

DESIGN AND IMPLEMENTATION OF A

SEARCH TOOL FOR ROADS ON POCKET PCs

FOR MOBILE GIS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALPER DİNÇER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

CIVIL ENGINEERING

DECEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan Özgen

 Director

I certify that this thesis satisfies all the requirements as a thesis

for the degree of Master of Science

 Prof. Dr. Güney Özcebe

 Head of Department

This is to certify that we have read this thesis and that in our

opinion it is fully adequate, in scope and quality, as a thesis for

the degree of Master of Science

 Assoc. Prof. Dr. Mahmut Onur Karslıoğlu

 Supervisor

Examining Committee Members

Prof. Dr. Vedat Toprak (METU, GEOE)

Assoc. Prof. Dr. Mahmut Onur Karslıoğlu

(METU, CE)

Assoc. Prof. Dr. Sadık Bakır (METU, CE)

Dr. Bahattin Coşkun (METU, CE)

Dr. Jurgen Friedrich (Başkent Uni, CENG)

PLAGIARISM

I hereby declare that all information in this document has

been obtained and presented in accordance with academic

rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and

referenced all material and results that are not original to

this work.

 Name, Last name : Alper DİNÇER

Signature :

 iii

ABSTRACT

DESIGN AND IMPLEMENTATION OF A

SEARCH TOOL FOR ROADS ON POCKET PCs

FOR MOBILE GIS

Dinçer, Alper

MS., Department of Civil Engineering

Supervisor : Assoc. Prof. Dr. Mahmut Onur

 KARSLIOĞLU

December 2006, 70 pages

The aim of this study is to develop a search tool for roads for

mobile GIS application. The satellite image of Ankara is the base

map of program. There is also a search option for the roads. The

application is based on open source libraries, which are ECW for

imagery and SQLite for the database of vector. The application is

coded in Embedded Visual C++.

The study shows that mobile GIS applications can be prepared by

the help of open source libraries. There is no need to buy a

commercial product to mobilize the GIS.

Keywords: Mobile GIS, ECW, SQLite, Open Source

 iv

ÖZ

CEP BİLGİSAYARLARINDA MOBİL

CBS İÇİN YOL ARAMA KİTİ

TASARIM VE KURULUMU

Dinçer, Alper

 Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi : Assoc. Prof. Dr. Mahmut Onur

 KARSLIOĞLU

Aralık 2006, 70 sayfa

Bu çalışmanın amacı yol arama kiti olarak kullanılabilecek bir

mobil CBS uygulaması geliştirmektir. Ankara’nın uydu görüntüsü

programda altlık olarak kullanılmıştır. Bu uygulama açık kaynak

kodlu kütüphaneler kullanılarak yazılmıştır. Görüntüleme için

ECW, vektör alt yapısı için gereken veritabanı olarak da SQLite

kütüphaneleri kullanılmıştır. Uygulama Embedded Visual C++

altında kodlanmıştır.

Bu uygulama ile açık kaynak kodlu kütüphaneler kullanılarak

mobil CBS yazılımı yazılabileceği gösterilmiştir. Böylelikle aynı işi

yapan ücretli yazılımlara gerek olmayabileceği gösterilmiştir.

Anahtar Kelimeler: Mobil CBS, ECW, SQLite, Açık Kaynak Kod

 v

To My Parents and My Fiancé

 vi

ACKNOWLEDGMENTS

I would like to express my special thanks to my supervisor

Assoc.Prof.Dr. Mahmut Onur Karslıoğlu, for his guidance,

patience and motivation. I am sincerely in debt to him for his

continuous support throughout this study.

I would like to thank to Jurgen Friedrich for his suggestions and

guidance.

I would like to thank to Önder Halis Bettemir for his valuable

assistance and guidance in geodesy.

I would like to thank to Çağlar Şenaras for his cooperation and

guidance in programming.

I would like to thank to Denizcan Çiğşar for sharing his valuable

knowledge and experiences in programming.

Finally, I would express my special thanks to my family and my

fiancé for their patience and compassion throughout the study.

 vii

TABLE OF CONTENTS

PLAGIARISM ... iii

ABSTRACT .. iv

ÖZ..v

ACKNOWLEDGMENTS .. vii

TABLE OF CONTENTS ..viii

LIST OF TABLES ...x

LIST OF FIGURES... xi

LIST OF ABBREVIATIONS...xiii

CHAPTER

1.INTRODUCTION ...1

2.BACKGROUND INFORMATION 10

 2.1. Geographic Information System (GIS) 10

 2.2. Personal Digital Assistant (PDA)........................... 10

 2.3. Mobile GIS.. 11

 2.4. Displaying the Earth Features.............................. 13

 2.4.1. Image Formats .. 14

 2.4.1.1 JPEG.. 15

 2.4.1.2 TIFF .. 15

 2.4.1.3 GIF.. 16

 2.4.1.4 PNG... 16

 2.4.1.5 MrSID, ECW and JPEG 2000.................. 16

 2.5. Displaying Roads on Satellite Images 18

 2.6. Programming Architectures 19

 2.6.1. Stand-Alone .. 19

 2.6.2. Client-Server... 20

 2.7. Programming Languages for Mobile Devices 21

 2.7.1. Java (J2ME) .. 21

 viii

 2.7.2. .NET Compact Framework 23

 2.7.3. Embedded Visual C++ 24

3. METHODOLOGY USED.. 26

4. DEVELOPMENT PROCEDURE... 33

5. ENVIRONMENT, INSTALLATION AND USAGE OF PROGRAM 40

 5.1. Environment ... 40

 5.1.1 ECW SDK... 40

 5.1.2 SQLite SDK .. 42

 5.1.3 Embedded Visual C++ 4.0............................ 43

 5.2 Installation .. 45

 5.3 Usage of Program... 48

6. CONCLUSIONS AND DISCUSSIONS 53

REFERENCES.. 55

APPENDICES

 A. SOURCE CODE... 58

 ix

LIST OF TABLES

Table 1.1.Summary of elements selected9

Table 2.1. Properties: Native Code vs Managed Code 25

Table 2.2. Native Code vs Managed Code 25

Table 4.1: Methods of CNCSRenderer class....................... 34

Table 4.2: Properties of CNCSRenderer class 34

Table 4.3: Methods of CDbSQLite class 35

Table 4.4: Methods of CSqlStatement class 36

Table 4.5: Methods of vector class 37

 x

LIST OF FIGURES

Figure 2.1 Work Diagram of Stand-Alone Client Architecture

... 19

Figure 2.2 Work Diagram of Client-Server Architecture....... 21

Figure 2.3 The Compact Framework Architecture............... 23

Figure 4.1 Screenshot of GUI design process – Main Form .. 38

Figure 4.2 Screenshot of GUI design process - Toolbar....... 38

Figure 4.3 Screenshot of GUI design process – About Form. 39

Figure 4.4 Screenshot of GUI design process – Menu 39

Figure 4.5 Screenshot of associating of events with functions

.. 39

Figure 5.1: Installation screenshot of ECW SDK for Windows

CE .. 41

Figure 5.2: Screenshot of Embedded Visual C++ 4.0 IDE ... 44

Figure 5.3: Screenshot of ECW SDK redistributables directory 45

Figure 5.4: Screenshot of ECW SDK redistributables on Pocket

PC... 46

Figure 5.5: Screenshot of installation of ECW SDK on Pocket

PC... 47

Figure 5.6: Screenshot of AnkaGIS directory 48

Figure 5.7: Screenshot of AnkaGIS application startup 49

Figure 5.8: Screenshot of AnkaGIS application on zoom in.. 50

Figure 5.9: Screenshot of AnkaGIS application with virtual

keyboard ... 50

Figure 5.10: Screenshot of AnkaGIS application with search

result, Eskişehir Road .. 51

 xi

Figure 5.11: Screenshot of AnkaGIS application with zoom in

on search result, Eskişehir Road...................................... 51

Figure 5.12: Screenshot of AnkaGIS application with getting

coordinates option on search result, Eskişehir Road 52

 xii

LIST OF ABBREVIATIONS

Abbreviation Description

API Application Programming Interface

ArcIMS ArcInfo Internet Mapping Server

ArcPad ArcInfo Mobile GIS Application

ARM Advanced RISC Machine

AWT Advanced Windows Toolkit

BILSAT I Satellite of BILTEN

C# Microsoft’s Programming Language

CAB
Cabinet (Microsoft Windows file

extension)

CAD Computer-Aided Design

CCD Charge-Coupled Device

CDC Connected Device Configuration

CF Compact Framework

CLDC
Connected Limited Device

Configuration

CMYK Cyan-Magenta-Yellow-Key/blacK

COM Component Object Model (Microsoft)

CPU Central Processing Unit

DLL Dynamic Linked Library

DN Digital Number

DOS Disk Operating System

ECW Enhanced Compressed Wavelet

ESRI A GIS Company

EXE Executable (File Name Extension)

FP Foundation Profile

GeoTIFF
Geostationary Earth Orbit Tagged

Image File Format

 xiii

GHz Gigahertz (thousands of MHz)

GIF Graphic Interchange Format

GIS Geographic(al) Information System

GPL General Public License (GNU)

GPS Global Positioning System

GUI Graphical User Interface

IDE Integrated Development Environment

J2ME Java 2 Micro Edition

JPEG Joint Photographic Experts Group

JVM Java Virtual Machine

KB KiloByte (1024 Bytes)

KVM Kilo Virtual Machine (Java)

LZW Lempel-Ziv-Welch (algorithm)

MapInfo A GIS Company

MapX Mobile GIS Application of MapInfo

MB Megabyte (1024 KB)

MHz Megahertz (million Hertz)

MrSID MG2 and

MG3

Multi-Resolution Seamless Image

Database

OS Operating System

PDA Personal Digital Assistant

PDF
Portable Document Format (Adobe

Acrobat)

PFP Personal Basis Profile

PNG Portable Network Graphics

POI Point of Interest

PP Personal Profile

ROI Region-of-Interest

RTTI Run Time Type Information

SD Secure Digital

SDK Software Development Kit

 xiv

SE Second Edition

SOAP
Simple Object Access Protocol (XML

protocol)

SQL Structured Query Language

Targa
Truvision Advanced Raster Graphics

Array

TB Terabyte (1,024 Gigabytes)

TIFF, TIF Tagged Image File Format

UTM
Universal Transverse Mercator

(cartography)

VB.NET Microsoft’s Programming Language

Windows CE Windows Compact Edition

XML eXtensible Markup Language

 xv

CHAPTER 1

INTRODUCTION

Geographic Information System is a rapidly developing area

nowadays, but it is not enough to use it on desktops as analyses

tool. GIS is sometimes desired on field rather than offices as a

data collecting or guiding tool. Mobile technologies are required

to mobilize the GIS or GIS tools. Mobile phones, PDAs, tablet PCs

are the examples of devices to mobilize the GIS.

Mobilizing GIS is not an easy task to do. There are lots of details

to think about it. As the devices get smaller, the problems about

programming become more difficult.

Mobile devices have moderate to low system sources than

desktop or laptop computers. So one has less CPU power for

calculations and less memory to store the data. These are the

most important bottlenecks of mobile GIS.

There are also other limitations such as screen size, battery life

and memory management. These are also very important for

mobile GIS in the field.

 1

GIS companies who have a large market shares have different

kinds of mobile GIS toolkits to make mobile GIS applications,

such as ESRI, MapInfo.

ESRI has a product called ArcPad, which is the mobile version of

Arc Application and ArcPad Application Builder, which is the

development framework for creating custom mobile GIS

applications with ArcPad. ArcPad is a buy and use application,

which has no flexibility for changing user needs. On the other

hand ArcPad Application Builder is a framework for programmers

to create or modify the interface.

ArcPad is designed for PDAs to collect data for ESRI’s desktop

GIS application, ArcGIS. It cannot be a standalone GIS

application; it must be used with ArcGIS in order to provide full

range of GIS functionality. ArcPad Studio is the software

development kit for ArcPad for building custom mobile GIS

applications. (P. Clegg, 2006)

ArcPad does not collect information via touch screen. GPS

receivers, rangefinders and digital cameras can be connected to

ArcPad to collect different kind of information. So images of field

can be taken while collecting the x,y and z coordinates. Linking

the geographic data with sound or video is also possible with the

integration of ArcPad.

 2

ArcPad supports most popular data formats shown in next

paragraph but this does not mean that every file can be opened

by ArcPad because of the limitations of PDAs. These formats can

be used as a reference layer or as editable layer.

Data Formats supported by ArcPad are as follows (ESRI, 2006);

o ESRI ShapeFile

o ArcPad graphics layers

o ArcPad photo layers

o MrSID MG2 and MG3

o JPEG

o JPEG2000

o GIF

o PNG

o Windows Bitmap

o CADRG

o TIFF

o ArcIMS Image Services via access to the Internet

Contrary to ESRI, MapInfo only serves as development tools for

professionals, which is called MapX Mobile. MapX Mobile has a

software development kit (SDK) which can be used with

Embedded C++ 4.0 or .NET technologies. MapX Mobile is less

popular than ArcPad because of only giving SDK but this does not

mean that it has less ability to process GIS data.

As it is seen in next paragraph, MapX Mobile also supports the

most popular data formats, including its own format, TAB files,

 3

but it has also some limitations like ArcPad due to PDAs’

limitations.

Data Formats supported by MapX Mobile are as follows (MapInfo,

2006);

o MapInfo Tab Files

o ECW

o Spot

o MrSID

o JPEG

o JPEG2000

o Targa

o Windows Metafile

o GIF

o PNG

o Windows Bitmap

o PCX

o TIFF

o Photoshop

o ESRI ShapeFile

Until now some popular mobile GIS applications have been

introduced. These applications are evolving everyday and gaining

new features day by day, but the newest feature of these

applications is “Wavelet Compressed Raster” support, JPEG 2000

and ECW. This support is a must for mobile GIS applications

because it gives more flexibility and speed to applications due to

its wavelet compression. JPEG 2000 and ECW have open source

 4

libraries, so there is no need to pay for using JPEG 2000 or ECW

formats.

There are many solutions for mobile GIS. Only the most popular

ones are introduced above but most of the solutions are

commercial solutions. There are some rebates for academic

purposes but they are still commercial. The data formats are

available to public access, so there is no need to pay for mobile

GIS applications. The goal of this work is to show that a

component of a mobile GIS can be developed without requiring

any commercial software.

The problem was showing the map of Ankara with frequent

updates. Frequent update of vector maps is a problem for

commercials, governments and municipalities. Instead of vector

maps satellite images are used and it is very easy task to update

the roads on satellite images. Final solution is to show roads as

vectors on satellite image.

Solution of the problem has started with selection of the image

formats. Image formats are important when using satellite

images. Size of the satellite image of Ankara, which was taken

from BILSAT I, is approximately 2 MB in TIFF format. 2 MB size is

very enormous for PDAs, which is even large enough for desktop

computers to handle. JPEG and TIFF image formats are selected

first to use in application, but reading 2 MB of these images in

PDAs is a problem. The whole JPEG or TIFF image must be loaded

into memory to make computation, so this complicates the usage

 5

of image on PDAs. There can be a solution not to load the whole

image into memory, the image can be split up to pieces and each

piece can be referenced to other piece, which can be called tile

grid concept. (Hendrey, 2006) This is used by the commercial

map servers, such as Google Maps. This can be good solution for

stand-alone architecture but image must be splited into pieces for

every zoom level, so there are lots of image pieces. Image can

easily be loaded into memory but there is complexity of relations

of image pieces.

Therefore, this method has been ignored. Instead, wavelet

compression of images is applied. The first application of wavelet

compression on images is JPEG 2000, which will be a new

standard in the industry in few years.

“Despite the phenomenal success of the JPEG baseline system, it

has several shortcomings that become increasingly apparent as

the need for image compression is extended to such emerging

applications as medical imaging, digital libraries, multimedia,

internet and mobile.” (Rabbani, 2002)

There is a need for a new format and this format will be JPEG

2000 or some format with Wavelet Compression. (Rabbani, 2002)

There are lots of new features coming with wavelet compression;

multiple resolution representation, tiling and Region-of-interest

(ROI) coding. Multiple resolution representation and tiling are the

most important characteristics for this work because there is no

need to split image into pieces. There is an embedded tiling in

 6

the image. Different resolutions of image are stored in the image

as wavelets and multiplication of wavelets with coefficients

makes the whole image. There is also other advantage of wavelet

compression, which is Region-of-Interest (ROI) feature. By the

help of this feature, there is no need to read the whole image to

show a part of it. A part of an image can be read without reading

the whole image.

JPEG 2000 is a standard for wavelet compressed images. This

standard can be developed for specific areas, such as medical

imaging or GIS. Organizations took the standards and develop

their own wavelet compressed image formats. ECW and Mr.Sid

are the GIS examples of this behavior. Both of them are

compressed with wavelet encoding and designed for GIS

applications. Designing for GIS means that the image holds

geospatial metadata, which can be the geographic position of the

image and the projection system being used.

As an image format ECW is chosen for this work because ER

Mapper, which is the organization developing ECW, gives ECW

source codes with Free or GPL license. Free license is up to 500

MB so it is enough for the satellite image used.

Vector part can be solved by standard data formats, such as ESRI

ShapeFile or MapInfo Tab Files. As showing roads on a digital

image is an easy task such vector data formats are not needed to

use. If it is the case, standard GIS functions and standard

database or XML files can be used in order to show the roads.

 7

Since the necessary database must be worked under PDA

operating system, the best database for PDA is selected which is

SQLite. SQLite is an implementation of SQL92 standard and

works on most of systems including PDAs. SQLite works without

any SQL Daemon, so a single SQL file is enough for moving data.

This is the best feature of SQLite to use it on PDAs. SQLite is also

an open source project, which is another advantage of library.

After the selection of the database, the next step is the designing

of database for the work to be done here. The database design

must be simple enough not to force PDA CPU power because

there are both image and vector processing at the same time and

image processing spends most of the CPU power. Another

advantage is that PDA uses less CPU power. As the CPU power

increases, battery consumption also increases. There is a linear

relation between CPU power and battery consumption.

Finally, all the libraries put together with a graphical user

interface (GUI) and some GIS functions under Embedded Visual

C++ 4.0. Embedded Visual C++ 4.0 is an integrated

development environment (IDE) which normally consists of a

source code editor, a compiler and interpreter, build-automation

tools, and a debugger. Various tools are available to simplify the

construction of a graphical user interface with programming are

integrated as well. Like many modern IDEs also integrate a class

browser, an object inspector and a class hierarchy diagram, for

use with object oriented software development.

 8

The final program has standard GIS functions; zoom in, zoom

out, move and learn coordinates. There is also search option to

search digitized roads on satellite imagery. Program is running on

Windows Mobile 2003 and Windows Mobile 2003 Second Edition

(SE) operating systems. The only required program to install is

ECW library, no other program or daemons are necessary on

PDA. When the ECW library is installed, the program folder can

be just copied to run on PDA.

Finally, all the elements selected at the end of the thesis are

shown in Table 1.1.

Table 1.1: Summary of elements selected.

Operating System Windows Mobile 2003 SE

Programming Architecture Stand-Alone Architecture

Image Format ECW

Vector Format Simple Line and Point Data

Database SQLite

Programming Language Embedded Visual C++ 4.0

Image SDK ER Mapper ECW SDK

Database SDK SQLite C++ SDK

 9

CHAPTER 2

BACKGROUND INFORMATION

2.1. Geographic Information System (GIS)

GIS is the abbreviation of Geographic Information System, which

is a collection of computer hardware, software, and geographic

data for capturing, managing, analyzing, and displaying all forms

of geographically referenced information. All information

associated with geographic data can be handled by GIS.

(Worboys and Duckham, 2004, 1-16)

Today GIS is an emerging technology in the world. Companies,

universities and governments’ demands are increasing on GIS

technologies, because it makes life easier than before. By the

day, GIS is available for public use. For example Google Maps,

Yahoo Maps and Microsoft Local are the front side of public maps.

They help people to travel easily, find places accurately and

explore the world.

2.2. Personal Digital Assistant (PDA)

PDAs development life cycle can be divided into two parts. In the

first era, they can be classified as digital assistants which have a

functions of organizers, providing management of contact lists,

calendars, diaries, calculators, etc. The second era is that they

gain computer properties. They can have operating systems,

 10

programs rather than organizers or calculators. RAM, ROM and

even small hard drives can be included within the device. These

devices can also have better connectivity options such as wireless

LAN, Bluetooth and GPRS. (Casademont, 2004)

Different kinds of PDAs are also available: Palm OS PDAs,

Windows Mobile PDAs and Linux PDAs. They have a lot of

common features, but they differ in operating systems. Windows

Mobile PDAs are the most popular ones because of the easy use

of operating systems and variety of different programs running

on it.

2.3. Mobile GIS

Developments in PDAs provided a new area in GIS, namely

mobile GIS. Mobile GIS is not a different term than GIS. It is the

integration of GIS into mobile devices such as mobile phones,

pocket PCs and other handheld devices. The obvious definition is

“GIS on mobile devices.” However, the term Mobile GIS can also

encompass stationary devices communicating with mobile

devices over a network.

 11

The necessity of mobile GIS are summarized as follows: (Hassin,

2003)

• Access to geographical data in the field

• Ability to collect data in the field and in real-time

• Ability to add geographical information to data captured

On the other hand, it isn’t widely deployed from the following

reasons;

• Hardware resources on mobile devices are limited.

• Software that is developed for these devices are not widely

available.

• Connection options in the field are limited. It is very hard to

find WI-FI hotspot or GPRS connection.

• Costs on mobile devices are more than desktop devices.

As a result, mobile GIS is a developing technology, so developing

a GIS application on mobile devices requires more attention than

other platforms. All the stages must be searched, planned and

applied.

 12

2.4. Displaying the Earth Features

Image is the two dimensional matrix which consists of real

numbers. This matrix defines the boundary of image and color

depth of image. An image is worth a thousand words in our daily

life. Image is also very important in Geographic Information

Systems like in our daily life. A small database can be replaced

by an image in GIS in order to show the same area.

Image as a data source is one of the major components of GIS

because of its functionality, but the term image in GIS is different

than the daily life. The image term in GIS mostly describes the

satellite images (remotely sensed images) or air photos.

A remotely sensed image (by CCD frame or push broom camera

or radar) is a two-dimensional grid of data; each of its elements

is a pixel (picture element) whose coordinates are known and

whose light intensity has a DN (Digital Number) value. The

coordinates of the pixels and their DN values describe the image

as rows, called lines, and columns, called samples. An 8-bit pixel

provides up to 256 brightness levels (level 0 is set to black, while

level 255 is set to white), the brightness levels are also referred

to as 'grey levels'. In false color image processing, those pixels

which have the same DN value are marked. This technique is

used, for example, to differentiate between various types of

terrain or species of vegetation - to show changes, which are

otherwise not perceptible to the human eye. (Kramer, 2002,

2431)

There are some properties of satellite images, which are spatial

resolution, radiometric resolution and number of bands.

 13

Spatial resolution is the most important property of an image. As

the resolution increases, number of features on the image also

increases. For example one can see the houses clearly on 1m

resolution image, but one can not see the houses on 100m

resolution images. (Kramer, 2002, 2452)

The satellite images are mostly in raw format when taken, which

means that one can read the image through the matrix, but raw

format is not suitable for storing. So raw images must be

converted to another image format to store and serve. There are

lots of image formats for GIS; most popular are JPEG, TIFF,

GeoTIFF and JPEG2000.

2.4.1. Image Formats

Image file formats provides the standardization of storing and

organizing of image data. Image files are composed of pixels,

which comprise an image in the form of a grid of columns and

rows. Every pixel has a value, which represents the brightness or

color. The popular image formats used in GIS are explained

below. (Wikipedia, 2006)

 14

2.4.1.1 JPEG

The JPEG is an image format which is lossy. 3 channels of color,

each is 8-bit, red, green and blue produces the colored JPEG

image. Compression rate is very high in JPEG format, so

difference between the original and compressed image is

unnoticed. (Miano, 1999, 47-57)

“Photographic images are best stored in a lossless non-JPEG

format if they will be re-edited in future, or if the presence of

small "artifacts" (blemishes), due to the nature of the JPEG

compression algorithm, is unacceptable. JPEG is also used as the

image compression algorithm in many Adobe PDF files.”

(Wikipedia, 2006)

2.4.1.2 TIFF

The TIFF (Tagged Image File Format) has different options for

storing the pixels. 16-bit per color or 8-bit per color can be

selectable for images. So 2 different type of TIFF can be formed,

which are 24-bit or 48-bit images. TIFF can be lossy or lossless.

TIFF is capable of handling device-specific color spaces, such as

the CMYK defined by a particular set of printing press inks.

(Wikipedia, 2006)

 15

2.4.1.3 GIF

GIF (Graphic Interchange Format) is limited to an 8-bit palette,

or 256 colors. So simple shapes or diagrams can be stored easily

with GIF format. (Miano, 1999, 171-188) GIF format also

supports animation, which is widely used on internet. (Wikipedia,

2006)

2.4.1.4 PNG

The PNG (Portable Network Graphics) file format can be seen as

an open-source competitor of GIF format. The most important

difference between PNG and GIF is that the PNG format supports

16 million colors. (Miano, 1999, 189-212)

“The lossless PNG format is best suited for editing pictures, and

the lossy formats like JPG are best for final distribution of

photographic-type images because of smaller file size.”

(Wikipedia, 2006)

2.4.1.5 Mr.Sid, ECW and JPEG 2000

These formats are using the same principle, wavelet

compression. Wavelet compression is a form of data compression

well suited for image compression (sometimes also video

compression and audio compression). The goal is to store image

 16

data in a file using as little space as possible. A certain loss of

quality is accepted, known as lossy compression.

Based on a wavelet transform, the wavelet compression methods

are better at representing transients, such as percussion sounds

in audio, or high-frequency components in two-dimensional

images, for example an image of stars on a night sky. This

means that the transient elements of a data signal can be

represented by a smaller amount of information than it would be

in case of some other transforms, such as the more widespread

discrete cosine transform.

Wavelet compression is not good for all kinds of data: transient

signal characteristics mean good wavelet compression - smooth,

periodic signals are better compressed by other methods.

(Wikipedia, 2006)

Properties of JPEG 2000 are as follows (Rabbani, 2002);

o Improved compression efficiency

o Lossy to lossless compression

o Multiple resolution representation

o Embedded bit-stream (progressive decoding and SNR

scalability)

o Tiling

o Region-of-interest (ROI) coding

o Error resilience

o Random code stream access and processing

o Improved performance to multiple compression /

decompression cycles

o A more flexible file format

 17

2.5. Displaying Roads on Satellite Images

Roads on earth can be shown by the help of vector on satellite

image. Vector is a data structure, used to store spatial data.

Vector data comprises of lines or arcs, defined by beginning and

end points, which meet at nodes. The locations of these nodes

and the topological structure are usually stored explicitly.

Features are defined by their boundaries only and curved lines

are represented as a series of connecting arcs. Vector storage

involves the storage of explicit topology, which raises overheads,

however it only stores those points which define a feature and all

space outside these features is 'non-existent'.

A vector based GIS is defined by the vectorial representation of

its geographic data. According with the characteristics of this

data model, geographic objects are explicitly represented and,

within the spatial characteristics, the thematic aspects are

associated.

There are different ways of organizing this double data base

(spatial and thematic). Usually, vectorial systems are composed

of two components: the first one manages spatial data and the

second one manages thematic data. This is called hybrid

organization system, as it links a relational data base for the

attributes with a topological one for the spatial data. A key

element in this kind of systems is the identifier of every object.

This identifier is unique and different for each object and allows

 18

the system to connect both data bases. (Worboys and Duckham,

2004, 221-255)

2.6. Programming Architectures

2.6.1. Stand-Alone

The simplest programming architecture is the Stand-Alone Client

architecture which is shown in Figure 2.1. All the data

connections are completed within the device in this architecture.

The device stores, interprets and displays the geographic data. If

there is a possibility to store all the geographic data on the

device, the speed of the application is better than the client-

server type application.

Figure 2.1: Work Diagram of Stand-Alone Client Architecture

Regardless of the benefits, this architecture has some pretty

major limitations. First, the storage is limited to store all the

 19

geographic data. Another limitation is that there is no connection

to outside to update geographic data. (Hassin, 2003)

2.6.2. Client-Server

The limitations of stand-alone architecture can be eliminated by

using different approach. Storing geographical data on other

computer and making a connection between mobile device and

server is a good solution for storage limitation on mobile devices.

The mobile GIS application remains the same except the

geographical data source. The architecture can be seen on Figure

2.2.

This approach is good for multiple mobile devices with single

geographical data source. Multiple clients get the same data from

server, so update process is easier than stand-alone architecture,

because updating the server geodata affect all the clients.

(Hassin, 2003)

 20

Figure 2.2: Work Diagram of Client-Server Architecture

2.7. Programming Languages for Mobile Devices

2.7.1. Java (J2ME)

Java 2 Micro Edition (J2ME) is the mobile version of Java for

mobile devices. There are four configuration-profile options for

developers to deploy a J2ME application. (Hassin, 2003)

• Connected Limited Device Configuration (CLDC) – This

configuration uses the KVM, an extremely lightweight

version of the Java Virtual Machine (JVM). (Sun, 2005)

o Mobile Information Device Profile (MIDP) – The MIDP

is the only profile available for the CLDC and is

intended for mobile devices with very limited

resources, such as mobile telephones.

 21

• Connected Device Configuration (CDC) – This configuration

uses a full JVM, but its profile determines how much

functionality is available. (Sun, 2005)

o Foundation Profile (FP) – As its name indicates, this

profile provides just the basic foundation classes.

o Personal Basis Profile (PFP) – The PFP provides the

foundation classes as well as additional graphics

functionality.

o Personal Profile (PP) – This profile is a superset of the

PFP and actually provides the entire Advanced

Windows Toolkit (AWT) to the developer.

To balance portability with performance and feasibility in the real

world, J2ME contains several components known as

configurations, profiles, and optional packages. Each valid

combination of a configuration and a profile targets a specific

kind of device. The configurations provide the most basic and

generic language functionalities. The profiles sit on top of

configurations and support more advanced APIs, such as a

graphical user interface (GUI), persistent storage, security, and

network connectivity. The optional packages can be bundled with

standard profiles to support specific application needs. (Yuan,

2003, 20)

 22

2.7.2. .NET Compact Framework

.NET Compact Framework (CF) is the mobile version of .NET

Framework for mobile devices by Microsoft. It can be seen as an

answer to J2ME. .NET Compact Framework applications are

developed in exactly the same way as a regular .NET desktop

application. Developing mobile applications with .NET Compact

Framework requires very little experience than J2ME. (Hassin,

2003)

One of the design goals of the Compact Framework was to create

a "portable (and small) subset of the desktop Framework,

targeting multiple platforms." To support this goal Microsoft

created the architecture shown in Figure 2.3. (Fox and Box,

2003, 38-49)

Figure 2.3: The Compact Framework Architecture (Microsoft,
2005)

 23

2.7.3. Embedded Visual C++

C++ is a general-purpose, high-level programming language. It

is a statically-typed free-form multi-paradigm language

supporting procedural programming, data abstraction, object-

oriented programming, and generic programming. Since the

1990s, C++ has been one of the most popular commercial

programming languages.

“Windows CE is a modular operating system designed to build

computing devices. Its modularity means that engineers can

select which parts of the operating system are required—for

example, a device may not need a keyboard or a display, but

perhaps it needs networking capability. By selecting only those

modules a device requires, the size and cost of the device can be

controlled. Device manufacturers can use the Microsoft Platform

Builder product to produce their own customized devices, or use

one of the standard configurations such as the Pocket PC or

Handheld PC.” (Grattan and Brain, 2000, 3)

Embedded Visual C++ is the mobile version of C++ which can be

a programming language for Windows CE operating system.

Mobile devices have different features, so C++ can be optimized

in order to use it on mobile devices. The visual part is also

important for programmers. There is no need to deal with codes

to build a GUI. All the tools to prepare a GUI is built in the

Embedded Visual C++ IDE.

 24

One thing should be discussed before using Embedded Visual

C++, which is the selection between Embedded C++ and .Net

Compact Framework. Table 2.1 and Table 2.2 must be analyzed

before selecting the language if there are no other limitations

such as SDK requirements.

 Table 2.1: Properties: Native Code vs Managed Code (Yao,

2004)

Native Code Managed Code

C/C++ & Win32 API C#/VB.NET & .NET CF

EXEs & DLLs

- Native CPU instructions

EXEs & DLLs

- IL instructions; JIT to native

CPU instructions

Portable source code Portable binary code

Manual cleanup Garbage Collection

ActiveX / COM COM not supported

No run-time required (OS is

the runtime)

Run-time required (.Net

Compact Framework needed)

 Table 2.2: Native Code vs Managed Code (Yao 2004)

Native Code Managed Code

Device drivers GUI application code

Shell extensions Web service clients

Real-time threads Build managed DLLs

ActiveX / COM Custom display-based smart

devices

CE property databases Database (ADO.NET) clients

 25

CHAPTER 3

METHODOLOGY USED

The work to be done is to show Ankara on map and search the

roads on PDA. Due to popularity of Pocket PCs, Pocket PC with

Windows Mobile 2003 Second Edition is chosen as a reference

PDA.

The methodology of this work is as follows:

• Selection of Programming Architecture :

Selection of programming architecture is an important step

with respect to hardware requirements, connection speed and

requirements, user needs and programming experience.

Important parameters which effect the decision on selecting

programming architecture are connection speed and

requirements. In Turkey, it is not possible to find an internet

connection everywhere. If there is a connection, its speed may

be not enough for your application.

The other important parameter is hardware requirements. It is

unnecessary to publish maps and images through the internet

if there is no internet connection. So server is redundant for

this project.

 26

According to parameters above, client-server architecture is

unnecessary for this project and stand-alone architecture is

chosen for the project.

Stand-alone architecture has also some disadvantages.

Storing all the data on Pocket PC is a problem because

satellite images or maps have larger sizes than Pocket PC’s

internal memory. This problem can be solved by providing an

extra memory card. 256 MB Secure Digital (SD) card is

enough for the work to store all the satellite images, vector

data and program itself.

Another disadvantage of the stand-alone architecture is that

processing all the data on Pocket PC’s CPU takes longer time

than processing on server’s CPU, because Pocket PC CPUs’ are

working at very low speeds so work longer. Nowadays, most

servers have 2-3 GHz, even dual, CPUs, but Pocket PCs have

200-600 MHz CPUs. This difficulty can be overcome by good

programming design and well coded libraries.

• Selection of Image Format :

Some parameters have to be taken into account to choose the

image formats which are image compression ratio and open

source programming library.

 27

According to image compression ration, JPEG format seems to

be the best solution, but all of the image data must be

dumped to the memory for calculations. Loading the whole

image into memory of Pocket PC is not recommended. Pocket

PC always hanged up when a JPEG image, having more than

500 KB size, was loaded. This is a big problem because

satellite images have not small sizes.

If the image size is large, then image can be splited into

pieces and collect pieces together to make the whole image.

This trick is the heart of map server applications. Maps are

divided into pieces and stored separately on servers.

(Hendrey, 2006) When a user request the map, the pieces of

that area can be collected and sent it to the user. This solution

can be useful when one is dealing with servers, but not with

Pocket PCs, because there are lots of image pieces after

splitting. There are also other image pieces for each zoom

level. At the end, there are huge numbers of image pieces,

which is not suitable for Pocket PCs.

Instead wavelet compression is selected for this work because

satellite images can have smaller file sizes and satellite

images’ interesting regions can be read directly without

reading the whole image.

There are three implementations of wavelet compression:

JPEG 2000, MrSID and ECW. JPEG 2000 is not a good choice

for GIS applications because other two formats, MrSID and

 28

ECW, are specially designed for GIS applications by GIS

organizations. MrSID is designed by LizardTechTM for GIS

applications. It has almost the same properties of JPEG 2000

because it is the implementation of JPEG 2000 standard. In

addition to the JPEG 2000 standard, MrSID has geocoding

information itself. There is also software developer kit (SDK)

for MrSID which is open to the public. The last implementation

of wavelet compression is ECW (Enhanced Compressed

Wavelet). It is designed by ER MapperTM for GIS applications.

It almost resembles the MrSID format and has also software

developer kit (SDK), which is opened to the public.

Since ECW SDK is simple and faster than MrSID SDK, ECW

format is selected for displaying earth features.

• Displaying Roads on Image :

Displaying earth features can be succeeded by ECW format,

but there are also roads to show on satellite images. This can

be achieved by the help of vectors. File formats in GIS are

designed for different kinds of vectors, but roads can be

displayed by only line type vectors. So a simple vector format

can be useful and successful on Pocket PCs.

The simple vector format for roads consists of points. Points

make lines and lines make the roads. So the smallest part of

vector is point. This structure is very simple to build.

 29

Points must be stored on file or database to build lines.

Therefore storage of points is needed. Flat file can be used as

storage for points but flat file is not suitable for road queries if

there are lots of roads. The points can be stored on flat file as

lines without any indexes. As a result of this fact, the whole

flat file must be read at every road search. This is not a good

practice for computer programming even on desktop

computers.

Other choice for storing points is database. It is generally

known that database is very good solution for storing tabular

data. Index also can be used with databases to accelerate the

queries. There is another benefit of database to the

programmer, which is Structured Query Language (SQL). SQL

is a standard language for programmers to create, modify,

retrieve and manipulate data, so it is not necessary to write

extra code to filter the data. For that reason database is the

choice for storing points for the project.

• Selection of Database for Vector :

One has two popular options for database running on Windows

Mobile 2003. They are Microsoft SQL Server CE and SQLite.

The first one is the commercial product of Microsoft, which is

the mobile version of their product SQL Server 2000. The

mobile service must be installed in order to use the SQL

Server CE, which slows down the Pocket PC. Running a

daemon at background is not an advised behavior for Pocket

PC because the system sources are limited. On the other side,

 30

SQLite is a open source database application and it can run on

every platform. Also there is no need to install any application

as a daemon at background. The database file can be easily

moved just by copying it. As a result of comparing these two

applications, SQLite is the best choice for the project as a

database application.

• Selection of Programming Language :

For the selection of programming language, as discussed in

chapter 2; J2ME, .NET Compact Framework and Embedded

Visual C++ are available.

The most important factor to choose the programming

language is the libraries’ programming language. As it is

written above, ECW and SQLite have both libraries for

Windows Mobile operating system and C++. So there is no

discussion about the language, Embedded Visual C++ is

chosen. It is also a good choice because of the power of

language itself. C++ is known as a performance language on

all platforms, but this also brings a huge disadvantage.

Disadvantage of C++ is to deal with all the memory problems.

So the programmer must be focused on the application to deal

with all the memory problems.

Embedded Visual C++ Version 3.0 is selected for coding

because ECW library is compiled on Embedded Visual C++

3.0. On the other side, SQLite library is compiled with version

 31

4.0 and uses some advantages of version 4.0, so there is no

way to compile SQLite in version 3.0. They must be compiled

in same version to run. Then ECW library is compiled on

version 4.0 to run with SQLite library. This is the advantage of

open source programming, there is no worry about to wait for

organizations to compile the library to project’s version.

During testing phase, bugs are found in the program. These

bugs are solved by reprogramming the vector functions.

 32

CHAPTER 4

DEVELOPMENT PROCEDURE

Programming architecture, image and vector formats, database

and programming languages of this work are selected. The next

step is the development of application. The development

procedure is as follows;

o Analysis of ECW SDK:

ECW SDK is an open source SDK used for both compression

and decompression of ECW files for C or C++. There are some

limitations in SDK on ECW image size (500 MB), but this is not

important for this work. There is also another limitation. The

SDK for Pocket PCs are only for decompression, which is also

not important because compression on Pocket PCs is useless

for this work.

Decompression of image depends on CNCSRenderer class of

ECW SDK. The CNCSRenderer class directly inherits from

NCSFile class to provide a mechanism to render ECW imagery

into a device context. NCSError class is another class in ECW

SDK to handle error that returns from CNCSRenderer class.

Table 4.1 and 4.2 shows the methods and properties of

CNCSRenderer class used in this work respectively.

 33

As it is seen on Table 4.1, first image is opened for reading

and then the view is set in cell units. Next step is to read

image into internal buffer. Finally buffered image is drawn on

screen.

Table 4.1: Methods of CNCSRenderer class

Open (char * pURLPath, BOOLEAN
bProgressiveDisplay)

Opens a local or
remote ECW image
file

SetView (INT32 nBands, INT32 *
pBandList, INT32 nWidth, INT32
nHeight, INT32 nDatasetTLX, INT32
nDatasetTLY, INT32 nDatasetBRX,
INT32 nDatasetBRY)

Sets the view extents
of the renderer
object, in dataset
(cell) units.

ReadImage (INT32 nWidth, INT32
nHeight)

Reads the image into
an internal buffer
ready for drawing.

DrawImage(HDC hDeviceContext,
LPRECT pClipRect, IEEE8 dWorldTLX,
IEEE8 dWorldTLY, IEEE8 dWorldBRX,
IEEE8 dWorldBRY)

Draws the ECW image
view on the screen,
using the given
extents.

Table 4.2: Properties of CNCSRenderer class

m_nNumberOfBands
The number of bands
in the image.

m_bIsProgressive
Set to TRUE if the
view is progressive.

 34

o Analysis of SQLite CE SDK

SQLite SDK is an open source SDK used for database

connection for C or C++. SQLite does not need daemon or

service to connect database. One single file on the disk is just

needed in order to prepare a database.

Database connection depends on CDbSQLite and

CSqlStatement classes of SQLite CE SDK. CDbSQLite class

read the database file and prepares the connection.

CSqlStatement class reads and shows the query results. Table

4.3 and 4.4 shows the methods of CDbSQLite and

CSqlStatement classes used in this work respectively.

As it is seen on Table 4.3 and Table 4.4, first database file is

opened for reading and then road query is executed by

CDbSQLite class. Finally, results are shown by CSqlStatement

class.

Table 4.3: Methods of CDbSQLite class

Open (char * pURLPath)
Opens a local SQLite
database file.

Statement (char * pSQLQuery)
Executes the query
and returns statement
object.

 35

Table 4.4: Methods of CSqlStatement class

NextRow()
Returns TRUE if there
is a next row.

ValueString(INT32 colonID)
Gets the value of
colon.

o Design of own vector class

Designing own vector class is not an easy task. There are lots

of things to think about. Points or lines must be derived from

the database, and then they must be processed in order to

show on screen. The functions of vector class can be seen on

Table 4.5.

The important point in this vector class is to find the points

which are in the frame. First all the road points are taken from

database and passed to the vector functions. Vector functions

go through all the points to check whether they are in the

frame or not.

All the coordinates are stored as pixel coordinates in the

database in order to accelerate the process.

 36

Table 4.5: Methods of vector class

OnButtonSearch()

Gets the road points
from database and
prepare the road point
array.

OnPaint()
Shows raster and vector
on screen.

PrepareFramePoint()
Gets the points in the
frame.

IsPointInFrame(int pointID)
Determines the location
of a point, inside or
outside the frame.

prepareRoad(int pointID, int type)
Prepares road slices by
connecting the points.

FindExternalPoint(POINT p1,
POINT p2);

Finds the intersection of
frame and road slice
which is outside the
frame.

FindPointIntersection(POINT p1,
POINT p2, POINT p3, POINT p4)

Finds the intersection of
two lines.

o Combining all the classes

Combining all the classes is an easy task after analyzing ECW

and SQLite SDK and designing vector classes. Embedded

Visual C++ is an event-driven programming language; every

object has an event to fire up. For example, when a button is

clicked, a function associated with the button is called.

The first step of combining is to prepare a graphical user

interface (GUI). All the steps of graphical user interface design

are shown in Figure 4.1, 4.2, 4.3 and 4.4.

 37

After GUI design, all the events are associated with the

buttons, menu, toolbar and forms. The code generated during

this period can be seen on Figure 4.5.

Figure 4.1: Screenshot of GUI design process – Main Form.

Figure 4.2: Screenshot of GUI design process - Toolbar.

 38

Figure 4.3: Screenshot of GUI design process – About Form.

Figure 4.4: Screenshot of GUI design process – Menu.

Figure 4.5: Screenshot of associating of events with functions.

 39

CHAPTER 5

ENVIRONMENT, INSTALLATION AND USAGE OF

PROGRAM

Developing a mobile application is not an easy task as developing

desktop application. Mobile application is coded on desktop,

compiled for Pocket PC platform and then transferred to the

Pocket PC. These steps are explained below.

5.1. Environment

Environment consists of ECW SDK, SQLite SDK and Embedded

Visual C++ 4.0 IDE.

5.1.1. ECW SDK

ECW SDK is an open source library of a GIS company, ER Mapper

who is the leader in the development and deployment of

patented geospatial imagery technologies throughout the world.

This Open Source library adds compatibility for large volumes of

the ECW and JPEG 2000 standards image data to GIS

applications. (ER Mapper 2006) The screenshot of setup screen

can be seen on Figure 5.1 and also the properties of ECW SDK

can be seen as follows (ER Mapper, 2006);

o Lossless and lossy compression

o 64 bit file support handles TB+ size images

 40

o Support for NITF, NPJE, EPJE

o Widely used by GIS, CAD, imaging and office applications

o Simple no-hassle licensing

o Fast viewing at any resolution for any region

o Local and ECWP streaming image access

o Free, Open Source and commercial licensing available

o Free unlimited compression use in GPL style software

o Free unlimited compression use in GPL style software

o Free 500MB compression for commercial applications

o Royalty free unlimited compression for commercial apps

o 64 bit OS support

o Low memory footprint even on TB size images

o Supports many operating systems with no artificial limits

o Geolocation data preserved as embedded metadata

Figure 5.1: Installation screenshot of ECW SDK for Windows CE

 41

5.1.2. SQLite SDK

SQLite is a small C library that implements a self-contained,

embeddable, zero-configuration SQL database engine. SQLite is

an open source project, which claims that it is different than

other databases engines. (SQLite, 2006)

SQLite has some distinct characteristics as follows:

o Zero-Configuration

o Serverless

o Single Database File

o Compact

o Manifest typing

o Variable-length records

o Readable source code

o SQL statements compile into virtual machine code

o Public domain

o SQL language extensions

 42

5.1.3. Embedded Visual C++ 4.0 IDE

The Microsoft Embedded Visual C++ 4.0 tool is a desktop

development environment for creating applications and system

components for Windows CE-powered devices. This version

features new capabilities such as C++ exception handling, Run

Time Type Information (RTTI), and a plethora of new debugger

functionalities. (Microsoft 2003)

Installing Embedded Visual C++ 4.0 is not enough for developing

applications for Windows Mobile 2003 devices. Service Pack 4 for

Embedded Visual C++ 4.0 and Pocket PC 2003 SDK must be

installed before developing a mobile application for Windows

Mobile 2003 operating system. The screenshot of Embedded

Visual C++ 4.0 can be seen on Figure 5.2.

 43

Figure 5.2: Screenshot of Embedded Visual C++ 4.0 IDE

 44

5.2. Installation

Compiling the mobile application is not the final step to deploy

the program. There are some steps to run compiled program on

Pocket PC.

o First step is to install the ECW SDK redistributables. The

files are found as :

C:\Program Files\Earth Resource Mapping\ECW CE SDK\redistributables

o As it is shown on Figure 5.3, there are different types of

packages. The package that is suitable for Windows Mobile

2003 SE is the “Pocket PC 2002 ECWSDK Dlls.ARM.CAB”

CAB files are the executable installation files for Windows

Mobile Devices. There is also ARM indicator, which shows

the CPU type of Pocket PC.

Figure 5.3: Screenshot of ECW SDK redistributables directory

 45

o The following files must be copied into Pocket PC and must

be installed : Pocket PC 2002 ECWSDK Dlls.ARM.CAB and

Pocket PC 2002 ECWSDK Dlls.ini. The installation procedure

can be seen on Figure 5.4 and Figure 5.5.

 Figure 5.4: Screenshot of ECW SDK redistributables on Pocket PC

 46

 Figure 5.5: Screenshot of installation of ECW SDK on Pocket PC

o This installation is valid if the application is compatible with

Embedded Visual C++ 3.0. So the new DLLs that are

compiled with Embedded Visual C++ 4.0 must be

overwritten on Pocket PC.

o NCScnet.dll, NCSEcw.dll and NCSUtil.dll are the files that

are compiled with Embedded Visual C++ 4.0 must be

overwritten on “\Windows” directory of Pocket PC.

o Next step is to copy the application compiled to the Pocket

PC. The application directory is named as “AnkaGIS” is

copied to the SD Card on Pocket PC.

o The last step is the copying of SQLite libraries to the

application directory. wceSQLite3.dll and wceSQLite3.lib

files are copied to the “AnkaGIS” directory.

 47

5.3. Usage of Program

Usage of AnkaGIS is an easy task even for a novice user.

AnkaGIS includes basic GIS functions, such as zoom in, zoom

out, move, get coordinates and search and usage of these

functions are most like other GIS applications’ functions.

Starting program is just clicking the “AnkaGIS” executable on

Figure 5.6.

Figure 5.6: Screenshot of AnkaGIS directory

 48

The initial screen of application is shown on Figure 5.7.

Figure 5.7: Screenshot of AnkaGIS application startup.

As it is seen on Figure 4.7, all the functions are clearly shown on

the application screen.

o “+” button for zoom in

o “-“ button for zoom out

o “M” button for move

o “C” button for getting coordinates in UTM standard.

o “About” menu has two options: exit program and give

program information

o “Search” button search road index if the textbox nearby is

filled

o “Coordinates” text is used for giving coordinate information

The output of zoom in function of a program can be shown on

Figure 5.8. Mogan Lake in the image can be the focus area of an

application. This image can be taken by clicking the “+” button

and then clicking the lake on screen by three times.

 49

Figure 5.8: Screenshot of AnkaGIS application on zoom in.

Searching function can be used by the help of virtual keyboard,

which can be activated by clicking the small icon at right bottom.

The virtual keyboard and some text for searching can be seen on

Figure 5.9.

Figure 5.9: Screenshot of AnkaGIS application with virtual

keyboard.

 50

Searching a road is just typing the road name and clicking the

search button. The result of this action can be seen on Figure

5.10. “Eskişehir Road” is searched as an example by writing

“eski”. Result can be seen as a yellow polyline on the image.

Zoom in and out functions can also be used with search option,

which can be seen on Figure 5.11.

Figure 5.10: Screenshot of AnkaGIS application with search

result, Eskişehir Road.

Figure 5.11: Screenshot of AnkaGIS application with zoom in on

search result, Eskişehir Road.

 51

Another GIS function that is shown above is getting coordinates.

Coordinates of a point on the image can easily be got by “C”

button. The demonstration of getting coordinates can be seen on

Figure 5.12. The coordinates are in term of UTM format, Easting

and Northing.

Figure 5.12: Screenshot of AnkaGIS application with getting

coordinates option on search result, Eskişehir Road.

 52

CHAPTER 6

CONCLUSIONS AND DISCUSSIONS

The aim of this work is to prepare search tool for roads for mobile

GIS application, which is successfully achieved. As it is stated in

previous chapter, there are lots of products that make the same

work on PDA, but they are commercial products. It is obvious

that commercial products are more comprehensive then the work

done in this thesis, but generating such a guide can show that a

mobile GIS can be provided without any commercial software. All

the libraries and development environments used in this work are

free to public access without limitations for public and academic

purposes.

Some additional features can be added in the future. There are

no limitations on the programming side.

One of the additional features can be a GPS support, which is

quite easy to implement if there are any experienced

programmer. Additional module can be written to listen the COM

port to get GPS data and then show it on the map. By the help of

this module, the program can be used as a guide to find nearest

road.

Another additional feature can be POI support. POI is the

abbreviation of Point of Interest. Historical places, shopping

centers, hospitals, schools, religious places, parks and

governmental places can be POI. There can be an option to store

POIs on database and can be showed on a map.

 53

Another suggestion for other programmers is to compile the

program with a little effort on other platforms such as Palm, Java

or Symbian because the program compiled on this work is able to

work only on Windows Mobile operating system

 54

REFERENCES

1. P. Clegg, L. Bruciatelli, F. Domingos, R.R. Jones, M. De

Donatis and R.W. Wilson "Digital geological mapping with

tablet PC and PDA: A comparison". Computers &

Geosciences In press

2. Majid Rabbani, Rajan Joshi (2002) "An overview of the

JPEG2000 still image compression standard" Signal

Processing: Image Communication Vol.17 pp. 3–48

3. Worboys Michael F. and Duckham Matt. 2004. GIS, a

computing perspective. Taylor & Francis

4. Casademont, Jordi. 2004. Wireless technology applied to

GIS. Computers and Geosciences 30 : 671-682

5. Wikipedia: The Free Encyclopedia. 2006. Image File

Formats. Available From :

http://en.wikipedia.org/wiki/Image_file_formats

6. Wikipedia: The Free Encyclopedia. 2006. Wavelet

Compression. Available From :

http://en.wikipedia.org/wiki/Wavelet_compression

7. Hassin, Bryan. (2003 July) Mobile GIS: How to Get There

From Here. ESRI User Conference 2003, San Diego,

California, USA.

 55

8. Yuan, Michael Juntao. 2003. Enterprise J2ME™: Developing

Mobile Java™ Applications. Prentice Hall.

9. SUN. 2005. J2ME Reference. Available From :

http://java.sun.com/javame/reference/apis.jsp

10. Fox, Dan and Box, Jon. 2003. Building Solutions with the

Microsoft .NET Compact Framework: Architecture and Best

Practices for Mobile Development. Addison Wesley

Professional.

11. Microsoft. 2005. .Net Compact Framework Reference.

Available From :

http://msdn2.microsoft.com/en-us/netframework/aa497279.aspx

12. Grattan, Nick and Brain, Marshall. 2000. Windows® CE 3.0

Application Programming. Prentice Hall.

13. Yao, Paul. (2004 November) Programming With

eMbedded Visual C++ 4.0. Microsoft MDC 2004, India.

14. Hendrey, Geoffrey. 2006. deCarta’s Open Architecture for

AJAX Draggable Maps. deCarta. Available From :

http://www.decarta.com/products/dds/DDS_Web_Services_

AJAX_Whitepaper.pdf

15. Kramer, Herbert J. 2002. Observation of the Earth and Its

Environment: Survey of Missions and Sensors. Springer-

Verlag.

 56

16. ESRI. 2006. ArcPad – Mobile GIS Software for Field

Mapping Applications. Available From :

http://www.esri.com/software/arcgis/arcpad/index.html

17. MapInfo. 2006. MapX Mobile. Available From :

http://extranet.mapinfo.com/products/Overview.cfm?Product

ID=1661

18. ER Mapper. 2006. ECW JPEG 2000 SDK 3.1. Available

From: http://www.ermapper.com/ecw/

19. SQLite. 2006. SQLite SDK. Available From :

http://www.sqlite.org/

20. Microsoft. 2003. Embedded Visual C++ 4.0 IDE. Available

From :

http://www.microsoft.com/downloads/details.aspx?familyid=1DAC

DB3D-50D1-41B2-A107-FA75AE960856&displaylang=en

21. Miano, John. 1999. Compressed Image File Formats: JPEG,

PNG, GIF, XBM, BMP. Addison-Wesley Professional.

 57

APPENDIX A

 SOURCE CODE

// AnkaGISView.cpp : implementation of the CAnkaGISView class
//

#include "stdafx.h"
#include "AnkaGIS.h"
//#include "math.h"

#include "AnkaGISDoc.h"
#include "AnkaGISView.h"

#include "NCSRenderer.h"
#include "DbSQLite.h"
#include "ecwgis.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CAnkaGISView

IMPLEMENT_DYNCREATE(CAnkaGISView, CFormView)

BEGIN_MESSAGE_MAP(CAnkaGISView, CFormView)
 //{{AFX_MSG_MAP(CAnkaGISView)
 ON_COMMAND(ID_BUTTON1, OnButtonZoomIn)
 ON_COMMAND(ID_BUTTON2, OnButtonZoomOut)
 ON_COMMAND(ID_BUTTON3, OnButtonMove)
 ON_COMMAND(ID_BUTTON4, OnButtonCoordinates)
 ON_WM_PAINT()
 ON_WM_LBUTTONDOWN()
 ON_WM_LBUTTONUP()
 ON_BN_CLICKED(IDC_BUTTON_SEARCH, OnButtonSearch)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CAnkaGISView construction/destruction

CAnkaGISView::CAnkaGISView()
 : CFormView(CAnkaGISView::IDD)
{
 zoom = 2;

 58

 wx = IMG_WIDTH;
 wy = IMG_HEIGHT;
 wpx = 0.0;
 wpy = 0.0;
 px = 0;
 py = 0;
 spx = 0;
 spy = 0;
 iniratiox = (float)(IMG_WIDTH / S_WIDTH);
 iniratioy = (float) (IMG_HEIGHT / S_HEIGHT);
 temp_width = (float) IMG_WIDTH;
 temp_height = (float) IMG_HEIGHT;
 rx = (temp_width / S_WIDTH);
 ry = (temp_height / S_HEIGHT);
 buttonFunction = 0;
 searchdone = false;
 numpoint = 0;
 roadnum = 0;

 testnum = 0;

 lp.lopnStyle = PS_SOLID;
 lp.lopnWidth.x = 2;
 lp.lopnWidth.y = 2;
 lp.lopnColor = RGB (248, 249, 122);

 llparam1 = 29.5100471702142;
 llparam2 = 3.18512103847722;
 llparam3 = 443479.596261279;
 llparam4 = 3.46765511992251;
 llparam5 = -28.7601568987722;
 llparam6 = 4430327.80329682;

 recttx = 0;
 rectty = 0;
 rectbx = IMG_WIDTH - 1;
 rectby = IMG_HEIGHT - 1;

 m_Rect.bottom = START_Y + S_HEIGHT;
 m_Rect.left = START_X;
 m_Rect.right = START_X + S_WIDTH;
 m_Rect.top = START_Y;

 m_bIsProgressive = FALSE;
 rend1 = new CNCSRenderer();
 eError = rend1->Open("SD CARD\\ankara3.ecw", m_bIsProgressive);
 INT32 i;
 for(i = 0; i < rend1->m_nNumberOfBands; i++)
 BandsArray[i] = i;

 CString filename = "SD CARD\\test1.db";
 sqlTest = sqlite.Open(LPCTSTR(filename));
 if (!sqlTest)

 59

 {
 MessageBox(LPCTSTR("Database Connection
Problem!"),NULL,MB_OK);
 }

}

CAnkaGISView::~CAnkaGISView()
{
}

void CAnkaGISView::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAnkaGISView)
 // NOTE: the ClassWizard will add DDX and DDV calls here
 //}}AFX_DATA_MAP
}

BOOL CAnkaGISView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CFormView::PreCreateWindow(cs);
}

///
// CAnkaGISView diagnostics

#ifdef _DEBUG
void CAnkaGISView::AssertValid() const
{
 CFormView::AssertValid();
}

void CAnkaGISView::Dump(CDumpContext& dc) const
{
 CFormView::Dump(dc);
}

CAnkaGISDoc* CAnkaGISView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CAnkaGISDoc)));
 return (CAnkaGISDoc*)m_pDocument;
}
#endif //_DEBUG

void CAnkaGISView::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 hPen = CreatePenIndirect (&lp);

 60

 hOldPen = (HPEN)SelectObject (dc, hPen);

 eError = rend1->SetView(rend1->m_nNumberOfBands, BandsArray,
 S_WIDTH, S_HEIGHT,
 recttx, rectty,
 rectbx, rectby);

 eError = rend1->ReadImage(S_WIDTH, S_HEIGHT);
 eError = rend1-
>DrawImage(dc,&m_Rect,START_X,START_Y,(START_X+S_WIDTH),(START_
Y+S_HEIGHT));

 if (searchdone == true) {

 testnum++;

 PrepareFramePoint();
 for (int i=0; i < roadnum; i++){
 tempRoad[0] = rl[i].start;
 tempRoad[1] = rl[i].finish;
 Polyline(dc,tempRoad,2);
 }
 }

 SelectObject (dc, hOldPen);
 DeleteObject (hPen);
}

///
// CAnkaGISView message handlers

void CAnkaGISView::OnButtonZoomIn()
{
 buttonFunction = 1;
}

void CAnkaGISView::OnButtonZoomOut()
{
 buttonFunction = 2;
}

void CAnkaGISView::OnButtonMove()
{
 buttonFunction = 3;
}

void CAnkaGISView::OnButtonCoordinates()
{
 buttonFunction = 4;
}

 61

CAnkaGISView::ChangeMapView()
{

 rx = (temp_width / S_WIDTH);
 ry = (temp_height / S_HEIGHT);

 spx = px - START_X;
 spy = py - START_Y;

 wpx = (float) recttx + (spx * rx);
 wpy = (float) rectty + (spy * ry);

 if (buttonFunction == 2) {
 rx = (rx * zoom);
 ry = (ry * zoom);
 }

 if (buttonFunction == 1) {
 rx = (rx / zoom);
 ry = (ry / zoom);
 }

 if (((rx < (iniratiox + 1.8)) || (ry < (iniratioy + 1.8))) && ((rx > 1.0)
|| (ry > 1.0))) {

 temp_width = (rx * S_WIDTH);
 temp_height = (ry * S_HEIGHT);

 recttx = (int) (wpx - (temp_width / 2));
 rectty = (int) (wpy - (temp_height / 2));

 rectbx = (int) (wpx + (temp_width / 2));
 rectby = (int) (wpy + (temp_height / 2));

 if (rectbx > (IMG_WIDTH - 1)) {
 rectbx = (IMG_WIDTH - 1);
 recttx = rectbx - temp_width;
 wpx = (int) (rectbx - (temp_width / 2));
 }

 if (recttx < 0) {
 recttx = 0;
 rectbx = recttx + temp_width;
 wpx = (int) (rectbx - (temp_width / 2));
 }

 if (rectby > (IMG_HEIGHT - 1)) {
 rectby = (IMG_HEIGHT - 1);
 rectty = rectby - temp_height;
 wpy = (int) (rectby - (temp_height / 2));
 }

 if (rectty < 0) {
 rectty = 0;

 62

 rectby = 0 + temp_height;
 wpy = (int) (rectby - (temp_height / 2));
 }

 if (rx < 1.0) rx = (float) 1.01;
 if (ry < 1.0) ry = (float) 1.01;

 }
 else {
 if (buttonFunction == 2) {
 rx = (rx / zoom);
 ry = (ry / zoom);
 }

 if (buttonFunction == 1) {
 rx = (rx * zoom);
 ry = (ry * zoom);
 }
 }

}

void CAnkaGISView::OnLButtonDown(UINT nFlags, CPoint point)
{
 px = int(point.x);
 py = int(point.y);
 spx = 0;
 spy = 0;

 if ((px > START_X) && (px < (START_X + S_WIDTH))){
 if ((py > START_Y) && (py < (START_Y + S_HEIGHT))){

 if (buttonFunction == 1 || buttonFunction == 2) {
 ChangeMapView();
 Invalidate(TRUE);
 }
 else if (buttonFunction == 3) {
 spx = px - START_X;
 spy = py - START_Y;
 }
 else if (buttonFunction == 4) {
 showCoordinates();
 }
 }
 }

 CFormView::OnLButtonDown(nFlags, point);
}

void CAnkaGISView::OnLButtonUp(UINT nFlags, CPoint point)
{
 if(buttonFunction == 3){

 63

 int px2 = int(point.x);
 int py2 = int(point.y);
 int spx2 = px2 - START_X;
 int spy2 = py2 - START_Y;

 totx = spx2 - spx;
 toty = spy2 - spy;

 wpx = (float) wpx - (totx * rx);
 wpy = (float) wpy - (toty * ry);

 recttx = (int) (wpx - (temp_width / 2));
 rectty = (int) (wpy - (temp_height / 2));

 rectbx = (int) (wpx + (temp_width / 2));
 rectby = (int) (wpy + (temp_height / 2));

 if (rectbx > (IMG_WIDTH - 1)) {
 rectbx = (IMG_WIDTH - 1);
 recttx = rectbx - temp_width;
 wpx = (int) (rectbx - (temp_width / 2));
 }

 if (recttx < 0) {
 recttx = 0;
 rectbx = recttx + temp_width;
 wpx = (int) (rectbx - (temp_width / 2));
 }

 if (rectby > (IMG_HEIGHT - 1)) {
 rectby = (IMG_HEIGHT - 1);
 rectty = rectby - temp_height;
 wpy = (int) (rectby - (temp_height / 2));
 }

 if (rectty < 0) {
 rectty = 0;
 rectby = 0 + temp_height;
 wpy = (int) (rectby - (temp_height / 2));
 }

 Invalidate(TRUE);
 }

 CFormView::OnLButtonUp(nFlags, point);
}

void CAnkaGISView::showCoordinates()
{
 double stx, sty;
 stx = 0.0;
 sty = 0.0;

 rx = (temp_width / S_WIDTH);

 64

 ry = (temp_height / S_HEIGHT);

 spx = px - START_X;
 spy = py - START_Y;

 wpx = (float) recttx + (spx * rx);
 wpy = (float) rectty + (spy * ry);

 stx = (llparam1 * wpx) + (llparam2 * wpy) + llparam3;
 sty = (llparam4 * wpx) + (llparam5 * wpy) + llparam6;

 CString str;
 str = "";
 str.Format(_T("Easting: %.0f Northing: %.0f"), stx, sty);

 SetDlgItemText(IDC_XYCOORD,str);
}

void CAnkaGISView::OnButtonSearch()
{

 CEdit* myEdit3 = (CEdit*) GetDlgItem(IDC_EDIT_BOX);
 CString text;
 myEdit3->GetWindowText(text);

 CString str;
 str = "SELECT x,y FROM roads WHERE name LIKE '%" + text + "%'
ORDER BY rid";
 stmt = sqlite.Statement(str);

 roadnum = 0;
 numpoint = 0;

 if (stmt != NULL)
 {
 while (stmt->NextRow())
 {
 pts[numpoint].x = (int) (_wtoi(stmt->ValueString(0)));
 pts[numpoint].y = (int) (_wtoi(stmt->ValueString(1)));
 numpoint++;
 }
 }

 if (numpoint == 0) {
 MessageBox(_T("There is no such named road!"),NULL
,MB_OK);

 }
 else {
 searchdone = true;

 int tdx, tdy;

 65

 tdx = abs(pts[(numpoint-1)].x - pts[0].x);
 tdy = abs(pts[(numpoint-1)].y - pts[0].y);

 if (tdx > tdy) selected = tdx;
 else selected = tdy;

 wpx = (int) ((pts[0].x + pts[(numpoint-1)].x) / 2);
 wpy = (int) ((pts[0].y + pts[(numpoint-1)].y) / 2);

 if (selected >= 1024 && selected < 2048) {

 rx = (float) 9.53;
 ry = (float) 9.53;
 temp_width = (float) IMG_WIDTH;
 temp_height = (float) IMG_HEIGHT;
 }

 else if (selected >= 512 && selected < 1024) {

 rx = (float) (9.53 / 2);
 ry = (float) (9.53 / 2);
 temp_width = (float) (IMG_WIDTH / 2);
 temp_height = (float) (IMG_HEIGHT / 2);

 }
 else if (selected >= 256 && selected < 512) {

 rx = (float) (9.53 / 4);
 ry = (float) (9.53 / 4);
 temp_width = (float) (IMG_WIDTH / 4);
 temp_height = (float) (IMG_HEIGHT / 4);
 }
 else if (selected >= 128 && selected < 256) {

 rx = (float) (9.53 / 8);
 ry = (float) (9.53 / 8);
 temp_width = (float) (IMG_WIDTH / 8);
 temp_height = (float) (IMG_HEIGHT / 8);
 }

 recttx = (int) (wpx - (temp_width / 2));
 rectty = (int) (wpy - (temp_height / 2));

 rectbx = (int) (wpx + (temp_width / 2));
 rectby = (int) (wpy + (temp_height / 2));

 if (rectbx > (IMG_WIDTH - 1)) {
 rectbx = (IMG_WIDTH - 1);
 recttx = rectbx - temp_width;
 wpx = (int) (rectbx - (temp_width / 2));
 }

 if (recttx < 0) {
 recttx = 0;

 66

 rectbx = recttx + temp_width;
 wpx = (int) (rectbx - (temp_width / 2));
 }

 if (rectby > (IMG_HEIGHT - 1)) {
 rectby = (IMG_HEIGHT - 1);
 rectty = rectby - temp_height;
 wpy = (int) (rectby - (temp_height / 2));
 }

 if (rectty < 0) {
 rectty = 0;
 rectby = 0 + temp_height;
 wpy = (int) (rectby - (temp_height / 2));
 }

 Invalidate(TRUE);

 }

}

POINT CAnkaGISView::FindPointIntersection(POINT p1, POINT p2, POINT p3,
POINT p4)
{
 POINT fp;

 float ua_t, ub_t, u_b;
 ua_t = (p4.x - p3.x) * (p1.y - p3.y) - (p4.y - p3.y) * (p1.x - p3.x);
 ub_t = (p2.x - p1.x) * (p1.y - p3.y) - (p2.y - p1.y) * (p1.x - p3.x);
 u_b = (p4.y - p3.y) * (p2.x - p1.x) - (p4.x - p3.x) * (p2.y - p1.y);

 if (u_b != 0) {
 float ua = ua_t / u_b;
 float ub = ub_t / u_b;

 if (0 <= ua && ua <= 1 && 0 <= ub && ub <= 1) {
 fp.x = p1.x + ua * (p2.x - p1.x);
 fp.y = p1.y + ua * (p2.y - p1.y);
 } else {
 fp.x = -1;
 fp.y = -1;
 }
 }
 else {
 if (ua_t == 0 || ub_t == 0) {
 fp.x = -1;
 fp.y = -1;
 }
 else {
 fp.x = -1;
 fp.y = -1;

 67

 }
 }

 return fp;
}

void CAnkaGISView::FindExternalPoint(POINT p1, POINT p2)
{
 POINT rectPoints[4];
 POINT tempPoint;

 int count = 0;

 rectPoints[0].x = recttx;
 rectPoints[0].y = rectty;
 rectPoints[1].x = recttx + temp_width;
 rectPoints[1].y = rectty;
 rectPoints[2].x = recttx + temp_width;
 rectPoints[2].y = rectty + temp_height;
 rectPoints[3].x = recttx;
 rectPoints[3].y = rectty + temp_height;

 int i,j;
 i = j = 0;

 for (i = 0; i < 4; i++){
 j = i + 1;
 if (j == 4) j = 0;

 tempPoint = FindPointIntersection(rectPoints[i],
rectPoints[j], p1, p2);
 if (tempPoint.x != -1){

 donusPoints[count] = tempPoint;
 count++;
 }
 }
}

int CAnkaGISView::IsPointInFrame(int pointID)
{

 boolean firstPoint, secondPoint;
 int birinci = pointID;
 int ikinci = birinci + 1;

 if (((recttx < pts[birinci].x) && (rectbx > pts[birinci].x)) && ((rectty <
pts[birinci].y) && (rectby > pts[birinci].y))){
 firstPoint = true;
 }
 else firstPoint = false;

 68

 if (((recttx < pts[ikinci].x) && (rectbx > pts[ikinci].x)) && ((rectty <
pts[ikinci].y) && (rectby > pts[ikinci].y))){
 secondPoint = true;
 }
 else secondPoint = false;

 if (firstPoint && secondPoint) return 1;
 else if (!firstPoint && secondPoint) return 2;
 else if (firstPoint && !secondPoint) return 3;
 else return 0;
}

void CAnkaGISView::PrepareFramePoint()
{
 int i;
 int presult = 0;
 int nodeCounter = 0;
 roadnum = 0;

 for (i=0;i < (numpoint-1); i++){

 presult = IsPointInFrame(i);
 prepareRoad(i, presult);
 }

 for (i=0; i < roadnum; i++){

 rl[i].start.x = (int)(((rl[i].start.x - recttx) /rx) + START_X);

 rl[i].start.y = (int)(((rl[i].start.y - rectty) /ry) + START_Y);
 rl[i].finish.x = (int)(((rl[i].finish.x - recttx) /rx) + START_X);
 rl[i].finish.y = (int)(((rl[i].finish.y - rectty) /ry) + START_Y);

 }

}

void CAnkaGISView::prepareRoad(int pointID, int type)
{
 POINT p1, p2;
 p1.x = pts[pointID].x;
 p1.y = pts[pointID].y;
 p2.x = pts[pointID+1].x;
 p2.y = pts[pointID+1].y;

 if (type == 1) {

 rl[roadnum].start = p1;
 rl[roadnum].finish = p2;

 roadnum++;
 }
 else if (type == 2) {

 69

 FindExternalPoint(p1,p2);

 rl[roadnum].start = donusPoints[0];
 rl[roadnum].finish = p2;

 roadnum++;
 }
 else if (type == 3) {

 FindExternalPoint(p2,p1);

 rl[roadnum].start = p1;
 rl[roadnum].finish = donusPoints[0];

 roadnum++;
 }
 else {

 FindExternalPoint(p1,p2);

 if (donusPoints[0].x > 0 && donusPoints[1].x > 0) {

 rl[roadnum].start = donusPoints[0];
 rl[roadnum].finish = donusPoints[1];
 roadnum++;
 }
 }
}

 70

