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ABSTRACT 
 
 

OFFLINE AND ONLINE DISK SCHEDULING PROBLEMS  
 
 
 

Aşan, N. Evren 

M.Sc., Operational Research 

Supervisor: Assoc. Prof.Dr. Haldun Süral 

 

December 2006, 126 pages 
 
 
 
 
This thesis considers the disk scheduling problem. The problem is 

investigated in two types of settings: offline and online. We first 

adopt the traveling salesman problem with time windows in the 

scheduling literature for solving the offline problem. Then we 

develop a decision epoch scheme in which offline problems are 

iteratively used in solving the online problem. We perform an 

experimental study for our approach and two well-known disk 

scheduling algorithms, and compare them according to several 

performance criteria. 
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ÖZ 
 
 

ÇEVRİMİÇİ VE ÇEVRİMDIŞI DİSK ÇİZELGELEME 
PROBLEMLERİ 

 
 
 

Aşan, N. Evren 

Yüksek Lisans, Yöneylem Araştırması 

Tez Yöneticisi: Doç. Dr. Haldun Süral 

 

Aralık 2006, 126 sayfa 

 

 

 

Bu tezde disk çizelgeleme problemi ele alınmaktadır. Problem, 

çevrimiçi ve çevrimdışı olmak üzere iki kurulum tipinde 

incelenmiştir. Çalışmada öncelikle, sıralama literatüründe yer alan 

zaman pencereli gezgin satıcı problemi, çevrimdışı problemin 

çözümü için adapte edilmiştir. Çevrimiçi problemin çözümü için 

adım adım çevrimdışı problemlerin çözüldüğü bir karar anı şeması 

geliştirilmiştir. Ayrıca, bizim yaklaşımımız ve iki adet iyi bilinen 

disk çizelgeleme algoritması için deneysel çalışmalar yapılmış ve bu 

algoritmaların çeşitli performans kriterleri için karşılaştırılması 

yapılmıştır. 

 

 

 

Anahtar Kelimeler: Disk Çizelgeleme, Çevrimiçi Problem, 

Çevrimdışı Problem, Zaman Pencereli Gezgin Satıcı Problemi 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
This study is concerned with the computer hard disk workload 

scheduling problem. The motivation is to make better scheduling 

decisions so as to increase performance of the disk system while 

guaranteeing service stability. The disk system’s nature is 

stochastic, where the read and/or write requests come randomly 

for service. Therefore, their arrival times and addresses are not 

known until requests are realized. The online workload scheduling 

problem handles the real system working principles, whereas the 

offline problem is an adaptation of that in which all the requests 

that will come to the system are assumed to be known at the 

beginning with their corresponding attributes; arrival time and 

request address on disk. Hence, the offline problem is a 

deterministic problem. In this study, both online and offline 

variants of the problem are considered by concentrating on “read” 

operation in disk scheduling. 

 

The disk physical operation system consists of two main elements, 

the disk head and the platter (single or multiple). The head 

operates over the platter without touching it and make the 

read/write operations. Head moves in linear directions, as inward 

and outward movements on a single line (disk radius), while the 

platter rotates continuously without stopping and changing its 

direction. When a new job is to be serviced, the head first finds 

new job’s track (circular line on disk or platter surface), then waits 
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the platter rotation until the starting location of the job address 

comes under the head. Head’s movement is called seek, and once 

it finds the job’s track, the time passed until the job’s starting 

location comes under the head is called rotational latency. 

Because the disk rotates in single direction, the (time) distances 

between two job addresses (seek and latency) are not compatible 

with the Euclidean distances. The time distances are asymmetric 

and can be computed by considering the physical structure of hard 

disk. Seek and latency are realized as sequence dependent (setup) 

times for servicing two consecutive requests. When a job comes 

under the head after seek and latency, the time passed for  

processing (reading from or writing over track) of the job by the 

head is called transfer time, which is relatively short with respect 

to sequence dependent setup times. Seek, latency and transfer 

times constitute together service time. 

 

Although the disk scheduling problem belongs to the computer 

science literature, its link with the machine scheduling is 

considered in this study. Hence, throughout the study, the 

machine scheduling terminology is used simultaneously, instead of 

related computer science terminology only. For instance, “flow 

time”, “makespan”, “job”, etc. are occasionaly used instead of 

“response time”, “service completion time”, “request”, etc., 

respectively. 

 

The aim of the thesis is to develop a solution approach based on 

the solution of a variant of the traveling salesman problem (TSP) 

that could make further improvements in solving online problem 

over the proposed algorithms in literature. Despite the difficulties 

regarding solving TSP, such an approach is meaningful for the 

offline disk scheduling problem. A pure TSP application developed 
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for the offline version is used for solving online problem so that a 

benchmarking framework is provided to analyze the performances 

of online solution procedures. Incorporation of the TSP application 

into the online problem can be briefly explained as follows: 

At every decision time, we send the new queue information 

to the offline TSP model. Then, the offline application sends 

the scheduled queue information to the online application. 

This pure TSP application for the online problem is analyzed and 

compared with two well-known algorithms, chosen for 

benchmarking. We also consider a heuristic approach to 

incorporate the TSP into the online problem. 

 

Most of the well-known disk scheduling algorithms in literature 

focus on seek in the optimization. This study takes seek and 

latency together as the (sequence dependent) “setup time” and try 

to minimize the time needed to serve a set of requests. The main 

decision in disk scheduling is to decide the order (sequence) of jobs 

to be serviced in the system. There are two questions regarding 

main decision: “how to decide” and “when to decide”. The first 

question is about the scheduling rule, which is that much of the 

literature is concentrate on. The second question is concerned with 

the instant that scheduling rule should be applied. The 

conventional approach for answering “when to decide” works as 

follows: 

Every time when the content of queue in the disk system 

changes with arrival of a new job or a timeout, the new 

queue information is sent to the decision maker (DM). Then, 

DM decides on the servicing sequence and sends back the 

scheduled queue to the online application. 

The approach that we propose in this study, called as 

Deterministic Decision Epoch (DE), works as follows: 
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Queuing decisions are not made at every arrival and/or 

timeout cases. Instead, a decision epoch is defined as the 

time interval bounded by the completion time of the job in 

service up to the completion time of the next job. Hence, DM 

decides the new sequence with the information gained up to 

the completion time of the job under service. 

Both approaches are taken into consideration in our study.  

 

 

1.1 Motivation 

 

Although the computer hardware have showed great evolution in 

little time, magnetic hard disks have not kept pace with them 

because of the physical constraints imposed by the system’s 

structure. However, we believe that there is room in software  

improvement direction in hard disks, namely, the strategy in 

servicing the jobs in disk scheduling. It should be noted that there 

is always a tradeoff between hard disk performance and production 

cost. Although the marketing strategy decides always which one 

will win and how much the other will be ignored, we also believe 

that the software performance improvement increases the flexibility 

of the decision maker and affects production cost. 

 

 

1.2 Problem Definition 

 

In online disk scheduling, non-preemptive jobs coming randomly 

are directed to a queue having a capacity of holding n jobs. In 

addition to the queue (Q) of n jobs, there is a distinct queue just 

before the service having a capacity of two jobs, namely the run 

queue (RQ). RQ has a substantial effect on the disk performance 
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because once a job enters RQ, it becomes certain and the two jobs 

waiting in RQ are not subject to scheduling decisions anymore. 

Since the setup times of the jobs are sequence dependent, while a 

scheduling decision on Q is being made to determine the 

processing order of jobs, the address of the second job in RQ has 

an impact on the scheduling performance.  

 

While deciding on the job processing sequence in Q, disk 

scheduling should also provide service stability by not allowing 

timeouts and queue depth (queue capacity) violations. Timeout 

refers the violation of maximum allowable time a job can stay in 

system before being serviced. 

 

The online problem can be seen as a complex stochastic 

asymmetric traveling salesman problem with time windows. It 

follows that, the visiting sequence of all the available jobs in Q by 

the disk head must be scheduled considering stochastic problem 

nature, since the attributes, i.e. arrival times, processing times and 

addresses of the jobs are not known until they come. In offline 

setting, however, all the jobs are assumed to be known at the 

beginning with their corresponding attributes. Hence, the offline 

problem can immediately be reduced to an asymmetric traveling 

salesman problem with time windows. The visiting sequence of all 

the available jobs in Q by the disk head is scheduled subject to the 

time window of each job; starts with the arrival of job and lasts 

according to the timeout value of job. 

 

Unfortunately, the TSP problem is shown to be NP-complete, so 

cannot be solved to optimality in “reasonable times”. Therefore, 

heuristics as approximation methods are needed to find good and 

fast solutions to the disk scheduling problems. 
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1.3 Outline of the Chapters 

 

In Chapter 2, a brief literature review on related subjects is done. 

In the first section online problems and algorithms are reviewed. In 

the second section, a brief literature survey of routing problems 

under online setting in addition to more general offline setting is 

done. Third and fourth sections are about the disk scheduling. In 

the third section, the classical algorithms for disk scheduling are 

given with their variations. In the fourth section, further 

adaptations/modifications on those traditional methods and 

studies other than those are considered. 

 

In Chapter 3, the computer hard disk system is explained in detail 

in the first section. After that, the disk scheduling problem is 

defined with several performance measures, and the possible 

objectives are briefly discussed. In the third section, a generic 

mathematical model developed for the offline problem for several 

objective functions is introduced. The generic offline problem 

formulation is a variation of the formulation of the TSP with time 

windows. In the fourth section, the computational difficulty of 

solving the model with a general purpose optimization package is 

illustrated with an experiment. 

 

The online problem is examined in Chapter 4. The decision making 

issues and the policy developed are discussed in the separate 

sections. Conventional approach and deterministic decision epoch 

scheme developed for solving the online problem are detailed in 

these sections. After that, several reschedule procedures are 

discussed, including the TSP-based approach described in Chapter 

3. In addition to the exact solution of the sequence dependent 
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makespan minimization problem, a heuristic reschedule procedure 

based on the Nearest Neighbor is also provided at the end of the 

chapter. 

 

Chapter 5 covers the implementation of simulation under 

conventional and decision epoch settings, and the experimental 

analysis of the disk scheduling algorithms under both settings. In 

the first section, the nature of the simulation with basic properties 

is mentioned. The code frameworks of simulation are given for both 

settings in the second section. The parameter settings of the 

experiments, and the test bed generation methods are discussed in 

the third section. The experimental results for five policies on our 

test bed are provided and several comparisons are presented in the 

last section. 

 

The last chapter, in addition to conclusion of the study done, 

provides further study subjects. Also a challenging future research 

subject is mentioned in Appendix K. 
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CHAPTER 2 

 
 

LITERATURE REVIEW 

 
 
 
Computer hard disk scheduling problems have been studied both 

in Operational Research and Computer Science literatures. Besides 

having direct application on computer industry, it has been widely 

studied by the hardware companies. Therefore, one can find 

numerous technical reports, although much of them being stayed 

secret because of competitive concerns.  

 

This chapter is structured as follows. In Section 2.1, our literature 

review and analysis of online algorithms are presented. In Section 

2.2, a brief review on traveling salesman problem and its derivative 

vehicle routing problem will be given both in offline and online 

settings. Classical disk scheduling algorithms are presented in 

Section 2.3. In Section 2.4, some adaptations from traditional 

policies, aiming improvements in several disk scheduling 

performance measures are discussed. One special remark about 

third and fourth sections is that, since the studies in literature 

usually make the experimentation with their own simulation 

framework including the disk geometry (necessitating some 

probabilistic assumptions as miss probability etc.), their results 

are valid within themselves. The results from one study for a 

certain algorithm cannot be compared directly with the results in 

the other study. Hardware differences in experimentations also 

support that remark. 
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2.1 Online Problems and Algorithms 

 

In an online problem, decision maker (DM) has to deal with 

limitations on information instead of limitations on computational 

power in offline problems (Correa and Wagner, 2005). DM has to 

decide with incomplete information which continues to be available 

in time as increments. DM has a short time to decide at every new 

event (for example, in present disk scheduling literature, a new 

event is completion of a job or arrival of a new job coming for 

service with its corresponding attributes) with the information at 

hand at the time of the event without knowledge of future 

information. 

 

In late eighties and early nineties, there were three basic online 

problem types studied extensively: the paging problem, the 

k-server problem and metrical task systems.  

• “The paging problem is to maintain a two-level memory 

system consisting of a small fast memory and a large slow 

memory, to serve a sequence of requests to memory pages so 

as to minimize the number of page faults incurred.” (Albers 

and Leonardi, 1999). The most well known deterministic 

online strategies for paging are Least Recently Used, 

First-In-First-Out, and Least Frequently Used (Winter and 

Zimmerman, 1998). 

• “The k-server problem generalizes paging as well as more 

general caching problems. The problem consists in scheduling 

the motion of k mobile servers that reside on points of a metric 

space S. Requests are issued at points in S and, in response 

to each request, one of the servers must be sent to that point. 
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The goal is to minimize the total distance traveled by all the 

servers.”  

• “Metrical task systems can model a wide class of online 

problems. A metrical task system consists of a pair  (S; d), 

where S is a set of n states and d is a cost matrix satisfying 

the triangle inequality. Entry d(i; j) is the cost of changing from 

state i to state j. A task system must serve a sequence of 

tasks with low total cost.” (Albers and Leonardi, 1999). 

 

After early nineties, the online problems appeared in a wide range 

of application areas such as distributed data management, 

scheduling and load balancing, routing, robotics, financial games, 

graph theory, and a number of problems arising in computer 

systems like disk scheduling (Albers and Leonardi, 1999). 

 

To cope with online problems, online algorithms are developed. In 

general, an online algorithm takes input at increments one by one. 

Then it generates output for each of the input piece taken without 

the knowledge of the future input. For testing the performance of 

an online algorithm, a useful tool, called competitive analysis 

suggested by Sleator and Tarjan (1985) has been widely used.  The 

main idea of the competitive analysis is to compare the 

computational cost incurred by an online algorithm with that of 

the offline algorithm in which the full input knowledge is available 

at the beginning. Considering a minimization problem and letting 

ALG(I) be the cost incurred by online algorithm ALG on instance I, 

the competitive ratio of ALG is defined as follows: 

)(

)(
sup

IOPT

IALG

I

 

where OPT(I) is the optimal solution found for instance I by an 

offline algorithm. Lower that worst case ratio is better the online 
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algorithm (Bonifaci, 2005). This analysis makes the offline variant 

of the online problem valuable. 

 

 

2.2 Offline and Online Routing Problems 

 

Easy to describe and hard to solve Traveling Salesman Problem 

(TSP), has become popular since a method for solving it is 

published in 1954. Basically the problem is to find a least costly 

tour for a salesman visiting each of the n customer locations once 

and returning to the starting point, where the cost of traveling from 

one location to another is given. TSP belongs to the class of 

combinatorial optimization problems known as NP-complete. In 

this case no one can expect to develop an algorithm that 

guarantees to find the optimal solution to TSP in polynomial time. 

Hence, to tackle that difficulty, applying heuristics for finding good 

feasible solutions in reasonable times is a common approach. 

Readers are referred to Reinelt (1994) for a TSP review and its 

practical solution procedures. 

 

Although the most approaches in the routing area assume an 

offline setting in which the input is entirely known beforehand, 

several real life cases necessitate an online point of view. For 

instance, the advancement in information technology makes the 

just-in-time management more important. Express transshipment 

necessity fed also by rapid growth of e-commerce led to a sudden 

increase in real time routing problems, where problem size and 

parameters change after the vehicle routes are constructed (Chang 

et al., 2003). Similarly, in a logistics system, the mobile service 

provider cannot exactly know the costs at the time of travel and 

even could not know where the next location s/he must visit. 
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Therefore, in the online version the locations to visit are told to the 

salesperson while s/he is traveling. So that, every request has a 

release time ri, which indicates the time when the location is 

available to visit and/or also a due date di, where i is the location 

or customer identity. The objective function is given by the time at 

which all the requests are served. It is the same as the makespan 

criterion in machine scheduling terminology. In online setting of 

TSP, if the salesperson is not required to return its starting point, 

this version is called as Nomadic Online TSP. The version in which 

the tour is required to be closed is called as Homing Online TSP 

(Bonifaci, 2005). 

 

Vehicle Routing Problem (VRP) is a generalization of TSP allowing 

more than one server (salesperson) and bringing the vehicle 

capacity and demands of the locations into the problem. Because 

of the suitability of the online problem setting to logistics systems, 

and the central importance of VRP to logistics systems, the online 

VRP is also a widely studied subject in the literature. In online 

VRP, the order of visit to known customer locations are decided on 

real time without knowing the possibilities of demand changes in 

locations and even the new customer locations that may come into 

the picture while the vehicles keep serving the available locations 

at that time. Hence, online VRP has applications on to dial-a-ride 

systems, such as controlling a taxi station or an elevator set of a 

building, or planning routes for a set of couriers (Bonifaci, 2005). 

The disk scheduling problem therefore can also be seen as a 

dynamic, stochastic online routing problem having asymmetric 

characteristics. 
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2.3 Classical Disk Scheduling Algorithms and Their Variations 

 

After the first commercial hard disks were introduced into the 

market by IBM (IBM 350 RAMAC disk drive, 5 megabyte) in 1956, 

the magnetic hard disks have had little evolution comparing with 

the processors and other hardware components since the main 

logic of disk system is physically the same with the very first hard 

disk. The hard disks are also in their technological limits in storage 

capacity. When the platter density is held at the reached level of 

today’s technology, space requirement increases for greater data 

capacity, whereas the difficulty of creating smaller heads arises for 

higher data density platters. Decreasing the magnetic domain 

makes hard to sustain the disk stability. However, the job service 

decisions have been always extremely important for overall hard 

disk performance. In the beginning there was one simple 

scheduling policy for job service decisions: First-Come-First-Served 

(FCFS). Although this is a simple scheduling method, it is highly 

resistible to starvation, since a new coming job has to wait only for 

the jobs that came before it. While FCFS (or FIFO) scheduling 

policy had been applied in early hard disks, when the end of sixties 

came, several intelligent algorithms for hard disk scheduling had 

already found application in the field. 

 

Shortest Seek Time First (SSTF) is a form of simple Shortest Time 

First (STF) algorithm. Since the seek time (rather than latency) 

constitutes greater part of the access time, looking for the shortest 

seek time job generally makes considerable improvement over 

FCFS job scheduling. However, SSTF is very susceptible to 

starvation. Especially in high workload situations, some jobs could 

wait to be serviced for an unacceptably long time. 
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SCAN algorithm which is first proposed by Denning (1967), is a 

clever modification of SSTF, which tries to overcome the starvation 

illness. It works as such that the head starts to scan the disk 

surface from the outermost cylinder (cylinder 0) and serves the 

jobs inward. When it comes to the innermost cylinder (cylinder n), 

it starts to scan outwards and makes the same process outward. 

In this case, the middle parts of the disk are serviced well, while 

the innermost and outermost parts are serviced relatively poorly. 

By this method, the maximum waiting time of a new coming job, at 

the worst case, onto the just passed cylinder 0 or n, is the time 

equivalent of two times the cylinder 0 – cylinder n distance. 

 

In SSTF and SCAN algorithms, there is a slight possibility of 

starvation. An example from Stallings (2001) shows that “if one or a 

few processes have high access rates to one track, they can 

monopolize the entire device by repeated requests to that track. 

High-density multisurface disks are more likely to be affected by 

this characteristic than lower-density disks and/or disks with only 

one or two surfaces.” To overcome this possibility a combination of 

FCFS with any of the algorithms above can be applied like that:  

The jobs waiting for service are segmented in queues of defined 

length, say N. After the chosen algorithm is used for the N jobs in 

first queue, the same thing is done for the second whether its 

length is higher or lower than N. While N gets higher and higher, 

N-step-SCAN approaches SCAN in performance (Stallings, 2001). 

 

SCAN is further modified to overcome the service anomaly 

mentioned above and to decrease the maximum waiting time of a 

new coming job. In C-SCAN, the scan direction is always the same, 

meaning that when the disk head finishes the scanning (i.e. 

inward), it comes back to the outermost cylinder and starts to the 



 
15

same process again, and so on. In this case, as opposed to SCAN, 

all the parts of the disk are equally serviced. By this method, the 

maximum waiting time of a new job, at the worst case, onto the 

just passed cylinder 0 or n, is the time equivalent of the cylinder 0 

– cylinder n distance (half of that of SCAN algorithm). 

 

Another modification of the SCAN algorithm is called LOOK. The 

only difference of LOOK is that, while the disk head scans the disk 

surface from one end to the other, it turns scanning direction 

instead of going to the end when there is no job at the current 

direction forehead. Although the worst case maximum waiting time 

of a job is the same, the average waiting time of a job is shorter in 

LOOK than that of C-SCAN. 

 

CLOOK is a combination of C-SCAN and LOOK algorithms. Only 

difference between CLOOK and LOOK is the single direction 

character of the first one. Although this character does not 

guarantee the equal service throughout the disk surface like it 

does in the case of C-SCAN algorithm, it increases the uniformity 

of service. 

 

The disk scheduling algorithms other than FIFO can be examined 

under two main categories; seek delay reduction policies and 

positioning delay reduction policies. Under the first heading SSTF, 

SCAN, C-SCAN, LOOK and CLOOK algorithms take seek into 

consideration, while shortest-positioning-time-first (SPTF) 

algorithm takes combined seek and rotational latency into 

consideration. SPTF use the more complete information about the 

data blocks on disk and the current position of head and choose 

the job with minimum positioning delay. In Table 2.1, we present 

an overview of the disk scheduling algorithms. 
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Table 2.1 Overview of Disk Scheduling Algorithms 
 

Algorithm Main Idea Remarks 

FIFO Jobs are taken into service in 
their coming order. 

Poor throughput and long 
average waiting time. But 
highly resistable to 
starvation. 

SSTF 

Seek reducing algorithm. The next 
job to be processed is chosen as 
the nearest job in seek distance to 
the job under service. 

Good performance on 
throughput and average 
waiting time. Very 
susceptible to starvation 
especially in high 
workload situations. 

SCAN 

A modification of SSTF. It applies 
SSTF in one direction of disk, 
when head comes to the edge it 
reverses the direction and makes 
a new SSTF application on 
reverse direction until the edge. 

Inferior performance on 
throughput and average 
waiting time. But little 
starvation. 

C-SCAN 

Cyclic SCAN makes the head run 
only in single direction and when 
it comes to the edge it returns to 
the starting point and redo the 
run in same direction. 

Inferior performance on 
throughput and average 
waiting time. Less 
starvation than SCAN. 

LOOK 

A modification of SCAN. While the 
head goes in a direction, if there 
is no job in that direction, it 
instantaneously reverses the 
direction instead of going to the 
disk surface's edge and apply 
SSTF in new direction. 

Slightly better 
performance than C-SCAN 
on average waiting time. 
Almost same starvation 
with C-SCAN. 

CLOOK A modification of LOOK to apply it 
in single direction only. 

Almost the same 
performance with LOOK 
on throughput and 
average waiting time. 
Increased service 
uniformity. 

SPTF 

Considering current position of 
head finds the next position with 
minimum seek and rotational 
latency. 

Necessitates more 
complete information of 
data blocks on disk 
surface. Good 
performance on average 
waiting time especially. 
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Teorey and Pinkerton (1972) investigate and compare the 

performances of FIFO, three seek time optimization policies SSTF, 

SCAN and N-step scan, and one early rotational position 

optimization policy (Eschenbach scheme). They also consider 

LOOK and CLOOK. They made both analytical and computational 

performance comparisons in this study. The computational 

performance comparisons are done with the aid of a utility 

function combining system throughput with mean and variance of 

waiting time for individual requests. They found that under light 

workload the best performance was attained by LOOK. Under 

heavy workload CLOOK, combining the best characteristics of 

LOOK and the Eschenbach scheme, had maximum performance. 

 

Worthington et al. (1994) is almost the most cited work in disk 

scheduling area, since they introduce prefetching (on-board cache 

utilization) concept into the basic scheduling policies. In 

prefetching, the head is allowed to make excess read on the track 

after completion of the read of a request at that track when the 

scheduling structure permits. That excess reads are stored in 

onboard cache for a time and they are called when a new request’s 

part of the address overlaps the stored one. Hence, for that part of 

the address, head does not have to make read operation. They 

made simulations including prefetching and reduced inferences on 

quite good performance increase in certain situations. For 

example, while CLOOK shows slightly inferior performance than 

SSTF and LOOK for random workloads, it achieves the highest 

cache hit rates and lowest average response time for most of the 

real-world traces.  
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2.4 More Study on Disk Scheduling 

 

Geist and Daniel (1987) have introduced VSCAN, a continuum of 

two disk scheduling algorithms SSTF and SCAN. “A continuum of 

disk scheduling algorithms, V(R), is defined where R is a variable 

having values between 0 and 1 which defines the algorithm’s 

closeness to SSTF and SCAN. V(R) has endpoints of V(0) = SSTF and 

V(1) = SCAN. V(R) maintains a current SCAN direction (in or out) and 

services next the request with the smallest effective distance. The 

effective distance of a request that lies in the current direction is its 

physical distance (in cylinders) from the head. The effective distance 

of a request in the opposite direction is its physical distance plus R x 

(total number of cylinders on the disk). This definitional continuum 

also provides a continuum in performance, both with respect to the 

mean and with respect to the standard deviation of request waiting 

time.” After tests with a real system data, they found that V(0.2) 

outperforms FIFO, SSTF and SCAN algorithms in average waiting 

time and system throughput criteria. 

 

Seltzer et al. (1990) have analyzed the traditional disk scheduling 

policies in the presence of long queue lengths, and they proposed 

two algorithms taking rotational latency into account together with 

seek time. These algorithms were grouped as shortest time first 

(GSTF) and weighted shortest time first (WSTF). First one was a 

combination of SCAN technique with shortest time first (STF) 

technique. The second one, which guarantees no starvation, made 

use of the STF technique applying an aging function to the 

computed times. They used an additional disk scheduling 

performance measure other than average flow time, namely “disk 

utilization”. It is defined as the percent of a job’s flow time (waiting 
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time + seek + latency + transfer time) that was composed of the 

transfer time. The utilization value for FIFO has been found about 

7%, while proposed algorithm GSTF was shown to have utilization 

close to STF (25%), it also have had comparatively little maximum 

flow time, close to that of C-SCAN. 

 

An HP Laboratories technical report by Jacobson and Wilkes 

(1991) has also showed that the access time based algorithms 

(those taking latency into consideration) outperform seek time 

based ones. They have found that aged shortest access time first 

algorithm (a continuum between FIFO and shortest access time 

first (SATF)), having quite a same logic with VSCAN, has better 

performance within all the variations of SATF policy.  

 

Thomasian and Liu (2002), apply a modification on basic disk 

scheduling algorithms for incorporating a lookahead of next i 

requests (LAi) property into them. They apply it to C-SCAN by 

taking the latency into account and reorder the next i requests in 

scanning direction to minimize the sum of their service times, 

instead of minimizing that of just next one (C-SCAN-LAi). They also 

apply the same logic to SATF considering again i requests rather 

than just one at a time (SATF-LAi). They make a random number 

driven simulation study for comparing the performances of 

classical policies with the two lookahead policies mentioned above. 

For the performance differences in between the classical policies, 

their results concur to that by Worthington et al. (1994). When the 

mean response time criterion is considered, SATF is the best while 

FIFO is the worst, SSTF and SCAN outperform C-SCAN policy. 

SATF-LA2 further improves over SATF. 
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Modern hard disks using rotational position optimization 

algorithms, utilize seek distance versus rotational distance tables 

(rpo tables or arrays), which are stored in flash-memory within 

each hard disk drive. Hence, reduction in the necessary flash-

memory, directly reduce the disk production cost. The trade off is 

that how much it can be reduced with no or little degradation in 

hard disk performance (Burkhard and Palmer, 2001). 

 

There are some studies on the synthetic workload generation and 

the validities of them. Ganger (1995) has examined several 

probability distributions, and compared them with real workload 

sets known in literature. He showed that the commonly assumed 

workload characteristics were inaccurate and especially the job 

arrival patterns were not independently distributed in reality. 

 

Huang and Chiueh (2002) discuss another possible drawback of 

disk scheduling efforts. They claim that software based (shortest 

access time first) disk schedulers are becoming less and less 

feasible as the disk technology evolves, since the disks are getting 

more and more complicated. 

 

Another approach by Popovici, Arpaci-Dusseus (2003) involves a 

simulation approach integrated to a real disk system. It traces the 

jobs and it models the service time of job by observing both request 

type and the logical distance from the previous request. Thus by 

predicting the near behavior with the past requests having same 

attributes. 

 

Reuther and Pohlack (2003) suggest an algorithm based on 

dynamic active subset (DAS). DAS contains the most outstanding 

requests and it is updated after every scheduling decision. These 
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requests have higher priority and are scheduled according to the 

rotational position of the requests. So that the finite time service 

guarantees could be reached for every job without deterioration in 

performance. 

 

Andrews et al. (2002) concern disk geometry directly and propose 

new algorithms for offline and online problems. They show that the 

problem is related to the asymmetric TSP. They define a 

reachability function, which gives the maximum radial distance 

head can travel for a rotation of angle θ. Then using this function, 

they develop an approximation algorithm to serve all the requests 

on disk within certain number of rotations depending on the 

reachability function. Finally they apply the idea to the online 

problem. They proposed an algorithm, called as CHAIN. It has 

similar logic with the classical STF algorithm, with key difference of 

better look-ahead. CHAIN considers more than the next request 

and forms a partial order of all the requests in the buffer. Then, it 

constructs a new partial order at every arrival to the buffer. 

However, they do not present an analytical comparison between 

STF and CHAIN’s performances. 
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CHAPTER 3 

 
 
PROBLEM DEFINITION AND OFFLINE DISK SCHEDULING 

PROBLEM FORMULATION 
 
 
 
In this chapter the hard disk system basics are explained. After 

that, the general disk scheduling problem is defined with the main 

performance criteria. The basic mathematical models for offline 

problem, which is described as a TSP with time windows, are given 

for four different objective functions at the last section. 

 

 

3.1 System Definition 

 

A disk is a platter, made of metal or plastic with a magnetizable 

coating on it, and in circular shape. It is possible to store 

information by recording it magnetically on the platters. A 

conducting coil, called head, which is a relatively small device, 

facilitates the data recording on and retrieval from the disk. In a 

disk system, head rotates just above both surfaces of each platter. 

All heads, being attached to a disk arm, move collectively as a unit. 

To enable a read and write operation, the platter rotates beneath 

the stationary head. 

 

Data are organized on the platter in tracks, which are in the form 

of concentric set of rings. In medias using constant linear velocity, 

the track densities are uniform (bits per linear inch of track). The 

outermost zone has about 40 percent more sectors than innermost 



 
23

zone. The rotation speed increases as the head moves from the 

outer to the inner tracks to keep the same data transfer rate. This 

method is also used in CD-ROM and DVD-ROM drives. In these 

types of medias, the storage capacity of the disk is maximized by 

zoning application. A zone consists of adjacent cylinders having the 

same track densities (sector per track). 

 

The other types of medias have constant disk rotation speeds, and 

in that kind of systems the same numbers of bits are typically 

stored on each track, thus the density, in bits per linear inch, 

increases in moving from the outermost track (track 0) to the 

innermost track (track N), to keep the data rate constant (constant 

angular velocity).  

 

Just as the tracks are subdivisions of the platter surface, tracks 

have subdivisions, called sectors, which are depicted in Figure 3.1. 

Data are transferred to and from the disk in blocks, size of which 

are typically smaller than the capacity of the track. Block-size 

regions on the disk where data are recorded, are called sectors 

each having 512 bytes capacity for most disk drives. The request 

locations are defined with the physical block addresses over these 

sectors. Adjacent sectors are separated by intratrack gaps in order 

to avoid imposing unreasonable precision requirements on the 

system (Stallings, 2001). 

 

A common disk drive has a capacity in the size of gigabytes. While 

the set of tracks that are at one arm position forms a cylinder, in a 

disk drive there may be thousands of concentric cylinders. A set of 

wires, called the I/O bus, attaches the disk drive to a computer. 

Buses vary in kind from earlier advanced technology attachment 

(ATA) and small computer system interface (SCSI) to Serial ATA 
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(SATA) and SATA II buses available for basic consumer use. While 

the consumer type hard disks having SATA and SATA II buses use 

native command queuing (NCQ), allowing the queuing of up to 32 

jobs, the enterprise disks having SCSI-2 standard use tagged 

command queuing (TCQ), which supports up to 216 queued 

commands. In NCQ all the requests in queue have the same 

importance, whereas in TCQ it is permitted to assign high priority 

to some of the jobs. Data transfer is carried out through special 

electronic processors, which are called controllers. While the 

controller at the computer end is called host controller, a disk 

controller is built on each disk drive. 

 

 

 

Figure 3.1 – Disk Surface 

 

A command placed into the host controller by the computer 

initiates an I/O operation in the disk. For this, the computer uses 
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memory-mapped I/O ports and sends the command through 

messages to the disk controller, which in turn operates the disk-

drive hardware to carry out the command. Disk drive transfers 

data through the interaction of built-in cache, which most disk 

controllers have, and the disk surface. Data transfer between the 

cache and the host controller is performed at high electronic 

speeds (Silberschatz, Galvin, Gagne 2003). 

 

Most disk drives rotate 60 to 200 times per second, with the help 

of a high speed drive motor. It is possible to mention two 

components of the disk speed: transfer time and positioning 

time or random access time. Transfer time is determined by the 

transfer rate, the rate at which data flow between the drive and the 

computer. The positioning time, which refers to the time that is 

elapsed to move the disk arm to the desired cylinder, is also called 

as the seek time. One term to be mentioned here is the rotational 

latency: The time for the desired sector to rotate to the disk head. 

Typically rotational latencies and seek times of disks are in the 

range of several milliseconds, and they can transfer several 

megabytes of data per second (Silberschatz, Galvin, Gagne 2003). 

 

 

3.2 General Disk Scheduling Problem 

 

Whether the disk is a single or multiple platter type, it always 

works with the same principle. The only difference is that the 

multiple platter system scatters the data of a certain file to each 

platters’ same tracks (called together as a cylinder), same sectors 

and while processing the file, it makes use of parallel reads/writes 

by means of the heads working as unite, as can be seen in Figure 

3.2. Hence a certain file that is written on a single platter only 
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differs from that of written on a multiple platter one, by the area it 

covers on the surface (i.e. block size on single platter disk = A; 

block size on 6 platter disk = A / 6). Therefore, concentrating on a 

single surface of a disk platter, depicted in Figure 3.3, will not 

make any difference other than easier understanding of the 

problem. 

 

 

 
 
 
 

Figure 3.2 – Disk Head Mechanism 
 

For most of the systems, in disk scheduling, non-preemptive jobs 

coming randomly are directed to a queue, which has a capacity of 

n (typically 128 for enterprise machines), 216 jobs as maximum. In 

addition to that, there is another queue, namely Run Queue (RQ), 
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revolution 

actuator 

before the disk processor. The capacity of this queue is two. Once 

the jobs to be placed into this queue are determined, they cannot 

be removed or their sequence cannot be changed. If the number of 

the jobs in the system is greater than two, then the RQ is full. 

Including RQ, total capacity of the system is n+2+1 (131 for 

enterprise machines typically) jobs on a distinct moment of time.  

 

 

 

 

 

 

 

 

 

 

Figure 3.3 – Disk Working Principle 

 

For a job that comes into the process, an action composed of two 

distinct movements is done for the actuator (disk head) to start the 

job processing. First movement involves inward and outward linear 

strokes of the actuator along the disk radius, and the second is the 

rotational one (disk rotation). The time passed for disk head finding 

the track including the job is called as seek. After the head finds 

the track and stops over that, it waits until the job address starting 

location comes under the head. This waiting time is called as  

latency. These two are counted as service time components, 

together with the transfer time. Their average values (read/write 

average) are 6 ms and 3 ms for standard 10,000 rpm (revolution 

per minute) disks. The writing processes necessitate greater seek 

times, since it requires the higher precision over disk surface. The 
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transfer time is related to the size of the job. Whether the disk 

head reads/writes data on a cylinder or stands over it without 

doing anything, the same time passes, which is the disk rotation 

time. Since electronical transfer time is an insignificant value 

comparing with the mechanical rotation time, transfer time is 

accepted as equal to the disk rotation time. 

 

Hard disk scheduling works in such a way that at every job 

replacement in and addition to the queue, the scheduling 

algorithm defines the new job sequence in the queue. Each time 

the service of a job is finished, the first job in run queue (RQ) is 

taken into process, the second job in RQ becomes the first one, 

and the job scheduled as first in the queue takes the second 

position in RQ. 

 

Job sequencing decisions arisen from some greedy sequencing 

algorithms could cause an undesired situation (called as job 

starvation) so that some jobs could have to wait for service 

unacceptably long time. To measure that, the system put a label 

on every job i indicating its arrival time into the system (ri), and 

after a defined time stamp (τ), if it is still waiting to be serviced, 

timeout case happens and the job is assessed tardy (>ri + τ). 

 

To our knowledge, the standard hard disks follow such a way that, 

existence of a timeout job turns the whole system processing 

sequence policy into FIFO, until all the jobs in the system at that 

instant are finished. 

 

Although, it would be in nanoseconds, there is always a difference 

between the job arrival times. Hence, there could be only a single 

job that is timeout on a certain moment of time, and once the 
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system undergoes to FIFO policy, other jobs inclined to be timeout 

will be serviced in accordance with their strength of inclination 

following the timeout one. However, in reality there are plenty of 

cases in which more than one job can be timeout simultaneously. 

Especially in busy systems, arrival of bursty job bulks having even 

100 jobs could be possible. In such a case, if timeout of these 

bursty jobs happens, defining a process reentry policy for them 

could improve the performance as well.  

 

There are several objectives or disk scheduling performance criteria 

in the general disk scheduling problem (online): 

 

 

1) Maximizing the job service rate (jobs/second): 

Maximizing the job service rate means minimizing the 

completion time of the last job in the system, referred as 

makespan in machine scheduling literature. This objective 

does not take the average flow time of the jobs into 

consideration. Thus, this method disregards the service 

quality concern. It does not take a measure for preventing 

timeouts, so does not guarantee service stability. 

 

2) Maximizing the data service rate (bytes/second): 

A modified version of the first objective maximizes the data 

throughput instead of taking each job as a unit whatever 

the size of bytes it holds. It is useful for job sets having a 

greater size variation. 

 

3) Minimizing the maximum flow time of jobs (maximum 

waiting time of jobs in miliseconds): 
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In machine scheduling, minimizing the maximum flow time 

in system is a worst case measure, having poor overall 

performance for makespan and average flow time 

measures. But, it guarantees service stability by preventing 

timeouts. 

 

4) Minimizing the average flow time of jobs (average waiting 

time of jobs in miliseconds): 

The average flow time is one of the good measures of 

service quality as well as the overall performance. However, 

like 1st and 2nd objectives, it also does not guarantee 

service stability. 

 

The disk scheduling problem is an online problem in reality having 

the features explained before in Chapter 2. The jobs that come 

randomly at any instant without beforehand knowledge must be 

served and/or queued almost instantly by the disk mechanism. 

Hence, in our understanding, when a new job comes, the decision 

maker (DM) has time to decide on the schedule of the new job for 

processing until the completion of the job in process. Exploiting 

this problem structure, the online problem can be thought as 

many instances of offline problems. When the processing of a job 

has started, the new scheduling decision for the jobs in Queue (Q), 

for instance, can be taken by solving an offline TSP problem within 

the time stamp available until the completion of the job in 

processing. For that reason, to solve the online problem, we 

suggest that a sequence of offline problem instances is solved 

within varying time intervals whose lengths are determined by the 

online problem occurrances like completions. Below we define 

offline disk scheduling problem for which it would take place as a 

decision support tool in solving the online problem. 
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3.3 Mathematical Modeling of Offline Disk Scheduling Problem 

 

The basic models constructed in this section refer to the 

formulations of the offline problems. In the offline problem, we 

assume that all the requests are known in advance by the system, 

with their arrival times, locations, processing (transfer) times and 

due dates at the very beginning. Here, we use the same notation by 

Rabadi (2001). Recall that in the real problem (the online version of 

problem), arrival times are stochastic and are not known before 

jobs arrive the system. After the jobs arrive, locations, processing 

times and due dates are known. Note that, the arrival time of a 

certain job constitutes its time window’s lower bound while a 

constant timeout value decided for the disk system is added to the 

job’s arrival time to set the upper bound of the time window. The 

problem is a kind of asymmetric traveling salesman problem (TSP) 

with time windows. The asymmetric nature of the TSP arises from 

the disk’s working principle. Since the hard disk platters rotate 

always in the same direction, the two-way time distances between 

two distinct jobs’ physical block addresses are not equal.  

 

Below, we first explain our parameters and then decision variables 

for the offline problem. Then, we present four offline disk 

scheduling problem formulations with different objective functions. 

 

Parameters: 

 

S i,j : Sequence dependent setup time from job i to job j

 (seek + rotational latency). 

 

t i   : Transfer (processing or read/write) time for job i. 
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r i   : Arrival time of job i into the system. 

 

d i  : Due date of job i (ri + allowable constant waiting time 

(τ) value before being timeout). 

 

M  : A large positive number. 

 

Decision Variables: 

 

X i,j  : Binary variable defining whether job i directly 

precedes job j or not in the sequence (It takes 1 if job i 

directly precedes job j, 0 otherwise). 

 

C i   : Completion time of job i. 

 

Ei  : Earliness of job i (It indicates as if a job i is completed 

before its due date), i.e. Ei= max{ 0, di-Ci }. 

 

Ti : Tardiness of job i (It indicates as if a job i is 

completed after its due date), i.e. Ti= max{ 0, Ci-di }. 

 

Cmax  : Completion time of the last job in the system, which 
is also called makespan, i.e. Cmax= max { Ci }. 

                 i 
 

Fi  : Flow time of job i, i.e. Fi = (Ci – ri). 

 

NTi : Binary variable defining whether job i is tardy (being 

timeout) or not (It takes 1 if job i is completed after its 

due date, 0 otherwise), i.e. NTi =     1 if Ti > 0; 0 o/w. 

 

NT  : Total number of tardy (timeout) jobs, i.e. NT = ∑ NTi. 
                      i 
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The four offline disk scheduling problems (DSP): 

 

A – DSP with Makespan Criterion 

The makespan is the time by which the service of the last job in 

the system is finished. In the formulation below, the objective is to 

minimize the makespan. It indicates a good overall system 

performance measure, although it gives little guarantee on the 

service quality (i.e. the average job flow time). Besides, it does not 

take any direct measure for minimizing the number of tardy jobs. 

 

Minimize  Cmax         (3.1) 

Subject to 

∑
=

n

i
jix

1
,
= 1       j=1,…,n    i ≠ j     (3.2) 

∑
=

n

j
jix

1
,
= 1       i=1,…,n     i ≠ j     (3.3) 

Ci ≥ ri  + S0,i  + ti - M(1- x0,i )    i=1,…,n     (3.4) 

Cj ≥ rj  + Si,j   + tj - M(1- xi,j )    i=1,…,n   j=1,…,n   i≠j  (3.5) 

Cj - Ci  + M(1- xi,j ) ≥ Si,j + tj    i=1,…,n    j=1,…,n   i≠j  (3.6) 

Cmax  ≥  Ci       i=1,…,n    (3.7) 

xi,j   є  { 0,1 }          i=1,…,n    j=1,…,n i≠j  (3.8) 

Ci   ≥  0        i=1,…,n    (3.9) 

 

As mentioned before, the model resembles an asymmetric TSP with 

time windows of [ri, ∞]. The objective function (3.1) minimizes the 

makespan value that is controlled by constraint set (3.7) which 

ascertains that the makespan is greater than or equal to the 

completion time of all the jobs. Constraint set (3.2) makes sure 
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that there is only one job preceding job j, while (3.3) ascertains 

that there is only one job following job i. Constraint set (3.4) 

provides that the completion time for the first job to be processed 

is greater than or equal to the summation of its arrival time, set up 

time from the disk head’s initial position, indicated by job j=0, and 

its transfer time. It is made certain by constraint set (3.5) that the 

completion time of any job j, which is directly preceded by job i, is 

greater than or equal to the summation of its arrival time, setup  

time from job i to j, and transfer time of job j. If job i precedes job j, 

then the completion time difference between job j and job i must be 

greater than or equal to the summation of setup time from job i to 

job j and transfer time of job j, and it is provided by constraint set 

(3.6). Big M in constraint set (3.6) together with constraint sets of 

(3.4) and (3.5) and constraint set (3.8) eliminates the possibility of 

having overlapping disjoint paths (sub-tours). xi,j is a binary 

variable having value of 1 if job i directly precedes job j, otherwise 

0 as constraint set (3.8) indicates. Finally, constraint set (3.9) 

provides the non-negativity for the completion time value for all 

jobs. 

 

 

B - DSP with Makespan Criterion subject to Due Date 

 

In the following makespan minimization model, timeout is not 

allowed. The timeout value is a fixed predetermined constant 

maximum waiting time in the system showed by the symbol “τ”. 

When it is feasible, the timeouts are avoided and so is the 

performance decrease caused by them. The model could do that at 

the expense of longer disk head movements, and could have to 

make disk head swing too many times over the disk surface than it 
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would have to in the case in which the timeout is allowed. 

However, depending on the problem instance data, a feasible 

solution is not guaranteed in the model. 

 

As can be seen below, the objective function and all the constraints  

of DSP with Makespan Criterion model are preserved in this model. 

Only difference is the addition of constraint set (3.10) which is the 

hard constraint, imposing the completion of job i before its due 

date. 

Minimize  Cmax         (3.1) 

Subject to 

∑
=

n

i
jix

1
,
= 1       j=1,…,n    i ≠ j     (3.2) 

∑
=

n

j
jix

1
,
= 1       i=1,…,n     i ≠ j     (3.3) 

Ci ≥ ri  + S0,i  + ti - M(1- x0,i )    i=1,…,n     (3.4) 

 

Cj ≥ rj  + Si,j   + tj - M(1- xi,j )    i=1,…,n   j=1,…,n   i≠j  (3.5) 

Cj - Ci  + M(1- xi,j ) ≥ Si,j + tj    i=1,…,n    j=1,…,n   i≠j  (3.6) 

Ci    ≤   di   (di = ri + τ)     i=1,…,n    (3.10) 

Cmax  ≥  Ci       i=1,…,n    (3.7) 

xi,j   є  { 0,1 }          i=1,…,n    j=1,…,n i≠j  (3.8) 

Ci   ≥  0        i=1,…,n    (3.9) 

 

 

C – DSP with Tardiness Related Criterion 

 

This model does not take a measure for minimizing the makespan, 

but has concern for tardiness. Minimizing number of tardy jobs 
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(∑NTi) does not have a direct effect on the overall performance of 

the system in terms of makespan criterion and it may even worsely 

affect the overall performance (i.e. makespan) depending on 

characteristics of the job data. On the other hand, minimizing the 

total tardiness (∑Ti) carries the same disadvantages with (∑NTi) and 

it is meaningless in the sense that in real system, whether a 

tardiness amount is large or very small, whenever a timeout 

happens the system always lose about the same amount of 

performance. Hence, the number of tardy (being timeout) jobs is a 

better measure that should be considered if tardiness is important 

for the decision maker. 

Minimize  ∑
=

n

i 1

NTi         (3.11) 

Subject to 

∑
=

n

i
jix

1
,
= 1       j=1,…,n    i ≠ j     (3.2) 

∑
=

n

j
jix

1
,
= 1       i=1,…,n     i ≠ j     (3.3) 

Ci ≥ ri  + S0,i  + ti - M(1- x0,i )    i=1,…,n     (3.4) 

Cj ≥ rj  + Si,j   + tj - M(1- xi,j )    i=1,…,n   j=1,…,n   i≠j  (3.5) 

Cj - Ci  + M(1- xi,j ) ≥ Si,j + tj    i=1,…,n    j=1,…,n   i≠j  (3.6) 

Ci - Ti + Ei = di          i=1,…,n    (3.12) 

Ti  ≤  M(NTi)          i=1,…,n    (3.13) 

xi,j   є  { 0,1 }          i=1,…,n    j=1,…,n i≠j  (3.8) 

NTi є  { 0,1 }       i=1,…,n    (3.14) 

Ci , Ti , Ei  ≥  0       i=1,…,n    (3.15) 

 

The objective function (3.11) minimizes the total number of tardy 

jobs within the job set consisting of n jobs. Constraint sets (3-2) to 

(3-6) and (3.8) apply here also. Constraint set (3.12) is the soft 
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constraint, allowing the completion of job i after its due date, 

where  d i = r i + τ. If job i is tardy, Ti must be less than or equal to 

a very big number, otherwise Ti equals to 0, and that is provided by 

constraint set (3.13).  Constraint set (3.13) also counts the number 

of cases in which a timeout occurs. Constraint set (3.8) also 

applies here. NTi is a binary variable having value of 1 if job i is 

tardy, otherwise 0 as constraint set (3.14) indicates. Constraint set 

(3.15) gives non-negativity property of the tardiness and earliness 

of each job, in addition to that of completion time.  

 

 

D – DSP with Total Flow Time Criterion 

 

The flow time is the time spent by a job after its arrival into the 

system until its departure from the system (after the job is served). 

Although this model is likely to give a larger makespan value than 

that of the makespan minimization model, it is still a useful 

objective. The total flow time gives an information about the quality 

of service, because it keeps tracks of the average waiting time in 

the system. Minimizing average waiting time in the system does 

not guarantee maximizing the job service rate in number of jobs 

per second. On the contrary, an increasing service quality with 

more balanced service is expected to increase the number of jobs 

in queue waiting for service in a distinct moment of time. Hence, if 

timeout does not likely to happen, the flow time minimization is 

not so preferable to apply. 
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Minimize  ∑
=

n

i 1

 Fi        (3.16) 

Subject to 

∑
=

n

i
jix

1
,
= 1       j=1,…,n    i ≠ j     (3.2) 

∑
=

n

j
jix

1
,
= 1       i=1,…,n     i ≠ j     (3.3) 

Ci ≥ ri  + S0,i  + ti - M(1- x0,i )    i=1,…,n     (3.4) 

Cj ≥ rj  + Si,j   + tj - M(1- xi,j )    i=1,…,n   j=1,…,n   i≠j  (3.5) 

Cj - Ci  + M(1- xi,j ) ≥ Si,j + tj    i=1,…,n    j=1,…,n   i≠j  (3.6) 

Fi = Ci – ri       i=1,…,n    (3.17) 

xi,j   є  { 0,1 }          i=1,…,n    j=1,…,n i≠j  (3.8) 

Ci , Fi  ≥  0           i=1,…,n    (3.18) 

 

In the formulation above, the objective function (3.16) minimizes 

the total flow time. For job i, the flow time value equals the 

completion time of that job minus its arrival time, as constraint set 

(3.17) provides. Constraint sets (3.2) to (3.6) and (3.8) apply here 

also. Constraint set (3.18) gives non-negativity property of the flow 

time of each job, in addition to that of completion time. 
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3.4 Computational Difficulty of the Offline Problem 

 

From the basic NP-hard problems modeled in the previous section, 

DSP with Makespan Criterion (Model A) and its due date version 

(Model B) reduce to TSP with time windows problem in routing and  

scheduling literature, whereas the other two models are different 

variants of TSP. The first problem has time windows of [ri, ∞], while 

the second has [ri, ri+τ], where ri is arrival time of the job i and τ is 

the allowable constant waiting time value for all the jobs. It is 

known that, as the problem size increases, the number of 

iterations and the time required to reach the optimal solution of 

the problem increase exponentialy for TSP with time windows. This 

remark is also valid for Models C and D. Therefore, one can expect 

that solving these models with even moderate size data will take 

longer time. 

 

For illustrating the computational difficulty of solving the offline 

problem to optimality, we prepared two sets of problem data using 

the disk address distances. By using Lingo 8.0, we solve Model A 

with setting of ti = ri = 0 for all the jobs. From the uniformly 

distributed address values, we generated two data sets: an 8-job 

problem and a 10-job problem. We formed 10 different instances 

from each set. As given in Table 3.1, 8-job instances are solved to 

optimality in 290 seconds on average. However, a small increment 

in the number of jobs resulted in large inefficiency. Finding the 

optimality took more than 7 hours on average for two instances of 

10-job data sets. When we run Lingo with a 1-hour time limit to 

solve these instances, the resulting solutions deviated from the 

optimal only 1% on average. It was indicating that Lingo was 

spending more time to justify the optimality of the solution found 
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in the early stages of our run than to find a reasonable solution at 

the first place. The number of iterations for optimality were about 

90 times more on average for 10-job instances than those of 8-job 

instances. This also justifies the reason for using heuristics to 

solve the TSP models in shorter times. 

 

 

Table 3.1 –TSP Solution Times in Lingo 8.0 
 

8-job set (runs to the 
optimality) 

10-job set (~1 hour runs for 
feasible soln) 

CPU time for 
optimal soln 
(minutes) 

# of Iterations 
CPU time for 
feasible soln 
(minutes) 

# of Iterations 

4.10 1,595,164 62.88 18,742,638 
4.10 1,757,812 60.05 18,121,629 
6.00 2,443,566 60.02 19,871,532 
5.27 2,048,049 60.72 19,829,817 
6.10 2,584,775 61.02 18,337,626 
4.92 2,024,652 65.32 22,139,528 
5.38 2,224,410 60.07 18,321,801 
4.20 1,552,391 68.08 20,542,373 
3.63 1,452,221 60.05 20,058,472 

 

4.75 1,952,978 61.67 18,987,827 
Average 4.83 1,963,602 61.98 19,495,324 
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CHAPTER 4 

 
 

ONLINE DISK SCHEDULING PROBLEM 

 
 
 
In this chapter, disk scheduling in online setting will be discussed. 

In the first section, the general conventional online system setting 

is defined. Next, our approach to tackle the online system is 

introduced. In the last section, the rescheduling procedures for 

different policies are presented. 

 

 

4.1 Conventional Approach to Online Problem 

 

In conventional approach, the online disk scheduling system works 

as follows. If an arrival occurs, it will change the job content of the 

queue and a new scheduling decision is to be made, or if a timeout 

happens, it turns the real system into FIFO. So, the main events in 

online disk scheduling are the arrival of a new job and the timeout 

of a job. In this type of situation, one assumes that the decision 

maker has enough time for making a scheduling decision until the 

next job arrival or occurrence of timeout. Although timeouts are 

rare that could be traced in system with some early alert 

modification, the actual system does not proactively trace timeouts 

and take precaution before the incident. Since timeout and arrival 

times of the coming jobs are not known in advance in online 

systems, the decision maker also does not know the available time 

s/he has while making a sequencing decision until a new event 
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happens (indefinite decision epoch). To illustrate how the system 

works we introduce our notation below. 

 

RQ : The run queue, a queue with size of two, in which 

no resequencing is done. Once a job enters it, it 

cannot leave until being served. 

RQ1, RQ2 : The jobs in first and second places of run queue. 

Q  : The set of jobs in queue following the run queue. 

The jobs within this queue are undergone 

sequencing, if needed. 

Reschedule : The chosen queue sequencing policy. 

Qseq(k) : The job in the kth order in queue (Q). 

 

Rescheduling is needed if the number of the jobs in Q is greater 

than 1 before a scheduling decision is made, otherwise no decision 

is needed. Possible events necessitating rescheduling decisions are 

as follows: 

 

• Arrival of a new job (newcomer) before the completion of the 

job in process, 

 If RQ is full and Q≥1 

  Append newcomer job to Q ( Q=Q+1 ) 

  Call Reschedule(Q) 

 

• Arrival of a new job (newcomer) after the completion of the 

job in process, 

If RQ is full and Q≥2 

 RQ1= RQ2 

 RQ2=Qseq(1) 

 Extract Qseq(1) from Q 
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Append newcomer job to Q  ( Q=Q ) 

 Call Reschedule(Q) 

 

• Timeout of a job in Q, 

Call FIFO (Q) 

When a timeout happens all the system’s sequencing policy 

changes to FIFO in the conventional disk scheduling until all 

the jobs within the system came up to that time are served.  

 

The reschedule procedure can be presented as follows: 

 Procedure Reschedule(Q) 

All jobs waiting in queue reordered according to a 

particular scheduling policy: 

For k=1 to Q 

 Update Qseq(k) according to scheduling policy 

End 

 

When a new job arrives into the system or timeout of a job 

happens, the decision maker has a time till the next job arrival or 

occurrence of timeout for making a scheduling decision. The real 

world hard disk systems work with this principle, which we call 

conventional disk scheduling. 

 

 

4.2 Alternative Scheduling Approach To Online Problem  

 

In this section, we introduce a new concept, called Deterministic 

Decision Epoch (DE), to propose a different approach for the 

decision maker for solving the online DSP. The time interval that 

can be used for making a new ordering decision for Q is called a 

decision epoch. It starts with a “simultaneous incident chain” 
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when a service of a job has just finished and then the first job in 

RQ undergoes into service. Instantaneously, the second job takes 

the first one’s position in RQ and the predefined next job in Q (say 

first job in Q) takes the second one’s position in RQ. That time 

interval ends when the job under service is done and then the first 

job in RQ undergoes into service, and so on.  

 

In this new approach, queuing decisions are not made at every 

arrival and/or timeout cases. Instead, a decision epoch is defined 

as the time interval bounded by the completion time of the job in 

service up to the completion time of the next job. Although the 

length of decision epoch is a variable time, the decision maker 

knows the exact length of it. The reason is that, the completion 

time of the next job which was made certain as the first RQ job is 

already known. The decision maker is “blind” to the events 

occurring within the epoch (i.e. arrival of a new job or timeout of a 

waiting job in queue), and makes decision with the information 

gained one epoch before. Hence, this approach is realistic for 

making scheduling decisions in meaningful time in real world 

cases. The main power of this approach is that, in spite of the 

stochastic nature of the problem, decision maker converts the 

stochastic nature into the deterministic one within the decision 

epoch that is used for making decisions on known domain. Below 

we demonstrate how new approach proceeds. 

 

Assume that the identity indices of the jobs in service order are as 

follows:   → p → o → l → k → j → i 

Here, job i is the last completed job, the service of job j is in 

progress, jobs k and l are the jobs in RQ, and jobs p and o are in 

Q. Figure 4.1 illustrates the order of jobs within DE framework. 
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Set up 
time  

Jobs in queue RQ2 RQ1 
 

Job 
under 
service  

Job 
served 
last 

. . p o l k  j  i 

        

      Service time    
 

Figure 4.1 Illustration of DEj 

 

At the end of deterministic decision epoch j (DEj), that is when job 

j has been just finished, the sets formed by the events happened 

during this decision period are classified as follows: 

Aj : Set of jobs that arrived during the decision epoch j, 

Dj : Set of jobs that were timeout during the decision epoch j, 

 

The effected sets after those events are: 

Qj : Set of jobs in queue at the end of decision epoch j, 

QDj : Set of timeout jobs in queue at the end of decision epoch 

j, 

where 

Qj ⊇ QDj ⊃ Dj 

Qj ⊇ Aj . 

 

The length of DEj (LDEj) can be defined as follows: 

LDEj = Cj - Ci = S i,j + t j 

 

The events that happen during DEj (while job j is under service) are 

not taken into consideration while making a sequencing decision 

within DEj until the starting time of service of job k (i.e. at the start 

of DEk). Because the events and their features are not known in 

advance until the end of DEj and they become available over time 

during DEj. Instead, the realized events during DEi are considered 
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within LDEj. LDEj refers to the time available for sequencing 

decisions until the start of DEk. 

Let the index j in Figure 4.2 denote jth job in the system, not job j. 

Assume that our notation is also changed according to this index 

definition. The complete events and activities in successive 

decision epochs are given in Figure 4.2 in this manner. 

 

 

DEj-1 

Events: 

Aj-1     (new arrivals) 

Dj-1    (new timeouts) 

Set updating: 

Qj-2≡Qj-3∪Aj-2\{RQ2}j-1 

if {RQ2}j-1 is timeout job 

QDj-2≡QDj-3∪Dj-2\{RQ2}j-1 

else 

QDj-2≡ QDj-3 ∪ Dj-2 

Rescheduling: 

Reschedule(Qj-2, QDj-2, 

{RQ2}j-1) 

- reorder Qj-2 

- determine {RQ2}j 

 

 

 

 

 

 

 

DEj 

Events: 

Aj     (new arrivals) 

Dj    (new timeouts) 

Set updating: 

Qj-1≡Qj-2∪Aj-1\{RQ2}j 

if {RQ2}j is timeout job 

QDj-1≡QDj-2∪Dj-1\{RQ2}j 

else 

QDj-1 ≡ QDj-2 ∪ Dj-1 

Rescheduling: 

Reschedule(Qj-1,QDj-1, 

{RQ2}j) 

- reorder Qj-1 

- determine {RQ2}j+1 

 

 

 

 

 

 

 

DEj+1 

Events: 

Aj+1     (new arrivals) 

Dj+1     (new timeouts) 

Set updating: 

Qj≡Qj-1∪Aj\{RQ2}j+1 

if {RQ2}j+1 is timeout job 

QDj≡QDj-1∪Dj\{RQ2}j+1 

else 

QDj ≡ QDj-1 ∪ Dj 

Rescheduling: 

Reschedule(Qj,QDj, 

{RQ2}j+1) 

- reorder Qj 

- determine {RQ2}j+2 

 

Figure 4.2 – DE Events and Activities 

 

 

Let n be the number of all jobs in system plus the jobs served in 

service history at the start of DEj. 

 

Events during DEj : 

The new arrivals coming during this period of time are indexed 

according to arrival times, starting from n+1. Hence arrival times 

are known by the system over time during DEj. 
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Aj : new arrivals during DEj, i.e. n+1, n+2, …, m. 

│Aj│ = m - n 

If any timeout happens during the epoch, they are separately beset 

in Dj set, where the set QDj contains all the timeout jobs in system. 

Dj : timeouts during DEj. 

 

Updating at the start of DEj : 

Qj-1, QDj-1 : At the start of DEj, the contents of the Qj-1 and QDj-1 

are formed by simply appending the set of jobs arrived (Aj-1) and 

being timeout (Dj-1) during DEj-1 to the Qj-2 and QDj-2, then 

extracting the {RQ2}j which is determined during DEj-1 by 

Reschedule(Qj-2, QDj-2, {RQ2}j-1) procedure. 

 

Rescheduling during DEj : 

Reschedule(Qj-1,QDj-1, {RQ2}j) : After updating is completed at the 

beginning of DEj, we check the cardinality of the newly formed 

sets.  

• If cardinality of QDj-1 is greater than or equals to one, then 

the current rescheduling policy turns to FIFO for the jobs in 

that set. Recall that QDj-1 was formed by simply appending 

Dj-1 into the end of the ordered set QDj-2, and the ordered set 

QDj-1 already conforms to FIFO. The jobs in Qj-1 is reordered 

again with current rescheduling policy if the cardinality of Qj-

1 is greater than one. In processing sequence, after the last 

job in QDj-1, the jobs in the rescheduled set Qj-1 is placed, 

according to their new sequence. 

 

• If QDj-1 is empty and the cardinality of Qj-1 is greater than 

one, then the set Qj-1 is reordered in rescheduling according 

to the chosen rescheduling policy. This procedure also uses 

the information of the job in run queue 2 ({RQ2}j), since the 
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job following it would have setup time depending the location 

of {RQ2}j. After rescheduling, the first job of the reordered Qj-

1 set is chosen as {RQ2} j+1, the job that will take the 2nd 

position in RQ during DEj+1. 

 

 

4.3 Reschedule Procedure in DE Setting 

 

Whether the conventional or our approach is chosen, a 

rescheduling procedure is needed for determining the job 

sequence. Since the rescheduling procedures in DE approach 

reduces to those in conventional approach with number of arrivals 

being limited to 1, all the procedures are given for DE setting. 

 

In many real hard disk systems, an occurrence of timeout turns 

the scheduling policy into FIFO until all the jobs already in the 

system are serviced. That kind of policy means high degradation on 

system performance. The theoretical system below assumes that 

whenever a job becomes tardy it is allowable to give it a new due 

date, so that the scheduling algorithm allows timeouts. Timeout 

cases are used as indicators of the performance of an algorithm in 

this study. 

 

Although the same rescheduling policies can be applicable in both 

approaches, they are not the same. The conventional scheduling 

approach needs rescheduling at every arrival, while ours make 

rescheduling if a set of arrivals happen within the decision epoch. 

Hence, we allow happening of multiple events before rescheduling, 

if possible. 
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Below, we show how four rescheduling policies, namely, FIFO, 

CLOOK, and two Cmax (Makespan Minimization) policies, are 

applied within DE framework. During the length of DEj, the 

policies have information of every variables that are known by the 

system, where: 

 

Qj-2 : ordered set of jobs in queue at the start of DEj-1 except 

{RQ2}j 

Aj-1         : ordered set of jobs came during last DEj-1 

 

FIFO: 

Append jobs in Aj-1 into the end of the job set Qj-2 without changing 

their order (or simply use updated set Qj-1 at the beginning) 

 Extract {RQ2}j from the newly formed set 

 Rename the new set as Qj-1 

 

CLOOK: 

Here, a convention is made in the use of sets. Instead of using Qj-1, 

the ordered set Qj-2 that was rescheduled during DEj-1 is taken and 

the insertion of Aj-1 (set of arrivals during the same epoch) into Qj-2 

is considered. In this setting, the first job in Qj-2 is actually RQj, so 

it is never involved in comparisons below. Hence, a newly arrived 

job’s best possible position can be the second place according to 

this convention. The addresses of jobs in rescheduled set Qj-2 

actually make a circle of increasing numbers. Hence, finding the 

smallest address in this circle and proceed from there make the 

algorithm easier: 
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For i=1 to │Aj-1│ 

Find the insertion place of ith member of Aj-1 into the ordered 

set Qj-2, comparing the addresses. Give a sequencing number 

to the inserted job, with reference to the constant first job in 

set Qj-2 and shift the order of other jobs accordingly 

 Qj-2 ≡ new set (the cardinality of that increased by one) 

Qj-1 ≡ Qj-2 

 

Exact Solution of Cmax (Makespan) Minimization: 

We call the exact solution of Cmax minimization as the exact 

solution of sequence dependent makespan minimization (SDM-E) 

afterwards. Solving SDM-E within DE approach seems 

advantageous, since we have a chance to involve more than one 

jobs at single run of TSP, instead of running the algorithm at every 

job arrival into the queue. But, the solution time cannot be 

expected to be shorter than that applied in conventional approach, 

since the computation time increases exponentially with increasing 

Q length. The makespan criterion disk scheduling problem 

introduced in Section 3.3–A is modified here for the online 

Reschedule procedure. The arrival times are eliminated in the 

formulation below, since the arrival times are taken into 

consideration in the way that only the jobs arrived into system are 

undergone reschedule. The first job’s starting time constraint is 

also eliminated, since scheduling does not start from the first job. 

There is always a job preceding the jobs undergone to scheduling. 

Below Q represents the set Qj-1, which is simply formed by 

appending set Aj-1 at the end of set Qj-2. 
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Minimize  Cmax         (4.1) 

Subject to 

∑


=

Q

i
jix

1
,
= 1       j є Q    i ≠ j    (4.2) 

∑


=

Q

j
jix

1
,
= 1       i є Q    i ≠ j    (4.3) 

Cj ≥ Si,j   + tj – M(1- xi,j )        i , j є Q    i ≠ j   (4.4) 

Cj – Ci  + M(1- xi,j ) ≥ Si,j + tj    i , j є Q    i ≠ j   (4.5) 

Cmax  ≥  Ci       i є Q    (4.6) 

xi,j   є  { 0,1 }          i , j є Q    i ≠ j   (4.7) 

Ci   ≥  0        i є Q    (4.8) 

 

The objective function (4.1) minimizes the makespan value 

controlled by constraint set (4.6). (4.6) ascertains that the 

makespan value is greater than or equal to the completion time of 

all the jobs in queue. Constraint (4.2) makes sure that there is only 

one job preceding job j, while (4.3) ascertains that there is only one 

job following job i. Since the disk system is assumed to be empty at 

the start and the job arrivals are discrete, the first job to be 

processed is the job that arrives the system first, hence constraint 

set (3.4) of the offline formulation is eliminated here. It is made 

certain by (4.4) that the completion time of job j, which is directly 

preceded by job i, is greater than or equal to the summation of its 

setup time from job i to j, and transfer time of job j. If job i 

precedes job j, then the completion time difference between job j 

and job i must be greater than or equal to the summation of setup 

time from job i to job j and transfer time of job j, and it is provided 

by (4.5). xi,j is a binary variable having value of 1 if job i directly 

precedes job j, otherwise 0 as (4.7) indicates. Constraint (4.8) 
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provides the non-negativity for the completion time value for all the 

jobs. 

 

Nearest Neighbor Heuristic Solution of Sequence Dependent 

Makespan Minimization (SDM-NN) : 

We call the approximate solution of Cmax minimization as nearest 

neighbor heuristic solution of sequence dependent makespan 

minimization (SDM-NN). Nearest neighbor, the well known TSP 

heuristic, works as its name implies. The algorithm tries to find the 

nearest node to the present node at each iteration. In our system, 

the algorithm appends the jobs in new arrival set directly at the 

end of the jobs in Q. And then, taking the starting job address as 

that of the job in RQ2, algorithm proceeds finding the next job with 

smallest setup time (seek+latency). 

 

Form Qj-1 by appending │Aj-1│ to Qj-2 

Starting from the job in {RQ2}j, proceed by finding the job 

having an address giving the smallest setup time 

(seek+latency) from the last address. 
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CHAPTER 5 

 
 

SIMULATION IMPLEMENTATION AND ANALYSIS 

 
 
 
In following sections, the features of simulations, the way the 

algorithms are coded, the parameter setting and the test bed 

generation are presented. Also, the experimentation of algorithms 

together with the brief analysis of results take place within this 

chapter. 

 

 

5.1 The Nature of Simulation 

 

While simulating the basic system we have two experimentation 

settings. In Experiment 1, we test conventional methodology based 

on job arrivals. Here, every job arrival necessitates a scheduling 

decision. In Experiment 2, we do an experimentation based on DE 

concept, and here, the DM has deterministic time intervals to 

make scheduling decision. 

 

In Experiment 1, three sets of Monte Carlo Simulations are done 

for FIFO policy, CLOOK and the exact solution of sequence 

dependent makespan minimization (SDM-E) algorithms. SDM-E’s 

solution time makes it impossible to use in real system, but it is 

simulated for the sake of unbiased benchmarking. All three are 

realized in the same way independent of the policy chosen. In 

Experiment 2, two sets of simulations are done for CLOOK and the 

nearest neighbor heuristic solution of sequence dependent 
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makespan minimization (SDM-NN) algorithms. FIFO is not applied 

within DE setting since, it will give the same result with that of 

conventional approach. SDM-E is also not applied, because of its 

high computational requirements arising from the longer queue 

lengths under this decision setting. 

 

The exact solution of sequence dependent flow time minimization 

(SDF-E) was planned to be applied under DE setting, but 

preliminary runs proved the claim stated in Chapter 3 that, an 

increasing service quality is expected to increase the number of 

jobs in queue waiting for service in a distinct moment of time. 

Because of the computational difficulty of exact solution which was 

mentioned in the same chapter, that increase in number of jobs in 

Queue made SDF-E impossible to be applied in reasonable times. 

 

The hard disk can be seen as a flow line system with single 

processor and two pre-processing waiting place. The entity of the 

system is the jobs, and the attributes of the jobs are the addresses 

identifying their position on hard disk surface.  

 

In both experiments, the state variables of all five (3 from 

Experiment 1 and 2 from Experiment 2) simulations are the same, 

namely, processor’s situation, Run Queue 1 and Run Queue 2 

situations (empty or full), number of jobs in Queue (if any), the 

arrival time of the next job, and the completion time of the last job 

in processor. The jobs that become tardy (timeout cases) are not 

included into state variables. It is because of our methodology, 

which allows tardiness. We allow timeout cases and use the 

timeout statistic as a performance measure in output analsis. 
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The main two events that cause the change in state variables are 

the new arrival and the completion of the job by the processor. 

Since these two happens on discrete (countable) points in time, the 

simulation is a discrete event simulation in nature. As mentioned 

above, timeouts are not counted as simulation events, since they 

do not affect the decision in our methodology. 

 

Although the real system is theoretically steady state, it is reduced 

to a “kind” of terminating simulation for practical purposes. 

Because actually it does not stop with the arrival of nth job, but 

stops accepting jobs after that arrival and terminates with the 

completion of the last job in the Queue. So that, the length of the 

simulation is not a specified time, instead a condition. Hence, the 

length of a simulation is also a variable. 

 

 

5.2 Coding 

 

All five applications are coded in Visual Basic 6.0 programming 

environment. For SDM-E (to solve the developed Model A), the 

Lingo 8.0 optimization software package is used. For the 

computation of seek plus latency times of disk head from one 

address (PBA) to another on the disk surface, a special program 

“Disksim” coded on C is used. Disksim is an adaptation of the disk 

simulator developed by the EMC Corporation (2006, Hopkinton, 

Massachusetts).  

 

The simulation code framework of the applications in Experiment 1 

and in Experiment 2 differ because of the different decision 

structures used. Both code frameworks can be seen on Appendix 

A. The transfer times (t) are taken as constant. Si,j values (seek + 
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latency) are computed using the Disksim program. Since, timeout 

cases are allowed and can only be traced from simulation outputs, 

the timeout is not explicitly seen on the code. 

 

Each application differs from the others mainly in the rescheduling 

procedure. 

 

For the FIFO policy, the rescheduling procedure seen on the codes 

placed in Appendix A.1 and A.2, due to its nature, does not change 

the composition of the queue over time. 

 

The code framework for the CLOOK algorithm used in both 

experiments is provided in Appendix B. The rescheduling 

procedure of CLOOK algorithm takes scheduling decisions over the 

physical block addresses instead of seek + latency times as 

mentioned before. 

 

The SDM-E algorithm based application sends the queue 

information to an interface in Lingo 8.0. Its code designed for 

taking input into the TSP model is presented in Appendix D. 

However, the time window concept is eliminated here, since the 

timeouts are allowed and the already arrived jobs into the Queue 

are taken for rescheduling. Also the transfer times are not taken 

into the model since they are taken as constant for all the jobs. 

 

The SDM-NN algorithm is Nearest Neighbor heuristic solution 

approach to the Model A in Chapter 3, as explained before in 

Chapter 4. The code framework for the SDM-NN algorithm used 

under DE setting is provided in Appendix C. 
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5.3 Parameter Setting, Test Bed Generation and 

Experimentation 

 

Hard disks show different performances on read and write 

operations. Disksim uses read operation average times for all the 

computations of hard disk processing time values.  

 

For transfer time parameter, different from seek and latency total, 

a single constant value is chosen, instead of computing that for 

each single job. This is because the transfer time is insignificant in 

overall time spent for processing a job. Since the jobs usually come 

in size of plus/minus 8 KB and a standard hard disk transfers the 

data with 50-60 MB/second (conservatively taken), the time that 

would be spent for the transfer of 8 KB data is about 0.15 

miliseconds. For the job addresses which are sent to Disksim, the 

jobs’ starting points of the addresses are used. Hence, the job 

addresses are assumed as points, instead of lines. This 

assumption does little harm because of the constant data size 

assumption. 

 

Job arrival rates and physical block addresses (PBA) are randomly 

generated using Minitab 13.1 statistical software package’s 

random data calculation property. The poisson distribution that 

has been widely used for interarrival times of jobs in computer 

hard disk systems is used for generation of interarrival times of 

jobs. The random interarrival times (ri) are generated using poisson 

distribution with 5 distinct arrival rates (λ), namely 125, 135, 150, 

175, 180 job arrivals per second with corresponding mean 

interarrival times of 8, 7.41, 6.67, 5.71, 5.56 miliseconds, 

respectively. The arrival rates have been decided after some 
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preliminary simulation runs with several rates. For each rate, 30 

sets are generated, each of which includes 1000 jobs. Then 5x30 

job arrival time sets are produced by summing 1000 interarrival 

times line by line for each. 

 

 ri ~ Poisson with λ 

 λ = {125, 135, 150, 175, 180} 

 

For generating jobs’ physical block addresses (PBA), uniform 

distribution, which has been used generally for that purpose in the 

literature, is used. Uniform distribution’s range is chosen as the 

interval between 0 and 281,916,703. It is the physical block 

address range of the hard disk (146 GB) used within the 

simulation. Only 30 physical block address sets are generated. 

 

 PBA ~ Uniform[0 and 281,916,703] 

 

The same random data set pairs are used for the sake of unbiased 

comparison in a single run of five policy simulations. For 30 

randomly generated sets composed of arrival times and job 

addresses pairs, 30 replications are done for each policy. The label 

convention for that randomly generated sets are made in the 

following manner:  

λ – P (for Poisson) – Set number  x  U (for Uniform) – Set 

number. 

For instance, 150P12xU12 stands for 12th arrival time set formed 

with 150 Poisson arrival rate combined with 12th job address set 

formed with Uniform distribution. 

 

The verification of the SDM-E application can be done investigating 

the simulation output provided in Appendix E for 50 PBA data 
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from 180P1-U1 random data pair and queue depth of 8 (where 8 is 

the length of the queue allowed for coming requests). “Seek + 

latency” column values are computed by Disksim within the 

simulation. The output of Disksim is not provided here since it is 

quite long. 

 

As mentioned before the timeouts are allowed in our system. 

Anyway, for tracing them from outputs, we need a maximum 

allowable constant waiting time value (τ). We have chosen it as 

1000 miliseconds that is a value used in common practice for 

modern hard disks. 

 

 

5.4 Experimental Analysis 

 

All the simulations (except SDM-E applications with λ={175, 180} 

because of the reason that will be explained under SDM-E 

subheading of Results for Conventional Approach) were run for 

128 queue depth and 1000 jobs. The simulation outputs for three 

applications on conventional decision setting (Experiment 1) are 

provided in Appendices F, G and H, and those for two applications 

on decision epoch setting (Experiment 2) are provided in 

Appendices I and J. Results are analyzed separately on each 

decision setting for making inferences on the performances of 

them. 

 

The performance measures used in the experiment analysis are as 

follows: 

• Service time: The summation of seek, latency and transfer 

times for a job is the service time of that job (miliseconds - 

ms). 
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• Throughput rate: Number of serviced jobs per second 

(jobs/s). 

1000 (ms/s) / Average service time (ms/job). 

• Makespan (Cmax): The time at which the last job in system is 

served (ms). 

• Average Flow time (
__

F ): Average time that a job spend in 

system from its arrival time to its service completion time 

(ms). 

• Number of Timeouts (T): Timeout is a flow time related 

measure. Actually the timeout case is very unacceptable one, 

since it reduces quality of service much. Hence, barely the 

number of timeouts cannot be a performance measure. But, 

the occurrence of timeouts can be taken as warning for poor 

service quality and even for system instability in some cases. 

 

 

Results for Conventional Approach 

 

Overall average service times (µs) and their corresponding standard 

deviations (ms) are given in Table 5.1 for three approaches in 

conventional decision setting. Since times are given in miliseconds, 

the average throughput rates by the algorithms (as serviced job per 

second) can be found by dividing 1000 miliseconds with 

corresponding average service time value. The average throughput 

rates are presented in Table 5.2.  

 

As can be seen in Table 5.1 the average service time for FIFO is the 

same for all arrival rates. Since FIFO does not take any decision, 

service time components seek, latency and transfer time values are 
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independent of the arrival times so the arrival rates. They 

undergone service always in the same sequence with FIFO policy, 

and the same job addresses are used at every arrival rate. Hence, 

the average service time and the throughput rate result in a 

constant. 

Table 5.1 – Conventional Approach-Average Service Times with 

Corresponding Standard Deviations (ms/job)* 
 

FIFO CLOOK SDM-E Arrival 
Rate µs ms µs ms µs ms 
125 7.76 2.48 7.70 2.46 
135 7.38 2.56 7.34 2.46 
150 6.69 2.55 6.67 2.37 
175 5.80 2.33 5.75 2.08 
180 

7.90 2.45 

5.62 2.27 5.56 2.01 
 * µs & ms denote average service time and standard deviations. 

 

 

Table 5.2 – Conventional Approach-Average Throughput Rates 

     (jobs/second) 
 

  FIFO CLOOK SDM-E 

125 128.95 129.92 
135 135.46 136.33 
150 149.38 149.99 
175 172.55 174.02 

A
rr
iv
al
 R

at
e 

180 

126.51 

177.80 179.77 
 

 

Table 5.3 shows the maximum flow times (Fmax), the average flow 

times (µF), and corresponding standard deviations (mF) found by the 

algorithms at each arrival rate (for 30x1000 sets of data) in 

conventional decision setting. 
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The average flow time and flow time standard deviation changes as 

percentage from one arrival rate to the others are presented in 

Table 5.4 (taking 125 Hz as the basis). 

 

Table 5.3 – Conventional Approach- Flow Time Results (ms)* 
 

FIFO CLOOK SDM-E λ 
µF mF Fmax µF mF Fmax µF mF Fmax 

125 52.06 32.82 220.03 22.44 12.32 103.07 18.82 8.91 95.03 

135 272.82 156.66 700.48 33.00 15.45 117.37 24.01 9.58 107.88 

150 636.40 363.29 1449.6 45.33 20.77 153.59 28.54 10.66 164.27 

175 1091.46 634.42 2358.7 74.80 40.18 278.18 33.03 15.35 230.82 

180 1191.31 687.43 2567.5 86.05 47.69 317.18 34.22 16.81 202.05 
* Fmax denotes maximum flow time, µF & mF denote average flow time & standard 

deviations. 

 

 

Table 5.4 – Conventional Approach- Percent Changes in Average 

Flow Times and Standard Deviations for Different Rates 
 

FIFO CLOOK SDM-E 
Arrival 
Rate µF mF µF mF µF mF 
125 - - - - - - 

135 80.92% 79.05% 32.00% 20.26% 21.62% 6.99% 

150 91.82% 90.97% 50.50% 40.68% 34.06% 16.42% 

175 95.23% 94.83% 70.00% 69.34% 43.02% 41.95% 

180 95.63% 95.23% 73.92% 74.17% 45.00% 47.00% 
 

 

The average makespan values of 30 replications are presented for 

different rates in Table 5.5. 
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Table 5.5 – Conventional Approach- Average Makespan Values (ms) 
 

Cmax Average Arrival 
Rate FIFO CLOOK SDM-E 
125 8060.73 8031.24 8027.40 
135 7931.27 7442.99 7432.06 
150 7922.59 6719.32 6694.00 
175 7917.15 5830.95 5759.53 
180 7916.67 5664.00 5574.85 

 

The performances of three algorithms in conventional decision 

setting at different rates for different measures can be interpreted 

as follows: 

 

FIFO 

Table 5.1 shows that FIFO has biggest average service time with 

7.90 miliseconds. As mentioned above, FIFO has a constant 

average service time, and so constant average throughput rate for 

every arrivals because of the reasons mentioned before. Actually, 

this is the main weakness of the algorithm. It reacts to increasing 

arrival rates with doing nothing. Hence, starting with the arrival 

rate of 135, as arrival rate increases, the requests are observed to 

be accumulated in system (saturation). Although, at the 135 Hz 

(arrival/second) queue depth violations are not observed, there is a 

tendency for long run (the maximum queue length is seen to be 92 

at Table F.2 in Appendices). The average flow times, except those 

in λ=125, show increasing trend as Table 5.6 indicates. Table 5.6 

shows the average flow time values for 250, 500 and 1000 jobs, 

whereas Table 5.7 gives flow time standard deviations for each 

case. The considerable increments in both average and standard 

deviation indicate that the system does not reach the steady state 

for arrival rates other than 125 (see tables F.2 to F.5 in Appendices 

for detailed statistics). 
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At 150 Hz, queue depth violations are seen for the first time. After 

the 150 Hz arrival rate, FIFO completely fails with queue depth 

violations in high numbers, high starvation, and of course 

timeouts. At 175 and 180 Hz arrival rates, average flow time value 

is even above the timeout value of 1000 ms (see Tables F.3 to F.5 

in Appendices). 

 

 

Table 5.6 – Conventional Approach- Average Flow Times for FIFO 
 

 µF values for FIFO 

# of jobs Arrival 
Rate 250 500 1000 

125 35.01 44.01 52.06 
135 84.41 143.60 272.82 
150 169.38 323.46 636.40 
175 275.11 543.26 1091.46 
180 305.00 597.33 1191.31 

 

 

Table 5.7 – Conventional Approach- Flow Time Standard 

Deviations for FIFO 
 

 mF values for FIFO 

# of jobs Arrival 
Rate 250 500 1000 

125 19.20 26.52 32.82 
135 46.17 78.96 156.66 
150 96.56 182.98 363.29 
175 157.22 312.67 634.42 
180 173.57 341.38 687.43 

 

 

The Table 5.8 shows the average and maximum numbers of tardy 

jobs having flow time of over 1000 miliseconds (Tavg, Tmax) and also 
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the average and maximum numbers of jobs being tardy twice 

(T2avg, T2max) for each arrival rate. Since no timeout cases occurred 

for other policies, the table was designed only for FIFO. The 

timeout occurrences seen in Table 5.8 certainly proves that FIFO is 

not an acceptable policy for modern hard disks which are 

necessitating service of jobs coming into system with high arrival 

rates of more than 150 Hz. 

 

Table 5.8– Conventional Approach-Average and Maximum Timeout 

Occurrences for FIFO (# of jobs being tardy once and twice) 
 

  FIFO 

  Tavg Tmax T2avg T2max 

125 - - - - 
135 - - - - 
150 209 337 - - 
175 538 600 77 146 

A
rr
iv
al
 R

at
e 

180 577 635 160 238 
 

 

CLOOK 

At the 125 Hz arrival rate, CLOOK has 128.95 average throughput 

rate. It means that CLOOK can handle more requests, so that the 

system has several idle times waiting for arrival. The maximum 

queue length is 9 (see Table G.1 in Appendices). 

 

CLOOK has almost reached steady state at the arrival rate of 135 

Hz, with an average throughput rate of 135.46 jobs per second. 

The flow time variance, which was expected to be little comparing 

with other arrival rates, indicates the same situation. 

 

At λ={150, 175, 180}, the average throughput rates are not far from 

these values. It is expected that, with increasing number of arrivals 
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the average throughput rate increases and gets near to the arrival 

rates, since the algorithm get more room for improvement. The 

algorithm is expected to show better performance as the number of 

jobs in the queue increases. Hence, most probably, the algorithm 

never permits the queue length exceeding some number. However, 

the service quality gets worse with increasing arrival rate since the 

flow times and their corresponding standard deviations increase 

also as Table 5.3 and Table 5.4 show. 

 

In addition, after the 135 Hz arrival rate, while the average service 

time decreases, its corresponding average standard deviation 

shows also decreasing trend for CLOOK but with lower rate. 

 

Table 5.9 and Table 5.10 show that the system has reached steady 

state for λ={125, 135, 150}, since the values do not show 

considerable changes with more arrivals. It is near to steady state 

for λ={175, 180}. These indicate the stability of system under 

CLOOK policy. 

 

 

Table 5.9 – Conventional Approach- Average Flow Times for 

CLOOK 
 

 µF values for CLOOK 

# of jobs Arrival 
Rate 250 500 1000 

125 22.74 22.90 22.44 
135 30.95 32.11 33.00 
150 43.10 44.42 45.33 
175 65.39 70.94 74.80 
180 71.74 80.81 86.05 
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Table 5.10 – Conventional Approach- Flow Time Standard 

Deviations for CLOOK 
 

 mF values for CLOOK 

# of jobs Arrival 
Rate 250 500 1000 

125 12.09 12.33 12.32 
135 14.83 15.51 15.45 
150 21.05 20.78 20.77 
175 36.57 38.76 40.18 
180 41.39 45.64 47.69 

 

 

SDM-E 

As can be predicted before, SDM-E shows the best performance at 

all arrival rates. Especially Table 5.3 and 5.4 show superior 

performance of SDM-E in service quality. It outperforms CLOOK in 

the average flow time and its corresponding standard deviation 

values. SDM-E is very successful especially in holding the queue 

lengths at very small levels (see Tables 1 to 5 in Appendix H). For 

example, at the 175 Hz arrival rate, SDM-E seems not likely to 

allow the queue length to exceed 11-12 while at the same rate, 

CLOOK has a maximum queue length of 26. At the same arrival 

rate, SDM-E has an average flow time of 33.03, whereas that value 

is 74.80 for CLOOK, more than double of the value of SDM-E. A 

convention is used in SDM-E simulation as holding the queue 

depth as 8 at λ={175, 180} to avoid very long computational times, 

and not to make scheduling for the jobs coming when the queue 

depth is full (permitting 8 queue depth violation). While the actual 

queue depth of 128 is not violated (Q+RQ+pending jobs <= 128), 

the lowering of queue depth only means that the system does not 

make rescheduling for the jobs which are in queue depth violation. 
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Hence, the scheduling performance will be inferior comparing to 

128 queue depth scheduling decisions. In spite of that, the 

performance of SDM-E is still superior comparing with other two 

policies. 

 

Table 5.11 and Table 5.12 indicate that the steady state has been 

reached at about 1000th job’s arrival at all arrival rates.  

 

 

Table 5.11 – Conventional Approach- Average Flow Times for  

SDM-E 
 

 µF values for SDM-E 

# of jobs Arrival 
Rate 250 500 1000 

125 18.81 19.03 18.82 
135 23.52 23.76 24.01 
150 27.93 28.14 28.54 
175 32.42 32.73 33.03 
180 33.41 34.06 34.22 

 

 

Table 5.12 – Conventional Approach- Flow Time Standard 

Deviations for SDM-E 
 

 mF values for SDM-E 

# of jobs Arrival 
Rate 250 500 1000 

125 8.79 8.96 8.91 
135 9.60 9.62 9.58 
150 11.36 10.86 10.66 
175 15.24 14.92 15.35 
180 16.85 16.83 16.81 
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The arrival rate versus the average makespan graph for the 

makespan values provided in Table 5.5 is presented in Figure 5.1.  
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Figure 5.1 – Conventional Approach-Arrival Rate versus Average 

Makespan Values 
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The arrival rate versus average makespan graph illustrated in 

Figure 5.1 shows that CLOOK and SDM-E approaches to FIFO in 

makespan value at a low arrival rate of 125. The reason is that, the 

queues are not filled enough for these algorithms making use of 

the scheduling advantage over FIFO, at this low rate. 

Since the interarrival times are greater for lower arrival rates, the 

makespan values show a decreasing trend for increasing arrival 

rates. But, this trend is followed very insignificantly by the FIFO 

approach, since it does nothing to make use of increasing arrival 

rates. In contrast to FIFO, the two algorithms enlarge the schedule 

domain as the arrival rate increases and queue starts to be filled. 

As the graph shows, the makespan values of CLOOK and SDM-E 

proceed very close in favor of SDM-E. However, it tends to widen as 

the arrival rate increases. 

 

While the makespan objective guarantees the fastest operation, the 

average flow time is more important as it is the main indicator of 

the service stability. The number of jobs waiting in the queue is 

also important for monitoring the queue depth violations, which 

may cause system instability. The arrival rate versus the average 

flow time graph for the average flow time values provided in Table 

5.3 is presented in Figure 5.2. For an unbiased comparison, the 

graph is provided in Figure 5.3 for percent changes given in Table 

5.4. The detailed statistics for each experiment can be seen in 

Appendices F, G and H. 
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Figure 5.2 – Conventional Approach-Arrival Rate versus Average 

Flow Time 

 

As can be seen from Figure 5.2, the SDM-E and CLOOK 

algorithms’ flow times reach to that of FIFO at lower arrival rates. 
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But, we observe a significant difference in flow times between the 

two algorithms and FIFO, at the level of 135. After that level, the 

gap widenens, the FIFO is saturated, and the queue depth 

violations become inevitable. 
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Figure 5.3 – Conventional Approach-Arrival Rate versus Average 

Flow Time Percent Change  

 
 

Relative to the flow time values of FIFO, the flow times of SDM-E 

and CLOOK seem to behave similarly till 180 arrivals per second. 

But, when the values are considered as relative to each other, it is 

understood that SDM-E performs much better than CLOOK as 
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shown in Figure 5.3 indicates. Moreover, Figure 5.3 shows that the 

present gap between them indicates a widening trend in favor of 

SDM-E as the arrival rate increases. 

 

 

Results for DE Approach 

 

Overall average service times (µs) and their corresponding standard 

deviations (ms) are given in Table 5.13 and the corresponding 

average throughput rates are presented in Table 5.14 for two 

approaches in deterministic decision epoch (DE) setting.  

 

Table 5.13 – DE Approach-Average Service Time Results with 

Corresponding Standard Deviations (ms/job) 
 

CLOOK SDM-NN Arrival 
Rate µs ms µs ms 

125 7.77 2.49 7.71 2.47 
135 7.39 2.55 7.35 2.46 
150 6.70 2.55 6.67 2.37 
175 5.79 2.34 5.75 2.04 
180 5.63 2.28 5.57 1.96 

 

 

Table 5.14 – DE Approach-Average Throughput Rates 

     (jobs/second) 
 

  CLOOK SDM-NN 

125 128.75 129.72 
135 135.40 136.09 
150 149.31 149.91 
175 172.62 173.85 

A
rr
iv
al
 R
at
e 

180 177.78 179.56 
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Table 5.15 shows the maximum flow times (Fmax), the average flow 

times (µF) and corresponding flow time standard deviations (mF) 

found by the algorithms at each arrival rate in DE decision setting 

(for 30x1000 sets of data). The makespan averages are presented 

in Table 5.16. 

 

Table 5.15 – DE Approach- Flow Time Results (ms) 
 

CLOOK SDM-NN Arrival 
Rate µF mF Fmax µF mF Fmax 
125 22.82 12.49 112.72 19.06 9.32 124.27 
135 34.38 15.48 121.00 24.67 10.57 148.52 
150 46.80 20.91 150.72 29.62 12.63 181.63 
175 75.36 39.81 270.50 34.25 18.68 259.68 
180 86.22 47.38 325.66 35.76 20.32 357.95 

 
 
Table 5.16 – DE Approach- Percent Changes in Average Flow Times 

and Standard Deviations for Different Rates 
 

CLOOK SDM-NN 
Arrival 
Rate µF mF µF mF 
125 - - - - 

135 33.62% 19.32% 22.74% 11.83% 

150 51.24% 40.27% 35.65% 26.21% 

175 69.72% 68.63% 44.35% 50.11% 

180 73.53% 73.64% 46.70% 54.13% 
 
 

Table 5.17 – DE Approach- Average Makespan Values (ms) 
 

Cmax Average Arrival 
Rate CLOOK SDM-NN 

125 8031.73 8028.71 
135 7442.28 7435.09 
150 6723.44 6697.95 
175 5835.43 5773.84 
180 5667.02 5590.43 
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The performances of two algorithms in DE decision setting at 

different rates for different measures can be interpreted as follows: 

 

CLOOK 

At λ={125, 135}, CLOOK has 128.75 and 135.40 average 

throughput rates. It means that CLOOK can handle more requests 

as in the case of conventional approach, so that the system has 

several idle times waiting for arrival. The maximum queue lengths 

are 10 and 12 jobs (see Tables I.1 and I.2 in Appendices). At 

λ={150, 175, 180}, the average throughput rates are not far from 

those values of conventional approach. Again, the service quality 

gets worse with increasing arrival rate since the flow times and 

their corresponding standard deviations increase also as Table 

5.15 and 5.16 show. These values also show similarity to that of 

conventional approach. 

 

Table 5.18 shows the average flow time values for 250, 500 and 

1000 jobs, whereas Table 5.19 gives standard deviations for each 

case. They indicate that the system has almost reached the steady 

state for λ={125, 135, 150}, whereas it is near to steady state for 

λ={175, 180} (see tables I.1 to I.5 in Appendices for detailed 

statistics). 

 

Table 5.18 – DE Approach- Average Flow Times for CLOOK 
 

 µF values for CLOOK 

# of jobs Arrival 
Rate 250 500 1000 

125 22.65 23.16 22.82 
135 32.47 33.48 34.38 
150 44.00 45.96 46.80 
175 64.90 70.83 75.36 
180 71.98 80.66 86.22 
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Table 5.19 – DE Approach- Flow Time Standard Deviations for 

CLOOK 
 

 mF values for CLOOK 

# of jobs Arrival 
Rate 250 500 1000 

125 12.06 12.58 12.49 
135 14.77 15.56 15.48 
150 20.75 21.04 20.91 
175 35.19 38.04 39.81 
180 40.92 44.72 47.38 

 

 

SDM-NN 

SDM-NN shows better performance than CLOOK at all arrival 

rates. As can be seen in Table 5.15 and 5.16, it cannot be 

distinctly seen at lower rates (125 and 135), but as the rate 

increases, the average flow time increase in SDM-NN is very little 

comparing with CLOOK. Hence, SDM-NN shows superior 

performance in service quality. It outperforms CLOOK in the 

average flow time and its corresponding standard deviation values 

and that advantage becomes clearer as the arrival rate increases. 

SDM-NN is very successful especially in holding the queue lengths 

at very small levels (see Tables 1 to 5 in Appendix J). For example, 

at λ={175}, SDM-NN seems not likely to allow the queue length to 

exceed 11-12 jobs while at the same rate, CLOOK has a maximum 

queue length of 25 jobs. 

 

As Table 5.20 and Table 5.21 indicate, the system has been 

reached or very near to steady state for all arrival rates (see tables 

J.1 to J.5 in Appendices for detailed statistics). 
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Table 5.20 – DE Approach- Average Flow Times for SDM-NN 
 

 µF values for SDM-NN 

# of jobs Arrival 
Rate 250 500 1000 

125 19.29 19.38 19.06 
135 24.06 24.44 24.67 
150 28.82 29.20 29.62 
175 33.08 33.60 34.25 
180 34.57 35.36 35.76 

 

 

Table 5.21 – DE Approach- Flow Time Standard Deviations for 

SDM-NN 
 

 mF values for SDM-NN 

# of jobs Arrival 
Rate 250 500 1000 

125 9.37 9.44 9.32 
135 10.27 10.61 10.57 
150 13.05 12.76 12.63 
175 18.27 18.30 18.68 
180 19.72 20.14 20.32 

 

 

The arrival rate versus the average makespan graph is presented in 

Figure 5.4. The arrival rate versus the average flow time graph is 

presented in Figure 5.5. For an unbiased comparison, the graph 

displaying percent changes is given in Figure 5.6. The detailed 

statistics for each experiment can be seen in Appendices I and J. 
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Figure 5.4 – DE Approach-Arrival Rate versus Average Makespan 

Values 

 

The arrival rate versus average makespan graph illustrated in 

Figure 5.4 shows that CLOOK and SDM-NN perform almost the 

same, with better performance of SDM-NN as the arrival rate is 
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getting bigger, so SDM-NN widens the gap as the arrival rate 

increases. Both of the two algorithms enlarge the schedule domain 

as the arrival rate increases and queue starts to be filled. 
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Figure 5.5 – DE Approach-Arrival Rate versus Average Flow Time  

 
 
As can be seen from Figure 5.5, the main advantage of SDM-NN 

over CLOOK algorithm is its superior performance in average flow 

time near to that of SDM-E of conventional approach. As the graph 

in Figure 5.6 shows, at every increase in arrival rate, the average 
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flow time increase in SDM-NN is also relatively low comparing with 

that of CLOOK. 
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Figure 5.6 – DE Approach-Arrival Rate versus Average Flow Time 

Percent Change 

 
 
The graph shows that the present gap between them indicates a 

widening trend in favor of SDM-NN especially after the 150 Hz 

arrival rate. Hence, SDM-NN has the short average flow time 

advantage of SDM-E without high computational requirements. 
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CHAPTER 6 

 
 

CONCLUSIONS AND FURTHER STUDY 

 
 
 
In the study, the classical disk scheduling problem has been 

investigated under two categories, offline and online settings. A 

generic mathematical model is developed for the offline problem as 

an adaptation of traveling salesman problem with time windows for 

the offline problem. It is given four different performance criteria: 

makespan, makespan with due date, number of tardy jobs, and 

total (or average) flow time. The offline problem is a deterministic 

problem, whereas the online problem is a stochastic one in which 

the information comes over time. The arrival times and addresses 

are not known until requests are realized. However, online problem 

could be handled by solving consecutive offline problems, when it 

is possible. 

 

For online problem a deterministic decision epoch (DE) concept is 

introduced for the decision making problem in disk scheduling for 

the purpose of reducing stochastic decision structure to a 

deterministic one. In addition to conventional decision approach, 

which is based on taking decision at every new arrival and/or 

timeout, DE approach was implemented within the study. 

 

In conventional decision approach, the simulations developed for 

the online problem used the offline problem for the frozen state of 

the system. By this way, the exact solution of sequence dependent 

makespan minimization (SDM-E) is implemented. Two more 
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simulations also are developed for the FIFO and CLOOK algorithms 

for benchmarking purposes. 

 

After an experimentation, it has been seen that the SDM-E showed 

a better performance over CLOOK with a slight margin in 

makespan criterion in conventional decision setting. Apparently, 

the margin has been widening as the arrival rate is getting larger. 

In average flow time criterion, especially, after the rate of 150 jobs, 

SDM-E performs much better than CLOOK. FIFO, especially for the 

arrival rates greater than 125, has showed an inferior performance. 

Experimentation implies that FIFO is certainly not an acceptable 

policy for modern hard disk systems necessitating high throughput 

rates. 

 

Although the SDM-E performs so well, its high computational time 

requirements do not support practical applications. Hence, we 

applied the Nearest Neighbor TSP heuristic for the approximate 

solution of sequence dependent makespan minimization problem 

(SDM-NN) and assessed its performance over CLOOK under DE 

setting. 

 

After an experimentation under DE setting, it is found that the 

improvement by SDM-NN over CLOOK is not high for makespan 

criterion. But the average flow time by SDM-NN is superior 

compared to CLOOK and getting more and more advantageous 

than CLOOK as the arrival rate increases. Queue lengths also 

show the same behaviour in favor of SDM-NN. SDM-NN shows 

almost same performance to SDM-E applied under conventional 

setting but does not bear the computational disadvantage of it. 

Hence, it is found possible to improve the quality of service by 
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implementing SDM-NN approach having similar computational 

requirements with CLOOK. 

 

In DE setting, every time interval between consecutive completion 

of processing of jobs is taken as an available time for making 

decisions. However, that epoch may not be enough in high arrival 

rates or it may be too short for enough number of jobs coming into 

the system for making the effective decisions in rich domains. 

Hence a DE-k system could be developed in which, the DM waits 

for k consecutive completions instead of just one as s/he does in 

our system. This is left to a further study. 

 

In addition to the experimentation with artificially generated data, 

an experimentation with the real data would be helpful for 

assessing the validity of our conclusions. It would also help 

assessing the validity of the assumptions that job addresses are 

uniformly distributed over disk surface and job interarrival times 

conform to Poisson distribution. This work is left to a further 

study. 

 

An interesting future research subject in the disk scheduling area 

is about the possible performance improvements for a disk system 

having two queues instead of one. This is left to a further study 

too. A brief information on the subject can be found in Appendix H. 
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APPENDIX A 

 
 

A.1 Simulation Code Framework for Conventional Decision 

Approach 

 
 
 
Where: 

i: job identity index 

j: job processing index 

Seq (1..n)   : Job processing array 

Qseq (1..queue_depth)  : Array of Jobs in Queue, subject to 

change in Reschedule procedures 

 

 

for i=1 to n 

 if ri < c   “the next arrival before completion of job in process  

  if RQ1 = 0 

   RQ1 = 1 

   RQ(1) = i 

  if RQ1 = 1 and RQ2 = 0 

   RQ2 = 1 

   RQ(2) = i 

  if Q >= 0 

   Q = Q+1 

   Qseq(Q) = i 

   if Q > 1 

    Reschedule (Q) 

  i = i + 1 

 else if  ri > c  “completion of job in process before the new arrival 
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  if RQ1 = 0 

   Seq(j) = i 

   c = c + Sj-1,j +t 

   j = j + 1 

  if RQ1 = 1 and RQ2 = 0 

   Seq(j) = RQ(1) 

   RQ(1) = i 

   c = c + Sj-1,j +t 

   j = j + 1 

   if ri > c  “more than one completion before the arrival 

    Seq(j) = RQ1 

    RQ1 = 0 JobSlipping 

    c = c + Sj-1,j +t 

    j = j + 1 

  if RQ1 = 1 and RQ2 = 1 and Q = 0 

   Seq(j) = RQ1 

   RQ1 = RQ2 

   RQ2 = i 

   c = c + Sj-1,j +t 

   j = j + 1 

   while  ri > c 

    JobSlipping 

  if RQ1 = 1 and RQ2 = 1 and Q > 0 

   Seq(j) = RQ1 

   RQ1 = RQ2 

   RQ2 = Qseq(1) 

   c = c + Sj-1,j +t 

   j = j + 1 

   for k = 1 to Q-1 

    Qseq(k) = Qseq(k+1) 

   Qseq(Q) = i 
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   Reschedule(Q) 

   while  ri > c 

    JobSlipping 

while    j < n 

 JobSlipping 

terminate. 
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A.2 Simulation Code Framework for DE Approach 

 

Where: 

i    : job identity index 

ind: job processing index 

Comp(ind): Completion time of the job which is processed in 

“ind” sequence. 

Seq (1..n)   : Job processing array 

Qseq (1..queue_depth)  : Array of Jobs in Queue, subject to 

change in Reschedule procedures 

for i=1 to n 

 if c > ri   “the next arrival before completion of job in process  

  if RQ1 = 0 

   ind = ind+1 

   Seq(ind) = i 

   RQ1 = 1 

   RQ(1) = i 

  if RQ1 = 1 and RQ2 = 0 

   ind = ind+1 

   Seq(ind) = i 

   RQ2 = 1 

   RQ(2) = i 

  if Q >= 0 

   Q = Q+1 

   Qseq(Q) = i 

 else if  c <= ri “completion of job in process before the new arrival 

  if RQ1 = 0 

   ind = ind+1 

   Seq(ind) = i 
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   Comp(ind) = ri + SSeq(ind-1),Seq(ind) +t 

   c = Comp(ind) 

  if RQ1 = 1 and RQ2 = 0 

   RQ(1) = I 

   ind = ind+1 

   Comp(ind-1) = c + SSeq(ind-2),Seq(ind-1) +t 

   c = Comp(ind-1) 

   if c <= ri “more than one completion before the arrival 

    RQ1 = 0  

    Comp(ind) = ri + SSeq(ind-1),Seq(ind) +t     Job Slipping 

    c = Comp(ind) 

  if RQ1 = 1 and RQ2 = 1 and Q = 0 

   RQ1 = RQ2 

   RQ2 = i 

   ind = ind+1 

   Comp(ind-2) = c + SSeq(ind-3),Seq(ind-2) +t 

   c = Comp(ind-2) 

   while  c <= ri 

    JobSlipping 

  if RQ1 = 1 and RQ2 = 1 and Q > 0 

   Reschedule (Q) 

   RQ1 = RQ2 

   RQ2 = Qseq(1) 

   for k = 1 to Q-1 

    Qseq(k) = Qseq(k+1) 

   Qseq(Q) = i 

   while  c <= ri 

    JobSlipping 

while    ind < n 

 JobSlipping 

terminate.
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APPENDIX B 

 
 

CLOOK Code Framework 

 
 
 
if Qseq(1) < RQ(2) 

if newjob > RQ(2) 

 Qseq(1) = newjob 

 Reorder Qseq 

else if newjob < RQ(2) 

i = 1 

  while newjob >Qseq(i)  and  i <= Q 

   i = i + 1 

  Qseq(i) = newjob 

  Reorder Qseq 

else if Qseq(1) >= RQ(2) 

if newjob >= RQ(2) 

  i = 1 

  while   Qseq(i)>RQ(2)  and  newjob>Qseq(i)  and  i<=Q 

  i = i +1 

 Qseq(i) = newjob 

  Reorder Qseq 

else if newjob < RQ(2) 

  i = 1 

while   Qseq(i)>RQ(2)  and  i<=Q 

   i = i +1 

  if  i > Q 

   Qseq(i) = newjob 

  else if i <= Q 
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   while Qseq(i) < newjob  and  i <= Q 

   i = i +1 

Qseq(i) = newjob 

   Reorder Qseq 

terminate. 

 



 
95

 
 

APPENDIX C 

 
 

SDM-NN Code Framework 

 
 
 
for i=1 to │Qj-1│ 

if setup time of ith member of Qj-1 depending on {RQ2}j is 

smaller than that of New(1) 

New(1) = ith member 

next i 

Newseq(1) = Qseq(New(1) 

 

for i=2 to │Qj-1│ 

 for k=1 to │Qj-1│ 

  z=1, control=0 

  while control=0 and z<i 

   if k=New(z) 

    control=1 

   z=z+1 

  if control=0 

   Newdist=si,j (Newseq(i-1), Qseq(k)) 

  if Newdist<Dist 

   Dist=Newdist 

   New(i)=k 

 next k 

next i 
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APPENDIX D 

 
 

Lingo 8.0 TSP Modeling Interface Code 

 
 

MODEL: 

DATA: 

NCITY= @pointer(1); 

ENDDATA 

 

SETS: 

CITY/1..NCITY/:; 

LINK(CITY,CITY):DIST,X; 

COMP(CITY):C; 

ENDSETS 

 

[OBJECTIVE] MIN = CMAKS ; 

N=@SIZE(CITY); 

@FOR(CITY(J):@FOR(CITY(K)|J#EQ#K:X(J,K)=0;)); 

@FOR(CITY(K)|K#NE#1:@SUM(CITY(I)|I#NE#N:X(I,K))=1;); 

@FOR(CITY(K)|K#NE#N:@SUM(CITY(J)|J#NE#1:X(K,J))=1;); 

@SUM(CITY(J):X(J,1))=0; 

@FOR(CITY(J):@FOR(CITY(K)|J#NE#K#AND#K#GT#1: 

C(K)>=DIST(J,K)-100000*(1-X(J,K));)); 

@FOR(CITY(J):@FOR(CITY(K)|J#NE#K#AND#K#GT#1: 

C(K)-C(J)+100000*(1-X(J,K))>=DIST(J,K);)); 

@FOR(LINK:@BIN(X);); 

@FOR(CITY(J):CMAKS>=C(J);); 

DATA: 

DIST=@pointer(2); 

@pointer(3)=OBJECTIVE; 

@pointer(4)=@status();  

@TEXT( C:\MYFILE.OUT) = X; 

ENDDATA 

END 
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APPENDIX E 

 
 

Sample SDM-E Simulation Formatted Output for 50 jobs 

 
 
 

Jobs in System at ri  
Job  

Identity(i) 
 Arrival 
Time(ri) 

 Comp. 
Time(ci) 

 Seek 
+Latency 

 
FlowTime 
(ci - ri) Serv. RQ1 RQ2 Q1 Q2 Q3 Q4 Q5 Q6 

1 11 11.15 0 0.15 1                 
2 16 27.03 10.876 11.03 2                 
3 20 36.03 8.852 16.03 2 3               
4 29 41.6 5.419 12.6 3 4               
5 35 52.99 11.243 17.99 3 4 5             
6 39 61.8 8.66 22.8 4 5 6             
7 45 71.31 9.358 26.31 5 6 7             
9 51 76.25 4.791 25.25 5 6 7 8 9         
8 49 82.6 6.206 33.61 5 6 7 8           

11 65 88.26 5.506 23.26 7 9 8 10 11         
10 63 95 6.584 32 7 9 8 10           
12 74 99.78 4.633 25.78 9 8 11 10 12         
13 81 104.54 4.612 23.54 8 11 10 12 13         
14 91 109.54 4.854 18.54 10 12 13 14           
15 98 115.65 5.956 17.65 12 13 14 15           
16 102 118.89 3.088 16.89 13 14 15 16           
17 105 128.88 9.84 23.88 14 15 16 17           
18 112 137.86 8.833 25.86 15 16 17 18           
19 121 141.98 3.973 20.98 17 18 19             
20 128 150.67 8.533 22.67 17 18 19 20           
21 137 160.16 9.348 23.16 18 19 20 21           
22 145 168.01 7.692 23.01 20 21 22             
23 148 176.82 8.668 28.83 20 21 22 23           
24 152 185.58 8.61 33.59 21 22 23 24           
25 158 192.04 6.3 34.03 21 22 23 24 25         
26 164 196.89 4.705 32.89 22 23 24 25 26         
29 173 201.91 4.872 28.91 23 24 25 26 28 27 29     
31 186 208.18 6.123 22.18 25 26 29 28 27 30 31     
27 169 213.52 5.182 44.52 23 24 25 26 27         
30 178 217.9 4.229 39.9 24 25 26 29 28 27 30     
35 207 222.69 4.644 15.69 31 27 30 33 28 32 34 35   
33 191 229.94 7.099 38.94 25 26 29 28 32 30 31 27 33 
28 171 236.11 6.021 65.11 23 24 25 26 27 28       
32 187 241.28 5.022 54.28 25 26 29 28 27 30 31 32   
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Sample SDM-E Simulation Formatted Output for 50 jobs 

(continued) 

 

38 228 243.76 2.33 15.76 33 28 32 34 37 36 38     
34 199 245.77 1.857 46.77 29 31 27 30 33 28 32 34   
36 218 249.81 3.894 31.81 35 33 28 32 34 36       
39 233 257.1 7.141 24.1 28 32 38 34 37 36 39     
41 242 259.77 2.517 17.77 38 34 36 39 37 40 41     
37 225 271.8 11.883 46.8 33 28 32 34 36 37       
43 254 277.74 5.786 23.74 39 41 37 42 40 43       
42 249 286.33 8.44 37.33 36 39 41 37 40 42       
40 235 288.87 2.394 53.87 28 32 38 34 39 37 36 40   
45 264 291.59 2.563 27.59 37 43 42 40 44 45       
47 279 296.24 4.5 17.24 42 40 45 46 44 47       
48 285 301.25 4.863 16.25 42 40 45 47 44 46 48     
44 261 306.35 4.948 45.35 37 43 42 40 44         
50 294 311.21 4.712 17.21 47 48 44 46 49 50       
46 272 316.17 4.815 44.17 43 42 40 45 44 46       
49 288 323.24 6.916 35.24 40 45 47 48 44 46 49     
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APPENDIX F 
 

FIFO Simulation Average Results in Conventional Approach 
 

Table F.1 – Results for FIFO at 125 Hz Arrival Rate  
        

  
  
 

125 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs 

Waiting   
(Q+RQ)  

 FIFO 1 7.92 7966.55 145.60 68.26 18  

 FIFO 2 8.00 8103.43 170.33 72.15 21  

 FIFO 3 7.88 8103.79 124.81 34.63 16  

 FIFO 4 7.97 8008.61 220.03 113.27 26  

 FIFO 5 7.82 8057.14 64.90 26.43 9  

 FIFO 6 8.04 8064.79 157.22 103.25 19  

 FIFO 7 7.84 8076.99 88.01 29.39 11  

 FIFO 8 8.01 8119.89 134.64 53.29 17  

 FIFO 9 7.92 8179.38 76.51 27.12 9  

 FIFO 10 7.95 7995.59 197.03 87.69 25  

 FIFO 11 7.95 8083.55 115.13 58.99 15  

 FIFO 12 7.76 7978.05 85.37 31.81 10  

 FIFO 13 7.95 8020.52 173.16 82.83 21  

 FIFO 14 7.77 7982.41 125.66 45.06 15  

 FIFO 15 7.97 8082.42 77.39 35.89 9  

 FIFO 16 7.85 8017.28 101.98 36.22 12  

 FIFO 17 7.79 8109.55 76.77 24.97 9  

 FIFO 18 7.85 8135.58 54.78 22.36 6  

 FIFO 19 7.69 7936.82 76.53 25.68 9  

 FIFO 20 7.87 8053.65 123.71 47.92 16  

 FIFO 21 7.95 8130.67 109.39 39.79 13  

 FIFO 22 7.92 8096.53 102.53 31.23 12  

 FIFO 23 7.90 8163.90 103.37 35.74 13  

 FIFO 24 8.00 8022.76 138.04 69.45 17  

 FIFO 25 8.01 8079.22 169.67 82.83 20  

 FIFO 26 7.89 8016.17 122.53 46.88 14  

 FIFO 27 7.93 8058.22 82.23 34.59 11  

 FIFO 28 7.89 7998.02 172.18 76.94 23  

 FIFO 29 8.05 8089.61 182.19 90.46 21  

 FIFO 30 7.81 8090.72 76.97 26.53 9  
        

 FIFO 7.90 8060.73 220.03 52.06 26  
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Table F.2 - Results for FIFO at 135 Hz Arrival Rate 
        

  

  

 

135 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs 

Waiting   
(Q+RQ)  

 FIFO 1 7.92 7938.10 653.57 306.88 79  

 FIFO 2 8.00 8006.24 700.48 392.34 85  

 FIFO 3 7.88 7897.07 411.42 244.33 53  

 FIFO 4 7.97 8000.87 603.02 332.75 76  

 FIFO 5 7.82 7838.72 291.68 147.86 34  

 FIFO 6 8.04 8065.79 649.02 422.24 79  

 FIFO 7 7.84 7854.98 422.98 184.62 57  

 FIFO 8 8.01 8047.17 698.17 381.87 85  

 FIFO 9 7.92 7927.89 644.47 335.12 82  

 FIFO 10 7.95 7973.34 687.34 334.13 89  

 FIFO 11 7.95 7988.10 598.84 249.36 74  

 FIFO 12 7.76 7786.23 417.35 216.81 52  

 FIFO 13 7.95 7987.43 487.04 241.98 61  

 FIFO 14 7.77 7820.37 573.85 260.86 72  

 FIFO 15 7.97 7984.75 646.95 341.65 81  

 FIFO 16 7.85 7880.54 503.98 270.29 66  

 FIFO 17 7.79 7798.54 334.36 180.58 42  

 FIFO 18 7.85 7870.49 448.86 188.73 57  

 FIFO 19 7.69 7721.41 305.92 127.93 40  

 FIFO 20 7.87 7925.62 605.62 258.09 73  

 FIFO 21 7.95 8008.14 476.07 265.12 60  

 FIFO 22 7.92 7945.99 679.99 329.48 81  

 FIFO 23 7.90 7913.59 689.57 322.88 92  

 FIFO 24 8.00 8011.85 572.85 267.59 71  

 FIFO 25 8.01 8024.45 568.64 282.68 70  

 FIFO 26 7.89 7927.17 519.76 262.79 66  

 FIFO 27 7.93 7959.04 517.87 254.76 65  

 FIFO 28 7.89 7907.22 419.71 236.30 56  

 FIFO 29 8.05 8087.26 614.62 357.34 78  

 FIFO 30 7.81 7839.69 428.60 187.19 53  

        

 FIFO 7.90 7931.27 700.48 272.82 92  
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Table F.3 - Results for FIFO at 150 Hz Arrival Rate 
        

  

  

 

150 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs 

Waiting   
(Q+RQ)  

 FIFO 1 7.92 7937.40 1275.51 615.83 154  

 FIFO 2 8.00 8015.24 1259.01 660.78 159  

 FIFO 3 7.88 7891.63 1200.28 656.52 157  

 FIFO 4 7.97 7981.06 1164.16 587.99 146  

 FIFO 5 7.82 7836.35 1338.77 732.36 168  

 FIFO 6 8.04 8067.79 1316.85 670.12 166  

 FIFO 7 7.84 7859.49 1193.49 601.43 153  

 FIFO 8 8.01 8028.91 1268.91 646.83 153  

 FIFO 9 7.92 7942.90 1228.90 642.72 156  

 FIFO 10 7.95 7972.89 1356.89 661.83 176  

 FIFO 11 7.95 7959.89 1269.89 617.68 159  

 FIFO 12 7.76 7772.20 1145.73 508.43 146  

 FIFO 13 7.95 7956.14 1225.12 619.40 155  

 FIFO 14 7.77 7803.14 1095.13 558.06 137  

 FIFO 15 7.97 7983.75 1266.20 624.05 161  

 FIFO 16 7.85 7860.28 1326.86 674.31 175  

 FIFO 17 7.79 7808.52 1289.61 640.88 166  

 FIFO 18 7.85 7867.24 1253.35 623.24 160  

 FIFO 19 7.69 7708.43 1216.43 596.87 154  

 FIFO 20 7.87 7888.07 1131.81 469.82 136  

 FIFO 21 7.95 7973.74 1242.74 598.93 158  

 FIFO 22 7.92 7954.55 1243.55 572.56 149  

 FIFO 23 7.90 7914.11 1334.30 708.02 172  

 FIFO 24 8.00 8014.85 1377.85 730.84 175  

 FIFO 25 8.01 8016.55 1449.55 747.62 181  

 FIFO 26 7.89 7906.17 1216.55 643.00 154  

 FIFO 27 7.93 7947.92 1274.92 640.32 164  

 FIFO 28 7.89 7903.22 1332.57 714.24 173  

 FIFO 29 8.05 8076.45 1406.17 749.88 182  

 FIFO 30 7.81 7828.82 1156.82 577.29 143  

        

 FIFO 7.90 7922.59 1449.55 636.39 182  
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Table F.4 - Results for FIFO at 175 Hz Arrival Rate 
        

  

  

 

175 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs 

Waiting   
(Q+RQ)  

 FIFO 1 7.92 7937.10 2250.57 1120.66 275  

 FIFO 2 8.00 8007.24 2294.24 1172.93 290  

 FIFO 3 7.88 7890.07 2061.73 1029.90 264  

 FIFO 4 7.97 7983.00 2239.00 1189.01 283  

 FIFO 5 7.82 7839.76 2127.86 1044.65 273  

 FIFO 6 8.04 8053.79 2358.70 1208.43 298  

 FIFO 7 7.84 7854.12 2068.12 1006.80 262  

 FIFO 8 8.01 8028.59 2303.59 1138.07 282  

 FIFO 9 7.92 7938.90 2183.90 1086.50 278  

 FIFO 10 7.95 7957.31 2209.31 1098.64 280  

 FIFO 11 7.95 7961.89 2331.57 1164.32 286  

 FIFO 12 7.76 7779.49 2119.61 1033.51 271  

 FIFO 13 7.95 7954.12 2259.12 1142.45 284  

 FIFO 14 7.77 7786.16 1974.16 939.03 251  

 FIFO 15 7.97 7980.75 2308.32 1134.10 293  

 FIFO 16 7.85 7854.63 2020.43 1035.82 264  

 FIFO 17 7.79 7799.54 2079.80 1030.96 264  

 FIFO 18 7.85 7856.24 2098.24 1046.84 268  

 FIFO 19 7.69 7704.43 2051.43 1009.53 265  

 FIFO 20 7.87 7882.07 2094.07 976.80 257  

 FIFO 21 7.95 7967.60 2266.60 1108.76 283  

 FIFO 22 7.92 7933.82 2330.82 1095.42 285  

 FIFO 23 7.90 7918.59 2248.63 1118.68 284  

 FIFO 24 8.00 8004.80 2198.80 1092.66 277  

 FIFO 25 8.00 8008.45 2322.45 1137.45 290  

 FIFO 26 7.89 7906.78 2211.78 1111.66 282  

 FIFO 27 7.93 7938.46 2236.12 1124.60 283  

 FIFO 28 7.89 7906.22 2262.22 1162.78 295  

 FIFO 29 8.05 8063.48 2172.29 1129.77 279  

 FIFO 30 7.81 7817.16 2110.16 1053.15 266  

        

 FIFO 7.90 7917.15 2358.70 1091.46 298  
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Table F.5 - Results for FIFO at 180 Hz Arrival Rate 
        

  

  

 

180 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs 

Waiting   
(Q+RQ)  

 FIFO 1 7.92 7937.10 2464.10 1178.32 303  

 FIFO 2 8.00 8011.24 2531.24 1250.67 320  

 FIFO 3 7.88 7884.28 2304.93 1180.75 297  

 FIFO 4 7.97 7982.06 2413.06 1191.66 307  

 FIFO 5 7.82 7831.04 2276.46 1183.08 292  

 FIFO 6 8.04 8061.79 2421.79 1297.04 306  

 FIFO 7 7.84 7853.12 2237.12 1102.73 284  

 FIFO 8 8.01 8027.54 2567.54 1276.61 315  

 FIFO 9 7.92 7935.90 2443.90 1231.82 308  

 FIFO 10 7.95 7953.31 2430.31 1231.52 306  

 FIFO 11 7.95 7958.89 2348.64 1165.03 288  

 FIFO 12 7.76 7772.20 2112.73 1030.90 271  

 FIFO 13 7.95 7957.12 2405.12 1231.57 303  

 FIFO 14 7.77 7786.38 2142.38 1041.88 274  

 FIFO 15 7.97 7976.75 2437.88 1209.82 306  

 FIFO 16 7.85 7866.28 2309.08 1219.09 302  

 FIFO 17 7.79 7795.54 2152.24 1082.36 274  

 FIFO 18 7.85 7858.24 2383.24 1192.02 303  

 FIFO 19 7.69 7706.63 2086.63 1036.42 269  

 FIFO 20 7.87 7881.07 2338.07 1118.01 290  

 FIFO 21 7.95 7962.56 2527.56 1234.17 315  

 FIFO 22 7.92 7932.58 2423.58 1173.54 297  

 FIFO 23 7.90 7909.62 2478.99 1261.42 311  

 FIFO 24 8.00 8017.85 2565.85 1287.59 323  

 FIFO 25 8.01 8016.95 2361.95 1148.92 294  

 FIFO 26 7.89 7904.78 2449.78 1260.28 309  

 FIFO 27 7.93 7938.46 2560.46 1273.53 326  

 FIFO 28 7.89 7897.22 2335.22 1185.23 305  

 FIFO 29 8.05 8061.32 2496.73 1306.48 321  

 FIFO 30 7.81 7822.16 2309.16 1156.87 293  

        

 FIFO 7.90 7916.67 2567.54 1191.31 326  
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APPENDIX G 

 

CLOOK Simulation Average Results in Conventional Approach 

        

Table G.1 - Results for CLOOK at 125 Hz Arrival Rate 
        

  

  

 

125 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs 

Waiting   
(Q+RQ)  

 CLOOK 1 7.69 7949.71 71.87 22.60 6  
 CLOOK 2 7.80 8065.21 80.08 22.99 8  
 CLOOK 3 7.72 8102.72 77.03 19.63 6  
 CLOOK 4 7.76 7970.60 78.96 24.24 9  
 CLOOK 5 7.77 8052.05 71.48 20.44 6  
 CLOOK 6 7.88 8025.58 85.75 26.50 8  
 CLOOK 7 7.67 8062.36 62.16 17.99 6  
 CLOOK 8 7.82 8094.67 74.65 21.75 7  
 CLOOK 9 7.83 8182.65 89.25 22.39 6  
 CLOOK 10 7.68 7878.80 89.54 25.13 8  
 CLOOK 11 7.79 8083.55 76.99 24.00 7  
 CLOOK 12 7.68 7972.79 74.72 19.81 6  
 CLOOK 13 7.76 7907.66 74.09 25.40 8  
 CLOOK 14 7.61 7987.01 73.97 22.36 7  
 CLOOK 15 7.85 8061.87 86.77 23.50 6  
 CLOOK 16 7.70 8017.28 80.80 22.04 7  
 CLOOK 17 7.69 8109.55 71.99 19.03 7  
 CLOOK 18 7.80 8135.58 70.08 20.61 6  
 CLOOK 19 7.62 7936.82 69.47 20.70 7  
 CLOOK 20 7.69 7974.07 83.05 22.07 7  
 CLOOK 21 7.84 8106.14 71.03 22.60 6  
 CLOOK 22 7.82 8086.01 81.25 21.81 8  
 CLOOK 23 7.74 8163.90 70.95 20.68 6  
 CLOOK 24 7.84 7960.92 70.29 23.16 7  
 CLOOK 25 7.75 7994.85 95.55 25.18 8  
 CLOOK 26 7.73 7988.58 79.43 22.09 7  
 CLOOK 27 7.82 8058.22 103.07 23.29 7  
 CLOOK 28 7.71 7880.39 87.22 24.99 8  
 CLOOK 29 7.84 8079.59 81.57 22.70 7  
 CLOOK 30 7.74 8048.00 79.72 23.35 6  
              
 CLOOK 7.75 8031.24 103.07 22.44 9  
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Table G.2 - Results for CLOOK at 135 Hz Arrival Rate 
        

  

  

 

135 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs 

Waiting   
(Q+RQ)  

 CLOOK 1 7.30 7314.62 105.33 36.53 9  

 CLOOK 2 7.34 7350.22 102.25 34.60 9  

 CLOOK 3 7.42 7525.65 103.00 28.48 10  

 CLOOK 4 7.37 7430.75 101.72 34.26 8  

 CLOOK 5 7.51 7596.22 92.82 28.43 9  

 CLOOK 6 7.35 7460.32 102.32 33.52 9  

 CLOOK 7 7.42 7497.88 93.07 30.16 8  

 CLOOK 8 7.36 7412.51 98.02 35.42 9  

 CLOOK 9 7.33 7343.45 108.81 36.28 10  

 CLOOK 10 7.30 7322.82 102.38 35.90 11  

 CLOOK 11 7.41 7452.28 91.07 33.18 9  

 CLOOK 12 7.36 7432.51 106.62 31.97 12  

 CLOOK 13 7.49 7541.41 112.97 34.48 9  

 CLOOK 14 7.22 7285.67 96.26 33.74 9  

 CLOOK 15 7.34 7375.17 87.58 34.16 8  

 CLOOK 16 7.38 7424.25 117.37 33.86 12  

 CLOOK 17 7.46 7532.09 82.58 29.52 9  

 CLOOK 18 7.38 7495.35 101.30 32.78 9  

 CLOOK 19 7.37 7472.44 90.77 32.10 8  

 CLOOK 20 7.28 7365.99 94.24 33.76 10  

 CLOOK 21 7.48 7575.32 94.18 29.21 8  

 CLOOK 22 7.28 7316.75 89.12 35.14 10  

 CLOOK 23 7.25 7275.74 100.12 35.39 8  

 CLOOK 24 7.45 7480.49 90.87 34.32 9  

 CLOOK 25 7.46 7530.62 86.17 30.77 8  

 CLOOK 26 7.39 7452.01 99.20 33.94 10  

 CLOOK 27 7.44 7512.22 105.12 33.32 9  

 CLOOK 28 7.46 7531.57 90.35 30.64 9  

 CLOOK 29 7.45 7532.77 105.90 32.71 9  

 CLOOK 30 7.42 7450.49 91.67 31.38 9  

              

 CLOOK 7.38 7442.99 117.37 33.00 12  
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Table G.3 - Results for CLOOK at 150 Hz Arrival Rate 
        

  

  

 

150 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs 

Waiting   
(Q+RQ)  

 CLOOK 1 6.70 6737.17 116.72 45.84 12  

 CLOOK 2 6.78 6796.62 134.23 44.34 13  

 CLOOK 3 6.75 6771.42 106.99 42.75 11  

 CLOOK 4 6.85 6857.20 124.77 44.72 11  

 CLOOK 5 6.52 6547.35 131.22 47.36 13  

 CLOOK 6 6.78 6809.78 113.81 44.60 11  

 CLOOK 7 6.70 6757.57 113.16 42.54 10  

 CLOOK 8 6.82 6850.13 130.15 43.12 12  

 CLOOK 9 6.74 6782.09 127.42 45.90 12  

 CLOOK 10 6.65 6686.69 120.48 45.10 11  

 CLOOK 11 6.76 6756.99 144.06 44.63 12  

 CLOOK 12 6.66 6675.31 136.14 44.01 12  

 CLOOK 13 6.75 6764.33 122.78 45.61 11  

 CLOOK 14 6.72 6766.70 113.89 45.26 13  

 CLOOK 15 6.75 6759.82 127.08 46.81 12  

 CLOOK 16 6.56 6578.18 125.97 45.27 13  

 CLOOK 17 6.55 6563.37 151.74 47.30 14  

 CLOOK 18 6.66 6686.95 150.66 48.57 14  

 CLOOK 19 6.55 6566.50 125.46 48.12 14  

 CLOOK 20 6.80 6815.15 107.75 42.83 11  

 CLOOK 21 6.77 6799.39 109.88 44.60 12  

 CLOOK 22 6.73 6775.93 119.17 45.64 10  

 CLOOK 23 6.60 6608.88 114.55 44.93 11  

 CLOOK 24 6.65 6682.49 141.56 46.49 13  

 CLOOK 25 6.61 6620.37 138.34 47.43 14  

 CLOOK 26 6.72 6741.58 114.13 44.82 13  

 CLOOK 27 6.70 6742.57 114.82 45.12 11  

 CLOOK 28 6.60 6618.28 153.59 46.16 14  

 CLOOK 29 6.70 6727.27 124.48 44.90 12  

 CLOOK 30 6.70 6733.42 143.22 45.13 13  

              

 CLOOK 6.69 6719.32 153.59 45.33 14  
        

        



 
107

        

        

Table G.4 - Results for CLOOK at 175 Hz Arrival Rate 
        

  

  

 

175 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs 

Waiting   
(Q+RQ)  

 CLOOK 1 5.75 5778.96 203.39 75.97 20  

 CLOOK 2 5.81 5850.86 223.20 78.98 22  

 CLOOK 3 5.90 5915.23 161.18 66.68 16  

 CLOOK 4 5.79 5823.41 238.40 82.88 26  

 CLOOK 5 5.77 5831.32 229.01 79.02 20  

 CLOOK 6 5.77 5816.77 207.08 86.41 22  

 CLOOK 7 5.84 5892.92 177.08 68.84 19  

 CLOOK 8 5.78 5830.56 197.50 71.33 18  

 CLOOK 9 5.85 5925.70 224.94 78.18 22  

 CLOOK 10 5.84 5879.85 179.47 66.10 19  

 CLOOK 11 5.73 5737.98 241.65 85.79 22  

 CLOOK 12 5.73 5782.98 225.40 76.45 25  

 CLOOK 13 5.74 5754.76 199.92 76.20 21  

 CLOOK 14 5.88 5919.46 167.98 66.14 17  

 CLOOK 15 5.72 5745.24 221.27 81.88 21  

 CLOOK 16 5.88 5904.07 191.23 70.49 20  

 CLOOK 17 5.79 5794.26 191.33 70.68 19  

 CLOOK 18 5.86 5896.07 214.78 73.52 24  

 CLOOK 19 5.71 5726.39 225.05 82.13 21  

 CLOOK 20 5.84 5852.51 175.85 67.51 18  

 CLOOK 21 5.79 5834.54 228.10 75.73 23  

 CLOOK 22 5.69 5737.18 207.01 76.11 21  

 CLOOK 23 5.75 5777.94 201.44 76.37 21  

 CLOOK 24 5.88 5918.33 208.63 73.54 21  

 CLOOK 25 5.82 5869.31 278.18 74.25 25  

 CLOOK 26 5.76 5809.16 204.80 80.04 19  

 CLOOK 27 5.76 5791.24 176.64 68.14 18  

 CLOOK 28 5.70 5734.81 212.77 73.95 21  

 CLOOK 29 5.97 6000.67 167.90 63.79 18  

 CLOOK 30 5.77 5796.10 230.53 76.93 25  

              

 CLOOK 5.80 5830.95 278.18 74.80 26  
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Table G.5 - Results for CLOOK at 180 Hz Arrival Rate 
        

  

  

 

180 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs 

Waiting   
(Q+RQ)  

 CLOOK 1 5.59 5644.01 247.71 82.77 27  

 CLOOK 2 5.59 5636.67 262.47 95.42 28  

 CLOOK 3 5.66 5709.48 227.23 85.71 23  

 CLOOK 4 5.65 5679.46 230.87 84.35 23  

 CLOOK 5 5.62 5669.22 224.20 91.01 26  

 CLOOK 6 5.69 5721.72 219.31 84.34 21  

 CLOOK 7 5.68 5731.56 234.19 85.29 24  

 CLOOK 8 5.57 5618.95 218.99 84.65 23  

 CLOOK 9 5.59 5647.32 233.14 95.92 22  

 CLOOK 10 5.62 5672.82 184.40 75.86 21  

 CLOOK 11 5.69 5682.91 257.52 89.97 28  

 CLOOK 12 5.74 5781.56 195.24 75.09 20  

 CLOOK 13 5.62 5658.56 205.03 86.26 21  

 CLOOK 14 5.71 5753.87 225.25 78.36 23  

 CLOOK 15 5.64 5674.28 246.85 90.55 27  

 CLOOK 16 5.59 5624.53 286.94 90.71 28  

 CLOOK 17 5.74 5750.60 200.16 81.11 22  

 CLOOK 18 5.59 5627.28 266.70 85.87 25  

 CLOOK 19 5.69 5719.90 232.30 87.22 24  

 CLOOK 20 5.59 5594.75 243.00 75.57 22  

 CLOOK 21 5.53 5570.60 239.06 90.40 26  

 CLOOK 22 5.59 5641.79 317.18 96.11 33  

 CLOOK 23 5.54 5579.88 244.88 84.00 25  

 CLOOK 24 5.55 5618.32 222.86 95.53 25  

 CLOOK 25 5.76 5792.68 231.19 80.39 23  

 CLOOK 26 5.53 5570.44 250.27 99.89 26  

 CLOOK 27 5.49 5535.94 269.47 94.34 27  

 CLOOK 28 5.65 5685.51 211.33 77.75 21  

 CLOOK 29 5.64 5672.61 202.82 73.94 20  

 CLOOK 30 5.61 5652.87 242.15 83.11 24  

              

 CLOOK 5.62 5664.00 317.18 86.05 33  
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APPENDIX H 
 

SDM-E Simulation Average Results in Conventional Approach 
 

Table H.1 - Results for SDM-E at 125 Hz Arrival Rate 
        

  

  

 

125 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs 

Waiting   
(Q+RQ)  

 SDM-E 1 7.67 7940.75 56.73 19.58 5  

 SDM-E 2 7.78 8062.99 78.82 19.44 7  

 SDM-E 3 7.70 8092.36 55.11 17.78 5  

 SDM-E 4 7.68 7962.31 66.67 19.47 8  

 SDM-E 5 7.71 8045.65 59.37 18.38 5  

 SDM-E 6 7.79 8009.14 63.86 19.90 6  

 SDM-E 7 7.66 8043.75 71.10 17.61 6  

 SDM-E 8 7.80 8096.83 65.40 18.89 7  

 SDM-E 9 7.74 8168.70 95.03 18.49 6  

 SDM-E 10 7.58 7878.80 63.75 20.00 6  

 SDM-E 11 7.71 8083.55 60.64 19.25 5  

 SDM-E 12 7.62 7972.79 49.43 17.74 5  

 SDM-E 13 7.70 7907.66 74.44 19.77 6  

 SDM-E 14 7.53 7982.41 75.35 18.45 6  

 SDM-E 15 7.78 8061.87 51.38 18.68 5  

 SDM-E 16 7.64 8017.28 53.31 18.12 6  

 SDM-E 17 7.65 8109.55 63.27 17.15 7  

 SDM-E 18 7.76 8135.58 55.95 17.52 5  

 SDM-E 19 7.58 7936.82 53.49 17.38 5  

 SDM-E 20 7.63 7959.43 52.79 18.51 6  

 SDM-E 21 7.77 8106.14 67.85 19.20 6  

 SDM-E 22 7.74 8086.01 67.52 19.05 6  

 SDM-E 23 7.71 8163.90 60.51 18.89 5  

 SDM-E 24 7.83 7960.92 49.12 19.43 6  

 SDM-E 25 7.71 7994.85 74.82 21.16 6  

 SDM-E 26 7.70 7986.47 75.22 19.59 6  

 SDM-E 27 7.71 8058.22 75.98 19.39 6  

 SDM-E 28 7.62 7872.66 74.37 19.17 7  

 SDM-E 29 7.79 8079.59 62.20 18.72 6  

 SDM-E 30 7.65 8044.88 59.95 17.88 6  

        

 SDM-E 7.70 8027.40 95.03 18.82 8  
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Table H.2 - Results for SDM-E at 135 Hz Arrival Rate 
        

  

  

 

135 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs 

Waiting   
(Q+RQ)  

 SDM-E 1 7.26 7318.08 71.48 25.00 7  

 SDM-E 2 7.30 7337.44 103.73 25.21 7  

 SDM-E 3 7.36 7520.38 74.95 22.44 7  

 SDM-E 4 7.34 7428.61 77.43 24.63 6  

 SDM-E 5 7.44 7580.12 88.08 22.70 7  

 SDM-E 6 7.32 7448.36 80.15 24.17 7  

 SDM-E 7 7.38 7469.13 62.23 23.16 7  

 SDM-E 8 7.34 7380.60 85.04 25.83 8  

 SDM-E 9 7.23 7319.78 93.83 24.10 8  

 SDM-E 10 7.25 7314.75 98.72 25.31 7  

 SDM-E 11 7.32 7427.07 77.29 23.93 7  

 SDM-E 12 7.30 7405.84 69.60 23.36 7  

 SDM-E 13 7.43 7529.70 54.94 22.95 6  

 SDM-E 14 7.19 7279.05 79.39 23.60 7  

 SDM-E 15 7.32 7374.26 74.86 25.07 7  

 SDM-E 16 7.35 7412.22 79.58 23.91 7  

 SDM-E 17 7.39 7529.58 60.85 23.07 6  

 SDM-E 18 7.33 7495.35 72.51 22.68 6  

 SDM-E 19 7.29 7443.04 80.79 22.67 6  

 SDM-E 20 7.27 7352.95 66.18 24.75 6  

 SDM-E 21 7.47 7575.32 105.06 23.18 7  

 SDM-E 22 7.24 7304.56 71.60 24.95 6  

 SDM-E 23 7.20 7249.63 107.88 26.06 7  

 SDM-E 24 7.42 7478.01 79.95 25.26 6  

 SDM-E 25 7.41 7530.62 74.06 23.71 7  

 SDM-E 26 7.34 7443.20 83.11 24.95 6  

 SDM-E 27 7.41 7512.22 90.69 24.55 6  

 SDM-E 28 7.41 7527.29 74.09 22.63 7  

 SDM-E 29 7.42 7532.77 84.47 24.32 7  

 SDM-E 30 7.32 7441.77 62.24 22.28 6  

        

 SDM-E 7.34 7432.06 107.88 24.01 8  
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Table H.3 - Results for SDM-E at 150 Hz Arrival Rate 
        

  

  

 

150 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs 

Waiting   
(Q+RQ)  

 SDM-E 1 6.66 6692.94 74.39 28.69 8  

 SDM-E 2 6.74 6783.68 113.72 28.97 10  

 SDM-E 3 6.70 6724.26 78.58 27.53 8  

 SDM-E 4 6.81 6849.56 102.87 28.01 8  

 SDM-E 5 6.51 6539.49 84.64 28.08 8  

 SDM-E 6 6.75 6788.46 111.95 28.58 8  

 SDM-E 7 6.68 6704.74 79.11 27.56 7  

 SDM-E 8 6.78 6793.71 147.96 29.41 8  

 SDM-E 9 6.73 6756.91 83.60 28.69 7  

 SDM-E 10 6.62 6651.88 79.87 28.98 8  

 SDM-E 11 6.71 6718.75 84.83 28.57 7  

 SDM-E 12 6.64 6663.94 94.54 28.29 8  

 SDM-E 13 6.74 6762.52 108.57 28.83 8  

 SDM-E 14 6.69 6740.74 88.68 27.67 7  

 SDM-E 15 6.73 6750.57 92.10 28.40 7  

 SDM-E 16 6.56 6566.81 85.02 29.03 7  

 SDM-E 17 6.53 6551.74 93.00 29.03 9  

 SDM-E 18 6.62 6638.68 131.70 29.44 9  

 SDM-E 19 6.50 6521.21 114.53 28.40 8  

 SDM-E 20 6.74 6784.59 79.92 27.46 8  

 SDM-E 21 6.74 6765.00 95.04 28.64 8  

 SDM-E 22 6.71 6746.88 75.14 28.08 7  

 SDM-E 23 6.59 6609.12 95.45 28.82 7  

 SDM-E 24 6.66 6677.08 78.74 28.99 7  

 SDM-E 25 6.59 6596.73 101.58 30.51 9  

 SDM-E 26 6.69 6715.50 85.85 27.96 8  

 SDM-E 27 6.68 6710.61 84.49 27.97 7  

 SDM-E 28 6.58 6602.80 136.01 28.66 8  

 SDM-E 29 6.68 6704.83 164.27 29.83 8  

 SDM-E 30 6.66 6706.22 109.34 27.12 7  

        

 SDM-E 6.67 6694.00 164.27 28.54 10  
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Table H.4 - Results for SDM-E at 175 Hz Arrival Rate 
        

  

  

 

175 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs 

Waiting   
(Q+RQ)  

 SDM-E 1 5.71 5729.63 130.80 33.70 10  

 SDM-E 2 5.74 5751.32 151.24 33.34 9  

 SDM-E 3 5.86 5868.47 126.55 32.00 10  

 SDM-E 4 5.77 5783.18 230.82 32.01 10  

 SDM-E 5 5.72 5740.73 111.72 32.66 11  

 SDM-E 6 5.73 5737.19 104.23 32.76 10  

 SDM-E 7 5.81 5824.29 112.86 32.50 10  

 SDM-E 8 5.74 5760.28 106.70 32.54 10  

 SDM-E 9 5.78 5803.37 126.42 33.31 10  

 SDM-E 10 5.78 5792.34 119.32 32.82 10  

 SDM-E 11 5.65 5658.48 113.25 32.97 12  

 SDM-E 12 5.68 5697.96 191.12 33.14 10  

 SDM-E 13 5.72 5724.23 151.70 34.19 10  

 SDM-E 14 5.83 5852.42 134.16 32.73 10  

 SDM-E 15 5.69 5704.91 131.72 33.57 11  

 SDM-E 16 5.86 5868.22 94.20 32.41 9  

 SDM-E 17 5.75 5753.90 128.39 33.26 11  

 SDM-E 18 5.78 5790.74 141.29 31.68 10  

 SDM-E 19 5.67 5683.61 103.53 31.76 9  

 SDM-E 20 5.81 5825.12 99.13 32.37 10  

 SDM-E 21 5.72 5735.32 134.30 33.88 10  

 SDM-E 22 5.63 5640.17 131.47 34.08 11  

 SDM-E 23 5.68 5697.31 104.90 34.06 11  

 SDM-E 24 5.83 5838.11 145.11 32.93 10  

 SDM-E 25 5.71 5717.52 130.86 33.83 11  

 SDM-E 26 5.72 5736.44 113.66 33.05 9  

 SDM-E 27 5.72 5723.88 150.19 33.77 11  

 SDM-E 28 5.66 5680.95 138.85 33.62 11  

 SDM-E 29 5.92 5931.00 112.43 33.64 9  

 SDM-E 30 5.73 5734.75 140.58 32.34 12  

        

 SDM-E 5.75 5759.53 230.82 33.03 12  
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Table H.5 - Results for SDM-E at 180 Hz Arrival Rate 
        

  

  

 

180 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs 

Waiting   
(Q+RQ)  

 SDM-E 1 5.50 5513.22 130.51 34.16 11  

 SDM-E 2 5.50 5517.68 158.02 35.09 11  

 SDM-E 3 5.61 5616.69 134.55 34.02 11  

 SDM-E 4 5.60 5609.01 137.12 33.74 9  

 SDM-E 5 5.58 5592.71 145.65 33.15 10  

 SDM-E 6 5.65 5672.91 140.46 33.89 12  

 SDM-E 7 5.63 5645.76 130.02 33.19 10  

 SDM-E 8 5.48 5498.32 143.02 34.85 11  

 SDM-E 9 5.51 5530.52 145.91 35.43 14  

 SDM-E 10 5.56 5567.13 133.52 34.45 12  

 SDM-E 11 5.63 5640.94 162.07 34.44 11  

 SDM-E 12 5.67 5685.88 109.40 32.39 10  

 SDM-E 13 5.58 5587.55 113.72 33.95 10  

 SDM-E 14 5.67 5687.54 122.56 32.98 10  

 SDM-E 15 5.57 5578.80 164.53 34.48 13  

 SDM-E 16 5.58 5592.53 139.79 34.11 12  

 SDM-E 17 5.66 5667.32 117.31 32.63 10  

 SDM-E 18 5.50 5508.68 202.05 35.32 12  

 SDM-E 19 5.63 5651.65 161.99 33.01 10  

 SDM-E 20 5.56 5572.79 141.36 35.43 14  

 SDM-E 21 5.46 5473.75 148.83 35.28 11  

 SDM-E 22 5.54 5552.88 169.44 34.55 11  

 SDM-E 23 5.45 5456.50 125.74 35.17 11  

 SDM-E 24 5.47 5487.05 137.55 34.79 13  

 SDM-E 25 5.68 5691.39 161.69 33.50 11  

 SDM-E 26 5.47 5481.69 159.13 34.89 11  

 SDM-E 27 5.41 5414.15 106.42 35.70 10  

 SDM-E 28 5.59 5598.76 132.10 34.09 10  

 SDM-E 29 5.59 5602.66 149.32 33.55 11  

 SDM-E 30 5.54 5549.11 137.81 34.37 11  

        

 SDM-E 5.56 5574.85 202.05 34.22 14  
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APPENDIX I 
 

CLOOK Simulation Average Results in DE Approach 
        

Table I.1 - Results for CLOOK at 125 Hz Arrival Rate 
        

  

  

 

125 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs Waiting   

(Q+RQ)  

 CLOOK 1 7.72 7960.98 72.29 22.49 6  

 CLOOK 2 7.82 8065.21 76.44 24.07 8  

 CLOOK 3 7.74 8102.72 77.03 20.07 6  

 CLOOK 4 7.72 7962.31 76.25 22.23 9  

 CLOOK 5 7.78 8051.81 80.26 21.30 6  

 CLOOK 6 7.88 8025.95 91.23 26.38 8  

 CLOOK 7 7.71 8062.36 63.16 19.50 6  

 CLOOK 8 7.85 8094.67 70.77 22.03 7  

 CLOOK 9 7.85 8182.65 72.28 22.68 6  

 CLOOK 10 7.68 7878.80 89.54 24.68 8  

 CLOOK 11 7.77 8083.55 74.92 23.09 6  

 CLOOK 12 7.68 7972.79 73.00 20.50 6  

 CLOOK 13 7.79 7907.66 112.72 26.27 10  

 CLOOK 14 7.67 7987.01 82.56 25.67 8  

 CLOOK 15 7.87 8061.87 77.27 24.32 6  

 CLOOK 16 7.70 8017.28 66.99 21.81 7  

 CLOOK 17 7.72 8109.55 64.76 19.14 7  

 CLOOK 18 7.87 8135.58 67.05 23.04 6  

 CLOOK 19 7.61 7936.82 69.47 20.06 7  

 CLOOK 20 7.68 7969.82 83.71 22.85 7  

 CLOOK 21 7.83 8106.14 87.92 22.14 7  

 CLOOK 22 7.78 8086.01 97.08 21.08 7  

 CLOOK 23 7.75 8163.90 70.95 20.68 7  

 CLOOK 24 7.87 7975.15 77.93 22.89 7  

 CLOOK 25 7.76 7994.85 90.32 25.90 8  

 CLOOK 26 7.76 7988.58 82.86 24.52 9  

 CLOOK 27 7.87 8058.22 103.07 25.20 7  

 CLOOK 28 7.69 7880.39 85.20 24.07 7  

 CLOOK 29 7.85 8079.59 94.25 23.43 7  

 CLOOK 30 7.73 8049.71 79.72 22.46 7  
              

 CLOOK 7.77 8031.73 112.72 22.82 10  
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Table I.2 - Results for CLOOK at 135 Hz Arrival Rate 
        

  

  

 

135 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs Waiting   

(Q+RQ) 
 

 CLOOK 1 7.31 7325.76 90.78 37.90 9  

 CLOOK 2 7.32 7343.69 101.12 34.17 10  

 CLOOK 3 7.42 7527.21 121.00 31.38 11  

 CLOOK 4 7.40 7444.41 120.34 37.74 10  

 CLOOK 5 7.53 7598.72 92.82 29.58 9  

 CLOOK 6 7.36 7452.74 98.96 34.69 10  

 CLOOK 7 7.43 7487.57 107.12 32.49 9  

 CLOOK 8 7.35 7412.73 97.53 35.83 9  

 CLOOK 9 7.31 7337.12 95.70 37.00 9  

 CLOOK 10 7.29 7320.75 93.11 37.25 10  

 CLOOK 11 7.40 7451.51 104.23 34.47 10  

 CLOOK 12 7.36 7424.56 110.67 33.40 12  

 CLOOK 13 7.48 7535.93 99.36 35.30 10  

 CLOOK 14 7.22 7288.20 97.29 34.53 10  

 CLOOK 15 7.36 7375.33 101.42 35.83 10  

 CLOOK 16 7.37 7424.43 119.70 35.37 12  

 CLOOK 17 7.46 7532.09 95.07 32.53 9  

 CLOOK 18 7.41 7496.31 101.30 33.69 9  

 CLOOK 19 7.40 7473.98 90.38 32.26 8  

 CLOOK 20 7.30 7369.21 93.46 34.57 10  

 CLOOK 21 7.49 7575.32 94.15 30.01 8  

 CLOOK 22 7.29 7321.45 101.29 38.98 10  

 CLOOK 23 7.23 7253.45 100.26 35.74 8  

 CLOOK 24 7.47 7493.40 89.23 35.07 9  

 CLOOK 25 7.46 7530.62 90.46 33.72 9  

 CLOOK 26 7.40 7452.41 106.49 35.11 11  

 CLOOK 27 7.45 7512.22 102.70 34.39 9  

 CLOOK 28 7.46 7527.29 87.82 32.63 9  

 CLOOK 29 7.47 7532.77 99.33 34.22 9  

 CLOOK 30 7.37 7447.28 83.50 31.59 8  

              

 CLOOK 7.39 7442.28 121.00 34.38 12  
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Table I.3 - Results for CLOOK at 150 Hz Arrival Rate 
        

  

  

 

150 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs Waiting   

(Q+RQ) 
 

 CLOOK 1 6.71 6759.13 138.68 45.38 13  

 CLOOK 2 6.79 6805.19 126.82 46.01 12  

 CLOOK 3 6.74 6772.62 101.35 41.59 11  

 CLOOK 4 6.86 6872.36 124.08 45.26 12  

 CLOOK 5 6.53 6547.50 131.23 50.45 13  

 CLOOK 6 6.78 6810.38 116.12 46.43 13  

 CLOOK 7 6.72 6767.53 112.56 43.86 12  

 CLOOK 8 6.83 6857.51 131.62 44.56 12  

 CLOOK 9 6.76 6793.29 113.26 47.17 12  

 CLOOK 10 6.65 6690.04 130.15 45.97 12  

 CLOOK 11 6.75 6751.90 111.99 46.05 12  

 CLOOK 12 6.66 6685.04 150.72 45.51 13  

 CLOOK 13 6.76 6771.73 132.83 48.56 11  

 CLOOK 14 6.72 6767.67 122.22 47.18 13  

 CLOOK 15 6.75 6760.25 129.45 47.79 13  

 CLOOK 16 6.56 6578.15 136.26 50.12 13  

 CLOOK 17 6.55 6566.56 129.35 49.55 13  

 CLOOK 18 6.66 6696.01 130.10 47.45 14  

 CLOOK 19 6.53 6554.58 148.17 49.03 14  

 CLOOK 20 6.79 6808.49 118.19 44.69 12  

 CLOOK 21 6.76 6797.66 126.51 43.78 12  

 CLOOK 22 6.73 6776.96 114.66 45.79 11  

 CLOOK 23 6.61 6622.47 122.16 47.13 11  

 CLOOK 24 6.66 6696.73 145.44 48.13 14  

 CLOOK 25 6.62 6632.70 129.78 49.45 14  

 CLOOK 26 6.72 6730.10 131.40 47.26 13  

 CLOOK 27 6.70 6741.25 124.74 47.80 13  

 CLOOK 28 6.60 6616.75 145.32 48.85 12  

 CLOOK 29 6.71 6736.85 125.78 46.72 13  

 CLOOK 30 6.71 6735.74 125.36 46.33 12  

              

 CLOOK 6.70 6723.44 150.72 46.80 14  
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Table I.4 - Results for CLOOK at 175 Hz Arrival Rate 
        

  

  

 

175 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs Waiting   

(Q+RQ) 
 

 CLOOK 1 5.75 5778.71 179.73 72.18 18  

 CLOOK 2 5.80 5836.31 216.32 81.02 22  

 CLOOK 3 5.88 5927.62 192.84 69.46 18  

 CLOOK 4 5.79 5821.14 231.04 78.42 22  

 CLOOK 5 5.78 5833.02 224.18 80.25 21  

 CLOOK 6 5.75 5820.36 194.27 81.93 20  

 CLOOK 7 5.85 5915.19 220.61 72.53 20  

 CLOOK 8 5.78 5834.47 186.32 73.89 20  

 CLOOK 9 5.85 5935.50 224.21 73.82 23  

 CLOOK 10 5.85 5901.41 193.37 69.54 20  

 CLOOK 11 5.71 5733.98 237.48 86.06 24  

 CLOOK 12 5.73 5780.31 240.95 77.49 23  

 CLOOK 13 5.73 5748.61 188.99 72.52 20  

 CLOOK 14 5.88 5920.36 169.37 66.84 18  

 CLOOK 15 5.71 5752.35 215.09 80.49 22  

 CLOOK 16 5.87 5922.11 186.80 73.05 20  

 CLOOK 17 5.79 5804.53 222.87 70.55 18  

 CLOOK 18 5.89 5909.62 253.58 76.39 25  

 CLOOK 19 5.71 5732.91 191.92 80.33 21  

 CLOOK 20 5.84 5868.53 191.11 68.33 19  

 CLOOK 21 5.79 5847.01 207.90 75.11 21  

 CLOOK 22 5.70 5743.13 220.80 78.58 22  

 CLOOK 23 5.72 5755.27 202.66 75.86 21  

 CLOOK 24 5.87 5919.71 186.70 72.00 19  

 CLOOK 25 5.83 5869.35 270.50 77.86 25  

 CLOOK 26 5.76 5820.97 227.36 81.83 22  

 CLOOK 27 5.76 5801.55 176.64 71.00 20  

 CLOOK 28 5.69 5733.21 220.12 77.54 19  

 CLOOK 29 5.97 5996.89 179.79 65.39 19  

 CLOOK 30 5.77 5798.83 230.53 80.57 25  

              

 CLOOK 5.79 5835.43 270.50 75.36 25  
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Table I.5 - Results for CLOOK at 180 Hz Arrival Rate 
        

  

  

 

180 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs Waiting   

(Q+RQ) 
 

 CLOOK 1 5.58 5651.15 253.71 85.16 28  

 CLOOK 2 5.59 5620.18 260.31 92.35 28  

 CLOOK 3 5.68 5733.74 213.78 82.17 23  

 CLOOK 4 5.64 5689.63 227.22 82.82 23  

 CLOOK 5 5.62 5662.10 227.69 80.79 21  

 CLOOK 6 5.70 5721.13 222.93 84.39 23  

 CLOOK 7 5.70 5779.76 267.65 88.19 26  

 CLOOK 8 5.57 5628.50 236.09 85.57 23  

 CLOOK 9 5.59 5651.45 234.41 94.65 23  

 CLOOK 10 5.62 5676.87 201.24 80.63 20  

 CLOOK 11 5.68 5698.34 275.30 90.94 26  

 CLOOK 12 5.73 5790.62 217.34 78.95 22  

 CLOOK 13 5.61 5658.92 210.98 85.58 22  

 CLOOK 14 5.72 5751.97 205.26 77.79 21  

 CLOOK 15 5.63 5675.88 246.12 86.26 26  

 CLOOK 16 5.60 5631.05 255.15 95.19 28  

 CLOOK 17 5.72 5729.85 214.87 77.99 22  

 CLOOK 18 5.59 5626.11 254.99 86.06 24  

 CLOOK 19 5.69 5696.49 220.14 78.46 22  

 CLOOK 20 5.59 5594.74 260.14 80.93 26  

 CLOOK 21 5.56 5614.68 265.53 89.00 26  

 CLOOK 22 5.59 5657.80 325.66 98.57 33  

 CLOOK 23 5.54 5579.14 275.84 90.14 26  

 CLOOK 24 5.55 5597.54 268.57 95.63 28  

 CLOOK 25 5.74 5781.24 214.81 80.80 23  

 CLOOK 26 5.52 5569.96 250.27 98.07 26  

 CLOOK 27 5.49 5538.60 264.71 96.31 26  

 CLOOK 28 5.64 5684.51 226.80 83.20 22  

 CLOOK 29 5.64 5667.21 200.51 76.62 21  

 CLOOK 30 5.62 5651.39 202.44 83.51 23  

              

 CLOOK 5.63 5667.02 325.66 86.22 33  
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APPENDIX J 
 

SDM-NN Simulation Average Results in DE Approach 
        

Table J.1 - Results for SDM-NN at 125 Hz Arrival Rate 
        

  

  

 

125 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs Waiting   

(Q+RQ)  

 SDM-NN 1 7.66 7940.58 67.44 19.30 6  

 SDM-NN 2 7.80 8068.44 69.55 19.18 6  

 SDM-NN 3 7.73 8096.05 61.87 18.48 5  

 SDM-NN 4 7.68 7962.31 73.98 19.49 7  

 SDM-NN 5 7.72 8043.12 65.02 19.11 5  

 SDM-NN 6 7.79 8008.26 124.27 20.80 7  

 SDM-NN 7 7.70 8060.32 105.11 18.02 6  

 SDM-NN 8 7.83 8097.37 58.49 19.14 6  

 SDM-NN 9 7.76 8171.91 61.93 18.61 6  

 SDM-NN 10 7.60 7878.80 79.55 20.16 7  

 SDM-NN 11 7.73 8083.55 85.13 20.00 5  

 SDM-NN 12 7.62 7972.79 65.69 18.03 6  

 SDM-NN 13 7.71 7907.66 73.05 19.69 6  

 SDM-NN 14 7.55 7988.07 93.09 18.88 6  

 SDM-NN 15 7.78 8061.87 67.20 18.89 5  

 SDM-NN 16 7.65 8017.28 77.82 18.28 5  

 SDM-NN 17 7.64 8109.55 58.79 17.18 7  

 SDM-NN 18 7.74 8135.58 71.87 17.94 5  

 SDM-NN 19 7.57 7936.82 56.36 17.31 6  

 SDM-NN 20 7.64 7959.60 79.05 19.17 6  

 SDM-NN 21 7.79 8106.14 66.59 20.41 6  

 SDM-NN 22 7.74 8086.01 61.76 18.64 6  

 SDM-NN 23 7.72 8163.90 75.50 18.51 6  

 SDM-NN 24 7.83 7958.24 73.04 19.64 5  

 SDM-NN 25 7.71 7994.85 112.32 20.73 6  

 SDM-NN 26 7.70 7986.47 72.76 19.32 5  

 SDM-NN 27 7.74 8058.22 85.14 19.83 6  

 SDM-NN 28 7.63 7883.14 87.14 19.43 7  

 SDM-NN 29 7.80 8079.59 77.83 19.03 6  

 SDM-NN 30 7.69 8044.88 63.92 18.67 6  
              

 SDM-NN 7.71 8028.71 124.27 19.06 7  
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Table J.2 - Results for SDM-NN at 135 Hz Arrival Rate 
        

  

  

 

135 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs Waiting   

(Q+RQ) 
 

 SDM-NN 1 7.27 7318.21 99.34 25.10 7  

 SDM-NN 2 7.30 7333.18 93.49 24.87 7  

 SDM-NN 3 7.38 7523.28 114.09 22.66 7  

 SDM-NN 4 7.35 7425.76 102.26 25.54 6  

 SDM-NN 5 7.46 7580.80 72.36 22.29 6  

 SDM-NN 6 7.34 7457.46 112.37 26.04 7  

 SDM-NN 7 7.40 7483.81 87.36 23.58 7  

 SDM-NN 8 7.34 7410.05 99.33 27.51 8  

 SDM-NN 9 7.25 7317.93 111.33 24.49 8  

 SDM-NN 10 7.27 7325.31 100.58 26.10 7  

 SDM-NN 11 7.32 7427.07 100.93 24.93 6  

 SDM-NN 12 7.31 7408.82 117.76 23.95 8  

 SDM-NN 13 7.45 7537.41 80.61 23.99 7  

 SDM-NN 14 7.18 7280.70 101.00 24.26 7  

 SDM-NN 15 7.34 7368.35 148.52 25.18 7  

 SDM-NN 16 7.37 7416.59 77.77 24.93 6  

 SDM-NN 17 7.41 7532.09 74.22 23.00 7  

 SDM-NN 18 7.35 7495.35 85.21 23.79 7  

 SDM-NN 19 7.31 7443.60 108.02 23.34 7  

 SDM-NN 20 7.29 7354.67 81.03 25.74 6  

 SDM-NN 21 7.47 7575.32 108.62 23.98 7  

 SDM-NN 22 7.25 7304.40 76.59 25.28 6  

 SDM-NN 23 7.21 7256.94 87.54 27.19 7  

 SDM-NN 24 7.44 7482.29 74.91 26.18 6  

 SDM-NN 25 7.45 7530.62 95.58 24.62 7  

 SDM-NN 26 7.35 7441.95 81.29 25.74 6  

 SDM-NN 27 7.41 7512.22 74.15 24.45 6  

 SDM-NN 28 7.41 7527.29 87.14 23.11 6  

 SDM-NN 29 7.42 7532.77 94.36 24.66 7  

 SDM-NN 30 7.33 7448.46 87.37 23.46 7  

              

 SDM-NN 7.35 7435.09 148.52 24.67 8  
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Table J.3 - Results for SDM-NN at 150 Hz Arrival Rate  
        

  

  

 

150 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs Waiting   

(Q+RQ) 
 

 SDM-NN 1 6.66 6693.07 127.44 30.00 8  

 SDM-NN 2 6.76 6788.57 114.95 29.81 8  

 SDM-NN 3 6.71 6733.34 106.86 28.08 8  

 SDM-NN 4 6.80 6842.86 101.67 29.84 8  

 SDM-NN 5 6.52 6534.36 181.63 29.06 8  

 SDM-NN 6 6.74 6785.62 107.54 28.95 7  

 SDM-NN 7 6.68 6721.28 139.74 30.06 8  

 SDM-NN 8 6.77 6804.87 117.25 29.71 8  

 SDM-NN 9 6.73 6768.97 104.19 29.86 7  

 SDM-NN 10 6.63 6668.65 127.25 29.37 8  

 SDM-NN 11 6.71 6719.78 119.27 29.97 8  

 SDM-NN 12 6.65 6676.07 91.91 28.43 8  

 SDM-NN 13 6.75 6765.59 144.63 30.49 8  

 SDM-NN 14 6.70 6748.70 94.80 29.08 8  

 SDM-NN 15 6.72 6742.55 110.61 29.56 8  

 SDM-NN 16 6.56 6565.41 102.54 30.22 7  

 SDM-NN 17 6.52 6549.55 132.94 29.44 8  

 SDM-NN 18 6.62 6641.58 101.50 29.90 8  

 SDM-NN 19 6.50 6520.71 122.32 29.24 9  

 SDM-NN 20 6.75 6797.91 109.08 28.49 8  

 SDM-NN 21 6.75 6774.36 106.84 29.82 8  

 SDM-NN 22 6.71 6756.23 115.83 29.68 7  

 SDM-NN 23 6.59 6604.68 113.89 29.17 7  

 SDM-NN 24 6.65 6669.68 157.21 31.04 8  

 SDM-NN 25 6.60 6611.80 138.24 30.52 8  

 SDM-NN 26 6.71 6727.12 106.82 29.72 7  

 SDM-NN 27 6.69 6710.28 118.96 30.07 7  

 SDM-NN 28 6.59 6610.19 106.38 30.14 8  

 SDM-NN 29 6.68 6703.11 110.39 30.07 8  

 SDM-NN 30 6.65 6701.55 88.73 28.70 8  

              

 SDM-NN 6.67 6697.95 181.63 29.62 9  
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Table J.4 - Results for SDM-NN at 175 Hz Arrival Rate 
        

  

  

 

175 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs Waiting   

(Q+RQ) 
 

 SDM-NN 1 5.71 5739.24 215.51 36.03 12  

 SDM-NN 2 5.74 5759.56 255.35 34.49 10  

 SDM-NN 3 5.86 5883.13 140.32 33.35 10  

 SDM-NN 4 5.78 5792.14 166.36 34.20 10  

 SDM-NN 5 5.72 5753.17 174.58 33.78 10  

 SDM-NN 6 5.73 5742.49 159.20 34.17 10  

 SDM-NN 7 5.81 5846.78 248.12 33.85 11  

 SDM-NN 8 5.74 5778.46 199.00 34.63 10  

 SDM-NN 9 5.80 5836.30 166.38 35.51 10  

 SDM-NN 10 5.78 5817.61 199.55 33.93 9  

 SDM-NN 11 5.65 5671.03 259.68 35.72 11  

 SDM-NN 12 5.68 5712.47 158.04 34.14 10  

 SDM-NN 13 5.73 5736.11 175.10 35.49 10  

 SDM-NN 14 5.84 5871.62 208.85 33.60 9  

 SDM-NN 15 5.71 5711.22 160.51 33.85 10  

 SDM-NN 16 5.87 5877.55 158.58 33.08 10  

 SDM-NN 17 5.74 5754.51 145.45 33.41 9  

 SDM-NN 18 5.77 5792.77 113.26 32.58 10  

 SDM-NN 19 5.68 5688.65 186.57 34.13 10  

 SDM-NN 20 5.82 5834.44 156.71 33.94 9  

 SDM-NN 21 5.73 5743.02 119.64 34.32 9  

 SDM-NN 22 5.64 5665.09 196.54 34.33 10  

 SDM-NN 23 5.69 5716.29 202.13 35.43 11  

 SDM-NN 24 5.83 5855.80 178.43 34.37 10  

 SDM-NN 25 5.72 5734.50 181.42 34.73 10  

 SDM-NN 26 5.73 5754.91 177.83 34.10 10  

 SDM-NN 27 5.73 5752.29 199.82 34.40 10  

 SDM-NN 28 5.67 5696.34 202.86 35.01 10  

 SDM-NN 29 5.92 5943.09 169.37 33.09 9  

 SDM-NN 30 5.73 5754.62 222.21 33.68 10  

              

 SDM-NN 5.75 5773.84 259.68 34.24 12  
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Table J.5 - Results for SDM-NN at 180 Hz Arrival Rate 
        

  

  

 

180 
Average  
Service 
Rate 

Cmax Fmax Favg 

Max. # of   
Jobs Waiting   

(Q+RQ) 
 

 SDM-NN 1 5.52 5534.46 199.47 36.35 10  

 SDM-NN 2 5.50 5526.24 227.30 36.86 12  

 SDM-NN 3 5.61 5630.57 164.66 36.42 12  

 SDM-NN 4 5.61 5638.64 159.31 36.29 10  

 SDM-NN 5 5.58 5597.18 175.89 35.54 11  

 SDM-NN 6 5.65 5672.44 186.46 35.74 12  

 SDM-NN 7 5.64 5660.86 163.79 34.25 10  

 SDM-NN 8 5.50 5521.53 211.28 35.10 11  

 SDM-NN 9 5.52 5557.95 211.28 36.90 13  

 SDM-NN 10 5.56 5598.97 151.56 36.40 12  

 SDM-NN 11 5.64 5644.16 227.58 35.63 11  

 SDM-NN 12 5.68 5687.95 170.21 35.13 10  

 SDM-NN 13 5.59 5598.74 153.18 34.98 9  

 SDM-NN 14 5.68 5699.00 156.08 35.16 10  

 SDM-NN 15 5.57 5597.24 357.95 36.04 11  

 SDM-NN 16 5.59 5608.58 176.56 34.80 11  

 SDM-NN 17 5.67 5674.15 174.12 33.71 10  

 SDM-NN 18 5.50 5518.68 215.14 36.55 11  

 SDM-NN 19 5.65 5664.01 136.02 35.50 10  

 SDM-NN 20 5.57 5575.98 212.49 35.65 11  

 SDM-NN 21 5.47 5483.80 163.88 36.04 11  

 SDM-NN 22 5.55 5590.23 166.27 35.39 11  

 SDM-NN 23 5.46 5479.03 171.24 37.04 11  

 SDM-NN 24 5.47 5506.11 182.52 36.28 13  

 SDM-NN 25 5.68 5708.49 162.66 35.48 10  

 SDM-NN 26 5.48 5495.77 223.25 35.24 10  

 SDM-NN 27 5.40 5427.78 207.32 38.48 12  

 SDM-NN 28 5.60 5625.08 206.48 34.37 10  

 SDM-NN 29 5.60 5617.24 287.87 35.95 11  

 SDM-NN 30 5.55 5571.96 143.15 35.38 12  

              

 SDM-NN 5.57 5590.43 357.95 35.76 13  
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APPENDIX K 
 
 

Disk Scheduling with Double Queue 

 
 
 
In double queue scheduling, there are two importance classes, of 

queues, namely, High Importance Queue (HIQ) and Low 

Importance Queue (LIQ). Coming jobs are classified according to 

their weights (attached to job identity). While the jobs having 

higher weights than a threshold value are classified as high 

importance class jobs (HIC), others are considered as low 

importance class (LIC). The sequencing policy determines the 

processing order of the HIC and LIC jobs. The general policy is 

such that after all the jobs in HIQ are finished, LIC jobs can be 

served. The maximum number of jobs in each queue is 128 in a 

certain moment of time (i.e. number of jobs in HIQ + number of 

jobs in LIQ + 2 jobs in run queue + 1 job in service = Nsystem <=259). 

 

Apart from this queue difference, the system works similarly as 

that of a typical hard disk with single queue. If HIQ is not empty 

and there is no timeout, the algorithm sorts all the jobs in HIQ and 

determines the next second job in run queue (RQ). Each time the 

processing of a job is finished, the first job in RQ is taken into 

process and the second job in RQ becomes the 1st one.  

 

As in the case of typical hard disks, the job starvation is an 

important problem. Another difficulty arises from the 

predominance of the HIC jobs over the LIC jobs that bring the 

higher susceptibility of the jobs in LIQ to starvation. If HIQ does 
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not become empty for a long time, the LIC jobs will stay undone for 

that long time and may be some of them will never be done. This 

could be the case for some HIC jobs as well. To overcome this, a 

fixed timeout (probably different for the HIC and LIC jobs) must be 

decided for every job. The system puts a label on every job, 

whether it is HIC or LIC, indicating its arrival time (rhi) or (rli). If it 

is still waiting to be serviced after a defined time stamp (τ), it is 

assessed timeout (rhi + τHIC) or (rli + τLIC). That brings the time 

windows concept into our problem. 

 

A clever strategy necessitates defining addresses on the disk space 

with the aid of partitions over the disk. When this is done, the 

service time for a certain job is said to be dependent on (a) the size 

of the coming job, (b) the last served job’s address, and (c) the 

coming job’s address (Since a job is not a single point over the 

disk, but a continuous line with starting and end points, the mean 

value between those points can be taken as that job’s address as a 

convention). 

 

Decision: Implement the algorithm or not  

If the number of newcomers is below a defined “break even” 

number, then it will be better not to implement the algorithm (re-

sequencing newcomers together with standing jobs). In that case 

the newcomers would be taken into proper queue according to 

some basic policy, i.e. FIFO. Or as a better way, some heuristics 

could be utilized to insert the newcomers into the standing 

sequence. 

 

The two main objectives of this problem are, (1) Minimizing the 

average response time of the system to the jobs in HIQ, (2) 

Maximizing the throughput of the jobs in LIQ (i.e. number/s). The 
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timeout cases could negatively affect the system’s performance and 

it could not be avoided by utilizing a constraint because of the disk 

structure. A contributive objective would be “minimizing the 

number of timeouts (i.e. number/second)”. The main constraint of 

the problem is the limits of HIQ and LIQ (128 each). 

 

These two objectives are contradicting actually. Especially in an 

environment of heavy workload, the LIQ jobs’ throughput objective 

will seriously be jeopardized. 

 


