

OFFLINE AND ONLINE DISK SCHEDULING PROBLEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

N. EVREN AŞAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

OPERATIONAL RESEARCH

DECEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen

 Director

I certify that this thesis satisfies all the requirements as a thesis for
the degree of Master of Science.

Prof. Dr. Çağlar Güven
 Head of Department

This is to certify that we have read this thesis and that in our
opinion it is fully adequate, in scope and quality, as a thesis for the
degree of Master of Science.

Assoc. Prof. Dr. Haldun Süral
 Supervisor

Examining Committee Members

Assoc. Prof.Dr. Levent Kandiller (METU, IE)

Assoc. Prof.Dr. Haldun Süral (METU, IE)

Asst. Prof.Dr. Z. Pelin Bayındır (METU, IE)

Asst. Prof.Dr. Esra Karasakal (METU, IE)

Asst. Prof.Dr. Osman Alp (Bilkent Unv., IE)

iii

I hereby declare that all information in this document has
been obtained and presented in accordance with academic
rules and ethical conduct. I also declare that, as required by
these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

 Name, Last name : N. Evren Aşan

Signature :

iv

ABSTRACT

OFFLINE AND ONLINE DISK SCHEDULING PROBLEMS

Aşan, N. Evren

M.Sc., Operational Research

Supervisor: Assoc. Prof.Dr. Haldun Süral

December 2006, 126 pages

This thesis considers the disk scheduling problem. The problem is

investigated in two types of settings: offline and online. We first

adopt the traveling salesman problem with time windows in the

scheduling literature for solving the offline problem. Then we

develop a decision epoch scheme in which offline problems are

iteratively used in solving the online problem. We perform an

experimental study for our approach and two well-known disk

scheduling algorithms, and compare them according to several

performance criteria.

Keywords: Disk Scheduling, Online Problem, Offline Problem,

Traveling Salesman Problem with Time Windows

v

ÖZ

ÇEVRİMİÇİ VE ÇEVRİMDIŞI DİSK ÇİZELGELEME
PROBLEMLERİ

Aşan, N. Evren

Yüksek Lisans, Yöneylem Araştırması

Tez Yöneticisi: Doç. Dr. Haldun Süral

Aralık 2006, 126 sayfa

Bu tezde disk çizelgeleme problemi ele alınmaktadır. Problem,

çevrimiçi ve çevrimdışı olmak üzere iki kurulum tipinde

incelenmiştir. Çalışmada öncelikle, sıralama literatüründe yer alan

zaman pencereli gezgin satıcı problemi, çevrimdışı problemin

çözümü için adapte edilmiştir. Çevrimiçi problemin çözümü için

adım adım çevrimdışı problemlerin çözüldüğü bir karar anı şeması

geliştirilmiştir. Ayrıca, bizim yaklaşımımız ve iki adet iyi bilinen

disk çizelgeleme algoritması için deneysel çalışmalar yapılmış ve bu

algoritmaların çeşitli performans kriterleri için karşılaştırılması

yapılmıştır.

Anahtar Kelimeler: Disk Çizelgeleme, Çevrimiçi Problem,

Çevrimdışı Problem, Zaman Pencereli Gezgin Satıcı Problemi

vi

To My Mother

vii

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Haldun

Süral for his positive attitude, guidance and encouragement. He is

the best advisor one can experience the opportunity to work with

and the best academician that I have ever known in my entire

academic life. I also wish to thank my previous co-supervisor

Adnan Şahin, who had guided me into this relatively less known

area of study.

Thereto I would like to render special thanks to my dear friend Onur

Aktuğ for his great support especially in code debugging phase, and

my dear fellows Ekin Açıkgöz and Aysun Özen for their kind support

and encouragements.

viii

TABLE OF CONTENTS

PLAGIARISM.. iii

ABSTRACT ... iv

ÖZ … ... v

ACKNOWLEDGMENTS .. vii

TABLE OF CONTENTS ...viii

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

CHAPTER

 1. INTRODUCTION ... 1

 1.1 Motivation .. 4

 1.2 Problem Definition... 4

 1.3 Outline of the Chapters ... 6

 2. LITERATURE REVIEW ... 8

2.1 Online Problems and Algorithms 9

2.2 Offline and Online Routing Problems 11

2.3 Classical Disk Scheduling Algorithms

and Their Variations.. 13

2.4 More Study on Disk Scheduling............................. 18

ix

 3. PROBLEM DEFINITION AND OFFLINE DISK
 SCHEDULING PROBLEM FORMULATION....................... 22

 3.1 System Definition .. 22

 3.2 General Disk Scheduling Problem.......................... 25

 3.3 Mathematical Modeling of Offline Disk

Scheduling Problem... 31

 3.4 Computational Difficulty of the Offline Problem 39

 4. ONLINE DISK SCHEDULING PROBLEM 41

 4.1 Conventional Approach to Online Problem............. 41

4.2 Alternative Scheduling Approach To

 Online Problem ... 43

4.3 Reschedule Procedure in DE Setting...................... 48

 5 SIMULATION IMPLEMENTATION AND ANALYSIS 53

 5.1 The Nature of Simulation....................................... 53

 5.2 Coding .. 55

 5.3 Parameter Setting, Test Bed Generation and

Experimentation.. 57

 5.4 Experimental Analysis... 59

6 CONCLUSIONS AND FURTHER STUDY................................... 81

REFERENCES ... 84

APPENDIX

A.1. Simulation Code Framework for Conventional

Decision Approach.. 88

A.2. Simulation Code Framework for DE Approach 91

 B. CLOOK Code Framework .. 93

 C. SDM-NN Code Framework .. 95

x

 D. Lingo 8.0 TSP Modeling Interface Code............................ 96

 E. Sample SDM-E Simulation Formatted Output

for 50 jobs ... 97

 F. FIFO Simulation Average Results in Conventional

Approach.. 99

 G. CLOOK Simulation Average Results in Conventional

Approach.. 104

 H. SDM-E Simulation Average Results in Conventional

Approach.. 109

 I . CLOOK Simulation Average Results in DE Approach..... 114

 J. SDM-NN Simulation Average Results in DE Approach... 119

 K. Disk Scheduling with Double Queue............................. 124

xi

LIST OF TABLES

TABLES

Table 2.1 Overview of Disk Scheduling Algorithms 16

Table 3.1 TSP Solution Times in Lingo 8.0 40

Table 5.1 Conventional Approach-Average Service Times with

Corresponding Standard Deviations............................... 61

Table 5.2 Conventional Approach-Average Throughput Rates........ 61

Table 5.3 Conventional Approach-Flow Time Results 62

Table 5.4 Conventional Approach-Percent Changes in Average Flow

Times and Standard Deviations for Different Rates 62

Table 5.5 Conventional Approach-Average Makespan Values......... 63

Table 5.6 Conventional Approach-Average Flow Times for FIFO..... 64

Table 5.7 Conventional Approach-Flow Time Standard

Deviations for FIFO.. 64

Table 5.8 Conventional Approach-Average and Maximum

Timeout Occurrences for FIFO....................................... 65

Table 5.9 Conventional Approach-Average Flow Times

 for CLOOK .. 66

Table 5.10 Conventional Approach-Flow Time Standard

Deviations for CLOOK ... 67

xii

Table 5.11 Conventional Approach-Average Flow Times

 for SDM-E .. 68

Table 5.12 Conventional Approach-Flow Time Standard

Deviations for SDM-E.. 68

Table 5.13 DE Approach-Average Service Time Results with

Corresponding Standard Deviations 73

Table 5.14 DE Approach-Average Throughput Rates 73

Table 5.15 DE Approach-Flow Time Results.................................. 74

Table 5.16 DE Approach-Percent Changes in Average Flow

Times and Standard Deviations for Different Rates 74

Table 5.17 DE Approach-Average Makespan Values 74

Table 5.18 DE Approach-Average Flow Times for CLOOK 75

Table 5.19 DE Approach-Flow Time Standard Deviations

 for CLOOK.. 76

Table 5.20 DE Approach-Average Flow Times for SDM-NN 77

Table 5.21 DE Approach-Flow Time Standard Deviations

 for SDM-NN.. 77

xiii

LIST OF FIGURES

FIGURES

Figure 3.1 Disk Surface .. 24

Figure 3.2 Disk Head Mechanism .. 26

Figure 3.3 Disk Working Principle... 27

Figure 4.1 Illustration of DEj... 45

Figure 4.2 DE Events and Activities .. 46

Figure 5.1 Conventional Approach-Arrival Rate versus Average

Makespan Values... 69

Figure 5.2 Conventional Approach-Arrival Rate versus Average

Flow Time .. 71

Figure 5.3 Conventional Approach-Arrival Rate versus Average

Flow Time Percent Change ... 72

Figure 5.4 DE Approach-Arrival Rate versus Average

Makespan Values... 78

Figure 5.5 DE Approach-Arrival Rate versus Average Flow Time.... 79

Figure 5.6 DE Approach-Arrival Rate versus Average Flow Time

Percent Change.. 80

1

CHAPTER 1

INTRODUCTION

This study is concerned with the computer hard disk workload

scheduling problem. The motivation is to make better scheduling

decisions so as to increase performance of the disk system while

guaranteeing service stability. The disk system’s nature is

stochastic, where the read and/or write requests come randomly

for service. Therefore, their arrival times and addresses are not

known until requests are realized. The online workload scheduling

problem handles the real system working principles, whereas the

offline problem is an adaptation of that in which all the requests

that will come to the system are assumed to be known at the

beginning with their corresponding attributes; arrival time and

request address on disk. Hence, the offline problem is a

deterministic problem. In this study, both online and offline

variants of the problem are considered by concentrating on “read”

operation in disk scheduling.

The disk physical operation system consists of two main elements,

the disk head and the platter (single or multiple). The head

operates over the platter without touching it and make the

read/write operations. Head moves in linear directions, as inward

and outward movements on a single line (disk radius), while the

platter rotates continuously without stopping and changing its

direction. When a new job is to be serviced, the head first finds

new job’s track (circular line on disk or platter surface), then waits

2

the platter rotation until the starting location of the job address

comes under the head. Head’s movement is called seek, and once

it finds the job’s track, the time passed until the job’s starting

location comes under the head is called rotational latency.

Because the disk rotates in single direction, the (time) distances

between two job addresses (seek and latency) are not compatible

with the Euclidean distances. The time distances are asymmetric

and can be computed by considering the physical structure of hard

disk. Seek and latency are realized as sequence dependent (setup)

times for servicing two consecutive requests. When a job comes

under the head after seek and latency, the time passed for

processing (reading from or writing over track) of the job by the

head is called transfer time, which is relatively short with respect

to sequence dependent setup times. Seek, latency and transfer

times constitute together service time.

Although the disk scheduling problem belongs to the computer

science literature, its link with the machine scheduling is

considered in this study. Hence, throughout the study, the

machine scheduling terminology is used simultaneously, instead of

related computer science terminology only. For instance, “flow

time”, “makespan”, “job”, etc. are occasionaly used instead of

“response time”, “service completion time”, “request”, etc.,

respectively.

The aim of the thesis is to develop a solution approach based on

the solution of a variant of the traveling salesman problem (TSP)

that could make further improvements in solving online problem

over the proposed algorithms in literature. Despite the difficulties

regarding solving TSP, such an approach is meaningful for the

offline disk scheduling problem. A pure TSP application developed

3

for the offline version is used for solving online problem so that a

benchmarking framework is provided to analyze the performances

of online solution procedures. Incorporation of the TSP application

into the online problem can be briefly explained as follows:

At every decision time, we send the new queue information

to the offline TSP model. Then, the offline application sends

the scheduled queue information to the online application.

This pure TSP application for the online problem is analyzed and

compared with two well-known algorithms, chosen for

benchmarking. We also consider a heuristic approach to

incorporate the TSP into the online problem.

Most of the well-known disk scheduling algorithms in literature

focus on seek in the optimization. This study takes seek and

latency together as the (sequence dependent) “setup time” and try

to minimize the time needed to serve a set of requests. The main

decision in disk scheduling is to decide the order (sequence) of jobs

to be serviced in the system. There are two questions regarding

main decision: “how to decide” and “when to decide”. The first

question is about the scheduling rule, which is that much of the

literature is concentrate on. The second question is concerned with

the instant that scheduling rule should be applied. The

conventional approach for answering “when to decide” works as

follows:

Every time when the content of queue in the disk system

changes with arrival of a new job or a timeout, the new

queue information is sent to the decision maker (DM). Then,

DM decides on the servicing sequence and sends back the

scheduled queue to the online application.

The approach that we propose in this study, called as

Deterministic Decision Epoch (DE), works as follows:

4

Queuing decisions are not made at every arrival and/or

timeout cases. Instead, a decision epoch is defined as the

time interval bounded by the completion time of the job in

service up to the completion time of the next job. Hence, DM

decides the new sequence with the information gained up to

the completion time of the job under service.

Both approaches are taken into consideration in our study.

1.1 Motivation

Although the computer hardware have showed great evolution in

little time, magnetic hard disks have not kept pace with them

because of the physical constraints imposed by the system’s

structure. However, we believe that there is room in software

improvement direction in hard disks, namely, the strategy in

servicing the jobs in disk scheduling. It should be noted that there

is always a tradeoff between hard disk performance and production

cost. Although the marketing strategy decides always which one

will win and how much the other will be ignored, we also believe

that the software performance improvement increases the flexibility

of the decision maker and affects production cost.

1.2 Problem Definition

In online disk scheduling, non-preemptive jobs coming randomly

are directed to a queue having a capacity of holding n jobs. In

addition to the queue (Q) of n jobs, there is a distinct queue just

before the service having a capacity of two jobs, namely the run

queue (RQ). RQ has a substantial effect on the disk performance

5

because once a job enters RQ, it becomes certain and the two jobs

waiting in RQ are not subject to scheduling decisions anymore.

Since the setup times of the jobs are sequence dependent, while a

scheduling decision on Q is being made to determine the

processing order of jobs, the address of the second job in RQ has

an impact on the scheduling performance.

While deciding on the job processing sequence in Q, disk

scheduling should also provide service stability by not allowing

timeouts and queue depth (queue capacity) violations. Timeout

refers the violation of maximum allowable time a job can stay in

system before being serviced.

The online problem can be seen as a complex stochastic

asymmetric traveling salesman problem with time windows. It

follows that, the visiting sequence of all the available jobs in Q by

the disk head must be scheduled considering stochastic problem

nature, since the attributes, i.e. arrival times, processing times and

addresses of the jobs are not known until they come. In offline

setting, however, all the jobs are assumed to be known at the

beginning with their corresponding attributes. Hence, the offline

problem can immediately be reduced to an asymmetric traveling

salesman problem with time windows. The visiting sequence of all

the available jobs in Q by the disk head is scheduled subject to the

time window of each job; starts with the arrival of job and lasts

according to the timeout value of job.

Unfortunately, the TSP problem is shown to be NP-complete, so

cannot be solved to optimality in “reasonable times”. Therefore,

heuristics as approximation methods are needed to find good and

fast solutions to the disk scheduling problems.

6

1.3 Outline of the Chapters

In Chapter 2, a brief literature review on related subjects is done.

In the first section online problems and algorithms are reviewed. In

the second section, a brief literature survey of routing problems

under online setting in addition to more general offline setting is

done. Third and fourth sections are about the disk scheduling. In

the third section, the classical algorithms for disk scheduling are

given with their variations. In the fourth section, further

adaptations/modifications on those traditional methods and

studies other than those are considered.

In Chapter 3, the computer hard disk system is explained in detail

in the first section. After that, the disk scheduling problem is

defined with several performance measures, and the possible

objectives are briefly discussed. In the third section, a generic

mathematical model developed for the offline problem for several

objective functions is introduced. The generic offline problem

formulation is a variation of the formulation of the TSP with time

windows. In the fourth section, the computational difficulty of

solving the model with a general purpose optimization package is

illustrated with an experiment.

The online problem is examined in Chapter 4. The decision making

issues and the policy developed are discussed in the separate

sections. Conventional approach and deterministic decision epoch

scheme developed for solving the online problem are detailed in

these sections. After that, several reschedule procedures are

discussed, including the TSP-based approach described in Chapter

3. In addition to the exact solution of the sequence dependent

7

makespan minimization problem, a heuristic reschedule procedure

based on the Nearest Neighbor is also provided at the end of the

chapter.

Chapter 5 covers the implementation of simulation under

conventional and decision epoch settings, and the experimental

analysis of the disk scheduling algorithms under both settings. In

the first section, the nature of the simulation with basic properties

is mentioned. The code frameworks of simulation are given for both

settings in the second section. The parameter settings of the

experiments, and the test bed generation methods are discussed in

the third section. The experimental results for five policies on our

test bed are provided and several comparisons are presented in the

last section.

The last chapter, in addition to conclusion of the study done,

provides further study subjects. Also a challenging future research

subject is mentioned in Appendix K.

8

CHAPTER 2

LITERATURE REVIEW

Computer hard disk scheduling problems have been studied both

in Operational Research and Computer Science literatures. Besides

having direct application on computer industry, it has been widely

studied by the hardware companies. Therefore, one can find

numerous technical reports, although much of them being stayed

secret because of competitive concerns.

This chapter is structured as follows. In Section 2.1, our literature

review and analysis of online algorithms are presented. In Section

2.2, a brief review on traveling salesman problem and its derivative

vehicle routing problem will be given both in offline and online

settings. Classical disk scheduling algorithms are presented in

Section 2.3. In Section 2.4, some adaptations from traditional

policies, aiming improvements in several disk scheduling

performance measures are discussed. One special remark about

third and fourth sections is that, since the studies in literature

usually make the experimentation with their own simulation

framework including the disk geometry (necessitating some

probabilistic assumptions as miss probability etc.), their results

are valid within themselves. The results from one study for a

certain algorithm cannot be compared directly with the results in

the other study. Hardware differences in experimentations also

support that remark.

9

2.1 Online Problems and Algorithms

In an online problem, decision maker (DM) has to deal with

limitations on information instead of limitations on computational

power in offline problems (Correa and Wagner, 2005). DM has to

decide with incomplete information which continues to be available

in time as increments. DM has a short time to decide at every new

event (for example, in present disk scheduling literature, a new

event is completion of a job or arrival of a new job coming for

service with its corresponding attributes) with the information at

hand at the time of the event without knowledge of future

information.

In late eighties and early nineties, there were three basic online

problem types studied extensively: the paging problem, the

k-server problem and metrical task systems.

• “The paging problem is to maintain a two-level memory

system consisting of a small fast memory and a large slow

memory, to serve a sequence of requests to memory pages so

as to minimize the number of page faults incurred.” (Albers

and Leonardi, 1999). The most well known deterministic

online strategies for paging are Least Recently Used,

First-In-First-Out, and Least Frequently Used (Winter and

Zimmerman, 1998).

• “The k-server problem generalizes paging as well as more

general caching problems. The problem consists in scheduling

the motion of k mobile servers that reside on points of a metric

space S. Requests are issued at points in S and, in response

to each request, one of the servers must be sent to that point.

10

The goal is to minimize the total distance traveled by all the

servers.”

• “Metrical task systems can model a wide class of online

problems. A metrical task system consists of a pair (S; d),

where S is a set of n states and d is a cost matrix satisfying

the triangle inequality. Entry d(i; j) is the cost of changing from

state i to state j. A task system must serve a sequence of

tasks with low total cost.” (Albers and Leonardi, 1999).

After early nineties, the online problems appeared in a wide range

of application areas such as distributed data management,

scheduling and load balancing, routing, robotics, financial games,

graph theory, and a number of problems arising in computer

systems like disk scheduling (Albers and Leonardi, 1999).

To cope with online problems, online algorithms are developed. In

general, an online algorithm takes input at increments one by one.

Then it generates output for each of the input piece taken without

the knowledge of the future input. For testing the performance of

an online algorithm, a useful tool, called competitive analysis

suggested by Sleator and Tarjan (1985) has been widely used. The

main idea of the competitive analysis is to compare the

computational cost incurred by an online algorithm with that of

the offline algorithm in which the full input knowledge is available

at the beginning. Considering a minimization problem and letting

ALG(I) be the cost incurred by online algorithm ALG on instance I,

the competitive ratio of ALG is defined as follows:

)(

)(
sup

IOPT

IALG

I

where OPT(I) is the optimal solution found for instance I by an

offline algorithm. Lower that worst case ratio is better the online

11

algorithm (Bonifaci, 2005). This analysis makes the offline variant

of the online problem valuable.

2.2 Offline and Online Routing Problems

Easy to describe and hard to solve Traveling Salesman Problem

(TSP), has become popular since a method for solving it is

published in 1954. Basically the problem is to find a least costly

tour for a salesman visiting each of the n customer locations once

and returning to the starting point, where the cost of traveling from

one location to another is given. TSP belongs to the class of

combinatorial optimization problems known as NP-complete. In

this case no one can expect to develop an algorithm that

guarantees to find the optimal solution to TSP in polynomial time.

Hence, to tackle that difficulty, applying heuristics for finding good

feasible solutions in reasonable times is a common approach.

Readers are referred to Reinelt (1994) for a TSP review and its

practical solution procedures.

Although the most approaches in the routing area assume an

offline setting in which the input is entirely known beforehand,

several real life cases necessitate an online point of view. For

instance, the advancement in information technology makes the

just-in-time management more important. Express transshipment

necessity fed also by rapid growth of e-commerce led to a sudden

increase in real time routing problems, where problem size and

parameters change after the vehicle routes are constructed (Chang

et al., 2003). Similarly, in a logistics system, the mobile service

provider cannot exactly know the costs at the time of travel and

even could not know where the next location s/he must visit.

12

Therefore, in the online version the locations to visit are told to the

salesperson while s/he is traveling. So that, every request has a

release time ri, which indicates the time when the location is

available to visit and/or also a due date di, where i is the location

or customer identity. The objective function is given by the time at

which all the requests are served. It is the same as the makespan

criterion in machine scheduling terminology. In online setting of

TSP, if the salesperson is not required to return its starting point,

this version is called as Nomadic Online TSP. The version in which

the tour is required to be closed is called as Homing Online TSP

(Bonifaci, 2005).

Vehicle Routing Problem (VRP) is a generalization of TSP allowing

more than one server (salesperson) and bringing the vehicle

capacity and demands of the locations into the problem. Because

of the suitability of the online problem setting to logistics systems,

and the central importance of VRP to logistics systems, the online

VRP is also a widely studied subject in the literature. In online

VRP, the order of visit to known customer locations are decided on

real time without knowing the possibilities of demand changes in

locations and even the new customer locations that may come into

the picture while the vehicles keep serving the available locations

at that time. Hence, online VRP has applications on to dial-a-ride

systems, such as controlling a taxi station or an elevator set of a

building, or planning routes for a set of couriers (Bonifaci, 2005).

The disk scheduling problem therefore can also be seen as a

dynamic, stochastic online routing problem having asymmetric

characteristics.

13

2.3 Classical Disk Scheduling Algorithms and Their Variations

After the first commercial hard disks were introduced into the

market by IBM (IBM 350 RAMAC disk drive, 5 megabyte) in 1956,

the magnetic hard disks have had little evolution comparing with

the processors and other hardware components since the main

logic of disk system is physically the same with the very first hard

disk. The hard disks are also in their technological limits in storage

capacity. When the platter density is held at the reached level of

today’s technology, space requirement increases for greater data

capacity, whereas the difficulty of creating smaller heads arises for

higher data density platters. Decreasing the magnetic domain

makes hard to sustain the disk stability. However, the job service

decisions have been always extremely important for overall hard

disk performance. In the beginning there was one simple

scheduling policy for job service decisions: First-Come-First-Served

(FCFS). Although this is a simple scheduling method, it is highly

resistible to starvation, since a new coming job has to wait only for

the jobs that came before it. While FCFS (or FIFO) scheduling

policy had been applied in early hard disks, when the end of sixties

came, several intelligent algorithms for hard disk scheduling had

already found application in the field.

Shortest Seek Time First (SSTF) is a form of simple Shortest Time

First (STF) algorithm. Since the seek time (rather than latency)

constitutes greater part of the access time, looking for the shortest

seek time job generally makes considerable improvement over

FCFS job scheduling. However, SSTF is very susceptible to

starvation. Especially in high workload situations, some jobs could

wait to be serviced for an unacceptably long time.

14

SCAN algorithm which is first proposed by Denning (1967), is a

clever modification of SSTF, which tries to overcome the starvation

illness. It works as such that the head starts to scan the disk

surface from the outermost cylinder (cylinder 0) and serves the

jobs inward. When it comes to the innermost cylinder (cylinder n),

it starts to scan outwards and makes the same process outward.

In this case, the middle parts of the disk are serviced well, while

the innermost and outermost parts are serviced relatively poorly.

By this method, the maximum waiting time of a new coming job, at

the worst case, onto the just passed cylinder 0 or n, is the time

equivalent of two times the cylinder 0 – cylinder n distance.

In SSTF and SCAN algorithms, there is a slight possibility of

starvation. An example from Stallings (2001) shows that “if one or a

few processes have high access rates to one track, they can

monopolize the entire device by repeated requests to that track.

High-density multisurface disks are more likely to be affected by

this characteristic than lower-density disks and/or disks with only

one or two surfaces.” To overcome this possibility a combination of

FCFS with any of the algorithms above can be applied like that:

The jobs waiting for service are segmented in queues of defined

length, say N. After the chosen algorithm is used for the N jobs in

first queue, the same thing is done for the second whether its

length is higher or lower than N. While N gets higher and higher,

N-step-SCAN approaches SCAN in performance (Stallings, 2001).

SCAN is further modified to overcome the service anomaly

mentioned above and to decrease the maximum waiting time of a

new coming job. In C-SCAN, the scan direction is always the same,

meaning that when the disk head finishes the scanning (i.e.

inward), it comes back to the outermost cylinder and starts to the

15

same process again, and so on. In this case, as opposed to SCAN,

all the parts of the disk are equally serviced. By this method, the

maximum waiting time of a new job, at the worst case, onto the

just passed cylinder 0 or n, is the time equivalent of the cylinder 0

– cylinder n distance (half of that of SCAN algorithm).

Another modification of the SCAN algorithm is called LOOK. The

only difference of LOOK is that, while the disk head scans the disk

surface from one end to the other, it turns scanning direction

instead of going to the end when there is no job at the current

direction forehead. Although the worst case maximum waiting time

of a job is the same, the average waiting time of a job is shorter in

LOOK than that of C-SCAN.

CLOOK is a combination of C-SCAN and LOOK algorithms. Only

difference between CLOOK and LOOK is the single direction

character of the first one. Although this character does not

guarantee the equal service throughout the disk surface like it

does in the case of C-SCAN algorithm, it increases the uniformity

of service.

The disk scheduling algorithms other than FIFO can be examined

under two main categories; seek delay reduction policies and

positioning delay reduction policies. Under the first heading SSTF,

SCAN, C-SCAN, LOOK and CLOOK algorithms take seek into

consideration, while shortest-positioning-time-first (SPTF)

algorithm takes combined seek and rotational latency into

consideration. SPTF use the more complete information about the

data blocks on disk and the current position of head and choose

the job with minimum positioning delay. In Table 2.1, we present

an overview of the disk scheduling algorithms.

16

Table 2.1 Overview of Disk Scheduling Algorithms

Algorithm Main Idea Remarks

FIFO Jobs are taken into service in
their coming order.

Poor throughput and long
average waiting time. But
highly resistable to
starvation.

SSTF

Seek reducing algorithm. The next
job to be processed is chosen as
the nearest job in seek distance to
the job under service.

Good performance on
throughput and average
waiting time. Very
susceptible to starvation
especially in high
workload situations.

SCAN

A modification of SSTF. It applies
SSTF in one direction of disk,
when head comes to the edge it
reverses the direction and makes
a new SSTF application on
reverse direction until the edge.

Inferior performance on
throughput and average
waiting time. But little
starvation.

C-SCAN

Cyclic SCAN makes the head run
only in single direction and when
it comes to the edge it returns to
the starting point and redo the
run in same direction.

Inferior performance on
throughput and average
waiting time. Less
starvation than SCAN.

LOOK

A modification of SCAN. While the
head goes in a direction, if there
is no job in that direction, it
instantaneously reverses the
direction instead of going to the
disk surface's edge and apply
SSTF in new direction.

Slightly better
performance than C-SCAN
on average waiting time.
Almost same starvation
with C-SCAN.

CLOOK A modification of LOOK to apply it
in single direction only.

Almost the same
performance with LOOK
on throughput and
average waiting time.
Increased service
uniformity.

SPTF

Considering current position of
head finds the next position with
minimum seek and rotational
latency.

Necessitates more
complete information of
data blocks on disk
surface. Good
performance on average
waiting time especially.

17

Teorey and Pinkerton (1972) investigate and compare the

performances of FIFO, three seek time optimization policies SSTF,

SCAN and N-step scan, and one early rotational position

optimization policy (Eschenbach scheme). They also consider

LOOK and CLOOK. They made both analytical and computational

performance comparisons in this study. The computational

performance comparisons are done with the aid of a utility

function combining system throughput with mean and variance of

waiting time for individual requests. They found that under light

workload the best performance was attained by LOOK. Under

heavy workload CLOOK, combining the best characteristics of

LOOK and the Eschenbach scheme, had maximum performance.

Worthington et al. (1994) is almost the most cited work in disk

scheduling area, since they introduce prefetching (on-board cache

utilization) concept into the basic scheduling policies. In

prefetching, the head is allowed to make excess read on the track

after completion of the read of a request at that track when the

scheduling structure permits. That excess reads are stored in

onboard cache for a time and they are called when a new request’s

part of the address overlaps the stored one. Hence, for that part of

the address, head does not have to make read operation. They

made simulations including prefetching and reduced inferences on

quite good performance increase in certain situations. For

example, while CLOOK shows slightly inferior performance than

SSTF and LOOK for random workloads, it achieves the highest

cache hit rates and lowest average response time for most of the

real-world traces.

18

2.4 More Study on Disk Scheduling

Geist and Daniel (1987) have introduced VSCAN, a continuum of

two disk scheduling algorithms SSTF and SCAN. “A continuum of

disk scheduling algorithms, V(R), is defined where R is a variable

having values between 0 and 1 which defines the algorithm’s

closeness to SSTF and SCAN. V(R) has endpoints of V(0) = SSTF and

V(1) = SCAN. V(R) maintains a current SCAN direction (in or out) and

services next the request with the smallest effective distance. The

effective distance of a request that lies in the current direction is its

physical distance (in cylinders) from the head. The effective distance

of a request in the opposite direction is its physical distance plus R x

(total number of cylinders on the disk). This definitional continuum

also provides a continuum in performance, both with respect to the

mean and with respect to the standard deviation of request waiting

time.” After tests with a real system data, they found that V(0.2)

outperforms FIFO, SSTF and SCAN algorithms in average waiting

time and system throughput criteria.

Seltzer et al. (1990) have analyzed the traditional disk scheduling

policies in the presence of long queue lengths, and they proposed

two algorithms taking rotational latency into account together with

seek time. These algorithms were grouped as shortest time first

(GSTF) and weighted shortest time first (WSTF). First one was a

combination of SCAN technique with shortest time first (STF)

technique. The second one, which guarantees no starvation, made

use of the STF technique applying an aging function to the

computed times. They used an additional disk scheduling

performance measure other than average flow time, namely “disk

utilization”. It is defined as the percent of a job’s flow time (waiting

19

time + seek + latency + transfer time) that was composed of the

transfer time. The utilization value for FIFO has been found about

7%, while proposed algorithm GSTF was shown to have utilization

close to STF (25%), it also have had comparatively little maximum

flow time, close to that of C-SCAN.

An HP Laboratories technical report by Jacobson and Wilkes

(1991) has also showed that the access time based algorithms

(those taking latency into consideration) outperform seek time

based ones. They have found that aged shortest access time first

algorithm (a continuum between FIFO and shortest access time

first (SATF)), having quite a same logic with VSCAN, has better

performance within all the variations of SATF policy.

Thomasian and Liu (2002), apply a modification on basic disk

scheduling algorithms for incorporating a lookahead of next i

requests (LAi) property into them. They apply it to C-SCAN by

taking the latency into account and reorder the next i requests in

scanning direction to minimize the sum of their service times,

instead of minimizing that of just next one (C-SCAN-LAi). They also

apply the same logic to SATF considering again i requests rather

than just one at a time (SATF-LAi). They make a random number

driven simulation study for comparing the performances of

classical policies with the two lookahead policies mentioned above.

For the performance differences in between the classical policies,

their results concur to that by Worthington et al. (1994). When the

mean response time criterion is considered, SATF is the best while

FIFO is the worst, SSTF and SCAN outperform C-SCAN policy.

SATF-LA2 further improves over SATF.

20

Modern hard disks using rotational position optimization

algorithms, utilize seek distance versus rotational distance tables

(rpo tables or arrays), which are stored in flash-memory within

each hard disk drive. Hence, reduction in the necessary flash-

memory, directly reduce the disk production cost. The trade off is

that how much it can be reduced with no or little degradation in

hard disk performance (Burkhard and Palmer, 2001).

There are some studies on the synthetic workload generation and

the validities of them. Ganger (1995) has examined several

probability distributions, and compared them with real workload

sets known in literature. He showed that the commonly assumed

workload characteristics were inaccurate and especially the job

arrival patterns were not independently distributed in reality.

Huang and Chiueh (2002) discuss another possible drawback of

disk scheduling efforts. They claim that software based (shortest

access time first) disk schedulers are becoming less and less

feasible as the disk technology evolves, since the disks are getting

more and more complicated.

Another approach by Popovici, Arpaci-Dusseus (2003) involves a

simulation approach integrated to a real disk system. It traces the

jobs and it models the service time of job by observing both request

type and the logical distance from the previous request. Thus by

predicting the near behavior with the past requests having same

attributes.

Reuther and Pohlack (2003) suggest an algorithm based on

dynamic active subset (DAS). DAS contains the most outstanding

requests and it is updated after every scheduling decision. These

21

requests have higher priority and are scheduled according to the

rotational position of the requests. So that the finite time service

guarantees could be reached for every job without deterioration in

performance.

Andrews et al. (2002) concern disk geometry directly and propose

new algorithms for offline and online problems. They show that the

problem is related to the asymmetric TSP. They define a

reachability function, which gives the maximum radial distance

head can travel for a rotation of angle θ. Then using this function,

they develop an approximation algorithm to serve all the requests

on disk within certain number of rotations depending on the

reachability function. Finally they apply the idea to the online

problem. They proposed an algorithm, called as CHAIN. It has

similar logic with the classical STF algorithm, with key difference of

better look-ahead. CHAIN considers more than the next request

and forms a partial order of all the requests in the buffer. Then, it

constructs a new partial order at every arrival to the buffer.

However, they do not present an analytical comparison between

STF and CHAIN’s performances.

22

CHAPTER 3

PROBLEM DEFINITION AND OFFLINE DISK SCHEDULING

PROBLEM FORMULATION

In this chapter the hard disk system basics are explained. After

that, the general disk scheduling problem is defined with the main

performance criteria. The basic mathematical models for offline

problem, which is described as a TSP with time windows, are given

for four different objective functions at the last section.

3.1 System Definition

A disk is a platter, made of metal or plastic with a magnetizable

coating on it, and in circular shape. It is possible to store

information by recording it magnetically on the platters. A

conducting coil, called head, which is a relatively small device,

facilitates the data recording on and retrieval from the disk. In a

disk system, head rotates just above both surfaces of each platter.

All heads, being attached to a disk arm, move collectively as a unit.

To enable a read and write operation, the platter rotates beneath

the stationary head.

Data are organized on the platter in tracks, which are in the form

of concentric set of rings. In medias using constant linear velocity,

the track densities are uniform (bits per linear inch of track). The

outermost zone has about 40 percent more sectors than innermost

23

zone. The rotation speed increases as the head moves from the

outer to the inner tracks to keep the same data transfer rate. This

method is also used in CD-ROM and DVD-ROM drives. In these

types of medias, the storage capacity of the disk is maximized by

zoning application. A zone consists of adjacent cylinders having the

same track densities (sector per track).

The other types of medias have constant disk rotation speeds, and

in that kind of systems the same numbers of bits are typically

stored on each track, thus the density, in bits per linear inch,

increases in moving from the outermost track (track 0) to the

innermost track (track N), to keep the data rate constant (constant

angular velocity).

Just as the tracks are subdivisions of the platter surface, tracks

have subdivisions, called sectors, which are depicted in Figure 3.1.

Data are transferred to and from the disk in blocks, size of which

are typically smaller than the capacity of the track. Block-size

regions on the disk where data are recorded, are called sectors

each having 512 bytes capacity for most disk drives. The request

locations are defined with the physical block addresses over these

sectors. Adjacent sectors are separated by intratrack gaps in order

to avoid imposing unreasonable precision requirements on the

system (Stallings, 2001).

A common disk drive has a capacity in the size of gigabytes. While

the set of tracks that are at one arm position forms a cylinder, in a

disk drive there may be thousands of concentric cylinders. A set of

wires, called the I/O bus, attaches the disk drive to a computer.

Buses vary in kind from earlier advanced technology attachment

(ATA) and small computer system interface (SCSI) to Serial ATA

24

(SATA) and SATA II buses available for basic consumer use. While

the consumer type hard disks having SATA and SATA II buses use

native command queuing (NCQ), allowing the queuing of up to 32

jobs, the enterprise disks having SCSI-2 standard use tagged

command queuing (TCQ), which supports up to 216 queued

commands. In NCQ all the requests in queue have the same

importance, whereas in TCQ it is permitted to assign high priority

to some of the jobs. Data transfer is carried out through special

electronic processors, which are called controllers. While the

controller at the computer end is called host controller, a disk

controller is built on each disk drive.

Figure 3.1 – Disk Surface

A command placed into the host controller by the computer

initiates an I/O operation in the disk. For this, the computer uses

SN

SN

S3

S3

S4

S4

S
6 S

6

S
1 S

1

S
2

S
2

S
5

S
5

Intersector Gap

Intertrack Gap

Tracks

Sectors

25

memory-mapped I/O ports and sends the command through

messages to the disk controller, which in turn operates the disk-

drive hardware to carry out the command. Disk drive transfers

data through the interaction of built-in cache, which most disk

controllers have, and the disk surface. Data transfer between the

cache and the host controller is performed at high electronic

speeds (Silberschatz, Galvin, Gagne 2003).

Most disk drives rotate 60 to 200 times per second, with the help

of a high speed drive motor. It is possible to mention two

components of the disk speed: transfer time and positioning

time or random access time. Transfer time is determined by the

transfer rate, the rate at which data flow between the drive and the

computer. The positioning time, which refers to the time that is

elapsed to move the disk arm to the desired cylinder, is also called

as the seek time. One term to be mentioned here is the rotational

latency: The time for the desired sector to rotate to the disk head.

Typically rotational latencies and seek times of disks are in the

range of several milliseconds, and they can transfer several

megabytes of data per second (Silberschatz, Galvin, Gagne 2003).

3.2 General Disk Scheduling Problem

Whether the disk is a single or multiple platter type, it always

works with the same principle. The only difference is that the

multiple platter system scatters the data of a certain file to each

platters’ same tracks (called together as a cylinder), same sectors

and while processing the file, it makes use of parallel reads/writes

by means of the heads working as unite, as can be seen in Figure

3.2. Hence a certain file that is written on a single platter only

26

differs from that of written on a multiple platter one, by the area it

covers on the surface (i.e. block size on single platter disk = A;

block size on 6 platter disk = A / 6). Therefore, concentrating on a

single surface of a disk platter, depicted in Figure 3.3, will not

make any difference other than easier understanding of the

problem.

Figure 3.2 – Disk Head Mechanism

For most of the systems, in disk scheduling, non-preemptive jobs

coming randomly are directed to a queue, which has a capacity of

n (typically 128 for enterprise machines), 216 jobs as maximum. In

addition to that, there is another queue, namely Run Queue (RQ),

Spindle

Arm Assembly

Read-Write Head

Arm

Rotation

Platter

Cylinder c

Track t

Sector s

27

revolution

actuator

before the disk processor. The capacity of this queue is two. Once

the jobs to be placed into this queue are determined, they cannot

be removed or their sequence cannot be changed. If the number of

the jobs in the system is greater than two, then the RQ is full.

Including RQ, total capacity of the system is n+2+1 (131 for

enterprise machines typically) jobs on a distinct moment of time.

Figure 3.3 – Disk Working Principle

For a job that comes into the process, an action composed of two

distinct movements is done for the actuator (disk head) to start the

job processing. First movement involves inward and outward linear

strokes of the actuator along the disk radius, and the second is the

rotational one (disk rotation). The time passed for disk head finding

the track including the job is called as seek. After the head finds

the track and stops over that, it waits until the job address starting

location comes under the head. This waiting time is called as

latency. These two are counted as service time components,

together with the transfer time. Their average values (read/write

average) are 6 ms and 3 ms for standard 10,000 rpm (revolution

per minute) disks. The writing processes necessitate greater seek

times, since it requires the higher precision over disk surface. The

strokes

angular

data

28

transfer time is related to the size of the job. Whether the disk

head reads/writes data on a cylinder or stands over it without

doing anything, the same time passes, which is the disk rotation

time. Since electronical transfer time is an insignificant value

comparing with the mechanical rotation time, transfer time is

accepted as equal to the disk rotation time.

Hard disk scheduling works in such a way that at every job

replacement in and addition to the queue, the scheduling

algorithm defines the new job sequence in the queue. Each time

the service of a job is finished, the first job in run queue (RQ) is

taken into process, the second job in RQ becomes the first one,

and the job scheduled as first in the queue takes the second

position in RQ.

Job sequencing decisions arisen from some greedy sequencing

algorithms could cause an undesired situation (called as job

starvation) so that some jobs could have to wait for service

unacceptably long time. To measure that, the system put a label

on every job i indicating its arrival time into the system (ri), and

after a defined time stamp (τ), if it is still waiting to be serviced,

timeout case happens and the job is assessed tardy (>ri + τ).

To our knowledge, the standard hard disks follow such a way that,

existence of a timeout job turns the whole system processing

sequence policy into FIFO, until all the jobs in the system at that

instant are finished.

Although, it would be in nanoseconds, there is always a difference

between the job arrival times. Hence, there could be only a single

job that is timeout on a certain moment of time, and once the

29

system undergoes to FIFO policy, other jobs inclined to be timeout

will be serviced in accordance with their strength of inclination

following the timeout one. However, in reality there are plenty of

cases in which more than one job can be timeout simultaneously.

Especially in busy systems, arrival of bursty job bulks having even

100 jobs could be possible. In such a case, if timeout of these

bursty jobs happens, defining a process reentry policy for them

could improve the performance as well.

There are several objectives or disk scheduling performance criteria

in the general disk scheduling problem (online):

1) Maximizing the job service rate (jobs/second):

Maximizing the job service rate means minimizing the

completion time of the last job in the system, referred as

makespan in machine scheduling literature. This objective

does not take the average flow time of the jobs into

consideration. Thus, this method disregards the service

quality concern. It does not take a measure for preventing

timeouts, so does not guarantee service stability.

2) Maximizing the data service rate (bytes/second):

A modified version of the first objective maximizes the data

throughput instead of taking each job as a unit whatever

the size of bytes it holds. It is useful for job sets having a

greater size variation.

3) Minimizing the maximum flow time of jobs (maximum

waiting time of jobs in miliseconds):

30

In machine scheduling, minimizing the maximum flow time

in system is a worst case measure, having poor overall

performance for makespan and average flow time

measures. But, it guarantees service stability by preventing

timeouts.

4) Minimizing the average flow time of jobs (average waiting

time of jobs in miliseconds):

The average flow time is one of the good measures of

service quality as well as the overall performance. However,

like 1st and 2nd objectives, it also does not guarantee

service stability.

The disk scheduling problem is an online problem in reality having

the features explained before in Chapter 2. The jobs that come

randomly at any instant without beforehand knowledge must be

served and/or queued almost instantly by the disk mechanism.

Hence, in our understanding, when a new job comes, the decision

maker (DM) has time to decide on the schedule of the new job for

processing until the completion of the job in process. Exploiting

this problem structure, the online problem can be thought as

many instances of offline problems. When the processing of a job

has started, the new scheduling decision for the jobs in Queue (Q),

for instance, can be taken by solving an offline TSP problem within

the time stamp available until the completion of the job in

processing. For that reason, to solve the online problem, we

suggest that a sequence of offline problem instances is solved

within varying time intervals whose lengths are determined by the

online problem occurrances like completions. Below we define

offline disk scheduling problem for which it would take place as a

decision support tool in solving the online problem.

31

3.3 Mathematical Modeling of Offline Disk Scheduling Problem

The basic models constructed in this section refer to the

formulations of the offline problems. In the offline problem, we

assume that all the requests are known in advance by the system,

with their arrival times, locations, processing (transfer) times and

due dates at the very beginning. Here, we use the same notation by

Rabadi (2001). Recall that in the real problem (the online version of

problem), arrival times are stochastic and are not known before

jobs arrive the system. After the jobs arrive, locations, processing

times and due dates are known. Note that, the arrival time of a

certain job constitutes its time window’s lower bound while a

constant timeout value decided for the disk system is added to the

job’s arrival time to set the upper bound of the time window. The

problem is a kind of asymmetric traveling salesman problem (TSP)

with time windows. The asymmetric nature of the TSP arises from

the disk’s working principle. Since the hard disk platters rotate

always in the same direction, the two-way time distances between

two distinct jobs’ physical block addresses are not equal.

Below, we first explain our parameters and then decision variables

for the offline problem. Then, we present four offline disk

scheduling problem formulations with different objective functions.

Parameters:

S i,j : Sequence dependent setup time from job i to job j

 (seek + rotational latency).

t i : Transfer (processing or read/write) time for job i.

32

r i : Arrival time of job i into the system.

d i : Due date of job i (ri + allowable constant waiting time

(τ) value before being timeout).

M : A large positive number.

Decision Variables:

X i,j : Binary variable defining whether job i directly

precedes job j or not in the sequence (It takes 1 if job i

directly precedes job j, 0 otherwise).

C i : Completion time of job i.

Ei : Earliness of job i (It indicates as if a job i is completed

before its due date), i.e. Ei= max{ 0, di-Ci }.

Ti : Tardiness of job i (It indicates as if a job i is

completed after its due date), i.e. Ti= max{ 0, Ci-di }.

Cmax : Completion time of the last job in the system, which
is also called makespan, i.e. Cmax= max { Ci }.

 i

Fi : Flow time of job i, i.e. Fi = (Ci – ri).

NTi : Binary variable defining whether job i is tardy (being

timeout) or not (It takes 1 if job i is completed after its

due date, 0 otherwise), i.e. NTi = 1 if Ti > 0; 0 o/w.

NT : Total number of tardy (timeout) jobs, i.e. NT = ∑ NTi.
 i

33

The four offline disk scheduling problems (DSP):

A – DSP with Makespan Criterion

The makespan is the time by which the service of the last job in

the system is finished. In the formulation below, the objective is to

minimize the makespan. It indicates a good overall system

performance measure, although it gives little guarantee on the

service quality (i.e. the average job flow time). Besides, it does not

take any direct measure for minimizing the number of tardy jobs.

Minimize Cmax (3.1)

Subject to

∑
=

n

i
jix

1
,
= 1 j=1,…,n i ≠ j (3.2)

∑
=

n

j
jix

1
,
= 1 i=1,…,n i ≠ j (3.3)

Ci ≥ ri + S0,i + ti - M(1- x0,i) i=1,…,n (3.4)

Cj ≥ rj + Si,j + tj - M(1- xi,j) i=1,…,n j=1,…,n i≠j (3.5)

Cj - Ci + M(1- xi,j) ≥ Si,j + tj i=1,…,n j=1,…,n i≠j (3.6)

Cmax ≥ Ci i=1,…,n (3.7)

xi,j є { 0,1 } i=1,…,n j=1,…,n i≠j (3.8)

Ci ≥ 0 i=1,…,n (3.9)

As mentioned before, the model resembles an asymmetric TSP with

time windows of [ri, ∞]. The objective function (3.1) minimizes the

makespan value that is controlled by constraint set (3.7) which

ascertains that the makespan is greater than or equal to the

completion time of all the jobs. Constraint set (3.2) makes sure

34

that there is only one job preceding job j, while (3.3) ascertains

that there is only one job following job i. Constraint set (3.4)

provides that the completion time for the first job to be processed

is greater than or equal to the summation of its arrival time, set up

time from the disk head’s initial position, indicated by job j=0, and

its transfer time. It is made certain by constraint set (3.5) that the

completion time of any job j, which is directly preceded by job i, is

greater than or equal to the summation of its arrival time, setup

time from job i to j, and transfer time of job j. If job i precedes job j,

then the completion time difference between job j and job i must be

greater than or equal to the summation of setup time from job i to

job j and transfer time of job j, and it is provided by constraint set

(3.6). Big M in constraint set (3.6) together with constraint sets of

(3.4) and (3.5) and constraint set (3.8) eliminates the possibility of

having overlapping disjoint paths (sub-tours). xi,j is a binary

variable having value of 1 if job i directly precedes job j, otherwise

0 as constraint set (3.8) indicates. Finally, constraint set (3.9)

provides the non-negativity for the completion time value for all

jobs.

B - DSP with Makespan Criterion subject to Due Date

In the following makespan minimization model, timeout is not

allowed. The timeout value is a fixed predetermined constant

maximum waiting time in the system showed by the symbol “τ”.

When it is feasible, the timeouts are avoided and so is the

performance decrease caused by them. The model could do that at

the expense of longer disk head movements, and could have to

make disk head swing too many times over the disk surface than it

35

would have to in the case in which the timeout is allowed.

However, depending on the problem instance data, a feasible

solution is not guaranteed in the model.

As can be seen below, the objective function and all the constraints

of DSP with Makespan Criterion model are preserved in this model.

Only difference is the addition of constraint set (3.10) which is the

hard constraint, imposing the completion of job i before its due

date.

Minimize Cmax (3.1)

Subject to

∑
=

n

i
jix

1
,
= 1 j=1,…,n i ≠ j (3.2)

∑
=

n

j
jix

1
,
= 1 i=1,…,n i ≠ j (3.3)

Ci ≥ ri + S0,i + ti - M(1- x0,i) i=1,…,n (3.4)

Cj ≥ rj + Si,j + tj - M(1- xi,j) i=1,…,n j=1,…,n i≠j (3.5)

Cj - Ci + M(1- xi,j) ≥ Si,j + tj i=1,…,n j=1,…,n i≠j (3.6)

Ci ≤ di (di = ri + τ) i=1,…,n (3.10)

Cmax ≥ Ci i=1,…,n (3.7)

xi,j є { 0,1 } i=1,…,n j=1,…,n i≠j (3.8)

Ci ≥ 0 i=1,…,n (3.9)

C – DSP with Tardiness Related Criterion

This model does not take a measure for minimizing the makespan,

but has concern for tardiness. Minimizing number of tardy jobs

36

(∑NTi) does not have a direct effect on the overall performance of

the system in terms of makespan criterion and it may even worsely

affect the overall performance (i.e. makespan) depending on

characteristics of the job data. On the other hand, minimizing the

total tardiness (∑Ti) carries the same disadvantages with (∑NTi) and

it is meaningless in the sense that in real system, whether a

tardiness amount is large or very small, whenever a timeout

happens the system always lose about the same amount of

performance. Hence, the number of tardy (being timeout) jobs is a

better measure that should be considered if tardiness is important

for the decision maker.

Minimize ∑
=

n

i 1

NTi (3.11)

Subject to

∑
=

n

i
jix

1
,
= 1 j=1,…,n i ≠ j (3.2)

∑
=

n

j
jix

1
,
= 1 i=1,…,n i ≠ j (3.3)

Ci ≥ ri + S0,i + ti - M(1- x0,i) i=1,…,n (3.4)

Cj ≥ rj + Si,j + tj - M(1- xi,j) i=1,…,n j=1,…,n i≠j (3.5)

Cj - Ci + M(1- xi,j) ≥ Si,j + tj i=1,…,n j=1,…,n i≠j (3.6)

Ci - Ti + Ei = di i=1,…,n (3.12)

Ti ≤ M(NTi) i=1,…,n (3.13)

xi,j є { 0,1 } i=1,…,n j=1,…,n i≠j (3.8)

NTi є { 0,1 } i=1,…,n (3.14)

Ci , Ti , Ei ≥ 0 i=1,…,n (3.15)

The objective function (3.11) minimizes the total number of tardy

jobs within the job set consisting of n jobs. Constraint sets (3-2) to

(3-6) and (3.8) apply here also. Constraint set (3.12) is the soft

37

constraint, allowing the completion of job i after its due date,

where d i = r i + τ. If job i is tardy, Ti must be less than or equal to

a very big number, otherwise Ti equals to 0, and that is provided by

constraint set (3.13). Constraint set (3.13) also counts the number

of cases in which a timeout occurs. Constraint set (3.8) also

applies here. NTi is a binary variable having value of 1 if job i is

tardy, otherwise 0 as constraint set (3.14) indicates. Constraint set

(3.15) gives non-negativity property of the tardiness and earliness

of each job, in addition to that of completion time.

D – DSP with Total Flow Time Criterion

The flow time is the time spent by a job after its arrival into the

system until its departure from the system (after the job is served).

Although this model is likely to give a larger makespan value than

that of the makespan minimization model, it is still a useful

objective. The total flow time gives an information about the quality

of service, because it keeps tracks of the average waiting time in

the system. Minimizing average waiting time in the system does

not guarantee maximizing the job service rate in number of jobs

per second. On the contrary, an increasing service quality with

more balanced service is expected to increase the number of jobs

in queue waiting for service in a distinct moment of time. Hence, if

timeout does not likely to happen, the flow time minimization is

not so preferable to apply.

38

Minimize ∑
=

n

i 1

 Fi (3.16)

Subject to

∑
=

n

i
jix

1
,
= 1 j=1,…,n i ≠ j (3.2)

∑
=

n

j
jix

1
,
= 1 i=1,…,n i ≠ j (3.3)

Ci ≥ ri + S0,i + ti - M(1- x0,i) i=1,…,n (3.4)

Cj ≥ rj + Si,j + tj - M(1- xi,j) i=1,…,n j=1,…,n i≠j (3.5)

Cj - Ci + M(1- xi,j) ≥ Si,j + tj i=1,…,n j=1,…,n i≠j (3.6)

Fi = Ci – ri i=1,…,n (3.17)

xi,j є { 0,1 } i=1,…,n j=1,…,n i≠j (3.8)

Ci , Fi ≥ 0 i=1,…,n (3.18)

In the formulation above, the objective function (3.16) minimizes

the total flow time. For job i, the flow time value equals the

completion time of that job minus its arrival time, as constraint set

(3.17) provides. Constraint sets (3.2) to (3.6) and (3.8) apply here

also. Constraint set (3.18) gives non-negativity property of the flow

time of each job, in addition to that of completion time.

39

3.4 Computational Difficulty of the Offline Problem

From the basic NP-hard problems modeled in the previous section,

DSP with Makespan Criterion (Model A) and its due date version

(Model B) reduce to TSP with time windows problem in routing and

scheduling literature, whereas the other two models are different

variants of TSP. The first problem has time windows of [ri, ∞], while

the second has [ri, ri+τ], where ri is arrival time of the job i and τ is

the allowable constant waiting time value for all the jobs. It is

known that, as the problem size increases, the number of

iterations and the time required to reach the optimal solution of

the problem increase exponentialy for TSP with time windows. This

remark is also valid for Models C and D. Therefore, one can expect

that solving these models with even moderate size data will take

longer time.

For illustrating the computational difficulty of solving the offline

problem to optimality, we prepared two sets of problem data using

the disk address distances. By using Lingo 8.0, we solve Model A

with setting of ti = ri = 0 for all the jobs. From the uniformly

distributed address values, we generated two data sets: an 8-job

problem and a 10-job problem. We formed 10 different instances

from each set. As given in Table 3.1, 8-job instances are solved to

optimality in 290 seconds on average. However, a small increment

in the number of jobs resulted in large inefficiency. Finding the

optimality took more than 7 hours on average for two instances of

10-job data sets. When we run Lingo with a 1-hour time limit to

solve these instances, the resulting solutions deviated from the

optimal only 1% on average. It was indicating that Lingo was

spending more time to justify the optimality of the solution found

40

in the early stages of our run than to find a reasonable solution at

the first place. The number of iterations for optimality were about

90 times more on average for 10-job instances than those of 8-job

instances. This also justifies the reason for using heuristics to

solve the TSP models in shorter times.

Table 3.1 –TSP Solution Times in Lingo 8.0

8-job set (runs to the
optimality)

10-job set (~1 hour runs for
feasible soln)

CPU time for
optimal soln
(minutes)

of Iterations
CPU time for
feasible soln
(minutes)

of Iterations

4.10 1,595,164 62.88 18,742,638
4.10 1,757,812 60.05 18,121,629
6.00 2,443,566 60.02 19,871,532
5.27 2,048,049 60.72 19,829,817
6.10 2,584,775 61.02 18,337,626
4.92 2,024,652 65.32 22,139,528
5.38 2,224,410 60.07 18,321,801
4.20 1,552,391 68.08 20,542,373
3.63 1,452,221 60.05 20,058,472

4.75 1,952,978 61.67 18,987,827
Average 4.83 1,963,602 61.98 19,495,324

41

CHAPTER 4

ONLINE DISK SCHEDULING PROBLEM

In this chapter, disk scheduling in online setting will be discussed.

In the first section, the general conventional online system setting

is defined. Next, our approach to tackle the online system is

introduced. In the last section, the rescheduling procedures for

different policies are presented.

4.1 Conventional Approach to Online Problem

In conventional approach, the online disk scheduling system works

as follows. If an arrival occurs, it will change the job content of the

queue and a new scheduling decision is to be made, or if a timeout

happens, it turns the real system into FIFO. So, the main events in

online disk scheduling are the arrival of a new job and the timeout

of a job. In this type of situation, one assumes that the decision

maker has enough time for making a scheduling decision until the

next job arrival or occurrence of timeout. Although timeouts are

rare that could be traced in system with some early alert

modification, the actual system does not proactively trace timeouts

and take precaution before the incident. Since timeout and arrival

times of the coming jobs are not known in advance in online

systems, the decision maker also does not know the available time

s/he has while making a sequencing decision until a new event

42

happens (indefinite decision epoch). To illustrate how the system

works we introduce our notation below.

RQ : The run queue, a queue with size of two, in which

no resequencing is done. Once a job enters it, it

cannot leave until being served.

RQ1, RQ2 : The jobs in first and second places of run queue.

Q : The set of jobs in queue following the run queue.

The jobs within this queue are undergone

sequencing, if needed.

Reschedule : The chosen queue sequencing policy.

Qseq(k) : The job in the kth order in queue (Q).

Rescheduling is needed if the number of the jobs in Q is greater

than 1 before a scheduling decision is made, otherwise no decision

is needed. Possible events necessitating rescheduling decisions are

as follows:

• Arrival of a new job (newcomer) before the completion of the

job in process,

 If RQ is full and Q≥1

 Append newcomer job to Q (Q=Q+1)

 Call Reschedule(Q)

• Arrival of a new job (newcomer) after the completion of the

job in process,

If RQ is full and Q≥2

 RQ1= RQ2

 RQ2=Qseq(1)

 Extract Qseq(1) from Q

43

Append newcomer job to Q (Q=Q)

 Call Reschedule(Q)

• Timeout of a job in Q,

Call FIFO (Q)

When a timeout happens all the system’s sequencing policy

changes to FIFO in the conventional disk scheduling until all

the jobs within the system came up to that time are served.

The reschedule procedure can be presented as follows:

 Procedure Reschedule(Q)

All jobs waiting in queue reordered according to a

particular scheduling policy:

For k=1 to Q

 Update Qseq(k) according to scheduling policy

End

When a new job arrives into the system or timeout of a job

happens, the decision maker has a time till the next job arrival or

occurrence of timeout for making a scheduling decision. The real

world hard disk systems work with this principle, which we call

conventional disk scheduling.

4.2 Alternative Scheduling Approach To Online Problem

In this section, we introduce a new concept, called Deterministic

Decision Epoch (DE), to propose a different approach for the

decision maker for solving the online DSP. The time interval that

can be used for making a new ordering decision for Q is called a

decision epoch. It starts with a “simultaneous incident chain”

44

when a service of a job has just finished and then the first job in

RQ undergoes into service. Instantaneously, the second job takes

the first one’s position in RQ and the predefined next job in Q (say

first job in Q) takes the second one’s position in RQ. That time

interval ends when the job under service is done and then the first

job in RQ undergoes into service, and so on.

In this new approach, queuing decisions are not made at every

arrival and/or timeout cases. Instead, a decision epoch is defined

as the time interval bounded by the completion time of the job in

service up to the completion time of the next job. Although the

length of decision epoch is a variable time, the decision maker

knows the exact length of it. The reason is that, the completion

time of the next job which was made certain as the first RQ job is

already known. The decision maker is “blind” to the events

occurring within the epoch (i.e. arrival of a new job or timeout of a

waiting job in queue), and makes decision with the information

gained one epoch before. Hence, this approach is realistic for

making scheduling decisions in meaningful time in real world

cases. The main power of this approach is that, in spite of the

stochastic nature of the problem, decision maker converts the

stochastic nature into the deterministic one within the decision

epoch that is used for making decisions on known domain. Below

we demonstrate how new approach proceeds.

Assume that the identity indices of the jobs in service order are as

follows: → p → o → l → k → j → i

Here, job i is the last completed job, the service of job j is in

progress, jobs k and l are the jobs in RQ, and jobs p and o are in

Q. Figure 4.1 illustrates the order of jobs within DE framework.

45

Set up
time

Jobs in queue RQ2 RQ1

Job
under
service

Job
served
last

. . p o l k j i

 Service time

Figure 4.1 Illustration of DEj

At the end of deterministic decision epoch j (DEj), that is when job

j has been just finished, the sets formed by the events happened

during this decision period are classified as follows:

Aj : Set of jobs that arrived during the decision epoch j,

Dj : Set of jobs that were timeout during the decision epoch j,

The effected sets after those events are:

Qj : Set of jobs in queue at the end of decision epoch j,

QDj : Set of timeout jobs in queue at the end of decision epoch

j,

where

Qj ⊇ QDj ⊃ Dj

Qj ⊇ Aj .

The length of DEj (LDEj) can be defined as follows:

LDEj = Cj - Ci = S i,j + t j

The events that happen during DEj (while job j is under service) are

not taken into consideration while making a sequencing decision

within DEj until the starting time of service of job k (i.e. at the start

of DEk). Because the events and their features are not known in

advance until the end of DEj and they become available over time

during DEj. Instead, the realized events during DEi are considered

46

within LDEj. LDEj refers to the time available for sequencing

decisions until the start of DEk.

Let the index j in Figure 4.2 denote jth job in the system, not job j.

Assume that our notation is also changed according to this index

definition. The complete events and activities in successive

decision epochs are given in Figure 4.2 in this manner.

DEj-1

Events:

Aj-1 (new arrivals)

Dj-1 (new timeouts)

Set updating:

Qj-2≡Qj-3∪Aj-2\{RQ2}j-1

if {RQ2}j-1 is timeout job

QDj-2≡QDj-3∪Dj-2\{RQ2}j-1

else

QDj-2≡ QDj-3 ∪ Dj-2

Rescheduling:

Reschedule(Qj-2, QDj-2,

{RQ2}j-1)

- reorder Qj-2

- determine {RQ2}j

DEj

Events:

Aj (new arrivals)

Dj (new timeouts)

Set updating:

Qj-1≡Qj-2∪Aj-1\{RQ2}j

if {RQ2}j is timeout job

QDj-1≡QDj-2∪Dj-1\{RQ2}j

else

QDj-1 ≡ QDj-2 ∪ Dj-1

Rescheduling:

Reschedule(Qj-1,QDj-1,

{RQ2}j)

- reorder Qj-1

- determine {RQ2}j+1

DEj+1

Events:

Aj+1 (new arrivals)

Dj+1 (new timeouts)

Set updating:

Qj≡Qj-1∪Aj\{RQ2}j+1

if {RQ2}j+1 is timeout job

QDj≡QDj-1∪Dj\{RQ2}j+1

else

QDj ≡ QDj-1 ∪ Dj

Rescheduling:

Reschedule(Qj,QDj,

{RQ2}j+1)

- reorder Qj

- determine {RQ2}j+2

Figure 4.2 – DE Events and Activities

Let n be the number of all jobs in system plus the jobs served in

service history at the start of DEj.

Events during DEj :

The new arrivals coming during this period of time are indexed

according to arrival times, starting from n+1. Hence arrival times

are known by the system over time during DEj.

47

Aj : new arrivals during DEj, i.e. n+1, n+2, …, m.

│Aj│ = m - n

If any timeout happens during the epoch, they are separately beset

in Dj set, where the set QDj contains all the timeout jobs in system.

Dj : timeouts during DEj.

Updating at the start of DEj :

Qj-1, QDj-1 : At the start of DEj, the contents of the Qj-1 and QDj-1

are formed by simply appending the set of jobs arrived (Aj-1) and

being timeout (Dj-1) during DEj-1 to the Qj-2 and QDj-2, then

extracting the {RQ2}j which is determined during DEj-1 by

Reschedule(Qj-2, QDj-2, {RQ2}j-1) procedure.

Rescheduling during DEj :

Reschedule(Qj-1,QDj-1, {RQ2}j) : After updating is completed at the

beginning of DEj, we check the cardinality of the newly formed

sets.

• If cardinality of QDj-1 is greater than or equals to one, then

the current rescheduling policy turns to FIFO for the jobs in

that set. Recall that QDj-1 was formed by simply appending

Dj-1 into the end of the ordered set QDj-2, and the ordered set

QDj-1 already conforms to FIFO. The jobs in Qj-1 is reordered

again with current rescheduling policy if the cardinality of Qj-

1 is greater than one. In processing sequence, after the last

job in QDj-1, the jobs in the rescheduled set Qj-1 is placed,

according to their new sequence.

• If QDj-1 is empty and the cardinality of Qj-1 is greater than

one, then the set Qj-1 is reordered in rescheduling according

to the chosen rescheduling policy. This procedure also uses

the information of the job in run queue 2 ({RQ2}j), since the

48

job following it would have setup time depending the location

of {RQ2}j. After rescheduling, the first job of the reordered Qj-

1 set is chosen as {RQ2} j+1, the job that will take the 2nd

position in RQ during DEj+1.

4.3 Reschedule Procedure in DE Setting

Whether the conventional or our approach is chosen, a

rescheduling procedure is needed for determining the job

sequence. Since the rescheduling procedures in DE approach

reduces to those in conventional approach with number of arrivals

being limited to 1, all the procedures are given for DE setting.

In many real hard disk systems, an occurrence of timeout turns

the scheduling policy into FIFO until all the jobs already in the

system are serviced. That kind of policy means high degradation on

system performance. The theoretical system below assumes that

whenever a job becomes tardy it is allowable to give it a new due

date, so that the scheduling algorithm allows timeouts. Timeout

cases are used as indicators of the performance of an algorithm in

this study.

Although the same rescheduling policies can be applicable in both

approaches, they are not the same. The conventional scheduling

approach needs rescheduling at every arrival, while ours make

rescheduling if a set of arrivals happen within the decision epoch.

Hence, we allow happening of multiple events before rescheduling,

if possible.

49

Below, we show how four rescheduling policies, namely, FIFO,

CLOOK, and two Cmax (Makespan Minimization) policies, are

applied within DE framework. During the length of DEj, the

policies have information of every variables that are known by the

system, where:

Qj-2 : ordered set of jobs in queue at the start of DEj-1 except

{RQ2}j

Aj-1 : ordered set of jobs came during last DEj-1

FIFO:

Append jobs in Aj-1 into the end of the job set Qj-2 without changing

their order (or simply use updated set Qj-1 at the beginning)

 Extract {RQ2}j from the newly formed set

 Rename the new set as Qj-1

CLOOK:

Here, a convention is made in the use of sets. Instead of using Qj-1,

the ordered set Qj-2 that was rescheduled during DEj-1 is taken and

the insertion of Aj-1 (set of arrivals during the same epoch) into Qj-2

is considered. In this setting, the first job in Qj-2 is actually RQj, so

it is never involved in comparisons below. Hence, a newly arrived

job’s best possible position can be the second place according to

this convention. The addresses of jobs in rescheduled set Qj-2

actually make a circle of increasing numbers. Hence, finding the

smallest address in this circle and proceed from there make the

algorithm easier:

50

For i=1 to │Aj-1│

Find the insertion place of ith member of Aj-1 into the ordered

set Qj-2, comparing the addresses. Give a sequencing number

to the inserted job, with reference to the constant first job in

set Qj-2 and shift the order of other jobs accordingly

 Qj-2 ≡ new set (the cardinality of that increased by one)

Qj-1 ≡ Qj-2

Exact Solution of Cmax (Makespan) Minimization:

We call the exact solution of Cmax minimization as the exact

solution of sequence dependent makespan minimization (SDM-E)

afterwards. Solving SDM-E within DE approach seems

advantageous, since we have a chance to involve more than one

jobs at single run of TSP, instead of running the algorithm at every

job arrival into the queue. But, the solution time cannot be

expected to be shorter than that applied in conventional approach,

since the computation time increases exponentially with increasing

Q length. The makespan criterion disk scheduling problem

introduced in Section 3.3–A is modified here for the online

Reschedule procedure. The arrival times are eliminated in the

formulation below, since the arrival times are taken into

consideration in the way that only the jobs arrived into system are

undergone reschedule. The first job’s starting time constraint is

also eliminated, since scheduling does not start from the first job.

There is always a job preceding the jobs undergone to scheduling.

Below Q represents the set Qj-1, which is simply formed by

appending set Aj-1 at the end of set Qj-2.

51

Minimize Cmax (4.1)

Subject to

∑

=

Q

i
jix

1
,
= 1 j є Q i ≠ j (4.2)

∑

=

Q

j
jix

1
,
= 1 i є Q i ≠ j (4.3)

Cj ≥ Si,j + tj – M(1- xi,j) i , j є Q i ≠ j (4.4)

Cj – Ci + M(1- xi,j) ≥ Si,j + tj i , j є Q i ≠ j (4.5)

Cmax ≥ Ci i є Q (4.6)

xi,j є { 0,1 } i , j є Q i ≠ j (4.7)

Ci ≥ 0 i є Q (4.8)

The objective function (4.1) minimizes the makespan value

controlled by constraint set (4.6). (4.6) ascertains that the

makespan value is greater than or equal to the completion time of

all the jobs in queue. Constraint (4.2) makes sure that there is only

one job preceding job j, while (4.3) ascertains that there is only one

job following job i. Since the disk system is assumed to be empty at

the start and the job arrivals are discrete, the first job to be

processed is the job that arrives the system first, hence constraint

set (3.4) of the offline formulation is eliminated here. It is made

certain by (4.4) that the completion time of job j, which is directly

preceded by job i, is greater than or equal to the summation of its

setup time from job i to j, and transfer time of job j. If job i

precedes job j, then the completion time difference between job j

and job i must be greater than or equal to the summation of setup

time from job i to job j and transfer time of job j, and it is provided

by (4.5). xi,j is a binary variable having value of 1 if job i directly

precedes job j, otherwise 0 as (4.7) indicates. Constraint (4.8)

52

provides the non-negativity for the completion time value for all the

jobs.

Nearest Neighbor Heuristic Solution of Sequence Dependent

Makespan Minimization (SDM-NN) :

We call the approximate solution of Cmax minimization as nearest

neighbor heuristic solution of sequence dependent makespan

minimization (SDM-NN). Nearest neighbor, the well known TSP

heuristic, works as its name implies. The algorithm tries to find the

nearest node to the present node at each iteration. In our system,

the algorithm appends the jobs in new arrival set directly at the

end of the jobs in Q. And then, taking the starting job address as

that of the job in RQ2, algorithm proceeds finding the next job with

smallest setup time (seek+latency).

Form Qj-1 by appending │Aj-1│ to Qj-2

Starting from the job in {RQ2}j, proceed by finding the job

having an address giving the smallest setup time

(seek+latency) from the last address.

53

CHAPTER 5

SIMULATION IMPLEMENTATION AND ANALYSIS

In following sections, the features of simulations, the way the

algorithms are coded, the parameter setting and the test bed

generation are presented. Also, the experimentation of algorithms

together with the brief analysis of results take place within this

chapter.

5.1 The Nature of Simulation

While simulating the basic system we have two experimentation

settings. In Experiment 1, we test conventional methodology based

on job arrivals. Here, every job arrival necessitates a scheduling

decision. In Experiment 2, we do an experimentation based on DE

concept, and here, the DM has deterministic time intervals to

make scheduling decision.

In Experiment 1, three sets of Monte Carlo Simulations are done

for FIFO policy, CLOOK and the exact solution of sequence

dependent makespan minimization (SDM-E) algorithms. SDM-E’s

solution time makes it impossible to use in real system, but it is

simulated for the sake of unbiased benchmarking. All three are

realized in the same way independent of the policy chosen. In

Experiment 2, two sets of simulations are done for CLOOK and the

nearest neighbor heuristic solution of sequence dependent

54

makespan minimization (SDM-NN) algorithms. FIFO is not applied

within DE setting since, it will give the same result with that of

conventional approach. SDM-E is also not applied, because of its

high computational requirements arising from the longer queue

lengths under this decision setting.

The exact solution of sequence dependent flow time minimization

(SDF-E) was planned to be applied under DE setting, but

preliminary runs proved the claim stated in Chapter 3 that, an

increasing service quality is expected to increase the number of

jobs in queue waiting for service in a distinct moment of time.

Because of the computational difficulty of exact solution which was

mentioned in the same chapter, that increase in number of jobs in

Queue made SDF-E impossible to be applied in reasonable times.

The hard disk can be seen as a flow line system with single

processor and two pre-processing waiting place. The entity of the

system is the jobs, and the attributes of the jobs are the addresses

identifying their position on hard disk surface.

In both experiments, the state variables of all five (3 from

Experiment 1 and 2 from Experiment 2) simulations are the same,

namely, processor’s situation, Run Queue 1 and Run Queue 2

situations (empty or full), number of jobs in Queue (if any), the

arrival time of the next job, and the completion time of the last job

in processor. The jobs that become tardy (timeout cases) are not

included into state variables. It is because of our methodology,

which allows tardiness. We allow timeout cases and use the

timeout statistic as a performance measure in output analsis.

55

The main two events that cause the change in state variables are

the new arrival and the completion of the job by the processor.

Since these two happens on discrete (countable) points in time, the

simulation is a discrete event simulation in nature. As mentioned

above, timeouts are not counted as simulation events, since they

do not affect the decision in our methodology.

Although the real system is theoretically steady state, it is reduced

to a “kind” of terminating simulation for practical purposes.

Because actually it does not stop with the arrival of nth job, but

stops accepting jobs after that arrival and terminates with the

completion of the last job in the Queue. So that, the length of the

simulation is not a specified time, instead a condition. Hence, the

length of a simulation is also a variable.

5.2 Coding

All five applications are coded in Visual Basic 6.0 programming

environment. For SDM-E (to solve the developed Model A), the

Lingo 8.0 optimization software package is used. For the

computation of seek plus latency times of disk head from one

address (PBA) to another on the disk surface, a special program

“Disksim” coded on C is used. Disksim is an adaptation of the disk

simulator developed by the EMC Corporation (2006, Hopkinton,

Massachusetts).

The simulation code framework of the applications in Experiment 1

and in Experiment 2 differ because of the different decision

structures used. Both code frameworks can be seen on Appendix

A. The transfer times (t) are taken as constant. Si,j values (seek +

56

latency) are computed using the Disksim program. Since, timeout

cases are allowed and can only be traced from simulation outputs,

the timeout is not explicitly seen on the code.

Each application differs from the others mainly in the rescheduling

procedure.

For the FIFO policy, the rescheduling procedure seen on the codes

placed in Appendix A.1 and A.2, due to its nature, does not change

the composition of the queue over time.

The code framework for the CLOOK algorithm used in both

experiments is provided in Appendix B. The rescheduling

procedure of CLOOK algorithm takes scheduling decisions over the

physical block addresses instead of seek + latency times as

mentioned before.

The SDM-E algorithm based application sends the queue

information to an interface in Lingo 8.0. Its code designed for

taking input into the TSP model is presented in Appendix D.

However, the time window concept is eliminated here, since the

timeouts are allowed and the already arrived jobs into the Queue

are taken for rescheduling. Also the transfer times are not taken

into the model since they are taken as constant for all the jobs.

The SDM-NN algorithm is Nearest Neighbor heuristic solution

approach to the Model A in Chapter 3, as explained before in

Chapter 4. The code framework for the SDM-NN algorithm used

under DE setting is provided in Appendix C.

57

5.3 Parameter Setting, Test Bed Generation and

Experimentation

Hard disks show different performances on read and write

operations. Disksim uses read operation average times for all the

computations of hard disk processing time values.

For transfer time parameter, different from seek and latency total,

a single constant value is chosen, instead of computing that for

each single job. This is because the transfer time is insignificant in

overall time spent for processing a job. Since the jobs usually come

in size of plus/minus 8 KB and a standard hard disk transfers the

data with 50-60 MB/second (conservatively taken), the time that

would be spent for the transfer of 8 KB data is about 0.15

miliseconds. For the job addresses which are sent to Disksim, the

jobs’ starting points of the addresses are used. Hence, the job

addresses are assumed as points, instead of lines. This

assumption does little harm because of the constant data size

assumption.

Job arrival rates and physical block addresses (PBA) are randomly

generated using Minitab 13.1 statistical software package’s

random data calculation property. The poisson distribution that

has been widely used for interarrival times of jobs in computer

hard disk systems is used for generation of interarrival times of

jobs. The random interarrival times (ri) are generated using poisson

distribution with 5 distinct arrival rates (λ), namely 125, 135, 150,

175, 180 job arrivals per second with corresponding mean

interarrival times of 8, 7.41, 6.67, 5.71, 5.56 miliseconds,

respectively. The arrival rates have been decided after some

58

preliminary simulation runs with several rates. For each rate, 30

sets are generated, each of which includes 1000 jobs. Then 5x30

job arrival time sets are produced by summing 1000 interarrival

times line by line for each.

 ri ~ Poisson with λ

 λ = {125, 135, 150, 175, 180}

For generating jobs’ physical block addresses (PBA), uniform

distribution, which has been used generally for that purpose in the

literature, is used. Uniform distribution’s range is chosen as the

interval between 0 and 281,916,703. It is the physical block

address range of the hard disk (146 GB) used within the

simulation. Only 30 physical block address sets are generated.

 PBA ~ Uniform[0 and 281,916,703]

The same random data set pairs are used for the sake of unbiased

comparison in a single run of five policy simulations. For 30

randomly generated sets composed of arrival times and job

addresses pairs, 30 replications are done for each policy. The label

convention for that randomly generated sets are made in the

following manner:

λ – P (for Poisson) – Set number x U (for Uniform) – Set

number.

For instance, 150P12xU12 stands for 12th arrival time set formed

with 150 Poisson arrival rate combined with 12th job address set

formed with Uniform distribution.

The verification of the SDM-E application can be done investigating

the simulation output provided in Appendix E for 50 PBA data

59

from 180P1-U1 random data pair and queue depth of 8 (where 8 is

the length of the queue allowed for coming requests). “Seek +

latency” column values are computed by Disksim within the

simulation. The output of Disksim is not provided here since it is

quite long.

As mentioned before the timeouts are allowed in our system.

Anyway, for tracing them from outputs, we need a maximum

allowable constant waiting time value (τ). We have chosen it as

1000 miliseconds that is a value used in common practice for

modern hard disks.

5.4 Experimental Analysis

All the simulations (except SDM-E applications with λ={175, 180}

because of the reason that will be explained under SDM-E

subheading of Results for Conventional Approach) were run for

128 queue depth and 1000 jobs. The simulation outputs for three

applications on conventional decision setting (Experiment 1) are

provided in Appendices F, G and H, and those for two applications

on decision epoch setting (Experiment 2) are provided in

Appendices I and J. Results are analyzed separately on each

decision setting for making inferences on the performances of

them.

The performance measures used in the experiment analysis are as

follows:

• Service time: The summation of seek, latency and transfer

times for a job is the service time of that job (miliseconds -

ms).

60

• Throughput rate: Number of serviced jobs per second

(jobs/s).

1000 (ms/s) / Average service time (ms/job).

• Makespan (Cmax): The time at which the last job in system is

served (ms).

• Average Flow time (
__

F): Average time that a job spend in

system from its arrival time to its service completion time

(ms).

• Number of Timeouts (T): Timeout is a flow time related

measure. Actually the timeout case is very unacceptable one,

since it reduces quality of service much. Hence, barely the

number of timeouts cannot be a performance measure. But,

the occurrence of timeouts can be taken as warning for poor

service quality and even for system instability in some cases.

Results for Conventional Approach

Overall average service times (µs) and their corresponding standard

deviations (ms) are given in Table 5.1 for three approaches in

conventional decision setting. Since times are given in miliseconds,

the average throughput rates by the algorithms (as serviced job per

second) can be found by dividing 1000 miliseconds with

corresponding average service time value. The average throughput

rates are presented in Table 5.2.

As can be seen in Table 5.1 the average service time for FIFO is the

same for all arrival rates. Since FIFO does not take any decision,

service time components seek, latency and transfer time values are

61

independent of the arrival times so the arrival rates. They

undergone service always in the same sequence with FIFO policy,

and the same job addresses are used at every arrival rate. Hence,

the average service time and the throughput rate result in a

constant.

Table 5.1 – Conventional Approach-Average Service Times with

Corresponding Standard Deviations (ms/job)*

FIFO CLOOK SDM-E Arrival
Rate µs ms µs ms µs ms
125 7.76 2.48 7.70 2.46
135 7.38 2.56 7.34 2.46
150 6.69 2.55 6.67 2.37
175 5.80 2.33 5.75 2.08
180

7.90 2.45

5.62 2.27 5.56 2.01
 * µs & ms denote average service time and standard deviations.

Table 5.2 – Conventional Approach-Average Throughput Rates

 (jobs/second)

 FIFO CLOOK SDM-E

125 128.95 129.92
135 135.46 136.33
150 149.38 149.99
175 172.55 174.02

A
rr
iv
al
 R

at
e

180

126.51

177.80 179.77

Table 5.3 shows the maximum flow times (Fmax), the average flow

times (µF), and corresponding standard deviations (mF) found by the

algorithms at each arrival rate (for 30x1000 sets of data) in

conventional decision setting.

62

The average flow time and flow time standard deviation changes as

percentage from one arrival rate to the others are presented in

Table 5.4 (taking 125 Hz as the basis).

Table 5.3 – Conventional Approach- Flow Time Results (ms)*

FIFO CLOOK SDM-E λ
µF mF Fmax µF mF Fmax µF mF Fmax

125 52.06 32.82 220.03 22.44 12.32 103.07 18.82 8.91 95.03

135 272.82 156.66 700.48 33.00 15.45 117.37 24.01 9.58 107.88

150 636.40 363.29 1449.6 45.33 20.77 153.59 28.54 10.66 164.27

175 1091.46 634.42 2358.7 74.80 40.18 278.18 33.03 15.35 230.82

180 1191.31 687.43 2567.5 86.05 47.69 317.18 34.22 16.81 202.05
* Fmax denotes maximum flow time, µF & mF denote average flow time & standard

deviations.

Table 5.4 – Conventional Approach- Percent Changes in Average

Flow Times and Standard Deviations for Different Rates

FIFO CLOOK SDM-E
Arrival
Rate µF mF µF mF µF mF
125 - - - - - -

135 80.92% 79.05% 32.00% 20.26% 21.62% 6.99%

150 91.82% 90.97% 50.50% 40.68% 34.06% 16.42%

175 95.23% 94.83% 70.00% 69.34% 43.02% 41.95%

180 95.63% 95.23% 73.92% 74.17% 45.00% 47.00%

The average makespan values of 30 replications are presented for

different rates in Table 5.5.

63

Table 5.5 – Conventional Approach- Average Makespan Values (ms)

Cmax Average Arrival
Rate FIFO CLOOK SDM-E
125 8060.73 8031.24 8027.40
135 7931.27 7442.99 7432.06
150 7922.59 6719.32 6694.00
175 7917.15 5830.95 5759.53
180 7916.67 5664.00 5574.85

The performances of three algorithms in conventional decision

setting at different rates for different measures can be interpreted

as follows:

FIFO

Table 5.1 shows that FIFO has biggest average service time with

7.90 miliseconds. As mentioned above, FIFO has a constant

average service time, and so constant average throughput rate for

every arrivals because of the reasons mentioned before. Actually,

this is the main weakness of the algorithm. It reacts to increasing

arrival rates with doing nothing. Hence, starting with the arrival

rate of 135, as arrival rate increases, the requests are observed to

be accumulated in system (saturation). Although, at the 135 Hz

(arrival/second) queue depth violations are not observed, there is a

tendency for long run (the maximum queue length is seen to be 92

at Table F.2 in Appendices). The average flow times, except those

in λ=125, show increasing trend as Table 5.6 indicates. Table 5.6

shows the average flow time values for 250, 500 and 1000 jobs,

whereas Table 5.7 gives flow time standard deviations for each

case. The considerable increments in both average and standard

deviation indicate that the system does not reach the steady state

for arrival rates other than 125 (see tables F.2 to F.5 in Appendices

for detailed statistics).

64

At 150 Hz, queue depth violations are seen for the first time. After

the 150 Hz arrival rate, FIFO completely fails with queue depth

violations in high numbers, high starvation, and of course

timeouts. At 175 and 180 Hz arrival rates, average flow time value

is even above the timeout value of 1000 ms (see Tables F.3 to F.5

in Appendices).

Table 5.6 – Conventional Approach- Average Flow Times for FIFO

 µF values for FIFO

of jobs Arrival
Rate 250 500 1000

125 35.01 44.01 52.06
135 84.41 143.60 272.82
150 169.38 323.46 636.40
175 275.11 543.26 1091.46
180 305.00 597.33 1191.31

Table 5.7 – Conventional Approach- Flow Time Standard

Deviations for FIFO

 mF values for FIFO

of jobs Arrival
Rate 250 500 1000

125 19.20 26.52 32.82
135 46.17 78.96 156.66
150 96.56 182.98 363.29
175 157.22 312.67 634.42
180 173.57 341.38 687.43

The Table 5.8 shows the average and maximum numbers of tardy

jobs having flow time of over 1000 miliseconds (Tavg, Tmax) and also

65

the average and maximum numbers of jobs being tardy twice

(T2avg, T2max) for each arrival rate. Since no timeout cases occurred

for other policies, the table was designed only for FIFO. The

timeout occurrences seen in Table 5.8 certainly proves that FIFO is

not an acceptable policy for modern hard disks which are

necessitating service of jobs coming into system with high arrival

rates of more than 150 Hz.

Table 5.8– Conventional Approach-Average and Maximum Timeout

Occurrences for FIFO (# of jobs being tardy once and twice)

 FIFO

 Tavg Tmax T2avg T2max

125 - - - -
135 - - - -
150 209 337 - -
175 538 600 77 146

A
rr
iv
al
 R

at
e

180 577 635 160 238

CLOOK

At the 125 Hz arrival rate, CLOOK has 128.95 average throughput

rate. It means that CLOOK can handle more requests, so that the

system has several idle times waiting for arrival. The maximum

queue length is 9 (see Table G.1 in Appendices).

CLOOK has almost reached steady state at the arrival rate of 135

Hz, with an average throughput rate of 135.46 jobs per second.

The flow time variance, which was expected to be little comparing

with other arrival rates, indicates the same situation.

At λ={150, 175, 180}, the average throughput rates are not far from

these values. It is expected that, with increasing number of arrivals

66

the average throughput rate increases and gets near to the arrival

rates, since the algorithm get more room for improvement. The

algorithm is expected to show better performance as the number of

jobs in the queue increases. Hence, most probably, the algorithm

never permits the queue length exceeding some number. However,

the service quality gets worse with increasing arrival rate since the

flow times and their corresponding standard deviations increase

also as Table 5.3 and Table 5.4 show.

In addition, after the 135 Hz arrival rate, while the average service

time decreases, its corresponding average standard deviation

shows also decreasing trend for CLOOK but with lower rate.

Table 5.9 and Table 5.10 show that the system has reached steady

state for λ={125, 135, 150}, since the values do not show

considerable changes with more arrivals. It is near to steady state

for λ={175, 180}. These indicate the stability of system under

CLOOK policy.

Table 5.9 – Conventional Approach- Average Flow Times for

CLOOK

 µF values for CLOOK

of jobs Arrival
Rate 250 500 1000

125 22.74 22.90 22.44
135 30.95 32.11 33.00
150 43.10 44.42 45.33
175 65.39 70.94 74.80
180 71.74 80.81 86.05

67

Table 5.10 – Conventional Approach- Flow Time Standard

Deviations for CLOOK

 mF values for CLOOK

of jobs Arrival
Rate 250 500 1000

125 12.09 12.33 12.32
135 14.83 15.51 15.45
150 21.05 20.78 20.77
175 36.57 38.76 40.18
180 41.39 45.64 47.69

SDM-E

As can be predicted before, SDM-E shows the best performance at

all arrival rates. Especially Table 5.3 and 5.4 show superior

performance of SDM-E in service quality. It outperforms CLOOK in

the average flow time and its corresponding standard deviation

values. SDM-E is very successful especially in holding the queue

lengths at very small levels (see Tables 1 to 5 in Appendix H). For

example, at the 175 Hz arrival rate, SDM-E seems not likely to

allow the queue length to exceed 11-12 while at the same rate,

CLOOK has a maximum queue length of 26. At the same arrival

rate, SDM-E has an average flow time of 33.03, whereas that value

is 74.80 for CLOOK, more than double of the value of SDM-E. A

convention is used in SDM-E simulation as holding the queue

depth as 8 at λ={175, 180} to avoid very long computational times,

and not to make scheduling for the jobs coming when the queue

depth is full (permitting 8 queue depth violation). While the actual

queue depth of 128 is not violated (Q+RQ+pending jobs <= 128),

the lowering of queue depth only means that the system does not

make rescheduling for the jobs which are in queue depth violation.

68

Hence, the scheduling performance will be inferior comparing to

128 queue depth scheduling decisions. In spite of that, the

performance of SDM-E is still superior comparing with other two

policies.

Table 5.11 and Table 5.12 indicate that the steady state has been

reached at about 1000th job’s arrival at all arrival rates.

Table 5.11 – Conventional Approach- Average Flow Times for

SDM-E

 µF values for SDM-E

of jobs Arrival
Rate 250 500 1000

125 18.81 19.03 18.82
135 23.52 23.76 24.01
150 27.93 28.14 28.54
175 32.42 32.73 33.03
180 33.41 34.06 34.22

Table 5.12 – Conventional Approach- Flow Time Standard

Deviations for SDM-E

 mF values for SDM-E

of jobs Arrival
Rate 250 500 1000

125 8.79 8.96 8.91
135 9.60 9.62 9.58
150 11.36 10.86 10.66
175 15.24 14.92 15.35
180 16.85 16.83 16.81

69

The arrival rate versus the average makespan graph for the

makespan values provided in Table 5.5 is presented in Figure 5.1.

5,0

5,5

6,0

6,5

7,0

7,5

8,0

8,5

120 125 130 135 140 145 150 155 160 165 170 175 180

Job Arrival Rate (Hz)

A
v
e
ra
ge
 M
ak
es
p
a
n
 (
1
0
0
0
 m
il
is
ec
o
n
d
s)

FIFO CLOOK SDM-E

Figure 5.1 – Conventional Approach-Arrival Rate versus Average

Makespan Values

70

The arrival rate versus average makespan graph illustrated in

Figure 5.1 shows that CLOOK and SDM-E approaches to FIFO in

makespan value at a low arrival rate of 125. The reason is that, the

queues are not filled enough for these algorithms making use of

the scheduling advantage over FIFO, at this low rate.

Since the interarrival times are greater for lower arrival rates, the

makespan values show a decreasing trend for increasing arrival

rates. But, this trend is followed very insignificantly by the FIFO

approach, since it does nothing to make use of increasing arrival

rates. In contrast to FIFO, the two algorithms enlarge the schedule

domain as the arrival rate increases and queue starts to be filled.

As the graph shows, the makespan values of CLOOK and SDM-E

proceed very close in favor of SDM-E. However, it tends to widen as

the arrival rate increases.

While the makespan objective guarantees the fastest operation, the

average flow time is more important as it is the main indicator of

the service stability. The number of jobs waiting in the queue is

also important for monitoring the queue depth violations, which

may cause system instability. The arrival rate versus the average

flow time graph for the average flow time values provided in Table

5.3 is presented in Figure 5.2. For an unbiased comparison, the

graph is provided in Figure 5.3 for percent changes given in Table

5.4. The detailed statistics for each experiment can be seen in

Appendices F, G and H.

71

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

120 125 130 135 140 145 150 155 160 165 170 175 180

Job Arrival Rate (Hz)

A
v
e
ra
ge
 F
lo
w
 T
im
e
(m
il
is
ec
o
n
d
s)

FIFO CLOOK SDM-E

Figure 5.2 – Conventional Approach-Arrival Rate versus Average

Flow Time

As can be seen from Figure 5.2, the SDM-E and CLOOK

algorithms’ flow times reach to that of FIFO at lower arrival rates.

72

But, we observe a significant difference in flow times between the

two algorithms and FIFO, at the level of 135. After that level, the

gap widenens, the FIFO is saturated, and the queue depth

violations become inevitable.

0%

20%

40%

60%

80%

100%

120%

125 130 135 140 145 150 155 160 165 170 175 180

Job Arrival Rate (Hz)

A
v
er
ag
e
F
lo
w
 T
im

e
C
h
an

ge
 (
%
)

FIFO CLOOK SDM-E

Figure 5.3 – Conventional Approach-Arrival Rate versus Average

Flow Time Percent Change

Relative to the flow time values of FIFO, the flow times of SDM-E

and CLOOK seem to behave similarly till 180 arrivals per second.

But, when the values are considered as relative to each other, it is

understood that SDM-E performs much better than CLOOK as

73

shown in Figure 5.3 indicates. Moreover, Figure 5.3 shows that the

present gap between them indicates a widening trend in favor of

SDM-E as the arrival rate increases.

Results for DE Approach

Overall average service times (µs) and their corresponding standard

deviations (ms) are given in Table 5.13 and the corresponding

average throughput rates are presented in Table 5.14 for two

approaches in deterministic decision epoch (DE) setting.

Table 5.13 – DE Approach-Average Service Time Results with

Corresponding Standard Deviations (ms/job)

CLOOK SDM-NN Arrival
Rate µs ms µs ms

125 7.77 2.49 7.71 2.47
135 7.39 2.55 7.35 2.46
150 6.70 2.55 6.67 2.37
175 5.79 2.34 5.75 2.04
180 5.63 2.28 5.57 1.96

Table 5.14 – DE Approach-Average Throughput Rates

 (jobs/second)

 CLOOK SDM-NN

125 128.75 129.72
135 135.40 136.09
150 149.31 149.91
175 172.62 173.85

A
rr
iv
al
 R
at
e

180 177.78 179.56

74

Table 5.15 shows the maximum flow times (Fmax), the average flow

times (µF) and corresponding flow time standard deviations (mF)

found by the algorithms at each arrival rate in DE decision setting

(for 30x1000 sets of data). The makespan averages are presented

in Table 5.16.

Table 5.15 – DE Approach- Flow Time Results (ms)

CLOOK SDM-NN Arrival
Rate µF mF Fmax µF mF Fmax
125 22.82 12.49 112.72 19.06 9.32 124.27
135 34.38 15.48 121.00 24.67 10.57 148.52
150 46.80 20.91 150.72 29.62 12.63 181.63
175 75.36 39.81 270.50 34.25 18.68 259.68
180 86.22 47.38 325.66 35.76 20.32 357.95

Table 5.16 – DE Approach- Percent Changes in Average Flow Times

and Standard Deviations for Different Rates

CLOOK SDM-NN
Arrival
Rate µF mF µF mF
125 - - - -

135 33.62% 19.32% 22.74% 11.83%

150 51.24% 40.27% 35.65% 26.21%

175 69.72% 68.63% 44.35% 50.11%

180 73.53% 73.64% 46.70% 54.13%

Table 5.17 – DE Approach- Average Makespan Values (ms)

Cmax Average Arrival
Rate CLOOK SDM-NN

125 8031.73 8028.71
135 7442.28 7435.09
150 6723.44 6697.95
175 5835.43 5773.84
180 5667.02 5590.43

75

The performances of two algorithms in DE decision setting at

different rates for different measures can be interpreted as follows:

CLOOK

At λ={125, 135}, CLOOK has 128.75 and 135.40 average

throughput rates. It means that CLOOK can handle more requests

as in the case of conventional approach, so that the system has

several idle times waiting for arrival. The maximum queue lengths

are 10 and 12 jobs (see Tables I.1 and I.2 in Appendices). At

λ={150, 175, 180}, the average throughput rates are not far from

those values of conventional approach. Again, the service quality

gets worse with increasing arrival rate since the flow times and

their corresponding standard deviations increase also as Table

5.15 and 5.16 show. These values also show similarity to that of

conventional approach.

Table 5.18 shows the average flow time values for 250, 500 and

1000 jobs, whereas Table 5.19 gives standard deviations for each

case. They indicate that the system has almost reached the steady

state for λ={125, 135, 150}, whereas it is near to steady state for

λ={175, 180} (see tables I.1 to I.5 in Appendices for detailed

statistics).

Table 5.18 – DE Approach- Average Flow Times for CLOOK

 µF values for CLOOK

of jobs Arrival
Rate 250 500 1000

125 22.65 23.16 22.82
135 32.47 33.48 34.38
150 44.00 45.96 46.80
175 64.90 70.83 75.36
180 71.98 80.66 86.22

76

Table 5.19 – DE Approach- Flow Time Standard Deviations for

CLOOK

 mF values for CLOOK

of jobs Arrival
Rate 250 500 1000

125 12.06 12.58 12.49
135 14.77 15.56 15.48
150 20.75 21.04 20.91
175 35.19 38.04 39.81
180 40.92 44.72 47.38

SDM-NN

SDM-NN shows better performance than CLOOK at all arrival

rates. As can be seen in Table 5.15 and 5.16, it cannot be

distinctly seen at lower rates (125 and 135), but as the rate

increases, the average flow time increase in SDM-NN is very little

comparing with CLOOK. Hence, SDM-NN shows superior

performance in service quality. It outperforms CLOOK in the

average flow time and its corresponding standard deviation values

and that advantage becomes clearer as the arrival rate increases.

SDM-NN is very successful especially in holding the queue lengths

at very small levels (see Tables 1 to 5 in Appendix J). For example,

at λ={175}, SDM-NN seems not likely to allow the queue length to

exceed 11-12 jobs while at the same rate, CLOOK has a maximum

queue length of 25 jobs.

As Table 5.20 and Table 5.21 indicate, the system has been

reached or very near to steady state for all arrival rates (see tables

J.1 to J.5 in Appendices for detailed statistics).

77

Table 5.20 – DE Approach- Average Flow Times for SDM-NN

 µF values for SDM-NN

of jobs Arrival
Rate 250 500 1000

125 19.29 19.38 19.06
135 24.06 24.44 24.67
150 28.82 29.20 29.62
175 33.08 33.60 34.25
180 34.57 35.36 35.76

Table 5.21 – DE Approach- Flow Time Standard Deviations for

SDM-NN

 mF values for SDM-NN

of jobs Arrival
Rate 250 500 1000

125 9.37 9.44 9.32
135 10.27 10.61 10.57
150 13.05 12.76 12.63
175 18.27 18.30 18.68
180 19.72 20.14 20.32

The arrival rate versus the average makespan graph is presented in

Figure 5.4. The arrival rate versus the average flow time graph is

presented in Figure 5.5. For an unbiased comparison, the graph

displaying percent changes is given in Figure 5.6. The detailed

statistics for each experiment can be seen in Appendices I and J.

78

5,5

6,0

6,5

7,0

7,5

8,0

8,5

120 125 130 135 140 145 150 155 160 165 170 175 180

Job Arrival Rate (Hz)

A
v
e
ra
g
e
 M
a
k
e
sp
a
n
 (
1
0
0
0
 m
s)

CLOOK SDM-NN

Figure 5.4 – DE Approach-Arrival Rate versus Average Makespan

Values

The arrival rate versus average makespan graph illustrated in

Figure 5.4 shows that CLOOK and SDM-NN perform almost the

same, with better performance of SDM-NN as the arrival rate is

79

getting bigger, so SDM-NN widens the gap as the arrival rate

increases. Both of the two algorithms enlarge the schedule domain

as the arrival rate increases and queue starts to be filled.

0

10

20

30

40

50

60

70

80

90

100

120 125 130 135 140 145 150 155 160 165 170 175 180

Job Arrival Rate (Hz)

A
v
er
ag
e
F
lo
w
 T
im
e
(m
s)

CLOOK SDM-NN

Figure 5.5 – DE Approach-Arrival Rate versus Average Flow Time

As can be seen from Figure 5.5, the main advantage of SDM-NN

over CLOOK algorithm is its superior performance in average flow

time near to that of SDM-E of conventional approach. As the graph

in Figure 5.6 shows, at every increase in arrival rate, the average

80

flow time increase in SDM-NN is also relatively low comparing with

that of CLOOK.

0%

10%

20%

30%

40%

50%

60%

70%

80%

125 130 135 140 145 150 155 160 165 170 175 180

Job Arrival Rate (Hz)

A
v
e
ra
ge
 F
lo
w
 T
im
e
C
h
an
ge
 (
%
)

CLOOK SDM-NN

Figure 5.6 – DE Approach-Arrival Rate versus Average Flow Time

Percent Change

The graph shows that the present gap between them indicates a

widening trend in favor of SDM-NN especially after the 150 Hz

arrival rate. Hence, SDM-NN has the short average flow time

advantage of SDM-E without high computational requirements.

81

CHAPTER 6

CONCLUSIONS AND FURTHER STUDY

In the study, the classical disk scheduling problem has been

investigated under two categories, offline and online settings. A

generic mathematical model is developed for the offline problem as

an adaptation of traveling salesman problem with time windows for

the offline problem. It is given four different performance criteria:

makespan, makespan with due date, number of tardy jobs, and

total (or average) flow time. The offline problem is a deterministic

problem, whereas the online problem is a stochastic one in which

the information comes over time. The arrival times and addresses

are not known until requests are realized. However, online problem

could be handled by solving consecutive offline problems, when it

is possible.

For online problem a deterministic decision epoch (DE) concept is

introduced for the decision making problem in disk scheduling for

the purpose of reducing stochastic decision structure to a

deterministic one. In addition to conventional decision approach,

which is based on taking decision at every new arrival and/or

timeout, DE approach was implemented within the study.

In conventional decision approach, the simulations developed for

the online problem used the offline problem for the frozen state of

the system. By this way, the exact solution of sequence dependent

makespan minimization (SDM-E) is implemented. Two more

82

simulations also are developed for the FIFO and CLOOK algorithms

for benchmarking purposes.

After an experimentation, it has been seen that the SDM-E showed

a better performance over CLOOK with a slight margin in

makespan criterion in conventional decision setting. Apparently,

the margin has been widening as the arrival rate is getting larger.

In average flow time criterion, especially, after the rate of 150 jobs,

SDM-E performs much better than CLOOK. FIFO, especially for the

arrival rates greater than 125, has showed an inferior performance.

Experimentation implies that FIFO is certainly not an acceptable

policy for modern hard disk systems necessitating high throughput

rates.

Although the SDM-E performs so well, its high computational time

requirements do not support practical applications. Hence, we

applied the Nearest Neighbor TSP heuristic for the approximate

solution of sequence dependent makespan minimization problem

(SDM-NN) and assessed its performance over CLOOK under DE

setting.

After an experimentation under DE setting, it is found that the

improvement by SDM-NN over CLOOK is not high for makespan

criterion. But the average flow time by SDM-NN is superior

compared to CLOOK and getting more and more advantageous

than CLOOK as the arrival rate increases. Queue lengths also

show the same behaviour in favor of SDM-NN. SDM-NN shows

almost same performance to SDM-E applied under conventional

setting but does not bear the computational disadvantage of it.

Hence, it is found possible to improve the quality of service by

83

implementing SDM-NN approach having similar computational

requirements with CLOOK.

In DE setting, every time interval between consecutive completion

of processing of jobs is taken as an available time for making

decisions. However, that epoch may not be enough in high arrival

rates or it may be too short for enough number of jobs coming into

the system for making the effective decisions in rich domains.

Hence a DE-k system could be developed in which, the DM waits

for k consecutive completions instead of just one as s/he does in

our system. This is left to a further study.

In addition to the experimentation with artificially generated data,

an experimentation with the real data would be helpful for

assessing the validity of our conclusions. It would also help

assessing the validity of the assumptions that job addresses are

uniformly distributed over disk surface and job interarrival times

conform to Poisson distribution. This work is left to a further

study.

An interesting future research subject in the disk scheduling area

is about the possible performance improvements for a disk system

having two queues instead of one. This is left to a further study

too. A brief information on the subject can be found in Appendix H.

84

REFERENCES

Albers, Suzanne, S. Leonardi. 1999. On-line algorithms. ACM

Computing Surveys, Vol. 31 , Article No. 4.

Andrews, M., M. A. Bender, and L. Zhang. 2002. New algorithms for

disk scheduling. Algorithmica, Vol. 32 277-301.

Ascheuer, N., M. Fischetti, and M. Grötschel. 2001. Solving the

asymmetric traveling salesman problem with time windows by

branch-and-cut. Mathematical Programming, Ser. A 90 475-506.

Balakrishnan, N., J.J. Kanet, and S.V. Sridharan. 1999. Early/tardy

scheduling with sequence dependent setups on uniform parallel

machines. Computers & Operations Research, Vol. 26 127-141.

Ben-Daya, M., and M.Al-Fawzan. 1998. A tabu search approach for

the flow shop scheduling problem. European Journal of Operational

Research, Vol. 109 88-95.

Bonifaci, Vincenzo. 2005. Online vehicle routing problems

http://www.dis.uniroma1.it/~dottorato/db/relazioni/relaz_bonifaci_

2. pdf.

Burkhard, W.A., and J.D. Palmer. 2001. Rotational position

optimization (RPO) disk scheduling. Proceedings of the First

Conference on File and Storage Technologies (FAST’02), January 28-

29, 2002, Monterey, California.

85

Chang, MS., SR. Chen, CF. Hsueh. 2003. Real-time vehicle routing

problem with time windows and simultaneous delivery/pickup

demands. Journal of the Eastern Asia Society for Transportation.

Correa, Jose R., and Michael R. Wagner. 2005. LP-based online

scheduling: From single to parallel machines. Lecture Notes in

Computer Science, Vol. 3509, Springer Berlin / Heidelberg, 196-209.

Denning, P.J. Effects of scheduling on file memory operations. Proc.

AFIPS 1967 SJCC, Vol. 30, AFIPS Press, Montvale, N.J., 9-21.

Desrosiers, J., Y. Dumas, M. M. Solomon, and F. Soumis. 1995.

Network routing. Handbook on Operations Research and

Management Science, Vol. 8, North Holland, Amsterdam, 35-139.

Ganger, G.R. 1995. Generating representative synthetic workloads:

An unsolved problem. Proceedings of the Computer Measurement

Group (CMG) Conference, 1263-1269.

Geist, R, and S. Daniel, 1987. A continuum of disk scheduling

algorithms. ACM Transactions on Computer Scheduling, Vol. 5(1) 77-

92.

Huang, L., and T.C. Chiueh. 2002. Experiences in building a

software-based SATF scheduler. State University of New York at

Stony Brook Technical Report, www.ecsl.cs.sunysb.edu/tr/TR81.ps.

Jacobson, M., and J. Wilkes. 1991. Disk scheduling algorithms

based on rotational position. HP Laboratories Technical Report.

86

Kordon, A.M., and J.B. Note. 2005. A buffer minimization problem

for the design of embedded systems. European Journal of

Operational Research Vol. 164 669-679.

Minitab Inc. 2000. Minitab 13.1 - Statistical Software Package.

Nutt, G. 1999. Operating systems – A modern perspective, Addison-

Wesley, 116-122.

Pandit, V., and R. Khandekar. 2005. Online sorting buffers on line.

IBM Research Division Technical Report.

Popovici, F.I., A.C. Arpacı-Dusseau, and R.H. Arpacı-Dusseau.

2003. Robust, portable I/O scheduling with the disk mimic.

Proceedings of the USENIX 2003 Annual Technical Conference, June

9-14, 2003, San Antonio, Texas.

Rabadi, G. 2001. Application of constraint programming to a

scheduling problem with a common due date and setup times.

Proceedings of the First International Industrial Engineering

Conference, Sept. 23-27, 2001, Amman, Jordan.

Reinelt, Gerhard. 1994. The traveling salesman: Computational

solutions for TSP applications. Lecture Notes in Computer Science

Vol. 840. Springer-Verlag.

Reuther, L., and M. Pohlack. 2003. Rotational-position-aware real-

time disk scheduling using a dynamic active subset (DAS).

Proceedings of the 24th IEEE International Real-Time Systems

Symposium, December, 2003, Cancun, Mexico.

87

Seltzer M., P. Chen, and J. Ousterhout. 1990. Disk scheduling

revisited. Proceedings of the Winter Usenix, January 1990,

Washington, D.C.

Silberschatz, A., P.B. Galvin, and G. Gagne. 2002. Operating system

concepts 6th ed., John Wiley & Sons, 491-536.

Sleator, D.D., and R.E. Tarjan. 1985. Amortized efficiency of list

update and paging rules. Communications of the ACM, Vol. 28 202-

208.

Stallings, W. 2001. Operating systems: Internals and Design

Principles 4th ed., Prentice Hall, 486-493.

Teorey, T., and T. Pinkerton. 1972. A comparative analysis of disk

scheduling policies. Communications of the ACM, Vol. 15(3) 177-

184.

Thomasian, A., C. Liu. 2002. Some new disk scheduling policies and

their performance. ACM SIGMETRICS Performance Evaluation Review

Vol. 30 , Issue 1. Measurement and modeling of computer systems,

266 – 267.

Winter, T., and U. T. Zimmermann. 1998. Discrete online and real-

time optimization. Proceedings of the 15th IFIP World Computer

Congress, Budapest /Vienna, August 31 - September 4, 1998.

Worthington, B.L., G.R. Ganger, and Y.N. Pratt. 1994. Scheduling

algorithms for modern disk drives. Proceedings of the ACM

Sigmetrics Conference, May, 1994, 241-251.

88

APPENDIX A

A.1 Simulation Code Framework for Conventional Decision

Approach

Where:

i: job identity index

j: job processing index

Seq (1..n) : Job processing array

Qseq (1..queue_depth) : Array of Jobs in Queue, subject to

change in Reschedule procedures

for i=1 to n

 if ri < c “the next arrival before completion of job in process

 if RQ1 = 0

 RQ1 = 1

 RQ(1) = i

 if RQ1 = 1 and RQ2 = 0

 RQ2 = 1

 RQ(2) = i

 if Q >= 0

 Q = Q+1

 Qseq(Q) = i

 if Q > 1

 Reschedule (Q)

 i = i + 1

 else if ri > c “completion of job in process before the new arrival

89

 if RQ1 = 0

 Seq(j) = i

 c = c + Sj-1,j +t

 j = j + 1

 if RQ1 = 1 and RQ2 = 0

 Seq(j) = RQ(1)

 RQ(1) = i

 c = c + Sj-1,j +t

 j = j + 1

 if ri > c “more than one completion before the arrival

 Seq(j) = RQ1

 RQ1 = 0 JobSlipping

 c = c + Sj-1,j +t

 j = j + 1

 if RQ1 = 1 and RQ2 = 1 and Q = 0

 Seq(j) = RQ1

 RQ1 = RQ2

 RQ2 = i

 c = c + Sj-1,j +t

 j = j + 1

 while ri > c

 JobSlipping

 if RQ1 = 1 and RQ2 = 1 and Q > 0

 Seq(j) = RQ1

 RQ1 = RQ2

 RQ2 = Qseq(1)

 c = c + Sj-1,j +t

 j = j + 1

 for k = 1 to Q-1

 Qseq(k) = Qseq(k+1)

 Qseq(Q) = i

90

 Reschedule(Q)

 while ri > c

 JobSlipping

while j < n

 JobSlipping

terminate.

91

A.2 Simulation Code Framework for DE Approach

Where:

i : job identity index

ind: job processing index

Comp(ind): Completion time of the job which is processed in

“ind” sequence.

Seq (1..n) : Job processing array

Qseq (1..queue_depth) : Array of Jobs in Queue, subject to

change in Reschedule procedures

for i=1 to n

 if c > ri “the next arrival before completion of job in process

 if RQ1 = 0

 ind = ind+1

 Seq(ind) = i

 RQ1 = 1

 RQ(1) = i

 if RQ1 = 1 and RQ2 = 0

 ind = ind+1

 Seq(ind) = i

 RQ2 = 1

 RQ(2) = i

 if Q >= 0

 Q = Q+1

 Qseq(Q) = i

 else if c <= ri “completion of job in process before the new arrival

 if RQ1 = 0

 ind = ind+1

 Seq(ind) = i

92

 Comp(ind) = ri + SSeq(ind-1),Seq(ind) +t

 c = Comp(ind)

 if RQ1 = 1 and RQ2 = 0

 RQ(1) = I

 ind = ind+1

 Comp(ind-1) = c + SSeq(ind-2),Seq(ind-1) +t

 c = Comp(ind-1)

 if c <= ri “more than one completion before the arrival

 RQ1 = 0

 Comp(ind) = ri + SSeq(ind-1),Seq(ind) +t Job Slipping

 c = Comp(ind)

 if RQ1 = 1 and RQ2 = 1 and Q = 0

 RQ1 = RQ2

 RQ2 = i

 ind = ind+1

 Comp(ind-2) = c + SSeq(ind-3),Seq(ind-2) +t

 c = Comp(ind-2)

 while c <= ri

 JobSlipping

 if RQ1 = 1 and RQ2 = 1 and Q > 0

 Reschedule (Q)

 RQ1 = RQ2

 RQ2 = Qseq(1)

 for k = 1 to Q-1

 Qseq(k) = Qseq(k+1)

 Qseq(Q) = i

 while c <= ri

 JobSlipping

while ind < n

 JobSlipping

terminate.

93

APPENDIX B

CLOOK Code Framework

if Qseq(1) < RQ(2)

if newjob > RQ(2)

 Qseq(1) = newjob

 Reorder Qseq

else if newjob < RQ(2)

i = 1

 while newjob >Qseq(i) and i <= Q

 i = i + 1

 Qseq(i) = newjob

 Reorder Qseq

else if Qseq(1) >= RQ(2)

if newjob >= RQ(2)

 i = 1

 while Qseq(i)>RQ(2) and newjob>Qseq(i) and i<=Q

 i = i +1

 Qseq(i) = newjob

 Reorder Qseq

else if newjob < RQ(2)

 i = 1

while Qseq(i)>RQ(2) and i<=Q

 i = i +1

 if i > Q

 Qseq(i) = newjob

 else if i <= Q

94

 while Qseq(i) < newjob and i <= Q

 i = i +1

Qseq(i) = newjob

 Reorder Qseq

terminate.

95

APPENDIX C

SDM-NN Code Framework

for i=1 to │Qj-1│

if setup time of ith member of Qj-1 depending on {RQ2}j is

smaller than that of New(1)

New(1) = ith member

next i

Newseq(1) = Qseq(New(1)

for i=2 to │Qj-1│

 for k=1 to │Qj-1│

 z=1, control=0

 while control=0 and z<i

 if k=New(z)

 control=1

 z=z+1

 if control=0

 Newdist=si,j (Newseq(i-1), Qseq(k))

 if Newdist<Dist

 Dist=Newdist

 New(i)=k

 next k

next i

96

APPENDIX D

Lingo 8.0 TSP Modeling Interface Code

MODEL:

DATA:

NCITY= @pointer(1);

ENDDATA

SETS:

CITY/1..NCITY/:;

LINK(CITY,CITY):DIST,X;

COMP(CITY):C;

ENDSETS

[OBJECTIVE] MIN = CMAKS ;

N=@SIZE(CITY);

@FOR(CITY(J):@FOR(CITY(K)|J#EQ#K:X(J,K)=0;));

@FOR(CITY(K)|K#NE#1:@SUM(CITY(I)|I#NE#N:X(I,K))=1;);

@FOR(CITY(K)|K#NE#N:@SUM(CITY(J)|J#NE#1:X(K,J))=1;);

@SUM(CITY(J):X(J,1))=0;

@FOR(CITY(J):@FOR(CITY(K)|J#NE#K#AND#K#GT#1:

C(K)>=DIST(J,K)-100000*(1-X(J,K));));

@FOR(CITY(J):@FOR(CITY(K)|J#NE#K#AND#K#GT#1:

C(K)-C(J)+100000*(1-X(J,K))>=DIST(J,K);));

@FOR(LINK:@BIN(X););

@FOR(CITY(J):CMAKS>=C(J););

DATA:

DIST=@pointer(2);

@pointer(3)=OBJECTIVE;

@pointer(4)=@status();

@TEXT(C:\MYFILE.OUT) = X;

ENDDATA

END

97

APPENDIX E

Sample SDM-E Simulation Formatted Output for 50 jobs

Jobs in System at ri
Job

Identity(i)
 Arrival
Time(ri)

 Comp.
Time(ci)

 Seek
+Latency

FlowTime
(ci - ri) Serv. RQ1 RQ2 Q1 Q2 Q3 Q4 Q5 Q6

1 11 11.15 0 0.15 1
2 16 27.03 10.876 11.03 2
3 20 36.03 8.852 16.03 2 3
4 29 41.6 5.419 12.6 3 4
5 35 52.99 11.243 17.99 3 4 5
6 39 61.8 8.66 22.8 4 5 6
7 45 71.31 9.358 26.31 5 6 7
9 51 76.25 4.791 25.25 5 6 7 8 9
8 49 82.6 6.206 33.61 5 6 7 8

11 65 88.26 5.506 23.26 7 9 8 10 11
10 63 95 6.584 32 7 9 8 10
12 74 99.78 4.633 25.78 9 8 11 10 12
13 81 104.54 4.612 23.54 8 11 10 12 13
14 91 109.54 4.854 18.54 10 12 13 14
15 98 115.65 5.956 17.65 12 13 14 15
16 102 118.89 3.088 16.89 13 14 15 16
17 105 128.88 9.84 23.88 14 15 16 17
18 112 137.86 8.833 25.86 15 16 17 18
19 121 141.98 3.973 20.98 17 18 19
20 128 150.67 8.533 22.67 17 18 19 20
21 137 160.16 9.348 23.16 18 19 20 21
22 145 168.01 7.692 23.01 20 21 22
23 148 176.82 8.668 28.83 20 21 22 23
24 152 185.58 8.61 33.59 21 22 23 24
25 158 192.04 6.3 34.03 21 22 23 24 25
26 164 196.89 4.705 32.89 22 23 24 25 26
29 173 201.91 4.872 28.91 23 24 25 26 28 27 29
31 186 208.18 6.123 22.18 25 26 29 28 27 30 31
27 169 213.52 5.182 44.52 23 24 25 26 27
30 178 217.9 4.229 39.9 24 25 26 29 28 27 30
35 207 222.69 4.644 15.69 31 27 30 33 28 32 34 35
33 191 229.94 7.099 38.94 25 26 29 28 32 30 31 27 33
28 171 236.11 6.021 65.11 23 24 25 26 27 28
32 187 241.28 5.022 54.28 25 26 29 28 27 30 31 32

98

Sample SDM-E Simulation Formatted Output for 50 jobs

(continued)

38 228 243.76 2.33 15.76 33 28 32 34 37 36 38
34 199 245.77 1.857 46.77 29 31 27 30 33 28 32 34
36 218 249.81 3.894 31.81 35 33 28 32 34 36
39 233 257.1 7.141 24.1 28 32 38 34 37 36 39
41 242 259.77 2.517 17.77 38 34 36 39 37 40 41
37 225 271.8 11.883 46.8 33 28 32 34 36 37
43 254 277.74 5.786 23.74 39 41 37 42 40 43
42 249 286.33 8.44 37.33 36 39 41 37 40 42
40 235 288.87 2.394 53.87 28 32 38 34 39 37 36 40
45 264 291.59 2.563 27.59 37 43 42 40 44 45
47 279 296.24 4.5 17.24 42 40 45 46 44 47
48 285 301.25 4.863 16.25 42 40 45 47 44 46 48
44 261 306.35 4.948 45.35 37 43 42 40 44
50 294 311.21 4.712 17.21 47 48 44 46 49 50
46 272 316.17 4.815 44.17 43 42 40 45 44 46
49 288 323.24 6.916 35.24 40 45 47 48 44 46 49

99

APPENDIX F

FIFO Simulation Average Results in Conventional Approach

Table F.1 – Results for FIFO at 125 Hz Arrival Rate

125
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs

Waiting
(Q+RQ)

 FIFO 1 7.92 7966.55 145.60 68.26 18

 FIFO 2 8.00 8103.43 170.33 72.15 21

 FIFO 3 7.88 8103.79 124.81 34.63 16

 FIFO 4 7.97 8008.61 220.03 113.27 26

 FIFO 5 7.82 8057.14 64.90 26.43 9

 FIFO 6 8.04 8064.79 157.22 103.25 19

 FIFO 7 7.84 8076.99 88.01 29.39 11

 FIFO 8 8.01 8119.89 134.64 53.29 17

 FIFO 9 7.92 8179.38 76.51 27.12 9

 FIFO 10 7.95 7995.59 197.03 87.69 25

 FIFO 11 7.95 8083.55 115.13 58.99 15

 FIFO 12 7.76 7978.05 85.37 31.81 10

 FIFO 13 7.95 8020.52 173.16 82.83 21

 FIFO 14 7.77 7982.41 125.66 45.06 15

 FIFO 15 7.97 8082.42 77.39 35.89 9

 FIFO 16 7.85 8017.28 101.98 36.22 12

 FIFO 17 7.79 8109.55 76.77 24.97 9

 FIFO 18 7.85 8135.58 54.78 22.36 6

 FIFO 19 7.69 7936.82 76.53 25.68 9

 FIFO 20 7.87 8053.65 123.71 47.92 16

 FIFO 21 7.95 8130.67 109.39 39.79 13

 FIFO 22 7.92 8096.53 102.53 31.23 12

 FIFO 23 7.90 8163.90 103.37 35.74 13

 FIFO 24 8.00 8022.76 138.04 69.45 17

 FIFO 25 8.01 8079.22 169.67 82.83 20

 FIFO 26 7.89 8016.17 122.53 46.88 14

 FIFO 27 7.93 8058.22 82.23 34.59 11

 FIFO 28 7.89 7998.02 172.18 76.94 23

 FIFO 29 8.05 8089.61 182.19 90.46 21

 FIFO 30 7.81 8090.72 76.97 26.53 9

 FIFO 7.90 8060.73 220.03 52.06 26

100

Table F.2 - Results for FIFO at 135 Hz Arrival Rate

135
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs

Waiting
(Q+RQ)

 FIFO 1 7.92 7938.10 653.57 306.88 79

 FIFO 2 8.00 8006.24 700.48 392.34 85

 FIFO 3 7.88 7897.07 411.42 244.33 53

 FIFO 4 7.97 8000.87 603.02 332.75 76

 FIFO 5 7.82 7838.72 291.68 147.86 34

 FIFO 6 8.04 8065.79 649.02 422.24 79

 FIFO 7 7.84 7854.98 422.98 184.62 57

 FIFO 8 8.01 8047.17 698.17 381.87 85

 FIFO 9 7.92 7927.89 644.47 335.12 82

 FIFO 10 7.95 7973.34 687.34 334.13 89

 FIFO 11 7.95 7988.10 598.84 249.36 74

 FIFO 12 7.76 7786.23 417.35 216.81 52

 FIFO 13 7.95 7987.43 487.04 241.98 61

 FIFO 14 7.77 7820.37 573.85 260.86 72

 FIFO 15 7.97 7984.75 646.95 341.65 81

 FIFO 16 7.85 7880.54 503.98 270.29 66

 FIFO 17 7.79 7798.54 334.36 180.58 42

 FIFO 18 7.85 7870.49 448.86 188.73 57

 FIFO 19 7.69 7721.41 305.92 127.93 40

 FIFO 20 7.87 7925.62 605.62 258.09 73

 FIFO 21 7.95 8008.14 476.07 265.12 60

 FIFO 22 7.92 7945.99 679.99 329.48 81

 FIFO 23 7.90 7913.59 689.57 322.88 92

 FIFO 24 8.00 8011.85 572.85 267.59 71

 FIFO 25 8.01 8024.45 568.64 282.68 70

 FIFO 26 7.89 7927.17 519.76 262.79 66

 FIFO 27 7.93 7959.04 517.87 254.76 65

 FIFO 28 7.89 7907.22 419.71 236.30 56

 FIFO 29 8.05 8087.26 614.62 357.34 78

 FIFO 30 7.81 7839.69 428.60 187.19 53

 FIFO 7.90 7931.27 700.48 272.82 92

101

Table F.3 - Results for FIFO at 150 Hz Arrival Rate

150
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs

Waiting
(Q+RQ)

 FIFO 1 7.92 7937.40 1275.51 615.83 154

 FIFO 2 8.00 8015.24 1259.01 660.78 159

 FIFO 3 7.88 7891.63 1200.28 656.52 157

 FIFO 4 7.97 7981.06 1164.16 587.99 146

 FIFO 5 7.82 7836.35 1338.77 732.36 168

 FIFO 6 8.04 8067.79 1316.85 670.12 166

 FIFO 7 7.84 7859.49 1193.49 601.43 153

 FIFO 8 8.01 8028.91 1268.91 646.83 153

 FIFO 9 7.92 7942.90 1228.90 642.72 156

 FIFO 10 7.95 7972.89 1356.89 661.83 176

 FIFO 11 7.95 7959.89 1269.89 617.68 159

 FIFO 12 7.76 7772.20 1145.73 508.43 146

 FIFO 13 7.95 7956.14 1225.12 619.40 155

 FIFO 14 7.77 7803.14 1095.13 558.06 137

 FIFO 15 7.97 7983.75 1266.20 624.05 161

 FIFO 16 7.85 7860.28 1326.86 674.31 175

 FIFO 17 7.79 7808.52 1289.61 640.88 166

 FIFO 18 7.85 7867.24 1253.35 623.24 160

 FIFO 19 7.69 7708.43 1216.43 596.87 154

 FIFO 20 7.87 7888.07 1131.81 469.82 136

 FIFO 21 7.95 7973.74 1242.74 598.93 158

 FIFO 22 7.92 7954.55 1243.55 572.56 149

 FIFO 23 7.90 7914.11 1334.30 708.02 172

 FIFO 24 8.00 8014.85 1377.85 730.84 175

 FIFO 25 8.01 8016.55 1449.55 747.62 181

 FIFO 26 7.89 7906.17 1216.55 643.00 154

 FIFO 27 7.93 7947.92 1274.92 640.32 164

 FIFO 28 7.89 7903.22 1332.57 714.24 173

 FIFO 29 8.05 8076.45 1406.17 749.88 182

 FIFO 30 7.81 7828.82 1156.82 577.29 143

 FIFO 7.90 7922.59 1449.55 636.39 182

102

Table F.4 - Results for FIFO at 175 Hz Arrival Rate

175
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs

Waiting
(Q+RQ)

 FIFO 1 7.92 7937.10 2250.57 1120.66 275

 FIFO 2 8.00 8007.24 2294.24 1172.93 290

 FIFO 3 7.88 7890.07 2061.73 1029.90 264

 FIFO 4 7.97 7983.00 2239.00 1189.01 283

 FIFO 5 7.82 7839.76 2127.86 1044.65 273

 FIFO 6 8.04 8053.79 2358.70 1208.43 298

 FIFO 7 7.84 7854.12 2068.12 1006.80 262

 FIFO 8 8.01 8028.59 2303.59 1138.07 282

 FIFO 9 7.92 7938.90 2183.90 1086.50 278

 FIFO 10 7.95 7957.31 2209.31 1098.64 280

 FIFO 11 7.95 7961.89 2331.57 1164.32 286

 FIFO 12 7.76 7779.49 2119.61 1033.51 271

 FIFO 13 7.95 7954.12 2259.12 1142.45 284

 FIFO 14 7.77 7786.16 1974.16 939.03 251

 FIFO 15 7.97 7980.75 2308.32 1134.10 293

 FIFO 16 7.85 7854.63 2020.43 1035.82 264

 FIFO 17 7.79 7799.54 2079.80 1030.96 264

 FIFO 18 7.85 7856.24 2098.24 1046.84 268

 FIFO 19 7.69 7704.43 2051.43 1009.53 265

 FIFO 20 7.87 7882.07 2094.07 976.80 257

 FIFO 21 7.95 7967.60 2266.60 1108.76 283

 FIFO 22 7.92 7933.82 2330.82 1095.42 285

 FIFO 23 7.90 7918.59 2248.63 1118.68 284

 FIFO 24 8.00 8004.80 2198.80 1092.66 277

 FIFO 25 8.00 8008.45 2322.45 1137.45 290

 FIFO 26 7.89 7906.78 2211.78 1111.66 282

 FIFO 27 7.93 7938.46 2236.12 1124.60 283

 FIFO 28 7.89 7906.22 2262.22 1162.78 295

 FIFO 29 8.05 8063.48 2172.29 1129.77 279

 FIFO 30 7.81 7817.16 2110.16 1053.15 266

 FIFO 7.90 7917.15 2358.70 1091.46 298

103

Table F.5 - Results for FIFO at 180 Hz Arrival Rate

180
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs

Waiting
(Q+RQ)

 FIFO 1 7.92 7937.10 2464.10 1178.32 303

 FIFO 2 8.00 8011.24 2531.24 1250.67 320

 FIFO 3 7.88 7884.28 2304.93 1180.75 297

 FIFO 4 7.97 7982.06 2413.06 1191.66 307

 FIFO 5 7.82 7831.04 2276.46 1183.08 292

 FIFO 6 8.04 8061.79 2421.79 1297.04 306

 FIFO 7 7.84 7853.12 2237.12 1102.73 284

 FIFO 8 8.01 8027.54 2567.54 1276.61 315

 FIFO 9 7.92 7935.90 2443.90 1231.82 308

 FIFO 10 7.95 7953.31 2430.31 1231.52 306

 FIFO 11 7.95 7958.89 2348.64 1165.03 288

 FIFO 12 7.76 7772.20 2112.73 1030.90 271

 FIFO 13 7.95 7957.12 2405.12 1231.57 303

 FIFO 14 7.77 7786.38 2142.38 1041.88 274

 FIFO 15 7.97 7976.75 2437.88 1209.82 306

 FIFO 16 7.85 7866.28 2309.08 1219.09 302

 FIFO 17 7.79 7795.54 2152.24 1082.36 274

 FIFO 18 7.85 7858.24 2383.24 1192.02 303

 FIFO 19 7.69 7706.63 2086.63 1036.42 269

 FIFO 20 7.87 7881.07 2338.07 1118.01 290

 FIFO 21 7.95 7962.56 2527.56 1234.17 315

 FIFO 22 7.92 7932.58 2423.58 1173.54 297

 FIFO 23 7.90 7909.62 2478.99 1261.42 311

 FIFO 24 8.00 8017.85 2565.85 1287.59 323

 FIFO 25 8.01 8016.95 2361.95 1148.92 294

 FIFO 26 7.89 7904.78 2449.78 1260.28 309

 FIFO 27 7.93 7938.46 2560.46 1273.53 326

 FIFO 28 7.89 7897.22 2335.22 1185.23 305

 FIFO 29 8.05 8061.32 2496.73 1306.48 321

 FIFO 30 7.81 7822.16 2309.16 1156.87 293

 FIFO 7.90 7916.67 2567.54 1191.31 326

104

APPENDIX G

CLOOK Simulation Average Results in Conventional Approach

Table G.1 - Results for CLOOK at 125 Hz Arrival Rate

125
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs

Waiting
(Q+RQ)

 CLOOK 1 7.69 7949.71 71.87 22.60 6
 CLOOK 2 7.80 8065.21 80.08 22.99 8
 CLOOK 3 7.72 8102.72 77.03 19.63 6
 CLOOK 4 7.76 7970.60 78.96 24.24 9
 CLOOK 5 7.77 8052.05 71.48 20.44 6
 CLOOK 6 7.88 8025.58 85.75 26.50 8
 CLOOK 7 7.67 8062.36 62.16 17.99 6
 CLOOK 8 7.82 8094.67 74.65 21.75 7
 CLOOK 9 7.83 8182.65 89.25 22.39 6
 CLOOK 10 7.68 7878.80 89.54 25.13 8
 CLOOK 11 7.79 8083.55 76.99 24.00 7
 CLOOK 12 7.68 7972.79 74.72 19.81 6
 CLOOK 13 7.76 7907.66 74.09 25.40 8
 CLOOK 14 7.61 7987.01 73.97 22.36 7
 CLOOK 15 7.85 8061.87 86.77 23.50 6
 CLOOK 16 7.70 8017.28 80.80 22.04 7
 CLOOK 17 7.69 8109.55 71.99 19.03 7
 CLOOK 18 7.80 8135.58 70.08 20.61 6
 CLOOK 19 7.62 7936.82 69.47 20.70 7
 CLOOK 20 7.69 7974.07 83.05 22.07 7
 CLOOK 21 7.84 8106.14 71.03 22.60 6
 CLOOK 22 7.82 8086.01 81.25 21.81 8
 CLOOK 23 7.74 8163.90 70.95 20.68 6
 CLOOK 24 7.84 7960.92 70.29 23.16 7
 CLOOK 25 7.75 7994.85 95.55 25.18 8
 CLOOK 26 7.73 7988.58 79.43 22.09 7
 CLOOK 27 7.82 8058.22 103.07 23.29 7
 CLOOK 28 7.71 7880.39 87.22 24.99 8
 CLOOK 29 7.84 8079.59 81.57 22.70 7
 CLOOK 30 7.74 8048.00 79.72 23.35 6

 CLOOK 7.75 8031.24 103.07 22.44 9

105

Table G.2 - Results for CLOOK at 135 Hz Arrival Rate

135
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs

Waiting
(Q+RQ)

 CLOOK 1 7.30 7314.62 105.33 36.53 9

 CLOOK 2 7.34 7350.22 102.25 34.60 9

 CLOOK 3 7.42 7525.65 103.00 28.48 10

 CLOOK 4 7.37 7430.75 101.72 34.26 8

 CLOOK 5 7.51 7596.22 92.82 28.43 9

 CLOOK 6 7.35 7460.32 102.32 33.52 9

 CLOOK 7 7.42 7497.88 93.07 30.16 8

 CLOOK 8 7.36 7412.51 98.02 35.42 9

 CLOOK 9 7.33 7343.45 108.81 36.28 10

 CLOOK 10 7.30 7322.82 102.38 35.90 11

 CLOOK 11 7.41 7452.28 91.07 33.18 9

 CLOOK 12 7.36 7432.51 106.62 31.97 12

 CLOOK 13 7.49 7541.41 112.97 34.48 9

 CLOOK 14 7.22 7285.67 96.26 33.74 9

 CLOOK 15 7.34 7375.17 87.58 34.16 8

 CLOOK 16 7.38 7424.25 117.37 33.86 12

 CLOOK 17 7.46 7532.09 82.58 29.52 9

 CLOOK 18 7.38 7495.35 101.30 32.78 9

 CLOOK 19 7.37 7472.44 90.77 32.10 8

 CLOOK 20 7.28 7365.99 94.24 33.76 10

 CLOOK 21 7.48 7575.32 94.18 29.21 8

 CLOOK 22 7.28 7316.75 89.12 35.14 10

 CLOOK 23 7.25 7275.74 100.12 35.39 8

 CLOOK 24 7.45 7480.49 90.87 34.32 9

 CLOOK 25 7.46 7530.62 86.17 30.77 8

 CLOOK 26 7.39 7452.01 99.20 33.94 10

 CLOOK 27 7.44 7512.22 105.12 33.32 9

 CLOOK 28 7.46 7531.57 90.35 30.64 9

 CLOOK 29 7.45 7532.77 105.90 32.71 9

 CLOOK 30 7.42 7450.49 91.67 31.38 9

 CLOOK 7.38 7442.99 117.37 33.00 12

106

Table G.3 - Results for CLOOK at 150 Hz Arrival Rate

150
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs

Waiting
(Q+RQ)

 CLOOK 1 6.70 6737.17 116.72 45.84 12

 CLOOK 2 6.78 6796.62 134.23 44.34 13

 CLOOK 3 6.75 6771.42 106.99 42.75 11

 CLOOK 4 6.85 6857.20 124.77 44.72 11

 CLOOK 5 6.52 6547.35 131.22 47.36 13

 CLOOK 6 6.78 6809.78 113.81 44.60 11

 CLOOK 7 6.70 6757.57 113.16 42.54 10

 CLOOK 8 6.82 6850.13 130.15 43.12 12

 CLOOK 9 6.74 6782.09 127.42 45.90 12

 CLOOK 10 6.65 6686.69 120.48 45.10 11

 CLOOK 11 6.76 6756.99 144.06 44.63 12

 CLOOK 12 6.66 6675.31 136.14 44.01 12

 CLOOK 13 6.75 6764.33 122.78 45.61 11

 CLOOK 14 6.72 6766.70 113.89 45.26 13

 CLOOK 15 6.75 6759.82 127.08 46.81 12

 CLOOK 16 6.56 6578.18 125.97 45.27 13

 CLOOK 17 6.55 6563.37 151.74 47.30 14

 CLOOK 18 6.66 6686.95 150.66 48.57 14

 CLOOK 19 6.55 6566.50 125.46 48.12 14

 CLOOK 20 6.80 6815.15 107.75 42.83 11

 CLOOK 21 6.77 6799.39 109.88 44.60 12

 CLOOK 22 6.73 6775.93 119.17 45.64 10

 CLOOK 23 6.60 6608.88 114.55 44.93 11

 CLOOK 24 6.65 6682.49 141.56 46.49 13

 CLOOK 25 6.61 6620.37 138.34 47.43 14

 CLOOK 26 6.72 6741.58 114.13 44.82 13

 CLOOK 27 6.70 6742.57 114.82 45.12 11

 CLOOK 28 6.60 6618.28 153.59 46.16 14

 CLOOK 29 6.70 6727.27 124.48 44.90 12

 CLOOK 30 6.70 6733.42 143.22 45.13 13

 CLOOK 6.69 6719.32 153.59 45.33 14

107

Table G.4 - Results for CLOOK at 175 Hz Arrival Rate

175
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs

Waiting
(Q+RQ)

 CLOOK 1 5.75 5778.96 203.39 75.97 20

 CLOOK 2 5.81 5850.86 223.20 78.98 22

 CLOOK 3 5.90 5915.23 161.18 66.68 16

 CLOOK 4 5.79 5823.41 238.40 82.88 26

 CLOOK 5 5.77 5831.32 229.01 79.02 20

 CLOOK 6 5.77 5816.77 207.08 86.41 22

 CLOOK 7 5.84 5892.92 177.08 68.84 19

 CLOOK 8 5.78 5830.56 197.50 71.33 18

 CLOOK 9 5.85 5925.70 224.94 78.18 22

 CLOOK 10 5.84 5879.85 179.47 66.10 19

 CLOOK 11 5.73 5737.98 241.65 85.79 22

 CLOOK 12 5.73 5782.98 225.40 76.45 25

 CLOOK 13 5.74 5754.76 199.92 76.20 21

 CLOOK 14 5.88 5919.46 167.98 66.14 17

 CLOOK 15 5.72 5745.24 221.27 81.88 21

 CLOOK 16 5.88 5904.07 191.23 70.49 20

 CLOOK 17 5.79 5794.26 191.33 70.68 19

 CLOOK 18 5.86 5896.07 214.78 73.52 24

 CLOOK 19 5.71 5726.39 225.05 82.13 21

 CLOOK 20 5.84 5852.51 175.85 67.51 18

 CLOOK 21 5.79 5834.54 228.10 75.73 23

 CLOOK 22 5.69 5737.18 207.01 76.11 21

 CLOOK 23 5.75 5777.94 201.44 76.37 21

 CLOOK 24 5.88 5918.33 208.63 73.54 21

 CLOOK 25 5.82 5869.31 278.18 74.25 25

 CLOOK 26 5.76 5809.16 204.80 80.04 19

 CLOOK 27 5.76 5791.24 176.64 68.14 18

 CLOOK 28 5.70 5734.81 212.77 73.95 21

 CLOOK 29 5.97 6000.67 167.90 63.79 18

 CLOOK 30 5.77 5796.10 230.53 76.93 25

 CLOOK 5.80 5830.95 278.18 74.80 26

108

Table G.5 - Results for CLOOK at 180 Hz Arrival Rate

180
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs

Waiting
(Q+RQ)

 CLOOK 1 5.59 5644.01 247.71 82.77 27

 CLOOK 2 5.59 5636.67 262.47 95.42 28

 CLOOK 3 5.66 5709.48 227.23 85.71 23

 CLOOK 4 5.65 5679.46 230.87 84.35 23

 CLOOK 5 5.62 5669.22 224.20 91.01 26

 CLOOK 6 5.69 5721.72 219.31 84.34 21

 CLOOK 7 5.68 5731.56 234.19 85.29 24

 CLOOK 8 5.57 5618.95 218.99 84.65 23

 CLOOK 9 5.59 5647.32 233.14 95.92 22

 CLOOK 10 5.62 5672.82 184.40 75.86 21

 CLOOK 11 5.69 5682.91 257.52 89.97 28

 CLOOK 12 5.74 5781.56 195.24 75.09 20

 CLOOK 13 5.62 5658.56 205.03 86.26 21

 CLOOK 14 5.71 5753.87 225.25 78.36 23

 CLOOK 15 5.64 5674.28 246.85 90.55 27

 CLOOK 16 5.59 5624.53 286.94 90.71 28

 CLOOK 17 5.74 5750.60 200.16 81.11 22

 CLOOK 18 5.59 5627.28 266.70 85.87 25

 CLOOK 19 5.69 5719.90 232.30 87.22 24

 CLOOK 20 5.59 5594.75 243.00 75.57 22

 CLOOK 21 5.53 5570.60 239.06 90.40 26

 CLOOK 22 5.59 5641.79 317.18 96.11 33

 CLOOK 23 5.54 5579.88 244.88 84.00 25

 CLOOK 24 5.55 5618.32 222.86 95.53 25

 CLOOK 25 5.76 5792.68 231.19 80.39 23

 CLOOK 26 5.53 5570.44 250.27 99.89 26

 CLOOK 27 5.49 5535.94 269.47 94.34 27

 CLOOK 28 5.65 5685.51 211.33 77.75 21

 CLOOK 29 5.64 5672.61 202.82 73.94 20

 CLOOK 30 5.61 5652.87 242.15 83.11 24

 CLOOK 5.62 5664.00 317.18 86.05 33

109

APPENDIX H

SDM-E Simulation Average Results in Conventional Approach

Table H.1 - Results for SDM-E at 125 Hz Arrival Rate

125
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs

Waiting
(Q+RQ)

 SDM-E 1 7.67 7940.75 56.73 19.58 5

 SDM-E 2 7.78 8062.99 78.82 19.44 7

 SDM-E 3 7.70 8092.36 55.11 17.78 5

 SDM-E 4 7.68 7962.31 66.67 19.47 8

 SDM-E 5 7.71 8045.65 59.37 18.38 5

 SDM-E 6 7.79 8009.14 63.86 19.90 6

 SDM-E 7 7.66 8043.75 71.10 17.61 6

 SDM-E 8 7.80 8096.83 65.40 18.89 7

 SDM-E 9 7.74 8168.70 95.03 18.49 6

 SDM-E 10 7.58 7878.80 63.75 20.00 6

 SDM-E 11 7.71 8083.55 60.64 19.25 5

 SDM-E 12 7.62 7972.79 49.43 17.74 5

 SDM-E 13 7.70 7907.66 74.44 19.77 6

 SDM-E 14 7.53 7982.41 75.35 18.45 6

 SDM-E 15 7.78 8061.87 51.38 18.68 5

 SDM-E 16 7.64 8017.28 53.31 18.12 6

 SDM-E 17 7.65 8109.55 63.27 17.15 7

 SDM-E 18 7.76 8135.58 55.95 17.52 5

 SDM-E 19 7.58 7936.82 53.49 17.38 5

 SDM-E 20 7.63 7959.43 52.79 18.51 6

 SDM-E 21 7.77 8106.14 67.85 19.20 6

 SDM-E 22 7.74 8086.01 67.52 19.05 6

 SDM-E 23 7.71 8163.90 60.51 18.89 5

 SDM-E 24 7.83 7960.92 49.12 19.43 6

 SDM-E 25 7.71 7994.85 74.82 21.16 6

 SDM-E 26 7.70 7986.47 75.22 19.59 6

 SDM-E 27 7.71 8058.22 75.98 19.39 6

 SDM-E 28 7.62 7872.66 74.37 19.17 7

 SDM-E 29 7.79 8079.59 62.20 18.72 6

 SDM-E 30 7.65 8044.88 59.95 17.88 6

 SDM-E 7.70 8027.40 95.03 18.82 8

110

Table H.2 - Results for SDM-E at 135 Hz Arrival Rate

135
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs

Waiting
(Q+RQ)

 SDM-E 1 7.26 7318.08 71.48 25.00 7

 SDM-E 2 7.30 7337.44 103.73 25.21 7

 SDM-E 3 7.36 7520.38 74.95 22.44 7

 SDM-E 4 7.34 7428.61 77.43 24.63 6

 SDM-E 5 7.44 7580.12 88.08 22.70 7

 SDM-E 6 7.32 7448.36 80.15 24.17 7

 SDM-E 7 7.38 7469.13 62.23 23.16 7

 SDM-E 8 7.34 7380.60 85.04 25.83 8

 SDM-E 9 7.23 7319.78 93.83 24.10 8

 SDM-E 10 7.25 7314.75 98.72 25.31 7

 SDM-E 11 7.32 7427.07 77.29 23.93 7

 SDM-E 12 7.30 7405.84 69.60 23.36 7

 SDM-E 13 7.43 7529.70 54.94 22.95 6

 SDM-E 14 7.19 7279.05 79.39 23.60 7

 SDM-E 15 7.32 7374.26 74.86 25.07 7

 SDM-E 16 7.35 7412.22 79.58 23.91 7

 SDM-E 17 7.39 7529.58 60.85 23.07 6

 SDM-E 18 7.33 7495.35 72.51 22.68 6

 SDM-E 19 7.29 7443.04 80.79 22.67 6

 SDM-E 20 7.27 7352.95 66.18 24.75 6

 SDM-E 21 7.47 7575.32 105.06 23.18 7

 SDM-E 22 7.24 7304.56 71.60 24.95 6

 SDM-E 23 7.20 7249.63 107.88 26.06 7

 SDM-E 24 7.42 7478.01 79.95 25.26 6

 SDM-E 25 7.41 7530.62 74.06 23.71 7

 SDM-E 26 7.34 7443.20 83.11 24.95 6

 SDM-E 27 7.41 7512.22 90.69 24.55 6

 SDM-E 28 7.41 7527.29 74.09 22.63 7

 SDM-E 29 7.42 7532.77 84.47 24.32 7

 SDM-E 30 7.32 7441.77 62.24 22.28 6

 SDM-E 7.34 7432.06 107.88 24.01 8

111

Table H.3 - Results for SDM-E at 150 Hz Arrival Rate

150
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs

Waiting
(Q+RQ)

 SDM-E 1 6.66 6692.94 74.39 28.69 8

 SDM-E 2 6.74 6783.68 113.72 28.97 10

 SDM-E 3 6.70 6724.26 78.58 27.53 8

 SDM-E 4 6.81 6849.56 102.87 28.01 8

 SDM-E 5 6.51 6539.49 84.64 28.08 8

 SDM-E 6 6.75 6788.46 111.95 28.58 8

 SDM-E 7 6.68 6704.74 79.11 27.56 7

 SDM-E 8 6.78 6793.71 147.96 29.41 8

 SDM-E 9 6.73 6756.91 83.60 28.69 7

 SDM-E 10 6.62 6651.88 79.87 28.98 8

 SDM-E 11 6.71 6718.75 84.83 28.57 7

 SDM-E 12 6.64 6663.94 94.54 28.29 8

 SDM-E 13 6.74 6762.52 108.57 28.83 8

 SDM-E 14 6.69 6740.74 88.68 27.67 7

 SDM-E 15 6.73 6750.57 92.10 28.40 7

 SDM-E 16 6.56 6566.81 85.02 29.03 7

 SDM-E 17 6.53 6551.74 93.00 29.03 9

 SDM-E 18 6.62 6638.68 131.70 29.44 9

 SDM-E 19 6.50 6521.21 114.53 28.40 8

 SDM-E 20 6.74 6784.59 79.92 27.46 8

 SDM-E 21 6.74 6765.00 95.04 28.64 8

 SDM-E 22 6.71 6746.88 75.14 28.08 7

 SDM-E 23 6.59 6609.12 95.45 28.82 7

 SDM-E 24 6.66 6677.08 78.74 28.99 7

 SDM-E 25 6.59 6596.73 101.58 30.51 9

 SDM-E 26 6.69 6715.50 85.85 27.96 8

 SDM-E 27 6.68 6710.61 84.49 27.97 7

 SDM-E 28 6.58 6602.80 136.01 28.66 8

 SDM-E 29 6.68 6704.83 164.27 29.83 8

 SDM-E 30 6.66 6706.22 109.34 27.12 7

 SDM-E 6.67 6694.00 164.27 28.54 10

112

Table H.4 - Results for SDM-E at 175 Hz Arrival Rate

175
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs

Waiting
(Q+RQ)

 SDM-E 1 5.71 5729.63 130.80 33.70 10

 SDM-E 2 5.74 5751.32 151.24 33.34 9

 SDM-E 3 5.86 5868.47 126.55 32.00 10

 SDM-E 4 5.77 5783.18 230.82 32.01 10

 SDM-E 5 5.72 5740.73 111.72 32.66 11

 SDM-E 6 5.73 5737.19 104.23 32.76 10

 SDM-E 7 5.81 5824.29 112.86 32.50 10

 SDM-E 8 5.74 5760.28 106.70 32.54 10

 SDM-E 9 5.78 5803.37 126.42 33.31 10

 SDM-E 10 5.78 5792.34 119.32 32.82 10

 SDM-E 11 5.65 5658.48 113.25 32.97 12

 SDM-E 12 5.68 5697.96 191.12 33.14 10

 SDM-E 13 5.72 5724.23 151.70 34.19 10

 SDM-E 14 5.83 5852.42 134.16 32.73 10

 SDM-E 15 5.69 5704.91 131.72 33.57 11

 SDM-E 16 5.86 5868.22 94.20 32.41 9

 SDM-E 17 5.75 5753.90 128.39 33.26 11

 SDM-E 18 5.78 5790.74 141.29 31.68 10

 SDM-E 19 5.67 5683.61 103.53 31.76 9

 SDM-E 20 5.81 5825.12 99.13 32.37 10

 SDM-E 21 5.72 5735.32 134.30 33.88 10

 SDM-E 22 5.63 5640.17 131.47 34.08 11

 SDM-E 23 5.68 5697.31 104.90 34.06 11

 SDM-E 24 5.83 5838.11 145.11 32.93 10

 SDM-E 25 5.71 5717.52 130.86 33.83 11

 SDM-E 26 5.72 5736.44 113.66 33.05 9

 SDM-E 27 5.72 5723.88 150.19 33.77 11

 SDM-E 28 5.66 5680.95 138.85 33.62 11

 SDM-E 29 5.92 5931.00 112.43 33.64 9

 SDM-E 30 5.73 5734.75 140.58 32.34 12

 SDM-E 5.75 5759.53 230.82 33.03 12

113

Table H.5 - Results for SDM-E at 180 Hz Arrival Rate

180
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs

Waiting
(Q+RQ)

 SDM-E 1 5.50 5513.22 130.51 34.16 11

 SDM-E 2 5.50 5517.68 158.02 35.09 11

 SDM-E 3 5.61 5616.69 134.55 34.02 11

 SDM-E 4 5.60 5609.01 137.12 33.74 9

 SDM-E 5 5.58 5592.71 145.65 33.15 10

 SDM-E 6 5.65 5672.91 140.46 33.89 12

 SDM-E 7 5.63 5645.76 130.02 33.19 10

 SDM-E 8 5.48 5498.32 143.02 34.85 11

 SDM-E 9 5.51 5530.52 145.91 35.43 14

 SDM-E 10 5.56 5567.13 133.52 34.45 12

 SDM-E 11 5.63 5640.94 162.07 34.44 11

 SDM-E 12 5.67 5685.88 109.40 32.39 10

 SDM-E 13 5.58 5587.55 113.72 33.95 10

 SDM-E 14 5.67 5687.54 122.56 32.98 10

 SDM-E 15 5.57 5578.80 164.53 34.48 13

 SDM-E 16 5.58 5592.53 139.79 34.11 12

 SDM-E 17 5.66 5667.32 117.31 32.63 10

 SDM-E 18 5.50 5508.68 202.05 35.32 12

 SDM-E 19 5.63 5651.65 161.99 33.01 10

 SDM-E 20 5.56 5572.79 141.36 35.43 14

 SDM-E 21 5.46 5473.75 148.83 35.28 11

 SDM-E 22 5.54 5552.88 169.44 34.55 11

 SDM-E 23 5.45 5456.50 125.74 35.17 11

 SDM-E 24 5.47 5487.05 137.55 34.79 13

 SDM-E 25 5.68 5691.39 161.69 33.50 11

 SDM-E 26 5.47 5481.69 159.13 34.89 11

 SDM-E 27 5.41 5414.15 106.42 35.70 10

 SDM-E 28 5.59 5598.76 132.10 34.09 10

 SDM-E 29 5.59 5602.66 149.32 33.55 11

 SDM-E 30 5.54 5549.11 137.81 34.37 11

 SDM-E 5.56 5574.85 202.05 34.22 14

114

APPENDIX I

CLOOK Simulation Average Results in DE Approach

Table I.1 - Results for CLOOK at 125 Hz Arrival Rate

125
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs Waiting

(Q+RQ)

 CLOOK 1 7.72 7960.98 72.29 22.49 6

 CLOOK 2 7.82 8065.21 76.44 24.07 8

 CLOOK 3 7.74 8102.72 77.03 20.07 6

 CLOOK 4 7.72 7962.31 76.25 22.23 9

 CLOOK 5 7.78 8051.81 80.26 21.30 6

 CLOOK 6 7.88 8025.95 91.23 26.38 8

 CLOOK 7 7.71 8062.36 63.16 19.50 6

 CLOOK 8 7.85 8094.67 70.77 22.03 7

 CLOOK 9 7.85 8182.65 72.28 22.68 6

 CLOOK 10 7.68 7878.80 89.54 24.68 8

 CLOOK 11 7.77 8083.55 74.92 23.09 6

 CLOOK 12 7.68 7972.79 73.00 20.50 6

 CLOOK 13 7.79 7907.66 112.72 26.27 10

 CLOOK 14 7.67 7987.01 82.56 25.67 8

 CLOOK 15 7.87 8061.87 77.27 24.32 6

 CLOOK 16 7.70 8017.28 66.99 21.81 7

 CLOOK 17 7.72 8109.55 64.76 19.14 7

 CLOOK 18 7.87 8135.58 67.05 23.04 6

 CLOOK 19 7.61 7936.82 69.47 20.06 7

 CLOOK 20 7.68 7969.82 83.71 22.85 7

 CLOOK 21 7.83 8106.14 87.92 22.14 7

 CLOOK 22 7.78 8086.01 97.08 21.08 7

 CLOOK 23 7.75 8163.90 70.95 20.68 7

 CLOOK 24 7.87 7975.15 77.93 22.89 7

 CLOOK 25 7.76 7994.85 90.32 25.90 8

 CLOOK 26 7.76 7988.58 82.86 24.52 9

 CLOOK 27 7.87 8058.22 103.07 25.20 7

 CLOOK 28 7.69 7880.39 85.20 24.07 7

 CLOOK 29 7.85 8079.59 94.25 23.43 7

 CLOOK 30 7.73 8049.71 79.72 22.46 7

 CLOOK 7.77 8031.73 112.72 22.82 10

115

Table I.2 - Results for CLOOK at 135 Hz Arrival Rate

135
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs Waiting

(Q+RQ)

 CLOOK 1 7.31 7325.76 90.78 37.90 9

 CLOOK 2 7.32 7343.69 101.12 34.17 10

 CLOOK 3 7.42 7527.21 121.00 31.38 11

 CLOOK 4 7.40 7444.41 120.34 37.74 10

 CLOOK 5 7.53 7598.72 92.82 29.58 9

 CLOOK 6 7.36 7452.74 98.96 34.69 10

 CLOOK 7 7.43 7487.57 107.12 32.49 9

 CLOOK 8 7.35 7412.73 97.53 35.83 9

 CLOOK 9 7.31 7337.12 95.70 37.00 9

 CLOOK 10 7.29 7320.75 93.11 37.25 10

 CLOOK 11 7.40 7451.51 104.23 34.47 10

 CLOOK 12 7.36 7424.56 110.67 33.40 12

 CLOOK 13 7.48 7535.93 99.36 35.30 10

 CLOOK 14 7.22 7288.20 97.29 34.53 10

 CLOOK 15 7.36 7375.33 101.42 35.83 10

 CLOOK 16 7.37 7424.43 119.70 35.37 12

 CLOOK 17 7.46 7532.09 95.07 32.53 9

 CLOOK 18 7.41 7496.31 101.30 33.69 9

 CLOOK 19 7.40 7473.98 90.38 32.26 8

 CLOOK 20 7.30 7369.21 93.46 34.57 10

 CLOOK 21 7.49 7575.32 94.15 30.01 8

 CLOOK 22 7.29 7321.45 101.29 38.98 10

 CLOOK 23 7.23 7253.45 100.26 35.74 8

 CLOOK 24 7.47 7493.40 89.23 35.07 9

 CLOOK 25 7.46 7530.62 90.46 33.72 9

 CLOOK 26 7.40 7452.41 106.49 35.11 11

 CLOOK 27 7.45 7512.22 102.70 34.39 9

 CLOOK 28 7.46 7527.29 87.82 32.63 9

 CLOOK 29 7.47 7532.77 99.33 34.22 9

 CLOOK 30 7.37 7447.28 83.50 31.59 8

 CLOOK 7.39 7442.28 121.00 34.38 12

116

Table I.3 - Results for CLOOK at 150 Hz Arrival Rate

150
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs Waiting

(Q+RQ)

 CLOOK 1 6.71 6759.13 138.68 45.38 13

 CLOOK 2 6.79 6805.19 126.82 46.01 12

 CLOOK 3 6.74 6772.62 101.35 41.59 11

 CLOOK 4 6.86 6872.36 124.08 45.26 12

 CLOOK 5 6.53 6547.50 131.23 50.45 13

 CLOOK 6 6.78 6810.38 116.12 46.43 13

 CLOOK 7 6.72 6767.53 112.56 43.86 12

 CLOOK 8 6.83 6857.51 131.62 44.56 12

 CLOOK 9 6.76 6793.29 113.26 47.17 12

 CLOOK 10 6.65 6690.04 130.15 45.97 12

 CLOOK 11 6.75 6751.90 111.99 46.05 12

 CLOOK 12 6.66 6685.04 150.72 45.51 13

 CLOOK 13 6.76 6771.73 132.83 48.56 11

 CLOOK 14 6.72 6767.67 122.22 47.18 13

 CLOOK 15 6.75 6760.25 129.45 47.79 13

 CLOOK 16 6.56 6578.15 136.26 50.12 13

 CLOOK 17 6.55 6566.56 129.35 49.55 13

 CLOOK 18 6.66 6696.01 130.10 47.45 14

 CLOOK 19 6.53 6554.58 148.17 49.03 14

 CLOOK 20 6.79 6808.49 118.19 44.69 12

 CLOOK 21 6.76 6797.66 126.51 43.78 12

 CLOOK 22 6.73 6776.96 114.66 45.79 11

 CLOOK 23 6.61 6622.47 122.16 47.13 11

 CLOOK 24 6.66 6696.73 145.44 48.13 14

 CLOOK 25 6.62 6632.70 129.78 49.45 14

 CLOOK 26 6.72 6730.10 131.40 47.26 13

 CLOOK 27 6.70 6741.25 124.74 47.80 13

 CLOOK 28 6.60 6616.75 145.32 48.85 12

 CLOOK 29 6.71 6736.85 125.78 46.72 13

 CLOOK 30 6.71 6735.74 125.36 46.33 12

 CLOOK 6.70 6723.44 150.72 46.80 14

117

Table I.4 - Results for CLOOK at 175 Hz Arrival Rate

175
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs Waiting

(Q+RQ)

 CLOOK 1 5.75 5778.71 179.73 72.18 18

 CLOOK 2 5.80 5836.31 216.32 81.02 22

 CLOOK 3 5.88 5927.62 192.84 69.46 18

 CLOOK 4 5.79 5821.14 231.04 78.42 22

 CLOOK 5 5.78 5833.02 224.18 80.25 21

 CLOOK 6 5.75 5820.36 194.27 81.93 20

 CLOOK 7 5.85 5915.19 220.61 72.53 20

 CLOOK 8 5.78 5834.47 186.32 73.89 20

 CLOOK 9 5.85 5935.50 224.21 73.82 23

 CLOOK 10 5.85 5901.41 193.37 69.54 20

 CLOOK 11 5.71 5733.98 237.48 86.06 24

 CLOOK 12 5.73 5780.31 240.95 77.49 23

 CLOOK 13 5.73 5748.61 188.99 72.52 20

 CLOOK 14 5.88 5920.36 169.37 66.84 18

 CLOOK 15 5.71 5752.35 215.09 80.49 22

 CLOOK 16 5.87 5922.11 186.80 73.05 20

 CLOOK 17 5.79 5804.53 222.87 70.55 18

 CLOOK 18 5.89 5909.62 253.58 76.39 25

 CLOOK 19 5.71 5732.91 191.92 80.33 21

 CLOOK 20 5.84 5868.53 191.11 68.33 19

 CLOOK 21 5.79 5847.01 207.90 75.11 21

 CLOOK 22 5.70 5743.13 220.80 78.58 22

 CLOOK 23 5.72 5755.27 202.66 75.86 21

 CLOOK 24 5.87 5919.71 186.70 72.00 19

 CLOOK 25 5.83 5869.35 270.50 77.86 25

 CLOOK 26 5.76 5820.97 227.36 81.83 22

 CLOOK 27 5.76 5801.55 176.64 71.00 20

 CLOOK 28 5.69 5733.21 220.12 77.54 19

 CLOOK 29 5.97 5996.89 179.79 65.39 19

 CLOOK 30 5.77 5798.83 230.53 80.57 25

 CLOOK 5.79 5835.43 270.50 75.36 25

118

Table I.5 - Results for CLOOK at 180 Hz Arrival Rate

180
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs Waiting

(Q+RQ)

 CLOOK 1 5.58 5651.15 253.71 85.16 28

 CLOOK 2 5.59 5620.18 260.31 92.35 28

 CLOOK 3 5.68 5733.74 213.78 82.17 23

 CLOOK 4 5.64 5689.63 227.22 82.82 23

 CLOOK 5 5.62 5662.10 227.69 80.79 21

 CLOOK 6 5.70 5721.13 222.93 84.39 23

 CLOOK 7 5.70 5779.76 267.65 88.19 26

 CLOOK 8 5.57 5628.50 236.09 85.57 23

 CLOOK 9 5.59 5651.45 234.41 94.65 23

 CLOOK 10 5.62 5676.87 201.24 80.63 20

 CLOOK 11 5.68 5698.34 275.30 90.94 26

 CLOOK 12 5.73 5790.62 217.34 78.95 22

 CLOOK 13 5.61 5658.92 210.98 85.58 22

 CLOOK 14 5.72 5751.97 205.26 77.79 21

 CLOOK 15 5.63 5675.88 246.12 86.26 26

 CLOOK 16 5.60 5631.05 255.15 95.19 28

 CLOOK 17 5.72 5729.85 214.87 77.99 22

 CLOOK 18 5.59 5626.11 254.99 86.06 24

 CLOOK 19 5.69 5696.49 220.14 78.46 22

 CLOOK 20 5.59 5594.74 260.14 80.93 26

 CLOOK 21 5.56 5614.68 265.53 89.00 26

 CLOOK 22 5.59 5657.80 325.66 98.57 33

 CLOOK 23 5.54 5579.14 275.84 90.14 26

 CLOOK 24 5.55 5597.54 268.57 95.63 28

 CLOOK 25 5.74 5781.24 214.81 80.80 23

 CLOOK 26 5.52 5569.96 250.27 98.07 26

 CLOOK 27 5.49 5538.60 264.71 96.31 26

 CLOOK 28 5.64 5684.51 226.80 83.20 22

 CLOOK 29 5.64 5667.21 200.51 76.62 21

 CLOOK 30 5.62 5651.39 202.44 83.51 23

 CLOOK 5.63 5667.02 325.66 86.22 33

119

APPENDIX J

SDM-NN Simulation Average Results in DE Approach

Table J.1 - Results for SDM-NN at 125 Hz Arrival Rate

125
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs Waiting

(Q+RQ)

 SDM-NN 1 7.66 7940.58 67.44 19.30 6

 SDM-NN 2 7.80 8068.44 69.55 19.18 6

 SDM-NN 3 7.73 8096.05 61.87 18.48 5

 SDM-NN 4 7.68 7962.31 73.98 19.49 7

 SDM-NN 5 7.72 8043.12 65.02 19.11 5

 SDM-NN 6 7.79 8008.26 124.27 20.80 7

 SDM-NN 7 7.70 8060.32 105.11 18.02 6

 SDM-NN 8 7.83 8097.37 58.49 19.14 6

 SDM-NN 9 7.76 8171.91 61.93 18.61 6

 SDM-NN 10 7.60 7878.80 79.55 20.16 7

 SDM-NN 11 7.73 8083.55 85.13 20.00 5

 SDM-NN 12 7.62 7972.79 65.69 18.03 6

 SDM-NN 13 7.71 7907.66 73.05 19.69 6

 SDM-NN 14 7.55 7988.07 93.09 18.88 6

 SDM-NN 15 7.78 8061.87 67.20 18.89 5

 SDM-NN 16 7.65 8017.28 77.82 18.28 5

 SDM-NN 17 7.64 8109.55 58.79 17.18 7

 SDM-NN 18 7.74 8135.58 71.87 17.94 5

 SDM-NN 19 7.57 7936.82 56.36 17.31 6

 SDM-NN 20 7.64 7959.60 79.05 19.17 6

 SDM-NN 21 7.79 8106.14 66.59 20.41 6

 SDM-NN 22 7.74 8086.01 61.76 18.64 6

 SDM-NN 23 7.72 8163.90 75.50 18.51 6

 SDM-NN 24 7.83 7958.24 73.04 19.64 5

 SDM-NN 25 7.71 7994.85 112.32 20.73 6

 SDM-NN 26 7.70 7986.47 72.76 19.32 5

 SDM-NN 27 7.74 8058.22 85.14 19.83 6

 SDM-NN 28 7.63 7883.14 87.14 19.43 7

 SDM-NN 29 7.80 8079.59 77.83 19.03 6

 SDM-NN 30 7.69 8044.88 63.92 18.67 6

 SDM-NN 7.71 8028.71 124.27 19.06 7

120

Table J.2 - Results for SDM-NN at 135 Hz Arrival Rate

135
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs Waiting

(Q+RQ)

 SDM-NN 1 7.27 7318.21 99.34 25.10 7

 SDM-NN 2 7.30 7333.18 93.49 24.87 7

 SDM-NN 3 7.38 7523.28 114.09 22.66 7

 SDM-NN 4 7.35 7425.76 102.26 25.54 6

 SDM-NN 5 7.46 7580.80 72.36 22.29 6

 SDM-NN 6 7.34 7457.46 112.37 26.04 7

 SDM-NN 7 7.40 7483.81 87.36 23.58 7

 SDM-NN 8 7.34 7410.05 99.33 27.51 8

 SDM-NN 9 7.25 7317.93 111.33 24.49 8

 SDM-NN 10 7.27 7325.31 100.58 26.10 7

 SDM-NN 11 7.32 7427.07 100.93 24.93 6

 SDM-NN 12 7.31 7408.82 117.76 23.95 8

 SDM-NN 13 7.45 7537.41 80.61 23.99 7

 SDM-NN 14 7.18 7280.70 101.00 24.26 7

 SDM-NN 15 7.34 7368.35 148.52 25.18 7

 SDM-NN 16 7.37 7416.59 77.77 24.93 6

 SDM-NN 17 7.41 7532.09 74.22 23.00 7

 SDM-NN 18 7.35 7495.35 85.21 23.79 7

 SDM-NN 19 7.31 7443.60 108.02 23.34 7

 SDM-NN 20 7.29 7354.67 81.03 25.74 6

 SDM-NN 21 7.47 7575.32 108.62 23.98 7

 SDM-NN 22 7.25 7304.40 76.59 25.28 6

 SDM-NN 23 7.21 7256.94 87.54 27.19 7

 SDM-NN 24 7.44 7482.29 74.91 26.18 6

 SDM-NN 25 7.45 7530.62 95.58 24.62 7

 SDM-NN 26 7.35 7441.95 81.29 25.74 6

 SDM-NN 27 7.41 7512.22 74.15 24.45 6

 SDM-NN 28 7.41 7527.29 87.14 23.11 6

 SDM-NN 29 7.42 7532.77 94.36 24.66 7

 SDM-NN 30 7.33 7448.46 87.37 23.46 7

 SDM-NN 7.35 7435.09 148.52 24.67 8

121

Table J.3 - Results for SDM-NN at 150 Hz Arrival Rate

150
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs Waiting

(Q+RQ)

 SDM-NN 1 6.66 6693.07 127.44 30.00 8

 SDM-NN 2 6.76 6788.57 114.95 29.81 8

 SDM-NN 3 6.71 6733.34 106.86 28.08 8

 SDM-NN 4 6.80 6842.86 101.67 29.84 8

 SDM-NN 5 6.52 6534.36 181.63 29.06 8

 SDM-NN 6 6.74 6785.62 107.54 28.95 7

 SDM-NN 7 6.68 6721.28 139.74 30.06 8

 SDM-NN 8 6.77 6804.87 117.25 29.71 8

 SDM-NN 9 6.73 6768.97 104.19 29.86 7

 SDM-NN 10 6.63 6668.65 127.25 29.37 8

 SDM-NN 11 6.71 6719.78 119.27 29.97 8

 SDM-NN 12 6.65 6676.07 91.91 28.43 8

 SDM-NN 13 6.75 6765.59 144.63 30.49 8

 SDM-NN 14 6.70 6748.70 94.80 29.08 8

 SDM-NN 15 6.72 6742.55 110.61 29.56 8

 SDM-NN 16 6.56 6565.41 102.54 30.22 7

 SDM-NN 17 6.52 6549.55 132.94 29.44 8

 SDM-NN 18 6.62 6641.58 101.50 29.90 8

 SDM-NN 19 6.50 6520.71 122.32 29.24 9

 SDM-NN 20 6.75 6797.91 109.08 28.49 8

 SDM-NN 21 6.75 6774.36 106.84 29.82 8

 SDM-NN 22 6.71 6756.23 115.83 29.68 7

 SDM-NN 23 6.59 6604.68 113.89 29.17 7

 SDM-NN 24 6.65 6669.68 157.21 31.04 8

 SDM-NN 25 6.60 6611.80 138.24 30.52 8

 SDM-NN 26 6.71 6727.12 106.82 29.72 7

 SDM-NN 27 6.69 6710.28 118.96 30.07 7

 SDM-NN 28 6.59 6610.19 106.38 30.14 8

 SDM-NN 29 6.68 6703.11 110.39 30.07 8

 SDM-NN 30 6.65 6701.55 88.73 28.70 8

 SDM-NN 6.67 6697.95 181.63 29.62 9

122

Table J.4 - Results for SDM-NN at 175 Hz Arrival Rate

175
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs Waiting

(Q+RQ)

 SDM-NN 1 5.71 5739.24 215.51 36.03 12

 SDM-NN 2 5.74 5759.56 255.35 34.49 10

 SDM-NN 3 5.86 5883.13 140.32 33.35 10

 SDM-NN 4 5.78 5792.14 166.36 34.20 10

 SDM-NN 5 5.72 5753.17 174.58 33.78 10

 SDM-NN 6 5.73 5742.49 159.20 34.17 10

 SDM-NN 7 5.81 5846.78 248.12 33.85 11

 SDM-NN 8 5.74 5778.46 199.00 34.63 10

 SDM-NN 9 5.80 5836.30 166.38 35.51 10

 SDM-NN 10 5.78 5817.61 199.55 33.93 9

 SDM-NN 11 5.65 5671.03 259.68 35.72 11

 SDM-NN 12 5.68 5712.47 158.04 34.14 10

 SDM-NN 13 5.73 5736.11 175.10 35.49 10

 SDM-NN 14 5.84 5871.62 208.85 33.60 9

 SDM-NN 15 5.71 5711.22 160.51 33.85 10

 SDM-NN 16 5.87 5877.55 158.58 33.08 10

 SDM-NN 17 5.74 5754.51 145.45 33.41 9

 SDM-NN 18 5.77 5792.77 113.26 32.58 10

 SDM-NN 19 5.68 5688.65 186.57 34.13 10

 SDM-NN 20 5.82 5834.44 156.71 33.94 9

 SDM-NN 21 5.73 5743.02 119.64 34.32 9

 SDM-NN 22 5.64 5665.09 196.54 34.33 10

 SDM-NN 23 5.69 5716.29 202.13 35.43 11

 SDM-NN 24 5.83 5855.80 178.43 34.37 10

 SDM-NN 25 5.72 5734.50 181.42 34.73 10

 SDM-NN 26 5.73 5754.91 177.83 34.10 10

 SDM-NN 27 5.73 5752.29 199.82 34.40 10

 SDM-NN 28 5.67 5696.34 202.86 35.01 10

 SDM-NN 29 5.92 5943.09 169.37 33.09 9

 SDM-NN 30 5.73 5754.62 222.21 33.68 10

 SDM-NN 5.75 5773.84 259.68 34.24 12

123

Table J.5 - Results for SDM-NN at 180 Hz Arrival Rate

180
Average
Service
Rate

Cmax Fmax Favg

Max. # of
Jobs Waiting

(Q+RQ)

 SDM-NN 1 5.52 5534.46 199.47 36.35 10

 SDM-NN 2 5.50 5526.24 227.30 36.86 12

 SDM-NN 3 5.61 5630.57 164.66 36.42 12

 SDM-NN 4 5.61 5638.64 159.31 36.29 10

 SDM-NN 5 5.58 5597.18 175.89 35.54 11

 SDM-NN 6 5.65 5672.44 186.46 35.74 12

 SDM-NN 7 5.64 5660.86 163.79 34.25 10

 SDM-NN 8 5.50 5521.53 211.28 35.10 11

 SDM-NN 9 5.52 5557.95 211.28 36.90 13

 SDM-NN 10 5.56 5598.97 151.56 36.40 12

 SDM-NN 11 5.64 5644.16 227.58 35.63 11

 SDM-NN 12 5.68 5687.95 170.21 35.13 10

 SDM-NN 13 5.59 5598.74 153.18 34.98 9

 SDM-NN 14 5.68 5699.00 156.08 35.16 10

 SDM-NN 15 5.57 5597.24 357.95 36.04 11

 SDM-NN 16 5.59 5608.58 176.56 34.80 11

 SDM-NN 17 5.67 5674.15 174.12 33.71 10

 SDM-NN 18 5.50 5518.68 215.14 36.55 11

 SDM-NN 19 5.65 5664.01 136.02 35.50 10

 SDM-NN 20 5.57 5575.98 212.49 35.65 11

 SDM-NN 21 5.47 5483.80 163.88 36.04 11

 SDM-NN 22 5.55 5590.23 166.27 35.39 11

 SDM-NN 23 5.46 5479.03 171.24 37.04 11

 SDM-NN 24 5.47 5506.11 182.52 36.28 13

 SDM-NN 25 5.68 5708.49 162.66 35.48 10

 SDM-NN 26 5.48 5495.77 223.25 35.24 10

 SDM-NN 27 5.40 5427.78 207.32 38.48 12

 SDM-NN 28 5.60 5625.08 206.48 34.37 10

 SDM-NN 29 5.60 5617.24 287.87 35.95 11

 SDM-NN 30 5.55 5571.96 143.15 35.38 12

 SDM-NN 5.57 5590.43 357.95 35.76 13

124

APPENDIX K

Disk Scheduling with Double Queue

In double queue scheduling, there are two importance classes, of

queues, namely, High Importance Queue (HIQ) and Low

Importance Queue (LIQ). Coming jobs are classified according to

their weights (attached to job identity). While the jobs having

higher weights than a threshold value are classified as high

importance class jobs (HIC), others are considered as low

importance class (LIC). The sequencing policy determines the

processing order of the HIC and LIC jobs. The general policy is

such that after all the jobs in HIQ are finished, LIC jobs can be

served. The maximum number of jobs in each queue is 128 in a

certain moment of time (i.e. number of jobs in HIQ + number of

jobs in LIQ + 2 jobs in run queue + 1 job in service = Nsystem <=259).

Apart from this queue difference, the system works similarly as

that of a typical hard disk with single queue. If HIQ is not empty

and there is no timeout, the algorithm sorts all the jobs in HIQ and

determines the next second job in run queue (RQ). Each time the

processing of a job is finished, the first job in RQ is taken into

process and the second job in RQ becomes the 1st one.

As in the case of typical hard disks, the job starvation is an

important problem. Another difficulty arises from the

predominance of the HIC jobs over the LIC jobs that bring the

higher susceptibility of the jobs in LIQ to starvation. If HIQ does

125

not become empty for a long time, the LIC jobs will stay undone for

that long time and may be some of them will never be done. This

could be the case for some HIC jobs as well. To overcome this, a

fixed timeout (probably different for the HIC and LIC jobs) must be

decided for every job. The system puts a label on every job,

whether it is HIC or LIC, indicating its arrival time (rhi) or (rli). If it

is still waiting to be serviced after a defined time stamp (τ), it is

assessed timeout (rhi + τHIC) or (rli + τLIC). That brings the time

windows concept into our problem.

A clever strategy necessitates defining addresses on the disk space

with the aid of partitions over the disk. When this is done, the

service time for a certain job is said to be dependent on (a) the size

of the coming job, (b) the last served job’s address, and (c) the

coming job’s address (Since a job is not a single point over the

disk, but a continuous line with starting and end points, the mean

value between those points can be taken as that job’s address as a

convention).

Decision: Implement the algorithm or not

If the number of newcomers is below a defined “break even”

number, then it will be better not to implement the algorithm (re-

sequencing newcomers together with standing jobs). In that case

the newcomers would be taken into proper queue according to

some basic policy, i.e. FIFO. Or as a better way, some heuristics

could be utilized to insert the newcomers into the standing

sequence.

The two main objectives of this problem are, (1) Minimizing the

average response time of the system to the jobs in HIQ, (2)

Maximizing the throughput of the jobs in LIQ (i.e. number/s). The

126

timeout cases could negatively affect the system’s performance and

it could not be avoided by utilizing a constraint because of the disk

structure. A contributive objective would be “minimizing the

number of timeouts (i.e. number/second)”. The main constraint of

the problem is the limits of HIQ and LIQ (128 each).

These two objectives are contradicting actually. Especially in an

environment of heavy workload, the LIQ jobs’ throughput objective

will seriously be jeopardized.

