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ABSTRACT

IMPROVED STATE ESTIMATION FOR JUMP MARKOV LINEAR

SYSTEMS

Orguner, Umut

Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Mübeccel Demirekler

December 2006, 183 pages

This thesis presents a comprehensive example framework on how current mul-

tiple model state estimation algorithms for jump Markov linear systems can

be improved. The possible improvements are categorized as:

• Design of multiple model state estimation algorithms using new criteria.

• Improvements obtained using existing multiple model state estimation

algorithms.

In the first category, risk-sensitive estimation is proposed for jump Markov

linear systems. Two types of cost functions namely, the instantaneous and

cumulative cost functions related with risk-sensitive estimation are examined

and for each one, the corresponding multiple model estate estimation algo-

rithm is derived. For the cumulative cost function, the derivation involves the

reference probability method where one defines and uses a new probability

measure under which the involved processes has independence properties. The

performance of the proposed risk-sensitive filters are illustrated and compared

with conventional algorithms using simulations.
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The thesis addresses the second category of improvements by proposing

• Two new online transition probability estimation schemes for jump Markov

linear systems.

• A mixed multiple model state estimation scheme which combines desir-

able properties of two different multiple model state estimation methods.

The two online transition probability estimators proposed use the recursive

Kullback-Leibler (RKL) procedure and the maximum likelihood (ML) criteria

to derive the corresponding identification schemes. When used in state estima-

tion, these methods result in an average error decrease in the root mean square

(RMS) state estimation errors, which is proved using simulation studies.

The mixed multiple model estimation procedure which utilizes the anal-

ysis of the single Gaussian approximation of Gaussian mixtures in Bayesian

filtering, combines IMM (Interacting Multiple Model) filter and GPB2 (2nd

Order Generalized Pseudo Bayesian) filter efficiently. The resulting algorithm

reaches the performance of GPB2 with less Kalman filters.

Keywords: Multiple model, state estimation, jump Markov linear system, tran-

sition probability, Markov chain, interacting multiple model, IMM, risk sensi-

tive
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ÖZ

MARKOV ATLAMALI DOǦRUSAL SİSTEMLER İÇİN GELİŞTİRİLMİŞ

DURUM KESTİRİMİ

Orguner, Umut

Doktora, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Mübeccel Demirekler

Aralık 2006, 183 sayfa

Bu tez çalışması Markov atlamalı doǧrusal sistemlerde çoklu modelli durum

kestiriminin geliştirilmesi için kapsamlı bir örnek çerçeve sunmaktadır. Olası

geliştirimler iki kategoride incelenmektedir:

• Yeni kriterler kullanarak çoklu modelli durum kestirimi.

• Varolan çoklu modelli durum kestirim algoritmaları kullanılarak yapıla-

bilecek geliştirmeler.

Birinci kategoride Markov atlamalı doǧrusal sistemler için risk duyarlı kes-

tirim önerilmektedir. Risk duyarlı kestirim için literatürde bulunan anlık ve

birikimli maliyet fonksiyonları incelenmiş ve herbirine takabül eden risk duyarlı

kestirim yöntemleri türetilmiştir. Birikimli maliyet fonksiyonu için yapılan

türetimde ilgili süreçlerin altında baǧımsız olduǧu yeni bir olasılık ölçüsünün

tanımlanıp kullanıldıǧı referans olasılık yöntemi kullanılmıştır. Önerilen risk

duyarlı algoritmaların başarımları benzetim çalışmaları ile gösterilip geleneksel

yöntemlerle karşılaştırılmıştır.

Tez çalışması ikinci kategoride
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• Markov atlamalı doǧrusal sistemler için iki çevrimiçi geçiş olasılıǧı kesti-

rim algoritması

• Bir karma çoklu modelli durum kestirim algoritması

önermektedir.

Çevrimiçi geçiş olasılıǧı kestirim algoritmaları, tanılama yöntemlerini tü-

retebilmek için sırasıyla özyineli Kullback-Leibler yöntemini ve en büyük ola-

bilirlik kriterini kullanmaktadır. Durum kestiriminde kullanıldıkları zaman,

bu algoritmaların durum hatalarının etkin deǧerlerini düşürdüǧü benzetim ça-

lışmaları ile gösterilmiştir.

Gaussian karışımlarının tek Gaussian ile yaklaşıklanmasının etkilerini in-

celeyen bir analizin sonuçlarını kullanan karma çoklu modelli durum kestirim

algoritması IMM (etkileşimli çoklu model) süzgeci ve GPB2 (ikinci derece

genelleştirilmiş yalancı Bayesian) süzgeçlerini verimli bir şekilde birleştirmek-

tedir. Sonuçta elde edilen algoritma GPB2’nin başarımına daha az Kalman

süzgeci kullanarak ulaşmaktadır.

Anahtar Kelimeler: Çoklu model, durum kestirimi, Markov atlamalı doğrusal

sistem, geçiş olasılığı, Markov zinciri, etkileşimli çoklu model, IMM, risk du-

yarlı
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PREFACE

This thesis is the result of the author’s 4-year Ph.D. study under the su-

pervision of Prof. Dr. Mübeccel Demirekler. Originally, each chapter of it

was separate research on the general framework of multiple model estimation.

While writing the final copy, I tried hard to integrate the material as much

as possible into a single and whole study. Most of the material presented has

already been submitted to academic journals for publication. The following is

a list of these publications:

• U. Orguner and M. Demirekler, “An online sequential algorithm for the
estimation of transition probabilities for jump Markov linear systems,”
Automatica, vol. 42, no. 10, pp. 1735–1744, Oct. 2006.

• U. Orguner and M. Demirekler, “Risk-sensitive filtering for jump Markov
linear systems,” Submitted to Automatica.

• U. Orguner and M. Demirekler, “Analysis of the effects of the single
Gaussian approximation of Gaussian mixtures in Bayesian filtering with
applications to mixed multiple-model estimation algorithms,” Submitted
to International Journal of Control.

• U. Orguner and M. Demirekler, “Maximum likelihood estimation of tran-
sition probabilities of jump Markov linear systems,” To be submitted to
IEEE Transactions on Signal Processing.

At this stage, I must admit that, maybe for the future graduate students,

the material presented here did not actually pop up in my mind instantly.

Chronologically (and maybe ironically1), it was the research in Chapter 6 on

mixed multiple model estimation algorithm that was partially completed as

the result of my long desire to analyze the approximations involved in well-

known multiple model estimation algorithms. The results of Chapter 6 were

actually a beginning study on the deviations of the multiple model filtering

1 This is because Chapter 6 is the last chapter before the conclusions.
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methods from optimality. The mixed IMM-GPB2 algorithm came into picture

as a by-product of this beginning which could not go any further due to the

high amount of nonlinearity existing in the filtering methods.

It was after this discouragement that I realized the work of Jilkov & Li

[1] on the online estimation of transition probabilities associated with jump

Markov linear systems (JMLSs). The subject was new and there happened to

exist many methods for a similar problem in hidden Markov models (HMMs)

which are not touched by Jilkov & Li. Using this motivation, I attempted to

apply the recursive Kullback-Leibler (RKL) algorithm [2] to JMLSs which is

presented in Chapter 4. The outcome was more impressive than I could foresee

in that the whole method was to be re-derived for JMLSs due to the fact that

the Markov chain is buried under the measurement process deeper in JMLSs

than in HMMs.

While studying the HMM literature for possible transition probability es-

timation methods, I was also carrying out research on state estimation which

has always sounded more academically fruitful. At those times, I realized the

risk-sensitive state estimation for HMMs. Since the state process of HMMs

is discrete-valued, it was not directly possible to apply the ideas to JMLSs

which have both continuous and discrete-valued states. What was more in-

teresting was actually the reference probability method used for deriving the

risk-sensitive estimator for HMMs. This has motivated me to turn towards

some measure theoretical probability and reference probability method which

had always intrigued me under a different title “Stochastic Differential Equa-

tions”. After spending many months on these and risk-sensitive estimator

theory, I could derive the risk-sensitive filters for JMLSs which are presented

in Chapters 2 and 3. I actually set off first to derive the work in Chapter

2 using the reference probability method but it did not take much for me to

notice that our old favorite classical probability theory was, in fact, enough.

The risk-sensitive estimator given in Chapter 3 was quite more challenging

(and indeed much more fun!) to derive. That derivation triggered a big-bang

for me to understand (at last) that this was only the tip of the iceberg that
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I am wandering on. Using the techniques used for Chapter 3, it was quite

straightforward to obtain the results of Chapter 5 after (a couple of months

of) studying maximum likelihood estimation theory using the reference prob-

ability method.

As easily observed from the mentioned story above, the process of forming

this Ph.D. thesis was full of inspiration and perspiration.2 For the perspiration,

I tried to mention the ones I owe much in the dedication and acknowledgements

parts but now, I would like to thank V. Krishnamurthy, V. Jilkov, X.R. Li,

S. Dey, J.B. Moore, R.J. Elliott, L. Aggoun, I.B. Collins, J.J. Ford (none of

whom I have ever met) and others that I could not add here3 for their research

which contributed to the inspiration part of this thesis.

Umut Orguner
Ankara, Turkey
August 25th, 2006

2 At the time being, unfortunately and surprisingly, I can not say which one was more
in it.

3 The names in the references part are at the beginning of this list of others.
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CHAPTER 1

INTRODUCTION

Even with his great knowledge and imagination, it is not known whether Nor-

bert Wiener could dream of the current expansion of the subject he worked

on when he passed away in 1964 after only four years Kalman published his

seminal paper [3]. What is known about him is that it was the anti-aircraft fire

control problems that led him to apply statistical ideas to linear filtering and

prediction problem which are presented in his famous monograph [4]. This

work was a revolution which still echoes in the engineering community and

it inspired many great researchers including the “founder” of the information

theory, Claude E. Shannon, who is quoted in Kailath’s linear filtering survey

[5] as

Credit should also be given to Professor N. Wiener, whose elegant
solution of the problems of filtering and prediction of stationary
ensembles has considerably influenced the writer’s thinking in this
field.

As the title of Wiener’s monograph expresses, Wiener worked on stationary

signals whose characteristics are summarized in terms of covariance functions.

The generalization of his study to non-stationary signals came after about ten

years with the work [3] of R.E. Kalman whose ideas dominated the modern

control theory ever after. During the race of the space programs between the

two countries of the world in the sixties, Kalman’s ideas proved quite useful.

According to Green and Limebeer [6], there were two main reasons for this:

1. For the space vehicles, it is possible to develop mathematical models

of their behaviour thanks to the essentially ballistic character of their
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dynamics. In addition, descriptions of external disturbances based on

white noise are often appropriate in aerospace applications.

2. Many of the control problems from the space program are concerned

with resource management. Performance criteria of this type are easily

embedded in the so-called linear quadratic Gaussian (LQG) framework .

The benefit gained by the usage of Kalman’s work in space technology led the

researchers to try the same algorithms in conventional industrial applications,

which resulted in a disappointment. In industrial processes, the mathematical

models used by the estimators are never exact and the true model of the system

might actually be changing. Moreover, the external disturbances affecting the

system and measurements hardly conform to statistical descriptions like white-

ness or stationarity. These constraints have made the communities reassess

the status of estimation (and control) theory and surged an enormous number

of publications under the title of robust estimation theory in the last three

decades. In addition to the combination of the estimation algorithms with

model adaptation rules, H∞, guaranteed-cost, set-valued, multiple-model, and

risk-sensitive estimation algorithms appeared as only some of the tools that

have been developed during this period. In fact, being exhaustive about the

the existing methods is impossible and beyond the scope. In this thesis, the

concentration will be on the multiple model estimation in which the model

uncertainty of the system under consideration is covered using a finite number

of models.

The history of multiple model estimation dates back to 1970 when the work

of Ackerson and Fu [7] named “On state estimation in switching environments”

first appeared. Specifically, they considered discrete-time linear systems whose

disturbances (noise terms) are assumed to come from one of several Gaussian

distributions with different means and variances. The changes in the noise

distributions, which represented different environments the system is running

under, were according to the state of a Markov chain. This model was ac-

tually a specific case of the so-called jump Markov linear systems (JMLSs)
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which are linear systems whose parameters evolve according to a finite-state

Markov chain. In the analysis of [7], Ackerson and Fu realized the exponen-

tially growing memory and computation requirements of the optimal minimum

mean square error (MMSE) estimator for this type of systems. The subopti-

mal algorithm they proposed to solve this problem involved the approximation

of Gaussian mixtures by a single Gaussian density and was actually a specific

case of a broader type of algorithms which are called by Tugnait [8] as the

generalized pseudo Bayesian (GPB) algorithms.

The exponential growing of the requirements of the optimal MMSE algo-

rithm for JMLSs is caused simply by the exponentially increasing number of

possible state histories (hypotheses) of the underlying Markov chain. Limiting

the growing number of hypotheses is the general characteristics of the pro-

posed solutions. Akashi and Kumamoto proposed the random selection of a

predetermined number of hypotheses and discarding the remaining ones in [9].

More wisely, the selection of the most likely predetermined number of hypothe-

ses is proposed in [10] based on the posterior probability of the hypotheses.

In 1982, Tugnait published an extensive survey and comparison (using equal

computation resources) paper on the existing multiple model estimation algo-

rithms which concluded that GPB algorithms are, in general, to be preferred

to other algorithms. However, it was also emphasized that the performances

of the algorithms are scenario dependent and no single algorithm is best for

all situations.

After approximately six years of silence in the community, Blom and Bar-

Shalom [11] suggested an algorithm which has a better place than the GPB

algorithms on the performance vs. computation curve in 1988. The algorithm,

which was called as the interacting multiple model (IMM) algorithm, in the

words of Johnston and Krishnamurthy [12], revitalized the field of multiple

model estimation and attracted much attention. This algorithm has been

used in many real world applications the most important of which is target

tracking [13, 14]. After the IMM algorithm became popular, the interest has

been shifted to different cost functions and filter structures for multiple model
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estimation. In this regard, the linear MMSE [15, 16], optimal control based

[17] and maximum a posteriori (MAP) estimation based [18, 12] approaches

has followed the IMM filter. The stochastic sampling based algorithms, which

have become popular after the introduction of the particle filters into the area

of state estimation [19], were also applied to the case of JMLSs in [20, 21, 22].

This thesis is about (further) improvement of the multiple model estimation

algorithms. The wide coverage of methods applied in the field as described

above makes the improvement over the existing algorithms a challenging work.

The existing multiple model algorithms, in author’s opinion, can be improved

in two different and possibly intersecting ways:

• The first way is to generate completely new algorithms which use different

criteria and means to obtain optimal estimates.

• The second way is to use the algorithms in the literature with optimized

parameters and optimized schemes. In this way, the best possible per-

formance can be obtained from the existing algorithms.

The first approach, although being more fruitful and academically interesting,

is much more difficult to achieve due to the wide spectrum of existing algo-

rithms. In this thesis, both of the ways described above are used to achieve

an improvement over the existing multiple model estimation methods in the

literature. With this content, the overall thesis can be divided into two parts

which cover the first and the second way of improvements respectively.1

As mentioned above, the first way to achieve an improvement over the ex-

isting multiple model estimation algorithms, which is to find optimal methods

with novel criteria is much more challenging than the second way. The key

for answering this challenge is to look at the development of the estimation

theory through the years. It is interesting that the theory of state estimation

has been developed as a response to its control theory counterpart most of

1 Originally, the thesis was formatted to include these part units but the graduate school
insisted on removing them for format standardization. In the current format, Chapters 2
and 3 form Part-I and Chapters 4, 5 and 6 form Part-II.
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the time. This aspect of estimation theory is evident from the earlier linear

quadratic (Gaussian) control days of the 60’s to the more recent H∞ control

period of the 90’s. It was with this idea in our mind that the risk sensitive con-

trol and estimation has attracted our attention. Risk sensitive control theory

is related with the control problems in which one minimizes the expected expo-

nential of a quadratic cost criterion [23, 24]. Risk sensitive estimation, which

appeared after its control counterpart deals with estimation problems where

the expected exponential of quadratic estimation error is minimized. There ex-

ist two different criteria for risk-sensitive estimation in the literature. The first

one considers the instantaneous estimation error [25]. The risk-sensitive filter

corresponding to this cost function, which is derived for linear Gauss-Markov

systems appears to be the same as the Kalman filter [25]. The second type

of cost function is a cumulative one which considers sum of all the estimation

errors from the initial time to the current time. The risk sensitive filter for this

cost function is also derived for the linear Gauss-Markov systems [26]. The

resulting filter is still linear but it is different from the Kalman filter. In the

first part of the thesis which is composed of Chapters 2 and 3, risk sensitive

filters are derived for now JMLSs using both of the cost functions.

For the derivation of the first algorithm, which minimizes the instanta-

neous cost function and is given in Chapter 2, we use classical probabilistic

methods. The resulting filter uses the IMM filter statistics and it differs from

the IMM filter only at its output calculation step. The second filter, which

minimizes the more complicated cumulative cost function and is presented in

Chapter 3, is derived using the reference probability methods. This time, like

the case in the conditional-mean estimators (or equivalently in MMSE estima-

tors), optimal risk-sensitive multiple model filter turns out to be impossible to

implement with exponentially growing memory and computation requirements.

This problem is solved using IMM-type approximations in the resulting filter.

The reference probability method used in the derivation provides a perfectly

transparent framework for this purpose.
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As for the methods of the second approach, we present two new online

estimators for the transition probabilities associated with JMLSs and a mixed

multiple model estimation algorithm in the second part of the thesis which is

formed by Chapters 4, 5 and 6. Almost all multiple model estimation algo-

rithms in the literature use constant and heuristically selected transition prob-

abilities for the estimation task. In this framework, being able to estimate the

transition probabilities in an online fashion would make the algorithms closer

to optimality. To this end, we present two methods namely the recursive

Kullback-Leibler (RKL) algorithm and maximum likelihood (ML) estimation

algorithms in Chapters 4 and 5 respectively.

The RKL approach is an application of a technique previously applied to

hidden Markov models (HMMs) to JMLSs. The resulting transition probabil-

ity estimator minimizes a Kullback-Leibler divergence [27] based cost function

using stochastic approximation [28] type recursions. On the oher hand, the

ML transition probability estimation problem is solved by making use of the

famous expectation-maximization (EM) procedure. The erratically (even more

than exponentially) growing memory and computation requirements of the re-

sulting exact EM algorithm makes us to approximate it by an N3 component

IMM filter where N is the number of models in the JMLS. The parameter

estimates are then found using the mode-weights of this IMM filter.

Multiple model estimation algorithms in the literature generally use mul-

tiple Kalman filters for each measurement and they are amenable to parallel

implementation. Making use of these properties, in Chapter 6 of the thesis,

we propose a mixed (IMM-GPB2) multiple model estimation algorithm which

can reach the performance of GPB2 algorithm with an average number of

Kalman filters near to IMM algorithm. In order to obtain this result, the dif-

ference between the state estimates of IMM and GPB2 algorithms is examined

analytically and a formula is found to quantify this difference.

Although some of the material presented in the thesis requires no special

background or the related background is presented along with the results,

the reference probability method which is used extensively in Chapters 3 and
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5 needs special attention. Due to this, a brief background on the subject is

presented in Appendix A which includes some theoretical aspects of the method

as well as the derivation of the Kalman and risk-sensitive filters for linear

Gauss-Markov systems using the reference probability method. Throughout

the thesis, since the problems involved are changed from chapter to chapter,

each chapter has its own problem definition even though some overlapping

exists in the general framework. In addition to this, when same example is used

in more than one chapter, the example statement is re-expressed for the sake

of completeness. Moreover, there are some minor but inevitable repetitions in

the issues and the references in the introduction sections of each chapter to

avoid jumping to conclusions too early and for the sake of a clear presentation

and easy reading.

1.1 Contributions

The major contributions of this thesis can be summarized as follows:

• A new multiple model estimation algorithm minimizing the expected

exponential of cumulative estimation error is presented. The algorithm

is shown to be superior to the IMM filter for an unknown parameter

scenario.

• A new output calculation scheme for the IMM filter is found. The new

output calculation mechanism makes the IMM filter minimize the ex-

pected exponential of instantaneous estimation error and the resulting

estimates are slightly more robust to parameter uncertainties.

• Two new online transition probability estimation algorithms are pro-

posed. With the online transition probability estimation, the existing

multiple model state estimation algorithms work better than the ones

using constant heuristic transition probabilities.

• An analysis of the effects of single Gaussian approximation is made. Us-

ing the results of this analysis, a mixed (IMM-GPB2) multiple model
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estimation algorithm is proposed. The proposed algorithm can reach the

performance of GPB2 with less Kalman filters and hence less computa-

tion.
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CHAPTER 2

RISK-SENSITIVE MULTIPLE-MODEL

STATE ESTIMATION:

INSTANTANEOUS CASE

2.1 Introduction

Kalman filter is the most well-known state estimation tool in the literature

for linear Gauss-Markov systems. One disadvantage of it is its sensitivity to

modeling errors. The literature is abundant with approaches to overcome this

drawback. Multiple-model filtering is a solution to this disadvantage when the

uncertainty in the modeling can be covered by a finite number of models. The

well-known interacting multiple model (IMM) filter [11, 13] and the generalized

pseudo Bayesian (GPB) methods [7, 8] are the most famous of the multiple-

model filtering algorithms. IMM filter, being actually an approximation of the

second order GPB method (called as GPB2), has a computational load very

near to a GPB1 filter and therefore, it is an efficient and popular estimation

tool especially in target tracking community [14]. Other multiple-model filter-

ing methods range from linear minimum mean-square error [15, 16], optimal

control based [17], MAP estimation based [12, 18] approaches which can be

classified as the classical approaches to stochastic sampling oriented methods

[20, 21, 22] which have become popular after the introduction of the particle

filters into the area of state estimation [19].

Although multiple-model filtering is itself a solution to the uncertainty in-
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herent in the modeling process, generally, it is quite unlikely that the models

covering the modes of a system under investigation are perfectly known. Two

types of solutions is possible for this problem. The first solution is to add more

models into the multiple-model filtering algorithm to cover more uncertainty.

Nevertheless, adding more models may also lower the performance of the algo-

rithm [29] and usage of the so-called variable structure multiple-model filtering

algorithms might be necessary [29]. The second way to solve the problem is

to apply the results of the research which can be named as the robust multi-

ple model filtering. In [30, 31], the H∞ methodologies have been applied to

jump Markov linear systems (JMLSs) which are basically the linear systems

whose parameters evolve according to a finite state Markov chain. Also, [32]

considered the case of uncertain model parameters. However, in all these ap-

proaches, the underlying mode-sequence of the JMLS is assumed to be known.

Later, [33] presented results related with the mode-independent case. The

so called guaranteed-cost approaches, where the state estimators are designed

such that the covariance of the estimation error is guaranteed to be within a

certain bound for all admissible uncertainties, have also been applied to the

case of JMLSs [34, 35]. However, these works also assume that the underlying

mode-sequences are known. Quite recently, [36] dealt with the case of uncer-

tain JMLSs and obtained solutions using the linear matrix inequality (LMI)

approaches.

Risk-sensitive estimation, which appeared in the literature mainly after its

control counterpart, is the general name given to the area of (robust [37]) esti-

mation where the exponential of the (instantaneous or cumulative) quadratic

estimation error is minimized. As mentioned in Chapter 1, there exist two

different criteria for risk-sensitive estimation in the literature. The first one

considers the instantaneous estimation error [25] and the second one uses a

cumulative cost function which considers the sum of all the estimation errors

from the initial time to current time [26]. In this chapter, the instantaneous

cost function will be considered and the results for the cumulative cost func-

tion, which are more involved, will be given in Chapter 3. This chapter is the
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least demanding part of the thesis in that classical probabilistic techniques are

used for the derivation.

The risk-sensitive filter corresponding to the instantaneous cost function,

which is derived for linear Gauss-Markov systems, appears to be the same as

the Kalman filter [25]. This property basically results from the fact that the

expected values of all even moments of the estimation error are minimized si-

multaneously by the Kalman filter state estimates when the conditional state

distributions are Gaussian like the case in linear Gauss-Markov systems. Since

the exponential of the quadratic estimation error is a weighted sum of (infi-

nite number of) even moments of the quadratic estimation error (by Taylor

series representation), expected exponential of the quadratic estimation error

is minimized by the Kalman filter estimates for linear Gauss-Markov systems.

In JMLSs, the case is different because, at each time step k, the conditional

state densities turn out to be Gaussian mixtures.

This chapter is organized as follows. In Sec. 2.2, problem definition is

made. An approximate solution for the risk sensitive multiple model estima-

tion problem, which is called as IRS-IMM algorithm, will be derived in Sec.

2.3. The performance of the IRS-IMM algorithm is examined on a simulation

scenario in Sec. 2.4. The chapter is finalized with conclusions in Sec. 2.5.

2.2 Problem Definition

The following jump Markov linear system model is considered

xk+1 = A(rk+1)xk + B(rk+1)wk+1, (2.1)

yk = C(rk)xk + D(rk)vk (2.2)

where

• {xk ∈ Rn} is the continuous-valued base-state sequence with initial dis-

tribution

x0 ∼ N (x0; x̄0, Σ0), (2.3)
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where the notation N (x; x̄, Σ) stands for a Gaussian probability density

function for dummy variable x which has a mean x̄ and covariance Σ.

We assume Σ0 > 0.

• {rk} is the unknown discrete-valued modal-state sequence,

• {yk ∈ Rm} is the noisy observation sequence,

• {wk ∈ Rn} is a white process noise sequence with distribution,

wk ∼ N (wk; 0, In), (2.4)

where In denotes the identity matrix of size n× n,

• {vk ∈ Rm} is a white measurement noise sequence independent from the

process noise wk with distribution

vk ∼ N (vk; 0, Im). (2.5)

The discrete-valued modal-state rk ∈ {1, 2, . . . , N} is assumed to be a first-

order finite-state homogenous Markov chain with transition probability matrix

Π = [πij]. The basic variables wk, vk, x0 and the modal-state sequence rk are

assumed to be mutually independent for all k. The time-varying matrices

A(rk), B(rk), C(rk), and D(rk) are assumed to be known for each value of rk.

Our aim is to find a recursive (instantaneous) risk-sensitive estimate x̂IRS
k|k

defined as

x̂IRS
k|k , arg min

ξ
E

[
exp

{
θ

2
(xk − ξ)T Qk(xk − ξ)

} ∣∣∣∣Yk

]
(2.6)

where θ is a scalar generally called as the risk-sensitive parameter, Qk > 0 is

a known weighting matrix and Yk , σ{y1, y2, . . . , yk} denotes the σ-algebra

generated by the random variables {y1, y2, . . . , yk}.

2.3 Risk-Sensitive IMM Estimation

Interacting multiple model (IMM) filter is an approximate and efficient solution

to the multiple-model minimum mean-square estimation problem [11, 13]. At
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each time step k, IMM filter approximates the information state p(xk|Yk) as a

Gaussian mixture defined as

p(xk|Yk) =
N∑

j=1

µj
kp(xk|rk = j,Yk) =

N∑
j=1

µj
kN (xk; x̂

j
k|k, Σ

j
k|k) (2.7)

where the state estimates

x̂j
k|k , E[xk|rk = j,Yk] (2.8)

and the covariances

Σj
k|k , E[(xk − x̂j

k|k)(xk − x̂j
k|k)

T |rk = j,Yk] (2.9)

are the approximate mode-conditioned state estimates and covariances respec-

tively calculated by the IMM filter. The quantities µj
k denote the mode prob-

abilities defined as

µj
k , P (rk = j|Yk). (2.10)

In this respect, IMM filter is an efficient finite dimensional solution to calculate

the conditional density p(xk|Yk) which is also required in the calculation of the

expectation on the right hand side of Eqn. 2.6. For this reason, in the solution

of the instantaneous risk-sensitive estimation problem, we are going to assume

that the IMM calculated information state is available. In other words, for

obtaining the the risk-sensitive state estimate x̂RS
k|k defined by Eqn. 2.6, the

IMM calculated statistics {µj
k, x̂

j
k|k, Σ

j
k|k}N

j=1 will be necessary.

2.3.1 Derivation

Expectation involved in Eqn. 2.6 is by definition

E

[
exp

{
θ

2
(xk − ξ)T Qk(xk − ξ)

}∣∣∣∣Yk

]

=

∫
exp

{
θ

2
(xk − ξ)T Qk(xk − ξ)

}
p(xk|Yk)dxk. (2.11)

Using the approximated density p(xk|Yk) calculated by the IMM filter, we

obtain

E

[
exp

{
θ

2
(xk − ξ)T Qk(xk − ξ)

} ∣∣∣∣Yk

]
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=
N∑

j=1

µj
k

∫
exp

{
θ

2
(xk − ξ)T Qk(xk − ξ)

}
N (xk; x̂

j
k|k, Σ

j
k|k)dxk

=
N∑

j=1

µj
kIj(ξ) (2.12)

where

Ij(ξ) ,
∫

exp

{
θ

2
(xk − ξ)T Qk(xk − ξ)

}
N (xk; x̂

j
k|k, Σ

j
k|k)dxk. (2.13)

In order to calculate the integrals {Ij(ξ)}N
j=1, we expand the Gaussian term as

Ij(ξ) =
1√

|2πΣj
k|k|

∫
exp

{
θ

2
(ξ − xk)

T Qk(ξ − xk)

}

× exp

{
−1

2
(xk − x̂j

k|k)
T (Σj

k|k)
−1(xk − x̂j

k|k)
}

dxk (2.14)

where the notation |.| denotes the matrix determinant. If we define

M j
k ,

[
(Σj

k|k)
−1 − θQk

]−1

> 0, (2.15)

Sj
k ,

[
1

θ
Q−1

k − Σj
k|k

]−1

> 0, (2.16)

we can take the integral in Eqn. 2.14 using the result of App. B.3 as

Ij(ξ) =

√√√√ |M j
k |

|Σj
k|k|

exp

{
1

2
(ξ − x̂j

k|k)
T Sj

k(ξ − x̂j
k|k)

}
. (2.17)

Substituting this result into Eqn. 2.12, we obtain

E

[
exp

{
θ

2
(xk − ξ)T Qk(xk − ξ)

} ∣∣∣∣Yk

]

=
N∑

j=1

µj
k

√√√√ |M j
k |

|Σj
k|k|

exp

{
1

2
(ξ − x̂j

k|k)
T Sj

k(ξ − x̂j
k|k)

}
. (2.18)

Consequently, the instantaneous risk-sensitive state estimate is given as

x̂IRS
k|k , arg min

ξ

N∑
j=1

µj
k

√√√√ |M j
k |

|Σj
k|k|

exp

{
1

2
(ξ − x̂j

k|k)
T Sj

k(ξ − x̂j
k|k)

}
. (2.19)

The mixture of exponentials on the right hand side of Eqn. 2.19 is impossible

to minimize analytically. The numerical algorithms can be applied for the
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minimization. This type of numerical solution which needs multiple iterations

for each time step k is quite costly for many applications, especially for target

tracking where real-time algorithms are required. Moreover, even if a numerical

algorithm is selected for making the minimization, the cost function evaluation

procedure might cause an overflow in the computer (or processor) due to the

blowing characteristics of the exponential functions. These issues necessitate

an approximation of the cost function to make an analytical minimization. We,

at this point, choose to approximate the exponentials on the right hand side

of Eqn. 2.19 by their first order Taylor series expansion i.e., exp(x) ≈ 1 + x.

Then, we get

x̂IRS
k|k ≈ arg min

ξ

N∑
j=1

µj
k

√√√√ |M j
k |

|Σj
k|k|

1

2
(ξ − x̂j

k|k)
T Sj

k(ξ − x̂j
k|k). (2.20)

The cost function on the right hand side of Eqn. 2.20 is quadratic in the

minimization variable ξ. Therefore, after taking the gradient with respect to

ξ, equating to zero and solving for ξ, we obtain the following unique solution

x̂IRS
k|k =




N∑
j=1

µj
k

√√√√ |M j
k |

|Σj
k|k|

Sj
k



−1

N∑
j=1

µj
k

√√√√ |M j
k |

|Σj
k|k|

Sj
kx̂

j
k|k. (2.21)

Since M j
k = Σj

k|kS
j
k

1
θ
Q−1

k , we can simplify the solution as

x̂IRS
k|k =

[
N∑

j=1

µj
k

√
|Sj

k|Sj
k

]−1 N∑
j=1

µj
k

√
|Sj

k|Sj
kx̂

j
k|k (2.22)

where

Sj
k =

[
1

θ
Q−1

k − Σj
k|k

]−1

. (2.23)

As a result, using the statistics of IMM algorithm, the risk-sensitive filtering

modifies the output estimate calculation of the IMM to include the covari-

ance weights depending on the IMM calculated mode-conditioned covariances.

We will call the overall algorithm which is composed of IMM filter (informa-

tion state or statistics) recursions and the risk-sensitive output calculation as

the IRS-IMM algorithm (or filter) where the abbreviation “IRS” stands for

“instantaneous risk-sensitive”.
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2.3.2 Properties of IRS-IMM Filter

In this section, we are going to emphasize some properties of the filter derived

in the previous section. For this purpose, we define a hypothetical (quite non-

rigorous) operator T which replaces every exponential in its operand expression

with its first order Taylor series approximation, i.e.,

T (exp(x)) = 1 + x. (2.24)

Using this operator, we can define MMSE estimate as

x̂MMSE
k|k , arg min

ξ
E

[
θ

2
(xk − ξ)T Qk(xk − ξ)

∣∣∣∣Yk

]
(2.25)

= arg min
ξ

E

[
T

(
exp

{
θ

2
(xk − ξ)T Qk(xk − ξ)

}) ∣∣∣∣Yk

]
. (2.26)

In [25], by showing the equivalence of the MMSE estimate and the risk-sensitive

estimates for linear Gauss-Markov systems, it is shown that the equality

arg min
ξ

E

[
T

(
exp

{
θ

2
(xk − ξ)T Qk(xk − ξ)

}) ∣∣∣∣Yk

]

= arg min
ξ

E

[
exp

{
θ

2
(xk − ξ)T Qk(xk − ξ)

} ∣∣∣∣Yk

]
(2.27)

is satisfied for linear Gauss-Markov systems. In other words, the existence of

the operator T inside the expectation does not change the minimizing point of

the cost function. What is proved above by the derivation of the risk-sensitive

output estimate calculation formula is that this is not the case for jump Markov

linear systems. Instead, our approximate output calculation method finds the

risk-sensitive estimate using the following formula.

arg min
ξ

E

[
exp

{
θ

2
(xk − ξ)T Qk(xk − ξ)

} ∣∣∣∣Yk

]

≈ arg min
ξ
T

(
E

[
exp

{
θ

2
(xk − ξ)T Qk(xk − ξ)

} ∣∣∣∣Yk

])
.(2.28)

A general property for risk-sensitive filters is that their estimates converge

to MMSE estimates when the risk sensitive parameter θ goes to zero. Using

the definition of the matrices Sj
k, we see that

Sj
k → θQk for j = 1, . . . , N when θ → 0. (2.29)
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Substituting this result into final formula for x̂RS
k|k given in Eqn. 2.22, we obtain

x̂IRS
k|k →

[
N∑

j=1

µj
k

√
|θQk|θQk

]−1 N∑
j=1

µj
k

√
|θQk|θQkx̂

j
k|k (2.30)

=
N∑

j=1

µj
kx̂

j
k|k , x̂IMM

k|k (2.31)

when θ → 0. Therefore, the risk-sensitive output estimate goes to the IMM

estimate when the risk-sensitive parameter θ goes to zero in spite of the Taylor

series approximation made in the derivation.

Note that the derivation of the risk-sensitive output estimate calculation

formula requires the positive definiteness of M j
k and Sj

k, which are equivalent

conditions since M j
k = Σj

k|kS
j
k

1
θ
Q−1

k and the matrices Σj
k|k, Qk are positive def-

inite. The definition of Sj
k in Eqn. 2.16 shows that the matrix Sj

k will be

positive definite if and only if the matrix θQk is sufficiently “small”, which

is satisfied if the risk-sensitive parameter θ is sufficiently small. As a result,

like other risk-sensitive filters in the literature, the result of the output esti-

mate calculation formula (state estimate of IRS-IMM) converges to the MMSE

output estimate (state estimate of IMM) if the risk-sensitive parameter θ is

selected sufficiently small.

2.4 Simulation Results

In this section, the performance of the IRS-IMM algorithm will be observed

and compared to that of the IMM algorithm. For this purpose, we consider a

simplified example of a moving target whose acceleration evolves according to

a finite-state Markov chain. This example is a slightly modified version of the

one given in [1]. Only the target dynamics in one-dimension, which is given as

 pk

vk




︸ ︷︷ ︸
xk

=


 1 T

0 1





 pk−1

vk−1


 +


 T 2/2

T


 [ak + wk] , (2.32)

will be considered. Here, pk, vk and ak denote the target position, velocity

and acceleration respectively. The initial state x0 is normally distributed with
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mean x̄0 and covariance Σ0 which are given as

x̄0 =


 80000

400


 , Σ0 =


 10000 1000

1000 10000


 . (2.33)

The acceleration process ak is a finite-state Markov chain with states in the

set {0, 20,−20}. The transition probability matrix for the finite-state Markov

chain is

Π =




0.4 0.3 0.3

0.3 0.4 0.3

0.3 0.3 0.4


 (2.34)

which corresponds to a highly maneuvering target. The white process noise

wk ∼ N (wk; 0, 2
2) represents small acceleration changes. It is assumed that

only the positions are measured, i.e.,

yk = pk + νk (2.35)

where the terms νk ∼ N (wk; 0, 1002) stands for the normally distributed white

measurement noise. The sampling period T is taken to be 10 sec’s.

The IMM and IRS-IMM algorithms are run on the artificially generated

measurements of the system defined above for 1000 Monte-Carlo runs with

θ = 8× 10−5 and Qk selected as

Qk =


 1 0.1

0.1 1


 for all k. (2.36)

The algorithms are assumed not to know the true probability transition matrix

given in Eqn. 2.34 and use the diagonally dominant probability transition

matrix ΠIMM given as

ΠIMM =




0.9 0.05 0.05

0.05 0.9 0.05

0.05 0.05 0.9


 . (2.37)

This type of matrices is generally used in practice in the cases where the true

transition matrix is not known [13]. These are actually almost all cases in real

life problems.

18



0 10 20 30 40 50 60 70 80 90 100
94

96

98

100

102

104

106

108

(m
)

IMM
IRS−IMM

Figure 2.1: RMS position errors of the IMM and IRS-IMM algorithms
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Figure 2.2: RMS velocity errors of the IMM and IRS-IMM algorithms
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Figure 2.3: Average RMS position errors (per sample) of the IMM and IRS-
IMM algorithms for different θ values.
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Figure 2.4: Average RMS velocity errors (per sample) of the IMM and IRS-
IMM algorithms for different θ values.
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In Fig. 2.1 and Fig. 2.2, the RMS position and velocity errors of the al-

gorithms are presented. As easily realized from the figures, the RMS errors

of the IRS-IMM algorithm are slightly lower than the standard IMM in this

unknown parameter scenario. These results show that the risk-sensitive out-

put calculation mechanism can yield better results in uncertain environments

where modeling cannot be done accurately.

The average RMS position and velocity errors per measurement sample

of the algorithms for different θ values are plotted in Fig. 2.3 and Fig. 2.4

respectively. The figures show that the error reduction (compared to IMM)

obtained by new output calculation algorithm increases (with increasing θ)

with growing rate until the algorithm diverges at around θ = 1 × 10−4. The

figures also make it clear that much better performance than those shown in

Figures 2.1 and 2.2 can be obtained from the algorithm if better θ selection

mechanisms are used.

2.5 Conclusion

In this chapter, a multiple model risk-sensitive estimation algorithm which

minimizes the expected exponential of the instantaneous quadratic estima-

tion error has been derived. The algorithm uses the IMM filter’s statistics

and differs from the IMM filter only in the output estimate calculation step.

The estimate calculation requires not only mode probabilities and the mode-

conditioned state estimates (like the case in IMM) but also the mode con-

ditioned covariances of the individual Kalman filters. The estimate of the

algorithm has been shown to reduce to the estimate of the standard IMM

algorithm when the risk-sensitive parameter θ goes to zero. The algorithm

has achieved better performance than the IMM filter in a scenario with model

uncertainties.
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CHAPTER 3

RISK-SENSITIVE MULTIPLE-MODEL

STATE ESTIMATION:

CUMULATIVE CASE

3.1 Introduction

Due to the (over-)simplicity and limitedness of instantaneous cost function ex-

amined in Chapter 2, the instances of the cumulative cost function dominates

the risk-sensitive filtering and control literature. Although, due to the cumula-

tive characteristics of the cost function that makes the analysis and synthesis

more involved, there are many methods to derive cumulative risk-sensitive fil-

ters based on the cumulative cost function. The first cumulative risk-sensitive

filter for linear Gauss-Markov systems is derived using dynamic programming

[26]. The reference probability methods1 [38, 39] in which a new probability

measure is defined and exploited have been used in [40, 41] to derive filters

and smoothers for nonlinear systems.2 Furthermore, using the derivation pro-

cedures based on game theory and H∞ filtering theory with which the risk

sensitive estimation has been shown to be related [26, 40] is also theoretically

possible. Risk-sensitive filters can be obtained even by applying Kalman filter

in an indefinite metric (Krein) space [42].

In this chapter, we consider the cumulative risk-sensitive estimation prob-

1 A comprehensive tutorial about the reference probability method is given in App. A.
2 The risk-sensitive filter for linear Gauss-Markov systems is also derived using the ref-

erence probability method in App. A.
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lem for jump Markov linear systems using the reference probability methods.

Like the case in the conditional-mean estimators (or equivalently in minimum

mean square error (MMSE) estimators), optimal risk-sensitive multiple model

filter turns out to be impossible to implement with exponentially growing

memory requirements. This problem is solved here using IMM-type approx-

imations which are identified by making a derivation of the IMM filter using

the reference probability method. The reference probability method used in

the derivation provides a perfectly transparent framework for this identifica-

tion by making the process of obtaining recursive expectations possible. Notice

that the reference probability method has a crucial importance in this chapter.

Therefore, if the reader is not familiar with this method, he/she should con-

sult App. A which includes the background theory along with the derivation

of Kalman and risk-sensitive filters for linear Gauss-Markov systems using the

reference probability method.

The organization of the chapter is as follows. In Sec. 3.2, we make a prob-

lem definition and define the required probability measures for the reference

probability method. Sec. 3.3 makes a brief derivation of the IMM filter using

the reference probability method and identifies the approximations made in the

IMM filter, which are stated in normalized probability domains in the litera-

ture, in the reference probability domain. The main results of the chapter are

given in Sec. 3.4 where the derivation of the cumulative risk-sensitive filtering

algorithm (which is called as CRS-IMM algorithm) is completed. In Sec. 3.5,

the properties of the resulting filter is stated along with some implementation

issues. The performance of the CRS-IMM algorithm is illustrated on a simu-

lated unknown parameter scenario in Sec. 3.6. The chapter is finalized with

conclusions in Sec. 3.7.

3.2 Problem Definition

The following jump Markov linear system model is considered

xk+1 = A(rk+1)xk + B(rk+1)wk+1, (3.1)
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yk = C(rk)xk + D(rk)vk (3.2)

where

• {xk ∈ Rn} is the continuous-valued base-state sequence with initial dis-

tribution

x0 ∼ N (x0; x̄0, Σ0), (3.3)

where the notation N (x; x̄, Σ) stands for a Gaussian probability density

function for dummy variable x which has a mean x̄ and covariance Σ.

We assume Σ0 > 0.

• {rk} is the unknown discrete-valued modal-state sequence,

• {yk ∈ Rm} is the noisy observation sequence,

• {wk ∈ Rn} is a white process noise sequence with distribution,

wk ∼ N (wk; 0, In), (3.4)

where In denotes the identity matrix of size n× n.

• {vk ∈ Rm} is a white measurement noise sequence independent from the

process noise wk with distribution

vk ∼ N (vk; 0, Im). (3.5)

The discrete-valued modal-state rk ∈ {e1, e2, . . . , eN} is assumed to be a first-

order finite-state homogenous Markov chain with transition probability matrix

Π = [πij]. Here the variable ej ∈ RN denotes the canonical unit vector with

unity at the jth position and zeros elsewhere. The basic variables wk, vk, x0

and the modal-state sequence rk are assumed to be mutually independent for

all k. The time-varying matrices A(rk), B(rk), C(rk), and D(rk) are assumed

to be known for each value of rk. Moreover, the matrices B(rk) and D(rk)

are assumed to be invertible. This is a requirement of the derivation using the

reference probability method.3

3 We will elaborate on bypassing this restriction using limiting arguments in Sec. 3.5.
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Our aim is to calculate the recursive cumulative risk-sensitive estimate

called as x̂CRS
k|k given as

x̂CRS
k|k = arg min

ζ∈Rn
E[exp {θΨ0,k(ζ)} |Yk] (3.6)

where Yk denotes the complete filtration generated by {y0, y1, . . . , yk} and

Ψ0,k(ζ) , Ψ̂0,k−1 +
1

2
(xk − ζ)T Qk(xk − ζ), (3.7)

Ψ̂m,n ,
n∑

l=m

1

2
(xl − x̂CRS

l|l )T Ql(xl − x̂CRS
l|l ). (3.8)

The matrices Qk are known, positive definite weighting matrices and the real

number θ > 0 is called as the risk-sensitive parameter like the case in Chapter

2. Note that the structure of the cost function implies a filtering (and not

smoothing) framework in that the estimates x̂CRS
l|l for l = 0, . . . , k − 1 have

been already calculated and will not change at time k.

3.2.1 Change of Measure

In the derivations given in the subsequent sections, it is initially assumed that

we are in an ideal probability space (Ω,F , P ) where, under the probability

measure P

• {xk}, k ∈ N is a sequence of independent, identically distributed (i.i.d.)

random variables which are Gaussian distributed with zero mean and

covariance In. Call their density function as φ(x) = N (x; 0, In).

• {yk}, k ∈ N is a sequence of i.i.d. random variables which are Gaussian

distributed with zero mean and covariance Im. Call their density function

as ψ(x) = N (x; 0, Im).

• {rk}, k ∈ N is a first-order finite-state homogenous Markov chain with

transition probability matrix Π = [πij] and initial distribution

π0 = [ π1
0 π2

0 · · · πN
0

]. (3.9)
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We define the sequence of random variables {λl} and {Λk}, k, l ∈ N as

λl =





φ(
√

Σ0
−1

(xl−x̄0))

|√Σ0|φ(xl)

ψ(D−1(rl)(yl−C(rl)xl))
|D(rl)|ψ(yl)

, l = 0

φ(B−1(rl)(xl−A(rl)xl−1))

|B(rl)|φ(xl)
ψ(D−1(rl)(yl−C(rl)xl))

|D(rl)|ψ(yl)
, l > 0

Λk =
k∏

l=0

λl (3.10)

where |.| denotes the matrix determinant and
√

Σ0 is the positive definite

square root of Σ0. Let Gk denote the complete filtration generated by random

variables {x0, . . . , xk, r0, . . . , rk, y0, . . . , yk}. Now, if we define a new probability

measure P by setting the restriction of the Radon-Nikodym derivative dP
dP
|Gk

to Λk, then, under the new probability measure P , {wk ∈ Rn} and {vk ∈ Rm},
k ∈ N defined as

wk , B−1(rk)(xk − A(rk)xk−1), (3.11)

vk , D−1(rk)(yk − C(rk)xk) (3.12)

are sequences of i.i.d. Gaussian random variables with zero-mean and co-

variance In and Im respectively.4 Moreover, the distribution of {rk} remains

unchanged.5 Note that, under both P and P , the modal state {rk}, k ∈ N has

a semi-martingale representation

rk+1 = ΠT rk + mk+1 (3.13)

where mk is a Gk martingale increment. The probability measure P is the

nominal measure under which the expectations like the one in Eqn. 3.6 are

taken. The expectations under the reference probability measure P , which are

shown by E, can be taken much more easily than the ones under P thanks to

the independence properties. By Theorem A.3, the two expectations can be

related in the context of Eqn. 3.6 as

E[exp {θΨ0,k(ζ)} |Yk] =
E[Λk exp {θΨ0,k(ζ)} |Yk]

E[Λk|Yk]
. (3.14)

4 The proof of this fact follows the same lines as the proof presented for linear Gauss-
Markov systems in Lemma A.7.

5 Proof of this fact is very similar to those given in [39] and [38].
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Since the denominator of the right hand side in Eqn. 3.14 is independent of ζ,

the cumulative risk-sensitive estimate x̂CRS
k|k is alternatively given as

x̂CRS
k|k = arg min

ζ∈Rn
E[Λk exp {θΨ0,k(ζ)} |Yk]. (3.15)

3.3 IMM Filter Derivation and Approxima-

tion Identification

The aim of this section is twofold. First, it prepares the reader for the quan-

tities and methodology involved in the derivations of the main result of the

chapter given in Sec. 3.4. Secondly, it identifies the approximations made by

the IMM algorithm under the nominal probability measure, in the reference

probability domain. This identification then leads us to introduce the same

type of approximations in the derivation of the cumulative risk-sensitive filter

to avoid ever-growing memory and computation requirements of the optimal

solution.

The usage of reference probability methods in the derivation of IMM-type

filters is not new. For example, in [43], a hybrid filter is derived for the case

where not only the process {xk} but also the modulating Markov chain {rk} is

(directly) measured. Also, the case where only the (direct) noisy measurements

of the Markov chain {rk} are available is considered in [44] which yields a finite

dimensional filter. In none of these references, is what the approximations of

the IMM filter correspond to in the reference probability domain examined.

Being able to make these approximations in the reference probability domain

would give one the ability to derive novel hybrid filters in the areas where the

reference probability method is applicable.

In IMM filtering, the aim is to calculate the MMSE recursive estimate x̂MS
k|k

defined as

x̂MS
k|k , E [xk|Yk] . (3.16)
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Using Theorem A.3, we can write

E [xk|Yk] =
E

[
Λkxk|Yk

]

E
[
Λk|Yk

] . (3.17)

Therefore, instead of calculating E [xk|Yk], one can calculate the unnormal-

ized expectation E
[
Λkxk|Yk

]
which is defined using the probability measure

P under which {xk} and {yk} are i.i.d. sequences. The results of the two

procedures would be equivalent after suitably normalizing the unnormalized

expectation E
[
Λkxk|Yk

]
. At this point, we define the unnormalized density

functions αj
k(x) as

αj
k(x)dx = E

[
Λk〈rk, ej〉I{xk∈dx}

∣∣∣Yk

]
(3.18)

where the function IA(ω) defined as

IA(ω) ,





1, ω ∈ A

0, ω /∈ A
(3.19)

denotes the indicator function of the set A and the notation 〈rk, ej〉 stands for

the inner product rT
k ej which is equal to the jth element of rk.

Using a simple reasoning, we can see that, if f : Rn → R is any test function

(i.e., measurable function with compact support), the following equality is

satisfied.

E
[
Λk〈rk, ej〉f(xk)

∣∣∣Yk

]
=

∫
f(x)αj

k(x)dx. (3.20)

Using this and the fact that

N∑
j=1

〈rk, ej〉 = 1, (3.21)

we can write the unnormalized estimate E
[
Λkxk|Yk

]
as

E
[
Λkxk|Yk

]
=

N∑
j=1

E
[
Λk〈rk, ej〉xk|Yk

]
(3.22)

=
N∑

j=1

∫
xαj

k(x)dx =

∫
x

N∑
j=1

αj
k(x)dx. (3.23)
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The same reasoning as in Eqn. 3.23 yields E[Λk|Yk] as

E[Λk|Yk] =
N∑

j=1

E[Λk〈rk, ej〉|Yk] =
N∑

j=1

∫
αj

k(ξ)dξ. (3.24)

Combining the results of Eqn. 3.23 and Eqn. 3.24,

E[xk|Yk] =
N∑

j=1

∫
xβj

k(x)dx (3.25)

where

βj
k(x) =

αj
k(x)∑N

l=1

∫
αl

k(ξ)dξ
. (3.26)

Therefore, the set of density functions {αj
k(.)}N

j=1 can be interpreted as an

“information state” for the problem [45].

3.3.1 Recursion

The following theorem gives a recursion for the density αj
k(x).

Theorem 3.1 The density functions αj
k(x), k ≥ 1 satisfy the following recur-

sion.

αj
k(x) =

ψ(D−1
j (yk − Cjx))

|Bj||Dj|ψ(yk)

∫
φ(B−1

j (x− Ajz))
N∑

i=1

πijα
i
k−1(z)dz (3.27)

where Aj , A(ej), Bj , B(ej), Cj , C(ej), and Dj , D(ej) for j =

1, . . . , N .

Proof Let g : Rn → R be any test function. Then,

∫
g(x)αj

k(x)dx = E
[
Λk〈rk, ej〉g(xk)|Yk

]
(3.28)

= E
[
Λk−1λk〈rk, ej〉g(xk)|Yk

]
(3.29)

= E
[
Λk−1

φ(B−1(rk)(xk − A(rk)xk−1))

|B(rk)|φ(xk)

×ψ(D−1(rk)(yk − C(rk)xk))

|D(rk)|ψ(yk)
〈rk, ej〉g(xk)

∣∣∣Yk

]
(3.30)

= E
[
Λk−1

φ(B−1
j (xk − Ajxk−1))

|Bj|φ(xk)

ψ(D−1
j (yk − Cjxk))

|Dj|ψ(yk)

×〈rk, ej〉g(xk)
∣∣∣Yk

]
(3.31)
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= E
[
Λk−1

φ(B−1
j (xk − Ajxk−1))

|Bj|φ(xk)

ψ(D−1
j (yk − Cjxk))

|Dj|ψ(yk)

×〈ΠT rk−1 + mk, ej〉g(xk)
∣∣∣Yk

]
(3.32)

= E
[
Λk−1

φ(B−1
j (xk − Ajxk−1))

|Bj|φ(xk)

ψ(D−1
j (yk − Cjxk))

|Dj|ψ(yk)

×〈ΠT rk−1, ej〉g(xk)
∣∣∣Yk

]

+ E
[
Λk−1

φ(B−1
j (xk − Ajxk−1))

|Bj|φ(xk)

ψ(D−1
j (yk − Cjxk))

|Dj|ψ(yk)

×〈mk, ej〉g(xk)
∣∣∣Yk

]
. (3.33)

The second expectation on the right hand side of Eqn. 3.33 is zero due to

facts that mk is a Gk-martingale increment and that under the probability

measure P , the process {rk}, and hence the process {mk}, is independent of

the processes {xk} and {yk}. Now using the identity

〈ΠT rk−1, ej〉 =
N∑

i=1

πij〈rk−1, ei〉, (3.34)

Eqn 3.33 becomes

∫
g(x)αj

k(x)dx =
N∑

i=1

πijE
[
Λk−1

φ(B−1
j (xk − Ajxk−1))

|Bj|φ(xk)

×ψ(D−1
j (yk − Cjxk))

|Dj|ψ(yk)
〈rk−1, ei〉g(xk)

∣∣∣Yk

]
(3.35)

=
N∑

i=1

πijE
[
Λk−1〈rk−1, ei〉E

[φ(B−1
j (xk − Ajxk−1))

|Bj|φ(xk)

×ψ(D−1
j (yk − Cjxk))

|Dj|ψ(yk)
g(x)

∣∣∣xk−1,Yk

]∣∣∣Yk

]
(3.36)

The inner expectation in Eqn. 3.36 can easily be taken as follows due to the

independence properties of the sequence {xk} under P .

∫
g(x)αj

k(x)dx =
N∑

i=1

πijE
[
Λk−1〈rk−1, ei〉

∫
φ(B−1

j (x− Ajxk−1))

|Bj|φ(x)

×ψ(D−1
j (yk − Cjx))

|Dj|ψ(yk)
g(x)φ(x)dx

∣∣∣Yk

]
(3.37)

=
N∑

i=1

πij

∫ ∫
φ(B−1

j (x− Ajz))

|Bj|
ψ(D−1

j (yk − Cjx))

|Dj|ψ(yk)

30



×g(x)dxαi
k−1(z)dz (3.38)

=

∫
g(x)

[ψ(D−1
j (yk − Cjx))

|Bj||Dj|ψ(yk)

∫
φ(B−1

j (x− Ajz))

×
N∑

i=1

πijα
i
k−1(z)dz

]
dx. (3.39)

Since this equality is satisfied for all test functions g(.), the recursion in Eqn.

3.27 is satisfied. ¤

Note that this result is different than (a special case of) the recursion given

in [43]. This is because [43] takes the system dynamics equation as

xk+1 = A(rk)xk + B(rk)wk+1, (3.40)

which is different than Eqn. 3.1, and measurement equation as in Eqn. 3.2.

This, at the end, causes a slight change in the information pattern and yields

a different recursion. Our selection follows the convention of the IMM filter

derivation in [13] where rk denotes the model (mode) in effect during the

sampling period ending at time k.

3.3.2 Initial Densities

Let f : Rn → R be any test function. Then, the initial densities αj
0(x) can be

calculated as follows.

∫
f(x)αj

0(x)dx = E
[
Λ0〈r0, ej〉f(x0)|Y0

]
(3.41)

= E
[
λ0〈r0, ej〉f(x0)|Y0

]
(3.42)

= E
[φ(

√
Σ0

−1
(x0 − x̄0))

|√Σ0|φ(x0)

ψ(D−1(r0)(y0 − C(r0)x0))

|D(r0)|ψ(y0)

×f(x0)〈r0, ej〉
∣∣∣Y0

]
(3.43)

= E
[φ(

√
Σ0

−1
(x0 − x̄0))

|√Σ0|φ(x0)

ψ(D−1
j (y0 − Cjx0))

|Dj|ψ(y0)
〈r0, ej〉

×f(x0)
∣∣∣Y0

]

= E
[φ(

√
Σ0

−1
(x0 − x̄0))

|√Σ0|φ(x0)

ψ(D−1
j (y0 − Cjx0))

|Dj|ψ(y0)
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×f(x0)
∣∣∣Y0

]
E [〈r0, ej〉] (3.44)

=

∫
f(x)πj

0

φ(
√

Σ0
−1

(x− x̄0))

|√Σ0|φ(x)

ψ(D−1
j (y0 − Cjx))

|Dj|ψ(y0)

×φ(x)dx (3.45)

=

∫
f(x)πj

0

φ(
√

Σ0
−1

(x− x̄0))

|√Σ0|
ψ(D−1

j (y0 − Cjx))

|Dj|ψ(y0)
dx.

Since the equality holds for all test function f(.), the initial density αj
0(x) is

given as

αj
0(x) = πj

0

ψ(D−1
j (y0 − Cjx))

|Dj|ψ(y0)

φ(
√

Σ0
−1

(x− x̄0))

|√Σ0|
(3.46)

=
πj

0

ψ(y0)
N (y0; Cjx,DjD

T
j )N (x; x̄0, Σ0) (3.47)

=
πj

0

ψ(y0)
N (y0; Cjx̄0, S

j
0)N (x; x̂j

0|0, Σ
j
0|0) (3.48)

= c̄j
0N (x; x̂j

0|0, Σ
j
0|0). (3.49)

where

Sj
0 , CjΣ0C

T
j + DjD

T
j , (3.50)

x̂j
0|0 , x̄0 + Σ0C

T
j (Sj

0)
−1(y0 − Cjx̄0), (3.51)

Σj
0|0 , Σ0 − Σ0C

T
j (Sj

0)
−1CjΣ0, (3.52)

c̄j
0 =

πj
0

ψ(y0)
N (y0; Cjx̄0, S

j
0). (3.53)

Here, while going from Eqn. 3.47 to Eqn. 3.48, we used the result of Appendix

B.2.

3.3.3 Approximation

By Eqn. 3.49, the densities αj
0(x) are of the form given as

αj
0(x) = c̄j

0N (x; x̂j
0|0, Σ

j
0|0). (3.54)

Considering this and the recursion in Eqn. 3.27, we see that the density

αj
k(x) must be a sum of Nk unnormalized Gaussian densities. Therefore, the

number of statistics to be kept increases exponentially. At this point, the IMM

32



approximation mechanism comes into picture. IMM algorithm, at each time

step k, keeps a single Gaussian for the normalized densities p(xk|rk = ej,Yk).

It achieves this by approximating, at each time step, the normalized density

p(xk−1|rk = ej,Yk−1) which is actually a Gaussian mixture with N components

by a single Gaussian, i.e.,

p(xk−1|rk = ej,Yk−1) =
N∑

i=1

P (rk−1 = ei|rk = ej,Yk−1)︸ ︷︷ ︸
,µij

k−1|k−1

× p(xk−1|rk−1 = ei, rk = ej,Yk−1)︸ ︷︷ ︸
=p(xk−1|rk−1=ei,Yk−1)

(3.55)

=
N∑

i=1

µij
k−1|k−1N (xk−1; x̂

i
k−1|k−1, Σ

i
k−1|k−1) (3.56)

≈ N (xk−1, x̂
0j
k−1|k−1, Σ

0j
k−1|k−1) (3.57)

where

x̂0j
k−1|k−1 ,

N∑
i=1

µij
k−1|k−1x̂

i
k−1|k−1, (3.58)

Σ0j
k−1|k−1 ,

N∑
i=1

µij
k−1|k−1

[
P i

k−1|k−1

+(x̂i
k−1|k−1 − x̂0j

k−1|k−1)(x̂
i
k−1|k−1 − x̂0j

k−1|k−1)
T
]
. (3.59)

Lemma 3.1 The normalized density p(xk−1|rk = ej,Yk−1) of the IMM filter

satisfies the following equality in terms of unnormalized densities {αi
k−1(x)}N

i=1.

p(xk−1|rk = ej,Yk−1) =

∑N
i=1 πijα

i
k−1(xk−1)∑N

i=1 πij

∫
αi

k−1(ξ)dξ
. (3.60)

Proof Note that from Bayes theorem

p(xk−1|rk = ej,Yk−1) =
p(xk−1, rk = ej|Yk−1)

P (rk = ej|Yk−1)
. (3.61)

Let f : Rn → R be any test function. Then,

∫
f(x)p(x|rk = ej,Yk−1)dx =

∫
f(x)p(x, rk = ej|Yk−1)dx

P (rk = ej|Yk−1)
(3.62)

=
E [f(xk−1)〈rk, ej〉|Yk−1]

E [〈rk, ej〉|Yk−1]
(3.63)
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=
E

[
Λk−1f(xk−1)〈rk, ej〉|Yk−1

]

E
[
Λk−1〈rk, ej〉|Yk−1

] (3.64)

=
E

[
Λk−1f(xk−1)〈ΠT rk−1, ej〉|Yk−1

]

E
[
Λk−1〈ΠT rk−1, ej〉|Yk−1

] . (3.65)

Using the fact that

〈ΠT rk−1, ej〉 =
N∑

i=1

πij〈rk−1, ei〉, (3.66)

Eqn. 3.65 will read,

∫
f(x)p(x|rk = ej,Yk−1)dx =

∑N
i=1 πijE

[
Λk−1f(xk−1)〈rk−1, ei〉|Yk

]
∑N

i=1 πijE
[
Λk−1〈rk−1, ei〉|Yk−1

]

=

∑N
i=1 πij

∫
f(x)αi

k−1(x)dx∑N
i=1 πij

∫
αi

k−1(ξ)dξ
(3.67)

=

∫
f(x)

∑N
i=1 πijα

i
k−1(x)dx∑N

i=1 πij

∫
αi

k−1(ξ)dξ
(3.68)

=

∫
f(x)

∑N
i=1 πijα

i
k−1(x)∑N

i=1 πij

∫
αi

k−1(ξ)dξ
dx. (3.69)

Since the equality is satisfied for any test function f(.), we conclude that Eqn.

3.60 is satisfied. ¤

Theorem 3.2 Assuming that the unnormalized densities satisfy the equation

αj
k−1(x) = c̄j

k−1N (x; x̂j
k−1|k−1, Σ

j
k−1|k−1) (3.70)

where

c̄j
k−1 ,

∫
αj

k−1(ξ)dξ, (3.71)

the normalized IMM approximation corresponds to making the approximation

given as
N∑

i=1

πijα
j
k−1(x) ≈ cj

k−1N (x; x̂0j
k−1|k−1, Σ

0j
k−1|k−1) (3.72)

in the reference probability domain (i.e., in the recursion of Eqn. 3.27) where

cj
k−1 ,

N∑
i=1

πij c̄
i
k−1, (3.73)

x̂0j
k−1|k−1 ,

N∑
i=1

πij c̄
i
k−1

cj
k−1

x̂i
k−1|k−1, (3.74)
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Σ0j
k−1|k−1 ,

N∑
i=1

πij c̄
i
k−1

cj
k−1

[
P i

k−1|k−1 (3.75)

+(x̂i
k−1|k−1 − x̂0j

k−1|k−1)(x̂
i
k−1|k−1 − x̂0j

k−1|k−1)
T
]
. (3.76)

Proof In the light of Lemma 3.1, we have

p(xk−1|rk = ej,Yk) =
1

cj
k−1

N∑
i=1

πijα
i
k−1(xk−1) (3.77)

=
N∑

i=1

πij c̄
i
k−1

cj
k−1

N (xk−1; x̂
i
k−1|k−1, Σ

i
k−1|k−1) (3.78)

≈ N (x; x̂0j
k−1|k−1, Σ

0j
k−1|k−1). (3.79)

The results of the theorem are now obvious considering the approximation in

Eqn. 3.57. Note that, initially, αj
0(x) satisfies the assumption in Eqn. 3.70.

When we make the approximation in Eqn. 3.72, considering the recursion

given in Eqn. 3.27, the density αj
k(x) will always satisfy the assumption of

Eqn. 3.70. Therefore, the assumption is not a restriction for the application

of the theorem at any time instant k. ¤

Substituting the approximation into the recursion in Eqn. 3.27, we get

αj
k(x) =

cj
k−1ψ(D−1

j (yk − Cjx))

|Bj||Dj|ψ(yk)

∫
φ(B−1

j (x− Ajz))

×N (z; x̂0j
k−1|k−1, Σ

0j
k−1|k−1)dz (3.80)

=
cj
k−1ψ(D−1

j (yk − Cjx))

|Dj|ψ(yk)

∫
φ(B−1

j (x− Ajz))

|Bj|
×N (z; x̂0j

k−1|k−1, Σ
0j
k−1|k−1)dz (3.81)

=
cj
k−1ψ(D−1

j (yk − Cjx))

|Dj|ψ(yk)

∫
N (x; Ajz, BjB

T
j )

×N (z; x̂0j
k−1|k−1, Σ

0j
k−1|k−1)dz (3.82)

=
cj
k−1ψ(D−1

j (yk − Cjx))

|Dj|ψ(yk)
N (x; x̂j

k|k−1, Σ
j
k|k−1) (3.83)

=
cj
k−1

ψ(yk)
N (yk; Cjx,DjD

T
j )N (x; x̂j

k|k−1, Σ
j
k|k−1) (3.84)

where

x̂j
k|k−1 = Ajx̂

0j
k−1|k−1, (3.85)

Σj
k|k−1 = AjΣ

0j
k−1|k−1A

T
j + BjB

T
j . (3.86)
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Using the result on the multiplication of the Gaussian densities given in App.

B.2, we get

αj
k(x) =

cj
k−1∆j(yk)

ψ(yk)
N (x; x̂j

k|k, Σ
j
k|k) (3.87)

where

∆j(yk) , N (yk; Cx̂j
k|k−1, S

j
k), (3.88)

Sj
k = CjΣ

j
k|k−1C

T
j + DjD

T
j , (3.89)

Σj
k|k = Σj

k|k−1 − Σj
k|k−1C

T
j (Sj

k)
−1CjΣ

j
k|k−1, (3.90)

x̂j
k|k = x̂j

k|k−1 + Σj
k|k−1C

T
j (Sj

k)
−1(yk − Cjx̂

j
k|k−1). (3.91)

3.3.4 Final Estimate Calculation

The normalized densities βj
k(x) can now be easily calculated as

βj
k(x) =

αj
k(x)∑N

l=1

∫
αl

k(ξ)dξ
= µj

kN (x; x̂j
k|k, Σ

j
k|k) (3.92)

where

µj
k =

cj
k−1∆j(yk)∑N

l=1 cl
k−1∆l(yk)

. (3.93)

Then, the IMM estimate x̂MS
k|k is given as

x̂MS
k|k =

N∑
j=1

µj
kx̂

j
k|k. (3.94)

Remark 3.1 It is important to note that, for the calculation of the mixed and

the final IMM estimates, all that matters about the coefficients c̄j
k (or cj

k) is

their relative magnitudes (and not their absolute magnitudes). Therefore, at

any time-step k, one can multiply the the coefficients c̄j
k (or cj

k) by a common

constant number without affecting the output estimate. This will be the case for

the cumulative risk-sensitive multiple model filter derived in the next section.

One cycle of the IMM algorithm whose required steps are derived above is

illustrated in Fig. 3.1.
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Figure 3.1: One cycle of IMM algorithm with N models. KF is the abbreviation
of Kalman filter.

3.4 Cumulative Risk-Sensitive Multiple-Model

Filter

In the following, we are going to make a similar derivation for the risk-sensitive

multiple-model filter, which is called as CRS-IMM (where the abbreviation

“CRS” stands for “cumulative risk-sensitive”), using the reference probability

method. For this purpose, we define the unnormalized density function

γj
k(x)dx , E

[
Λk〈rk, ej〉 exp

{
θΨ̂0,k−1

}
I{xk∈dx}

∣∣∣Yk

]
. (3.95)

Using a simple argument, one can show that, if f : Rn → R is any test function,

E
[
Λk〈rk, ej〉 exp

{
θΨ̂0,k−1

}
f(xk)

∣∣∣Yk

]
=

∫
f(x)γj

k(x)dx. (3.96)

Notation: In this section, due to length of the formulas, we will use the

following abbreviations.

exp(+, x, x̄, Σ) , exp

{
1

2
(x− x̄)T Σ−1(x− x̄)

}
, (3.97)

exp(−, x, x̄, Σ) , exp

{
−1

2
(x− x̄)T Σ−1(x− x̄)

}
. (3.98)
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3.4.1 Recursion

The following theorem gives a recursion for the densities γj
k(.).

Theorem 3.3 The densities γj
k(x), k ≥ 1 satisfy the following recursion.

γj
k(x) =

ψ(D−1
j (yk − Cjx))

|Bj||Dj|ψ(yk)

∫
φ(B−1

j (x− Ajz))

× exp

(
+, z, x̂CRS

k−1|k−1,
1

θ
Q−1

k−1

) N∑
i=1

πijγ
i
k−1(z)dz. (3.99)

Proof Let f : Rn → R be any test function. Then,

∫
f(x)γj

k(x)dx = E
[
Λk〈rk, ej〉 exp

{
θΨ̂0,k−1

}
f(xk)

∣∣∣Yk

]
(3.100)

= E
[
Λk−1〈rk, ej〉f(xk)

φ(B−1(rk)(xk − A(rk)xk−1))

|B(rk)|φ(xk)

×ψ(D−1(rk)(yk − C(rk)xk))

|D(rk)|ψ(yk)
exp

{
θΨ̂0,k−1

} ∣∣∣Yk

]

= E
[
Λk−1

φ(B−1
j (xk − Ajxk−1))

|Bj|φ(xk)

ψ(D−1
j (yk − Cjxk))

|Dj|ψ(yk)

×〈rk, ej〉 exp
{

θΨ̂0,k−1

}
f(xk)

∣∣∣Yk

]
(3.101)

= E
[
Λk−1

φ(B−1
j (xk − Ajxk−1))

|Bj|φ(xk)

ψ(D−1
j (yk − Cjxk))

|Dj|ψ(yk)

×〈ΠT rk−1 + mk, ej〉 exp
{

θΨ̂0,k−1

}
f(xk)

∣∣∣Yk

]

= E
[
Λk−1

φ(B−1
j (xk − Ajxk−1))

|Bj|φ(xk)

ψ(D−1
j (yk − Cjxk))

|Dj|ψ(yk)

×〈ΠT rk−1, ej〉 exp
{

θΨ̂0,k−1

}
f(xk)

∣∣∣Yk

]

+ E
[
Λk−1

φ(B−1
j (xk − Ajxk−1))

|Bj|φ(xk)

ψ(D−1
j (yk − Cjxk))

|Dj|ψ(yk)

×〈mk, ej〉 exp
{

θΨ̂0,k−1

}
f(xk)

∣∣∣Yk

]
. (3.102)

The second expectation in the summation in Eqn. 3.102 is zero due to facts

that mk is a Gk-martingale increment and that under the probability mea-

sure P , the process {rk}, and hence the process {mk}, is independent of the

processes {xk} and {yk}. Now using the identity

〈ΠT rk−1, ej〉 =
N∑

i=1

πij〈rk−1, ei〉, (3.103)
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Eqn 3.102 becomes,

∫
f(x)γj

k(x)dx =
N∑

i=1

πijE
[
Λk−1〈rk−1, ei〉

φ(B−1
j (xk − Ajxk−1))

|Bj|φ(xk)

×ψ(D−1
j (yk − Cjxk))

|Dj|ψ(yk)
exp

{
θΨ̂0,k−1

}
f(xk)

∣∣∣Yk

]

=
N∑

i=1

πijE
[
Λk−1〈rk−1, ei〉 exp

{
θΨ̂0,k−2

}

×φ(B−1
j (xk − Ajxk−1))

|Bj|φ(xk)

ψ(D−1
j (yk − Cjxk))

|Dj|ψ(yk)

× exp

(
+, xk−1, x̂

CRS
k−1|k−1,

1

θ
Q−1

k−1

)
f(xk)

∣∣∣Yk

]
(3.104)

=
N∑

i=1

πijE
[
Λk−1〈rk−1, ei〉 exp

{
θΨ̂0,k−2

}

× exp

(
+, xk−1, x̂

CRS
k−1|k−1,

1

θ
Q−1

k−1

)

×E
[φ(B−1

j (xk − Ajxk−1))

|Bj|φ(xk)

ψ(D−1
j (yk − Cjxk))

|Dj|ψ(yk)

×f(xk)
∣∣∣xk−1,Yk

]∣∣∣Yk

]
(3.105)

The inner expectation in Eqn. 3.105 can easily be taken as follows due to the

independence properties of the sequence {xk} under P .

f(x)γj
k(x)dx =

N∑
i=1

πijE
[
Λk−1〈rk−1, ei〉 exp

{
θΨ̂0,k−2

}

× exp

(
+, xk−1, x̂

CRS
k−1|k−1,

1

θ
Q−1

k−1

)

×
∫

φ(B−1
j (x− Ajxk−1))

|Bj|φ(x)

ψ(D−1
j (yk − Cjxk))

|Dj|ψ(yk)
f(x)

×φ(x)dx
∣∣∣Yk−1

]
(3.106)

=
N∑

i=1

πij

∫
exp

(
+, z, x̂CRS

k−1|k−1,
1

θ
Q−1

k−1

)

×
∫

φ(B−1
j (x− Ajz))

ψ(D−1
j (yk − Cjx))

|Bj||Dj|ψ(yk)
f(x)dx

×γi
k−1(z)dz

=

∫
f(x)

ψ(D−1
j (yk − Cjx))

|Bj||Dj|ψ(yk)

∫
φ(B−1

j (x− Ajz))

39



× exp

(
+, z, x̂CRS

k−1|k−1,
1

θ
Q−1

k−1

) N∑
i=1

πijγ
i
k−1(z)dzdx.

Since this equality is satisfied for all test functions f(.), the recursion in Eqn.

3.99 is satisfied. ¤

3.4.2 Initial Densities

The initial densities γj
0(x) satisfy

∫
f(x)γj

0(x)dx = E
[
Λ0〈r0, ej〉 exp

{
θΨ̂0,−1

}
f(x0)

∣∣∣Y0

]
(3.107)

= E
[
Λ0〈r0, ej〉f(x0)

∣∣∣Y0

]
(3.108)

= E
[
λ0〈r0, ej〉f(x0)

∣∣∣Y0

]
. (3.109)

The right hand side of Eqn. 3.109 is the same as that of Eqn. 3.42 giving the

result below.

γj
0(x) = c̄j

0N (x; x̂j
0|0, Σ

j
0|0) (3.110)

where

x̂j
0|0 , x̄0 + Σ0C

T
j (Sj

0)
−1(y0 − Cjx̄0), (3.111)

Σj
0|0 , Σ0 − Σ0C

T
j (Sj

0)
−1CjΣ0, (3.112)

c̄j
0 =

πj
0

ψ(y0)
N (y0; Cjx̄0, S

j
0), (3.113)

Sj
0 , CjΣ0C

T
j + DjD

T
j . (3.114)

3.4.3 Approximation

The form of initial density γj
0(x) in Eqn. 3.110 and the recursion in Eqn.

3.99 implies that γj
k(x) is the sum of Nk unnormalized Gaussian densities.

Therefore, the number of statistics to be kept increases exponentially in the

optimal filter. In order to have a filter which can be implemented with finite

resources, we are going to use the same kind of approximation here as in the

IMM filter. The approximation we make is therefore given as

N∑
i=1

πijγ
j
k−1(x) ≈ cj

k−1N (x; x̂0j
k−1|k−1, Σ

0j
k−1|k−1) (3.115)
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where

cj
k−1 ,

N∑
i=1

πij c̄
i
k−1, (3.116)

c̄j
k−1 ,

∫
γj

k−1(ξ)dξ, (3.117)

x̂0j
k−1|k−1 ,

N∑
i=1

πij c̄
i
k−1

cj
k−1

x̂i
k−1|k−1, (3.118)

Σ0j
k−1|k−1 ,

N∑
i=1

πij c̄
i
k−1

cj
k−1

[
P i

k−1|k−1

+(x̂i
k−1|k−1 − x̂0j

k−1|k−1)(x̂
i
k−1|k−1 − x̂0j

k−1|k−1)
T
]
. (3.119)

This approximation is of the same form as the approximation of the IMM filter

and it causes the densities γj
k(x) to be unnormalized Gaussian densities in the

form given below.

γj
k(x) = c̄j

kN (x; x̂j
k|k, Σ

j
k|k). (3.120)

Therefore; the resulting filter is finite-dimensional and requires finite number of

statistics to be kept. In the following, the recursions for the required statistics

x̂j
k|k, Σj

k|k and c̄j
k are obtained. Substituting the approximation in Eqn. 3.115

into the recursion in Eqn. 3.99, we get

γj
k(x) = cj

k−1

ψ(D−1
j (yk − Cjx))

|Bj||Dj|ψ(yk)

∫
φ(B−1

j (x− Ajz))

× exp

(
+, z, x̂CRS

k−1|k−1,
1

θ
Q−1

k−1

)
N (z; x̂0j

k−1|k−1, Σ
0j
k−1|k−1)dz

= cj
k−1

ψ(D−1
j (yk − Cjx))√

|2πΣ0j
k−1|k−1||Bj||Dj|ψ(yk)

×
∫

φ(B−1
j (x− Ajz)) exp

(
+, z, x̂CRS

k−1|k−1,
1

θ
Q−1

k−1

)

× exp
(
−, z, x̂0j

k−1|k−1, Σ
0j
k−1|k−1

)
dz. (3.121)

Using the result on the multiplication of exponentials given in App. B.1, Eqn.

3.121 turns into

γj
k(x) = cj

k−1

√
|2πΣ0j

k−1|k−1|ψ(D−1
j (yk − Cjx))

√
|2πΣ0j

k−1|k−1||Bj||Dj|ψ(yk)
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×
∫

φ(B−1
j (x− Ajz)) exp

(
+, x̂CRS

k−1|k−1, x̂
0j
k−1|k−1, S

0j
k−1|k−1

)

×N (z; x̂0j
k−1|k−1, Σ

0j
k−1|k−1)dz (3.122)

= cj
k−1

√
|Σ0j

k−1|k−1|ψ(D−1
j (yk − Cjx))

√
|Σ0j

k−1|k−1||Bj||Dj|ψ(yk)

× exp
(
+, x̂CRS

k−1|k−1, x̂
0j
k−1|k−1, S

0j
k−1|k−1

)

×
∫

φ(B−1
j (x− Ajz))N (z; x̂0j

k−1|k−1, Σ
0j
k−1|k−1)dz (3.123)

= cj
k−1

√
|Σ0j

k−1|k−1|ψ(D−1
j (yk − Cjx))

√
|Σ0j

k−1|k−1||Dj|ψ(yk)

× exp
(
+, x̂CRS

k−1|k−1, x̂
0j
k−1|k−1, S

0j
k−1|k−1

)

×
∫
N (x,Ajz, BjB

T
j )N (z; x̂0j

k−1|k−1, Σ
0j
k−1|k−1)dz (3.124)

where

S0j
k−1|k−1 =

1

θ
Q−1

k−1 − Σ0j
k−1|k−1, (3.125)

Σ0j
k−1|k−1 =

[
(Σ0j

k−1|k−1)
−1 − θQk−1

]−1

, (3.126)

x̂0j
k−1|k−1 = Σ0j

k−1|k−1

[
(Σ0j

k−1|k−1)
−1x̂0j

k−1|k−1 − θQk−1x̂
CRS
k−1|k−1

]
. (3.127)

Applying the result of App. B.4 onto the integral in Eqn. 3.124, we obtain

γj
k(x) = cj

k−1

√
|Σ0j

k−1|k−1|ψ(D−1
j (yk − Cjx))

√
|Σ0j

k−1|k−1||Dj|ψ(yk)

× exp
(
+, x̂CRS

k−1|k−1, x̂
0j
k−1|k−1, S

0j
k−1|k−1

)

×N (x; x̂j
k|k−1, Σ

j
k|k−1) (3.128)

= cj
k−1

√
|Σ0j

k−1|k−1|√
|Σ0j

k−1|k−1|ψ(yk)
exp

(
+, x̂CRS

k−1|k−1, x̂
0j
k−1|k−1, S

0j
k−1|k−1

)

×N (yk; Cjx,DjD
T
j )N (x; x̂j

k|k−1, Σ
j
k|k−1) (3.129)

where

x̂j
k|k−1 = Ajx̂

0j
k−1|k−1, (3.130)

Σj
k|k−1 = AjΣ

0j
k−1|k−1A

T
j + BjB

T
j . (3.131)
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The result of Appendix B.2 can be applied to Eqn. 3.129 to yield

γj
k(x) = cj

k−1

√
|Σ0j

k−1|k−1|√
|Σ0j

k−1|k−1|ψ(yk)
N (yk; Cjx, DjD

T
j )

× exp
(
+, x̂CRS

k−1|k−1, x̂
0j
k−1|k−1, S

0j
k−1|k−1

)

×N (yk; Cjx̂
j
k|k−1, S

j
k|k−1)N (x; x̂j

k|k, Σ
j
k|k) (3.132)

= c̄j
kN (x; x̂j

k|k, Σ
j
k|k) (3.133)

where

c̄j
k =

cj
k−1

√
|Σ0j

k−1|k−1|√
|Σ0j

k−1|k−1|ψ(yk)
N (yk; Cjx̂

j
k|k−1, S

j
k|k−1)

× exp
(
+, x̂CRS

k−1|k−1, x̂
0j
k−1|k−1, S

0j
k−1|k−1

)
, (3.134)

Sj
k|k−1 = CjΣ

j
k|k−1C

T
j + DjD

T
j , (3.135)

x̂j
k|k = x̂j

k|k−1 + Σj
k|k−1C

T
j (yk − Cjx̂

j
k|k−1), (3.136)

Σj
k|k = Σj

k|k−1 − Σj
k|k−1C

T
j (Sj

k|k−1)
−1CjΣ

j
k|k−1. (3.137)

3.4.4 Final Estimate Calculation

Remembering the cumulative risk-sensitive estimate formula given in Eqn.

3.15,

x̂CRS
k|k = arg min

ζ∈Rn
E

[
Λk exp

{
θΨ̂0,k−1

}
exp

{
θ

2
(xk − ζ)T Qk(xk − ζ)

} ∣∣∣Yk

]

= arg min
ζ∈Rn

N∑
j=1

E
[
Λk〈rk, ej〉 exp

{
θΨ̂0,k−1

}

× exp

{
θ

2
(xk − ζ)T Qk(xk − ζ)

} ∣∣∣Yk

]
(3.138)

= arg min
ζ∈Rn

N∑
j=1

∫
exp

{
θ

2
(x− ζ)T Qk(x− ζ)

}
γj

k(x)dx. (3.139)

At this stage of the problem, in order to calculate the final estimate, two dif-

ferent approximation schemes which yield very different results can be used.

Here, we examine both of the approaches and call the resulting CRS-IMM

variants as CRS-IMM1 and CRS-IMM2.
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Approximation Scheme-1: The first scheme is to make the following ap-

proximation.

N∑
j=1

γj
k(x) =

N∑
j=1

c̄j
kN (x; x̂j

k|k, Σ
j
k|k) ≈ c̄kN (x; x̂k|k, Σk|k) (3.140)

where

c̄k ,
N∑

j=1

c̄j
k, (3.141)

x̂k|k =
N∑

j=1

c̄j
k

c̄k

x̂j
k|k, (3.142)

Σk|k =
N∑

j=1

c̄j
k

c̄k

[
Σj

k|k + (x̂j
k|k − x̂k|k)(x̂

j
k|k − x̂k|k)

T
]
. (3.143)

The final estimate x̂CRS
k|k is then given by

x̂CRS
k|k = arg min

ζ∈Rn

N∑
j=1

∫
exp

{
θ

2
(x− ζ)T Qk(x− ζ)

}
γj

k(x)dx (3.144)

= arg min
ζ∈Rn

∫
exp

{
θ

2
(x− ζ)T Qk(x− ζ)

} N∑
j=1

γj
k(x)dx (3.145)

≈ arg min
ζ∈Rn

c̄k

∫
exp

{
θ

2
(x− ζ)T Qk(x− ζ)

}
N (x; x̂k|k, Σk|k)dx

= arg min
ζ∈Rn

c̄k

√
|Mk|√|Σk|k|

exp

{
1

2
(ζ − x̂k|k)

T Nk(ζ − x̂k|k)
}

(3.146)

= x̂k|k (3.147)

where

Mk =
[
Σ−1

k|k − θQk

]−1

, (3.148)

Nk =

[
1

θ
Q−1

k − Σk|k

]−1

. (3.149)

As a result, using the first approximation scheme, the final estimate is obtained

as

x̂CRS
k|k =

N∑
j=1

c̄j
k

c̄k

x̂j
k|k. (3.150)
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Approximation Scheme-2: Substituting the densities γj
k(x) into Eqn. 3.139,

we obtain

x̂CRS
k|k = arg min

ζ∈Rn

N∑
j=1

c̄j
k

∫
exp

{
θ

2
(x− ζ)T Qk(x− ζ)

}
N (x; x̂j

k|k, Σ
j
k|k)dx

= arg min
ζ∈Rn

N∑
j=1

c̄j
k√

|2πΣj
k|k|

∫
exp

{
θ

2
(x− ζ)T Qk(x− ζ)

}

× exp

{
−1

2
(x− x̂j

k|k)
T (Σj

k|k)
−1(x− x̂j

k|k)
}

dx.

After taking the integrals using the result of Appendix B.3, we get

x̂CRS
k|k = arg min

ζ∈Rn

N∑
j=1

c̄j
k

√
|T j

k |√
|Σj

k|k|
exp

{
1

2
(ζ − x̂j

k|k)
T U j

k(ζ − x̂j
k|k)

}
(3.151)

= arg min
ζ∈Rn

N∑
j=1

c̄j
k

√
|1
θ
Q−1

k ||U j
k ||Σj

k|k|√
|Σj

k|k|
exp

{
1

2
(ζ − x̂j

k|k)
T U j

k(ζ − x̂j
k|k)

}

= arg min
ζ∈Rn

N∑
j=1

c̄j
k

√
|U j

k |√
|θQk|

exp

{
1

2
(ζ − x̂j

k|k)
T U j

k(ζ − x̂j
k|k)

}
(3.152)

where

T j
k =

[
(Σj

k|k)
−1 − θQk

]−1

, (3.153)

U j
k =

[
1

θ
Q−1

k − Σj
k|k

]−1

. (3.154)

The summation of weighted exponentials in Eqn. 3.152 is similar to the case

encountered Chapter 2. We here use the same approach by replacing the

exponentials by their first-order Taylor series expansion i.e., we let

exp(x) ≈ 1 + x. (3.155)

Then, the second type risk-sensitive final estimate x̂CRS
k|k is given as

x̂CRS
k|k = arg min

ζ∈Rn

N∑
j=1

c̄j
k

√
|U j

k |
2
√
|θQk|

(ζ − x̂j
k|k)

T U j
k(ζ − x̂j

k|k).

Taking the gradient with respect to ζ and equating to zero, we obtain

x̂CRS
k|k =

[
N∑

j=1

c̄j
k

√
|U j

k |U j
k

]−1 [
N∑

j=1

c̄j
k

√
|U j

k |U j
k x̂

j
k|k

]
.
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Summary: Here, we summarize the derived cumulative risk-sensitive multiple-

model estimation algorithm (both variants). The algorithm, like the IMM

filter, keeps an unnormalized Gaussian density for each density γj
k(x). At

each time step, it has to store the means {x̂j
k|k}N

j=1, covariances {Σj
k|k}N

j=1, the

weighting coefficients {c̄j
k}N

j=1 and a single final output estimate x̂CRS
k|k . The

storage requirement for the final estimate is a distinct characteristic of the

cumulative risk-sensitive filter and is not required in the IMM filter.

Assuming that the required statistic data from the previous time step

(i.e., time k − 1) are available (i.e., the means {x̂i
k−1|k−1}N

i=1, covariances

{Σi
k−1|k−1}N

i=1, the weighting coefficients {c̄i
k}N

i=1 and the final output estimate

x̂CRS
k−1|k−1 are available.), the algorithm has the following steps.

• Mixing: The previous state estimates {x̂i
k−1|k−1}N

i=1 and covariances

{Σi
k−1|k−1}N

i=1 are mixed to form new mixed estimates {x̂0j
k−1|k−1}N

j=1 and

covariances {Σ0j
k−1|k−1}N

j=1 as follows.

x̂0j
k−1|k−1 =

N∑
i=1

πij c̄
i
k−1

cj
k−1

x̂i
k−1|k−1, (3.156)

Σ0j
k−1|k−1 =

N∑
i=1

πij c̄
i
k−1

cj
k−1

[
Σi

k−1|k−1

+(x̂i
k−1|k−1 − x̂0j

k−1|k−1)(x̂
i
k−1|k−1 − x̂0j

k−1|k−1)
T
]

where

cj
k−1 ,

N∑
i=1

πij c̄
i
k−1. (3.157)

• Modification on Mixed Estimates and Covariances: The mixed

state estimates {x̂0j
k−1|k−1}N

j=1 and covariances {Σ0j
k−1|k−1}N

j=1 are modi-

fied to obtain modified mixed estimates {x̂0j
k−1|k−1}N

j=1 and covariances

{Σ0j
k−1|k−1}N

j=1 as follows.

Σ0j
k−1|k−1 =

[
(Σ0j

k−1|k−1)
−1 − θQk−1

]−1

, (3.158)

x̂0j
k−1|k−1 = Σ0j

k−1|k−1

×
[
(Σ0j

k−1|k−1)
−1x̂0j

k−1|k−1 − θQk−1x̂
CRS
k−1|k−1

]
. (3.159)
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• Kalman Filtering: The modified mixed estimates {x̂0j
k−1|k−1}N

j=1 and co-

variances {Σ0j
k−1|k−1}N

j=1 are updated using corresponding mode-matched

Kalman filters to obtain estimates {x̂j
k|k}N

j=1 and covariances {Σj
k|k}N

j=1.

– Prediction Update

x̂j
k|k−1 = Ajx̂

0j
k−1|k−1, (3.160)

Σj
k|k−1 = AjΣ

0j
k−1|k−1A

T
j + BjB

T
j . (3.161)

– Measurement Update

x̂j
k|k = x̂j

k|k−1 + Σj
k|k−1C

T
j (yk − Cjx̂

j
k|k−1), (3.162)

Σj
k|k = Σj

k|k−1 − Σj
k|k−1C

T
j (Sj

k|k−1)
−1CjΣ

j
k|k−1 (3.163)

where

Sj
k|k−1 = CjΣ

j
k|k−1C

T
j + DjD

T
j . (3.164)

• Obtaining the Coefficients {c̄j
k}N

j=1: The coefficients {c̄j
k}N

j=1 are

calculated as follows

c̄j
k =

cj
k−1

√
|Σ0j

k−1|k−1|√
|Σ0j

k−1|k−1|ψ(yk)
N (yk; Cjx̂

j
k|k−1, S

j
k|k−1)

× exp
(
+, x̂CRS

k−1|k−1, x̂
0j
k−1|k−1, S

0j
k−1|k−1

)
(3.165)

where

S0j
k−1|k−1 =

1

θ
Q−1

k−1 − Σ0j
k−1|k−1. (3.166)

• Output Estimate Calculation: The output estimate can be calcu-

lated in two different ways yielding two variants of CRS-IMM as

– CRS-IMM1: Final estimate x̂CRS
k|k is given as

x̂CRS
k|k =

N∑
j=1

c̄j
k

c̄k

x̂j
k|k (3.167)
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Figure 3.2: One cycle of CRS-IMM algorithm with N models. M and KF are
the abbreviations of modification and Kalman filter respectively. The shaded
regions in the figure signify the parts of the CRS-IMM algorithm different from
the IMM filter.

where

c̄k ,
N∑

j=1

c̄j
k. (3.168)

– CRS-IMM2: Final estimate x̂CRS
k|k is given as

x̂CRS
k|k =

[
N∑

j=1

c̄j
k

√
|U j

k |U j
k

]−1 [
N∑

j=1

c̄j
k

√
|U j

k |U j
k x̂

j
k|k

]
(3.169)

where

U j
k =

[
1

θ
Q−1

k − Σj
k|k

]−1

. (3.170)

A flow-chart of one cycle of the CRS-IMM algorithm is shown in Fig. 3.2

where the parts of the algorithm which are different from the IMM filter are

denoted with shaded boxes.
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3.5 Properties and Implementation Issues of

the CRS-IMM Filter

This section highlights some properties of the CRS-IMM algorithm. Further-

more, some implementation issues are also considered.

3.5.1 Properties

3.5.1.1 Comparison with IMM Filter

The overall structure of the CRS-IMM is similar to IMM filter except for

the modification step. In this step each mixed estimate x̂0j
k−1|k−1 with mixed

covariance Σ0j
k−1|k−1 is updated with the risk-sensitive final estimate x̂CRS

k−1|k−1 of

time k−1. This modification process is equivalent to the measurement update

of a Kalman filter with equivalent measurement

x̂CRS
k−1|k−1 = x̂0j

k−1|k−1 + qk−1 (3.171)

where the generalized random variable qk−1 has the negative definite covariance

−1
θ
Q−1

k−1. This covariance subtraction resembles, in a way, the information

decorrelation approach of the fusion systems in target tracking [46].

Another remarkable difference of CRS-IMM from IMM is that the final

output of the CRS-IMM affects the state and coefficient update equations. In

IMM filter this final estimate is calculated only for output purposes [13].

3.5.1.2 Case N = 1

When there is only one model in the JMLS, the mixing and the final output

calculations do not modify the estimates i.e.,

x̂01
k−1|k−1 = x̂1

k−1|k−1, (3.172)

x̂CRS
k|k = x̂1

k|k. (3.173)

Moreover, since

x̂CRS
k−1|k−1 = x̂1

k−1|k−1 = x̂01
k−1|k−1, (3.174)
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the modification on the mixed quantities modifies only the mixed covariance

and not the mixed estimate. The CRS-IMM filter (both variants), at the end,

becomes the same filter as the one given in [26] and [47] which are derived for

linear Gauss-Markov systems.6

When N 6= 1, it must be emphasized that the CRS-IMM filter modifies

both the mixed estimates and the mixed covariances. Therefore, although the

filter reduces to the risk-sensitive filter for linear Gauss-Markov systems when

N = 1, it is not a combination of these filters when N 6= 1 unlike the case of

IMM which is a combination of Kalman filters (when N 6= 1).

3.5.1.3 Case θ → 0

A general property of the risk-sensitive filters is that they reduce to MMSE

filters when the risk-sensitive parameter θ tends to zero. For example, the

risk-sensitive filter derived in [26] and [47] for linear Gauss-Markov systems

reduces to the Kalman filter when θ → 0.7

When θ → 0, the modification step in CRS-IMM filter does not make any

modification on the mixed estimate and covariances i.e.,

x̂0j
k−1|k−1 → x̂0j

k−1|k−1, (3.175)

Σ0j
k−1|k−1 → Σ0j

k−1|k−1. (3.176)

Since (S0j
k−1|k−1)

−1 → θQk−1,

exp
(
+, x̂CRS

k−1|k−1, x̂
0j
k−1|k−1, S

0j
k−1|k−1

)
−→ 1. (3.177)

The facts given in Eqn. 3.176 and Eqn. 3.177 make the coefficients c̄j
k (or cj

k)

equal to those in the IMM filter. This shows that the cumulative risk-sensitive

estimate x̂CRS
k|k of CRS-IMM1 is equal to IMM estimate x̂MS

k|k . Observing that

when θ → 0, U j
k tends to θQk which is independent of j, the risk-sensitive

state estimate x̂CRS
k|k of CRS-IMM2 also becomes equal to the IMM estimate.

As a result, when θ goes to zero, both of the CRS-IMM filter variants reduce

to the IMM filter.
6 This filter is also derived using the reference probability method in App. A.3.
7 This fact is also apparent in the derivations of App. A.
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3.5.2 Implementation Issues

3.5.2.1 Convergence

The derivation of the filter requires the inequalities

(Σ0j
k−1|k−1)

−1 > θQk−1 for j = 1, 2, . . . , N, (3.178)

(Σj
k|k)

−1 > θQk for j = 1, 2, . . . , N (3.179)

be satisfied. Thus, the algorithm is convergent if the risk-sensitive parameter

θ is sufficiently small.

3.5.2.2 Systems with Arbitrary Noise Covariances

In the derivation of the CRS-IMM algorithm, the process and measurement

noise covariances have been taken to be identity matrices. In many applica-

tions, these covariance matrices are non-identity positive definite matrices. If

one is given with non-identity covariances Mk > 0 and Nk > 0 corresponding

to wk and vk respectively then, the system representation given by Eqn. 3.1

and Eqn. 3.2, can be written as

xk+1 = A(rk+1)xk + B′(rk+1)w
′
k+1, (3.180)

yk = C(rk)xk + D′(rk)v
′
k (3.181)

where

B′(rk) , B(rk)
√

Mk, D′(rk) , D(rk)
√

Nk (3.182)

and
√

Mk and
√

Nk are positive definite square roots of Mk and Nk respectively.

Moreover, the new noise terms w′
k and v′k are Gaussian noise terms with identity

covariances. This solution amounts to replacing every instance of BjB
T
j and

DjD
T
j in the final estimator formulas with BjMkB

T
j and DjNkD

T
j respectively.

3.5.2.3 Systems with Non-Invertible and/or Non-Square Noise Gain

Matrices

In the derivation, the noise gain matrices B(rk) and D(rk) have been assumed

to be invertible. In practice, these matrices may not even be square. In this
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section, we show that this is not a restriction for the final formulas of CRS-

IMM algorithm to apply. Suppose that B(rk) (D(rk)) is not square but its

columns are linearly independent. Then, one can always augment the matrix

B(rk) (D(rk)) with appropriate number of column vectors of the form εbi (εdi)

where bi’s (di’s) are unity-norm vectors which are linearly independent with

the columns of B(rk) (D(rk)) and ε > 0 is a small real number. These extra

columns would correspond to dummy noise terms added to process noise wk

(measurement noise vk). Then, making the same derivation and taking the

limit as ε → 0 in the final formulas, one can see that the same formulas for

the CRS-IMM algorithm are satisfied.

When the columns of the matrix B(rk) (D(rk)) are not initially linearly

independent, one can always find a matrix B′(rk) (D′(rk)) whose columns are

linearly independent and a Gaussian random variable w′
k (v′k) with identity

covariance such that the distribution of B(rk)wk (D(rk)vk) is the same as that

of B′(rk)w
′
k (D′(rk)v

′
k). Then, the above arguments apply with B′(rk) (D′(rk))

instead of B(rk) (D(rk)).

3.5.2.4 Numerical Issues

It has been noted in Remark 3.1 that only the relative (i.e., not absolute)

magnitudes of the coefficients c̄j
k (or cj

k) are important for IMM final and

mixed estimate calculations. This is also the case for the CRS-IMM mixed and

final estimate calculations. At any time step k, the coefficients c̄j
k (or cj

k) can

be multiplied by a common positive constant without changing the estimated

quantities. In the cases where the coefficients get too small or too big to handle

in computer, one can make some normalization on them accordingly without

affecting the performance. Moreover, the term ψ(yk) given in the coefficient

update equations, which can cause a division by zero in the computer, can be

discarded safely.
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3.6 Simulation Results

In this section, the performance of the CRS-IMM algorithm will be observed

and compared to that of the IMM algorithm. For this purpose, we consider

a similar target-tracking scenario to the one used in Chapter 2.8 The target

dynamics in one-dimension is given as


 pk+1

vk+1


 =


 1 T

0 1





 pk

vk




︸ ︷︷ ︸
xk

+


 T 2/2

T


 [ak + wk] (3.183)

where pk, vk and ak denote the target position, velocity and acceleration respec-

tively. The initial state x0 is normally distributed with mean x̄0 and covariance

P0 which are given as,

x̄0 =


 80000

400


 , P0 =


 10000 1000

1000 10000


 . (3.184)

The acceleration process ak is a finite-state Markov chain with states in the

set {0, 10,−10}. The transition probability matrix for the finite-state Markov

chain is

Π =




0.6 0.2 0.2

0.2 0.6 0.2

0.2 0.2 0.6


 (3.185)

which corresponds to a moderately maneuvering target. The white process

noise wk ∼ N (wk; 0, σ
2
w = 22) represents small acceleration changes. It is

assumed that only the positions are measured, i.e.,

yk = pk + νk (3.186)

where the terms νk ∼ N (νk; 0, 1002) stands for the normally distributed white

measurement noise. The sampling period T is taken to be 10secs.

The IMM and CRS-IMM algorithms are run on the artificially generated

measurements of the system defined above for 1000 Monte-Carlo runs. For

8 Note that this example is a slightly modified version of the one given in [1].
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Table 3.1: Average RMS Errors (per sample) of the IMM, CRS-IMM1 and
CRS-IMM2 algorithms.

RMS-Error
per sample

IMM CRS-IMM1 CRS-IMM2

Position (m) 99.687 99.619 99.628
Velocity (m/sec) 43.896 35.364 35.374

the CRS-IMM filter variants, the risk sensitive parameter θ has been taken as

7×10−5 and the weighting matrices Qk have been set to identity matrix I2 for

all k.

The algorithms are assumed not to know all of the characteristics of the

system.9 The measurement covariance and the true transition probability ma-

trix given in Eqn. 3.185 are assumed to be known.10 The possible acceleration

values and the process noise variance are not known by the algorithms. To

cover all possible target accelerations, the algorithms choose the acceleration

values as {0, 20,−20}11 and the process noise variance as σ2
w = 42.

In Fig. 3.3 and Fig. 3.4, the RMS position and velocity errors of the IMM

and CRS-IMM1 algorithms are presented. The errors of the CRS-IMM2 are

not shown on the figures since they are visually indistinguishable from those of

CRS-IMM1. The average RMS position and velocity errors per measurement

sample are given in Table 3.1. The RMS position errors of the filters are

very near to each other and around 100m’s. The values are very close to

the position measurement standard deviation. Therefore, for only position

estimation, using these filters can give only few meters extra accuracy in this

9 Since the comparisons are made in terms of RMS errors, it is clear that when all the
parameters of the system are known to the algorithms, the IMM will beat CRS-IMM since
it minimizes expected quadratic estimation error. CRS-IMM, on the other hand, tries to
minimize higher order moments of the error as well at the expense of increasing the RMS-
errors.

10 Note that the transition probability matrices are generally unknown in practical systems
and applications. We have made this assumption here just to make it clear that the errors
in the resulting simulations are caused by other uncertainties and not by the unknown
transition probabilities. The unknown transition probabilities did not cause much change
in the simulation results presented.

11 The models of the related JMLS corresponding to acceleration values 20 and −20
have deterministic input values. IMM filtering with these models is straightforward using
the standard Kalman filtering with deterministic inputs which modifies only the prediction
step.
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Figure 3.3: RMS position errors of the IMM and CRS-IMM1 algorithms.

0 10 20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

100

110

(m
/s

)

IMM
CRS−IMM1

Figure 3.4: RMS velocity errors of the IMM and CRS-IMM1 algorithms.
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uncertain parameter scenario. Using a simpler estimator p̂k = yk would be

more efficient with similar position error variance. For velocity estimation,

the RMS error curves are quite different showing the advantage of using CRS-

IMM. Here, we compare the velocity estimation performances of the filters with

a very simple estimator which gives the velocity estimates (with one sample

delay) as

v̂k =
yk+1 − yk

T
. (3.187)

We can calculate the error variance of this simple estimator as

E(v̂k − vk)
2 = E

[
(
yk+1 − yk

T
− vk)

2

]
(3.188)

= E

[
(
pk+1 − pk + νk+1 − νk − Tvk

T
)2

]

= E

[
(

T 2

2
ak + T 2

2
wk + νk+1 − νk

T
)2

]
(3.189)

= E

[
(
T

2
ak +

T

2
wk +

νk+1 − νk

T
)2

]
(3.190)

= E
[
(5ak + 5wk + 0.1νk+1 − 0.1νk)

2
]

(3.191)

= 25E[a2
k] + 25σ2

w + 0.02σ2
ν . (3.192)

Assuming that Markov chain ak has reached steady-state, E[a2
k] = 2

3
102 and

substituting σ2
w = 4 and σ2

ν = 1002, we obtain E(v̂k−vk)
2 = 1.96×103 = 44.342.

Comparing this to the average RMS velocity errors per sample, we see that,

IMM filter,12 under unknown acceleration and process noise values, has the

velocity error standard deviation only about 0.5m/sec below that of the simpler

estimator. The reduction in the case of CRS-IMM is approximately 10m/sec

which is twenty times more than that of IMM. Consequently, for accurate

velocity estimation, CRS-IMM might be a better choice in the cases where the

system parameters are highly uncertain.

The average RMS position and velocity errors per measurement sample

of the algorithms for different θ values are plotted in Fig. 3.5 and Fig. 3.6

respectively. Note that the error curves for CRS-IMM1 and CRS-IMM2 are

12 Note that IMM filters can be designed differently and different designs might yield
different results. See [13] for design issues and [14] for a survey of available variants.
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Figure 3.5: Average RMS position errors (per sample) of the IMM, CRS-IMM1
and CRS-IMM2 algorithms for different θ values.
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Figure 3.6: Average RMS velocity errors (per sample) of the IMM, CRS-IMM1
and CRS-IMM2 algorithms for different θ values.
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indistinguishable (on top of each other) in Fig. 3.6. In both figures, the aver-

age RMS errors of the algorithms decrease (with increasing θ) almost linearly

below that of the IMM algorithm until the value of the risk-sensitive parameter

approaches the divergence limit which is about 8× 10−5 for this example. The

errors then begin to increase when θ gets closer to the divergence limit. The

figures also suggest that better performance characteristics than those shown

in Figures 3.3 and 3.4 can be obtained if better θ selection mechanisms are

used.

3.7 Conclusion

A cumulative risk-sensitive multiple-model filter which can be thought of as

a generalization of the well-known IMM filter is proposed. The filter, which

(approximately) minimizes expected exponential of the cumulative quadratic

estimation error, reduces to the IMM filter when the risk sensitive parameter

θ tends to zero and to the risk-sensitive filter for linear Gauss-Markov systems

when the number of models in the JMLS is unity. These cases show that the

algorithm is a unifying framework under which the concepts of

1. risk-sensitive multiple-model filtering,

2. MMSE multiple-model (IMM) filtering,

3. risk-sensitive filtering for linear Gauss-Markov systems,

4. Kalman filtering

are combined. The proposed algorithm does not require any uncertainty de-

scription and therefore it can be especially useful in applications where the

modeling uncertainty descriptions are not known.
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CHAPTER 4

ONLINE ESTIMATION OF THE

TRANSITION PROBABILITIES OF JMLSS

USING RECURSIVE KULLBACK-LEIBLER

METHOD

4.1 Introduction

In almost all existing state estimation methods for JMLSs, the transition prob-

abilities of the underlying finite-state Markov chain are assumed to be known

a priori. Even in the cases when they are not known, some diagonally domi-

nant probability transition matrix is generally used. This unfortunate reality

results, in part, from the limitedness of the related early literature. The uncer-

tainty caused by the unknown transition probabilities associated with a JMLS

attracted the attention of the researchers as early as 1973 when a Bayesian

solution which involves a numerical integration to the problem of transition

probability estimation was presented in [48]. In this work, Sawaragi et al.

considered also the adaptive estimation of the state using these estimates in

a system having interrupted measurements, which actually was a special case

of a JMLS. At that time, this kind of systems was quite popular, and later,

Tugnait and Haddad investigated the asymptotic behavior of this Bayesian so-

lution when the unknown transition probability matrix can take values from a

finite set in [49]. For the same case (where the unknown transition probability

matrix can take values from a finite set), after Tugnait and Haddad presented a
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similar solution for linear systems with Markovian jump noise parameters [50],

Tugnait proposed an approximate maximum likelihood approach for general

JMLSs [51]. Even when the transition probability matrix belongs to a finite

set, it is concluded in [51] that the standard maximum likelihood estimation

is not computationally feasible. Quite later, an (approximate) expectation-

maximization procedure which maximizes a lower bound on the log-likelihood

is given in [52] for switching state-space models1 where the states of uncoupled

state-space systems which have constant dynamics are switched in the output.

Therefore, until 2004, when Jilkov and Li has addressed the problem of online

MMSE estimation of the transition probabilities [1], the literature seemed to

lack a complete approach of transition probability identification for JMLSs

where transition probabilities belong to a continuous valued set (rather than

being in a finite set).

In [1], the authors proposed some (conditionally) optimal (although in-

feasible to implement with its ever growing memory requirements) and sub-

optimal MMSE algorithms for the online estimation of the transition prob-

abilities as well as the base and modal states associated with a JMLS. In

addition, [54] solves the problem of state estimation of JMLSs with unknown

transition probabilities using Bayesian sampling based on the results of [1].

Although, to the author’s knowledge, there is no previous attempt to solve the

complete problem (in the sense of previous paragraph) until [1], a literature is

already available for a similar problem associated with hidden Markov models

(HMM)[2, 55, 56, 57, 58]. The aim of this chapter is to adapt one of these ex-

isting methods in the HMM literature, namely, the recursive Kullback-Leibler

(RKL) estimation procedure [2, 55] for transition probabilities to the case of

the JMLSs. Our method is fundamentally different from the algorithms given

in [1] in that we consider the transition probabilities as deterministic quantities

(whereas [1] considers them to be random variables).

The chapter is organized as follows. In Sec. 4.2, the problem definition

1 This type of systems, as introduced in [52], are different than JMLSs although some
researchers use a similar phrase “switching systems” for JMLSs (e.g. [53]).
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and the method of solution are given. The RKL algorithm is applied to the

case of JMLSs in Sec. 4.3. The performance of the algorithm is illustrated on

two examples with Monte Carlo runs in Sec. 4.4. The chapter is finalized with

conclusions in Sec. 4.5.

4.2 Problem Definition and Solution Method-

ology

The following JMLS model is considered

xk+1 = A(rk+1)xk + B(rk+1)wk+1, (4.1)

yk = C(rk)xk + D(rk)vk (4.2)

where

• {xk} is the continuous-valued base-state sequence with initial distribu-

tion

x0 ∼ N (x0; x̄0, Σ0), (4.3)

where the notation N (x; x̄, Σ) stands for a Gaussian probability density

function for dummy variable x which has a mean x̄ and covariance Σ.

• {rk} is the unknown discrete-valued modal-state sequence,

• {yk} is the noisy observation sequence,

• {wk} is a white process noise sequence with distribution,

wk ∼ N (wk; 0, Qk), (4.4)

• {vk} is a white measurement noise sequence independent from the process

noise wk with distribution

vk ∼ N (vk; 0, Rk). (4.5)

The discrete-valued modal-state rk ∈ {1, 2, . . . , N} is assumed to be a first-

order finite-state homogenous Markov chain with fixed but unknown transition
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probability matrix Π = [πij]. The basic variables wk, vk, x0 and the modal-

state sequence rk are assumed to be mutually independent for all k. The time-

varying matrices A(rk), B(rk), C(rk), and D(rk) are assumed to be known for

each value of rk.

Notes about the Notation: In the following,

• The capital letters with superscripts will denote sequences with the su-

perscript corresponding to the index of the last element i.e.,

Y n , {y1, y2, . . . , yn}, (4.6)

Θ̂n , {θ̂1, θ̂2, . . . , θ̂n}. (4.7)

• The estimates are shown by hats over the letters.

• The iterations for the estimated quantities are shown by subscripts or by

parenthesized superscripts for quantities already subscripted (e.g., θ̂n or

π̂
(n)
ij ).

• The individual elements of vector or matrix quantities are denoted by

subscripted parentheses (e.g., When x is a vector, its ith element is shown

by (x)i. When Σ is a matrix, the element of it corresponding to its ith

row and jth column is denoted as (Σ)i,j. )

• All the probability density functions involved in the equations are as-

sumed to exist.

• The parametric probability density functions and expected value oper-

ations with θ being the vector of parameters are denoted using the pa-

rameter value as a given condition (e.g., p(x|θ) and E[x|θ]) although the

parameters are assumed to be deterministic quantities. A more compli-

cated example is shown in Eqn. 4.8.

E
[
p(x|θ)

∣∣∣θ′
]

,
∫

p(x|θ)p(x|θ′)dx. (4.8)
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• Note that when the sequences of random variables (e.g., Y n) appear in

the given conditions of expectations or densities, they should more rig-

orously denote the σ-algebras generated by them (e.g., Yn , σ(Y n)).

However, in this chapter, for the sake of simplicity, we will not differen-

tiate between these two quantities.

We are to find an online update mechanism for estimating the unknown fixed

transition probabilities of the JMLS defined above which can work coupled

with a conventional state estimator such as GPB or IMM algorithm.

4.2.1 Solution Methodology

The RKL approach introduced, in general, by [59] and applied later to HMMs

by [2], achieves the estimation of the unknown parameters by minimizing re-

cursively the Kullback-Leibler divergence [27] (called as relative entropy by

information theorists)

Cn(θ) = E
[
log

p(Y n|θ0)

p(Y n|θ)
∣∣∣θ0

]
,

∫
log

(
p(Y n|θ0)

p(Y n|θ)
)

p(Y n|θ0)dY n (4.9)

between the likelihood function p(Y n|θ) of the unknown parameters θ and the

true likelihood p(Y n|θ0). The parameter estimate θ̂RKL
n is therefore given by

θ̂RKL
n = arg min

θ
Cn(θ). (4.10)

Minimizing the cost function given in Eqn. 4.9 is equivalent to maximizing

the reward function Jn(θ) given as

Jn(θ) = E[log p(Y n|θ)|θ0]. (4.11)

The likelihood function p(Y n|θ) is extremely difficult (if not impossible) to

calculate for the JMLSs like the case in many other applications. Therefore,

we are going to consider Y n as the known (incomplete) part of the complete

data Kn = {Y n, Xn, Rn}. The same incomplete data approach is used in

[18] and [12] to calculate off-line and online base-state estimates using the
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expectation maximization procedure respectively. We can obtain using the

Bayes rule that

p(Y n|θ) =
p(Y n, Xn, Rn|θ)
p(Xn, Rn|Y n, θ)

(4.12)

which gives

log p(Y n|θ) = log p(Y n, Xn, Rn|θ)− log p(Xn, Rn|Y n, θ). (4.13)

Taking expected values of both sides given Y n at a fixed parameter value θ′,

log p(Y n|θ) = E[log p(Y n, Xn, Rn|θ)|Y n, θ′]

− E[log p(Xn, Rn|Y n, θ)|Y n, θ′] (4.14)

where the left hand side of Eqn. 4.13 is taken immediately out of the expec-

tation since the likelihood p(Y n|θ) is deterministic with the given information

in the expectation. Defining the functions Qn(θ, θ′, Y n) and Pn(θ, θ′, Y n) as

Qn(θ, θ′, Y n) , E[log p(Y n, Xn, Rn|θ)|Y n, θ′], (4.15)

Pn(θ, θ′, Y n) , E[log p(Xn, Rn|Y n, θ)|Y n, θ′], (4.16)

we can express log p(Y n|θ) as follows.

log p(Y n|θ) = Qn(θ, θ′, Y n)− Pn(θ, θ′, Y n). (4.17)

The reward function Jn(θ) is then given by

Jn(θ) = E[Qn(θ, θ′, Y n)|θ0]− E[Pn(θ, θ′, Y n)|θ0] (4.18)

, Qn(θ, θ′)− P n(θ, θ′). (4.19)

Note that by Jensen’s inequality [27],

Pn(θ, θ′, Y n) ≤ Pn(θ′, θ′, Y n) ∀Y n (4.20)

and therefore,

P n(θ, θ′) ≤ P n(θ′, θ′). (4.21)
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Using this, we can say that

Jn(θ′) = Qn(θ′, θ′)− P n(θ′, θ′) (4.22)

≤ Qn(θ′, θ′)− P n(θ, θ′) (4.23)

= Jn(θ) + Qn(θ′, θ′)−Qn(θ, θ′) (4.24)

which results in the following fact.

Qn(θ, θ′) ≥ Qn(θ′, θ′) implies Jn(θ) ≥ Jn(θ′).

An iterative but off-line algorithm maximizing the reward function Jn(θ) is

therefore given as

θ̂k+1 = arg max
θ

Qn(θ, θ̂k). (4.25)

Recognizing that the calculation of the function Qn(θ, θ̂n)=E[Qn(θ, θ̂n, Y
n)|θ0]

requires the knowledge of the true parameter value θ0, we necessarily must

choose a suboptimal recursion. The generally adopted solution to this type of

problems is to use Qn(θ, θ̂n, Y
n) instead of its ensemble average. Therefore, an

approximate iterative algorithm for maximizing Jn(θ) is

θ̂k+1 = arg max
θ

Qn(θ, θ̂k, Y
n). (4.26)

The sequential version of this algorithm becomes

θ̂n+1 = arg max
θ

Qn+1(θ, Θ̂
n, Y n+1) (4.27)

which avoids the reprocessing of all the accumulating data when a new es-

timate θ̂n is obtained. In the cases where the analytical maximization of

Qn+1(θ, Θ̂
n, Y n+1) is not possible, one can use the so-called stochastic approxi-

mation type algorithms [28, 60]. These algorithms were introduced to find the

zeros of the functions which are unknown but whose noise corrupted observa-

tions can be obtained [61]. The stochastic approximation algorithm that we

will use is intended to find the zeros of the gradient of the reward function, i.e.,

the zeros of ∂
∂θ

Qn+1(θ, Θ̂
n, Y n+1). This type of algorithms is generally called in

the field as the stochastic gradient algorithms. The recursion of the algorithm

is as follows.

θ̂n+1 = θ̂n + εnGn+1(θ̂n, Θ̂n, Y n+1) (4.28)
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where εn is a sequence of small scalar positive gains and Gn+1(θ̂n, Θ̂
n, Y n+1)

is a (possibly noisy) measurement of the gradient of Qn+1(θ, Θ̂
n, Y n+1) with

respect to the unknown parameter θ evaluated at the last parameter estimate

θ̂n i.e.,

Gn+1(θ̂n, Θ̂
n, Y n+1) =

∂

∂θ
Qn+1(θ, Θ̂

n, Y n+1)
∣∣∣
θ=θ̂n

+ ∆Wn+1(Θ̂
n, Y n+1) (4.29)

where ∆Wn+1(Θ̂
n, Y n+1) is the parameter dependent noise term in the mea-

surement of the gradient. The almost-sure and some other weaker types of

convergence for the algorithm to the true parameter value θ0 is guaranteed

if some conditions on the step-size sequence εn and the measurement noise

∆Wn+1(Θ̂
n, Y n+1) are satisfied [28, 60]. In the cases where constraints exist

on the parameters θ, the updated parameters are usually projected onto the

constraint surface i.e.,

θ̂n+1 = P{θ̂n + εnGn+1(θ̂n, Θ̂n, Y n+1)} (4.30)

where P denotes the projection operator related with the constraint surface

(manifold) which returns the nearest element in the constraint surface to the

updated parameter value. When the unknown parameter vector θ is composed

of the elements of the probability transition matrix of the JMLS, i.e.,

θ = [π11, π12, . . . , π1N , π21, π22, . . . , π2N , . . . . . . . . . , πN1, πN2, . . . , πNN ]T

or in a more compact form,

(θ)N(i−1)+j = πij 1 ≤ i, j ≤ N, (4.31)

the following constraint set is in effect.

N∑
j=1

πij = 1 for i = 1, . . . , N and πij ≥ 0 (4.32)

for 1 ≤ i, j ≤ N . These constraints define N standard N -simplices. At the

end of each parameter update, each updated set of probabilities {πij}N
j=1 must

be projected onto the standard simplex Si defined by the constraints

N∑
j=1

πij = 1 and πij ≥ 0 for j = 1, . . . , N. (4.33)

66



The problem of finding the projection of a vector onto a standard simplex

can be formulated as a standard quadratic programming problem and the

projection can be found in at most N steps. Throughout the chapter, we are

going to call the projection operator of a standard N -simplex as P and, with

an abuse of notation, we are going to denote the projected probability value

π∗ij obtained after the set of updated probabilities {πij}N
j=1 is projected onto

the corresponding simplex Si with

π∗ij = P{πij}. (4.34)

A description of the recursive method used for obtaining the projections for

our algorithm is given in App. C. See, for example, Sec. 2.6.2 of [62] for a

general solution of the problem of obtaining projections onto a simplex.

4.3 Derivation of the Algorithm

In this section, we are going to adapt the RKL procedure described in Sec.

4.2 to the problem of estimating the transition probabilities associated with a

JMLS. For this purpose, we maximize the function Qn+1(θ, Θ̂
n, Y n+1) which is

given as

Qn+1(θ, Θ̂
n, Y n+1) = E

[
log p(Kn+1|θ)

∣∣∣Y n+1, Θ̂n
]

(4.35)

where the likelihood p(Kn+1|θ) of the complete data set Kn+1 for a JMLS has

the following expansion.

p(Kn+1|θ) , p(Y n+1, Xn+1, Rn+1|θ) (4.36)

= p(yn+1|xn+1, rn+1)p(xn+1|xn, rn+1)P (rn+1|rn, θ)

×p(Y n, Xn, Rn|θ). (4.37)

The log-likelihood log p(Kn+1|θ) is simply

log p(Kn+1|θ) = log
(
p(yn+1|xn+1, rn+1)p(xn+1|xn, rn+1)P (rn+1|rn, θ)

)

+ log p(Y n, Xn, Rn|θ). (4.38)
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Defining the the log terms L1 and L2 as

L1(yn+1, xn+1, xn, rn+1, rn|θ) , log
(
p(yn+1|xn+1, rn+1)p(xn+1|xn, rn+1)

×P (rn+1|rn, θ)
)
, (4.39)

L2(Y
n, Xn, Rn|θ) , log p(Y n, Xn, Rn|θ), (4.40)

the function Qn+1(θ, Θ̂
n, Y n+1) is written as,

Qn+1(θ, Θ̂
n, Y n+1) = E1 + E2 (4.41)

where

E1 , E
[
L1(yn+1, xn+1, xn, rn+1, rn|θ)

∣∣∣Y n+1, Θ̂n
]
, (4.42)

E2 , E
[
L2(Y

n, Xn, Rn|θ)
∣∣∣Y n+1, Θ̂n

]
. (4.43)

4.3.1 Calculation of the Expectation E1

The expectation E1 is by definition,

E1 =

∫ ∫ ∑
i

∑
j

L1(yn+1, xn+1, xn, j, i|θ)

×p(xn+1, xn, rn+1 = j, rn = i|Y n+1, Θ̂n)dxn+1dxn (4.44)

where L1 can be written as follows.

L1(yn+1, xn+1, xn, j, i|θ) = log p(yn+1|xn+1, rn+1 = j)

+ log p(xn+1|xn, rn+1 = j) + log πij. (4.45)

The integrals in Eqn. 4.44 can be expanded as the sum of three terms as

E1 =

∫ ∑
j

log (p(yn+1|xn+1, rn+1 = j))

×p(xn+1, rn+1 = j|Y n+1, Θ̂n)dxn+1

+

∫ ∫ ∑
j

log (p(xn+1|xn, rn+1 = j))

×p(xn+1, xn, rn+1 = j|Y n+1, Θ̂n)dxndxn+1

+
∑

i

∑
j

log (πij)P (rn+1 = j, rn = i|Y n+1, Θ̂n). (4.46)
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In the sequential identification process, we are only interested in the derivative

of the reward function Qn+1(θ, Θ̂
n, Y n+1) with respect to the unknown param-

eters πij which constitute the parameter vector θ. Only the third term on the

right hand side of Eqn. 4.46 contributes to the related derivative which gives

the result,

∂E1

∂θ
=

∂

∂θ

∑
i

∑
j

log (πij)P (rn+1 = j, rn = i|Y n+1, Θ̂n). (4.47)

Then, it easily follows that,
(

∂E1

∂θ

)

N(i−1)+j

, ∂E1

∂πij

=
1

πij

P (rn+1 = j, rn = i|Y n+1, Θ̂n) (4.48)

for 1 ≤ i, j ≤ N .

4.3.2 Calculation of the Expectation E2

The second expectation E2 is by definition,

E2 =
∑
Rn

∫
log (p(Y n, Xn, Rn|θ))p(Xn, Rn|Y n+1, Θ̂n)dXn. (4.49)

The density function p(Xn, Rn|Y n+1, Θ̂n) can be written using Bayes rule as

p(Xn, Rn|Y n+1, Θ̂n) =
p(yn+1|Xn, Rn, Y n, Θ̂n)

p(yn+1|Y n, Θ̂n)
p(Xn, Rn|Y n, Θ̂n)(4.50)

=
p(yn+1|xn, rn, θ̂n)

p(yn+1|Y n, Θ̂n)
p(Xn, Rn|Y n, Θ̂n−1) (4.51)

where Eqn. 4.51 is written by dropping the redundant terms in the given

conditions of Eqn. 4.50. Substituting Eqn. 4.51 into Eqn. 4.49,

E2 =
∑
Rn

∫
log (p(Y n, Xn, Rn|θ))p(yn+1|xn, rn, θ̂n)

p(yn+1|Y n, Θ̂n)
p(Xn, Rn|Y n, Θ̂n−1)dXn

=
∑
Rn

∫
log (p(Y n, Xn, Rn|θ))p(Xn, Rn|Y n, Θ̂n−1)dXn

+
∑
Rn

∫
log (p(Y n, Xn, Rn|θ))

(
p(yn+1|xn, rn, θ̂n)

p(yn+1|Y n, Θ̂n)
− 1

)
(4.52)

×p(Xn, Rn|Y n, Θ̂n−1)dXn

= Qn(θ, Θ̂n−1, Y n) + ∆Qn(yn+1, θ, Θ̂
n) (4.53)
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where

∆Qn(yn+1, θ, Θ̂
n) ,

∑
Rn

∫
log (p(Y n, Xn, Rn|θ))

(
p(yn+1|xn, rn, θ̂n)

p(yn+1|Y n, Θ̂n)
− 1

)

×p(Xn, Rn|Y n, Θ̂n−1)dXn.

In the stochastic approximation algorithm, we are interested in the derivative

of the expectation E2 evaluated at the current model value θ̂n which is

∂E2

∂θ

∣∣∣
θ=θ̂n

=
∂Qn(θ, Θ̂n−1, Y n)

∂θ

∣∣∣
θ=θ̂n

+
∂

∂θ
∆Qn(yn+1, θ, Θ̂

n)
∣∣∣
θ=θ̂n

. (4.54)

The function Qn(θ, Θ̂n−1, Y n) is assumed to be maximized by the previous

iteration and therefore, the first term on the right hand side of Eqn. 4.54 is

approximately zero, i.e.,

∂Qn(θ, Θ̂n−1, Y n)

∂θ

∣∣∣
θ=θ̂n

≈ 0. (4.55)

The assumption in Eqn.4.55, which is rarely true, is a generally adopted one

in practice to generate recursive identification algorithms [63].

Defining the sequence ∆Mn as

∆Mn , ∂

∂θ
∆Qn(yn+1, θ, Θ̂

n)
∣∣∣
θ=θ̂n

, (4.56)

the partial derivative ∂E2

∂θ
evaluated at the current parameter estimate θ̂n is

approximately given as
∂E2

∂θ

∣∣∣
θ=θ̂n

≈ ∆Mn. (4.57)

Remark 4.1 Note here that,

E[∆Qn(yn+1, θ, Θ̂
n)|Y n, Θ̂n]

,
∫

∆Qn(yn+1)p(yn+1|Y n, Θ̂n)dyn+1 (4.58)

=
∑
Rn

∫
log (p(Y n, Xn, Rn|θ))

×
∫

p(yn+1|xn, rn, θ̂n)− p(yn+1|Y n, Θ̂n)dyn+1

︸ ︷︷ ︸
=0

×p(Xn, Rn|Y n, Θ̂n−1)dXn = 0. (4.59)
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Actually, more can be said about the sequence ∆Qn in the following way,

E[∆Qn(yn+1, θ, Θ̂
n)|∆Qn−1]

= E
[
E[∆Qn(yn+1, θ, Θ̂

n)|Y n, Θ̂n]︸ ︷︷ ︸
=0

∣∣∣∆Qn−1
]

= 0 (4.60)

almost surely where ∆Qn−1 , {∆Q1, ∆Q2, . . . , ∆Qn−1}. The first equality in

Eqn. 4.60 can be written due to the fact that ∆Qn−1 is σ(Y n)-measurable

where σ(Y n) denotes the σ-algebra generated by Y n. As a result, the random

sequence ∆Qn is a martingale difference.

Under the assumption that the partial derivative with respect to the un-

known parameters θ and the integration corresponding to expectation can be

interchanged,

E[∆Mn|∆Mn−1] = E
[ ∂

∂θ
∆Qn(yn+1, θ, Θ̂

n)
∣∣∣
θ=θ̂n

∣∣∣∆Mn−1
]

=
∂

∂θ
E

[
E[∆Qn(yn+1, θ, Θ̂

n)|Y n, Θ̂n]︸ ︷︷ ︸
=0

∣∣∣∆Mn−1
]∣∣∣

θ=θ̂n

= 0 a.s.

Consequently, the sequence ∆Mn is also a martingale difference.

4.3.3 RKL Recursions

Combining Eqn. 4.48 and Eqn. 4.57, the elements of the gradient of the reward

function Qn+1(θ, Θ̂
n, Y n+1) is written as

(
∂

∂θ
Qn+1(θ, Θ̂

n, Y n+1)

)

N(i−1)+j

=
P (rn+1 = j, rn = i|Y n+1, Θ̂n)

πij

+ (∆Mn)N(i−1)+j (4.61)

for 1 ≤ i, j ≤ N . Thus, the first term on the right hand side of Eqn. 4.61 can

be used as a measurement (in a martingale difference noise) of the left hand

side, i.e.,

(
Gn+1(θ, Θ̂

n, Y n+1)
)

N(i−1)+j
=

1

πij

P (rn+1 = j, rn = i|Y n+1, Θ̂n). (4.62)
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The martingale difference characteristics of the noise term ∆Mn (See Remark

4.1) is a nice property which is generally used in proving convergence of this

type of algorithms [28]. Nevertheless, the complexity involved in the algorithm

makes it difficult to reach a direct conclusion on the algorithm’s convergence

using the existing results. We are therefore going to address the convergence

issue in this document only through simulation results.

The noisy gradient measurement Gn+1(θ, Θ̂
n, Y n+1) evaluated at the cur-

rent parameter estimate θ̂n is finally given as

(
Gn+1(θ̂n, Θ̂n, Y n+1)

)
N(i−1)+j

=
1

π̂
(n)
ij

P (rn+1 = j, rn = i|Y n+1, Θ̂n) (4.63)

for 1 ≤ i, j ≤ N where π̂
(n)
ij = (θ̂n)N(i−1)+j.

Remark 4.2 Note here that the partial derivatives given in Eqn. 4.63 are

always nonnegative. This stems from the fact that the constraints are not con-

sidered in the cost function. The constraints, therefore, will play an essential

role for the stability of the algorithm.

Adding the projection operation related with the constraints to each recursion

of the algorithm, the update rule for the transition probability estimate π̂
(n)
ij

is given as

π̂
(n+1)
ij = P

{
π̂

(n)
ij + εn

P (rn+1 = j, rn = i|Y n+1, Θ̂n)

π̂
(n)
ij

}
(4.64)

for 1 ≤ i, j ≤ N .

Remark 4.3 Defining the updated non-projected parameters π̃
(n+1)
ij as

π̃
(n+1)
ij , π̂

(n)
ij + εn

1

π̂
(n)
ij

P (rn+1 = j, rn = i|Y n+1, Θ̂n), (4.65)

we see that they are always non-negative and satisfy the inequality

N∑
j=1

π̃
(n+1)
ij ≥ 1 for i = 1, 2, . . . , N. (4.66)

We give a simple method of projection for the set of non-negative quantities{
π̃

(n+1)
ij

}N

j=1
satisfying this inequality in App. C.
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4.3.4 Calculation of the Probabilities

In order to be able to calculate the probabilities P (rn+1 = j, rn = i|Y n+1, Θ̂n),

we are going to assume that an online conventional state estimator like IMM

or GPB algorithm which uses the probability transition matrix estimates Θ̂n

of the RKL algorithm is also run on the measurements Y n . The conventional

state estimator is required to supply the mode-conditioned state estimates

x̂i
n|n , E[xn|Y n, rn = i, Θ̂n] for i = 1 . . . N, (4.67)

covariances

P i
n|n , E[(xn − x̂i

n|n)(xn − x̂i
n|n)T |Y n, rn = i, Θ̂n] (4.68)

for i = 1 . . . N and the mode probabilities

µi(n) = P{rn = i|Y n, Θ̂n}. (4.69)

Using these quantities, we can calculate the required probabilities approxi-

mately as

P (rn+1 = j, rn = i|Y n+1, Θ̂n)=
p(yn+1|rn+1 = j, rn = i, Y n, Θ̂n)

p(yn+1|Y n, Θ̂n)

×P (rn+1 = j|rn = i, Θ̂n)P (rn = i|Y n, Θ̂n)

≈
p(yn+1|rn+1 = j, x̂i

n|n, P
i
n|n)

p(yn+1|Y n, Θ̂n)

×P (rn+1 = j|rn = i, Θ̂n)P (rn = i|Y n, Θ̂n)

=
p(yn+1|rn+1 = j, x̂i

n|n, P
i
n|n)π̂

(n)
ij µi(n)

p(yn+1|Y n, Θ̂n)
(4.70)

=
N (yn+1; ŷ

ij
n+1|n, S

ij
n+1|n)π̂

(n)
ij µi(n)

∑
j

∑
iN (yn+1; ŷ

ij
n+1|n, S

ij
n+1|n)π̂

(n)
ij µi(n)

(4.71)

where

ŷij
n+1|n , C(j)A(j)x̂i

n|n

Sij
n+1|n , C(j)

(
A(j)P i

n|nA
T (j) + B(j)QkB(j)T

)
CT (j) + D(j)RkD(j)T .
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Substituting Eqn. 4.71 into Eqn. 4.64, the update rule for the transition

probabilities becomes

π̂
(n+1)
ij = P

{
π̂

(n)
ij + εn

N (yn+1; ŷ
ij
n+1|n, S

ij
n+1|n)µi(n)

∑
j

∑
iN (yn+1; ŷ

ij
n+1|n, Sij

n+1|n)π̂
(n)
ij µi(n)

}
(4.72)

where the projection operator P is described in Sec. 4.2.1.

4.3.5 Selection of the Step-Size Sequence εn

The choice of the step-size sequence εn is an important issue for obtaining a

satisfactory performance with this type of algorithms. The sufficient conditions

on the step-sizes for convergence are

∞∑
n=0

εn = ∞ and
∞∑

n=0

ε2
n < ∞ (4.73)

which guarantee a decrease in the value of step-size εn which is fast enough to

allow sufficient averaging of the noisy gradient measurements and slow enough

to avoid premature convergence of the algorithm. In the cases where one needs

the algorithm to track small changes in the parameter values, constant and

sufficiently small step-sizes are used [28, 60]. Some adaptive step-size sequence

selection mechanisms exist in the literature [60] but we are going to choose

constant step-sizes during the simulations for the sake of simplicity.

4.4 Simulation Results

This section evaluates the performance of the recursive Kullback-Leibler method

by means of computer simulations. For this purpose, we are going to use two

examples which illustrate the capabilities of the RKL algorithm we have de-

rived in the previous section.

4.4.1 Example 1

In order to evaluate the performance of our method, in this sub-section, we

are going to use the same example and methodology as in [1] which is related
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with a system with failures. Consider the scalar dynamical system given by

xk+1 = xk + wk, (4.74)

yk = (rk − 1)xk + (100− 90(rk − 1))vk (4.75)

where x0 ∼ N (x0; 0, 202), wk ∼ N (wk; 0, 2
2), vk ∼ N (vk; 0, 1) with x0, wk

and vk being mutually independent for k = 1, 2, . . .. The model sequence rk ∈
{1, 2} is a first-order, two-state, homogeneous Markov process with probability

transition matrix Π = [πij] given as

Π =


 0.6 0.4

0.85 0.15


 . (4.76)

Note that this system corresponds to a system with frequent measurement

failures with the modal-state rk = 1 corresponding to the case of the failure.

Three IMM algorithms were implemented to estimate the state of this system.

• The first IMM algorithm is an exact one which uses the true probability

transition matrix of the system given in Eqn. 4.76.

• The second IMM algorithm is a non-adaptive one which uses a typical

probability transition matrix with π11 = π22 = 0.9.

• The third IMM algorithm is an adaptive one which estimates the prob-

ability transition matrix of the underlying Markov chain using the re-

cursive Kullback-Leibler method with the constant step-size sequence

εn = 0.02.

The algorithms use equal initial mode-probabilities (i.e., µi(0) = 0.5 for i =

1, 2) and therefore assume no knowledge of the initial state distribution for the

finite-state Markov chain. In order to obtain ensemble averages, 1000 Monte

Carlo runs are performed. In each run,

• The underlying Markov chain is simulated using the true probability

transition matrix given in Eqn. 4.76. The true mode-states are obtained.
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The initial state distribution of the Markov chain is randomly created

assuming that all possible state distributions are equally likely.

• The true base-state of the system described by Eqn. 4.74 is simulated

using an artificially generated process noise sequence {wk}.

• The measurement sequence of the system described by Eqn. 4.75 is

obtained using the true mode-state sequence, base-state sequence and

artificially generated measurement noise sequence {vk}.

• The IMM algorithms are executed using the measurement sequence.

• The absolute base-state estimation errors of the algorithms are calcu-

lated.

The average estimation performance of the recursive Kullback-Leibler method

is shown in Fig. 4.1. Note that there exist very small biases in the estimates like

the case in [1]. These seem to be due to the approximations in the derivation

process of the algorithm and seem to be acceptable. The mean absolute base-

state estimation errors of the three IMM filters are shown in Fig. 4.2. The

errors of the exact IMM are at the minimum level as expected. The adaptive

algorithm fed by the recursive Kullback-Leibler estimation process appears to

beat the non-adaptive IMM filter significantly.

4.4.2 Example 2

As a second example, a hypothetical three-model scalar JMLS (i.e., rk ∈
{1, 2, 3}) is used. The parameters of the system are given as

• A(1) = 0.8, A(2) = 0.9, A(3) = 1,

• B(i) = 1 and D(i) = 1 for i = 1, 2, 3,

• C(1) = 1, C(2) = 2, C(3) = 4,

• x0 ∼ N (x0; 0, 2
2),
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Figure 4.1: The average transition probability estimation performance of the
recursive Kullback-Leibler method.
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Figure 4.2: The mean-absolute base-state estimation errors of the IMM algo-
rithms.

77



• wk ∼ N (wk; 0, 2
2), vk ∼ N (vk; 0, 1).

and the true transition probability associated with the mode sequence rk is

taken as

Π =




0.2 0.4 0.4

0.25 0.5 0.25

0.1 0.1 0.8


 . (4.77)

The three IMM algorithms which have the same features as in the first example

are executed. The constant probability transition matrix of the non-adaptive

IMM filter is selected as

Π Non-Adaptive =




0.9 0.05 0.05

0.05 0.9 0.05

0.05 0.05 0.9


 . (4.78)

The initial probability transition matrix estimate Π̂0 for the RKL algorithm

of the adaptive IMM algorithm is taken as

Π̂0 =




0.33 0.33 0.34

0.33 0.33 0.34

0.33 0.33 0.34


 (4.79)

and the step-size sequence of the RKL algorithm is set to εn = 0.002. The

transition matrix estimation performance of the RKL algorithm is illustrated

in Fig.4.3. Small biases again exist in the estimates but the convergence trend

is evident.

The mean-absolute base-state estimation errors of the three IMM filters are

shown in Fig. 4.4. The errors of the adaptive algorithm fed by the recursive

Kullback-Leibler estimation process are very close to those of the exact IMM

after a transient period.

4.5 Conclusions

A new method for the estimation of the transition probabilities of the JMLSs is

given. Although the derivation of the method is quite complicated, the result-
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Figure 4.3: The average transition probability estimation performance of the
recursive Kullback-Leibler method.
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Figure 4.4: Mean-absolute base-state estimation errors of the IMM algorithms.
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ing recursions are easy to implement using the outputs of an online multiple-

model state estimation algorithm like IMM or GPB approaches. The simula-

tion results show that the algorithm can be an efficient alternative to those

described in [1].

80



CHAPTER 5

MAXIMUM LIKELIHOOD ESTIMATION

OF THE TRANSITION PROBABILITIES

OF JMLSS

5.1 Introduction

As mentioned in Sec. 4.1, the maximum likelihood (ML) algorithm was one of

the first approaches applied to the transition probability estimation of JMLSs.

However, the existing algorithms suffers from the following drawbacks:

• They consider only the cases where the unknown transition probability

matrices are in a finite set [51].

• They don’t apply to JMLSs [52].

In addition to these, while stating the infeasibility of the ML approach for the

JMLSs, [51] did not have the comfortable approximation scheme of the IMM

filter at hand in 1982. The profitable place that the IMM filter occupies on

the performance vs. computation curve makes it a useful candidate to use in

the approximations of the infeasible ML algorithms.

In this chapter, using the motivation above, we propose a maximum likeli-

hood estimation based solution to the transition probability estimation prob-

lem. Our algorithm is new in that it assumes that the unknown transition

probability matrix takes values in a continuous valued set1 and it is derived

1 Specifically, this set is composed of the N -simplices considered in Chapter 4.
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specifically for the JMLSs. The algorithm can be used either online or offline.

We use the reference probability method to derive the algorithm which enables

us to identify the approximations required to form a feasible method easily.2

The chapter is organized as follows. In Sec. 5.2, the problem definition

and the related measure change parameters are given. Application of the ML

algorithm to JMLSs is presented in Sec. 5.3 which concludes that the algorithm

should calculate the estimates of the number of jumps between the states of

the Markov chain recursively. The presentation of the main results is made

in Sec. 5.4 where the related recursive calculation procedure is derived. The

formulas for final transition probability estimates utilizing the estimates of the

number of jumps are given in Sec. 5.5. Sec. 5.6 presents a brief summary of the

derived algorithm along with some modifications and implementation issues.

Moreover, achieving the base state estimation using the derived algorithm

without any additional base-state estimators is also outlined in Sec. 5.6. The

transition probability estimation performance of the algorithm is illustrated in

Sec. 5.7 using the same examples as the ones in Chapter 4. Also, comparison

with the RKL method of Chapter 4 is made in Sec. 5.7 on one of the examples.

The chapter is finalized with conclusions in Sec. 5.8.

5.2 Problem Definition

The following JMLS model is considered.

xk+1 = A(rk+1)xk + B(rk+1)wk+1, (5.1)

yk = C(rk)xk + D(rk)vk (5.2)

where

• {xk ∈ Rn} is the continuous-valued base-state sequence with initial dis-

tribution

x0 ∼ N (x0; x̄0, Σ0) (5.3)

2 We again note the requirement for the unfamiliar reader to consult App. A for the
related background about the reference probability method.
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where the notation N (x; x̄, Σ) stands for a Gaussian probability density

function for dummy variable x which has a mean x̄ and covariance Σ.

• {rk} is the unknown discrete-valued modal-state sequence,

• {yk ∈ Rm} is the noisy observation sequence,

• {wk ∈ Rn} is a white process noise sequence with distribution

wk ∼ N (wk; 0, In) (5.4)

where In denotes the identity matrix of size n× n.

• {vk ∈ Rm} is a white measurement noise sequence independent from the

process noise wk with distribution

vk ∼ N (vk; 0, Im). (5.5)

The discrete-valued modal-state rk ∈ {e1, e2, . . . , eN} is assumed to be a first-

order finite-state homogenous Markov chain with fixed but unknown transition

probability matrix Π = [πij]. Here, the variable ej ∈ RN denotes the canonical

unit vector with unity at the jth position and zeros elsewhere. The basic vari-

ables wk, vk, x0 and the modal-state sequence rk are assumed to be mutually

independent for all k. The time-varying matrices A(rk), B(rk), C(rk), and

D(rk) are assumed to be known for each value of rk. Moreover, the matrices

B(rk) and D(rk) are assumed to be invertible. This is a requirement of the

derivation using the reference probability method.3

The aim of the chapter is to find a possibly approximate online ML es-

timator for the unknown fixed transition probabilities of the JMLS defined

above.

5.2.1 Change of Measure

In the derivations given in the subsequent sections, it is initially assumed that

we are in an ideal probability space (Ω,F , P ) where, under the probability

measure P
3 See Sec. 3.5.2.3 for how this restriction can be bypassed easily.
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• {xk}, k ∈ N is a sequence of i.i.d. random variables which are Gaussian

distributed with zero mean and covariance In. Call their density function

as φ(x) = N (x; 0, In).

• {yk}, k ∈ N is a sequence of i.i.d. random variables which are Gaussian

distributed with zero mean and covariance Im. Call their density function

as ψ(x) = N (x; 0, Im).

• {rk}, k ∈ N is a first-order finite-state homogenous Markov chain with

transition probability matrix Π = [πij] and initial distribution π0 =

[ π1
0 π2

0 · · · πN
0

].

We define the sequence of random variables {λl} and {Λk}, k, l ∈ N as

λl =





φ(
√

Σ0
−1

(xl−x̄0))

|√Σ0|φ(xl)

ψ(D−1(rl)(yl−C(rl)xl))
|D(rl)|ψ(yl)

l = 0

φ(B−1(rl)(xl−A(rl)xl−1))

|B(rl)|φ(xl)
ψ(D−1(rl)(yl−C(rl)xl))

|D(rl)|ψ(yl)
l > 0

, (5.6)

Λk =
k∏

l=0

λl (5.7)

where
√

Σ0 is the positive definite square root of Σ0 and |.| denotes the matrix

determinant. Let Gk denote the complete filtration generated by random vari-

ables {x0, . . . , xk, r0, . . . , rk, y0, . . . , yk}. We define a new probability measure

P by setting the restriction of the Radon-Nikodym derivative dP
dP
|Gk

to Λk. Un-

der the new probability measure P , the processes {wk ∈ Rn} and {vk ∈ Rm},
k ∈ N defined as

wk , B−1(rk)(xk − A(rk)xk−1), (5.8)

vk , D−1(rk)(yk − C(rk)xk) (5.9)

are sequences of i.i.d. Gaussian random variables with zero-mean and covari-

ance In and Im respectively4 and the distribution of {rk} remains unchanged.5

Note that, under both P and P , the modal state {rk ∈ {e1, e2, . . . , eN}}, k ∈ N
4 The proof of this fact follows the same lines as the proof presented for linear Gauss-

Markov systems in Lemma A.7.
5 Proofs of this fact is very similar to those given in [39] and [38].
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has a semi-martingale representation

rk+1 = ΠT rk + mk+1 (5.10)

where mk is a Gk martingale increment. The probability measure P is the

nominal measure under which the results are required. The expectations under

the reference probability measure P , which are shown by E, can be taken much

more easily than the ones under P thanks to the independence properties.

5.3 Maximum Likelihood Estimation for Tran-

sition Probabilities

Maximum likelihood estimation is a powerful tool whose properties are well

appreciated in the parameter estimation community. Let {Pθ, θ ∈ Θ} be a

family of parameterized probability measures, where θ denotes the parameter

vector, on a measurable space (Ω,F) all absolutely continuous with respect to

a fixed probability measure P0. The σ-field generated by the measurements

{y0, . . . , yk} is called as Yk ∈ F . The likelihood function for obtaining an

estimate of θ based on the information available in Yk is defined as

Lk(θ) , E0

[dPθ

dP0

∣∣∣Yk

]
(5.11)

where E0 denotes the expectation with respect to the probability measure P0

and dPθ

dP0
is the Radon-Nikodym derivative of the probability measure Pθ with

respect to P0. The maximum likelihood estimate θML
k is then given as

θML
k = arg max

θ∈Θ
Lk(θ) (5.12)

In many problems, like the case in ours, the calculation of Lk(θ) in Eqn. 5.11 is

impossible or computationally costly. In this case, the well-known expectation

maximization (EM) algorithm comes into picture to provide an iterative solu-

tion which has the following steps with increasing number of measurements:

• Step-1: Set k = 1 and choose θ̂0.
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• Step-2: Set l = 0 and set θ̂k,0 = θ̂k−1.

• Step-3: (E-Step) Compute Qk(θ, θ̂k,l) as

Qk(θ, θ̂k,l) = Eθ̂k,l

[
log

dPθ

dPθ̂k,l

∣∣∣Yk

]
. (5.13)

• Step-4: (M-Step) Set θ̂k,l+1 as

θ̂k,l+1 ∈ arg max
θ∈Θ

Qk(θ, θ̂k,l). (5.14)

• Step-5:

– If the stopping criterion is satisfied, set θ̂k = θ̂k,l+1. Set k to k + 1,

go to Step-2.

– If the stopping criterion is not satisfied, set l to l + 1 and go to

Step-3.

Since our algorithm is required to be able to work in an online fashion, we are

going to use a predetermined finite number (L > 0) of iterations with respect

to l in our algorithm. Here, we illustrate the case L=1, which gives the worst

performance among these algorithms. The steps of the resulting algorithm

turns out to be:

• Step-1: Set k = 1 and choose θ̂0.

• Step-2: (E-Step) Compute Qk(θ, θ̂k−1) as

Qk(θ, θ̂k−1) = Eθ̂k−1

[
log

dPθ

dPθ̂k−1

∣∣∣Yk

]
. (5.15)

• Step-4: (M-Step) Set θ̂k as

θ̂k ∈ arg max
θ∈Θ

Qk(θ, θ̂k−1). (5.16)

• Step-5: Set k to k + 1, go to Step-2.
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In our problem, like the case in Chapter 4, the unknown parameter vector θ is

composed of the transition probabilities πij as follows.

θ = [π11, π12, . . . , π1N , π21, π22, . . . , π2N , . . . . . . , πN1, πN2, . . . , πNN ]T .

In [38], the transition probability estimates π̂
(k)
ij of the hidden Markov mod-

els (HMMs) are shown to be calculated using the above framework as

π̂
(k)
ij =

Ĵ (k)
ij (θ̂k−1)∑N

j=1 Ĵ (k)
ij (θ̂k−1)

for 1 ≤ i, j ≤ N (5.17)

where

J (k)
uv ,

k∑

l=1

〈rl, ev〉〈rl−1, eu〉, (5.18)

Ĵ (k)
uv (θ̂k−1) , Eθ̂k−1

[J (k)
uv |Yk]. (5.19)

The quantity J (k)
uv is the number of jumps of the Markov chain from state eu to

state ev until time k and Ĵ (k)
uv (θ) is the estimate of it based on the parameter

θ using the information contained in Yk. Using a very similar derivation as in

[38], it can be shown that the formula (5.17) is valid for the case of JMLSs.

In the next section, we are going to show how the estimates Ĵ (k)
ij (θ̂k−1) of

the number of jumps J (k)
ij can be calculated recursively.

5.4 Recursive Estimation of Number of Jumps

J (k)
ij

In the previous section, it has been seen that the maximum likelihood esti-

mation of the transition probabilities requires the calculation of the estimated

number of jumps Ĵ (k)
ij (θ̂k−1) defined as

Ĵ (k)
ij (θ̂k−1) , Eθ̂k−1

[J (k)
ij |Yk]. (5.20)

In this section, we are going to find recursive update formulas for the estimated

number of jumps using the reference probability method. Using Theorem A.3,
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we can see that

Ĵ (k)
ij (θ̂k−1) =

E θ̂k−1
[ΛkJ (k)

ij |Yk]

E θ̂k−1
[Λk|Yk]

. (5.21)

For the recursive calculation of Ĵ (k)
ij , the following density definitions are re-

quired.

ηij−l
k (x|θ)dx , Eθ[ΛkJ (k)

ij I{xk∈dx}〈rk, el〉|Yk], (5.22)

αl
k(x|θ)dx , Eθ[ΛkI{xk∈dx}〈rk, el〉|Yk] (5.23)

where the function IA(ω) defined as

IA(ω) ,





1, ω ∈ A

0, ω /∈ A
(5.24)

denotes the indicator function of the set A and the notation 〈rk, ej〉 stands

for the the inner product rT
k ej which is equal to the jth element of rk. Note

that, the densities αj
k(x|θ) can be easily calculated (approximated) by using

a multiple model estimation algorithms such as IMM or GPB2 filters.6 Using

a simple reasoning, we can see that, if f : Rn → R is any test function

(i.e., measurable function with compact support), the following equalities are

satisfied.

Eθ[ΛkJ (k)
ij f(xk)〈rk, el〉|Yk] =

∫
f(x)ηij−l

k (x|θ)dx, (5.25)

Eθ[Λkf(xk)〈rk, el〉|Yk] =

∫
f(x)αl

k(x|θ)dx. (5.26)

Making use of Eqn. 5.25 and Eqn. 5.26 we can write

Eθ[ΛkJ (k)
ij |Yk] =

N∑

l=1

∫
ηij−l

k (x|θ)dx, (5.27)

Eθ[Λk|Yk] =
N∑

l=1

∫
αl

k(x|θ)dx. (5.28)

These, considering Eqn. 5.21, show that the densities {ηij−l
k }, 1 ≤ i, j, l ≤ N

and {αl
k}, 1 ≤ l ≤ N form a sufficient statistics for the estimation of the

6 The derivation of the IMM filter presented in Chapter 3 illustrates the recursion of
these densities.
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transition probabilities. Noting that

kαl
k(x|θ) =

N∑
i=1

N∑
j=1

ηij−l
k (x|θ), (5.29)

we can conclude that the set of densities {ηij−l
k }, 1 ≤ i, j, l ≤ N is alone a

sufficient statistics. The densities {αl
k}, 1 ≤ l ≤ N will only be used for

notational simplicity.

5.4.1 Recursion

Theorem 5.1 The densities ηij−l
k (x|θ) satisfy the following recursion.

ηij−l
k (x|θ) =

ψ(D−1
l (yk − Clx))

|Bl||Dl|ψ(yk)

∫
φ(B−1

l (x− Alz))

×
[ N∑

m=1

πmlη
ij−m
k−1 (z|θ) + 〈el, ej〉πijα

i
k−1(z|θ)

]
dz (5.30)

where Al , A(el), Bl , B(el), Cl , C(el), and Dl , D(el) for l = 1, . . . , N .

Proof Let f : Rn → R be any test function, then

∫
ηij−l

k (x|θ)f(x)dx = Eθ[ΛkJ (k)
ij f(xk)〈rk, el〉|Yk] (5.31)

= Eθ

[
Λk−1

φ(B−1(rk)(xk − A(rk)xk−1))

|B(rk)|φ(xk)

×ψ(D−1(rk)(yk − C(rk)xk))

|D(rk)|ψ(yk)
J (k)

ij f(xk)〈rk, el〉
∣∣∣Yk

]

= Eθ

[
Λk−1

φ(B−1
l (xk − Alxk−1))

|Bl|φ(xk)

ψ(D−1
l (yk − Clxk))

|Dl|ψ(yk)

×J (k)
ij f(xk)〈rk, el〉

∣∣∣Yk

]
(5.32)

Using the definition of J (k)
ij , we can write

J (k)
ij = J (k−1)

ij + 〈rk, ej〉〈rk−1, ei〉. (5.33)

Substituting this into Eqn. 5.32, we get

∫
ηij−l

k (x|θ)f(x)dx

= Eθ

[
Λk−1

φ(B−1
l (xk − Alxk−1))

|Bl|φ(xk)

ψ(D−1
l (yk − Clxk))

|Dl|ψ(yk)
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×J (k−1)
ij f(xk)〈rk, el〉

∣∣∣Yk

]

+Eθ

[
Λk−1

φ(B−1
l (xk − Alxk−1))

|Bl|φ(xk)

ψ(D−1
l (yk − Clxk))

|Dl|ψ(yk)

×f(xk)〈rk, ej〉〈rk−1, ei〉〈rk, el〉
∣∣∣Yk

]
(5.34)

= Eθ

[
Λk−1

φ(B−1
l (xk − Alxk−1))

|Bl|φ(xk)

ψ(D−1
l (yk − Clxk))

|Dl|ψ(yk)

×J (k−1)
ij f(xk)〈rk, el〉

∣∣∣Yk

]

+〈el, ej〉Eθ

[
Λk−1

φ(B−1
l (xk − Alxk−1))

|Bl|φ(xk)

ψ(D−1
l (yk − Clxk))

|Dl|ψ(yk)

×f(xk)〈rk, ej〉〈rk−1, ei〉
∣∣∣Yk

]
(5.35)

= Eθ

[
Λk−1

φ(B−1
l (xk − Alxk−1))

|Bl|φ(xk)

ψ(D−1
l (yk − Clxk))

|Dl|ψ(yk)

×J (k−1)
ij f(xk)〈ΠT rk−1, el〉

∣∣∣Yk

]

+Eθ

[
Λk−1

φ(B−1
l (xk − Alxk−1))

|Bl|φ(xk)

ψ(D−1
l (yk − Clxk))

|Dl|ψ(yk)

×J (k−1)
ij f(xk)〈mk, el〉

∣∣∣Yk

]

+〈el, ej〉Eθ

[
Λk−1

φ(B−1
l (xk − Alxk−1))

|Bl|φ(xk)

ψ(D−1
l (yk − Clxk))

|Dl|ψ(yk)

×f(xk)〈ΠT rk−1, ej〉〈rk−1, ei〉
∣∣∣Yk

]

+〈el, ej〉Eθ

[
Λk−1

φ(B−1
l (xk − Alxk−1))

|Bl|φ(xk)

ψ(D−1
l (yk − Clxk))

|Dl|ψ(yk)

×f(xk)〈mk, ej〉〈rk−1, ei〉
∣∣∣Yk

]
. (5.36)

The second and the fourth expectations on the right hand side of Eqn. 5.36

are zero due to facts that mk is a Gk-martingale increment and that under

the probability measure P , the process {rk}, and hence the process {mk}, is

independent of the processes {xk} and {yk}. Now using the identity

〈ΠT rk−1, ej〉 =
N∑

i=1

πij〈rk−1, ei〉, (5.37)

Eqn 5.36 becomes
∫

ηij−l
k (x|θ)f(x)dx (5.38)

=
N∑

m=1

πmlEθ

[
Λk−1

φ(B−1
l (xk − Alxk−1))

|Bl|φ(xk)

ψ(D−1
l (yk − Clxk))

|Dl|ψ(yk)
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×J (k−1)
ij f(xk)〈rk−1, em〉

∣∣∣Yk

]

+〈el, ej〉πijEθ

[
Λk−1

φ(B−1
l (xk − Alxk−1))

|Bl|φ(xk)

ψ(D−1
l (yk − Clxk))

|Dl|ψ(yk)

×f(xk)〈rk−1, ei〉
∣∣∣Yk

]
(5.39)

=
N∑

m=1

πmlEθ

[
Λk−1Eθ

[φ(B−1
l (xk − Alxk−1))

|Bl|φ(xk)

ψ(D−1
l (yk − Clxk))

|Dl|ψ(yk)

×J (k−1)
ij f(xk)

∣∣∣xk−1,Yk

]
〈rk−1, em〉

∣∣∣Yk

]

+〈el, ej〉πijEθ

[
Λk−1Eθ

[φ(B−1
l (xk − Alxk−1))

|Bl|φ(xk)

ψ(D−1
l (yk − Clxk))

|Dl|ψ(yk)

×f(xk)
∣∣∣xk−1,Yk

]
〈rk−1, ei〉

∣∣∣Yk

]
(5.40)

The inner expectations in Eqn. 5.40 can easily be taken as follows due to the

independence properties of the sequence {xk} under P .

∫
ηij−l

k (x|θ)f(x)dx (5.41)

=
N∑

m=1

πmlEθ

[
Λk−1J (k−1)

ij

∫
φ(B−1

l (x− Alxk−1))

|Bl|φ(x)

ψ(D−1
l (yk − Clx))

|Dl|ψ(yk)

×f(x)φ(x)dx〈rk−1, em〉
∣∣∣Yk

]

+〈el, ej〉πijEθ

[
Λk−1

∫
φ(B−1

l (x− Alxk−1))

|Bl|φ(x)

ψ(D−1
l (yk − Clx))

|Dl|ψ(yk)

×f(x)φ(x)dx〈rk−1, ei〉
∣∣∣Yk

]
(5.42)

=
N∑

m=1

πml

∫ ∫
φ(B−1

l (x− Alz))

|Bl|
ψ(D−1

l (yk − Clx))

|Dl|ψ(yk)
f(x)dx (5.43)

×ηij−m
k−1 (z|θ)dz

+〈el, ej〉πij

∫ ∫
φ(B−1

l (x− Alz))

|Bl|
ψ(D−1

l (yk − Clx))

|Dl|ψ(yk)
f(x)dx

×αi
k−1(z|θ)dz (5.44)

=

∫
f(x)

ψ(D−1
l (yk − Clx))

|Bl||Dl|ψ(yk)

∫
φ(B−1

l (x− Alz))

×
N∑

m=1

πmlη
ij−m
k−1 (z|θ)dzdx

+

∫
f(x)

ψ(D−1
l (yk − Clx))

|Bl||Dl|ψ(yk)

∫
φ(B−1

l (x− Alz))

×〈el, ej〉πijα
i
k−1(z|θ)dzdx (5.45)
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=

∫
f(x)

ψ(D−1
l (yk − Clx))

|Bl||Dl|ψ(yk)

∫
φ(B−1

l (x− Alz))

×
[ N∑

m=1

πmlη
ij−m
k−1 (z|θ) + 〈el, ej〉πijα

i
k−1(z|θ)

]
dzdx. (5.46)

Since this equation is satisfied for all test functions, the recursion in Eqn. 5.30

holds. ¤

Remark 5.1 Since the recursion in Eqn. 5.30 is linear, once the initial den-

sities {αi
0(x|θ)} are (unnormalized) Gaussian densities (which is the case in

our model), the densities {ηij−l
k (x|θ)} become unnormalized Gaussian mixtures

with ever increasing number of components as k increases.

Corollary 1 The densities ηij−l
k (x|θ) satisfy the recursion

ηij−l
k (x|θ) =

ψ(D−1
l (yk − Clx))

|Bl||Dl|ψ(yk)

∫
φ(B−1

l (x− Alz))

×
[ N∑

m=1

πmlη
ij−m
k−1 (z|θ) +

〈el, ej〉πij

k − 1

N∑
u=1

N∑
v=1

ηuv−i
k−1 (z|θ)

]
dz (5.47)

for k > 1, which is in terms of only the densities {ηij−l
k }, 1 ≤ i, j, l ≤ N .

Proof Proof is given simply by the substitution of the relationship given by

Eqn. 5.29 into the recursion of Eqn. 5.30. ¤

The recursion in Eqn. 5.47 is the main result of this chapter which results in a

maximum likelihood estimator for the transition probabilities associated with

JMLSs.

5.4.2 Initial Densities

Since the initial number of jumps J (0)
ij is given as

J (0)
ij ,

0∑

l=1

〈rl, ej〉〈rl−1, ei〉 = 0, (5.48)

the initial unnormalized densities {ηij−l
0 (x|θ)}, 1 ≤ i, j, l ≤ N are all equal to

zero, i.e.,

ηij−l
0 (x|θ) = 0 ∀x for 1 ≤ i, j, l ≤ N. (5.49)
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Remark 5.2 An important point about the recursion of Eqn. 5.47 is that the

right hand side has 0
0

indeterminate form when k = 1. Therefore, for k = 1,

the recursion in Eqn. 5.30 is still to be used.

5.4.3 Approximation

For the transition probability estimation at time k, i.e., for the calculation of

θ̂k , we need the densities {ηij−l
k (x|θ̂k−1)}, 1 ≤ i, j, l ≤ N due to the identity

in Eqn. 5.17. Hence, we need to calculate the densities {ηij−l
k (x|θ̂k−1)} recur-

sively. The recursion in Eqn. 5.47, in order to calculate these densities, requires

the densities {ηij−l
k−1 (x|θ̂k−1)}, 1 ≤ i, j, l ≤ N . However, at time k − 1, the den-

sities {ηij−l
k−1 (x|θ̂k−1)}, 1 ≤ i, j, l ≤ N are not available. Instead, the densities

{ηij−l
k−1 (x|θ̂k−2)}, 1 ≤ i, j, l ≤ N are available since these densities must have

been used for computing the transition probability estimates at time k − 1.

This problem can be iterated back until the initial time k = 0 which makes

the reprocessing of all measurements necessary. In order to obtain an online

recursive estimation mechanism, we therefore make the approximations

ηij−l
k−1 (x|θ̂k−1) ≈ ηij−l

k−1 (x|θ̂k−2) for 1 ≤ i, j, l ≤ N (5.50)

for all k. This assumption basically amounts to assuming that the parameter

estimates do not change much between consecutive time instants.

In MMSE multiple model estimation, it is well-known that the the number

of statistics to be kept for calculating the densities αl
k(x|θ) grows exponentially

[13].7 The optimal recursion given in Eqn. 5.30, shows that the situation is

worse for the densities ηij−l
k (x|θ) due to the fact that the recursions are excited

by the densities αl
k−1(x|θ). Even if the densities αl

k−1(x|θ) are approximated by

single Gaussian densities as the case in the IMM or GPB2 filters, the number

of statistics to be kept for densities ηij−l
k (x|θ) still grows exponentially (due to

the exponentially increasing number of unnormalized Gaussian components in

mixture). This extreme growing is observed more clearly in the recursion of

7 This fact is also apparent in the derivation of the IMM filter in Sec. 3.3.
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Eqn. 5.47. This situation, therefore, makes additional approximations neces-

sary. Here, we are going to make IMM-type approximations8 to keep a single

Gaussian density for each ηij−l
k (x|θ). Assuming that each previous density

ηij−l
k−1 (x|θ) is approximated by a single Gaussian, i.e.,

ηij−l
k−1 (x|θ) ≈ dij−l

k−1N (x; x̂ij−l
k−1|k−1, Σ

ij−l
k−1|k−1), (5.51)

the Gaussian mixture [
∑N

m=1 πmlη
ij−m
k−1 (z|θ)+

〈el,ej〉πij

k−1

∑N
u=1

∑N
v=1 ηuv−i

k−1 (z|θ)] is

approximated by a single Gaussian, i.e.,

[ N∑
m=1

πmlη
ij−m
k−1 (z|θ) +

〈el, ej〉πij

k − 1

N∑
u=1

N∑
v=1

ηuv−i
k−1 (z|θ)

]

≈ dij−0l
k−1 N (x; x̂ij−0l

k−1|k−1, Σ
ij−0l
k−1|k−1) (5.52)

where

dij−0l
k−1 =

N∑
m=1

πmld
ij−m
k−1 +

〈el, ej〉πij

k − 1

N∑
u=1

N∑
v=1

duv−i
k−1 , (5.53)

x̂ij−0l
k−1|k−1 =

N∑
m=1

πmld
ij−m
k−1

dij−0l
k−1

x̂ij−m
k−1|k−1 +

〈el, ej〉
k − 1

πij

dij−0l
k−1

N∑
u=1

N∑
v=1

duv−i
k−1 x̂uv−i

k−1|k−1, (5.54)

Σij−0l
k−1|k−1 =

N∑
m=1

πmld
ij−m
k−1

dij−0l
k−1

[
Σij−m

k−1|k−1

+(x̂ij−m
k−1|k−1 − x̂ij−0l

k−1|k−1)(x̂
ij−m
k−1|k−1 − x̂ij−0l

k−1|k−1)
T
]

+
〈el, ej〉
k − 1

πij

dij−0l
k−1

N∑
u=1

N∑
v=1

duv−i
k−1

[
Σuv−i

k−1|k−1

+(x̂uv−i
k−1|k−1 − x̂ij−0l

k−1|k−1)(x̂
uv−i
k−1|k−1 − x̂ij−0l

k−1|k−1)
T
]
. (5.55)

Note that this approximation process is similar to the mixing stage of the IMM

filter [13].9 With these approximations, the densities ηij
k (x|θ) are automatically

kept in the form

ηij−l
k (x|θ) = dij−l

k N (x; x̂ij−l
k|k , Σij−l

k|k ). (5.56)

When the approximation in Eqn. 5.52 is substituted into the recursion of Eqn.

5.47, we obtain

ηij−l
k (x|θ) =

ψ(D−1
l (yk − Clx))

|Bl||Dl|ψ(yk)

8 See the derivation of the IMM filter in Sec. 3.3 for IMM-type approximations.
9 Mixing stage is also detailed in the derivation of the IMM filter in Sec. 3.3.
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×
∫

φ(B−1
l (x− Alz))dij−0l

k−1 N (z; x̂ij−0l
k−1|k−1, Σ

ij−0l
k−1|k−1)dz

= dij−0l
k−1

ψ(D−1
l (yk − Clx))

|Dl|ψ(yk)

×
∫
N (x; Alz,BlB

T
l )N (z; x̂ij−0l

k−1|k−1, Σ
ij−0l
k−1|k−1)dz (5.57)

= dij−0l
k−1

ψ(D−1
l (yk − Clx))

|Dl|ψ(yk)
N (x; x̂ij−l

k|k−1, Σ
ij−l
k|k−1) (5.58)

=
dij−0l

k−1

ψ(yk)
N (yk; Clx,DlD

T
l )N (x; x̂ij−l

k|k−1, Σ
ij−l
k|k−1) (5.59)

where

x̂ij−l
k|k−1 = Alx̂

ij−0l
k−1|k−1, (5.60)

Σij−l
k|k−1 = AlΣ

ij−0l
k−1|k−1A

T
l + BlB

T
l . (5.61)

Here, while passing from Eqn. 5.57 to 5.58, we used the well-known result on

the integral of Gaussian densities which is given in App. B.4. Using the result

on the multiplication of Gaussian densities in App. B.2, Eqn. 5.59 can be

written as

ηij−l
k (x|θ) =

dij−0l
k−1

ψ(yk)
N (yk; Clx̂

ij−l
k|k−1, S

ij−l
k )N (x; x̂ij−l

k|k , Σij−l
k|k ) (5.62)

= dij−l
k N (x; x̂ij−l

k|k , Σij−l
k|k ) (5.63)

where

Sij−l
k = ClΣ

ij−l
k|k−1C

T
l + DlD

T
l , (5.64)

x̂ij−l
k|k = x̂ij−l

k|k−1 + Σij−l
k|k−1C

T
l (Sij−l

k )−1(yk − Clx̂
ij−l
k|k−1), (5.65)

Σij−l
k|k = Σij−l

k|k−1 − Σij−l
k|k−1C

T
l (Sij−l

k )−1ClΣ
ij−l
k|k−1, (5.66)

dij−l
k =

dij−0l
k−1

ψ(yk)
N (yk; Clx̂

ij−l
k|k−1, S

ij−l
k ). (5.67)

5.4.4 Initialization

The update formulas given in the previous section assume that the previous

density functions {ηij−l
k−1 (x|θ)}, 1 ≤ i, j, l ≤ N at each estimation step are rep-

resented by a single unnormalized Gaussian. The initial densities {ηij−l
0 (x|θ)},
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1 ≤ i, j, l ≤ N given by Eqn. 5.49 can be expressed as unnormalized Gaus-

sians with arbitrary means and covariances and with zero weights. However,

this causes a 0
0

indeterminate form on the right hand side of recursion of Eqn.

5.47 for k = 1. This can be avoided by using the recursion of Eqn. 5.30

which requires the densities {αi
0(x|θ)}N

i=1. The initial densities αj
0(x|θ) can be

calculated as follows.10

∫
f(x)αj

0(x|θ)dx = E
[
Λ0〈r0, ej〉f(x0)|Y0

]
(5.68)

= E
[φ(

√
Σ0

−1
(x0 − x̄0))

|√Σ0|φ(x0)

ψ(D−1(r0)(y0 − C(r0)x0))

|D(r0)|ψ(y0)

×f(x0)〈r0, ej〉
∣∣∣Y0

]
(5.69)

= E
[φ(

√
Σ0

−1
(x0 − x̄0))

|√Σ0|φ(x0)

ψ(D−1
j (y0 − Cjx0))

|Dj|ψ(y0)

×〈r0, ej〉f(x0)
∣∣∣Y0

]
(5.70)

= E
[φ(

√
Σ0

−1
(x0 − x̄0))

|√Σ0|φ(x0)

ψ(D−1
j (y0 − Cjx0))

|Dj|ψ(y0)
f(x0)

∣∣∣Y0

]

×E [〈r0, ej〉] (5.71)

=

∫
f(x)πj

0

φ(
√

Σ0
−1

(x− x̄0))

|√Σ0|φ(x)

ψ(D−1
j (y0 − Cjx))

|Dj|ψ(y0)
φ(x)dx

=

∫
f(x)πj

0

φ(
√

Σ0
−1

(x− x̄0))

|√Σ0|
ψ(D−1

j (y0 − Cjx))

|Dj|ψ(y0)
dx.

Since the equality holds for all test functions f(.), the initial density αj
0(x|θ)

is given as

αj
0(x|θ) = πj

0

ψ(D−1
j (y0 − Cjx))

|Dj|ψ(y0)

φ(
√

Σ0
−1

(x− x̄0))

|√Σ0|
(5.72)

=
πj

0

ψ(y0)
N (y0; Cjx,DjD

T
j )N (x; x̄0, Σ0) (5.73)

=
πj

0

ψ(y0)
N (y0; Cjx̄0, S

j
0)N (x; x̂j

0|0, Σ
j
0|0) (5.74)

= c̄j
0N (x; x̂j

0|0, Σ
j
0|0). (5.75)

where

Sj
0 , CjΣ0C

T
j + DjD

T
j , (5.76)

10 This calculation was also done in Sec. 3.3 and is repeated here for convenience.
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x̂j
0|0 , x̄0 + Σ0C

T
j (Sj

0)
−1(y0 − Cjx̄0), (5.77)

Σj
0|0 , Σ0 − Σ0C

T
j (Sj

0)
−1CjΣ0, (5.78)

c̄j
0 =

πj
0

ψ(y0)
N (y0; Cjx̄0, S

j
0). (5.79)

Here, while passing from Eqn. 5.73 to 5.74, the result on the multiplication of

Gaussian densities, which is given in App. B.2, is used. The recursion in Eqn.

5.30 for k = 1 gives the densities {ηij−l
1 (x|θ)}, 1 ≤ i, j, l ≤ N as

ηij−l
1 (x|θ) = dij−l

1 N (x; x̂ij−l
1|1 , Σij−l

1|1 ) (5.80)

where

dij−l
1 =





c̄i
0πij

ψ(y1)
N (y1; Cjx̂

ij−j
1|0 , Sij−j

1 ) l = j

0 otherwise
, (5.81)

x̂ij−l
1|1 =





x̂ij−j
1|0 + Σij−j

1|0 CT
j (Sij−j

1 )−1(y1 − Cjx̂
ij−j
1|0 ) l = j

Arbitrary otherwise
,(5.82)

Σij−l
1|1 =





Σij−j
1|0 − Σij−j

1|0 CT
j (Sij−j

1 )−1CjΣ
ij−j
1|0 l = j

Arbitrary otherwise
. (5.83)

Here, the estimates x̂ij−j
1|0 , covariances Σij−j

1|0 and Sij−j
1 are given as

x̂ij−j
1|0 = Ajx̂

i
0|0, (5.84)

Σij−j
1|0 = AjΣ

i
0|0A

T
j + BjB

T
j , (5.85)

Sij−j
1 = CjΣ

ij−j
1|0 CT

j + DjD
T
j . (5.86)

Note that some of the estimates x̂ij−l
1|1 and covariances Σij−l

1|1 can be given ar-

bitrary values. Their values do not affect the subsequent iterations of the

algorithm since their corresponding mode weights dij−l
1 are initialized as zero.

5.5 Calculation of Transition Probability Es-

timates

In this section, we give the formulas for the transition probability estimate π̂
(k)
ij

assuming the the densities {ηij−l
k (x|θ̂k−1)} have been calculated. Substituting
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Eqn. 5.21 into Eqn. 5.17, we obtain

π̂
(k)
ij =

E θ̂k−1
[ΛkJ (k)

ij |Yk]
∑N

j=1 E θ̂k−1
[ΛkJ (k)

ij |Yk]
for 1 ≤ i, j ≤ N. (5.87)

When we combine this with Eqn. 5.27, we get

π̂
(k)
ij =

∑N
l=1

∫
ηij−l

k (x|θ̂k−1)dx∑N
j=1

∑N
l=1

∫
ηij−l

k (x|θ̂k−1)dx
for 1 ≤ i, j ≤ N. (5.88)

Since the densities ηij−l
k (x|θ̂k−1) are approximated by a single weighted Gaus-

sian density, we have ∫
ηij−l

k (x|θ̂k−1)dx = dij−l
k (5.89)

which gives

π̂
(k)
ij =

∑N
l=1 dij−l

k∑N
j=1

∑N
l=1 dij−l

k

for 1 ≤ i, j ≤ N. (5.90)

Remark 5.3 It is important to note that, for the calculation of the transition

probability estimates, all that matters about the coefficients dij−l
k (or dij−0l

k ) is

their relative magnitudes (and not their absolute magnitudes). Therefore, at

any time-step k, one can multiply the the coefficients dij−l
k (or dij−0l

k ) by a com-

mon constant number without affecting the output estimate. In the cases where

the coefficients get too small or too big to handle in computer, one can make

some normalization on them accordingly without affecting the performance.

Moreover, the term ψ(yk) given in the coefficient update equations, which can

cause a division by zero in the computer, can be discarded safely since it is a

common factor to all of the coefficients.

5.6 Summary, Modifications and Base-State

Estimation

In this section, we summarize the algorithm derived in the previous sections.

• Initialization at k = 1:
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– Set the coefficients (mode weights) {dij−l
1 }, estimates {x̂ij−l

1|1 } and

covariances {Σij−l
1|1 } for 1 ≤ i, j, l ≤ N as

dij−l
1 =





c̄i
0π̂

(0)
ij

ψ(y1)
N (y1; Cjx̂

ij−j
1|0 , Sij−j

1 ) l = j

0 otherwise
, (5.91)

x̂ij−l
1|1 =





x̂ij−j
1|0 + Σij−j

1|0 CT
j (Sij−j

1 )−1(y1 − Cjx̂
ij−j
1|0 ) l = j

Arbitrary otherwise
(5.92)

Σij−l
1|1 =





Σij−j
1|0 − Σij−j

1|0 CT
j (Sij−j

1 )−1CjΣ
ij−j
1|0 l = j

Arbitrary otherwise
. (5.93)

where

x̂ij−j
1|0 = Ajx̂

i
0|0, (5.94)

Σij−j
1|0 = AjΣ

i
0|0A

T
j + BjB

T
j , (5.95)

Sij−j
1 = CjΣ

ij−j
1|0 CT

j + DjD
T
j . (5.96)

Note that the quantities c̄i
0, x̂i

0|0 and Σi
0|0 required for Eqns. from

5.91 to 5.96 are given by

Sj
0 , CjΣ0C

T
j + DjD

T
j , (5.97)

x̂j
0|0 , x̄0 + Σ0C

T
j (Sj

0)
−1(y0 − Cjx̄0), (5.98)

Σj
0|0 , Σ0 − Σ0C

T
j (Sj

0)
−1CjΣ0, (5.99)

c̄j
0 =

πj
0

ψ(y0)
N (y0; Cjx̄0, S

j
0). (5.100)

– Calculate the transition probability estimates as

π̂
(1)
ij =

∑N
l=1 dij−l

1∑N
j=1

∑N
l=1 dij−l

1

for 1 ≤ i, j ≤ N. (5.101)

• Update for k > 1:

– Mixing: Calculate the mixed coefficients {dij−0l
k−1 }, estimates {x̂ij−0l

k−1|k−1}
and covariances {Σij−0l

k−1|k−1} for 1 ≤ i, j, l ≤ N as

dij−0l
k−1 =

N∑
m=1

π̂
(k−1)
ml dij−m

k−1
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+
〈el, ej〉π̂(k−1)

ij

k − 1

N∑
u=1

N∑
v=1

duv−i
k−1 , (5.102)

x̂ij−0l
k−1|k−1 =

N∑
m=1

π̂
(k−1)
ml dij−m

k−1

dij−0l
k−1

x̂ij−m
k−1|k−1

+
〈el, ej〉
k − 1

π̂
(k−1)
ij

dij−0l
k−1

N∑
u=1

N∑
v=1

duv−i
k−1 x̂uv−i

k−1|k−1, (5.103)

Σij−0l
k−1|k−1 =

N∑
m=1

π̂
(k−1)
ml dij−m

k−1

dij−0l
k−1

[
Σij−m

k−1|k−1

+(x̂ij−m
k−1|k−1 − x̂ij−0l

k−1|k−1)(x̂
ij−m
k−1|k−1 − x̂ij−0l

k−1|k−1)
T
]

+
〈el, ej〉
k − 1

π̂
(k−1)
ij

dij−0l
k−1

N∑
u=1

N∑
v=1

duv−i
k−1

[
Σuv−i

k−1|k−1

+(x̂uv−i
k−1|k−1 − x̂ij−0l

k−1|k−1)(x̂
uv−i
k−1|k−1 − x̂ij−0l

k−1|k−1)
T
]
.(5.104)

– Kalman Filtering: Using the mixed coefficients {dij−0l
k−1 }, estimates

{x̂ij−0l
k−1|k−1} and covariances {Σij−0l

k−1|k−1} for 1 ≤ i, j, l ≤ N as the ini-

tial conditions, run Kalman filters to obtain updated mode weights

{dij−l
k−1}, estimates {x̂ij−0l

k|k } and covariances {Σij−0l
k|k } for 1 ≤ i, j, l ≤

N . The required Kalman filtering equations are given as

∗ Prediction Update:

x̂ij−l
k|k−1 = Alx̂

ij−0l
k−1|k−1, (5.105)

Σij−l
k|k−1 = AlΣ

ij−0l
k−1|k−1A

T
l + BlB

T
l . (5.106)

∗ Measurement Update:

x̂ij−l
k|k = x̂ij−l

k|k−1 + Σij−l
k|k−1C

T
l (Sij−l

k )−1(yk − Clx̂
ij−l
k|k−1),

Σij−l
k|k = Σij−l

k|k−1 − Σij−l
k|k−1C

T
l (Sij−l

k )−1ClΣ
ij−l
k|k−1, (5.107)

dij−l
k =

dij−l
k−1

ψ(yk)
N (yk; Clx̂

ij−l
k|k−1, S

ij−l
k ), (5.108)

Sij−l
k = ClΣ

ij−l
k|k−1C

T
l + DlD

T
l . (5.109)

– Estimate Calculation: The new transition probability estimates

are calculated as

π̂
(k)
ij =

∑N
l=1 dij−l

k∑N
j=1

∑N
l=1 dij−l

k

for 1 ≤ i, j ≤ N. (5.110)
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5.6.1 Modifications

The algorithm summarized above calculates the expected number of jumps at

each step k using the previously estimated transition probabilities {π̂(k−1)
ij }N

i,j=1

and then it updates the transition probability estimates with new ones {π̂(k)
ij }N

i,j=1.

The algorithm therefore works as/in a closed estimation loop. Since there are

insufficient number of jumps observed between the states in the first few sam-

pling instants to estimate the transition probabilities, most probability esti-

mates erratically jump to either zero or unity in the unmodified version of the

algorithm. It is therefore desirable not to close the estimation loop for a few

samples at the initial part of the estimation. During this period, the algorithm

uses the initial transition probabilities and does not update the transition prob-

ability estimates. After a sufficient number of sampling periods, the loop can

be safely closed to update the transition probability estimates.

It is observed during the simulations that, the ever decaying characteristics

of the coefficient 1
k−1

in Eqns. 5.102 to 5.104 reduces the convergence speed

significantly. Therefore, it is desirable to limit this decay. For this purpose,

the coefficient 1
k−1

is replaced by max{ 1
k−1

, εD} where εD ¿ 1 is called as the

decay limit factor. This modification makes the algorithm converge faster and

track the possible transition rate changes at the expense of making it slightly

more prone to noise.

5.6.2 Joint Base-State Estimation

The approximate ML algorithm derived above can provide mode-conditioned

state estimates and covariances along with overall approximate MMSE esti-

mate and covariance as a by-product. Therefore, if the base-state estimates and

covariances of the JMLS are also required, one need not execute an additional

state estimator (like IMM of GPB2) which uses the online calculated transition

probabilities. The mode-conditioned state estimates x̂m
k|k, covariances Σm

k|k and

mode-probabilities µm
k defined as

x̂m
k|k , E{xk|Yk, rk = m, Θ̂k−1}, (5.111)
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Σm
k|k , E{(xk − x̂m

k|k)(xk − x̂m
k|k)

T |Yk, rk = m, Θ̂k−1}, (5.112)

µm
k , P{rk = m|Yk, Θ̂

k−1} (5.113)

can be calculated using the ML estimator states x̂ij−l
k|k , covariances Σij−l

k|k and

mode weights dij−l
k using the following formulas:

x̂m
k|k =

1∑N
i=1

∑N
j=1 dij−m

k

N∑
i=1

N∑
j=1

dij−m
k x̂ij−m

k|k , (5.114)

Σm
k|k =

1∑N
i=1

∑N
j=1 dij−m

k

N∑
i=1

N∑
j=1

dij−m
k

[
Σij−m

k|k

+(x̂ij−m
k|k − x̂m

k|k)(x̂
ij−m
k|k − x̂m

k|k)
T
]
, (5.115)

µm
k =

∑N
i=1

∑N
j=1 dij−m

k∑N
m=1

∑N
i=1

∑N
j=1 dij−m

k

. (5.116)

These formulas can be obtained easily as a direct consequence of the rela-

tionship given in Eqn. 5.29. The overall MMSE state estimates x̂k|k and

covariances Σk|k defined as

x̂k|k , E{xk|Yk, Θ̂
k−1}, (5.117)

Σk|k , E{(xk − x̂k|k)(xk − x̂k|k)
T |Yk, Θ̂

k−1} (5.118)

can then be calculated using IMM (or GPB2) final output calculation formulas

[13].

5.7 Simulation Results

This section illustrates the performance of the maximum likelihood estimator

on the simulated scenarios used in Chapter 4. Here the properties of the

examples are repeated for convenience. The first scenario is taken from [1]

where the following system model is considered.

xk+1 = xk + wk, (5.119)

yk = (rk − 1)xk + (100− 90(rk − 1))vk (5.120)
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where

x0 ∼ N (x0; 0, 202), (5.121)

wk ∼ N (wk; 0, 2
2), (5.122)

vk ∼ N (vk; 0, 1) (5.123)

with x0, wk and vk being mutually independent for k = 1, 2, . . .. The model

sequence rk ∈ {1, 2} is a first-order, two-state, homogeneous Markov process

with probability transition matrix Π = [πij] given as

Π =


 0.6 0.4

0.85 0.15


 . (5.124)

Note that this system corresponds to a system with frequent measurement

failures with the modal-state rk = 1 corresponding to the case of the failure.

The modified ML algorithm is run on the simulated measurements of this

system with initial transition probabilities π̂
(0)
11 = π̂

(0)
22 = 0.5 and the transition

probabilities are estimated for 1000 Monte-Carlo runs. The length of open

loop estimation period and the decay limit factor are selected as 20 and εD =

0.01 respectively. The average estimation performance of the modified ML

algorithm is given in Fig. 5.1.

Note that during open loop period which corresponds to the first twenty

sampling instants, the initial transition probability estimates are not changed.

Once the estimation loop is closed, the transition probability estimates jump

to values which are near to their corresponding true values and then they

continue to converge towards the true values.

The second example contains a hypothetical scalar jump Markov linear

system which has three models. The parameters of the system are given as

• A(1) = 0.8, A(2) = 0.9, A(3) = 1

• B(i) = 1 for i = 1, 2, 3.

• C(1) = 1, C(2) = 2, C(3) = 4
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Figure 5.1: Average transition probability estimation performance of the mod-
ified maximum likelihood estimation algorithm.

• D(i) = 1 for i = 1, 2, 3.

• x0 ∼ N (x0; 0, 2
2)

• wk ∼ N (wk; 0, 2
2)

• vk ∼ N (vk; 0, 1)

and the true transition probability associated with the mode sequence rk is

taken as

Π =




0.2 0.4 0.4

0.25 0.5 0.25

0.1 0.1 0.8


 . (5.125)

The initial probability transition matrix estimate Π̂0 is selected as

Π̂0 =




0.33 0.33 0.34

0.33 0.33 0.34

0.33 0.33 0.34


 . (5.126)

104



1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
π

11
π

22
π

33
π

12
π

21
π

32

Figure 5.2: Average transition probability estimation performance of the mod-
ified maximum likelihood estimation algorithm.

The modified algorithm works with open estimation loop for the first 100

sampling instants and the decay limit factor is selected as εD = 0.001. The

average estimation performance for 1000 Monte-Carlo runs are shown in Fig.

5.2.

In this plot, there exists some bias in the estimated probabilities like the

case in [1]. These can be attributed to the approximations involved in the

derivation and they seem to be negligible.

5.7.1 Comparison with RKL Algorithm

In this subsection, we compare the estimation performance of the ML method

to that of the Recursive Kullback-Leibler (RKL) method presented in Chapter

4. For this purpose, we plot the estimation performances of the methods on

the same plot for the first example given above. For the RKL method, the

constant step-size sequence is selected as εn = 0.02 like the case in Chapter 4.

The average transition probability estimation and typical single-run estimation
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Figure 5.3: Average transition probability estimation performances of the mod-
ified maximum likelihood estimation algorithm and the RKL algorithm. The
thicker and thinner lines denote the ML and RKL estimation results respec-
tively.

performances of the methods are shown on Figs. 5.3 and 5.4 respectively.

According to the average performance plot, the initial convergence rate of

ML algorithm is much faster than that of the RKL algorithm. However, in

the long terms, the estimation performances get similar to each other. This

situation suggests the usage of ML algorithm at the beginning of the estima-

tion for fast convergence and then switching to the RKL algorithm with low

computation for the rest of the estimation. The single-run comparison is also

worth mentioning. Fig. 5.4 shows that the probability estimate trajectories

of ML are less noise-prone than that of RKL. The noise susceptibility of the

RKL method can be reduced by decreasing the step-size εn but this, in turn,

would further reduce the convergence speed of the RKL method significantly.

5.8 Conclusions

This chapter proposed an approximate ML estimator for the transition prob-

abilities associated with JMLSs. The estimator, which requires the mode
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Figure 5.4: Single-run transition probability estimation performances of the
modified maximum likelihood estimation algorithm and the RKL algorithm.
The thicker and thinner lines denote the ML and RKL estimation results
respectively.

weights of a N3 component IMM filter to calculate the transition probabili-

ties, can also supply the base-state estimates and covariances as a by-product.

The simulation studies show that the estimator is faster (at least in the ini-

tial phases of the estimation) and less noise-prone than the RKL algorithm of

Chapter 4.
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CHAPTER 6

MIXED MULTIPLE MODEL ESTIMATION

ALGORITHMS

6.1 Introduction

Multiple-model estimation techniques are mainly proposed for solving the

problem of state estimation in the cases where the model uncertainties can

be covered by a finite number of models. However, the computational cost of

obtaining the optimal minimum mean-square error (MMSE) estimate of the

state in multiple-model configurations increases exponentially in time [13].1

Therefore; approximations are necessarily made to obtain suboptimal but com-

putationally cheaper estimates. The most well-known examples of these sub-

optimal approaches are the Generalized Pseudo Bayesian (GPB) [7, 8] and the

Interacting Multiple Model (IMM) [11, 13] algorithms. In these algorithms,

the multiple component Gaussian mixtures are approximated by a single Gaus-

sian, matching the mean and covariance of the densities. In this chapter, the

effect of this approximation applied to the input of an optimal Bayesian filter

is investigated. The first and second moments of the error between the es-

timate resulting from the approximation (which is the estimate of a Kalman

filter) and MMSE-optimal estimate which is obtained from Bayesian density

recursions are examined. An analytical expression for the covariance of the

resulting error (due to the approximation) in the filter estimate which can be

calculated before filtering, is found. This measure is then used as a tool for

1 This fact was also observed in the IMM filter derivation of Sec. 3.3.
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generating a mixed IMM-GPB2 algorithm.

In the literature, GPB2 and IMM algorithms are always used by selecting

one algorithm or another for all times (that estimates are required). However,

it is possible to generate hybrid algorithms by applying GPB2 or IMM inter-

changeably based on some criteria for each sampling time tk. In other words,

applying IMM for sampling time tk (for all models of JMLS) and then if some

criteria are satisfied applying GPB2 for time tk+1 (for all models of the JMLS)

is possible. This application, once a useful criterion is selected, is straightfor-

ward. What is achieved in this chapter is to show that it is possible to extend

the above mentioned hybrid scheme to a mixed scheme where at each time step

tk, the algorithm can select a different estimation procedure (either GPB2 or

IMM) for each model of the JMLS. The parallel structures of these algorithms,

which are composed of multiple Kalman filters, make this extension possible.

For the criterion required for the selection of the algorithms is provided by

the approximation analysis mentioned above. The resulting mixed algorithm

can combine IMM and GPB2 algorithms while achieving the performance of

GPB2 with less computational load.

The outline of the chapter is as follows. In Section 6.2, the problem defi-

nition is made and the optimal solution in terms of Bayesian density updates

is given. The estimate after the approximation is obtained in Section 6.3.

Section 6.4 is composed of the investigation of the first two moments of the

error between optimal and the approximate estimates. We proceed with a brief

review of the IMM and GPB2 algorithms in Sec.6.5 which is followed by the

introduction of the mixed IMM-GPB2 algorithm in Section 6.6. In Section

6.7, the simulation results are presented for the mixed IMM-GPB2 algorithm.

The chapter is finalized with conclusions in Section 6.8.

6.2 Problem Definition and Optimal Solution

Let (Ω,F , P ) be a probability space and let xk, yk, wk and vk be random vari-

ables defined on this space. We assume that the probability density functions
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for all of the defined random variables exist and that all the random variables

are integrable. Suppose we are given the following discrete-time state-space

representation

xk+1 = Axk + Bwk, (6.1)

yk = Cxk + Dvk (6.2)

where wk and vk are uncorrelated, white Gaussian noises with zero mean and

covariance Q and R respectively. The prior density p(x0) for the initial state

x0 is the Gaussian mixture which is given below

p(x0) =
N∑

i=1

piN (x0; x̄i, Σi) (6.3)

where the notation N (x; x̄, Σ) denotes the multivariate normal density with

dummy variable x, mean x̄ and covariance Σ. The component probabilities

{pi}N
i=1 sum up to unity, i.e.,

∑N
i=1 pi = 1.

6.2.1 Problem Definition

We are interested in the optimal MMSE estimate x̂k|k and its covariance Σk|k

given as

x̂k|k = E[xk|Y k], (6.4)

Σk|k = E[(xk − x̂k|k)(xk − x̂k|k)
T |Y k] (6.5)

where

Y k , {y0, y1, . . . , yk}.2 (6.6)

In the remaining parts of the chapter, the prediction and measurement updates

for the Bayesian (or Kalman) filters will be examined separately. In each case,

we assume that we are at an intermediate stage of a recursive estimation

process and our input density (information state to be updated) is an N -

component Gaussian mixture. Therefore; in prediction (measurement) update,

2 In this chapter, we do not discriminate between Y k and Yk which denotes the σ-algebra
generated by the random variables y0, y1, . . . , yk for the sake of simplicity.
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it is assumed that the input density p(xk−1|Y k−1) (p(xk|Y k−1)) is a Gaussian

mixture. In a nonrecursive framework, the input densities correspond to prior

density of the estimatee at the corresponding level of estimation.

6.2.2 Optimal Solution

The optimal solution to the problem stated above is well-known and given for

example in [64] or [65]. In the following, we repeat these facts with their basic

proofs.

6.2.2.1 Prediction Update

The general Bayesian density update equation for MMSE prediction update is

given as follows [45].

p(xk|Y k−1) =

∫
p(xk|xk−1)p(xk−1|Y k−1)dxk−1. (6.7)

Let p(xk−1|Y k−1) be the N -component Gaussian mixture given below

p(xk−1|Y k−1) =
N∑

i=1

piN (xk−1; x̄i, Σi). (6.8)

Substituting Eqn. 6.8 into Eqn. 6.7, we obtain

p(xk|Y k−1) =

∫
p(xk|xk−1)

N∑
i=1

piN (xk−1; x̄i, Σi)dxk−1 (6.9)

=
N∑

i=1

pi

∫
p(xk|xk−1)N (xk−1; x̄i, Σi)dxk−1. (6.10)

Noting the system dynamics given in Eqn. 6.1, the conditional probability

density function p(xk|xk−1) is given as

p(xk|xk−1) = N (xk; Axk−1, BQBT ). (6.11)

Each integral in Eqn. 6.10 therefore can be evaluated easily using the Kalman

filter prediction update formulas. Then,

p(xk|Y k−1) =
N∑

i=1

piN (xk; x̄
−
i , Σ−

i ) (6.12)
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where

x̄−i = Ax̄i, (6.13)

Σ−
i = AΣiA

T + BQBT (6.14)

for i = 1, 2. The optimal MMSE prediction x̂op
k|k−1 and its covariance Σop

k|k−1 is

therefore given by

x̂op
k|k−1 =

N∑
i=1

pix̄
−
i , (6.15)

Σop
k|k−1 =

N∑
i=1

pi

[
Σ−

i + (x̄−i − x̂op
k|k−1)(x̄

−
i − x̂op

k|k−1)
T
]
. (6.16)

6.2.2.2 Measurement Update

The general Bayesian density update equation for MMSE measurement update

is given as follows [45].

p(xk|Y k) =
p(yk|xk)p(xk|Y k−1)∫
p(yk|xk)p(xk|Y k−1)dxk

. (6.17)

Let p(xk|Y k−1) be the N -component Gaussian mixture given below.

p(xk|Y k−1) =
N∑

i=1

piN (xk; x̄i, Σi). (6.18)

Substituting Eqn. 6.18 into Eqn. 6.17, we get

p(xk|Y k) =
p(yk|xk)

∑N
i=1 piN (xk; x̄i, Σi)∫

p(yk|xk)
∑N

i=1 piN (xk; x̄i, Σi)dxk

(6.19)

=

∑N
i=1 pip(yk|xk)N (xk; x̄i, Σi)∑N

i=1 pi

∫
p(yk|xk)N (xk; x̄i, Σi)dxk

. (6.20)

Using the Kalman filter measurement update formulas, the following expres-

sion can be written for each term in the numerator of the right hand side of

Eqn. 6.20.

p(yk|xk)N (xk; x̄i, Σi) = N (xk; x̄
+
i , Σ+

i )

∫
p(yk|xk)N (xk; x̄i, Σi)dxk (6.21)

where

x̄+
i = x̄i + Ki(yk − Cx̄i), (6.22)

Σ+
i = Σi −KiSiK

T
i = Σi − ΣiC

T S−1
i CΣi (6.23)
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with

Ki = ΣiC
T S−1

i = Σ+
i CT R−1, (6.24)

Si = CΣiC
T + DRDT . (6.25)

Noting the measurement equation given in Eqn. 6.2, the conditional density

p(yk|xk) is given as

p(yk|xk) = N (yk; Cxk, R). (6.26)

Using this, each integral term in the denominator of Eqn. 6.20 (and also the

integral in Eqn. 6.21) can be calculated as

∫
p(yk|xk)N (xk; x̄i, Σi)dxk = N (yk; ȳi, Si) (6.27)

where ȳi = Cx̄i and the definition of Si is given in Eqn. 6.25. Using these

results, the posterior density p(xk|Y k) becomes

p(xk|Y k) =

∑N
i=1 piN (yk; ȳi, Si)N (xk; x̄

+
i , Σ+

i )∑N
i=1 piN (yk; ȳi, Si)

. (6.28)

Defining new measurement dependent probabilities p+
i as

p+
i , piN (yk; ȳi, Si)∑N

j=1 pjN (yk; ȳj, Sj)
, (6.29)

the posterior density p(xk|Y k) is given as

p(xk|Y k) =
N∑

i=1

p+
i N (xk; x̄

+
i , Σ+

i ). (6.30)

Calculating, the mean and the covariance of this density gives us the following

optimal filtered estimate x̂op
k|k and covariance Σop

k|k as

x̂op
k|k =

N∑
i=1

p+
i x̄+

i , (6.31)

Σop
k|k =

N∑
i=1

p+
i

[
Σ+

i + (x̄+
i − x̂op

k|k)(x̄
+
i − x̂op

k|k)
T
]
. (6.32)
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6.3 Approximate Solution

In this section, we are going to approximate the Gaussian mixtures which

are input to the prediction and measurement updates of the optimal Bayesian

recursions in the previous section by a single Gaussian whose mean and covari-

ance are matched to those of the Gaussian mixture. Therefore, we will assume

in each update, the input Gaussian mixture

p(x) =
N∑

i=1

piN (x, x̄i, Σi) (6.33)

is approximated by

papp(x) = N (x, x̄app, Σapp) (6.34)

where

x̄app ,
N∑

i=1

pix̄i, (6.35)

Σapp ,
N∑

i=1

pi

[
Σi + (x̄i − x̄app)(x̄i − x̄app)

T
]
. (6.36)

The Bayesian recursions after this approximation turn into simply the standard

Kalman filter updates.

6.3.1 Prediction Update

Now, assuming that the input Gaussian mixture

p(xk−1|Y k−1) =
N∑

i=1

piN (xk−1, x̄i, Σi) (6.37)

is approximated by a single Gaussian

p(xk−1|Y k−1) ≈ N (xk−1; x̄app, Σapp) (6.38)

where x̄app and Σapp are given in Eqn. 6.35 and Eqn. 6.36 respectively. Then

the suboptimal prediction resulting from this approximation is

x̂sub
k|k−1 = Ax̄app, (6.39)

Σsub
k|k−1 = AΣappA

T + BQBT . (6.40)
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Substituting x̄app given in Eqn. 6.35 into Eqn. 6.39

x̂sub
k|k−1 = A

N∑
i=1

pix̄i =
N∑

i=1

piAx̄i =
N∑

i=1

pix̄
−
i = x̂op

k|k−1 (6.41)

Substituting Σapp in Eqn. 6.36 into Eqn. 6.40, we obtain

Σsub
k|k−1 = A

N∑
i=1

pi

[
Σi + (x̄i − x̄app)(x̄i − x̄app)

T
]
AT + BQBT (6.42)

=
N∑

i=1

pi

[
AΣiA

T + BQBT + A(x̄i − x̄app)(x̄i − x̄app)
T AT ](6.43)

=
N∑

i=1

pi

[
Σ−

i + (x̄−i − Ax̄app)(x̄
−
i − Ax̄app)

T
]

(6.44)

=
N∑

i=1

pi

[
Σ−

i + (x̄−i − x̂sub
k|k−1)(x̄

−
i − x̂sub

k|k−1)
T
]

(6.45)

=
N∑

i=1

pi

[
Σ−

i + (x̄−i − x̂op
k|k−1)(x̄

−
i − x̂op

k|k−1)
T
]

= Σop
k|k−1. (6.46)

These two results prove that the Kalman filter prediction update yields the

same first two moments as the Bayesian density recursion under the moment

matched single Gaussian approximation. In other words, the single Gaussian

approximation causes no change in the MMSE estimate and covariance. This

invariance property of the Kalman filter prediction update is already known

and is the main motive underlying the IMM-type hypothesis merging (instead

of GPB2-type merging) [13].

6.3.2 Measurement Update

Assuming that the input Gaussian mixture

p(xk|Y k−1) =
N∑

i=1

piN (xk, x̄i, Σi) (6.47)

is approximated by a single Gaussian

p(xk|Y k−1) ≈ N (xk; x̄app, Σapp) (6.48)
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where x̄app and Σapp are given in Eqn. 6.35 and Eqn. 6.36 respectively. Then,

the Kalman filter measurement update gives the suboptimal estimate and co-

variance as

x̂sub
k|k = x̄app + Ksub(yk − Cx̄app), (6.49)

Σsub
k|k = Σapp −KsubSsubK

T
sub = Σapp − ΣappC

T S−1
subCΣapp (6.50)

where

Ksub = ΣappC
T S−1

sub = Σsub
k|kCT R−1, (6.51)

Ssub = CΣappC
T + DRDT =

N∑
i=1

pi

[
Si + (ȳi − ȳ)(ȳi − ȳ)T

]
(6.52)

ȳ =
N∑

i=1

piȳi. (6.53)

Unfortunately, these equations show that the optimal estimate and covariance

given in Eqn. 6.31 and Eqn. 6.32 respectively are different than the sub-

optimal ones above. Therefore, under the moment-matched single Gaussian

approximation, using the standard Kalman filter measurement update (unlike

the prediction update) causes our final estimate to deviate from the optimal

MMSE one.

This type of approximation appears in IMM and GPB filtering and possibly

in other multiple-model estimation applications. Specifically, this approxima-

tion is made during the mixing process3 of the IMM filter at the input of each

component Kalman filter and it is the main approximation that makes the

IMM filter different from the GPB2 filter. Up to now, the difference between

the two filters was analyzed only by means of Monte-Carlo runs [11] and to the

author’s knowledge, this chapter’s work is the first one which tries to quantify

the deviation analytically. In the next section, the first two moments of the

error caused by the moment-matched single Gaussian approximation will be

examined.

3 See the derivation of the IMM filter in Sec. 3.3 for an illustration of the mixing process.
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6.4 Error Analysis

In the previous section, it was shown that the Kalman filter measurement

update results in erroneous estimate and covariance under moment-matched

single Gaussian approximation unlike the prediction update whose resulting

estimate (i.e, prediction) is invariant under the same approximation. Defining

the error ∆ caused by the measurement update4 as

∆ , x̂sub
k|k − x̂op

k|k, (6.54)

in this section, we are interested in the conditional expected value

∆ , Eyk
[∆|Y k−1] (6.55)

and the conditional covariance

Σ∆ , Eyk
[(∆−∆)(∆−∆)T |Y k−1] (6.56)

of this error. Note that the expectations given above are to be taken with

respect to yk which has a conditional density given as

p(yk|Y k−1) =

∫
p(yk|xk)p(xk|Y k−1)dxk =

N∑
j=1

pjN (yk; ȳj, Sj). (6.57)

Therefore; the density with respect to which the expectations are to be taken

is also a Gaussian mixture.

6.4.1 Calculation of the Mean of ∆

In order to find ∆, we need the expected values of the the optimal and sub-

optimal estimates.

Eyk
[x̂sub

k|k |Y k−1] = Eyk
[x̄app + Ksub (yk − Cx̄app) |Y k−1] (6.58)

= x̄app + Ksub

(
Eyk

[yk|Y k−1]− Cx̄app

)
(6.59)

= x̄app + Ksub

(
N∑

i=1

piȳi − Cx̄app

)
. (6.60)

4 In an IMM framework, this error may correspond to the error caused in the filtered
estimates of individual (component) Kalman filters by the moment-matched single Gaussian
approximation made in the mixing process at the input of the filters.
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Replacing Cx̄app by
∑N

i=1 piȳi,

Eyk
[x̂sub

k|k |Y k−1] = x̄app. (6.61)

Note that this is just a rephrasing of the fact that

Eyk
[x̂k|k|Y k−1] = Eyk

[E[xk|Y k]|Y k−1] = E[xk|Y k−1] = x̂k|k−1. (6.62)

In a more technical language, this is the manifestation of the fact that, for an

integrable random variable ξ, the sequence of random variables ξn defined as

ξn , E[ξ|Fn] (6.63)

is a martingale with respect to the filtration {Fn}∞n=1[66]. In our case, ξ = xk

and Fn is the σ-field generated by Y n (i.e., Yn). Another interpretation is that

the Kalman filter and the optimal Bayesian density measurement updates are

unbiased estimators. Using the same fact, we can easily conclude that

Eyk
[x̂op

k|k|Y k−1] = x̄app. (6.64)

However, we are going to prove this fact the long way as well to gain some

insight about the quantities we are dealing with.

Eyk
[x̂op

k|k|Y k−1] = Eyk

[∑N
i=1p

+
i x̄+

i

∣∣∣Y k−1
]

(6.65)

= Eyk

[∑N
i=1p

+
i [x̄i + Ki(yk − Cx̄i)]

∣∣∣ Y k−1
]

(6.66)

=
N∑

i=1

Eyk
[p+

i |Y k−1] [I −KiC] x̄i + KiEyk
[p+

i yk|Y k−1].

Therefore; for the evaluation of this expected value, we need other intermediate

expected values Eyk
[p+

i |Y k−1] and Eyk
[p+

i yk|Y k−1]. Note that

p+
i , piN (yk; ȳi, Si)∑N

j=1 pjN (yk; ȳj, Sj)
=

piN (yk; ȳi, Si)

p(yk|Y k−1)
. (6.67)

Then,

Eyk
[p+

i |Y k−1] ,
∫

p+
i p(yk|Y k−1)dyk = pi

∫
N (yk; ȳi, Si)dyk = pi. (6.68)
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As a result,

Eyk
[p+

i |Y k−1] = pi. (6.69)

In the same way,

Eyk
[p+

i yk|Y k−1] ,
∫

p+
i ykp(yk|Y k−1)dyk = pi

∫
ykN (yk; ȳi, Si)dyk = piȳi.

Consequently,

Eyk
[p+

i yk|Y k−1] = piȳi. (6.70)

Using these expected values, we calculate the expected value of the optimal

filtered estimate x̂op
k|k as

Eyk
[x̂op

k|k|Y k−1] =
N∑

i=1

pi [I −KiC] x̄i + piKiȳi =
N∑

i=1

pix̄i = x̄app. (6.71)

Having calculated the required expected values of the sub-optimal and optimal

estimates, the mean of ∆ is given as

∆ , Eyk
[∆|Y k−1] = 0 (6.72)

which means that the moment-matched single Gaussian approximation does

not cause any bias in the estimate.

6.4.2 Calculation of the Covariance of ∆

The covariance Σ∆ of ∆ then can be calculated by

Σ∆ = Eyk
[∆∆T |Y k−1] (6.73)

where

∆ , x̂sub
k|k − x̂op

k|k = x̄app + Ksub(yk − Cx̄app)−
∑N

i=1p
+
i x̄+

i (6.74)

= x̄app + Ksub(yk − ȳ)−∑N
i=1p

+
i [x̄i + Ki (yk − Cx̄i)] (6.75)

= x̄app + Ksub(yk − ȳ)−∑N
i=1p

+
i [x̄i + Ki (yk − ȳi)] . (6.76)

Since the expression is too long, we are going to assign the terms to some

auxiliary variables. Define

T1 , x̄app, (6.77)
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T2 , Ksub(yk − ȳ), (6.78)

T3 ,
∑N

i=1p
+
i x̄i, (6.79)

T4 ,
∑N

i=1p
+
i Ki (yk − ȳi) . (6.80)

Then,

Σ∆ = Eyk
[(T1 + T2 − T3 − T4) (T1 + T2 − T3 − T4)

T
∣∣ Y k−1]. (6.81)

Thus, the covariance calculation requires the expected values of the form

Eyk

[
TiT

T
j |Y k−1

]
for i, j = 1, . . . , 4. (6.82)

The evaluation of these expected values involves second order marginal and

cross moments of the posterior probabilities p+
i and yk with respect to the

density p(yk|Y k−1). These expected values are extremely difficult (if not im-

possible) to evaluate analytically, and therefore; some approximations has to

be made. The evaluation of the second marginal moment of the probability p+
i

shown below illustrates the approximation used to calculate these integrals.

Eyk
[(p+

i )2|Y k−1] ,
∫

(p+
i )2p(yk|Y k−1)dyk (6.83)

=

∫
p2

iN 2(yk; ȳi, Si)∑N
j=1 pjN (yk; ȳj, Sj)

dyk (6.84)

= pi

∫
piN (yk; ȳi, Si)∑N

j=1 pjN (yk; ȳj, Sj)
N (yk; ȳi, Si)dyk. (6.85)

At this point, we see that the numerator of the integrand is the square of

a Gaussian density which decreases quite fast. Due to this, the integration

is effectively around the mean value ȳi. Assuming that the means ȳi of the

Gaussian components are separated sufficiently, in the effective integration

range, the Gaussian mixture in the denominator can be approximated as

N∑
j=1

pjN (yk; ȳj, Sj) ≈ piN (yk; ȳi, Si). (6.86)

This corresponds to assuming that the measurement dependent posterior prob-

ability p+
i is approximately unity around the mean ȳi within the 2σ covariance
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Figure 6.1: Variance of the probability p+
i vs. pi

ellipse. Many other approximation schemes such as Taylor series expansions

etc. are also possible but they turn out to yield negative variance values for

the probabilities p+
i in some extreme cases. After the approximation, we get

Eyk
[(p+

i )2|Y k−1] ≈ pi

∫
N (yk; ȳi, Si)dyk = pi. (6.87)

Using this identity, we can calculate the variance σ2
p+

i

of the probability p+
i as

σ2
p+

i
= Eyk

[(p+
i )2|Y k−1]− E2

yk
[p+

i |Y k−1] ≈ pi − p2
i . (6.88)

This variance vs. the prior probability pi is shown in Fig.6.1.

With the help of the same approximation, the expected values defined in

Eqn. 6.82 can be evaluated easily.5 After some involved algebraic manipula-

tions which are presented in App. D, the covariance of the error resulting from

moment-matched single Gaussian approximation is found to be

Σ∆ =
N∑

i=1

piΣiC
T S−1

i CΣi − ΣappC
T S−1

subCΣapp +
N∑

i=1

pix̄ix̄
T
i − x̄appx̄

T
app (6.89)

where

x̄app =
N∑

i=1

pix̄i, (6.90)

ȳ = Cx̄app, (6.91)

5 Evaluation of these expectations are investigated in full detail in App. D.

121



Ssub =
N∑

i=1

pi

[
Si + (ȳi − ȳ)(ȳi − ȳ)T

]
, (6.92)

Σapp =
N∑

i=1

pi

[
Σi + (x̄i − x̄app)(x̄i − x̄app)

T
]
. (6.93)

6.5 Review of the IMM and GPB2 Algorithms

In this section, we are going to present a brief review of IMM and GPB2

algorithms. In this way, the approximations made in both of the algorithms

and the differences will be illustrated. We consider the following JMLS model.

xk = Ark
xk−1 + Brk

wk, (6.94)

yk = Crk
xk + Drk

vk. (6.95)

The parameter matrices {Ai, Bi, Ci, Di} are assumed to be known for i ∈
{1, . . . , N} and rk ∈ {1, . . . , N} is a finite-state Markov chain with initial dis-

tribution π0 =
[
π1

0, π
2
0 . . . , πN

0

]
and probability transition matrix Π = [πij]

N
i,j=1.

The noise processes wk and vk are white, uncorrelated and normally distributed

with zero mean and covariances Q and R respectively. The following descrip-

tions of the IMM and GPB2 algorithms have been adapted from [13].

6.5.1 Steps of the GPB2 Algorithm

At each time step, an N -model GPB2 algorithm keeps N filtered estimates

{x̂j
k|k}N

j=1, covariances {Σj
k|k}N

j=1 and mode probabilities {µj
k}N

j=1. At each

cycle, given the previously kept filtered estimates {x̂j
k−1|k−1}N

j=1, covariances

{Σj
k−1|k−1}N

j=1 and the mode probabilities {µj
k−1}N

j=1, the algorithm calculates

the updated values of these quantities using the following steps:

• Mode-Matched Kalman Filtering: The algorithm takes each previ-

ous filtered estimate x̂i
k−1|k−1 and covariance Σi

k−1|k−1 and executes N

Kalman filters each matched to a different model. All N Kalman filters

use the filtered estimate x̂i
k−1|k−1 and covariance Σi

k−1|k−1 as their initial

state and covariance. Since there are N previous filtered estimates, a
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total of N2 Kalman filters are executed. At the end of the filtering, new

filtered estimates x̂ij
k|k and covariances Σij

k|k are obtained. The filtering

equations are given as follows.

x̂ij
k|k−1 = Ajx̂

i
k−1|k−1, (6.96)

Σij
k|k−1 = AjΣ

i
k−1|k−1A

T
j + BjQBT

j , (6.97)

Sij
k = CjΣ

ij
k|k−1C

T
j + DjRDT

j , (6.98)

Kij
k = Σij

k|k−1C
T
j

(
Sij

k

)−1
, (6.99)

x̂ij
k|k = x̂ij

k|k−1 + K ij
k (yk − Cjx̂

ij
k|k−1), (6.100)

Σij
k|k = Σij

k|k−1 −Kij
k Sij

k

(
K ij

k

)T
. (6.101)

• Calculation of the Merging Probabilities: At this step, the merging

probabilities {µij
k|k−1}N

i=1 are calculated for each j. These probabilities are

used to merge the estimates {x̂ij
k|k}N

i=1 and covariances {Σij
k|k}N

i=1 for each

j. The probabilities are calculated as follows,

µij
k|k−1 =

1

cj

∆ij
k πijµ

i
k−1 (6.102)

where

cj =
N∑

i=1

∆ij
k πijµ

i
k−1, (6.103)

∆ij
k = N (yk; Cjx̂

ij
k|k−1, S

ij
k ). (6.104)

• Merging: N filtered estimates {x̂ij
k|k}N

i=1 and covariances {Σij
k|k}N

i=1 are

merged for each j and the new filtered estimates {x̂j
k|k}N

j=1 and covari-

ances {Σj
k|k}N

j=1 are obtained. The merging is done as follows.

x̂j
k|k =

N∑
i=1

µij
k−1|kx̂

ij
k|k, (6.105)

Σj
k|k =

N∑
i=1

µij
k−1|k

[
Σij

k|k + (x̂ij
k|k − x̂j

k|k)(x̂
ij
k|k − x̂j

k|k)
T
]
. (6.106)

• Mode Probability Update: The previous mode probabilities {µi
k−1}N

i=1

are updated to obtain the new mode probabilities {µj
k}N

j=1 as follows.

µj
k =

1

c

N∑
i=1

∆ij
k πijµ

i
k−1 (6.107)
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Figure 6.2: Block diagram of a two-model GPB2 algorithm.

where

c =
N∑

j=1

N∑
i=1

∆ij
k πijµ

i
k−1. (6.108)

• Output Estimate and Covariance Calculation by Merging: The

output estimate and covariance are calculated by merging the filtered

estimates {x̂j
k|k}N

j=1 and covariances {Σj
k|k}N

j=1. The merging is done using

the updated mode probabilities {µj
k}N

j=1 as follows.

x̂k|k =
N∑

j=1

µj
kx̂

j
k|k, (6.109)

Σk|k =
N∑

j=1

µj
k

[
Σj

k|k + (x̂j
k|k − x̂k|k)(x̂

j
k|k − x̂k|k)

T
]
. (6.110)

The steps of the GPB2 algorithm related with the filtered state estimates are

summarized for a two-model GPB2 algorithm in Fig. 6.2.
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6.5.2 Steps of the IMM Algorithm

At each time step, an N -model IMM algorithm keeps N filtered estimates

{x̂j
k|k}N

j=1, covariances {Σj
k|k}N

j=1 and mode probabilities {µj
k}N

j=1. At each

cycle, given the previously kept filtered estimates {x̂j
k−1|k−1}N

j=1, covariances

{Σj
k−1|k−1}N

j=1 and the mode probabilities {µj
k−1}N

j=1, the algorithm calculates

the updated values of these quantities using the following steps:

• Calculation of Mixing Probabilities: In contrast to GPB2, IMM al-

gorithm merges the previous filtered estimates {x̂j
k−1|k−1}N

j=1 and covari-

ances {Σj
k−1|k−1}N

j=1 to obtain N -different initial estimates {x̂0j
k−1|k−1}N

j=1

and the covariances {Σ0j
k−1|k−1}N

j=1 for the mode-matched Kalman filters.

This process is called as mixing and the merging probabilities used for

this purpose are called as the mixing probabilities. The mixing probabil-

ities are calculated as follows.

µij
k−1|k−1 =

1

c̄j

πijµ
i
k−1 (6.111)

where

c̄j =
N∑

i=1

πijµ
i
k−1. (6.112)

• Mixing: The previous filtered estimates {x̂j
k−1|k−1}N

j=1 and covariances

{Σj
k−1|k−1}N

j=1 are merged to obtain N -different initial estimates {x̂0j
k−1|k−1}N

j=1

and the covariances {Σ0j
k−1|k−1}N

j=1 as follows.

x̂0j
k−1|k−1 =

N∑
i=1

µij
k−1|k−1x̂

i
k−1|k−1, (6.113)

Σ0j
k−1|k−1 =

N∑
i=1

µij
k−1|k−1

[
Σi

k−1|k−1

+(x̂i
k−1|k−1 − x̂0j

k−1|k−1)(x̂
i
k−1|k−1 − x̂0j

k−1|k−1)
T
]
. (6.114)

Note that the mixing process described above represents the moment-

matched single Gaussian approximation.

• Mode-Matched Kalman Filtering: The algorithm takes each initial

estimate x̂0j
k−1|k−1 and covariance Σ0j

k−1|k−1 and executes N Kalman filters
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each matched to a different model. All N Kalman filters uses its corre-

sponding initial estimate x̂0j
k−1|k−1 and covariance Σ0j

k−1|k−1 as their initial

state and covariance. Since there are N initial conditions, N Kalman fil-

ters are executed. At the end of this filtering the new filtered estimates

x̂j
k|k and covariances x̂j

k|k are obtained. The filtering equations are given

as follows.

x̂j
k|k−1 = Ajx̂

0j
k−1|k−1, (6.115)

Σj
k|k−1 = AjΣ

0j
k−1|k−1A

T
j + BjQBT

j , (6.116)

Sj
k = CjΣ

j
k|k−1C

T
j + DjRDT

j , (6.117)

Kj
k = Σj

k|k−1C
T
j

(
Sj

k

)−1
, (6.118)

x̂j
k|k = x̂j

k|k−1 + Kj
k(yk − Cjx̂

j
k|k−1), (6.119)

Σj
k|k = Σj

k|k−1 −Kj
kS

j
k

(
Kj

k

)T
. (6.120)

• Mode Probability Update: The previous mode probabilities {µi
k−1}N

i=1

are updated to obtain the new mode probabilities {µj
k}N

j=1 as follows.

µj
k =

1

c̄
∆j

k

N∑
i=1

πijµ
i
k−1 (6.121)

where

c̄ =
N∑

j=1

∆j
k

N∑
i=1

πijµ
i
k−1, (6.122)

∆j
k = N (yk; Cjx̂

j
k|k−1, S

j
k). (6.123)

• Output Estimate and Covariance Calculation by Merging: The

output estimate and covariance are calculated by merging the filtered

estimates {x̂j
k|k}N

j=1 and covariances {Σj
k|k}N

j=1. The merging is done using

the updated mode probabilities {µj
k}N

j=1 as follows.

x̂k|k =
N∑

j=1

µj
kx̂

j
k|k, (6.124)

Σk|k =
N∑

j=1

µj
k

[
Σj

k|k + (x̂j
k|k − x̂k|k)(x̂

j
k|k − x̂k|k)

T
]
. (6.125)
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Figure 6.3: Block diagram of a two-model IMM algorithm.

The steps of the IMM algorithm related with the filtered state estimates are

summarized for a two-model IMM algorithm in Fig. 6.3.

6.6 Efficient Mixed IMM-GPB2 Algorithm

As observed in the discussion above, the moment-matched single Gaussian

approximation is made at many steps of both IMM and GPB2 algorithms. In

this section, we are going to concentrate on specifically the ones made in the

mixing step of the IMM algorithm because they are the main approximations

differentiating an IMM filter from a GPB2 filter. In GPB2 algorithm, for

each model j, each input estimate x̂i
k−1|k−1 is passed through the Kalman

filter matched to model j and the resulting estimates are merged to form the

filtered estimate corresponding to that model (i.e., x̂j
k|k). In contrast to this,

in the IMM filter, the input estimates {x̂i
k−1|k−1}N

i=1 are mixed (merged) first

to form a single initial estimate (for each model), and this initial estimate

is then input to the Kalman filter matched to the model j to obtain filtered

estimate corresponding to that model (i.e., x̂j
k|k). This initial mixing process in

the IMM algorithm is the main reason for the increase in the state estimation

errors of the IMM filter relative to the GPB2 filter. Comparing these processes

with our error analysis, we see that our covariance formula calculated in Sec.

6.4 can be used to calculate the covariance of the error between the filtered
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estimates (of each model) that would be obtained using IMM-type merging

(first mixing then filtering) and those that would be obtained by GPB2-type

merging (first filtering then merging). Therefore, at the beginning of each

algorithm cycle, we can decide, by observing the error covariance, whether to

make IMM-type or GPB2-type merging for each model. For the models which

would result in large errors with the IMM-type merging, GPB2-type merging

can be selected to decrease the errors. This idea is the main motivation for

our mixed IMM-GPB2 filter.

In the following, we are going to present the steps of our Mixed IMM-GPB2

algorithm.

6.6.1 Steps of the Mixed IMM-GPB2 Algorithm

At each time step, an N -model mixed IMM-GPB2 algorithm keeps N filtered

estimates {x̂j
k|k}N

j=1, covariances {Σj
k|k}N

j=1 and mode probabilities {µj
k}N

j=1. At

the beginning of each cycle, the algorithm calculates a statistics γj
k for each

model to decide whether to make IMM-type or GPB-type merging for that

model. Given the previously kept filtered estimates {x̂j
k−1|k−1}N

j=1, covariances

{Σj
k−1|k−1}N

j=1 and the mode probabilities {µj
k−1}N

j=1, the algorithm calculates

the updated values of these quantities using the following steps:

• Calculation of Mixing Probabilities: The mixing probabilities are

required for IMM-type merging (if any) and for the calculation of the

statistics γj
k. The mixing probabilities are calculated as follows (same as

the ones in IMM).

µij
k−1|k−1 =

1

c̄j

πijµ
i
k−1 (6.126)

where

c̄j =
N∑

i=1

πijµ
i
k−1. (6.127)

• Calculation of Predicted Estimates and Merged Predicted Es-

timates: This step is required only for the calculation of the statistics.
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The computational load in this step can be alleviated using the simplifi-

cations mentioned in Sec. 6.6.2. The predicted estimates and covariances

are calculated as follows.

x̂ij
k|k−1 = Ajx̂

i
k−1|k−1, (6.128)

Σij
k|k−1 = AjΣ

i
k−1|k−1A

T
j + BjQBT

j , (6.129)

Sij
k = CjΣ

ij
k|k−1C

T
j + DjRDT

j . (6.130)

The merged predicted estimates and covariances for each model are cal-

culated as follows.

x̂j
app =

N∑
i=1

µij
k−1|k−1x̂

ij
k|k−1, (6.131)

Σj
app =

N∑
i=1

µij
k−1|k−1

[
Σij

k|k−1

+(x̂ij
k|k−1 − x̂j

app)(x̂
ij
k|k−1 − x̂app)

T
]
, (6.132)

Sj
sub = CjΣ

j
appC

T
j + DjRDT

j . (6.133)

• Error Covariance Calculation At this step, the algorithm calculates

for each model j, the covariance of the error Σj that would be induced in

the filtered estimate x̂j
k|k if one uses IMM-type merging instead of GPB2-

type merging. This covariance is given using our analysis and calculated

error covariance formula in Sec. 6.4 as follows.

Σj =
N∑

i=1

µij
k−1|k−1Σ

ij
k|k−1C

T
j

(
Sij

k

)−1
CjΣ

ij
k|k−1

−Σj
appC

T
j

(
Sj

sub

)−1
Cj

(
Σj

app

)T

+
N∑

i=1

µij
k−1|k−1x̂

ij
k|k−1

(
x̂ij

k|k−1

)T

− x̂j
app

(
x̂j

app

)T
. (6.134)

At this stage, the algorithm has to determine, for each model j, whether

the matrix Σj is “big” enough to switch to GPB-type merging for that

model. This can be done using a matrix norm to obtain a statistics γj
k

and a simple thresholding. Also, the application specific heuristics can

do well for this purpose. In fact, in Sec. 6.7, we are going use such a
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heuristics for the simulation. From this point on, we are going to assume

that the required test has already been completed and a decision on

whether to use IMM-type or GPB2-type merging has already been made

for every model.

• For every model j

If IMM-type merging is used

1. Mixing: The previous filtered estimates {x̂j
k−1|k−1}N

j=1 and covari-

ances {Σj
k−1|k−1}N

j=1 are merged to obtain N -different initial esti-

mates {x̂0j
k−1|k−1}N

j=1 and the covariances {Σ0j
k−1|k−1}N

j=1 as follows.

x̂0j
k−1|k−1 =

N∑
i=1

µij
k−1|k−1x̂

i
k−1|k−1, (6.135)

Σ0j
k−1|k−1 =

N∑
i=1

µij
k−1|k−1

[
Σi

k−1|k−1

+(x̂i
k−1|k−1 − x̂0j

k−1|k−1)(x̂
i
k−1|k−1 − x̂0j

k−1|k−1)
T
]
. (6.136)

2. Mode-Matched Kalman Filtering: The algorithm takes each

initial estimate x̂0j
k−1|k−1 and covariance Σ0j

k−1|k−1 and executes N

Kalman filters each matched to a different model. All N Kalman

filters uses its corresponding initial estimate x̂0j
k−1|k−1 and covariance

Σ0j
k−1|k−1 as their initial state and covariance. Since there are N

initial conditions, N Kalman filters are executed. At the end of

this filtering the new filtered estimates x̂j
k|k and covariances x̂j

k|k are

obtained. The filtering equations are given as follows.

x̂j
k|k−1 = Ajx̂

0j
k−1|k−1, (6.137)

Σj
k|k−1 = AjΣ

0j
k−1|k−1A

T
j + BjQBT

j , (6.138)

Sj
k = CjΣ

j
k|k−1C

T
j + DjRDT

j , (6.139)

Kj
k = Σj

k|k−1C
T
j

(
Sj

k

)−1
, (6.140)

x̂j
k|k = x̂j

k|k−1 + Kj
k(yk − Cjx̂

j
k|k−1), (6.141)

Σj
k|k = Σj

k|k−1 −Kj
kS

j
k

(
Kj

k

)T
. (6.142)
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3. Likelihood Calculation: The likelihood ∆j
k of the current mea-

surement yk is calculated as follows

∆j
k = N (yk; Cjx̂

j
k|k−1, S

j
k). (6.143)

If GPB2-type merging is used

1. Kalman Filter Measurement Updates Since the Kalman filter

prediction updates have been already done for statistics calcula-

tions, in this step, only measurement updates are required. These

updates are done as follows.

K ij
k = Σij

k|k−1C
T
j

(
Sij

k

)−1
, (6.144)

x̂ij
k|k = x̂ij

k|k−1 + K ij
k (yk − Cjx̂

ij
k|k−1), (6.145)

Σij
k|k = Σij

k|k−1 −Kij
k Sij

k

(
K ij

k

)T
. (6.146)

2. Calculation of the Merging Probabilities: At this step, the

merging probabilities {µij
k|k−1}N

i=1 are calculated for each j. These

probabilities are used to merge the estimates {x̂ij
k|k}N

i=1 and covari-

ances {Σij
k|k}N

i=1 for each j. The probabilities are calculated as fol-

lows.

µij
k|k−1 =

1

cj

∆ij
k πijµ

i
k−1 (6.147)

where

cj =
N∑

i=1

∆ij
k πijµ

i
k−1, (6.148)

∆ij
k = N (yk; Cjx̂

ij
k|k−1, S

ij
k ). (6.149)

3. Merging: N filtered estimates {x̂ij
k|k}N

i=1 and covariances {Σij
k|k}N

i=1

are merged for each j and the new filtered estimates {x̂j
k|k}N

j=1 and

covariances {Σj
k|k}N

j=1 are obtained. The merging is done as follows.

x̂j
k|k =

N∑
i=1

µij
k−1|kx̂

ij
k|k, (6.150)

Σj
k|k =

N∑
i=1

µij
k−1|k

[
Σij

k|k + (x̂ij
k|k − x̂j

k|k)(x̂
ij
k|k − x̂j

k|k)
T
]
.
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4. Likelihood Calculation: The likelihood ∆j
k of the current mea-

surement yk is calculated as follows.

∆j
k =

N∑
i=1

∆ij
k µij

k−1|k−1. (6.151)

• Mode Probability Update: The previous mode probabilities {µi
k−1}N

i=1

are updated to obtain the new mode probabilities {µj
k}N

j=1 as follows.

µj
k =

1

c̄
∆j

k

N∑
i=1

πijµ
i
k−1 (6.152)

where

c̄ =
N∑

j=1

∆j
k

N∑
i=1

πijµ
i
k−1, (6.153)

∆j
k = N (yk; Cjx̂

j
k|k−1, S

j
k). (6.154)

• Output Estimate and Covariance Calculation by Merging: The

output estimate and covariance are calculated by merging the filtered

estimates {x̂j
k|k}N

j=1 and covariances {Σj
k|k}N

j=1. The merging is done using

the updated mode probabilities {µj
k}N

j=1 as follows.

x̂k|k =
N∑

j=1

µj
kx̂

j
k|k, (6.155)

Σk|k =
N∑

j=1

µj
k

[
Σj

k|k + (x̂j
k|k − x̂k|k)(x̂

j
k|k − x̂k|k)

T
]
. (6.156)

6.6.2 Possible Simplifications

Note that the calculations required for the statistics calculations are quite

complicated. The following are some simplification suggestions that can be

applied without reducing the performance of the algorithm substantially.

1. The predicted quantities x̂ij
k|k−1, Σij

k|k−1, Sij
k can be replaced with their

equivalents in the previous sampling period i.e., with x̂ij
k−1|k−2, Σij

k−1|k−2,

Sij
k−1 respectively. In this way, some or all of them might have been

calculated already during the Kalman filtering. Also, in that case, the
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multiplications in the form Σij
k−1|kC

T
j

(
Sij

k−1

)−1
might have been calcu-

lated during Kalman gain calculations. Obviously, if this simplification

is made, then, while using the GPB2-type merging, one has to calculate

the required predictions as well.

2. The calculation of the statistics can be done only at every N sampling

periods and between the periods, the results of the last statistics calcu-

lation can be used.

3. Note that the statistics calculations need not require all the elements of

the matrices Σj. For most of the case, for example, one might try to use

only the diagonal elements of the matrices Σj for statistics calculation. In

that case, the computations required for the calculation of the matrices

Σj can be reduced significantly.

6.7 Simulation Results

In this section, the performance of the mixed IMM-GPB2 algorithm will be

observed and compared to those of the IMM and GPB2 algorithms. For this

purpose, we consider a simplified example of a moving target whose accelera-

tion evolves according to a finite-state Markov chain. This example,which was

also used in the simulation of Chapters 2 and 3, is repeated here for the sake

of completeness.6 The target dynamics in one-dimension is given as
 pk

vk




︸ ︷︷ ︸
xk

=


 1 T

0 1





 pk−1

vk−1


 +


 T 2/2

T


 [ak + wk] (6.157)

where pk, vk and ak denote the target position, velocity and acceleration respec-

tively. The initial state x0 is normally distributed with mean x̄0 and covariance

Σ0 which are given as

x̄0 =


 80000

400


 and Σ0 =


 10000 1000

1000 10000


 . (6.158)

6 Note that this example is a slightly modified version of one of the examples given in
[1].
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Figure 6.4: RMS position errors of the IMM, GPB2 and mixed IMM-GPB2
algorithms

The acceleration process ak is a finite-state Markov chain with states in the

set {0, 20,−20}. The initial probability distribution for the states is given

as π0 = [0.8, 0.1, 0.1]. The transition probability matrix for the finite-state

Markov chain is

Π =




0.5 0.25 0.25

0.25 0.5 0.25

0.25 0.25 0.5


 (6.159)

which corresponds to a highly maneuvering target. The white process noise

wk ∼ N (wk; 0, 2
2) represents small acceleration changes. It is assumed that

only the positions are measured, i.e.,

yk = pk + νk (6.160)

where the terms νk ∼ N (wk; 0, 1002) stands for the normally distributed white

measurement noise. The sampling period T is taken to be 10secs.

Using the measurements coming from this system, we execute IMM, GPB2

and our mixed IMM-GPB2 algorithm. The mixed IMM-GPB2 algorithm is

134



0 10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

90

100

110
IMM
GPB2
Mixed IMM−GPB2

Figure 6.5: RMS velocity errors of the IMM, GPB2 and mixed IMM-GPB2
algorithms

implemented using the velocity error standard deviation as the merging de-

cision statistics. This means that we only use the elements corresponding

to second row and second column of the 2 × 2 matrices Σj for the statistics

calculation. Realizing also that the matrices Cj = [1 0] for j = 1, 2, 3, this

reduces the computations required for the statistics calculations to an almost

negligible level. We have taken the statistics threshold γthresh as 3 (m/sec)

which means that if the statistics γj
k for model j is smaller than 3, the IMM-

type merging will be used for that model. Otherwise, GPB-type merging is

applied. RMS position errors resulting from 1000 Monte-Carlo runs are pre-

sented in Fig. 6.4. The corresponding velocity errors are shown in Fig. 6.5.

As observed from the figures, the GPB2 shows the best performance in both

of the cases as expected. The errors of the Mixed IMM-GPB2 algorithm are

below those of the IMM filter and are very near to those of the GPB2 algo-

rithm. The IMM and GPB2 algorithms uses 3 and 9 Kalman filters for each

measurement respectively. The mixed IMM-GPB2 algorithm proves to use an
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Table 6.1: The average number of Kalman filters and RMS errors obtained
with different γthresh values.

Average number of Average RMS Average RMS

γthresh Kalman filters used position error (m) velocity error (m/sec)

per measurement per measurement per measurement

0.5 7.6 95.39 32.69
1 6.9 95.40 32.71
3 5.2 95.83 33.56
4 4.7 96.15 35.48
5 4.2 96.56 36.90
7 3 97.20 39.33

GPB2 9 95.38 32.69
IMM 3 97.20 39.33

average of 5.2 Kalman filters per each measurement. This shows that, to reach

the performance of the GPB2 algorithm, one can use much less Kalman filters

compared to the number of Kalman filters required for the GPB2 algorithm.

The average position RMS errors for the IMM filter and the GPB2 filter per

measurement are 97.20 and 95.38 respectively. The corresponding RMS error

value for the mixed IMM-GPB2 filter is 95.83. The average velocity RMS er-

rors for the IMM and GPB2 algorithms per measurement are given as 39.33

and 32.69 respectively. The corresponding RMS error for the mixed IMM-

GPB2 algorithm is 33.56 which is a significant reduction in the error relative

to the IMM filter towards the performance of GPB2 algorithm. The results

obtained using different values of the statistics threshold γthresh are shown in

Table 6.1. The error characteristics of the mixed IMM-GPB2 algorithm seem

to reach a virtually indistinguishable level from that of GPB2 with only 7.6

Kalman filters on the average per measurement.

6.8 Conclusions

In this chapter, the error caused by the moment-matched single Gaussian ap-

proximation of the Gaussian mixtures applied at the input of the optimal

Bayesian filter is examined analytically. The prediction update of the filter is

shown to be invariant (in the MMSE sense) under the approximation. The
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measurement update, on the other hand, is shown to cause some difference

(i.e., error) between the optimal and the approximated (sub-optimal) esti-

mates. The resulting error proves to be of zero mean. An analytical formula

to calculate its covariance approximately is given.

The calculated covariance is then used to obtain a mixed IMM-GPB2 al-

gorithm which combines the IMM and GPB2 algorithms in which the single

Gaussian approximations are abundant. The resulting algorithm turns out to

reach the performance of the GPB2 filter with less number of Kalman filters

(per measurement) than the GPB2 algorithm. Although only the case of IMM

and GPB2 is considered in this study, our belief is that the same methodology

can be used for combining different order GPB methods as well.
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CHAPTER 7

DISCUSSION AND FUTURE WORK

In this thesis, an example framework has been presented to make improvements

over the state of the art of multiple model state estimation. In the first category

of improvements, risk-sensitive estimation problem has been investigated for

JMLSs. While the case of instantaneous cost function is quite simple and

requires the modification of only the output estimate calculation step of IMM

filter, the case of cumulative cost function turns out to be quite complicated.

The analysis of the cumulative case results in a unifying framework which

combines

• Risk-sensitive multiple model filter

• IMM filter

• Risk-sensitive filter for linear Gauss-Markov systems

• Kalman filter

and, in author’s opinion, is the most impressive contribution of this thesis.

Moreover, the investigation of the IMM filter and its approximations using

the reference probability method has the potential of contributing to future

research involving JMLSs.

In the second category of improvements, two online transition probability

estimators and one mixed multiple model state estimation algorithm are pre-

sented. Although the transition probability estimators extend the previously

applied algorithms to HMMs to the case of JMLS, the derivations involved are

quite original due to the fact that Markov chain is buried one more layer deeper
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under the measurements in JMLSs than in HMMs. Especially the derivation

presented for the maximum likelihood estimator shows the potential of the

reference probability method to handle complex systems.

In author’s opinion, the work on mixed multiple model estimation is the

most straightforward part of this thesis. This is caused, in part, by the non-

complexity of the analysis involved in the examination of the single Gaussian

approximation. It is, however, still important to note that the idea of mix-

ing two different multiple model state estimation procedures efficiently is an

interesting and new problem and it might actually be the only way for obtain-

ing high performance MMSE algorithms (which approach optimality) with low

computations.

In addition to the results presented, this thesis also shows the directions

for a future study in the search of better (and better) multiple model esti-

mation schemes. In order to obtain improvements of the first type, the main

methodology applied here suggests the application of other estimation schemes

or criteria to the case of JMLSs. In this regard, it is interesting to see that,

although the JMLSs are actually nonlinear systems, the effect of the nonlinear

control community on the field of multiple model estimation is hardly felt.

The reason for this might be the doubly stochastic nature of the problem.

Consequently, using these facts as a motivation, the application of estimation

and control literature on deterministic nonlinear systems to the (stochastic or

deterministic) multiple model estimation problem seems to have a future. In

fact, it was one of the author’s intentions at some part of the thesis research

to apply the sliding mode observer theory to the case of JMLSs.

The second category of improvements suggested in this thesis obviously

point to the fact that the highly researched area of HMMs already gives a

starting point for the system identification problems associated with JMLSs.

There are many methods in the HMM literature, some of which has already

been referenced here, which can be generalized to JMLSs with no more efforts

than made in this thesis. Moreover, the concept of a mixed multiple model

estimator issues a new challenge in the area of multiple model estimation
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for efficiently combining the different aspects of different estimators to obtain

brand-new algorithms which outperform the old ones in the performance vs.

computation curve. In this regard, the implications of this idea in general

estimation theory, under the title of “estimator fusion” might also deserve

some attention.
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APPENDIX A

REFERENCE PROBABILITY METHOD

This appendix summarizes the reference probability method which is the state

of the art of taking expected values easily. We only examine the case of

discrete-time stochastic processes to evade the curse of continuous-time spe-

cialties which involve high-level measure theory. The appendix is organized

in three sections. In Sec. A.1, the necessary theorems and lemmas for chang-

ing measures which is the crucial part of the reference probability method is

given. Then, the derivations of the famous Kalman filter and the risk-sensitive

filter for linear Gauss-Markov systems are made in Secs. A.2 and A.3 re-

spectively using the reference probability method. This appendix has been

adapted mainly from [39]. Some of the theorems, lemmas and examples have

been taken directly. The proofs, derivations and details have been elaborated

by the comments of the author.

A.1 Background

This section gives the necessary theorems and lemmas with illustrating exam-

ples which will be used in the following sections.

Remark A.1 Given any non-negative random variable x on a probability

space (Ω,F , P ) with finite E(x) =
∫
Ω

xdP = 1, one can define another proba-

bility measure P of F by setting for every F ∈ F :

P (F ) =

∫

F

xdP. (A.1)
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Clearly, if P (F ) = 0 then P (F ) = 0 for any F ∈ F and we say that P is

absolutely continuous with respect to P and denote it by P ¿ P .

In Remark A.1, we state that, if a random variable with appropriate condi-

tions in a probability measure P is given, then using it, we can define a new

probability measure P which is absolutely continuous with respect to the orig-

inal probability measure P . The Radon-Nikodym theorem claims the converse

i.e., given a probability measure P which is absolutely continuous with respect

to the original probability measure P , it claims that the random variable x

satisfying Eqn. A.1 exists.

Theorem A.1 (Radon-Nikodym) Let (Ω,F) be a measurable space, µ a

σ-finite measure and µ a signed measure (i.e., µ = µ1 − µ2, where at least

one of the measures µ1 and µ2 is finite) such that for each F ∈ F , µ(F ) = 0

implies µ(F ) = 0, i.e., µ ¿ µ. Then there exists an F-measurable function Λ

with values in the extended real line [−∞, +∞] such that

µ(C) =

∫

C

Λ(ω)dµ(ω) (A.2)

for all C ∈ F . The function Λ is unique up to sets of µ-measure zero; i.e., if

h(.) is another F-measurable function such that µ(C) =
∫

C
h(ω)dµ(ω) for all

C ∈ F , then µ{ω : Λ(ω) 6= h(ω)} = 0. If µ is a positive measure, then Λ has

its values in [0, +∞]. We write

dµ

dµ

∣∣∣
F

= Λ. (A.3)

In the case of probability measures, the Radon-Nikodym theorem reads as

follows. If P and P are two probability measures on (Ω,F) such that for each

B ∈ F , P (B) = 0 implies P (B) = 0 (P ¿ P ), then there exists a nonnegative

random variable Λ, such that

P (C) =

∫

C

ΛdP for all C ∈ F . (A.4)

We write
dP

dP

∣∣∣
F

= Λ. (A.5)
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Taking C = Ω we see that

P (Ω) = 1 =

∫

Ω

ΛdP = E[Λ] (A.6)

so that P is a probability measure if and only if Λ is nonnegative and E[Λ] = 1.

If those conditions are satisfied, Λ is called the density of P with respect to P ,

or the Radon-Nikodym derivative of P with respect to P .

Radon-Nikodym derivatives might look, at a first glance, too abstract to

be useful to an engineer. However, the probability density functions used

extensively in engineering literature are indeed Radon-Nikodym derivatives.

This can be explained as follows: Suppose that x is a vector random variable

of dimension n and suppose that the probability density function fx(x) of x

with respect to probability measure P exists. Then, we know that, for any

Lebesgue measurable set A ∈ Rn,

P (x ∈ A) = Px(A) =

∫

{x∈A}
dP =

∫

A

fx(x)dx (A.7)

where Px(A) is the probability measure induced by the random variable x and

{x ∈ A} is the set defined as

{x ∈ A} , {ω ∈ Ω : x(ω) ∈ A} . (A.8)

Due to Eqn. A.7, the density function fx(x) is the Radon-Nikodym derivative

of the probability measure Px with respect to the Lebesgue measure.

Example A.1 Let (Ω,F , P ) be a probability space on which are defined the

random variables Y1, Y2, . . . , Yn. Let Fn = σ{Y1, Y2, . . . , Yn}. Let P be another

probability measure on F . Suppose that under P and P the random variables

Y1, Y2, . . . , YN have joint densities fn(.) and fn(.) respectively, with respect to

n-dimensional Lebesgue measure. Then the Radon-Nikodym derivative

dP

dP

∣∣∣
Fn

=
fn(Y1, Y2, . . . , Yn)

fn(Y1, Y2, . . . , Yn)
(A.9)

is the likelihood ratio of the two probability measures in the presence of a sample

of observations {Y1, Y2, . . . , Yn}.
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Let x ∈ L1 (i.e., E|x| < ∞) be a non-negative random variable on a probability

space (Ω,F , P ) and G be a sub-σ-field of F . The probability space (Ω,G, P )

is a coarsening of the original one and x is, in general, not measurable with

respect to G. Now, we seek a G-measurable random variable, which we denote

temporarily by xG that assumes, on average, the same values as x. That is, we

seek an integrable random variable xG such that xG is G-measurable and

∫

A

xGdP =

∫

A

xdP ∀A ∈ G. (A.10)

Defining the set function Q(A) ,
∫

A
xdP , we see that Q is a measure and it is

absolutely continuous with respect to P . Then, the Radon-Nikodym theorem

guarantees the existence of a G-measurable random variable E[x|G] which is

uniquely determined up to a null set such that

∫

A

xdP =

∫

A

E[x|G]dP ∀A ∈ G. (A.11)

The random variable E[x|G] is called as the conditional expectation of the

random variable x given the σ-field G.

Theorem A.2 (Conditional Bayes’ Theorem) Suppose (Ω,F , P ) is a prob-

ability space and G ⊂ F is a sub-σ-field. Suppose P is another probability

measure absolutely continuous with respect to P (P ¿ P ) and with a Radon-

Nikodym derivative
dP

dP
= Λ. (A.12)

Then if φ is any integrable F-measurable random variable,

E[φ|G] =





E[Λφ|G]
E[Λ|G]

if E[Λ|G] > 0

0 otherwise
(A.13)

where E and E denotes the expectations with respect to probability measures

P and P respectively.

Another useful version of Theorem A.2 is the following theorem.

Theorem A.3 Suppose (Ω,F , P ) is a probability measure with a filtration

{Ft, t ≥ 0}. Suppose P is another probability measure absolutely continuous
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with respect to P (P ¿ P ) on F and with a Radon-Nikodym derivative

dP

dP
= Λ. (A.14)

If we define the martingale

Λt , E[Λ|Ft] (A.15)

then, if φt is any Ft-adapted process,

E[φt|Fs] =





E[Λtφt|Fs]
E[Λt|Fs]

if E[Λt|Fs] > 0

0 otherwise
. (A.16)

Example A.2 Let {xn} be a sequence of random variables on some probability

space (Ω,F , P ). Consider the filtration {Fn = σ{x1, . . . , xn}}. Assume that

the (one step predicted) probability density functions φn|n−1(xn) = p(xn|Fn−1)

exist and are positive. Suppose that we wish to define a new probability measure

P on (Ω,
∨Fn) such that xn are independent identically distributed (i.i.d.) with

positive probability density function α. Let λ0 = 1 and for k ≥ 1

λk =
α(xk)

φk|k−1(xk)
, (A.17)

Λn =
n∏

k=0

λk, (A.18)

and we define the probability measure P to satisfy

dP

dP
(ω)

∣∣∣
Fn

= Λn(ω). (A.19)

Lemma A.1 The sequence of random variables {Λn}, n ≥ 0 is an {Fn, P}-
martingale with P -mean 1. Moreover, under P , {xn} is a sequence of i.i.d.

random variables with probability density function α(.).

Proof We have to show that

E[Λn|Fn−1] = Λn−1. (A.20)

However, Λn = Λn−1λn and since Λn−1 is Fn−1-measurable, we must show that

E[λn|Fn−1] = 1. In view of the definition of λn

E[λn|Fn−1] = E

[
α(xn)

φn|n−1(xn)

∣∣∣∣Fn−1

]
=

∫

R

α(xn)

φn|n−1(xn)
φn|n−1(xn)dxn = 1.
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Therefore; the sequence {Λn} is a {Fn, P}-martingale. Moreover,

E[λ1] = E[Λ1] = E [E[Λ2|F1]] = E[Λ2] = · · · = E[Λn] = · · · = 1. (A.21)

Let f be any integrable real-valued “test” function (a measurable function

with compact support). Using Theorem A.3, we get

E[f(xn)|Fn−1] =
E[f(xn)Λn|Fn−1]

E[Λn|Fn−1]
=

Λn−1E[f(xn)λn|Fn−1]

Λn−1E[λn|Fn−1]
. (A.22)

Since E[λn|Fn−1] = 1,

E[f(xn)|Fn−1] = E[f(xn)λn|Fn−1] (A.23)

=

∫

R
f(xn)

α(xn)

φn|n−1(xn)
φn|n−1(xn)dxn (A.24)

=

∫

R
f(xn)α(xn)dxn. (A.25)

Since Eqn. A.25 is true for all test functions f(.), {xn} is a sequence of i.i.d.

random variables with probability density functions α(.). ¤

It makes sense here to mention that, under P , the one step prediction density

φk(xk) , p(xk|Fk−1)of xk is equal to α(xk) because {xk} is an i.i.d. sequence.

Therefore, while changing measures we equate the Radon-Nikodym derivative

dP
dP

(ω)|Fn
to Λn =

∏n
k=0 λk where

λk =
φk|k−1(xk)

φk|k−1(xk)
. (A.26)

In other words, λk is equal to the ratio of the one step predicted densities of

xk under the two probability measures.

Example A.3 (Change of measure for linear systems: Scalar case)

In reference probability methods, initially, all processes are defined on an “ideal”

probability space (Ω,F , P ); then a new probability measure P is defined so that

a model which has the required characteristics will hold.

Suppose we would like to define a probability measure P under which we

have a system with states xk ∈ R which satisfies the linear dynamics

xk+1 = axk + bwk+1. (A.27)
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where {wk}, k ∈ N is a sequence of independent normal random variables

having zero-mean and unity variance. We assume that x0 ∼ N (0, b2). Let

{Fk = σ{x0, x1, . . . , xk}} for k ∈ N be a complete filtration; that is, F0 contains

all the P-null events.

We initially begin with the ideal probability measure P , under which {xk},
k ∈ N is an i.i.d. sequence with density function φ = N (0, 1). For each

l = 0, 1, . . ., we define

λl =
φ(b−1(xl − axl−1))

bφ(xl)
, (A.28)

Λk =
k∏

l=0

λl. (A.29)

Lemma A.2 The process {Λk}, k ∈ N is a {Fk, P}-martingale.

Proof Since Λk−1 is Fk−1-measurable,

E[Λk|Fk−1] = Λk−1E[λk|Fk−1]. (A.30)

So that it is enough to show that E[λk|Fk−1] = 1.

E[λk|Fk−1] = E

[
φ(b−1(xk − axk−1))

bφ(xk)

∣∣∣∣Fk−1

]
(A.31)

=

∫
φ(b−1(xk − axk−1))

bφ(xk)
φ(xk)dxk (A.32)

=

∫
b−1φ(b−1(xk − axk−1))dxk. (A.33)

Making the change of variable u = b−1(xk − axk−1) (du = b−1dxk), we obtain

E[λk|Fk−1] =

∫
φ(u)du = 1. (A.34)

¤

We then define P on {Ω,F} by setting the restriction of the Radon-Nikodym

derivative dP
dP

to Fk equal to Λk. Under the newly defined probability measure

P , we have the following lemma.

Lemma A.3 On {Ω,F} and under P , {wk}, k ∈ N is a sequence of i.i.d.

Gaussian random variables with zero mean and unity variance where

wk , b−1(xk − axk−1). (A.35)
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Proof Suppose f : R → R is a “test” function (i.e., a measurable function

with compact support). Then with E and E denoting the expectations under

P and P respectively, using Theorem A.3,

E[f(wk)|Fk−1] =
E[Λkf(wk)|Fk−1]

E[Λk|Fk−1]
(A.36)

=
Λk−1E[λkf(wk)|Fk−1]

Λk−1E[λk|Fk−1]
. (A.37)

Since E[λk|Fk−1] = 1,

E[f(wk)|Fk−1] = E[λkf(wk)|Fk−1] (A.38)

= E

[
φ(b−1(xk − axk−1))

bφ(xk)
f(b−1(xk − axk−1))|Fk−1

]

=

∫
φ(b−1(xk − axk−1))

bφ(xk)
f(b−1(xk − axk−1))φ(xk)dxk

=

∫
b−1φ(b−1(xk − axk−1))f(b−1(xk − axk−1))dxk.

Using the change of variables u = b−1(xk − axk−1), we have

E[f(wk)|Fk−1] =

∫
f(u)φ(u)du. (A.39)

Since Eqn. A.39 is true for all test functions f(.), the lemma is proved. ¤

What this lemma states is that, under the newly defined probability measure P ,

the state process {xk} satisfies the dynamics given in Eqn. A.27. Therefore, the

change of measure obtained using the Radon-Nikodym derivatives Λk passes

us from an ideal probability measure P to the probability measure P under

which we require our results.

Example A.4 (Change of measure for linear systems: Vector case)

Suppose we would like to define a probability measure P under which we have

a system with states xk ∈ Rn which satisfies the linear dynamics

xk+1 = Axk + Bwk+1 (A.40)

where A and B are n × n matrices and B is assumed to be invertible. We

assume that x0 ∼ N (0, BBT ). Let {Fk = σ{x0, x1, . . . , xk}} for k ∈ N be a

complete filtration; that is, F0 contains all the P-null events.
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We initially begin with the ideal probability measure P , under which {xk},
k ∈ N is an i.i.d. sequence with density function φ(x) = N (x; 0, In). For each

l = 0, 1, . . ., we define

λl =
φ(B−1(xl − Axl−1))

|B|φ(xl)
, (A.41)

Λk =
k∏

l=0

λl (A.42)

where |B| denotes the determinant of the matrix B.

Lemma A.4 The process {Λk}, k ∈ N is a {Fk, P}-martingale.

Proof Since Λk−1 is Fk−1-measurable,

E[Λk|Fk−1] = Λk−1E[λk|Fk−1]. (A.43)

So that it is enough to show that E[λk|Fk−1] = 1.

E[λk|Fk−1] = E

[
φ(B−1(xk − Axk−1))

|B|φ(xk)

∣∣∣∣Fk−1

]
(A.44)

=

∫
φ(B−1(xk − Axk−1))

|B|φ(xk)
φ(xk)dxk (A.45)

=

∫
|B|−1φ(B−1(xk − Axk−1))dxk. (A.46)

Making the change of variable u = B−1(xk − Axk−1) (du = |B|−1dxk), we get

E[λk|Fk−1] =

∫
φ(u)du = 1. (A.47)

¤

We then define P on {Ω,F} by setting the restriction of the Radon-Nikodym

derivative dP
dP

to Fk equal to Λk. Under the newly defined probability measure

P , we have the following lemma.

Lemma A.5 On {Ω,F} and under P , {wk ∈ Rn}, k ∈ N is a sequence of

i.i.d. Gaussian random variables with zero mean and covariance In where

wk , B−1(xk − Axk−1). (A.48)

Proof Suppose f : Rn → R is a “test” function (i.e., a measurable function

with compact support). Then with E and E denoting the expectations under P
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and P respectively, using theorem A.3,

E[f(wk)|Fk−1] =
E[Λkf(wk)|Fk−1]

E[Λk|Fk−1]
(A.49)

=
Λk−1E[λkf(wk)|Fk−1]

Λk−1E[λk|Fk−1]
. (A.50)

Since E[λk|Fk−1] = 1,

E[f(wk)|Fk−1] = E[λkf(wk)|Fk−1] (A.51)

= E

[
φ(B−1(xk − Axk−1))

|B|φ(xk)
f(B−1(xk − Axk−1))|Fk−1

]

=

∫
φ(B−1(xk − Axk−1))

|B|φ(xk)
f(B−1(xk − Axk−1))φ(xk)dxk

=

∫
|B|−1φ(B−1(xk − Axk−1))f(B−1(xk − Axk−1))dxk.

Using the change of variables u = B−1(xk − Axk−1), we have

E[f(wk)|Fk−1] =

∫
f(u)φ(u)du. (A.52)

Since Eqn. A.52 is true for all test functions f(.), the lemma is proved. ¤
Similar to the scalar case presented in Example A.4, under the newly defined

probability measure P , the state process {xk} satisfies the dynamics given

in Eqn. A.40. Therefore, the change of measure obtained using the Radon-

Nikodym derivatives Λk again passes us from an ideal probability measure P

to the probability measure P under which we require our results.

A.2 Derivation of Kalman Filter

Let (Ω,F , P ) be a probability space (under which we required our results)

upon which wk ∈ Rn and vk ∈ Rm are normally distributed with means 0 and

covariance matrices In and Im respectively. Assume that Bk and Dk are n×n

and m × m nonsingular matrices respectively. Let x0 ∈ Rn be a Gaussian

random variable with mean x̄0 and covariance Σ0.

We consider the linear Gauss-Markov system for which the state and ob-

servations satisfy the following equations.

xk+1 = Ak+1xk + Bk+1wk+1, (A.53)
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yk = Ckxk + Dkvk. (A.54)

Let {Fk}, k ∈ N and {Yk}, k ∈ N be the complete filtrations generated by

{x0, . . . , xk} and by {y0, . . . , yk} respectively. The minimum mean square error

(MMSE) estimate x̂MS
k|k of the state of this system is defined as

x̂MS
k|k = arg min

ξ∈Rn
E

[
1

2
(xk − ξ)T Qk(xk − ξ)

∣∣∣Yk

]
(A.55)

where {Qk}, k ∈ N is a sequence of positive definite matrices. Solution to this

problem is given basically by the conditional mean of the state xk given the

information in Yk. Kalman filter is the well-known estimator which calculates

these MMSE estimates and the related covariances given as

x̂MS
k|k = E[xk|Yk], (A.56)

ΣMS
k|k = E[(xk − x̂k|k)(xk − x̂k|k)

T |Yk]. (A.57)

In this section, using the reference probability method, we are going to derive

Kalman filter recursions.

Note that the above quantities requires the densities p(xk|Yk) which are

propagated using nonlinear Bayesian recursions. In the following, we are go-

ing to show that the same calculations are possible using some unnormalized

densities (which do not integrate to unity).

A.2.1 Change of Measure

Initially, we suppose all processes are defined on an “ideal” probability space

(Ω,F , P ); then under the probability measure P , to be defined, the model

described by Eqn. A.53 and A.54 will hold.

Suppose that, under P ,

• {xk}, k ∈ N is a sequence independent and identically distributed (i.i.d.)

random variables which are Gaussian distributed with zero mean and

covariance In. Call their density function as φ(x) = N (x; 0, In).
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• {yk}, k ∈ N is a sequence i.i.d. random variables which are Gaussian

distributed with zero mean and covariance Im. Call their density function

as ψ(y) = N (y; 0, Im).

In order to obtain the required Radon-Nikodym derivative, we define the se-

quence of random variables {λl} and {Λk}, k, l ∈ N as

λl =





φ(
√

Σ0
−1

(xl−x̄0))

|√Σ0|φ(xl)

ψ(D−1
l (yl−Clxl))

|Dl|ψ(yl)
l = 0

φ(B−1
l (xl−Alxl−1))

|Bl|φ(xl)

ψ(D−1
l (yl−Clxl))

|Dl|ψ(yl)
l > 0

, (A.58)

Λk =
k∏

l=0

λl. (A.59)

Let Gk be the complete σ-field generated by the random variables

{x0, . . . , xk, y0, . . . , yk}.
Lemma A.6 The process {Λk}, k ∈ N is a {Gk, P}-martingale.

Proof Noting that Λk−1 is Gk−1-measurable,

E[Λk|Gk−1] = Λk−1E[λk|Gk−1]. (A.60)

Therefore, it is enough to prove that E[λk|Gk−1] = 1.

E[λk|Gk−1] = E
[φ(B−1

k (xk − Akxk−1))

|Bk|φ(xk)

ψ(D−1
k (yk − Ckxk))

|Dk|ψ(yk)

∣∣∣Gk−1

]

= E
[φ(B−1

k (xk − Akxk−1))

|Bk|φ(xk)

×E
[ψ(D−1

k (yk − Ckxk))

|Dk|ψ(yk)

∣∣∣Gk−1, xk

]∣∣∣Gk−1

]
. (A.61)

We can calculate the inside expectation as

E
[ψ(D−1

k (yk − Ckxk))

|Dk|ψ(yk)

∣∣∣Gk−1, xk

]
=

∫
ψ(D−1

k (yk − Ckxk))

|Dk|ψ(yk)
ψ(yk)dyk

=

∫
ψ(u)du = 1. (A.62)

Substituting this result into Eqn. A.61

E[λk|Gk−1] = E
[φ(B−1

k (xk − Akxk−1))

|Bk|φ(xk)

∣∣∣Gk−1

]
(A.63)

=

∫
φ(B−1

k (xk − Akxk−1))

|Bk|φ(xk)
φ(xk)dxk (A.64)

=

∫
φ(u)du = 1. (A.65)
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This result proves the lemma. ¤

We now define a new probability measure on (Ω,F) by setting the restriction

of the Radon-Nikodym derivative dP
dP

to Gk equal to Λk, that is,

dP

dP

∣∣∣
Gk

= Λk. (A.66)

Lemma A.7 On {Ω,F} and under P , {wk ∈ Rn} and {vk ∈ Rm}, k ∈ N
defined as

wk , B−1
k (xk − Akxk−1), (A.67)

vk , D−1
k (yk − Ckxk) (A.68)

are sequences of i.i.d. Gaussian random variables with zero mean and covari-

ance In and Im respectively.

Proof Let f : Rn → R and g : Rm → R be test functions. Then with E and

E denoting the expectation under P and P respectively, using Theorem A.3,

we obtain

E[f(wk)g(vk)|Gk−1] =
E[Λkf(wk)g(vk)|Gk−1]

E[Λk|Gk−1]
(A.69)

= E[λkf(wk)g(vk)|Gk−1]. (A.70)

Substituting λk, wk, and vk into Eqn. A.70, we get

E[f(wk)g(vk)|Gk−1] = E
[φ(B−1

k (xk − Akxk−1))

|Bk|φ(xk)

ψ(D−1
k (yk − Ckxk))

|Dk|ψ(yk)

×f(B−1
k (xk − Akxk−1))g(D−1

k (yk − Ckxk))
∣∣∣Gk−1

]

= E
[φ(B−1

k (xk − Akxk−1))

|Bk|φ(xk)
f(B−1

k (xk − Akxk−1))

×E
[ψ(D−1

k (yk − Ckxk))

Dkψ(yk)

×g(D−1
k (yk − Ckxk))

∣∣∣Gk−1, xk

]∣∣∣Gk−1

]
. (A.71)

We can calculate the inner expectation as

E
[ψ(D−1

k (yk − Ckxk))

|Dk|ψ(yk)
g(D−1

k (yk − Ckxk))
∣∣∣Gk−1, xk

]

=

∫
ψ(D−1

k (yk − Ckxk))

|Dk|ψ(yk)
g(D−1

k (yk − Ckxk))ψ(yk)dyk (A.72)

=

∫
|Dk|−1ψ(D−1

k (yk − Ckxk))g(D−1
k (yk − Ckxk))dyk. (A.73)
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After a change of variable u = D−1
k+1(yk+1 − Ck+1xk+1), the result becomes

E
[ψ(D−1

k (yk − Ckxk))

|Dk|ψ(yk)
g(D−1

k (yk − Ckxk))
∣∣∣Gk−1, xk

]
=

∫
g(u)ψ(u)du. (A.74)

which is a constant (independent of xk). Substituting this result into Eqn.

A.71, we obtain

E[f(wk)g(vk)|Gk−1] = E
[φ(B−1

k (xk − Akxk−1))

|Bk|φ(xk)
f(B−1

k (xk − Akxk−1))

×
∫

g(u)ψ(u)du
∣∣∣Gk−1

]
(A.75)

=

∫
g(u)ψ(u)du

∫
φ(B−1

k (xk − Akxk−1))

|Bk|φ(xk)

×f(B−1
k (xk − Akxk−1))φ(xk)dxk (A.76)

=

∫
g(u)ψ(u)du

∫
f(v)φ(v)dv. (A.77)

This result proves the lemma. ¤

A.2.2 Recursive Estimation

Let g : Rn → R be a “test” function. Using Theorem A.3, we get

E[g(xk)|Yk] =
E[Λkg(xk)|Yk]

E[Λk|Yk]
. (A.78)

The unnormalized conditional expectation E[Λkg(xk)|Yk] in the numerator is

the critical part. This is called generally as a measure-valued process and for

obtaining it, we can define the unnormalized density αk(x) as

αk(x)dx , E[ΛkI{xk∈dx}|Yk]. (A.79)

where the function IA(ω) defined as

IA(ω) ,





1, ω ∈ A

0, ω /∈ A
(A.80)

denotes the indicator function of the set A. The density αk(x) can be inter-

preted as an information state for the solution of the problem under probability

measure P and it can be shown for any test function f : Rn → R that

E[Λkf(xk)|Yk] =

∫
f(x)αk(x)dx. (A.81)
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We can define, in the same way, the normalized conditional density pk(x) such

that

E[f(xk)|Yk] =

∫
f(x)pk(x)dx. (A.82)

Now, using Eqn. A.78, we see that

E[g(xk)|Yk] =

∫
g(x)pk(x)dx =

∫
g(x)αk(x)dx∫

αk(x)dx
=

∫
g(x)

αk(x)∫
αk(z)dz

dx.

Thus, we obtain the result

pk(x) =
αk(x)∫
αk(z)dz

. (A.83)

Notice that the MMSE estimates and covariances given in Eqns. A.56 and

A.57 are the mean and covariance of the density pk(x) which can be calculated

using the unnormalized density αk(x). In the following, a recursive relationship

will be found for the unnormalized density αk(x).

Theorem A.4 The following recursive relationship holds for the unnormal-

ized densities αk(x)

αk(x) =
ψ(D−1

k (yk − Ckx))

|Dk||Bk|ψ(yk)

∫
φ(B−1

k (x− Akz))αk−1(z)dz. (A.84)

Proof Let g : Rn → R be any test function, then

∫
g(x)αk(x)dx = E[Λkg(xk)|Yk] (A.85)

= E[Λk−1λkg(xk)|Yk] (A.86)

= E
[
Λk−1

φ(B−1
k (xk − Akxk−1))

|Bk|φ(xk)

ψ(D−1
k (yk − Ckxk))

|Dk|ψ(yk)

×g(xk)
∣∣∣Yk

]
(A.87)

= E
[
Λk−1E

[φ(B−1
k (xk − Akxk−1))

|Bk|φ(xk)

ψ(D−1
k (yk − Ckxk))

|Dk|ψ(yk)

×g(xk)
∣∣∣xk−1,Yk

]∣∣∣Yk

]
(A.88)

The inner expectation in Eqn. A.88 can easily be taken as follows due to the

independence properties of the sequence {xk} under P .

∫
g(x)αk(x)dx = E

[
Λk−1

∫
φ(B−1

k (x− Akxk−1))ψ(D−1
k (yk − Ckx))

|Bk||Dk|φ(x)ψ(yk)
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×g(x)φ(x)dx
∣∣∣Yk

]

= E
[
Λk−1

∫
φ(B−1

k (x− Akxk−1))ψ(D−1
k (yk − Ckx))

|Bk||Dk|ψ(yk)

×g(x)dx
∣∣∣Yk

]
(A.89)

= E
[
Λk−1

∫
φ(B−1

k (x− Akxk−1))ψ(D−1
k (yk − Ckx))

|Bk||Dk|ψ(yk)

×g(x)dx
∣∣∣Yk−1

]
(A.90)

=

∫ ∫
φ(B−1

k (x− Akz))ψ(D−1
k (yk − Ckx))

|Bk||Dk|ψ(yk)

×g(x)αk−1(z)dxdz (A.91)

=

∫
g(x)

ψ(D−1
k (yk − Ckx))

|Bk||Dk|ψ(yk)

×
∫

φ(B−1
k (x− Akz))αk−1(z)dzdx. (A.92)

Since this equality holds for all test functions g(.), the theorem is proved. ¤

The initial densities α0(x) can be calculated using the test function h : Rn →
Rn as follows.

∫
h(x)α0(x)dx = E[Λ0h(x0)|Y0] (A.93)

= E[λ0h(x0)|Y0] (A.94)

= E
[φ(

√
Σ0

−1
(x0 − x̄0))

|√Σ0|φ(x0)

ψ(D−1
0 (y0 − C0x0))

|D0|ψ(y0)
h(x0)

∣∣∣Y0

]

=

∫
φ(
√

Σ0
−1

(x− x̄0))

|√Σ0|φ(x)

ψ(D−1
0 (y0 − C0x))

|D0|ψ(y0)
h(x)φ(x)dx

=

∫
h(x)

φ(
√

Σ0
−1

(x− x̄0))

|√Σ0|
ψ(D−1

0 (y0 − C0x))

|D0|ψ(y0)
dx. (A.95)

Since the equality holds for all test function h(.), the initial density α0(x) is

given as

α0(x) =
ψ(D−1

0 (y0 − C0x))

|D0|ψ(y0)

φ(
√

Σ0
−1

(x− x̄0))

|√Σ0|
(A.96)

=
1

ψ(y0)
N (y0; C0x,D0D

T
0 )N (x; x̄0, Σ0) (A.97)

=
1

ψ(y0)
N (y0; C0x̄0, S0)N (x; x̂0|0, Σ0|0) (A.98)

= c̄0N (x; x̂0|0, Σ0|0) (A.99)
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where

S0 , C0Σ0C
T
0 + D0D

T
0 , (A.100)

x̂0|0 , x̄0 + Σ0C
T
0 (S0)

−1(y0 − C0x̄0), (A.101)

Σ0|0 , Σ0 − Σ0C
T
0 S−1

0 C0Σ0, (A.102)

c̄0 =
1

ψ(y0)
N (y0; C0x̄0, S0). (A.103)

Here, while going from Eqn. A.97 to Eqn. A.98, we used the result of App.

B.2. Note that the initial density α0(x) is an unnormalized Gaussian. Since

the recursion given in Eqn. A.84 is linear, the unnormalized densities αk(x)

are all unnormalized Gaussian densities. Suppose that the density αk(x) is

given as

αk(x) = c̄kN (x; x̂k|k, Σk|k). (A.104)

Using this, we can find the normalized densities pk(x) as

pk(x) =
αk(x)∫
αk(z)dz

=
αk(x)

c̄k

= N (x; x̂k|k, Σk|k). (A.105)

Therefore, the quantities x̂k|k and Σk|k are actually minimum mean square

error estimates and covariances defined as

x̂k|k , E[xk|Yk] = x̂MS
k|k , (A.106)

Σk|k , E[(xk − x̂k|k)(xk − x̂k|k)
T |Yk] = ΣMS

k|k . (A.107)

Now, we are now going to find recursive relations for the estimates x̂k|k, covari-

ances Σk|k and the weighting coefficients c̄k using the recursion of Eqn. A.84.

Using the facts that

φ(B−1
k (x− Akz))

|Bk| = N (x; Akz, BkB
T
k ), (A.108)

ψ(D−1
k (yk − Ckx))

|Dk| = N (yk; Ckx,DkD
T
k ), (A.109)

we can write the recursion of Eqn. A.84 as

αk(x) =
N (yk; Ckx, DkD

T
k )

ψ(yk)

∫
N (x; Akz, BkB

T
k )αk−1(z)dz. (A.110)
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Substituting the expression of αk−1(z) implied by Eqn. A.104 into Eqn. A.110,

we get

αk(x) =
c̄k−1

ψ(yk)
N (yk; Ckx,DkD

T
k )

∫
N (x; Akz, BkB

T
k )

×N (z; x̂k−1|k−1, Σk−1|k−1)dz. (A.111)

Using the result on the integral of Gaussian densities given in App. B.4 on the

integral on the right hand side of Eqn. A.111, we obtain

αk(x) =
c̄k−1

ψ(yk)
N (yk; Ckx,DkD

T
k )N (x; x̂k|k−1, Σk|k−1) (A.112)

where

x̂k|k−1 , Akx̂k−1|k−1, (A.113)

Σk|k−1 , AkΣk−1|k−1A
T
k + BkB

T
k , (A.114)

which are called as the Kalman prediction update equations. Making use of

the result on multiplication of Gaussian densities given in App. B.2 on the

multiplication of Eqn. A.112, we get

αk(x) = c̄kN (x; x̂k|k, Σk|k) (A.115)

where

c̄k =
c̄k−1

ψ(yk)
N (yk; Ckx̂k|k−1, Sk), (A.116)

Sk = CkΣk|k−1C
T
k + DkD

T
k , (A.117)

x̂k|k = x̂k|k−1 + Σk|k−1C
T
k S−1

k (yk − Ckx̂k|k−1), (A.118)

Σk|k = Σk|k−1 − Σk|k−1C
T
k S−1

k CkΣk|k−1, (A.119)

which are called as the Kalman measurement update equations. Note that

the weighting coefficients c̄k are not required for the recursions of the estimate

x̂k|k and the covariance Σk|k. Therefore, one need not propagate the weighting

coefficients in the execution of the Kalman filter.

Although the derivation presented above is straightforward, it makes one

recognize the key elements in these types of derivations. The main points can

be summarized in two items given as
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• Integral of the unnormalized Gaussian density multiplied by another

Gaussian density represents Kalman filter prediction update.

• Multiplication of a density with a Gaussian density represents Kalman

filter measurement update.

These are obviously the generalized versions of the Bayesian density recursions.

The above observations are highly useful when interpreting the complex density

recursions involved in Chapters 3 and 5.

It is also appropriate here to emphasize that the reference probability used

here can be applied to non-Gaussian noise cases as long as the absolute continu-

ity condition of the measures is not violated. However, in that case, obtaining

the recursive forms for the algorithms would be much more difficult because

the multiplication and the integral of the non-Gaussian densities will not be

evaluated and manipulated as easily as done above.

A.3 Derivation of the Risk-Sensitive Filter for

Linear Gauss-Markov Systems

In this section, we again consider the linear Gauss-Markov system defined in

App. A.2. The MMSE estimate x̂MS
k|k of the state of this system was defined

as

x̂MS
k|k = arg min

ξ∈Rn
E

[
1

2
(xk − ξ)T Qk(xk − ξ)

∣∣∣Yk

]
(A.120)

An alternative definition is given as follows.

x̂MS
k|k = arg min

ξ∈Rn
E [Φ0,k(ξ)|Yk] (A.121)

where

Φ0,k(ξ) , Φ̂0,k−1 +
1

2
(xk − ξ)T Qk(xk − ξ), (A.122)

Φ̂m,n ,
n∑

l=m

1

2
(xl − x̂MS

l|l )T Ql(xl − x̂MS
l|l ). (A.123)
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Note that the two problems defined in Eqn. A.120 and Eqn. A.121 are equiv-

alent to each other.1 A risk-sensitive generalization of the problem given in

Eqn. A.55 is to find x̂RS
k|k as

x̂RS
k|k = arg min

ζ∈Rn
E

[
exp

{
θ

2
(xk − ζ)T Qk(xk − ζ)

} ∣∣∣Yk

]
. (A.124)

This problem has been solved in [25] and the resulting filter turns out to be

the same as the Kalman filter. The generalization of the second problem in

Eqn. A.121 is to find x̂RS
k|k as

x̂RS
k|k = arg min

ζ∈Rn
E

[
θ exp {θΨ0,k(ζ)}

∣∣∣Yk

]
(A.125)

where

Ψ0,k(ζ) , Ψ̂0,k−1 +
1

2
(xk − ζ)T Qk(xk − ζ), (A.126)

Ψ̂m,n ,
n∑

l=m

1

2
(xl − x̂RS

l|l )T Ql(xl − x̂RS
l|l ). (A.127)

This risk sensitive estimation problem is much harder than its MS equivalent

in Eqn. A.121 due to the fact that the expectation cannot be distributed

over the individual terms after the exponential operation in Eqn. A.125 due

to the highly dependent characteristics of the state process. This problem

has been solved in [40] using the reference probability method, and here, we

are going to re-derive the resulting filter using the change of measure given

in App. A.2.1. Our change of measure makes both the measurement and

state sequences i.i.d. whereas the change of measure in [40] makes only the

measurement sequence i.i.d.. Note that this difference of change of measure

requires the whole derivation to be repeated.

A.3.1 Derivation of the Filter

Using Theorem A.3, we can write the expectation in Eqn. A.125 as

E [θ exp {θΨ0,k(ζ)} |Yk] =
E

[
Λkθ exp {θΨ0,k(ζ)} |Yk

]

E
[
Λk|Yk

] (A.128)

1 This equivalence stems from the fact that expectation can be distributed over summa-
tion in Eqn. A.121.
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where E and E denotes the expectations with respect to probability measures

P and P respectively. Since the denominator of the right hand side of Eqn.

A.128 is independent of ζ, the risk-sensitive estimate x̂RS
k|k is equivalently given

as

x̂RS
k|k = arg min

ζ∈Rn
E

[
Λkθ exp {θΨ0,k(ζ)} |Yk

]
. (A.129)

At this point, we define the unnormalized density function γk(x) as

γk(x)dx = E
[
Λk exp

{
θΨ̂0,k−1

}
I{xk∈dx}

∣∣∣Yk

]
. (A.130)

This density function can be interpreted as an “information state” for the

problem [45]. Using a simple reasoning, we can see that, if f(.) is any test

function the following equality is satisfied.

E
[
Λk exp

{
θΨ̂0,k−1

}
f(xk)

∣∣∣Yk

]
=

∫
f(x)γk(x)dx. (A.131)

Using this, we can write the risk-sensitive estimate as

x̂RS
k|k = arg min

ζ∈Rn
E

[
Λkθ exp {θΨ0,k(ζ)} |Yk

]
(A.132)

= arg min
ζ∈Rn

E

[
Λkθ exp

{
θΨ̂0,k−1

}
exp

{
θ

2
(xk − ζ)T Qk(xk − ζ)

}∣∣∣∣Yk

]

= arg min
ζ∈Rn

∫
exp

{
θ

2
(x− ζ)T Qk(x− ζ)

}
γk(x)dx. (A.133)

Notation: In the following part, due to length of the formulas, we will use

the following abbreviations.

exp(+, x, x̄, Σ) , exp

{
1

2
(x− x̄)T Σ−1(x− x̄)

}
, (A.134)

exp(−, x, x̄, Σ) , exp

{
−1

2
(x− x̄)T Σ−1(x− x̄)

}
. (A.135)

The following theorem gives a recursion for the density γk(x).

Theorem A.5 The unnormalized density γk(x) satisfies the following recur-

sion.

γk(x) =
ψ(D−1

k (yk − Ckx))

|Bk||Dk|ψ(yk)

∫
φ(B−1

k (x− Akz))

× exp

{
+, z, x̂RS

k−1|k−1,
1

θ
Q−1

k−1

}
γk−1(z)dz. (A.136)
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Proof Let f : Rn → R be any test function. Then
∫

f(x)γk(x)dx , E
[
Λk exp

{
θΨ̂0,k−1

}
f(xk)

∣∣∣Yk

]
(A.137)

= E
[
Λk−1λk exp

{
θΨ̂0,k−2

}
exp

{
+, xk−1, x̂

RS
k−1|k−1,

1

θ
Qk−1

}

×f(xk)
∣∣∣Yk

]
(A.138)

= E
[
Λk−1 exp

{
θΨ̂0,k−2

} φ(B−1
k (xk − Akxk−1))

|Bk|φ(xk)

×ψ(D−1
k (yk − Ckxk))

|Dk|ψ(yk)
exp

{
+, xk−1, x̂

RS
k−1|k−1,

1

θ
Qk−1

}

×f(xk)
∣∣∣Yk

]
(A.139)

= E
[
Λk−1 exp

{
θΨ̂0,k−2

}
exp

{
+, xk−1, x̂

RS
k−1|k−1,

1

θ
Qk−1

}

×E
[φ(B−1

k (xk − Akxk−1))

|Bk|φ(xk)

ψ(D−1
k (yk − Ckxk))

|Dk|ψ(yk)

×f(xk)
∣∣∣xk−1,Yk

]∣∣∣Yk

]
(A.140)

The inner expectation in Eqn. A.140 can easily be taken as follows due to the

independence properties of the sequence {xk} under P .
∫

f(x)γk(x)dx = E
[
Λk−1 exp

{
θΨ̂0,k−2

}
exp

{
+, xk−1, x̂

RS
k−1|k−1,

1

θ
Qk−1

}

×
∫

φ(B−1
k (x− Akxk−1))

|Bk|φ(x)

ψ(D−1
k (yk − Ckx))

|Dk|ψ(yk)

×f(x)φ(x)dx
∣∣∣Yk−1

]
(A.141)

=

∫
exp

{
+, z, x̂RS

k−1|k−1,
1

θ
Qk−1

}
γk−1(z)

×
∫

φ(B−1
k (x− Akz))

|Bk|
ψ(D−1

k (yk − Ckx))

|Dk|ψ(yk)
f(x)dxdz

=

∫
f(x)

[ψ(D−1
k (yk − Ckx))

|Bk||Dk|ψ(yk)

∫
φ(B−1

k (x− Akz))

× exp
{

+, z, x̂RS
k−1|k−1,

1

θ
Qk−1

}
γk−1(z)dz

]
dx. (A.142)

Since the equality is satisfied for any test function f(.), the recursion of Eqn.

A.136 holds. ¤

The initial density γ0(x) can be calculated as

E
[
Λ0 exp

{
θΨ̂0,−1

}
f(x0)

∣∣∣Y0

]
= E

[
Λ0f(x0)

∣∣∣Y0

]
(A.143)
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= E
[
λ0f(x0)

∣∣∣Y0

]
(A.144)

= E
[φ(

√
Σ0

−1
(x0 − x̄0))

|√Σ0|φ(x0)

×ψ(D−1
0 (y0 − C0x0))

|D0|ψ(y0)
f(x0)

∣∣∣Y0

]

=

∫
f(x)

φ(
√

Σ0
−1

(x− x̄0))

|√Σ0|φ(x)

×ψ(D−1
0 (y0 − C0x))

|D0|ψ(y0)
φ(x)dx. (A.145)

Thus

γ0(x) =
ψ(D−1

0 (y0 − C0x))

|D0|ψ(y0)

φ(
√

Σ0
−1

(x− x̄0))

|√Σ0|
(A.146)

Note that this equation is the same as the formula for α0(x) given in Eqn.

A.96. Therefore γ0(x) is given as

γ0(x) = d̄0N (x; x̂0|0, Σ0|0) (A.147)

where

S0 , C0Σ0C
T
0 + D0D

T
0 , (A.148)

x̂0|0 , x̄0 + Σ0C
T
0 (S0)

−1(y0 − C0x̄0), (A.149)

Σ0|0 , Σ0 − Σ0C
T
0 S−1

0 C0Σ0, (A.150)

d̄0 =
1

ψ(y0)
N (y0; C0x̄0, S0). (A.151)

A careful examination of the recursion given in Eqn. A.136 reveals that all

γk(x) are in the form of γ0(x), i.e.,

γk(x) = d̄kN (x; x̂k|k, Σk|k) (A.152)

Substituting this form into Eqn. A.133, and using the result of App. B.3, we

obtain the risk-sensitive state estimate x̂RS
k|k as

x̂RS
k|k = arg min

ζ∈Rn
d̄k

∫
exp

{
θ

2
(x− ζ)T Qk(x− ζ)

}
N (x; x̂k|k, Σk|k)dx

= arg min
ζ∈Rn

d̄k√|2πΣk|k|

∫
exp

{
θ

2
(x− ζ)T Qk(x− ζ)

}
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× exp

{
−1

2
(x− x̂k|k)

T Σ−1
k|k(x− x̂k|k)

}
dx (A.153)

= arg min
ζ∈Rn

d̄k

√
|2πU |√|2πΣk|k|

exp

{
1

2
(ζ − x̂k|k)

T V (ζ − x̂k|k)
}

(A.154)

= x̂k|k (A.155)

where

U ,
[
1

θ
Q−1

k − Σk|k

]−1

(A.156)

V ,
[
Σ−1

k|k − θQk

]−1

(A.157)

Hence, the mean x̂k|k of the unnormalized Gaussian density γk(x) is the risk-

sensitive estimate x̂RS
k|k . This shows us that, all we need to obtain is a recursive

relationship between consecutive x̂k|k values. Now, assuming that we know the

quantities d̄k−1, x̂k−1|k−1 and Σk−1|k−1, we obtain d̄k, x̂k|k and Σk|k using the

recursion in Eqn. A.136. Note that the initial quantities d̄0, x̂0|0 and Σ0|0 are

already given by Eqn. A.151, A.149 and A.150 respectively. Substituting Eqn.

A.152 into the recursion in Eqn. A.136, and noting that x̂RS
k−1|k−1 = x̂k−1|k−1,

we obtain

γk(x) =
d̄k−1ψ(D−1

k (yk − Ckx))√|2πΣk−1|k−1||Dk|ψ(yk)

∫
N (x; Akz,BkB

T
k )

× exp
{

+, z, x̂k−1|k−1,
1

θ
Q−1

k−1

}
exp

{
−, z, x̂k−1|k−1, Σk−1|k−1

}
dz

=
d̄k−1ψ(D−1

k (yk − Ckx))√|2πΣk−1|k−1||Dk|ψ(yk)

∫
N (x; Akz,BkB

T
k )

× exp

{
−1

2
(z − x̂k−1|k−1)

T
[
Σ−1

k−1|k−1 − θQk−1

]
(z − x̂k−1|k−1)

}
dz

=
d̄k−1ψ(D−1

k (yk − Ckx))√
|Σk−1|k−1||Σ−1

k−1|k−1 − θQk−1||Dk|ψ(yk)

∫
N (x; Akz,BkB

T
k )

×N (z; x̂k−1|k−1, [Σ
−1
k−1|k−1 − θQk−1]

−1)dz. (A.158)

Note that while writing Eqn. A.158, it is assumed that [Σ−1
k−1|k−1−θQk−1] > 0.

Using the result of App. B.4, the integral in the Eqn. A.158 can be taken as

follows

γk(x) =
d̄k−1ψ(D−1

k (yk − Ckx))√
|Σk−1|k−1||Σ−1

k−1|k−1 − θQk−1||Dk|ψ(yk)
N (x; Akx̂k−1|k−1, Σk|k−1)
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=
d̄k−1√

|Σk−1|k−1||Σ−1
k−1|k−1 − θQk−1|ψ(yk)

N (yk; Ckx,DkD
T
k )

×N (x; Akx̂k−1|k−1, Σk|k−1) (A.159)

where

Σk|k−1 = Ak

[
Σ−1

k−1|k−1 − θQk−1

]−1

AT
k + BkB

T
k . (A.160)

Using the result of App. B.2 on the multiplication of the Gaussian densities

in Eqn. A.159, we obtain

γk(x) =
d̄k−1√

|Σk−1|k−1||Σ−1
k−1|k−1 − θQk−1|ψ(yk)

N (yk; CkAkx̂k−1|k−1, Sk)

×N (x; x̂k|k, Σk|k) (A.161)

where

Sk = CkΣk|k−1C
T
k + DkD

T
k , (A.162)

Σk|k = Σk|k−1 − Σk|k−1C
T
k S−1

k CkΣk|k−1, (A.163)

x̂k|k = Akx̂k−1|k−1 + Σk|k−1C
T
k S−1

k

(
yk − CkAkx̂k−1|k−1

)
. (A.164)

Summarizing the results,

x̂RS
k|k = Akx̂

RS
k−1|k−1 + Σk|k−1C

T
k S−1

k

(
yk − CkAkx̂

RS
k−1|k−1

)
(A.165)

Σk|k = Σk|k−1 − Σk|k−1C
T
k S−1

k CkΣk|k−1 (A.166)

Σk|k−1 = Ak

[
Σ−1

k−1 − θQ
]−1

AT
k + BkB

T
k (A.167)

Sk = CkΣk|k−1C
T
k + DkD

T
k (A.168)

Note also that, the recursion for the constants d̄k are given as follows,

d̄k =
d̄k−1√

|Σk−1|k−1||Σ−1
k−1|k−1 − θQk−1|ψ(yk)

N (yk; CkAkx̂k−1|k−1, Sk)

Furthermore, the recursions described by Eqn. A.165, A.166, A.167 and A.168

can be written in prediction and measurement update forms (as in the case of

Kalman filter) as
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• Prediction Update

x̂RS
k|k−1 = Akx̂

RS
k−1|k−1, (A.169)

Σk|k−1 = Ak

[
Σ−1

k−1|k−1 − θQk−1

]−1

AT
k + BkB

T
k . (A.170)

• Measurement Update

x̂RS
k|k = x̂RS

k|k−1 + Σk|k−1C
T
k S−1

k

(
yk − Ckx̂

RS
k|k−1

)
, (A.171)

Σk|k = Σk|k−1 − Σk|k−1C
T
k S−1

k CkΣk|k−1, (A.172)

Sk = CkΣk|k−1C
T
k + DkD

T
k . (A.173)

These updates show that the only difference of the risk-sensitive filter from

the Kalman filter is in the covariance prediction update given in Eqn. A.170.

The Eqn. A.170 also makes it clear that when θ = 0, the risk-sensitive filter

reduces to the Kalman filter. It is important here to see that the recursion

of the weighting coefficients d̄k is not required for the recursion of estimates

and covariances. Therefore one need not propagate the weighting coefficients

during the execution.
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APPENDIX B

RESULTS ON MULTIPLICATION AND

INTEGRAL OF EXPONENTIALS AND

GAUSSIAN DENSITIES

This appendix gives brief results on multiplication and integral of exponentials

and Gaussian densities which are used in some of the derivations of the thesis.

B.1 Multiplication of Two Exponentials

Define the multiplication M as

M , exp

{
−1

2
(y − Cx)T R−1(y − Cx)

}

× exp

{
−1

2
(x− x̄)T Σ−1(x− x̄)

}
. (B.1)

Using some completion to square argument, one can see that

M = exp

{
−1

2
(y − Cx̄)T

[
CΣCT + R

]−1
(y − Cx̄)

}

× exp

{
−1

2
(x− g)T F−1(x− g)

}
(B.2)

where

F ,
[
Σ−1 + CT R−1C

]−1
(B.3)

= Σ− ΣCT
[
CΣCT + R

]−1
CΣ, (B.4)

g , F
[
Σ−1x̄ + CT R−1y

]
(B.5)

= x̄ + ΣCT
[
CΣCT + R

]−1
(y − Cx̄) . (B.6)
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B.2 Multiplication of Two Gaussian Densities

Using the standard Kalman filter measurement updates, we can show easily

that, the following equation is satisfied.

N (y; Cx, R)N (x, x̄, Σ) = N (y, Cx̄, S)N (x, g, F ) (B.7)

where

S = CΣCT + R, (B.8)

g = x̄ + ΣCT S−1(y − Cx̄), (B.9)

F = Σ− ΣCT S−1CΣ. (B.10)

B.3 Integral of Two Exponentials

The integral I(ξ, x̄) defined as

I(ξ, x̄) ,
∫

exp

{
1

2
(ξ − Ax)T Q(ξ − Ax)

}

× exp

{
−1

2
(x− x̄)T Σ−1(x− x̄)

}
dx (B.11)

satisfies,

I(ξ, x̄) =
√
|2πM | exp

{
1

2
(ξ − Ax̄)T S(ξ − Ax̄)

}
(B.12)

where

S ,
[
Q−1 − AΣAT

]−1
> 0, (B.13)

M ,
[
Σ−1 − AT QA

]−1
> 0. (B.14)

For the convergence of the integral, the matrices S and M must be positive

definite, which are actually equivalent conditions.

B.4 Integral of Two Gaussian Densities

Using the standard Kalman filter prediction updates, we can show that the

following equation is satisfied.
∫
N (x; Az, Q)N (z; x̄, Σ)dz = N (x,Ax̄, AΣAT + Q)

where Q and Σ are positive definite matrices.
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APPENDIX C

RECURSIVE PROJECTION ALGORITHM

USED IN CHAPTER 4

The following operation finds the projection x̄ of the N-vector x given as

x = [ x1 x2 · · · xN ]T which satisfies the inequalities (See Remark 4.3)

N∑
i=1

xi ≥ 1 and xi ≥ 0 for i = 1, 2, . . . , N (C.1)

onto the standard N -simplex defined by its elements in at most N recursions.

x̄ = Project(x,N) (C.2)

where the recursive function Project(., .) is defined as follows:

function p =Project(x,N)

ε =
(∑N

i=1 xi − 1
)

/N

if ε ≤ mini xi

p = x− ε1̄N

else
j = arg mini xi

y =
[
x ((1 : (j − 1))T x ((j + 1) : N)T

]T

m =Project(y,N − 1)
p(1 : (j − 1)) = m(1 : (j − 1))
p(j) = 0
p((j + 1) : N) = m(j : (N − 1))

end
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Here, 1̄N = [ 1 1 · · · 1 ]T denotes the N -vector composed of ones and the

notation x(i : j) stands for

x(i : j) ,





[ xi · · · xj ]T for j ≥ i

[.]T otherwise
(C.3)

where the notation [.] denotes an empty vector.

The proof of the fact that this operation obtains the projection of x onto

the standard N -simplex can be made easily by formulating the problem as a

standard quadratic programming problem and is not given here. See [62] for

a general solution which does not require the conditions in Eqn. C.1.
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APPENDIX D

DERIVATION OF THE ERROR

COVARIANCE OF CHAPTER 6

In Chapter 6, the error covariance formula given in Eqn. 6.89 is given without

proof for the sake of simplicity. In this appendix, we give a brief derivation of

that result.

After defining the quantities

T1 , x̄app, (D.1)

T2 , Ksub(yk − ȳ), (D.2)

T3 ,
∑N

i=1p
+
i x̄i, (D.3)

T4 ,
∑N

i=1p
+
i Ki (yk − ȳi) , (D.4)

it was noted in Chapter 6 that the covariance Σ∆ is given as

Σ∆ = Eyk
[(T1 + T2 − T3 − T4) (T1 + T2 − T3 − T4)

T
∣∣ Y k−1]. (D.5)

Thus, the covariance calculation requires the expected values of the form

Eyk

[
TiT

T
j |Y k−1

]
for i, j = 1, . . . , 4. (D.6)

The approximation required to evaluate these expectations was suggested in

Chapter 6 as:

• Assuming that the means ȳi of the Gaussian components of p(yk|Y k−1)

are sufficiently separated or equivalently
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• Assuming that the measurement dependent posterior probability p+
i is

approximately unity around the mean ȳi within the 2σ covariance ellipse.

Using this approximation, it was shown in Chapter 6 that the following equa-

tion is satisfied.

Eyk
[(p+

i )2|Y k−1] = pi. (D.7)

Similarly, using the same approximation, one can easily conclude that p+
i p+

j ≈
0 for all yk values when i 6= j. Using these two facts, we can write the following

result.

Eyk
[p+

i p+
j |Y k−1] =





pi, i = j

0, i 6= j
. (D.8)

Other basic expectations which can be evaluated similarly are listed below

with their results:

• Eyk
[p+

i p+
j yk|Y k−1] =





piȳi, i = j

0, i 6= j
,

• Eyk
[p+

i p+
j (yk − ȳi)(yk − ȳj)

T |Y k−1] =





piSi, i = j

0, i 6= j
.

Note that the property p+
i p+

j ≈ 0 when i 6= j is so useful that it turns

the double summations appearing in the expectations like Eyk

[
T3T

T
3 |Y k−1

]
,

Eyk

[
T3T

T
4 |Y k−1

]
, Eyk

[
T4T

T
4 |Y k−1

]
, etc. into single summations.

D.1 Calculation of the Terms Eyk

[
TiT

T
j |Y k−1

]

Using the expectations calculated in Chapter 6 and the basic expectation re-

sults given in the previous part of the appendix, in this section, the expec-

tations Eyk

[
TiT

T
j |Y k−1

]
are evaluated one by one. Only the case i ≤ j is

investigated since

Eyk

[
TiT

T
j |Y k−1

]
=

(
Eyk

[
TjT

T
i |Y k−1

])T
. (D.9)
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• Calculation of Eyk

[
T1T

T
1 |Y k−1

]
:

Eyk

[
T1T

T
1 |Y k−1

]
= T1T

T
1 = x̄appx̄

T
app. (D.10)

• Calculation of Eyk

[
T1T

T
2 |Y k−1

]
:

Eyk

[
T1T

T
2 |Y k−1

]
= T1Eyk

[
T T

2 |Y k−1
]

= x̄app0 = 0. (D.11)

• Calculation of Eyk

[
T1T

T
3 |Y k−1

]
:

Eyk

[
T1T

T
3 |Y k−1

]
= T1Eyk

[
T T

3 |Y k−1
]

= x̄app

N∑
i=1

Eyk

[
p+

i |Y k−1
]
x̄T

i

= x̄app

N∑
i=1

pix̄
T
i = x̄appx̄

T
app. (D.12)

• Calculation of Eyk

[
T1T

T
4 |Y k−1

]
:

Eyk

[
T1T

T
4 |Y k−1

]
= T1Eyk

[
T T

4 |Y k−1
]

= x̄app

N∑
i=1

(
Eyk

[
p+

i yk|Y k−1
]− Eyk

[
p+

i |Y k−1
]
ȳi

)
KT

i

= x̄app

N∑
i=1

(piȳi − piȳi) KT
i = 0. (D.13)

• Calculation of Eyk

[
T2T

T
2 |Y k−1

]
:

Eyk

[
T2T

T
2 |Y k−1

]
= KsubEyk

[
(yk − ȳ)(yk − ȳ)T |Y k−1

]
KT

sub

= KsubSsubK
T
sub = ΣappC

T S−1
subCΣapp. (D.14)

• Calculation of Eyk

[
T2T

T
3 |Y k−1

]
:

Eyk

[
T2T

T
3 |Y k−1

]
= Ksub

N∑
i=1

(
Eyk

[
p+

i yk|Y k−1
]− Eyk

[
p+

i |Y k−1
]
ȳ
)
x̄T

i

= Ksub

[
N∑

i=1

piȳix̄
T
i −

N∑
i=1

piȳx̄T
i

]

= Ksub

N∑
i=1

pi(ȳi − ȳ)x̄T
i . (D.15)
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• Calculation of Eyk

[
T2T

T
4 |Y k−1

]
:

Eyk

[
T2T

T
4 |Y k−1

]
= Ksub

N∑
i=1

Eyk

[
p+

i (yk − ȳ)(yk − ȳi)
T |Y k−1

]
KT

i

= Ksub

N∑
i=1

Eyk

[
p+

i (yk − ȳi)(yk − ȳi)
T |Y k−1

]
KT

i

−Ksub

N∑
i=1

Eyk

[
p+

i (ȳi − ȳ)(yk − ȳi)
T |Y k−1

]
KT

i

= Ksub

N∑
i=1

piSiK
T
i

−Ksub

N∑
i=1

(ȳi − ȳ)Eyk

[
p+

i (yk − ȳi)
T |Y k−1

]
KT

i

= Ksub

N∑
i=1

piSiK
T
i = KsubC

N∑
i=1

piΣi

= KsubC

[
Σapp −

N∑
i=1

pi(x̄i − x̄app)(x̄i − x̄app)
T

]

= KsubC

[
Σapp −

N∑
i=1

pi(x̄i − x̄app)x̄
T
i

]

= ΣappC
T S−1

subCΣapp −Ksub

N∑
i=1

pi(ȳi − ȳ)x̄T
i .

• Calculation of Eyk

[
T3T

T
3 |Y k−1

]
:

Eyk

[
T3T

T
3 |Y k−1

]
=

N∑
i=1

Eyk

[
(p+

i )2|Y k−1
]
x̄ix̄

T
i =

N∑
i=1

pix̄ix̄
T
i . (D.16)

• Calculation of Eyk

[
T3T

T
4 |Y k−1

]
:

Eyk

[
T3T

T
4 |Y k−1

]
=

N∑
i=1

x̄iEyk

[
(p+

i )2(yk − ȳi)|Y k−1
]
KT

i

=
N∑

i=1

x̄i(piȳi − piȳi)K
T
i = 0. (D.17)

• Calculation of Eyk

[
T4T

T
4 |Y k−1

]
:

Eyk

[
T4T

T
4 |Y k−1

]
=

N∑
i=1

KiEyk

[
(p+

i )2(yk − ȳi)(yk − ȳi)
T |Y k−1

]
KT

i

=
N∑

i=1

piKiSiK
T
i =

N∑
i=1

piΣiC
T S−1

i CΣi. (D.18)
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D.2 Calculation of the Covariance Σ∆

In this section, in order to evaluate the expectation

Σ∆ = Eyk
[(T1 + T2 − T3 − T4) (T1 + T2 − T3 − T4)

T
∣∣ Y k−1], (D.19)

we combine the results of the previous section as

Σ∆ = x̄appx̄
T
app − x̄appx̄

T
app + ΣappC

T S−1
subCΣapp −Ksub

N∑
i=1

pi(ȳi − ȳ)x̄T
i

−ΣappC
T S−1

subCΣapp + Ksub

N∑
i=1

pi(ȳi − ȳ)x̄T
i − x̄appx̄

T
app

−
N∑

i=1

pix̄i(ȳi − ȳ)T KT
sub +

N∑
i=1

pix̄ix̄
T
i − ΣappC

T S−1
subCΣapp

+
N∑

i=1

pix̄i(ȳi − ȳ)T KT
sub +

N∑
i=1

piΣiC
T S−1

i CΣi (D.20)

=
N∑

i=1

piΣiC
T S−1

i CΣi − ΣappC
T S−1

subCΣapp +
N∑

i=1

pix̄ix̄
T
i − x̄appx̄

T
app

which is the same as Eqn. 6.89. Note that while writing the right hand side

of Eqn. D.20, we used the fact

Eyk

[
TiT

T
j |Y k−1

]
=

(
Eyk

[
TjT

T
i |Y k−1

])T
(D.21)

extensively.
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