunmasına rağmen davranış tabanlı 

robot kontrolü için kolay kullanıma sahip, iyi dokümante edilmiş, açık kaynak 

yazılımların  sayısı  oldukça  azdır. Bu  eksiklik  tespiti   doğrultusunda   çalışmalar 

yürütülmüştür. Bu çalışmada, farklı mobil robotik uygulamalarının 

geliştirilebileceği, davranış tabanlı kontrol kavramına uygun programlamanın 

yürütülebileceği bir yazılım ortamı oluşturulmuştur. Oluşturulan yazılım ortamının 
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kabiliyetlerinin sergilenip, etkinliğinin değerlendirilebileceği, detaylı bir 

sümülasyon yürütülmüştür. Yürütülen simülasyon, bulunduğu ortam hakkında her 

hangibir ön bilgiye sahip olmayan, iki sürücü tekerlekli hareketli robotun hedef 

noktaya engel nesnelere çarpmadan, çoklu davranış koorinasyonu yürüterek 

varmasını amaçlamaktadır. Koordinasyon amaçlı yapay sinir ağları kullanılmakta, 

davranış modülleri ise bulanık kontrol içermektedir. Hedef nokta belirlenen 

kriterler doğrultusunda robota sabitlenmiş simüle edilen sensörler aracılığıyla tespit 

edilmektedir. Ortamda hareketli ve sabit  engel nesneler de bulunmaktadır. Elde 

edilen sonuçlar detaylı şekilde tez raporunda aktarılmaktadır. 

 

Anahtar Kelimeler: Davranış tabanlı robotik, davranış koordinasyonu, yapay sinir 

ağları, bulanık kontrol, yön bulma, engel aşma. 
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CHAPTER 1 
 

 

1                                     INTRODUCTION 

 

 

 

A “robot” is an electro-mechanical device that can perform autonomous or 

preprogrammed tasks. A robot may act under the direct control of a human or 

autonomously under the control of a programmed computer. Robots may be used to 

perform tasks that are too dangerous or difficult for humans to implement directly 

(e.g. nuclear waste clean up) or may be used to automate repetitive tasks that can 

be performed with more precision by a robot than by the employment of a human. 

They are also useful in environments which are unpleasant or dangerous for 

humans to work in, for example bomb disposal, work in space or underwater, in 

mining, and for the cleaning of toxic waste. 

 

The word "robot" is also used in a general sense to mean any machine which 

mimics the actions of a human, in the physical sense or in the mental sense. It 

comes from the Czech and Slovak word robota, labour or work. The word robot 

first appeared in Karel Čapek's science fiction play R.U.R. (Rossum's Universal 

Robots) in 1921, and was probably invented by the author's brother, painter Josef 

Čapek. 

 

“Robotics” is the science and technology of robots, their design, manufacture, and 

application. Robotics requires a working knowledge of electronics, mechanics, and 

software and a person working in the field has become known as a robotics 

scientist. The word robotics was first used in print by Isaac Asimov, in his science 

fiction short story "Runaround" (1941). 
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Many methods for robot control have been developed which can generally be 

grouped into two categories: deliberative and reactive. 

 

In deliberative approach, global planning method is used in a completely known 

environment. These methods build the paths for reaching the target without any 

collision. A global optimum solution can be achieved in this approach. However, 

this scheme has well-known drawbacks. Exact model of the world is needed which 

is very difficult and modifications in this environment after modeling cannot be 

handled. 

 

In reactive approach model of the world is not needed, actions are determined 

according to information gathered from sensors. The robot has to react to its sensor 

data by a set of stimuli-response mechanism. The drawback of these systems is 

limited and uncertain sensor data because of the limited range, poor observation 

conditions, and environmental effects. 

 

The fuzzy logic systems are inspired from human reasoning, which is based on 

perception. Fuzzy logic provides a methodology for representing human expert 

knowledge and perception-based actions without needing analytical model of the 

system. Neuro-fuzzy systems add the advantages of fuzzy reasoning to neural 

networks, which learn fast without needing symbolic representation of the system. 

 

Behavior-based systems try to model the reactive abilities of humans, animals, 

insects etc. to the sensed environment. In behavior-based approach, goals are 

achieved by subdividing the overall task into smaller independent behaviors that 

focus on execution of specific tasks. For example, a behavior can focus on 

traversing from start to target place, while another behavior focuses on obstacle 

avoidance. 

 

The need of onboard intelligence on a robot comes from the fact that there can not 

be an expert operator that guides the robot in every case. This can also result from 
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the physical facts, like signal propagation delay as it is in the Mars Rover case, 

where there is more than a eight minutes of delay between Mars and Earth, thus the 

control center and the robot, avoiding any possible expert control. 

 

This thesis is focused on different properties of behavior based robotics. The 

literature survey showed that there is a wide range of applications in which 

behavior-based control is used. Several of these control schemes can be seen in [2, 

13, 18, 19, 20, 23, 26, 27, 35, 36, 44, 50, 51]. A full survey investigating much 

architecture can also be seen in [61]. Recent years witnessed lots of new robots. 

These robots vary from underwater vehicles to UAV’s, from brachiation-type 

mobile robots to humanoid robots. All of these kinds of robots need an effective 

solution to intelligent navigation. From this basis, the behavior-based robot control 

can be applied to a wide range of robot types. Some of the applications can be 

found in [3, 17, 21, 39, 47, 54] also covering planetary exploration robots, robot 

arms and humanoid robots. 

 

There has been a lot of research about humanoid robotics. These researches also 

include behavior-based control of these new challengers of robotic science. The 

MIT Robotics Laboratory focuses on humanoid robots especially, since it seems 

like it is the next step in the evolution of robots. Such a research yielded Cog, [59]. 

Cog is a humanoid robot with two arms, a robot head, and an upper torso. Rodney 

Brooks, who is in charge of MIT Robotics Laboratory, tries to form a robot that 

learns how to behave in certain situations interacts and communicates with people. 

Another such work is on the imitation of human mood, on a head only robot, 

Kismet, [59].  

 

Behavior-based robot control is the rising value in robotic control for its 

advantages that are to be presented in the following chapters. Although there are 

numerous software for robot control, no open source behavior-based control 

software is found to be released, yet. Such software should be well documented and 

should show the availability in extension means, such as detailed simulation 

3

 



 

models, including various mobile robots, accurate physics, sensors, etc. In order to 

fill the gap in this software area, this thesis research is conducted. 

 

In order to understand what behavior-based robotics is, a literature survey has been 

conducted. The various aspects of the concept is shared with the reader in the 

following chapters of this thesis. Advantages of behavioral control over other 

methods are listed in detail. A high level programming language, namely C++ is 

used to construct a simulation environment, with detailed visualization support 

using OpenGL, taking the advantage of virtual reality. In order not to limit the 

users of this software with the researchers only, also a user friendly interface is 

coded, in Visual C++. Even though the ones with a little knowledge on robotics can 

use the software and see the resulting outcomes visually. This can help other 

people to have their attention on robotics. The constructed simulation environment 

is given in no license as a fully open source project to encourage other national 

and/or international researchers. 

 

The thesis is organized as follows: In chapter 2, the concept of robot control 

leading to the definition of behavior-based robotics together with the brief 

explanation of the necessary terminology and different approaches present in the 

scope of behavior based robotics, with comparisons are presented in general.  

 

In chapter 3, the implementation details and the capabilities of the constructed 

software is given. In this chapter, structural properties of the software such as 

object oriented architecture, class hierarchy; dynamic size object sets etc. are given 

in detail, first. Then the implemented objects such as robots, sensors and behaviors 

are given. Also the user interface definitions and details are given in this chapter. 

In chapter 4, the detailed simulation conducted on the software environment is 

given. The simulation is given as an example that can be conducted by means of 

the available modules in the software environment. The simulation is given to show 

some proof of utilization of neural network in behavior prioritization, during 

behavior coordination. 
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Finally, in chapter 5, the conclusions that has been reached on the software 

environment is discussed. The future work planned to expand the scope of this 

thesis work, possibly in a PhD. study, is also presented in this chapter. 
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CHAPTER 2 
 

 

2                  BEHAVIOR-BASED ROBOT CONTROL 

 

 

As a design strategy, the behavior-based approach has produced intelligent systems 

for use in a wide variety of areas, including military applications, mining, space 

exploration, agriculture, factory automation, service industries, waste management, 

health care, disaster intervention, and the home. To understand what behavior-

based robotics is, it may be helpful to explain what it is not. The behavior-based 

approach does not necessarily seek to produce cognition or a human-like thinking 

process. While these aims are admirable, they can be misleading. Blaise Pascal 

once pointed out the dangers inherent when any system tries to model itself. It is 

natural for humans to model their own intelligence. The problem is that we are not 

aware of the myriad internal processes that actually produce our intelligence, but 

rather experience the emergent phenomenon of "thought." In the mid-eighties, 

Rodney Brooks (1986) recognized this fundamental problem and responded with 

one of the first well-formulated methodologies of the behavior-based approach. His 

underlying assertion was that cognition is a chimera contrived by an observer who 

is necessarily biased by his/her own perspective on the environment. (Brooks 1991) 

As an entirely subjective fabrication of the observer, cognition cannot be measured 

or modeled scientifically. Even researchers, who did not believe the phenomenon 

of cognition to be entirely illusory, admitted that AI had failed to produce it. 

Although many hope for a future when intelligent systems will be able to model 

human-like behavior accurately, they insist that this high-level behavior must be 

allowed to emerge from layers of control built from the bottom up. While some 

skeptics argue that a strict behavioral approach could never scale up to human 

modes of intelligence, others argued that the bottom-up behavioral approach is the 

very principle underlying all biological intelligence. (Brooks 1990) 
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To many, this theoretical question simply was not the issue. Instead of focusing on 

designing systems that could think intelligently, the emphasis had changed to 

creating agents that could act intelligently. From an engineering point of view, this 

change rejuvenated robotic design, producing physical robots that could 

accomplish real-world tasks without being told exactly how to do them. From a 

scientific point of view, researchers could now avoid high-level, armchair 

discussions about intelligence. Instead, intelligence could be assessed more 

objectively as a measurement of rational behavior on some task. Since successful 

completion of a task was now the goal, researchers no longer focused on designing 

elaborate processing systems and instead tried to make the coupling between 

perception and action as direct as possible. This aim remains the distinguishing 

characteristic of behavior-based robotics. 

 

The sub-sections which follow explain the roots of behavior based robotics, how it 

rose as a counter to the symbolic, deliberative approach of classical AI and how it 

has come to be a standard approach for developing autonomous robots. 

 

2.1 HISTORY 

While behavior-based robotics is a relatively new field as academic fields go, it is 

possible to find historical predecessors. Ronald Arkin looks all the way back to 

1947, when cybernetics used control theory, information science and biology to 

seek principles common to biological life and machine intelligence. It is generally 

agreed that W. Grey Walter’s Tortoise, a small robot made from vacuum tubes, 

was the first behavior-based robot. It had no high-level knowledge and could not 

translate its actions into symbolic meaning. However, it could effectively exhibit 

certain behaviors such as backing away from strong light and heading toward weak 

light. It did not model human intelligence or “cognition” of any kind; rather, it 

provided reactive response without reliance on representation. The complexity of 

the action produced lay not in the design but in the behavior that arose through 

interaction with a chaotic world. (Arkin 1998) 
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In the middle of the 1980s, due to dissatisfaction with the performance of robots in 

dealing with the real world, a number of scientists began rethinking the general 

problem of organizing intelligence. Among the most important opponents to the AI 

approach were Rodney Brooks, Rosenschein and Kaelbling (Rosenschein, 1986) 

and Agre and Chapman (Agre & Chapman, 1987). They criticized the symbolic 

world which Traditional AI used and wanted a more reactive approach with a 

strong relation to the perceived world and the actions there in. They implemented 

these ideas using a network of simple computational elements indirectly connecting 

sensors to actuators in a distributed manner. There were no central models of the 

world explicitly represented. The model of the world used was the real one 

perceived by the sensors at each moment. Leading the new paradigm, Brooks 

proposed the “Subsumption Architecture” which was the first approach to the new 

field of “Behavior-Based Robotics”, [2]. 

 

2.2 TRADITIONAL AI VS. BEHAVIOR-BASED APPROACH 

 

Classical AI spent decades trying to model human-like intelligence, using 

knowledge-based systems that processed representation at a high, symbolic level. 

Symbolic representation was considered of paramount importance because it 

allowed agents to operate on sophisticated human concepts and report on their 

action at a linguistic level. As Donald Michie stated, “In AI-type learning, explain 

ability is all.” (Michie 1988) Since the goal of early AI was to produce human-like 

intelligence, researchers used human-like approaches. Marvin Minsky, believed an 

intelligent machine should, like a human, first build a model of its environment and 

then explore solutions abstractly before enacting strategies in the real world. 

(McCarthy et al. 1955) This emphasis on symbolic representation and planning had 

a great effect on robotics and spurred control strategies where functionality was 

coded using languages and programming architectures that made conceptual sense 

to a human designer. Although many of the strategies developed were both 

elaborate and elegant, the problem was that the intelligence in these systems 
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belonged to the designer. The robot itself had little or no autonomy and often failed 

to perform if the environment changed. While classical AI viewed intelligence as 

the ability of a program to process internal encodings, a behavior-based approach 

considers intelligence to be demonstrated through “meaningful and purposeful” 

action in an environment. (Arkin 1999) 

  

While many perceived the behavior-based movement to have forsaken the goal of 

human-like intelligence, others maintained that high-level intelligence would 

indeed arise once a strong, low-level foundation had been laid. Agre and Chapman 

argued that, in fact, human beings are actually much more reactive than we imagine 

ourselves to be. (Agre and Chapman 1987) The planning and cognition that we are 

consciously aware of represents only the tip of a cerebral iceberg comprised mostly 

of unconscious, reactive motor skills and implicit behavior encodings. In a sense, 

the behavioral approach did not abandon modeling human intelligence as much as 

human consciousness. One of the side effects has been that many behavior-based 

approaches produce systems that are anything but ‘explainable.’ High scientific 

aims aside, a main reason the behavior-based community is so intent on developing 

automated learning techniques is that a human designer often finds it excruciatingly 

tedious or impossibly difficult to orchestrate many behaviors operating in parallel. 

It is worse than frustrating to debug behavior that emerges from the interplay of 

many layers of asynchronous control. At times, a truly well-implemented, 

behavior-based approach will result in successful strategies the researchers 

themselves cannot explain or understand. 

 

Instead of the top-down approach (also referred as horizontal architecture) of 

Traditional AI ( Figure 2.1 ), Behavior-based systems use a bottom-up philosophy 

(also referred as vertical architecture) like that in Reactive Robotics ( Figure 2.2 ). 

 

The traditional artificial intelligence architecture to be used for robot control 

systems is the horizontal architecture in which the tasks of the control systems are 

broken into several subtasks based on functionality. A typical approach is to 
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decompose as shown in the Figure 2.1. Control systems using this architecture 

solve their task in several steps. First, the sensor input is used to modify the internal 

representation of the environment. Second, based on the internal representation 

planning is made. This results in a series of actions for the robot to take to reach a 

specified goal. Third, this series of actions is used to control the motors of the 

robot. This completes the cycle of the control system and it is restarted to achieve 

new goals. 
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Figure 2.1 Horizontal Control Architecture (adopted from [19]) 

 

In Figure 2.2 subsumption architecture is given as an example of a vertical 

architecture. The new idea was that instead of decomposing the task based on 

functionality, the decomposition is done based on task achieving behaviors. 

 

A behavior based control system is made up of several parallel running behaviors. 

Each behavior calculates a mapping from sensor inputs to motor outputs. An output 

integration method is also required to take actions by driving the actuators. The 

types of different integration methods will be discussed deeply with in the 

following chapters. 
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Figure 2.2 Vertical Control Architecture (adopted from [19]) 

 

Reactive systems provide rapid real-time responses using a collection of pre-

programmed rules. Reactive systems are characterized by a strong response, 

however, as they do not have any kind of internal states, they are incapable of using 

internal representations to deliberate or learn new behaviors. On the other hand, 

Behavior-based systems can store states in a distributed representation, allowing a 

certain degree of high level deliberation. 

 

The Behavior-based approach uses a set of simple parallel behaviors which react to 

the perceived environment proposing the response the robot must take in order to 

accomplish the behavior ( Figure 2.2 ). 

 

Behaviors select actions based on information contained in an internal 

representation called sensory data space, which can be divided into two distinct 

subspaces: observation space and state space. Observation space is the -

dimensional Cartesian product  over all available sensorial 

dimensions . State space is the 
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{ |1 }iD i n= ≤ ≤D , where d on n ns= + and = ⊗D O S . Motory space is 

the -dimensional Cartesian product mn M mn
i iM= ⊗ over all available motory or 

effectory dimensions . Parameter space in the -dimensional 

Cartesian product  over parameter dimensions

mn

{M |1 }i i n= ≤ ≤M m

i

pn

P pn
i P= ⊗ pn { |1 }i pP i n= ≤ ≤P . The 

domains for any of the dimensions in the defined spaces may be finite or infinite, 

and discrete or continuous valued. Finally, event space is a finite set 

{ |1 }i ei nε= ≤ ≤ε enof discrete events. 

 

A behavior is a mapping from data space to motory space and events ( see Figure 

2.3 ), formally denoted by : b ( ) ( ) ( )D b M b bε× , where is some -

dimensional subspace of , 

( )D b bd

D ( )M b is some -dimensional subspace of bm M , and 

( )bε  is a finite subset of ε . The set of available behaviors in any particular 

implementation is referred to as 1{ ,..., }.mB b b=  
 

In behavior-based control, there are neither problems of world modeling nor real 

time processing. Nevertheless, another difficulty has to be solved; how to select the 

proper behaviors for robustness and efficiency in accomplishing goals. 

 

Two new questions also appears, which Traditional AI doesn’t take into 

consideration; how to adapt the architecture in order to improve its’ goal 

achievement, nor how to adapt it when new situations appear. This simple but 

powerful methodology was in great contrast to Traditional AI and, from its’ 

beginning, provided for simplicity, parallelism, perception-action mapping and real 

implementations. Some survey can be followed from [1], [34] and [53] on goal 

oriented behaviors and tradeoffs made on goal oriented behavior construction. 
 

 



 

Behavior 

Data Space Event Space 

Motory  Space 
 

 

Figure 2.3 Structure of Behavior 

 

2.3 BEHAVIOR SELECTION 

 
Behavior-based control architecture can be organized horizontally which shows 

that each behavior has full access to all sensor readings and processes its own 

command to control the mobile robot. The final command is dependent on the 

priority of each behavior. There are many applications of behavior based 

approaches that have been presented during the last few years such as Arkin,  

 

Kasper, Fricke, and Puttkamer, Yen and Pfluger, and Payton and Rosenblatt.  The 

research behavior-based topics for mobile robots are still being developed by many 

researchers [55]. 

 

As the behavior has been defined, there comes a natural question, “How to choose 

among multiple behaviors?” This is the main and a challenging problem that is still 

being investigated. This phenomenon is referred as behavior selection, behavior 

fusion, arbitration or behavior scheduling. Some discussion about the behavior 

selection and coordination topic can be followed from [14], [30], [38] and [58]. 

 
Coordination of the several simultaneous independent behavior-producing units to 
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obtain an overall behavior that achieves the intended task is behavior coordination. 

The simplest example is the coordination of an obstacle avoidance behavior and a 

goal reaching behavior, to reach a target in an environment with obstacles. Today 

behavior coordination is still a major problem. Behavior coordination problem can 

be evaluated in two categories: behavior arbitration and command fusion. 

 

2.3.1 Arbitration 

The arbitration policy determines which behavior should influence the operation of 

the robot at each moment, and determines the task performed by the robot. Early 

solutions based on fixed arbitration policy. An example for this approach is the 

famous subsumption architecture proposed by Brooks [2], which is based on a 

hard-wired network of suppression and inhibition links. ( Figure 2.4 ) This rigid 

organization contrasts with the requirement that an autonomous robot can be 

programmed to perform a variety of different tasks in a variety of different 

environments. In fact, Brooks' robots were usually built to perform one single task. 

Subsumption Architecture is a method of reducing a robot’s control architecture 

into a set of task-achievement behaviours or competences represented as separate 

layers. Individual layers work on individual goals concurrently and 

asynchronically. All the layers have direct access to the sensory information. 

Layers are organised hierarchically allowing higher layers to inhibit or suppress 

signals from lower layers. Suppression eliminates the control signal from the lower 

layer and substitutes it with the one proceeding from the higher layer. When the 

output of the higher layer is not active, the suppression node doesn’t affect the 

lower layer signal. On the other hand, only inhibition eliminates the signal from the 

lower layer without substitution. Through these mechanisms, higher-level  layers 

can subsume lower-levels. 
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Figure 2.4 Arbitration by Suppression (adopted from [65]) 

 

One of the arbitration methods is action-selection. In this method, the activation 

level (priority) of each behavior is determined according to robots’ goals and 

sensory measurements. The behavior with the highest activation level (priority) is 

carried out at run time. No hierarchy exists between the behaviors ( Figure 2.5 ). 

Behavior coordination with voting is another arbitration method. In this 

architecture, behaviors vote for a predefined set of motor actions and the action 

receiving the highest vote is accomplished (  

Figure 2.6 ). 

 
 

Figure 2.5 Arbitration by Action Selection (adopted from [65]) 
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Figure 2.6 Arbitration by Voting (adopted from [65]) 

 

2.3.2 Command Fusion 

 
In arbitration, one of the behaviors is selected and accomplished according to 

arbitration method. This scheme may be inadequate in situations where several 

criteria should be taken into account. For example, consider a robot that encounters 

an obstacle while following a path and arbitration policy selects the obstacle 

avoidance behavior. Going around the obstacle from left or right is unimportant for 

the obstacle avoidance behavior. However, from the point of view of the path-

following behavior, one choice might be dramatically better than the other. 

 

To overcome this problem, different behaviors are executed parallel and outputs of 

these behaviors are combined. The most popular approaches for this type are based 

on vector summation scheme (Figure 2.7): a force vector represents each 

command, and commands produced by different behaviors are combined by vector 

summation. The robot carries out the resulting action. 
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Figure 2.7 Behavior Coordination by Vector Summation 

 

When the output of a behavior is represented by a fuzzy set, fuzzy operators can be 

used to combine the output of different behaviors into a collective result, and 

finally choose a command according to this result. Fuzzy logic offers many 

different operators to perform combination (min. for intersection, max. for union 

etc.), and many defuzzification functions (Center of Gravity, Mean of Maximum 

etc.) to perform decision. It is important to note that the decision taken according to 

the collective output can be different from the result of combining the decisions 

taken from the individual outputs.  

Figure 2.8 graphically illustrates this point in the case of two behaviors.  

Figure 2.8 shows two cases: Case 1 represents a two behavior case in which 

defuzzification is applied before vector summation; Case 2 represents again a two 

fuzzy behavior case in which defuzzification is applied as the final step. Note that 

two cases yield different results. This argument explains why fuzzy command 

fusion is fundamentally different from vector summation. 
 

Another form of behavior combination that can be realized using fuzzy logic is 

obtained by using both (i) fuzzy meta-rules to express an arbitration policy, and (ii) 

fuzzy combination to perform command fusion. This form of combination, was 

initially suggested by Ruspini, and fully spelled out by Saffiotti under the name of 

context-dependent blending of behaviors, or CDB [66]. 
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Figure 2.8 Fuzzy Behavior Coordination (adopted from [66]) 

 

 

CDB can be implemented in a hierarchical fuzzy controller as shown in  

Figure 2.9. In CDB, it is essential that the defuzzification step must be performed 

after the combination. Although in  

Figure 2.9 all the context-rules are grouped in one module, each context-rule can be 

put inside the corresponding behavior and this solution would be more appropriate 

for distributed implementations. This architecture can be iterated to implement 

individual behaviors, and combine them using a second layer of context-rules. 

Defuzzification should still be the last step. 
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Figure 2.9 Hierarchical Fuzzy Controller (adopted from [66]) 

 

 

2.4 LEARNING IN BEHAVIOR-BASED CONTROL 

 

Also inspired from living creatures, there should be a learning mechanism that 

continuously enhancing the reactions of the robot. Many strategies are developed in 

learning systems, not special to behavior-based robot control. In behavior-based 

robotics, many fields can be found to apply different learning strategies, including 

well known reinforcement learning, genetic algorithms, fuzzy learning etc. Some of 

the suitable research can be found in [41, 43, 48, and 49]. These references 

generally apply a learning mechanism into behavior selection process. 

 

2.5 BEHAVIOR EVALUATION 

Although behavior-based robot programming or behavior-based control is 

commonly researched field, there does not exist an accepted behavior evaluation 
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method. In order to evaluate whether a behavior is successful or not, goals of the 

robot can be investigated. If the goal is achieved than, behavior can be evaluated as 

success. In order to measure the performance of a behavior and find out how 

successful the behavior is, there should be some metrics. The literature survey 

showed that there does not exist, a commonly accepted metric system for the 

performance evaluation of behaviors. Researchers generally do their own 

evaluation depending on the problem statement. There are some recent researches 

on the behavior evaluation metric, such as [46] and [62], but these methodologies 

are still not commonly accepted. They still can show means to follow in the 

evaluation process of behaviors. 
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CHAPTER 3 
 

 

3                                 IMPLEMENTATION 

 

 

In this chapter, before giving the details of the implemented software, some other 

existing software on mobile robot control are given briefly in order to give some 

sense of comparison of the implemented software with the previous software on 

robotics. 

 

3.1 PREVIOUS SOFTWARE ON ROBOT CONTROL 

 

Since behavior based robotic is a popular research in recent years, many software 

on the concept have been developed. The reason of developing simulations and 

simulation environments is due to the fact that the construction of real hardware 

robots cost much more than their virtual correspondences. After the algorithms are 

tested and verified in simulation, they can be than be loaded on to real robot 

hardware. 

 

The limitations of real life can not be simulated completely what ever the 

resolution of the simulation is. The real experiences that can not be obtained by 

simulations are gained only by real robots. 

 

The popularity of the concept shows itself by the approximate number of 

simulators on robot control. There are at least 100 simulators, from experimental 

small program fragments to commercial products. Even universities are trying to 

develop and sell such products, [63]. 
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Khepera is one of the most widely used mobile robot. It has a two wheel 

differential motion system. It comes with 8 ultrasonic transducers for environment 

sensing, by default. There are numerous accessories of Khepera including low 

resolution Vision Turret or High resolution Vision Module. Khepera is given in 

Figure 3.15 and Figure 3.16. The availability of Khepera made it one of the most 

paper published robot, [56]. 

3.1.1 Yaks 

YAKS is one of the many Khepera simulator projects. It runs on Linux systems or 

Windows systems utilizing shells like Cygwin. It also requires gtk++ libraries to be 

installed prior to operation of the software. Figure 3.1 gives the screenshot of 

limited user interface of YAKS. 

 

 

Figure 3.1 YAKS Khepera Simulator User Interface 

 

3.1.2 Simulator Bob 

SimBob is a powerful robot simulator with enhanced visual capabilities. 

Distributed under GNU License, SimBob gives the designer the reliability to use 

physics based simulations, by embedding ODE, Open Dynamics 
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Engine. ODE is a powerful open source physics engine that can be embedded into 

many applications. A screenshot from the simulation of a two wheeled mobile 

robot with light sensors is given in Figure 3.2. 

 

User is able to write controllers for the simulated robots using the available sensors 

on the modeled robot. 

 

 

Figure 3.2 Simulator Bob User Interface 

 

3.1.3 German Team 

Recently many of the research on behavior-based robotic, is conducted on robot 

soccer, where two robot teams compete in a predefined soccer arena. Utilizing 

commercial SONY AIBO robots, robot dogs, a robotic soccer league is constructed 
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and international tournaments are organized. In the mentioned tournament, since 

2003 German team becomes the champion. The final release of their 

 



 

behavior-based control software is called ”GERMAN TEAM” and designed to 

evaluate different behaviors on AIBO by simulation and then transfer the resulting 

successful behaviors into real robotic hardware. Although the project became open 

source, the complex user interface and the necessity to learn XABSL(Extended 

Agent Behavior Scripting Language) makes this software hard to apply. Very 

detailed but complex user interface of German Team is given in Figure 3.3. Refer 

to (www.germanteam.org) for further details. 

 

 

Figure 3.3 GermanTeam AIBO Soccer Simulation Software 

 

3.1.4 MobotSim 

MOBOTSIM by MobotSoft (www.mobotsoft.com) is software for 2D simulation 

of differential drive mobile robots. It provides a graphical interface that represents 

an environment in which you can easily create, set and edit robots and objects. In 

order to set these mobots in motion MOBOTSIM has a BASIC Editor in which the 

user  can  write  macros  making  use  of specific functions to get information about 
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mobots coordinates and  sensor data and to set speed and driving data for them, as 

well as making use of all the power and ease of BASIC language to program 

navigation techniques. 

 

MOBOTSIM has been developed thinking in researchers, students, roboticists and 

hobbyists who want to design, test and simulate mobile robots and research topics 

like autonomous navigation techniques, obstacle avoidance, artificial intelligence, 

a-life, data sensor integration, etc. An easy to understand user interface of 

MobotSim is given as a screenshot still image in Figure 3.4. 

 

 

Figure 3.4 A Khepera Robot Navigating in 2D World, MobotSim 

 

3.1.5 Webots 

Webots is professional mobile robot simulation software, developed by 

Cyberbotics in cooperation with EPFL, Lausanne. It contains a rapid prototyping 

tool allowing the user to create 3D virtual worlds with physics properties, such as 

mass repartition, joints, friction coefficients, etc. The user can add simple inert 

objects or active objects called mobile robots. These robots can have different 

locomotion schemes (wheeled robots, legged robots or flying robots). 
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Moreover, they are equipped with a number of sensor and actuator devices, like 

distance sensors, motor wheels, cameras, servos, touch sensors, grippers, emitters, 

receivers, etc. Finally  the  user  can  program  each  robot  individually  to  exhibit  

a  desired behavior. Webots contains a large number of robot models and controller 

program examples that help the users get started. 

 

Webots also contains a number of interfaces to real mobile robots, so that once 

your simulated robot behaves as expected, you can transfer its control program to a 

real robot like Khepera, Hemisson, LEGO Mindstorms, Aibo, etc. 

Webots is well suited for research and education projects related to mobile 

robotics. Many mobile robotics projects have been relying on Webots for years in 

the following areas: 

• Mobile robot prototyping (academic research, automotive industry, 

aeronautics, vacuum cleaner industry, toy industry, hobbyist, etc.). 

• Multi-agent research (swarm intelligence, collaborative mobile robots 

groups, etc.). 

• Adaptive behavior research (Genetic evolution, neural networks, adaptive 

learning, AI, etc.). 

• Mobile robotics teaching (robotics lectures, C/C++/Java programming 

lectures, robotics contest, etc.). 

In Figure 3.5, a Webots simulation screenshot is given. 

 

 
 

Figure 3.5 A Soccer Simulation in Webots [63] 
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3.2 SOFTWARE IMPLEMENTATION 

Some of the most commonly used robot control programs have been investigated 

so far. Although they all serve to robot control concept with different properties 

only Webots, which is a commercial product, gives the user to define different 

behaviors. No open source program, yet having the comparable capabilities, has 

been released yet. German Team released their source code on AIBO, but this is 

only applicable to Sony AIBO. 

 

Investigating the previous commonly used software on mobile robot control, shows 

that there is no support for behavior based control algorithms. All software focuses 

on single algorithm evaluation on mobile robots. The parallel execution/evaluation 

concepts do seem to be out of focus. Different algorithms need a integration block, 

a selector of algorithm outputs. In this thesis, a software capable of implementing 

some integration block that evaluates final command as the output from different 

behaviors’ individual output commands is targeted. The software is also capable of 

showing the common top most capabilities such as virtual reality graphical 

representations, simple user interfaces, data logging (load, save) etc.. 

 

In this section, implementation details are given in subsections. These include 

structural properties of the software, implemented modules, and user interface 

issues. 

 

3.2.1 Structural Properties 

The software should have been user and developer friendly, meaning that it should 

not be complex neither for users nor for developers. Object-oriented programming 

gives the developers the feeling of what is going on actually within the code, since 

the blocks of code are packaged by containers named classes. These classes show 

the resemblance to the functional and logical real world agents. From the real 

world perspective, a robot exists in an environment. Actually, everything exists in 
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an environment. A robot has some features including sensing capabilities and 

intelligence. Sensors can be taught as hands or eyes, and the intelligence can be 

taught as the brain. As it is explained above, any real scene can be represented as 

functional logical packages. Object-oriented programming let us use this logical 

packaging representation in coding. The objects are coded as classes. Classes can 

be constructed by gathering different functional objects, including other classes. 

In the case of robotic control, the classes logically are robots, their functional sub-

blocks (sensors etc.), and the other logically packaged real objects, like walls, 

boxes. 

 

After pointing to the general object-oriented programming issues, the structural 

properties of the implemented software can be given. The software is implemented 

in an object-oriented approach. The real world case is investigated and this case is 

divided into functional and logical parts as classes. 

 

The decided classes from the investigation can be listed as follows: 

• World, 

• Robot, 

• Sensor, 

• Behavior, 

• Behavior Controller. 

 

These classes are constructed using the real world case, where many robots 

interacting with each other and other objects such as boxes and walls. The 

encapsulation information within the software is given in Figure 3.6 and Figure 3.7. 

The listed classes do not show the all classes implemented. There are more than 60 

classes in the project, including GUI dialog classes, auxiliary classes such as 

camera class, quaternion class, Euler class, box class, motor command etc. 

CWorld is the main application class that encapsulates all other classes and 

simulation specific functions. 
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Figure 3.6 Topmost Class Hierarchy 

 

Figure 3.6 shows the topmost class hierarchy, within the software. World is 

composed of mainly three parts, Red and Blue Robot Teams, and Obstacles. The 

number of child registered to each of these main groups is dynamic and unlimited 

in theory. Since the number of elements registered into the world results in 

computation time and memory, the number of robots in each robotic team in the 

world is limited to be at most five. Totally, ten robots can reside in the simulation 

at the same time. 

 

According to the structure, every other object is under the control of CWorld 

object. Every object is registered into this world and every sub-property can be 

controlled within this CWorld parent object. As it is the case in the CWorld, 

CRobot is also a class that encapsulates other classes, namely CSensor, CBehavior, 

CBehaviorCoordinator. There are individual classes like CBox that are constructed 

to represent the real world obstacles. These individual boxes are grouped within the 

world to ease the controllability of the simulation and memory issues. 
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Figure 3.7 Robot Class Hierarchy 

 

3.2.2 Implemented Modules 

Software is divided into objects that can be gathered to build different robotic 

systems. These include environment, static, and dynamic obstacles, mobile robots, 

sensors, behaviors, and behavior controllers. 

3.2.2.1 World 

World is defined as the environment in which robots interact each other and the 

surrounding. In fact, every object lays in the world, including obstacles, robots 

hence their sensors, behaviors, and controllers. In the simulation framework, the 

world is defined as a rectangular flat area surrounded by walls that limits the 

coverage. The robots are all located inside this area. The user is capable of 

manipulating the contents of the world by adding new dynamic or static obstacles. 

User can add different size bricks to change the interior paths and construct 
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different worlds for the robots to interact and experiment. Maze’s can be defined 

for the robots or corners with different sharpness for evaluation of different 

navigation algorithms. Various worlds constructed for different experiments can be 

seen on Figure 3.8. 

 

 

Figure 3.8 Different World Physical Configurations 

 

3.2.2.2 Mobile Robots 

Many different mobiles with different physical configurations are evaluated for the 

simulated robot. The research conducted on this can be seen on [Appendix A]. Any 

robot that can perform arbitrary rotations and translations is “holonomic”. A non-

holonomic system is the one in which the actuators do not directly control one or 

more of the degrees-of-freedom of the system, but instead are coupled such that 

orientation becomes much more complicated than in a holonomic system. The 

complexity of control in a non-holonomic system, guides us through the holonomic 

systems. The basic solutions to kinematics equations of two wheel differential 

drive systems, is another aspect that is evaluated and given in [Appendix B]. 

Complementary material can be found about omni-directional and non-holonomic 

robot control in [4], [7] and [10], for comparison with holonomic robot control. 
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The research showed that the most convenient mobile robot for navigation in 

laboratory environment with minimum difficulty in construction is a two-wheel 

differential drive robot, a holonomic robot. The robot simulated in this thesis is a 

two-wheel differential drive robot with roller caster wheels. The mobile robot 

 



 

is in box shape and moves in 3D space. Robot moves as the two motors drives the 

two wheels on the right and the left side of it. The same but different rotational 

speeds’ of the motor yields the robot to turn in an arc through the motors with less 

angular velocity. The same rotational speeds, lets the robot to move forward and 

backwards. The same rotational speeds to different directions, lets the robot to turn 

in its main cylindrical axis. The maneuverability of the robot makes it ideal for 

navigational purposes. Figure 3.12 and Figure 3.13 shows some possible 

translations and rotations with differential drive systems. The construction ease 

also makes this omni directional robot the main choice for laboratory experimental 

uses. 

 

The two-wheel differential drive mobile robots are chosen as the target mobile 

robots in this thesis. These robots are implemented using ODE primitives, bodies 

and geoms. The implemented mobile robots consist of a main chassis in box shape, 

two wheels in cylindrical shape, and two support caster wheels in spherical shape. 

The geometrical shapes are chosen to enhance the collision algorithm hence 

shorten the computation time. Any geometrically and dynamically definable 

mobile robots can be constructed using the software, although the targeted mobile 

robots are limited to differential drive mobile robots. However the various 

parameters that can be defined is limited intentionally by the user interface, so only 

two wheel differential drive, above mentioned mobile robot is implemented. 

 

In the software, ODE primitives construct mobile robots. The driving wheels are 

supposed to be turning in one axis so these wheels are attached to the robot chassis 

by hinge joints, which have one rotation axis. Y-axis of the robot coordinate system 

is the main wheel axis, about which the wheels rotate. Figure 3.9 shows the hinge 

type joint. 

32

 



 

 

Figure 3.9 Hinge Type ODE Joint Used for Driving Wheels 

 

The caster wheels should be free to turn not only in one axis but also in any axis. 

Therefore, these wheels are connected to the main robot chassis by ball-socket type 

joints. The ball-socket type joint is given in Figure 3.10. 

 

 

Figure 3.10 Ball-Socket Type ODE Joint Used for Caster Wheels 

 
 
Using the joints and geometric primitives that used for collision checking, some 

examples of the constructed mobile robots look as they are given in Figure 3.11. 
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Figure 3.11 Different Size Mobile Robots 

 

The user can define many different mobile robot parameters. Some of these 

parameters can only be set at the initialization of the robots. Some parameters can 

be set at any time of the simulation. 

The parameters that can be set at the initialization of the robot are as follows, and 

these parameters do not subject to change again during simulation: 

• Robot main chassis size parameters: Width, Length and Height, 

• Robot wheel radius, 

• Robot main chassis mass, 

• Robot wheel mass. 

The user editable robot parameters at any time are as follows: 

• 3D robot position, 

• Maximum robot scalar speed, 
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• Coverage area, 

• Leadership flag. 

 

The mobile robots move in three dimensions during the simulation. Robots interact 

with static objects like walls and static non-moveable boxes according to the 

physical constraints. Robots’ new position and heading angle are calculated using 

the dynamics of the mobile robots. The only controlled variables of the robot are 

the two wheel angular velocities. These velocities are calculated in algorithmic 

parts, behaviors. The calculated wheel angular velocities are then applied to robot 

dynamics as variables. 

The collision detection algorithm, calculates the contact points robot make with 

other objects. According to this contact points, some slippage is induced using the 

predefined contact point slippage constants. The resulting robot pose is drawn in 

the main user interface screen, in real time. 

 

 

Figure 3.12 2WDD Robot Transformations (a) Pure Translation, (b) Pure Rotation 

 

 

Pure translation occurs when both wheels move at the same angular velocity, pure 

rotation occurs when the wheels move at opposite velocities. 
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Figure 3.13 2WDD Robot Transformations 

 

The shortest path traversed by the center of the axle is simply the line segment that 

connects the initial and goal positions in the plane. Rotations appear to be cost-free. 

 

 
 

Figure 3.14 Reference Frames of the 2 Wheel Differential Drive Robot 

 

 

The kinematics of the simulated differential drive robots is as follows, refer Figure 

3.14: 

All velocity commands ( , , )T
x yv v v ω= sent to the robot are defined in a robot 

relative reference frame. To translate the velocity commands into wheel motor 

angular velocity for each of the wheels, the velocity command is transformed using 

the inverse of the forward kinematics transform. In other words: 
1w T v−=                                                           (3.1) 

 

The inverse transform for the differential drive robot is given by; 
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Where R is the distance of wheels to the robot main axis, robot radius, and the r is 

the wheel radius, having the same value for all wheels. 

 

The simulated robot is physically inspired from the well known robot Khepera. 

Khepera is one of the mostly used mobile robot in robotic research. One 

configuration of Khepera is given in Figure 3.15 and Figure 3.16. 

 

 
 

Figure 3.15 Khepera I Equipped with a Vision Turret 

 

 
 

Figure 3.16 Simulated Khepera II in Webots 
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Since the simulation environment is coded from object oriented point of view, the 

robot parameters can be tuned to simulate any two wheel differential drive mobile 

robot. In order to emphasize the flexibility of the software environment, these 

parameters can also be tuned as to simulate Khepera I or Khepera II physical 

parameters. Also the sensor configuration can be arranged to be identical to 

Khepera robots. 

The 3D representation of a simulated mobile robot is given in Figure 3.17.  

 

 
 

Figure 3.17 3D Representation of Mobile Robot 

 
Derivations on the controllability of the differential robot among the other wheeled 

robot configurations are given in [Appendix B]. 

 

Many different mobile robots can be designed using the software presented in this 

thesis. The designs are not limited to wheeled robots. Legged robots can also be 

designed once the geometrical and dynamical properties of the robot are 

determined. Segmented robots can also be simulated using the software. Figure 

3.18 shows an example for a three segment, train type mobile robot. The segments 

are linked each other by joints with two degrees of rotational freedom. 
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Figure 3.18 Three Segment Mobile Robot 

 

3.2.2.3 Sensors 

Since the only information flow between the robot and the environment is achieved 

via sensors on the robots, different sensors are simulated for different experimental 

simulations. Since the real sensors are not error prone, some percentage of 

measurement error is also injected to the data channel of each sensor inherently. 

The simulated sensors are chosen to cover the real sensor types that are necessary 

to construct a robot with enough sensor complexity. 

 

3.2.2.3.1 Volume/Proximity Sensors 

 
These sensors are the type of sensors that indicates if there is any object within the 

coverage of the sensor or not. The output of the sensor is a logical indicator with 

two alternating values, 0 and 1. These sensors are the virtual corresponding of 
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proximity sensors. These types of sensors are widely used in any industry and also 

in robotics, although they do not give any detailed information, except the 

existence of any object. The maximum range, horizontal and vertical FOV angles 

are the parameters that can be manipulated by the user. Robots with different 

proximity sensor configurations (number of sensors, FOV angles and range) can be 

seen in Figure 3.19 and Figure 3.20 (Both are converted into grayscale to increase 

readability). 

 

Figure 3.19 Top View Showing Robots with Different Proximity Sensor Configurations 

 
 

 
 

Figure 3.20 Closer View of Robots with Four Proximity Sensors 
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3.2.2.3.2 Beam/Range Sensors 

 
These sensors are the type of linear proximity sensors with distance measurements. 

These sensors are the virtual co-responders of laser or narrow ultrasonic 

transducers. They measure the distance between the robot and the closest object. 

Since the real sensors do not measure the exact distance, also a percentage error 

channel is mixed with the exact distance. The mixed channel is fed out as the 

output of the sensors. The error percentage can be chosen by the user and can also 

be changed runtime. Figure 3.21 shows a robot with many beam range sensors, 

from different camera locations.  

 

 
 

Figure 3.21 Robot Equipped with Many Beam/Range Sensors 

 

3.2.2.3.3 Vision Module 

 
Since there are numerous researches on robotic field involving vision through 

cameras of different types, a vision module is also included to the available 

modules. The simulated vision module gives a representation of the environment in 

100 pixels by 100 pixels format. The size of the scene is limited to 100x100 pixels 

due to the processing time of total 10 robots’ vision modules, 5 robots in each 

team. In order to process the image taken by the vision module, OpenCV (Open 

Source Computer Vision) library is embedded to the software environment. 
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The output scene can be processed by the available functions of OpenCV. The 

module gives 3 channel RGB representation of the environment but this raw image 

can be transformed into different channels of interests (COI) such as HSV using the 

transformation functions of OpenCV. In Figure 3.22, two outputs of the vision 

module is given. Left image shows the raw image taken by the module, whereas 

right one shows the image proceesed by the OpenCV functions to locate the red 

box in the scene. Details on vision-based behaviors can be found in [60], for further 

details. 

 

 

Figure 3.22 Images Showing the Robot Approaching the Resources (left image), the Raw 
(middle image) and the Processed Outputs of the Vision Module (right image) 

 

3.2.2.4 Behaviors 

 
Behaviors constitute the algorithmic part of the simulation. Behaviors are the 

actions that robot reacts to sensor readings. Because of the parallel structure of the 

behaviors, user can develop different and unlimited robot behavior. Individual 

behaviors can be loaded to any robot with any combination yielding different 

results. 

Every robot can be loaded with any number of available behaviors. These 

behaviors are registered to the robot. At runtime robot applies all the behaviors that  

are registered to it. Every behavior returns some modification on robots’ state. In 

order to effectively manipulate the robot, some kind of behavior fusion is required. 

Different strategies can be applied as decision process. Every behavior is 
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given a priority to be used in behavior selection (arbitration, fusion) process. 

 

Left Wheel 
Rotation SpeedRange Sensor 

Readings Behavior 
Right Wheel 
Rotation Speed

(Nx1 Vector) 

  

Figure 3.23 Behavior Input-Output Relationship 

 
The input to any behavior is the sensor readings. The output of any behavior is the 

angular velocities of the right and left wheels. The difference between the 

velocities of the wheels, results in another posture of the robot in 3D space, both in 

translational and rotational means. 

Different behavior programming techniques can be found in the literature, 

including genetic and evolutionary programming, [24, 33, and 45]. Since all these 

require some sort of learning these are omitted in the scope of this thesis. Since all 

these evolved behaviors can be considered as functions parametrically optimized in 

some sense, these parameters can be coded as a normal C code and serve as they 

should in this software environment. 

The behaviors are coded with the knowledge obtained from [29, 57, and 42] 

although the design methodologies are not commonly accepted. The simulated 

sample behaviors in the simulation environment are given in the following sub-

sections: The sample behaviors cover the minimal set of behaviors suggested for a 

mobile robot given in [25]. 

3.2.2.4.1 Avoid Obstacle 

 
This behavior serves as the avoidance algorithm. Behavior uses only the beam 

range sensors if exists on the robot. According to the encountered obstacle relative 

angular position and range, this behavior invokes the commands to turn right, turn 

left, or go straight. The turn rates are determined according to the obstacles sensed. 

This behavior also affects the robots’ linear velocity and sets it according to 
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the obstacles relative distance to the robot. For comparison, an obstacle avoidance 

algorithm based on behavior can be seen in [52].  

 

The algorithm can be summarized as follows: 

• Create an empty motor command in which behavior response will be 

written to, 

• Cycle through all range sensors and apply their range measurements and 

their relative angles with respect to the robot reference frame to fuzzy 

rules, 

• Accumulate the output commands for each sensor, 

• Increase the effect of the sensor with the minimum range measurement 

by  accumulating that sensor’s motor command twice, 

• Divide accumulated command into the number of participating sensors 

plus one, 

• Send final motor command for this behavior to behavior coordinator. 

 

The code segment can be investigated in Figure 3.24. This code is the main method 

of CBAvoidObstacle class that is called from the CRobot parent when this 

behavior is loaded to the robot. 

 

The obstacle avoidance behavior is defined by a fuzzy controller. This fuzzy 

controller accepts two input variables and gives one output variable. The controller 

is executed for each Beam/Range Sensor. Inputs parameters for the controller are 

sensors’ measurement and sensors’ relative angle with respect to the z-axis of the 

robot. Since the behaviors have two outputs, right and left wheel angular velocities, 

two fuzzy controllers are used. 

 

One fuzzy controller is responsible for the right wheel speed, while another fuzzy 

controller determines the rate of rotation for the left speed. 
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Figure 3.24 CBAvoidObstacle Class Apply Method 

 

An example of fuzzy input and output variables with triangular membership 

functions and fuzzy rules with COG. defuzzification method is given in Figure 

3.25. 

 

3.2.2.4.2 Find Resource 

 
This behavior uses visual information. This behavior is meaningful only when the 

robot has a vision module, since it feeds from this module’s outputs. The algorithm 

is straight forward: 

• Take the resources detected coordinates in vision modules’ output pixel 

format, 

• Take the vision modules’ FOV angle 

• Convert the detected resource location into turning command. 

The code segment that CBFindResource behavior applies can be seen in Figure 

3.26. 
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Figure 3.25 Fuzzy Controller View for Left Wheel Speed Control Variable 

 
 

3.2.2.4.3 Follow the Leader 

 
This behavior is used to investigate the group formation behavior. Once this 

behavior is loaded to a robot, the robot tries to align itself to a Leader robot with in 

its’ communication coverage area. Figure 3.27 shows the implemented algorithm in 

CBFollowTheLeader behavior class. 
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Figure 3.26 CBFindResource Class Apply Method 

 

 

 

Figure 3.27 CBFollowTheLeader Class Apply Method 

 

47

 



 

3.2.2.4.4 Recharge 

 
This behavior uses internal states not the sensor readings from the outer 

environment. The battery status is watched as an internal state for the robot. This 

behavior guides the robot if the conditions are satisfied, towards the predefined 

recharging area defined for the team that robot belongs, red or blue. The condition 

occurs when the energy level decreases below a predetermined level. shows 

CBRecharge class’s Apply method. 

 

Figure 3.28 CBRecharge Class Apply Method 
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3.2.2.4.5 Turn Left 

 
This simple behavior forces the robot to turn left if there is an obstacle detected at 

the right side of the robot. This behavior uses beam range sensors as input space. 

The turn rates are proportional to the encountered obstacle’s relative position. 

This behavior is in fact right half of obstacle avoidance behavior. Turning left only 

needs the sensitivity to right obstacles, so removing the left sensors from the 

obstacle avoidance fuzzy rules, just gives the turn left behavior. Figure 3.29 shows 

the code presenting the algorithm in CBTurnLeft behavior. 

 

 

Figure 3.29 CBTurnLeft Class Apply Method 

 

The algorithm can be summarized as follows: 

• Create an empty motor command in which behavior response will be 

written to, 

• Cycle through all range sensors and apply their range measurements and 

their relative angles with respect to the robot reference frame to fuzzy  

rules, 

• Accumulate the output commands for each sensor, 

• Divide accumulated command into the number of participating sensors, 

• Send final motor command for this behavior to behavior coordinator. 
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The algorithm seems to be not different from the one given for the obstacle 

avoidance algorithm with minor modifications. In fact, the fuzzy controller makes 

the major difference. The rules and input variables differ from the ones for the 

obstacle avoidance algorithm.  

Figure 3.30 shows the difference (compare with the Avoid Obstacle behavior). 

 

 

 

Figure 3.30 Turn Left Behavior Fuzzy Entries 

 

3.2.2.4.6 Turn Right 

 
This simple behavior forces the robot to turn right if there is any obstacle detected 

at the left side of the robot. This behavior uses only beam range sensors as input 

space. This behavior is in fact left half of obstacle avoidance behavior. Turning 

right only needs the sensitivity to left obstacles, so removing the left sensors from 

the obstacle avoidance fuzzy rules, just gives the turn right behavior. 

Since the code is very similar to Turn Left behavior, code segment is not given. 
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3.2.2.5 Behavior Controllers 

Most of the controllers discussed in Chapter 2 are implemented in the software 

developed in this study. They are given in following subsections: 

 

3.2.2.5.1 Arbiter - Suppression 

 
This behavior controller uses an arbitration policy. The implemented policy is the 

suppression type. The strategy can be summarized as follows: 

• Find the behavior with the highest priority (determined by user) 

• Apply only this behaviors’ response as the output 

 

The code segment used to apply the suppression policy is given in Figure 3.31. 

This code used in the CBCArbiterSuppression class, is the method that is called 

from the CRobot parent. 

 

 
 

Figure 3.31 CBCArbiter Suppression Class Apply Method 

 

 

3.2.2.5.2 Fusion – Vector Summation 

 
This is the behavior controller that uses an command fusion policy. The 
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implemented policy is the vector summation type. The strategy can be summarized 

as follows: 

• Cycle through behaviors and get their responses weighted by 

• Accumulate them in order to find the final output 

 

The code segment used to apply the suppression policy is given in Figure 3.32. 

This code used in the CBCFusionVectorSummation class, is the method that is 

called from the CRobot parent. 

 

 

Figure 3.32 CBCFusionVectorSummation Class Apply Method 

 

3.2.2.5.3 Fusion - Neural Network 

 
This behavior controller applies a command fusion policy. This behavior controller 

is in fact different from Vector Summation policy only in the sense that the weights 

of the behaviors are assigned dynamically by a trained neural network. Then the 

weighted behaviors are fused by vector summation. The Neural Network is a fully 

connected feed forward neural network and is trained by a user defined training 

data file over back propagation algorithm, [Appendix C]. The training is 

accomplished as offline. 

 

The neural network consists of N layers. Out of these N layers, the first and the last 

layers are input and the output layers respectively. The other N-2 layers are the 

hidden layers and they change the complexity of the network. The number 
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of hidden layers and the number of neurons in each of these layers affect the 

training performance of the network, hence the resulting outputs to the same input 

patterns. 

The network topology can be defined by the user. The number of the Beam\Range 

Sensors automatically defines the number of input layer neurons. The number of 

output layer neurons is similarly assigned automatically by the number of 

behaviors of the selected robot. The user can define the number of hidden layers 

and   the    number of    neurons in each of   these   hidden   layers. The   user is 

responsible to supply a suitable training data file according to the network he/she 

defines. The training data file is an ASCII text document, and can be written in any 

ASCII text editor, such as Notepad and/or WordPad. 

The format of the training data file is as follows: 

• Each line in the text file represents n input and m output variables to be 

used for training, 

• The numbers are separated by each other by tabs, 

• The first n numbers in a line should represent input pattern, hence the 

number of these variables should match the number of sensors in the robots 

to be trained, 

• The remaining m numbers other than the n input patterns are the output 

patterns. The number of these variables should match the number of 

behaviors of the robot to be trained, 

• The length (number of lines) of the training data is unlimited. 

 

An example of a network defined by the above parameters is given in Figure 3.33. 
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Figure 3.33 Topology of Neural Network 

 

The training data-reading algorithm takes the location of the training data file as 

input. The user defines the location of this file via user interface. The file is 

searched until the end of the file is reached. During this search, every line is taken 

and evaluated to extract (n + m) floating-point numbers to match n sensors plus m 

behaviors. The extracted data is fed into the network as training data using back 

propagation algorithm. The example of a training data file is given in Figure 3.34. 

This file is used for training a robot with three Beam/Range Sensors and two 

behaviors. 
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Figure 3.34 Neural Network Training Data File Sample 

 

The dynamically changing priorities of the behaviors can be used in many different 

fusion techniques. Some of them can be arbitration such as selecting the highest 

prioritized behavior. Another can be command fusion of vector summation of 

behaviors weighted by their priorities. 

The code segment used to apply the dynamic prioritization policy over Fusion 

technique is given in Figure 3.35. This code used in the CBCFusionNNBackProp 

class, is the method that is called from the CRobot parent. 

 

 

Figure 3.35 CBCFusionNNBackProp Class Apply Method 
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3.2.2.5.4 Arbiter –Neural Network 

 

This behavior coordinator is same as the Fusion – Neural Network behavior 

coordinator in the sense that they both utilize Neural Network in order to determine 

behavior priorities. Since the trained Neural Network supplies the dynamic 

priorities each simulation step, these priorities can be used to determine a single 

behavior to use. In this case, instead of a fused motor command the motor 

command that is generated by the behavior having the largest priority value will be 

executed as the final motor command and will be passed to the wheels to guide the 

robot. 

The code segment used to apply the dynamic prioritization policy over Arbitration 

technique is given in Figure 3.36. 

 

 

Figure 3.36 CBCArbiterNNBackProp Class Apply Method 

 

3.2.3 User Interface 

Any software that is used for general purposes should have some sort of user 

interface. In order to make the implemented software environment usable and 

attractive, a user friendly user interface is designed. The interface is composed 
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of a main application frame window that encapsulates all other windows and 

dialogs. MDI Single Frame Window Template is used as the main application 

frame window. Floating and docking windows are implemented in order to let the 

user to modify the style of the user interface. A registration into the computers 

register is made in order to keep the look and the style of the user interface that has 

been used lastly. Dynamically created dialogs are used in the Behavior Controller 

Dialogs, which takes into account the current registered behavior to the selected 

robot. 

 

The main window consists all the other windows and utilizes all the means to 

access other functional windows via menu, control bar and buttons. Main window 

is an OpenGL context that shows the 3D representation of the simulation. User can 

move in any point by moving the mouse while pressing the Ctrl button on the 

keyboard. Main window also gives the user a menu that is located on top. Using 

this menu other functionalities can be reached, layout of the main window can be 

manipulated, and information about the program can be reached. In Figure 3.37 the 

main menu is given in expanded form to show the underlying functionalities. Four 

main buttons are listed in the menu: File, Edit, View, and Help. 

 

Using File menu, one can quit the program. Within the Edit menu, one can enter or 

change the simulation parameters. View menu, includes the following: a control 

bar toggle control, different windows toggle control and status bar toggle control. 

Help gives the general information about the program. 

 

 

Figure 3.37 Main Window Menu 
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One can modify the simulation parameters through, Edit->Simulation. These 

parameters are the ones that affect the physical accuracy of the simulation. The 

available parameters are listed as follows, and given in a dialog box to user ( Figure 

3.38 ). 

• Gravity in , 2. / secm

• Error Reduction Parameter (ERP) value between 0 and 1, 

• Constraint Force Mixing (CFM) value between 0 and 1, 

• Simulation Step Size in seconds. 

 

Gravity parameter is the constant acceleration that will be multiplied by the mass of 

the objects to create effective gravitational force. The simulation step size, 

determines the time between consecutive updates of the world, hence of each robot 

and of each moving object. The selection of large simulation step value will surely 

yield inaccurate simulations. 

 

 

Figure 3.38 Simulation Parameters Dialog 

 

ERP and CFM are two Open Dynamic Engine (ODE) internal variables that should 

be set suitably. Care should be taken when setting these variables. The default 

values are set suitable for most simulations, but the user should change these 

58

 



 

parameters according to the simulation needs.  

 

When a joint connects two bodies, those bodies are required to have certain 

positions and orientations relative to each other. However, it is possible for the 

bodies to be in positions where the joint constraints are not met. This “joint error” 

can happen in two ways: 

1. If the user sets the position/orientation of one body without correctly setting the 

position/orientation of the other body. 

2. During the simulation, errors can creep in that result in the bodies drifting away 

from their required positions. 

 

Figure 3.39 An Example of Error in a Ball and Socket Joint. 

 

Figure 3.39 shows an example of error in a ball and socket joint where the ball and 

socket do not line up. 
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There is a mechanism to reduce joint error: during each simulation step each joint 

applies a special force to bring its bodies back into correct alignment. This force is 

controlled by the error reduction parameter (ERP), which has a value between 0 

and 1. The ERP specifies what proportion of the joint error will be fixed during the 

next simulation step. If ERP=0 then no correcting force is applied and the bodies 

will eventually drift apart as the simulation proceeds. If ERP=1 then the simulation 

will attempt to fix all joint error during the next time step. However, setting ERP=1 

is not recommended, as the joint error will not be completely fixed due to various 

internal approximations. A value of ERP=0.1 to 0.8 is recommended (0.2 is the 

default). A global ERP value can be set that affects most joints in the 

 



 

simulation. However, some joints have local ERP values that control various 

aspects of the joint. 

 

Most constraints are by nature “hard”. This means that the constraints represent 

conditions that are never violated. For example, the ball must always be in the 

socket, and the two parts of the hinge must always be lined up. In practice 

constraints can be violated by unintentional introduction of errors into the system, 

but the error reduction parameter can be set to correct these errors. Not all 

constraints are hard. Some “soft” constraints are designed to be violated. For 

example, the contact constraint that prevents colliding objects from penetrating is 

hard by default, so it acts as though the colliding surfaces are made of steel. But it 

can be made into a soft constraint to simulate softer materials, thereby allowing 

some natural penetration of the two objects when they are forced together. Two 

parameters control the distinction between hard and soft constraints. The first is the 

error reduction parameter (ERP) that has already been introduced. The second is 

the constraint force mixing (CFM) value that is described below. 

Traditionally the constraint equation for every joint has the form 

                                                                 Jv c=                                                   (3.3) 

where v is a velocity vector for the bodies involved, J is a “Jacobian” matrix with 

one row for every degree of freedom the joint removes from the system, and c is a 

right hand side vector. At the next time step, a vector  λ  is calculated (of the same 

size as c) such that the forces applied to the bodies to preserve the joint constraint 

are 

                                                         Tforce J λ=                                                 (3.4) 

Open Dynamics Engine adds a new twist. ODE’s constraint equation has the form: 

         Jv c CFMλ= +                                             (3.5) 

where CFM is a square diagonal matrix. CFM mixes the resulting constraint force 

in with the constraint that produces it. A nonzero (positive) value of CFM allows 

the original constraint equation to be violated by an amount proportional to CFM 

times the restoring force λ  that is needed to enforce the constraint. Solving for λ  

gives: 
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/1( / )TJM J CFM h c hλ− + =                                        (3.6) 

where h is the step size in seconds. 

Thus, CFM simply adds to the diagonal of the original system matrix. Using a 

positive value of CFM has the additional benefit of taking the system away from 

any singularity and thus improving the factorization accuracy. 

By adjusting the values of ERP and CFM, you can achieve various effects. For 

example, you can simulate spring like constraints, where the two bodies oscillate as 

though connected by springs. Alternatively, you can simulate more spongy 

constraints, without the oscillation. In fact, ERP and CFM can be selected to have 

the same effect as any desired spring and damper constants. If you have a spring 

constant  and damping constant , then the corresponding ODE constants are: pk dk

/( )

1/( )
p p d

p d

ERP hk hk k

CFM hk k

= +

= +
                                         (3.7) 

These values will give the same effect as a spring-and damper system simulated 

with implicit first order integration. Increasing CFM, especially the global CFM, 

can reduce the numerical errors in the simulation. If the system is near-singular, 

then this can increase stability. In fact, if the system is misbehaving, one of the first 

things to try is to increase the global CFM. 

Using View->Controlbar, a control bar is toggled. Figure 3.40. shows the control 

bar. This control bar is used to toggle the visibilities of other windows, and serves 

simulation start functionality together with edit simulation environment 

functionality. The functionalities can also be seen on Figure 3.40. 

 

 
 

Figure 3.40 Control Bar with Associated Functions 

 



 

All of the view functionalities on the control bar can also be accessed over the main 

menu via View->Windows. 

 

Using “BlueTeam” view function one can access a dialog that lets the user to add 

robots in to the blue team. Addition of sensors, behaviors, behavior coordination 

schemes, and editing of the available parameters is done using this dialog. 

 

Team Dialogs can be seen on Figure 3.41 with 2 blue robots added into the blue 

team, and 1 robot into the red team. Note that different sensory capabilities are 

added on the robots using the underneath buttons. 

 

Any item on the tree view controls (colored rectangular areas on each team view 

dialog) can be right clicked. Right click event of the mouse triggers edit event of 

the item if exists. Right clicking on “Robot_i” item brings a new dialog that lets the 

user to manipulate the robot. Right clicking on any sensor also brings new dialogs 

that show the editable parameters for that right clicked sensor item. If there are no 

editable parameters, no dialog appears for editing. 

 

In team view dialogs user manipulates the capabilities of the robot by adding 

sensors, behaviors, and behavior coordinators with correspondingly labeled 

buttons. The function of each button is clear by its label. 

 

Note that in order to add any sensor, behavior, or behavior coordinator, a robot 

should be created first. Then in order to let the GUI to know where the item will be 

attached to (which robot), a robot should be selected priori just by clicking the 

robot with the mouse. 
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Figure 3.41 TeamView Windows 

 

When “Add Blue/Red Robot” button is pressed on either of the team windows, a 

dialog appears to determine the initial parameters for the robot. These parameters 

should be set during initialization and once created these parameters can not be 

edited. Figure 3.42 shows the initialization dialog for the robot. The default values 

for the parameters of this dialog are as follows: 

• Max Speed: 0.5 m/sec. 

• Coverage: 0.5 m. 
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• Wheel Radius: 0.02 m. 

• Chassis Mass: 0.1 kg. 

• Wheel Mass: 0.05 kg. 

• Full Battery: 5000 units. 

• Sizes (W, L, H):  (0.08 m., 0.08 m., 0.08 m.) 

• Position (X, Y, Z): (0 m., 0 m., 0 m.) 

 

 

Figure 3.42 Robot Initialization Dialog 

 

When a pre-created robot is right clicked by mouse, another dialog appears. This 

dialog for robot editing is given in Figure 3.43. This dialog brings the editable 

parameters for the robot, and is created using the current values for listed the 

parameters. By checking the “Apply Changes Immediately” checkbox, any change 

can be observed simultaneously on the main window OpenGL screen. The editable 
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parameters at runtime for a robot are as follows: 

• Position (X, Y, Z), 

• Maximum Speed, 

• Coverage. 

 

 

Figure 3.43 Robot Editing Dialog 

 

When “Add Proximity Sensor” button is pressed, a dialog appears for sensor 

parameters. Figure 3.44 shows Proximity Sensor dialog. Some of the default values 

for the parameters are calculated automatically and they are as follows: 

• Heading Angle: Random value between 0 and 90 degrees. 

• Horizontal FOV Angle: 40 degrees. 

• Vertical FOV Angle: 5 degrees. 

• Maximum Range: 0.5 m. 

• Offset Along X: Robot’s Half Width in meters. 

• Offset Along X: 0 m. 

• Offset Along Z: Height of the top surface of the Robot chassis in meters. 

• Energy Cost per Sec: 1 unit. 

 

Note that Proximity Sensors are located with respect to the robot frame. Any offset 

values can be set for the sensor. As the result sensor may necessarily not physically 

be on the robot, but still sensor will move together with the robot as robot moves, 

keeping its’ offset values fixed with respect to the moving robot frame. 
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When a Proximity Sensor (Proximity_i) is right clicked by mouse, the same dialog 

as in Figure 3.44 appears. This time the values for the parameters are set 

automatically to show the current values for that sensor. 

 

 

Figure 3.44 Proximity Sensor Dialog 

 

When “Add Beam Range Sensor” button is pressed, a dialog shown in the Figure 

3.45 appears. This dialog box is used to set the initial values for the Range Sensor. 

The default parameters are as follows: 

• Pitch: 0 degrees 

• Yaw: Random value between 0 and 90 degrees. 

• Maximum Range: 1 m. 

• Offset Along X: Robot’s Half Width in meters. 

• Offset Along X: 0 m. 

• Offset Along Z: Height of the top surface of the Robot chassis in meters. 

• Error: 0 m. 

• Energy Cost per Second: 1 units 
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When a sensor of this type is right clicked for editing, same dialog box appears. 

The editing dialog reflects the current settings for that sensor. 

 

 

Figure 3.45 Beam/Range Sensor Dialog 

 

When “Add Vision Module” button is pressed while a robot is selected, a dialog 

box lets the user to specify the parameters for the vision module. This dialog box is 

shown in Figure 3.46. 

 

 

Figure 3.46 Vision Module Dialog 
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Using the Vision Module dialog, following parameters are shown as default and 

can be set: 

• Horizontal FOV Angle: 30 degrees. 

• Energy Cost per Second: 1 units 

These parameters can be changed when a vision module is right clicked using the 

above dialog. 

 

To add new behaviors to the robot or to remove preloaded behaviors from the 

robot, “Add/Remove Behaviors” buttons are used. When clicked “Behavior 

Dialog” appears as it is given in Figure 3.47. 

 

 

Figure 3.47 Behavior Dialog 

 

Using Behavior Dialog, behaviors from behavior pool (left hand side) are selected 

via single click of mouse and moved to the loading bin using the appropriate arrow 

(>>) button. The behaviors can be selected one by one from the pool and should be 

moved to the loading in one by one. No behaviors can be loaded more than one   
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instance. If this  button  is  pressed when  a robot  with  previously loaded 

behaviors, “Behaviors To Load” area lists the behaviors loaded on the robot and 

does not let the user to reload the same behavior on the robot again. To remove 

previously loaded behaviors of the robot, behaviors to be unloaded are selected one 

by one with a single click from the right hand side area. Then appropriate arrow 

button (<<) is used to move the selected behavior to the behavior pool. 

 

The changes are reflected to the robot when “OK” button is pressed. If “Cancel” 

button is pressed, no changes are reflected to the selected robot. The changes in the 

loaded behaviors can be observed on the team tree view ( Figure 3.41 ). Behaviors 

leaf shows the currently loaded behaviors. On the tree view, if any of these loaded 

behaviors are right clicked a dialog box showing the priority setting for that 

behavior appears, Figure 3.48. 

 

 

Figure 3.48 Behavior Priority Showing/Editing Dialog 

 

This dialog is used to set the priorities of the behaviors. The priorities are used in 

Behavior Coordination Schemes and these floating-point valued parameters can be 

regarded as the weights on the robot. The dialog is also used to show the priority 

value in “Current Priority” field. When Neural Network coordination scheme is 

assigned to the robot, automatically calculated the priorities for the behaviors 

according to the sensor data can be seen using this dialog. 

 

To change the behavior coordination scheme, “Edit Behavior Controller” button is 

used when a robot is selected. This event gives the options for the behavior 
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coordination scheme. The currently developed behavior controllers are as follows:  

• Arbiter-Suppression 

• Fusion –Vector Summation 

• Fusion – Neural Network 

• Arbiter – Neural Network 

 

The controller to be loaded is selected by means of mouse and when “OK” button 

is pressed the controller for the robot is updated and listed in the tree view under 

Behavior Controller leaf. If one of the controllers utilizing Neural Network is 

selected a further dialog box ( Figure 3.49 ) appears before the controller is loaded 

on the robot. 

 

Figure 3.49 Neural Network Dialog 
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The Neural Network dialog lets the user to specify the learning parameters of the 

network, to be used in Bayesian Learning algorithm. The default learning 

parameters are as follows: 

• Learning Rate: 0 .8 (should be between 0 and 1) 

• Momentum: 0.3 (should be between 0 and 1) 

• Mean Square Error Threshold: 1e-11 (main stop criteria) 

• Maximum Number of Iterations for Training: 200000 (alternative stop 

criteria) 

 

The dialog also lets the user to specify the topology of the network by selecting the 

number of hidden layers to be used, and the number of neurons in each of these 

hidden layers. The number of neurons for the input and the output layer is set 

automatically by the program, and is shown as non-editable just for remark. Note 

that the number of the input layer neurons is equal to the Beam/Range Sensor 

currently on the robot, whereas the number of the output layer neurons is equal to 

the number of the behaviors on the robot. A training file including the training data 

should be determined using “Browse” utility. When pressed ”OK” corresponding 

neural network is formed, trained and loaded on to the robot. The time required for 

these steps depends on the network setting and the training data size, but should 

generally be in seconds scale. 

 

The loaded Neural Network controller can be seen on the tree view under the 

corresponding robots’ “Behavior Controller” leaf. When this item is right clicked, 

the network is cleared and should be set again. 

 

One should care attention not to define a wrong formatted training data. The 

number of the floating-point valued variables per line in the training data file 

should match the total number of input and output neurons. The user is 

recommended to form a training data according to the experiment that is planned to 

be conducted, before starting the program. 
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CHAPTER 4 
 

 

4                                           RESULTS 

 

 

The software environment is constructed to evaluate the effectiveness of behavior-

based control. For this task, a detailed simulation is conducted on navigating a 

single two-wheel differential-drive mobile robot in an unstructured environment, 

using multi-behavior coordination. 

 

4.1 SINGLE ROBOT, MULTIPLE BEHAVIOR SIMULATION 

In this simulation, one robot is registered to the environment. This robot is 

equipped with two beam range sensors. These sensors are located to be 300 apart 

from each other and symmetrical about the robot heading axis, 150 and -150 

respectively. A vision module with 300 of FOV angle is also loaded to the 

differential drive robot. The behaviors that map the readings from these sensors 

into motor actions are selected to be “Avoid Obstacle” and “Find Resource”. The 

behavior controller is selected to be “Fusion - Neural Network” in one simulation 

and “Arbitration - Neural Network” in the other simulation. 

 

All simulations are conducted in the same environment. The environment is chosen 

to have 10 m. width and 10 m. length. The environment is surrounded by non-

movable static walls. Four resources are registered into the environment. The robot 

is located to be at the origin of the environment, (0, 0, 0) in (x, y, z) coordinates. 
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The simulations are terminated at the time all the resources are collected by the 

robot. These simulations are considered successful. Figure 4.1 shows the initial 

conditions for the simulations. 

 

Figure 4.1 Initial conditions (top view) 

 
The robot is initially located at (0,0). There are four resources located at (4.0, 4.0), 

(-4.0, 4.0), (-4.0, -4.0) and (4.0, -4.0). 

The robot is loaded with two behaviors. The priorities of these behaviors are 

evaluated by a neural network. Neural network is trained using a simple training 

data file using offline training, back-propagation algorithm. The evaluated 

priorities are then used in coordination scheme. For comparison of their 

performances, two types of coordination schemes are investigated: “Arbitration - 

Suppression” and “Fusion – Vector Summation”. 

 

The simulations are conducted from same initial conditions. The neural network 

learning parameters are also kept constant. The parameters are as follows: 

Learning Rate    : 0.8   

Momentum    : 0.3 

MSE Threshold   : 1e-11 

Max. No. of Iterations for Training : 200000 
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The training, for all cases is done with the same training data set.. The training data 

is as follows: 

1 1 0 1 

0.8 1 1 0 

0.6 1 1 0 

0.2 1 1 0 

1 0.8 1 0 

1 0.6 1 0 

1 0.2 1 0 

0.2 0.2 0.3 0 

0.5 0.5 0.6 0 

 

The training results for each case are given in Table 4-1. 

 

Table 4-1 Training Results for Case 1 Through Case 4 

 
 

Arbitration Fusion  

No. of 

Iterations 

MSE 

Achieved 

No. of 

Iterations 

MSE 

Achieved  

Case 1 63149 0.000000000 200000 0.000300313 

Case 2  200000 0.000034753 200000 0.000037821 

Case 3 200000 0.123801203 200000 0.123801695 

Case 4 200000 0.123800440 200000 0.000004546 

 
 
The different topologies of the neural network differs the simulations from each 

other. Since the number of range sensors on the robot determines the input layer of 

the neural network and the number of behaviors determines the output layer of the 

neural network, the only variable in the network topology that can be tuned is the 

number of hidden layers and the neurons in these layers. 
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Four cases are investigated for comparison in evaluating hidden layer topology 

dependency, and they are summarized in Table 4-2: 

Table 4-2 Hidden Layer Topology for Case 1 Through Case 4 

 
 No. of Hidden Layers Hidden Layer Neuron 

Mapping 

Case 1 2 2 – 2 

Case 2 2 4 – 4 

Case 3 4 2 - 2 - 2 - 2 

Case 4 4 4 - 4 - 4 - 4 

 
 
The column related with the hidden layer neuron mapping, indicates the number of 

neurons in each hidden layer. 

For different hidden layer topologies, the performances of arbitration and fusion 

schemes are compared. The measure for success is collecting all resources present 

within the field. The total distance traveled to collect all the resources and the total 

time passed elapsed during the simulation is considered as a performance measure.  

Figure 4.2 to Figure 4.5 shows some figures from the simulations. Table 4-3 shows 

the result data extracted from the simulations in tabular form. Considering the data 

displayed in Table 4-3, fusion and arbitration schemes show different performances 

under different neural network topologies. The data in Table 4-3 show the mean 

values obtained after several times of runs for each simulation. Each case is 

simulated 5 times and the mean values are recorded. Clearly it is experimented that 

fusion scheme is found to be successful where as the arbitration scheme is found to 

be unsuccessful in nearly half of the experiments. Comparing the arbitration and 

fusion performances under the condition that both are found to be successful, when 

fusion scheme is used the distance traveled is found to be nearly %50 lower then 

the distance found when arbitration is used. Considering the velocities of the 

robots, when the mission is successfully completed, fusion scheme is found to be 

slower. Considering the unsuccessful experiments in arbitration schemes, it is 

found that there is a trade off between mission completion speed and success. 
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Figure 4.2 Case 1: (Left Image) Arbitration vs. Fusion (Right Image) 

 
 

 
 

Figure 4.3 Case 2: (Left Image) Arbitration vs. Fusion (Right Image) 
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Figure 4.4 Case 3: (Left Image) Arbitration vs. Fusion (Right Image) 

 
 

 
 

Figure 4.5 Case 4: (Left Image) Arbitration vs. Fusion (Right Image) 
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Table 4-3 Case 1-4 Comparison for Arbitration and Fusion 

 
 Arbitration Fusion 

 Distance 

Traveled 

(m.) 

Total 

Time 

(sec.) 

Success / 

Failure 

Distance 

Traveled 

(m.) 

Total 

Time 

(sec.) 

Success / 

Failure 

Case 1 64.79 170.50 success 32.98 293.70 success 

Case 2 72.57 189.00 success 32.87 170.40 success 

Case 3 171.95 279.70 failure 41.54 220.40 success 

Case 4 152.20 249.10 failure 41.12 546.41 success 

 
 

Another case study is carried out for evaluating the performances of the schemes 

under occlusion of obstacles between the robot and the target resource. Figure 4.6 

and Figure 4.7 shows the two cases (top views). Case 5 has one obstacle and Case 

6 has two obstacles between the robot and the resource. 

 

 
 

Figure 4.6 Case5: (Left Image) Arbitration vs. Fusion (Right Image) 
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Figure 4.7 Case6: (Left Image) Arbitration vs. Fusion (Right Image) 

 
 

Both cases are found to be successful as shown in, Table 4-5. Investigating the 

results, reveals that the fusion cases yield a shorter collision-free path between the 

robot and the resource. It is also observed that the arbitration scheme can be 

trapped between one behavior output and another which conflicts each other. 

Training results of the neural network for Case 5 and Case6 are given in Table 4-4. 

 

Table 4-4 Case 5 and Case 6 Training Results 

 
 

Arbitration Fusion  

No. of 

Iterations 

Achieved 

MSE 

No. of 

Iterations 

Achieved 

MSE 

Case 5 200000 0.000543424 200000 0.000143434 

Case 6  200000 0.000023683 200000 0.000015438 
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Table 4-5 Case 5 and Case 6 Comparison for Arbitration and Fusion 

 
 

 

 Arbitration Fusion 

 Distance 

Traveled 

(m.) 

Total 

Time 

(sec.) 

Success 

/ 

Failure 

Distance 

Traveled 

(m.) 

Total 

Time (sec.) 

Success 

/ 

Failure 

Case 5 4.492422 15.300022 success 4.069355 50.999794 success 

Case 6 34.262062 89.599205 success 26.398300 155.700302 success 

 
The comparison of arbitration and fusion schemes has also been investigated in 

highly cluttered environment. This experiment is conducted for a different sensor 

configuration. The change in this configuration is made for the relative horizontal 

angles of range sensors. Two sensors in this case are symmetrically located to be 

35 and -35 degrees with respect to robot heading axis. 

 

 

Figure 4.8 Highly cluttered environment simulation: Initial state (Left Image), Arbitration 
simulation final (Middle Image), Fusion simulation final (Right Image) 

 
As Table 4-6 displays that both simulations are found to be successful in collecting 

the three resources that are disobeying the homogeneity of the obstacles. 

Comparison of the results shows that fusion scheme is capable of collecting the 

resources in a shorter travel distance that the arbitration scheme is under the same 

circumstances. 
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Table 4-6 Case 7 Comparison for Arbitration and Fusion 

 

 

 Arbitration Fusion 

 Distance 

Traveled 

(m.) 

Total 

Time (sec.) 

Success 

/ 

Failure 

Distance 

Traveled 

(m.) 

Total 

Time (sec.) 

Success 

/ 

Failure 

Case 7 285.22 998.40 success 134.13 1111.57 success 

 

4.2 MULTIPLE ROBOTS WITHIN A GROUP SIMULATION 

Multiple robot teams are commonly researched in the robotic field. The topic, itself 

offers many research areas, such as group formation, group coordination. The topic 

can be investigated in two main research areas, namely centralized and 

decentralized control. 

 

Centralized control can be summarized as a control type where information or 

knowledge is accumulated on a common knowledge base where all members of the 

group can access any information obtained via other members. 

 

Decentralized control runs on a limited information sharing strategy, so that 

individuals can access only local information about their group. Many researches 

are conducted on centralized and decentralized control schemes. From the 

behavior-based robot control point of view, some discussion and applications can 

be investigated in [6, 8, 9, 11, 12, 15, 16, 22, 28, 32, 37, 38, 40, 48, and 51]. 

 

A simulation has been conducted over the group behavior of a number of robots 

forming a robot team. One of the robots is assigned to be the leader robot. This 

robot is equipped with several sensors, including beam range sensors in different 

configurations, vision sensor, and volume proximity sensors. The rest of the team is 

left as default and are not loaded with any sensory equipment. 
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All robots including the leader robot are loaded with “Follow the Leader” behavior. 

The leader robot is also loaded with “Avoid Obstacle” and “Recharge” behaviors. 

The robots all located within the effective communication area with the leader 

robot are influenced by the presence of the leader and obeyed their “Follow the 

Leader” behavior. As a result, all simple and sensorless robots gather together and 

follow the leader successfully. The group shows in the simulation a successful 

group behavior. 

 

 
 

Figure 4.9 Robot Group Gathering in Static Leader Case 

 
Figure 4.9 shows the initial status and locations of the robot group (left most 

image). The consecutive images are taken at consecutive time steps to display 

gathering together around the leader. The lines in the figures show the accumulated 

trajectories of each robot. 

 

Another simulation is conducted when the leader has a behavior loaded. Figure 

4.10 shows the simulation history from top view when the leader is loaded with 

“find resource behavior”. The group can clearly be seen to approach the resource 

altogether. Right most point in the initial case is the resource where as the left most 

point is the leader robot. 
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Figure 4.10 Step by Step Group Approach to the Resource 
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CHAPTER 5 
 

 

5      SUMMARY, CONCLUSIONS AND FUTURE WORK 

 
 
 
To point out the importance and benefits of behavior based robotics, some parts of 

this thesis is prepared to present different aspects.  

 

In the study, a simulation environment has been developed in an high level 

programming language that can easily be expanded to different applications. 

Various simulations have been carried out to investigate the realizabilility of 

behavioral control of robots which functions in an unstructured environment. Robot 

behaviors in these simulations have been implemented in two different forms; 

arbitration-suppression and fusion-vector summation schemes. 

These schemes thus, have been compared effectively based on certain criteria set 

forth within the study. These criteria are namely; 

• the number of hidden layers and number of neurons involved within the 

learning scheme, 

• time taken to reach a reasonable and acceptable pose, 

• total distance traveled in reaching to the above referred final pose, 

• accomplishment of the task, 

 

We can summarize the findings out of this study as; 

• Fusion scheme successfully accomplishes the task in all simulations, 

arbitration scheme fails sometime or it’s successful accomplishments may 

take longer in time and traveled distance, 

• Increasing the number of hidden layers and number of neurons in the 

learning process enhances the performance of the fusion algorithm but such 
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 a positive impact is not seen for the arbitration scheme, 

• The software developed in this study for the simulation environment 

depending on open-source libraries proves to be useful, besides proves to be 

quite flexible to construct satisfactory software for demanding applications. 

 

 

During the literature survey of this thesis work, no software capable of employing 

such detail and showing such extendibility property is found. The final product of 

this thesis work shows the following distinctive properties: 

• Parallel evaluation of sequentially executed behaviors using different 

control architectures as behavior control mechanism. 

• Integrated OpenCV functionality lets the user not only to have the vision 

module output, but also process it within the software with no additional 

effort. 

• Integrated ODE makes the software comparable with other physics based 

dynamic simulation environments. 

• Integrated Fuzzy Logic Library lets the user not only to define fuzzy control 

parameters but also visualize them. 

• Object-oriented programming approach makes the software easy to 

understand and easy to add additional properties for developers. 

 

Examining the aims of this thesis work and the final software release, shows that 

the targeted points to be covered is reached, successfully. The user interface built 

over these core modules lets the user to interact with the experimental environment, 

manipulate it by adding robots equipped with different sensory configuration. 

 

It should be useful in the future to add different properties to the simulation 

environment. At the present state, user opens the source codes and adds new header 

and implementation files for a new behavior. This can be enhanced by means of a 

run-time compiler support to the executable binaries. Such a property gives user the 

freedom not to deal with the problems of compiler variations or versions. This 

85

 



 

property is also evaluated to reduce the mean time to develop some behavior and 

add them to the desired robot agent. Together with the codes running behind, the 

user interfaces can also be upgraded. However, these works can be specified as 

purely a computer programming experience. In order to extend the scope to 

robotics and electronics, different algorithms of navigation, behavior fusion 

mechanisms may also be developed. 

 

The current release is operated under Windows operating systems. This can limit 

the possible user profile. In order to extend the targeted user profile, an operation 

system independent version can be developed. 
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APPENDIX A 
 

 

 

7 ON KINEMATICS OF WHEELED MOBILE ROBOTS 

 
 
 
Many different configurations for locomotion of a wheeled robot can be seen in the 

literature. Some of them are listed as follows: 

 

A.1 DIFFERENTIAL DRIVE 

The differential drive is a two-wheeled drive system with independent actuators for 

each wheel. The name refers to the fact that the motion vector of the robot is sum 

of the independent wheel motions, something that is also true of the mechanical 

differential (however, this drive system does not use a mechanical differential). The 

drive wheels are usually placed on each side of the robot and toward the front: 

 

 
 

Figure A.1 Differential Drive System 

 

In the above diagram, the large gray crosshatched rectangles are the drive wheels. 

The small gray crosshatched rectangle is a non-driven wheel which forms a tripod- 
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like  support  structure  for  the  body of the robot. Often, the non-driven wheel is a 

caster wheel, a small swiveled wheel used on office furniture 

 

Unfortunately, caster wheels can cause problems if the robot reverses its direction.  

Then the caster wheel must turn 180 degrees and, in the process, the offset swivel 

can impart an undesired motion vector to the robot.  This may result in a 

translational heading error.  However, if the robot always changes direction by 

moving forward and turning, a caster wheel may be okay.  Another alternative to a 

caster wheel is a captive ball which does not use a swivel mechanism.  In the case 

of small robots, a rolling device is not strictly necessary if the floor is smooth--

some robots have used fixed rounded Lego parts in place of captive balls.  The only 

drawback is the increased friction component as the Lego piece must slide along 

instead of rolling. 

 

Straight-line motion is accomplished by turning the drive wheels at the same rate in 

the same direction, although that's not as easy as it sounds.  In-place (zero turning 

radius) rotation is done by turning the drive wheels at the same rate in the opposite 

direction.  Arbitrary motion paths can be implemented by dynamically modifying 

the angular velocity and/or direction of the drive wheels.  In practice, however, 

complexity is reduced by implementing motion paths as alternating sequences of 

straight-line translations and in-place rotations. Odometry is easier to do using this 

method. 

Motors: 

Two - One for each drive wheel. 

Pros: 

Simplicity - The differential drive system is very simple, often the drive wheel is 

directly connected to the motor (usually a gear motor--a motor with internal gear 

reduction--because most motors do not have enough torque to drive a wheel 

directly). 

Cons: 

Control - It can be difficult to make a differential drive robot move in a straight 
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line. Since the drive wheels are independent, if they are not turning at exactly the 

same rate the robot will veer to one side. Making the drive motors turn at the same 

rate is a challenge due to slight differences in the motors, friction differences in the 

drive trains, and friction differences in the wheel-ground interface. To ensure that 

the robot is traveling in a straight line, it may be necessary to adjust the motor RPM 

very often (many times per second). This may require interrupt-based software and 

assembly language programming. It is also very important to have accurate 

information on wheel position. This usually comes from the odometry sensors 

 

A.2 SYNCHRO DRIVE 

The synchro drive system is a two motor, three/four wheeled drive configuration 

where one motor rotates all wheels to produce motion and the other motor turns all 

wheels to change direction: 

 

                 

 

Figure A.2 Synchro Drive System 

 

The left figure shows the wheels in the 0 degree position--in this position the robot 

will move forward/backward. The right figure shows the wheels turned -45 

degrees. Note that all wheels have turned an equal amount. Using separate motors 

for translation and wheel rotation guarantees straight-line translation when the 

rotation motor is not actuated. This mechanical guarantee of straight-line motion is 

a  big  advantage  over  the  differential  drive  method  where  two  motors must be 
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paths can of course be done by actuating both motors simultaneously. Wheel 

alignment is critical in this drive system, if not all wheels are parallel; the robot 

will not translate in a straight line. 

Motors: 

Two: One to rotate all the wheels, and one to turn all the wheels. 

Pros: 

Control - Separate motors for translation and rotation make control much easier.  

Straight-line motion is guaranteed mechanically. There is no need for interrupt-

based control as in the case of the differential drive method. 

Cons: 

Complexity - The mechanism which permits all wheels to be driven by one motor 

and turned by another motor is complex. It is an open problem whether it can be 

implemented using Lego components (it probably can, but it might not be easy or 

practical). In addition, wheel alignment is critical. 

 

A.3 CAR-TYPE DRIVE 

Car-type locomotion is very common in the "real world," but not as common in the 

"robot world.” Car-type locomotion (and its cousin, tricycle locomotion) is 

characterized by a pair of driving wheels and a separate pair of steering wheels 

(only a single steering wheel in tricycle locomotion): 

 

                 

 

Figure A.3 Car-Type Drive System 
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Although these rear-wheel drive configurations are the most common, there are 

also front-wheel drive versions as well in which the steering wheel(s) are also the 

drive wheel(s). An advantage of front-wheel drive is a smaller turning radius. 

Consider the figure below: 

 

 
 

Figure A.4 Front Wheel Drive Car-Type Drive System 

 

If this were a rear-wheel drive system it is unlikely that such a sharp turn could be 

accomplished since the majority of the forward force produced by the rear wheels 

cannot be used for motion (a 90 degree turn of the front wheel would be impossible 

in a rear-drive system). However, if the front wheel is driven there is no problem 

with this amount of turn; indeed, even a 90 degree turn of the front wheel could be 

performed. 

 

The placement of odometry sensors is an issue in any car-type locomotion system 

where more than one wheel is providing thrust. As in a car, if the rear wheels are 

driven by a solid axle and a differential is not used the rear wheels will slip when 

turning because they must travel different distances (the wheel on the outside 

travels a farther distance that the wheel on the inside). Since any wheel slip will 

reduce odometry accuracy, placing the shaft encoder on a wheel which does not 

slip is advantageous. 
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A car-type drive is one of the simplest locomotion systems in which separate 

motors control translation and turning (a big advantage compared to the differential 

drive system). This is why it is popular for human-driven vehicles. However, the 

simplicity comes at a price: the car-type drive is a non-holonomic actuation system. 

A non-holonomic system is one in which the actuators do not directly control one 

or more of the degrees-of-freedom of the system, but instead are coupled such that 

orientation becomes much more complicated than in a holonomic system. For 

example, planar motion requires two degrees of freedom: x and y. Any robot 

architecture that allows for direct and, possibly simultaneous, motion along the x 

and y axes would be holonomic. Most robots do not have orthogonal actuators, 

although there are some that do. However, any x and y movement can be expressed 

in polar coordinates, combinations or rotations and translations. Therefore, any 

robot that can perform arbitrary rotations and translations is also holonomic. 

However, a car-type drive cannot perform rotations without translating. Thus, the 

degrees-of-freedom are linked and the system is non-holonomic. The obvious 

example of this is parallel parking a car. If a car used a synchro drive system 

(which is holonomic), then the car could position itself next to an empty parking 

space, rotate its wheels so that the direction of motion is into the parking space, and 

then translate into the space. Instead, a car must perform many forward/backward 

motions in order to accomplish a sideway translation because there is no actuator 

that can directly perform sideways movement. The result is a system for which 

path planning is much more difficult. 

Motors: 

Two - One for translation and one for rotating the turning wheel(s). 

Pros: 

Simplicity - One of the simplest locomotion systems to implement with one 

caveat:  the turning mechanism must be precisely controlled.  A small position 

error in the turning mechanism can cause large odometry errors. 

Cons: 

Planning - Planning is difficult because the system is non-holonomic.  Note that 

the difficulty of a non-holonomic system is relative to the environment.  On a 
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highway, path planning is easy because the motion is mostly forward with no 

absolute movement in the direction for which there is no direct actuation 

(sideways). However, if the environment requires motion in the direction for which 

there is no direct actuation, path planning is very hard. 

 

A.4 SKID-STEER DRIVE 

Skid-steer locomotion is commonly used on tracked vehicles such as tanks and 

bulldozers, but is also used on some four- and six-wheeled vehicles. On these 

vehicles, the wheels (or tracks) on each side can be driven at various speeds in 

forward and backward (all wheels on a side are driven at the same rate). There is no 

explicit steering mechanism--as the name implies steering is accomplished by 

actuating each side at a different rate or in a different direction, causing the wheels 

or tracks to slip, or skid, on the ground.   

 

 
Figure A.5 Skid-Steer Drive System 

 

In the above left figure, the wheels on the left side are driven forward and the 

wheels on the right side are driven in reverse at the same rate. The result is a 

clockwise zero radius turn about the center of the vehicle shown in the right figure. 

Note that throughout the turn the wheels are required to skid on the ground, with 

the front and rear pair of wheels skidding more than the center pair.  Skidding has 

some disadvantages including tire/track wear but for tracked vehicles there is no 

alternative. (Vehicles that use skid-steer usually are off-road types such as 
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construction equipment and tanks--the reduced friction of a non-paved surface 

helps to reduce tire/track wear.) In the real world, these disadvantages are offset by 

the simplicity of the drive system. However, in the robot world skidding is a severe 

disadvantage because of the negative effect it has on odometry: wheels that are 

skidding are not tracking the exact movement of the robot. Since odometry is a 

very important sensor for position determination, skid-steer is not commonly used 

on robots with sparse sensing (no video cameras or sonar) that require accurate 

position determination. 

 

Skid-steer is closely related to the differential drive system, replacing the caster 

wheel with extra drive wheels. It has the same disadvantage: moving in a straight 

line requires the wheels on each side to be turning at the same speed, which can be 

difficult to achieve. The advantage of skid-steer is increased traction and no caster 

wheel effect. 

Motors: 
Two - One for each side of the robot. 

Pros: 
Simplicity - No explicit steering mechanism. 

Traction - Multiple drive wheels on each side gives greatly increased traction, 

especially on rough terrain (even greater for tracked vehicles). 

Cons: 
Control - Straight-line travel can be difficult to achieve. 

Odometry - Skidding cause wheels to lose contact with the ground which means 

odometry sensors cannot accurately track the position of the vehicle 

 

A.5 ARTICULATED DRIVE 

Articulated drive is similar to the car-type drive except the turning mechanism is a 

deformation in the chassis of the vehicle, not pivoting of wheels: 
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Figure A.6 Articulated Drive System 

 

This design has the same disadvantages of the car-type drive: if multiple wheels are 

driven and a differential is not used, wheel slippage will occur. This design is 

commonly used in construction equipment where wheel slippage is not an issue 

(speeds are slow and the coefficient of friction with the ground is low). 

Motors: 
Two - One to drive the wheels and one to change the pivot angle of the chassis. 

Pros: 
Simplicity - One of the simplest two-wheel drive locomotion systems to implement 

with one caveat:  the turning mechanism must be precisely controlled. A small 

position error in the turning mechanism can cause large odometry errors. A four-

wheel drive system must use a universal joint to couple power across the pivot. 

Cons: 
Planning - Planning is difficult because the system is non-holonomic. 

 

A.6 PIVOT DRIVE 

Pivot drive is a unique type of locomotion. The pivot drive system is composed of 

a two parts: 1) a four-wheeled chassis with non-pivoting wheels and, 2) a rotating 

platform which can be raised or lowered: 

The wheels and the platform are driven by the same motor, although the platform is 

geared to rotate slowly. 
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When the platform is raised, the wheels will translate the robot in a straight line, 

the platform will spin, but as it is not touching the ground, it has no effect. 

 

 
 

Figure A.7 Pivot Drive System 

 

When a turn is required, the robot stops the drive motor and activates the motor 

which lowers the platform. Once the platform is in the down position, the drive 

motor is activated. Now the drive motor spins the robot since the wheels are off the 

ground. When the robot has rotated to the desired heading, the drive motor is 

stopped and the platform is raised. Now the robot can translate again using the 

drive motor. This design produces mechanically guaranteed straight-line motion 

which is a real advantage for odometry. However, the cost is the complex design 

necessary to raise and lower the platform while coupling power to the platform 

drive shaft. A simpler design (but requiring more control hardware) would use 

three motors: one to drive the wheels, one to rotate the platform, and one to 

raise/lower the platform. Fortunately, the raising/lowering of the platform would 

not require complicated position sensing, contact switches at the end-points of 

travel would suffice. The motor drive circuitry could be a couple of relays or 

transistors, as speed control is not necessary. 
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Motors: 

Two - One to drive the wheels & rotating platform and one to raise/lower the 

platform. 

Three - One to drive the wheels, one to rotate the platform, and one to raise/lower 

the platform. 

Pros: 

Control - Separate actuation of translation and rotation make control much easier.  

Straight-line motion is guaranteed mechanically--there is no need for interrupt-

based control as in the case of the differential drive method. 

Cons: 

Complexity - The 2-motor system is quite complex, the 3-motor system is easier to 

build but would require extra position sensing electronics. 

Versatility - In this system, translation and rotation are mutually exclusive, unlike 

the synchro drive or the dual differential drive. The inability to make arbitrary 

radius turns could be constraining. 

 

A.7 DUAL DIFFERENTIAL DRIVE 

Straight-line motion is important because it simplifies odometry sensing and 

eliminates time-critical processing. The synchro drives does give a mechanical 

guarantee of straight-line motion (assuming the wheels are properly aligned) but it 

would be difficult to build. The dual differential drive, given its name because it 

utilizes two mechanical differentials, also guarantees straight-line motion and it is 

relatively simple to construct in even Lego parts. Unlike the use of the differential 

in a car-type drive, where it distributes input force to two output shafts, the dual 

differential drive, or DDD, uses its differentials to combine the forces from two 

input shafts and uses the resulting sum to drive a wheel (each drive wheel has its 

own differential): 

 

In the following above figure, the left and right differentials have their output 

shafts, C & C' attached to the drive wheels. The B and B' shafts are linked by a 3-

gear train--if force is applied to any of the yellow, green, or cyan gears, the B & B' 
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shafts will rotate in the same direction. The A & A' shafts are linked by a 2-gear 

train--if force is applied to the red or magenta gears, the A and A' shafts will rotate 

in opposite directions. 

 

 
 

Figure A.8 Dual Differential Drive System 

 

Now consider what happens if the B & B' shafts are prevented from rotating and 

force is applied to the A & A' shafts from a motor whose output gear is interfaced 

with one of the translation gears. A & A' will rotate in opposite directions and, 

since the B & B' shafts are fixed, the C shaft will rotate with the force of the A 

shaft and the C' shaft will rotate with the force of the A' shaft. Furthermore, since A 

& A' are rotating in opposite directions, C & C' will rotate in the same direction 

(because the differentials are facing in opposite directions). The result will be a 

translation of the robot and, because the entire system is mechanically linked, the 

wheels must rotate at the same rate producing straight-line motion. Conversely, if 

the A & A' shafts are prevented from rotating and force is applied to the B 
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& B' shafts, the C & C' shafts will rotate in opposite directions resulting in a zero 

radius turn about a point midway between the wheels, since the wheels are still 

constrained to turn at the same rate. From the preceding discussion, it follows that 

if a motor is connected to the translation gear train and another motor is connected 

to the rotation gear train, by actuating the motors in a mutually exclusive manner 

the robot can be made to perform straight-line translation or in-place rotation. This 

assumes that the motors are non-back drivable, meaning that when a motor is off it 

cannot be turned by an outside force acting on its output shaft. If the motors are 

back drivable, then some of the force can move through the differential, back 

driving the idle motor and possibly causing unequal force to be applied to the drive 

wheels. Motors without internal gear reduction are always back drivable, motors 

with internal gear reduction (gear motors) may or not be back drivable depending 

on the type of gear train. Below is a photograph of the dual differential drive made 

from Lego parts: 

 

 
 

Figure A.9 Dual Differential Drive System with LEGO Blocks 

 

There are other variations of this design-different placement of the differentials 

and/or using a different shaft for input/output-but the principle is the same. 
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Motors: 

Two - One to drive the wheels in the same direction resulting in straight-line 

translation, one to drive the wheels in the opposite directions. Note that it is 

possible to actuate both motors at the same time to generate arbitrary motion paths. 

Pros: 

Control - Separate actuation of translation and rotation make control much easier. 

Straight-line motion is guaranteed mechanically--there is no need for interrupt-

based control as in the case of the differential drive method. 

Simplicity - Easily implemented in Lego, relatively compact design. 

Cons: 

Efficiency - The many gears in this system make it somewhat less efficient that a 

differential drive system, as there are frictional losses in the gear shafts. A heavy 

robot may require care in choosing the gear ratios in the system, since frictional 

losses rob the system of power. However, the benefits of this system outweigh the 

negatives. 

109

 



 

APPENDIX B 
 
 
 

8 CONTROLLABILITY OF WHEELED MOBILE ROBOTS 

 
 

The controllability of wheeled mobile robots is very important for the analysis of 

underlying trajectory-tracking control systems. Without an adequate understanding 

of these control systems and in the absence of a reliable tracking system, high level 

planning cannot easily be performed successfully. In recent years, significant 

progress has been made in the application of differential geometric methods to 

nonlinear control systems. Part of differential geometric theory which is directly 

applicable to mobile robot control problems is used here. These problems have 

proved to be difficult to solve by other methods. 

 

Since we are interested in describing the mobile robot with respect to the world 

coordinate system, the kinematics equations of the mobile robot are given as 

follows: 

( ) ,p J p q=                                               (B.1) 

 

where p is a generalized coordinate vector, nR∈ mq R∈ is an input vector to the 

system, and n > m . Rewriting the above equation to the conventional form for 

nonlinear control, we get 

1
( ) ( ) ,

m
i i

i
p f p g p u

=
= +∑                                   (B.2) 

 

where p , , t denotes a transpose, and f and gnR∈ 1 2[ , ,..., ]t
mu u u u q= = i are 

analytic vector fields on Rm. For the mobile robot system, n-m nonholonomic 

constraints are written in the form 
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a p a j m

=
+ = =∑                         (B.3) 

 

where the aji is in general a function of p and time and aj equals zero. 

 

Therom 1. Given a wheeled mobile-robot system, the system is locally accessible 

(weakly controllable) around a point n
cp R∈ if it satisfies the accessibility rank 

condition at pc, that is, its accessibility distribution spans Rn at the point pc. 

Proofs for Theorems 1, 2 and 4 and the six corollaries that follow can be found in 

[19] , Chapter II, along with related definitions. The proof of Theorem 3 is self-

contained. 

Using the above theorem, we have proved that the six commonly used 2-DOF or 3-

DOF wheeled mobile robots are locally accessible. These mobile robots with 

different wheel and axle configurations are shown in Figure B.1. The coordinates 

(x, y) indicate the location of the robot with respect to the world coordinate system. 

The angle θ gives the orientation of the vehicle or the wheels with respect to a line 

parallel to the x axis of the reference coordinate frame. In the following kinematics 

equations, we assume that these vehicles roll on a plane surface without slipping. 
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Figure B.1 2-DOF and 3-DOF Mobile Robots 

 

Corollary 1: The synchro-drive-steering-wheel vehicle (2-DOF, Equation (4), 

Figure 1a) is locally accessible. 

1 1 2 2

cos 0
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0 1
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p g u g u y w
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Corollary 2: The two-rear-drive-wheel vehicle (2-DOF, Equation (5), Figure 1b) is 

locally accessible. 
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Corollary 3: The one-front-drive-and-steering-wheel vehicle (2-DOF, Equation (6), 

Equation (6), Figure 1c) is locally accessible. 
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Corollary 4: The two-rear-drive-wheel and one-front-steering-wheel vehicle (3-

DOF, Equation (7), Figure 1d) is locally accessible. 
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Corollary 5: The two-rear-drive-wheel and rear-steering vehicle (3-DOF, Equation 

(8), Figure 1c) is locally accessible 
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Corollary 6: The one-front-drive-and-steering-wheel and rear-steering vehicle (3-

DOF, Equation (9), Figure 1f) is locally accessible. 
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For the above systems, accessibility implies controllability, as stated below. 

 

Theorem 2. The systems (4), (5), (6), (7), (8), and (9) are controllable. 

The above conditions and findings cover those mobile robots most commonly used 

in laboratories and industry. Most existing wheeled mobile robots can be 

characterized by the above equations or simple variations, although some mobile 

robots may have more than three wheels or more than one or two caster wheels. 

Furthermore, although the above proofs indicate that mobile robot systems are 

controllable, they are not stabilizable by using continuous feedback. 

It may not be true that the corresponding linearized system can be stabilized using 

linear feedback. 

 

 

 

 



 

APPENDIX C 
 
 
 

9 BACKPROPAGATION ALGORITHM FOR 

MULTILAYERED FEEDFORWARD NEURAL NETWORK 

 
 

Step 0. Initialize weights: to small random values; 

 

Step 1. Apply a sample: apply to the input a sample  vector having desired 

output ; 

ku
ky

 

Step 2. Forward Phase: 

 Starting from the first hidden layer and propagating towards the output 

layer: 

 2.1. Calculate the activation values for the units at layer L as: 

  2.1.1. If L-1 is the input layer 
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 2.2. Calculate the output values for the units at layer L as: 

( )
L L

k k
h L hx f a=  

         in which, use  instead of  if it is an output layer 0i Lh

Step 3. Output errors: Calculate the error terms at the output layer as: 

( ) ( )0 0 0 0 o

k k k k
i i i iy x f aδ ′= −  

Step 4. Backward Phase: Propagate error backward to the input layer through each 

layer L using the error term 
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 in which, use  instead of 0i ( 1)Li +  İF L+1 is an output layer; 

 

Step 5. Weight update: Update weights according to the formula 

( ) ( )
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Step 6. Repeat steps 1-5 until the stop criterion is satisfied, which may be chosen 

as the mean of the total errors (MSE- mean square error) 
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is sufficiently small. 
 
Two C++ files are written for this utility, BackProg.h and BackProp.cpp. They are 
given as follows: 
<BackProp.h> 
 
/////////////////////////////////////////////////////////////////////////////// 
// Fully connected multilayered feed  // 
// forward artificial neural network using // 
// Backpropogation algorithm for training. // 
/////////////////////////////////////////////////////////////////////////////// 
#ifndef backprop_h 
#define backprop_h 
#include<assert.h> 
#include<iostream.h> 
#include<stdio.h> 
#include<math.h> 
 
class CBackProp{ 
// output of each neuron 
 double **out; 
// delta error value for each neuron 
 double **delta; 
// vector of weights for each neuron 
 double ***weight; 
// no of layers in net 
// including input layer 
 int numl; 
// vector of numl elements for size  
// of each layer 
 int *lsize; 
// learning rate 
 double beta; 
 

 



 

// momentum parameter 
 double alpha; 
// storage for weight-change made 
// in previous epoch 
 double ***prevDwt; 
// squashing function 
 double sigmoid(double in); 
 
public: 
 ~CBackProp(); 
// initializes and allocates memory 
 CBackProp(int nl,int *sz,double b,double a); 
// backpropogates error for one set of input 
 void bpgt(double *in,double *tgt); 
// feed forwards activations for one set of inputs 
 void ffwd(double *in); 
// returns mean square error of the net 
 double mse(double *tgt) const;  
// returns i'th output of the net 
 double Out(int i) const; 
}; 
#endif 
 
<BackProp.cpp> 
 
#include "backprop.h" 
#include <time.h> 
#include <stdlib.h> 
 
// initializes and allocates memory on heap 
CBackProp::CBackProp(int nl,int *sz,double b,double a):beta(b),alpha(a) 
{ 
 // set no of layers and their sizes 
 numl=nl; 
 lsize=new int[numl]; 
 
 for(int i=0;i<numl;i++){ 
  lsize[i]=sz[i]; 
 } 
 // allocate memory for output of each neuron 
 out = new double*[numl]; 
 
 for( i=0;i<numl;i++){ 
  out[i]=new double[lsize[i]]; 
 } 
 // allocate memory for delta 
 delta = new double*[numl]; 
 
 for(i=1;i<numl;i++){ 
  delta[i]=new double[lsize[i]]; 
 } 
 // allocate memory for weights 
 weight = new double**[numl]; 
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 for(i=1;i<numl;i++){ 
  weight[i]=new double*[lsize[i]]; 
 } 
 for(i=1;i<numl;i++){ 
  for(int j=0;j<lsize[i];j++){ 
   weight[i][j]=new double[lsize[i-1]+1]; 
  } 
 } 
 // allocate memory for previous weights 
 prevDwt = new double**[numl]; 
 
 for(i=1;i<numl;i++){ 
  prevDwt[i]=new double*[lsize[i]]; 
 } 
 for(i=1;i<numl;i++){ 
  for(int j=0;j<lsize[i];j++){ 
   prevDwt[i][j]=new double[lsize[i-1]+1]; 
  } 
 } 
 // seed and assign random weights 
 srand((unsigned)(time(NULL))); 
 for(i=1;i<numl;i++) 
  for(int j=0;j<lsize[i];j++) 
   for(int k=0;k<lsize[i-1]+1;k++) 
    weight[i][j][k]=(double)(rand())/(RAND_MAX/2) - 1;//32767 
 
 // initialize previous weights to 0 for first iteration 
 for(i=1;i<numl;i++) 
  for(int j=0;j<lsize[i];j++) 
   for(int k=0;k<lsize[i-1]+1;k++) 
    prevDwt[i][j][k]=(double)0.0; 
 
// Note that the following variables are unused, 
// 
// delta[0] 
// weight[0] 
// prevDwt[0] 
 
//  This is done intentionally to maintain consistency in numbering the layers. 
//  Since for a net having n layers, input layer is refered to as 0th layer, 
//  first hidden layer as 1st layer and the nth layer as output layer. And  
//  first (0th) layer just stores the inputs hence there is no delta or weight 
//  values corresponding to it. 
} 
 
CBackProp::~CBackProp() 
{ 
 // free out 
 for(int i=0;i<numl;i++) 
  delete[] out[i]; 
 delete[] out; 
 // free delta 
 for(i=1;i<numl;i++) 
  delete[] delta[i]; 
 delete[] delta; 
 // free weight 
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 for(i=1;i<numl;i++) 
  for(int j=0;j<lsize[i];j++) 
   delete[] weight[i][j]; 
 for(i=1;i<numl;i++) 
  delete[] weight[i]; 
 delete[] weight; 
 // free prevDwt 
 for(i=1;i<numl;i++) 
  for(int j=0;j<lsize[i];j++) 
   delete[] prevDwt[i][j]; 
 for(i=1;i<numl;i++) 
  delete[] prevDwt[i]; 
 delete[] prevDwt; 
 // free layer info 
 delete[] lsize; 
} 
// sigmoid function 
double CBackProp::sigmoid(double in) 
{ 
  return (double)(1/(1+exp(-in))); 
} 
// mean square error 
double CBackProp::mse(double *tgt) const 
{ 
 double mse=0; 
 for(int i=0;i<lsize[numl-1];i++){ 
  mse+=(tgt[i]-out[numl-1][i])*(tgt[i]-out[numl-1][i]); 
 } 
 return mse/2; 
} 
// returns i'th output of the net 
double CBackProp::Out(int i) const 
{ 
 return out[numl-1][i]; 
} 
// feed forward one set of input 
void CBackProp::ffwd(double *in) 
{ 
 double sum; 
 
 // assign content to input layer 
 for(int i=0;i<lsize[0];i++) 
  out[0][i]=in[i];  // output_from_neuron(i,j) J'th neuron in I'th Layer 
 
 // assign output(activation) value  
 // to each neuron using sigmoid function 
 for(i=1;i<numl;i++){    // For each layer 
  for(int j=0;j<lsize[i];j++){   // For each neuron in current layer 
   sum=0.0; 
   for(int k=0;k<lsize[i-1];k++){ 

// For input from each neuron in preceeding layer 
  sum+= out[i-1][k]*weight[i][j][k]; // Apply weight to inputs and add to sum 
   } 
 
   sum+=weight[i][j][lsize[i-1]]; // Apply bias 

out[i][j]=sigmoid(sum); // Apply sigmoid function 
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 } 
} 
// back propagate errors from output 
// layer until the first hidden layer 
void CBackProp::bpgt(double *in,double *tgt) 
{ 
 double sum; 
 
 // update output values for each neuron 
 ffwd(in); 
 
 // find delta for output layer 
 for(int i=0;i<lsize[numl-1];i++){ 
  delta[numl-1][i]=out[numl-1][i]* 
  (1-out[numl-1][i])*(tgt[i]-out[numl-1][i]); 
 } 
 
 // find delta for hidden layers  
 for(i=numl-2;i>0;i--){ 
  for(int j=0;j<lsize[i];j++){ 
   sum=0.0; 
   for(int k=0;k<lsize[i+1];k++){ 
    sum+=delta[i+1][k]*weight[i+1][k][j]; 
   } 
   delta[i][j]=out[i][j]*(1-out[i][j])*sum; 
  } 
 } 
 
 // apply momentum ( does nothing if alpha=0 ) 
 for(i=1;i<numl;i++){ 
  for(int j=0;j<lsize[i];j++){ 
   for(int k=0;k<lsize[i-1];k++){ 
    weight[i][j][k]+=alpha*prevDwt[i][j][k]; 
   } 
   weight[i][j][lsize[i-1]]+=alpha*prevDwt[i][j][lsize[i-1]]; 
  } 
 } 
 
 // adjust weights using steepest descent (uses beta - learning rate) 
 for(i=1;i<numl;i++){ 
  for(int j=0;j<lsize[i];j++){ 
   for(int k=0;k<lsize[i-1];k++){ 
    prevDwt[i][j][k]=beta*delta[i][j]*out[i-1][k]; 
    weight[i][j][k]+=prevDwt[i][j][k]; 
   } 
   prevDwt[i][j][lsize[i-1]]=beta*delta[i][j]; 
   weight[i][j][lsize[i-1]]+=prevDwt[i][j][lsize[i-1]]; 
  } 
 } 
} 
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APPENDIX D 
 
 
 

10 REFERENCE GUIDE FOR DEVELOPERS 

 

This document contains the functions that are used to construct “Behavior-Based 

Mobile Robot Control Simulation Environment”. These functions are given to help 

developers to extend the scope of the simulation environment. The presence of 

these functions can also give some inspiration to other developers also helping 

what difficulties wait and how they can be solved to construct other similar 

simulation environments. 

The very first thing to do is the planning phase in building simulations. Deciding 

on what simulation type will be used is a challenging problem. One needs to search 

for different simulation types which best suits the problem. Once the simulation 

type, such as discreet time, fixed step simulation, is decided, the other necessities 

shape themselves accordingly. 

The “Behavior-Based Mobile Robot Control Simulation Environment” is physics 

based, fixed step, discreet time simulation. The problem itself, robot control of 

wheeled mobile robots, brings the physics dependency, where as fixed step discreet 

time option is a design choice of the developer. 

The whole code is written in C++. The program uses some dependencies of open 

source. These dependencies are selected, as they are free-easily available and well 

documented. The dependencies are as follows: 

• OpenCV:  Open Computer Vision Library is an open source project widely 

used in computer science as image and video processing tool. The projects’ 

official web site is: “www.opencv.org.” 

• ODE      :    Open Dynamics Engine is an open source project which 

started as a PhD. work. The engine is so successful in computation time means 
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that it is widely used in physics based simulations that require modest accuracy 

and high timing performance. Its modifications are also used in many 

professional simulators and computer game physics cores. The projects website 

is: “www.ode.org”. 

 

Both of these open source projects are distributed in C/C++ library form which can 

be compiled in many common compilers including Visual Studio 6.0, .NET, 

Borland, etc. Precompiled versions are also available for direct injection to your 

application. 

The “Behavior-Based Mobile Robot Control Simulation Environment” is coded 

entirely in C++ using Microsoft Visual Studio 6.0. The project is tested also in 

.NET 2003 environment and succeeded with minor modifications in some header 

files. Advantages of using C++ is used whenever possible. The units that should be 

individual in the simulation such as boxes, robots, and sensors are designed as 

classes. The usage of classes brings the availability of multiple usages of instances 

of that class, namely multiple robots, multiple sensors, multiple of everything in 

class. 

This document tries to give the available functions for the implemented classes in 

subsections. Some assumptions made on the proper function of the methods are 

given in corresponding method information. 

D.1 CLASSES 

D.1.1 CWORLD 

Every other object is registered as a child to this parent class. 

void Draw (bool) 

This is the function used for drawing in OpenGL contents. If parameter is 

passed as “false,” then everything registered is drawn, otherwise the view is 

considered as module view, and some auxiliary objects such as sensors are 

not drawn. 
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void Update () 

This function updates every object before simulation enhances in time. Sets 

the robots’ sensors properly, adds virtual robot boxes to be used in collision 

algorithms, etc. 

void SetGravity (float) 

Sets the gravity scalar used in ODE physical calculations. 

void SetERP (float) 

Sets the ODE ERP constant. 

void SetCFM (float) 

Sets the ODE CFM constant. 

void SetStep (float) 

Sets the simulation time step. 

void SetSizeX (float) 

Sets the size along x-axis. 

void SetSizeY (float) 

Sets the size along y-axis. 

void SetSizeZ (float) 

Sets the size along z-axis. 

float GetGravity () 

Returns the gravity scalar used in ODE physical calculations. 

float GetERP () 

Returns the ODE ERP constant. 

float GetCFM () 

Returns the ODE CFM constant. 

float GetStep () 
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Returns the simulation time step. 

float GetSizeX () 

Returns the World length along the main x-axis. 

float GetSizeY () 

Returns the World width along the main y-axis. 

float GetSizeZ () 

Returns the World height along the main z-axis. 

void RemoveVirtualRobotBoxes () 

Removes the virtual boxes that should be inserted for robot-robot collisions. 

This function should be called after Collision in each step. 

void MyCollisionCallback (void*, dGeomID, dGeomID) 

This method handles the collisions of ODE geom. primitives. It is an 

overridden method that invokes proper functions in ODE library. 

int AnyStaticBox (dGeomID Geom) 

This function is used in collision handling for physics. Returns true if the 

Geom. is any static box. 

int AnyVirtualRobotBox (dGeomID Geom) 

This function is used in collision handling for physics. Returns true if the 

Geom. is any virtual robot box.(Temporary box primitive that is inserted at 

the beginning of each step in the location of each robot and erased at the 

end of the step for a fresh start for new step) 

void Box (GLfloat x1, GLfloat y1, GLfloat z1, GLfloat x2, GLfloat y2, GLfloat z2) 

Draws the surrounding boxes of the world. The two 3 dimensional diagonal 

endpoints are passed in world coordinates as parameters. 
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D.1.2 CBOX 

This the primitive class used to represent boxes of various kinds. Boxes are used as 

static walls, static obstacles, and resources for the red and the blue team as a power 

supply. 

void Draw () 

 Draws the box in 3D space according to its settings. 

void SetEnergy (float val) 

 Sets the energy level that the resource holds. 

float GetEnergy () 

 Returns the current energy level of the resource. 

float GetLength () 

 Returns the length along x-axis. 

float GetWidth () 

 Returns the width along y-axis 

float GetHeight () 

 Returns the height along z-axis.  

int GetType () 

Returns the type of the box. ‘1’ stands for red resource, ‘2’ stands for blue 

resource, ‘3’ stands for static box object. 

 

D.1.3 CROBOT 

This class is the main simulated object. The class encapsulates all the geometric, 

dynamic and auxiliary properties to form a 2-wheel differential drive mobile robot. 

void SetLeader (bool) 

Sets the robot as the leader robot. This property can be used in behaviors 
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such as following a leader robot within a group. 

void SetPosition () 

 Sets the position using an internal Position vector variable. 

CVertex* GetPosition () 

 Sets the position of the center of mass of the mobile robot chassis. 

void SetSpeed (float) 

 Sets the speed of the robot 

float GetSpeed () 

 Returns the speed of the robot 

void SetMaxSpeed (float) 

 Sets the maximum allowable speed of the robot 

float GetMaxSpeed () 

 Returns the maximum allowable speed of the robot 

void SetEnergy (float) 

 Sets the energy of the robot, battery charge level. 

float GetEnergy () 

 Returns the energy of the robot, battery charge level. 

void SetSizes (float, float,float) 

 Sets the sizes of the main robot chassis. 

void Draw (bool) 

Draws the robot according to the passed flag, module view or not, that is 

penetrated from CWorld.Draw (). 

void ApplyKinematics () 

Applies the inverse kinematics to determine wheel rotation speeds for the 

required turn.(Updated by Dynamics) 
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void Update (std::vector<CBox> Objects, std::vector<CVertex> Triangles) 

 Updates the internal states and primitives. Calls from the CWorld.Update().  

void ApplyDynamics () 

Applies the dynamics to the robot, including collision based on physical 

constraints set on CWorld parent. 

void Box (GLfloat x1, GLfloat y1, GLfloat z1, GLfloat x2, GLfloat y2, GLfloat z2) 

 Draws main chassis.  

 

D.1.4 SENSORS 

Different sensors are implemented in software. These sensor types are generally do 

not share common properties so no base class for sensors is implemented. A new 

class is implemented for each sensor type: 

D.1.4.1 CBeamRangeSensor 

This sensor class uses array to measure the distance. Sensor has a starting point, a 

heading in 3D, and an active range. The end of the ray is calculated using other 

objects faces in 3D. The nearest collision point of all of the surfaces with this ray is 

returned as the measured distance. If no collision occurs with this ray, then 

maximum active range is returned. 

D.1.4.2 CProximitySensor 

This is a volume sensor. It gives logical ‘0’ or ‘1’ values as the measurements. It is 

used to check whether an obstacle lies within the coverage of the sensor or not. It is 

composed of 5 points, 1 point for the base location of the sensor. The other 4 points 

are calculated in 3D according to the 3D heading information of the sensor. These 

5 points form a rectangular pyramid as the coverage volume. 

D.1.4.3 CVisionModule 

Vision module gives 100x100 pixels RGB representation of the environment 

viewed from a defined location on the mobile robot. It is OpenGL content. Raw 

127

 



 

and processed versions can be drawn into OpenGL windows and OpenCV highgui 

windows respectively. 

D.1.5 CBEHAVIORS 

CBehavior class is a parent class; different behaviors are based on this class. Every 

other behavior extended from this base class uses the same methods. 

float Apply (std::vector<CBox>, std::vector<CVertex>) 

Applies the behavior algorithm. The passed parameters are the obstacles 

registered to the CWorld. These parameters are fed into robot sensors for 

measurements. 

float GetPriority () 

 Returns the priority value. 

void SetPriority (float) 

 Sets the priority value to the passed parameter. 

 

D.1.6 CBEHAVIORCOORDINATORS 

Coordinators are used to evaluate a single motor command, using many behaviors 

commands. This class is also a base class and different Behavior Coordinators 

applying different policies such as command fusion and arbitration are derived 

from this base class. It implements only one method. 

float Apply (std::vector<CBox>, std::vector<CVertex>) 

Applies the coordination (command fusion, arbitration) policy to the robot. 

Since this method calls behaviors (one by one or selected behavior), the 

parameters are passed by this method to behaviors’ Apply () method. 
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