
 
 
 
 
 
 
 

NUMERICAL MODELING OF WAVE DIFFRACTION IN  
ONE-DIMENSIONAL SHORELINE CHANGE MODEL 

 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 

BY 
 
 
 

CÜNEYT BAYKAL 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  
FOR 

THE DEGREE OF MASTER OF SCIENCE 
IN 

CIVIL ENGINEERING 
 
 
 
 
 

DECEMBER 2006 
 
 



Approval of the Graduate School of Natural and Applied Sciences 
 
 
        _____________________ 

 
Prof.Dr. Canan Özgen 
Director 

 
 

I certify that this thesis satisfies all the requirements as a thesis for the degree of 
Master of Science. 
 
 
        _____________________ 

 
Prof.Dr. Güney Özcebe 
Head of Department 

 
 
This is to certify that we have read this thesis and that in our opinion it is fully 
adequate, in scope and quality, as a thesis for the degree of Master of Science. 
 
 
 
_______________________________   _____________________ 
 
Assoc.Prof.Dr. Ahmet Cevdet Yalçıner   Prof.Dr. Ayşen Ergin 
Co-Supervisor       Supervisor 
 
 
Examining Committee Members  
 

Assoc.Prof.Dr. İsmail Aydın (METU, CE)   _____________________ 

 

Prof.Dr. Ayşen Ergin (METU, CE)    _____________________ 

 

Assoc.Prof.Dr. Ahmet Cevdet Yalçıner (METU, CE) _____________________ 

 

Dr. Işıkhan Güler (METU, CE)    _____________________ 

 

Engin Bilyay (M.S.)      _____________________ 

(DLH, General Directorate of Railways,  

Harbors and Airports Construction)



 iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also 
declare that, as required by these rules and conduct, I have fully cited and 
referenced all material and results that are not original to this work. 
 
 

Name, Last name:  Cüneyt Baykal 
 
Signature             : 

 

 

 

 

 



 iv 

ABSTRACT 
 
 

NUMERICAL MODELING OF WAVE DIFFRACTION IN  

ONE-DIMENSIONAL SHORELINE CHANGE MODEL 
 
 
 

Baykal, Cüneyt 

M.S., Department of Civil Engineering 

Supervisor: Prof.Dr. Ayşen Ergin 

Co-Supervisor: Assoc.Prof.Dr. Ahmet Cevdet Yalçıner 
 
 

December 2006, 95 pages 
 
 
In this study, available coastal models are briefly discussed and under wind waves 

and a numerical shoreline change model for longshore sediment transport based on 

“one-line” theory is developed. In numerical model, wave diffraction phenomenon 

in one-dimensional modeling is extensively discussed and to represent the irregular 

wave diffraction in the sheltered zones of coastal structures a simpler approach 

based on the methodology introduced by Kamphuis (2000) is proposed. 

Furthermore, the numerical model results are compared with analytical solutions of 

accretion and erosion at a single groin. An application to a case study of a groin 

field constructed to the east side of Kızılırmak river mouth, at Bafra alluvial plain, 

is carried out by the numerical model. The results of comparisons show that the 

numerical model is in good agreement with the analytical solutions of shoreline 

changes at a groin. Similarly, numerical model results are compared with field data 

of Bafra and it is shown that they are in good agreement qualitatively. Therefore, 

the numerical model is accepted to be capable of representing of shoreline evolution 

qualitatively even for complex coastal regions. 

 

Keywords: Longshore sediment transport, Shoreline change model, One-line 

theory, Wave diffraction, Analytical solutions 
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ÖZ 
 
 

TEK BOYUTLU KIYI ÇİZGİSİ DEĞİŞİM MODELİNDE  

DALGA SAPMASININ SAYISAL MODELLENMESİ 
 
 
 

Baykal, Cüneyt 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Prof.Dr. Ayşen Ergin 

Ortak Tez Yöneticisi: Doç.Dr. Ahmet Cevdet Yalçıner 
 
 

Aralık 2006, 95 sayfa 
 
 
Bu çalışmada, mevcut kıyı modelleri incelenmiş ve rüzgar dalgaları altında kıyı 

boyu katı madde taşınımına bağlı olarak “tek-çizgi” teorisine dayalı bir sayısal kıyı 

çizgisi değişim modeli geliştirilmiştir. Dalga sapmasının sayısal modellenmesi 

üzerine geliştirilen metodlar ayrıntılı bir şekilde incelenmiş ve Kamphuis (2000) 

tarafından düzensiz dalgaların sapma hesabı için verilen metoda dayalı daha basit 

bir yaklaşım modelde önerilmiştir. Geliştirilen sayısal model tek mahmuz için 

yığılma ve aşınma analitik çözümleri ile karşılaştırılmış ve Kızılırmak nehir ağzı, 

Bafra Delta’sında inşa edilmiş mahmuz sistemi için model uygulaması yapılmıştır. 

Geliştirilen model analitik çözümler ile nitelik ve nicelik olarak tutarlı olup saha 

ölçümleri ile de niteliksel olarak uyumlu bulunmuştur. Sayısal model kıyı çizgisi 

değişimini karmaşık kıyı alanlarında dahi niteliksel olarak gösterebilmektedir. 

 

Anahtar Kelimeler: Kıyı çizgisi modeli, Tek-çizgi teorisi, Dalga sapması, Analitik 

çözümler 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

“It isn't the mountain ahead that wears you out 

- it's the grain of sand in your shoe.” 

Robert Service 

 
 
Coastal engineers and scientists have made numerous attempts to answer one 

simple and major question among a wide variety of challenging coastal problems 

for decades. Where will the shoreline be tomorrow? Next week? Next year? In a 

decade? Besides the complexity of coastal morphodynamics, local and temporal 

variations in the characteristics of coastal areas have made difficult for coastal 

engineers to answer this question. The available input data about the problem often 

is the main parameter in the determination of the methodology and limits the 

accuracy of the prediction of future changes in shoreline. Site specific features such 

as wave climate and storm history, bottom topography, sources of erosion and/or 

accretion, existing coastal structures and many other features and their single and 

combined effects on the reshaping of the shoreline should be taken into 

consideration for accurate modeling of the problem as much as possible. 

  

Coastal problems and the necessity of implementation of integrated coastal zone 

management are mainly due to rapidly increasing use of coastal areas. In addition to 

the increasing development, the possible lack of control mechanisms and low-level 

of education of local people increase complexity of problems and severity of 

measures. The measures taken for the control of sediment budget in coastal areas 

are categorized in two groups as hard measures (jetties, groins, detached 

breakwaters, seawalls, dykes etc.) and soft measures (beacfills, sediment traps, etc.). 

Depending on the local characteristics and the short-term and long-term predictions 

of shoreline changes, these two types of measures may be applied as single or in 

combination.  
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The prediction of impacts of coastal defense measures is mainly based on 

documentation and monitoring of previously applied projects and application of 

predictive modeling tools. In addition to available analytical and empirical models, 

the continuous research for better understanding the physical processes responsible 

for shaping coastal morphology and the rapid advance in computer technology have 

initiated an increasing interest in developing powerful numerical models to simulate 

coastal processes and beach changes. Several categories of numerical models of 

beach evolution have been developed, ranging from simple 1-D models for 

idealized conditions to sophisticated 3-D models (Dabees, 2000). These numerical 

models are also available as powerful software packages for the purpose of 

engineering uses and research. Some well known of them are; GENESIS  developed 

jointly by the Department of the Army  (Waterways Experiment Station, Corps of 

Engineers, Vicksburg, MS, USA) and the Department of Water Resources 

Engineering (Lund Institute of Technology, University of Lund, Sweden); 

UNIBEST modules developed by WL, Delft Hydraulics (The Netherlands); and 

LITPACK developed by Danish Hydraulics Institute (Denmark). 

 

As the physical processes in the coastal areas are simulated in more detail, the 

numerical models get complicated, which result in longer time in simulation, 

sensitivity analysis and model calibration and verification. Therefore, effectiveness 

of the model with respect to the problem should be discussed before simulation. 

Despite various limitations and assumptions, one-dimensional models have proven 

themselves to give at least qualitative results in the prediction of long-term 

shoreline changes. However, in order to achieve quantitative results with one-

dimensional models also, the application site should agree with the limitations and 

assumptions of the “one-line” theory such as parallel bottom contours and 

equilibrium profile and the results should be calibrated with available field and 

laboratory measurements. 

 

In this study, the development of a computer program based on previous works of 

shoreline change models, GENESIS (Hanson, 1987) and ONELINE (Dabees and 

Kamphuis, 1998), will be discussed. The program has been developed in the Middle 
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East Technical University, Civil Engineering Department, Coastal and Harbor 

Engineering Laboratory to investigate the impacts of several coastal measures to 

shoreline and nearshore wave transformation mechanisms in the vicinity of coastal 

structures (shoaling, breaking, refraction and diffraction). A comparison between 

conventional diffraction method (SPM; Shore Protection Manual, 1984) and other 

methods based on regression analysis of diffraction coefficient from Goda’s 

diffraction diagrams for random waves (Goda, 1985) has been made. The shoreline 

changes at a groin have been compared with the analytical solutions (Pelnard-

Considere, 1956). 

 

In Chapter 2, an overview of coastal models is briefly discussed. 

 

In Chapter 3, the theoretical background of the program developed, determination 

of the nearshore wave characteristics and comparison of available diffraction 

methods are presented. 

 

In Chapter 4, analytical solutions for shoreline changes at a groin are introduced and 

the numerical model results are compared with analytical solutions. 

 

In Chapter 5, the numerical model is applied to a case study and the model results 

are compared with actual field measurements. 

 

In Chapter 6, discussion and conclusion are presented and future studies are 

recommended. 
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CHAPTER 2 
 
 

LITERATURE REVIEW 
 
 
 
Coastal areas are our common heritage. The planning and use of these areas without 

being aware of existing natural processes are often fatal. These processes are highly 

sophisticated dynamic events ranging from microscale physical phenomena, such as 

the movement of a particular sand grain, to macroscale phenomena such as the 

influence of the global mean sea level rise on beach change (Hanson, 1987). 

Sediment transport mechanisms, wave kinematics and interactions between waves 

and coastal structures and bottom topography are essential topics to understand 

beach changes. To investigate coastal processes and influences of human activities 

in coastal areas, numerous studies have been made for years and consecutively 

several types of models have been developed. In this chapter an overview of 

sediment models is presented. 

 

2.1 OVERVIEW OF COASTAL SEDIMENT MODELS 

 

A possible way of understanding the nature is to model and observe the parameters 

involved. Traditionally, models have been grouped into one of four categories; 

empirical, analytical, numerical or physical depending on the character and 

complexity of the equations involved and the solution technique. Empirical models 

are based on field observations or experimental data. Analytical solutions are 

derived from governing physical expressions. Both empirical and analytical 

solutions give quick results and are quite practical for computation of shoreline 

evolution and verification of studies. For detailed investigation of natural processes 

in coastal areas, physical or numerical (derived from analytical solutions) models 

are commonly implemented. In coastal engineering, physical models have been 

used for simulating topographical changes. Due to the fact that these models suffer 

from serious deficiencies, such as high costs and scaling problems, the use of 
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numerical models has increased in recent years. Numerical models possess certain 

advantages over physical models in allowing the testing of a wide range of 

parameters, adaptability to a variety of sites, economical operation, and the absence 

of scale effects (Hanson, 1987). 

 

Coastal planners and managers are primarily concerned with time scales of years to 

decades, longshore length scales of 10’s-100’s of kilometers, and cross-shore length 

scales of 1-10’s of kilometers. Within coastal zone management, prediction of 

coastal evolution with numerical models has proven to be a powerful technique to 

assist in the understanding of processes involved and, in the case of necessary 

interventions, selection of the most appropriate project design. Models provide a 

framework for organizing the collection and analysis of data and for evaluating 

alternative future scenarios of coastal evolution. In situations where engineering 

activities are involved, models are preferably used in developing problem 

formulation and solution statements, and, importantly, for efficiently evaluating 

alternative design and optimizing the selected design (Hanson et al., 2003).  

 

The prediction of shoreline evolution can be simplified by separating the changes 

due to longshore processes, largely responsible for long-term changes and those 

caused by cross-shore processes tending to operate on much shorter time scales. A 

notable exception to this generalization is the shoreline change related to long-term 

sea-level variability which results in a readjustment of the profile to the new water 

levels and is a cross-shore response (Miller and Dean, 2004). Depending on the 

coastal processes and scope of the study, morphological models expand from simple 

one-dimensional to sophisticated 3-D models. The uses of numerical models for 

different spatial and temporal scales are given in Figure 2.1. 
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Figure 2.1 Classification of beach change models by spatial and temporal scales 

(Hanson et al., 2003) 

 
 
 
As shown in Figure 2.1, the medium-term beach models are classified with respect 

to their longshore extent, time range and cross-shore extent. One-dimensional 

numerical models are preferable for most of the cases due to their applicability in 

wide ranged temporal (from 1 year up to 20 years) and spatial scales (from 0.5 

kilometer up to 10 kilometers). Besides, seasonal changes of shorelines may be 

observed by one-dimensional models with a cross-shore module included. The 

applicability and success of one-dimensional models lead to development of multi-

line models which extend the limits of applicability of one-dimensional models. 

Beach profile models are used to study short-term (from a storm duration or 
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seasonal changes up to 1 year) evolution of a beach profile. More complex models 

like quasi 3-D and quasi 2-D models are generally utilized for short- (up to 1 year) 

and medium-term (up to 10 years) shoreline changes respectively due to their 

complexity and intensive computations.  

 

The available numerical models can be classified under three main categories; 

shoreline change models, beach profile models, and 3-D models (Dabees, 2000). 

 

2.1.1 Shoreline Change Models 

 

The fundamentals of shoreline change models were first established by Pelnard-

Considere (1956), who set down the basic assumptions of the “one-line” theory, 

derived a mathematical model, and compared the solution of shoreline change at a 

groin with laboratory experiments. Bakker (1968) extended the concept to account 

for possible on–offshore transport and formulated a two-line schematization of the 

profile. Additional contributions to such models have been produced by LeMéhauté 

and Soldate (1978) for the inclusion of wave refraction and diffraction and by 

Fleming and Hunt (1976) for the bathymetry modification as a change in depths at a 

set of schematized grid points (Capobianco et al., 2002). 

 

A common observation is that the beach profile maintains an average shape that is 

characteristic of the particular coast, apart from times of extreme change as 

produced by storms. For example, steep beaches remain steep and gently sloping 

beaches remain gentle in a comparative sense, in the long term. Although seasonal 

changes in wave climate cause the position of the shoreline to move shoreward and 

seaward in a cyclical manner, with corresponding change in shape and average 

slope of the profile, the deviation from an average beach slope over the total active 

profile is relatively small. If the profile shape does not change, any point on it is 

sufficient to specify the location of the entire profile with respect to a baseline. 

Thus, one contour line can be used to describe change in the beach plan shape and 

volume as the beach erodes and accretes. This contour line is conveniently taken as 

the readily observed shoreline, and a model of this process is therefore called a 
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“shoreline change” or “shoreline response” model. Sometimes the terminology 

“one-line” model, a shortening of the phrase “one contour line” model is used with 

reference to the single contour line. A second geometric assumption is that sand is 

transported alongshore between two well-defined limiting elevations on the profile. 

The shoreward limit is located at the top of the active berm, and the seaward limit is 

located where no significant depth changes occur, the so-called depth of (profile) 

closure. Restriction of profile movement between these two limits provides the 

simplest way to specify the perimeter of a beach cross-sectional area by which 

changes in volume, leading to shoreline change, can be computed (Capobianco et 

al., 2002). 

 

The general approach to numerical models of shoreline change involves the division 

of the coastline into a large number of individual cells or compartments. Equations 

relating the alongshore sediment transport rate to the wave parameters and to 

velocities of alongshore currents are employed to calculate the shift of sand from 

one cell to another. The application of a continuity equation allows for the 

conversion of volumes of sand entering or exiting a particular cell into the resulting 

shoreline changes (Capobianco et al., 2002). 

 

The “one-line” theory also assumes small angles of wave incidence. The analytical 

solutions provided a simple and quick approach for preliminary estimation of the 

shoreline response to various engineering activities. However, for thorough analysis 

and in situations involving complex boundary conditions, numerical modeling of 

beach change is essential (Dabees, 2000). One-dimensional shoreline evolution 

models have demonstrated their predictive capabilities in numerous projects 

(Hanson, 1987). 

 

The “one-line” theory was first numerically implemented by Price, Tomlinson and 

Willis (1973), and followed by many others. Early numerical shoreline response 

models required extensive modification and special refinements for any particular 

study. The advance in computer technology aided the development of generalized 

shoreline change numerical models (Dabees, 2000). Examples of such general-
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purpose models are GENESIS (Hanson, 1987) and ONELINE (Dabees and 

Kamphuis, 1998). A review of shoreline change models by Roelvink and Broker 

(1993) indicates necessary improvements and further studies for constituents such 

as long wave effects and details of wave current fields. On the other hand, simpler 

models that utilize empirical formulae derived from laboratory and field 

measurements may provide similar or even more realistic results using standard 

data available in most engineering applications (Dabees, 2000). 

 

2.1.2 Beach Profile Models 

 

Beach profile models are utilized for simulating short-term profile evolutions 

mainly caused by cross-shore movement of sediment particles (Dabees, 2000). The 

structure of such models is similar to that described for shoreline change models, 

i.e., a dynamic or transport equation that prescribes the sediment flow across the 

profile, and a continuity equation that integrates the differences between sediment 

flows in and out of a computational cell and equates those differences to changes in 

profile elevation. Several models have developed based on breaking waves as the 

cause of changes in profile (Dally and Dean, 1984; Kriebel And Dean, 1984; Larson 

and Kraus, 1989). Deterministic cross-shore models calculate wave transformation 

and the time averaged velocities across the profile. The sediment transport is then 

calculated as a function of the horizontal velocities and local bottom conditions 

using Bailard’s (1981) energetics approach. Such models are UNIBEST-TC (Stive 

& Battjes, 1984; Roelvink et al, 1995) and LITCROSS (Broker-Hedegaard et al., 

1991) (Dabees, 2000).  

 

These models have been extensively used to evaluate the immediate response to 

storm conditions and to evaluate the initial response phase of a fill, but only limited 

effort have been devoted to the recovery phase following storms. Zheng and Dean 

(1997) have published an intercomparison of four ‘‘erosion models’’ based on large 

scale wave tank experiments. The overall message is that a number of relatively 

reliable tools are now available to handle erosional situations, but much more 

difficult is handling accretional situations. This is a problem while moving from the 
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examination of the response to single storms or stormy seasons to the examination 

of long-term evolution (resulting from sequences of erosional and accretional 

phases of variable duration) (Capobianco et al., 2002).  

 

This type of models has been quite successful in predicting short-term events, 

however, applications for medium- and long-term predictions have been limited 

because of difficulties in formulating sediment transport formulas that produce 

reliable and robust profile evolution at these time scales (Hanson et al., 2003). On 

the other hand, profile models have been highly useful as a modeling tool to 

describe very long-term profile evolution, for example to simulate response to sea 

level rise or barrier island formation and movement (Cowell et al., 1994). The very 

long term profile models rely on transport formulas that are based on some sort of 

equilibrium. Thus, it seems reasonable to assume that satisfactory modeling results 

at medium- and long-term scales could also be achieved through formulations that 

rely on equilibrium concepts (Hanson et al., 2003). 

 

The complexity involved in modeling the extremely dynamic nearshore region has 

led to the development of a number of different approaches. Roelvink and Broker 

(1993) and Van Rijn et al. (2003) provide valuable reviews and intercomparisons of 

many of the state-of the-art European cross-shore profile models. Roelvink and 

Broker (1993) classified the different modeling techniques into four categories: 

descriptive models (e.g., Wright and Short, 1984), equilibrium profile models (e.g., 

Swart, 1975), empirical profile evolution models (e.g., Larson and Kraus, 1989) and 

process-based models (e.g., Dally and Dean, 1984). Davies et al. (2002) further 

divided the process-based models into two categories: research models, containing 

full, detailed descriptions of the governing physics, and practical models that 

simplify the governing processes to varying degrees and which are more empirical 

in nature (Miller and Dean, 2004). 
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2.1.3 3-D Beach Evolution Models 

 

The aperiodic nature of storm events, the uncertainty of future weather conditions 

and complex coastal morphologies have forced scientists to research more 

sophisticated models. As a result of these studies highly detailed process based 

morphological models exist today. However, these models tend to be 

computationally intensive and their accuracy near the shoreline over a broad 

spectrum of relevant time scales has not been fully demonstrated yet. Additionally, 

the complexity and computational costs involved in applying these detailed models 

to the nearshore region, over long time scales, makes them inefficient at the present 

time for long-term shoreline studies (Miller and Dean, 2004).  

 

Larson, Kraus and Hanson (1990) presented a schematized 3-D model by joint use 

of the shoreline change model GENESIS and the profile change model SBEACH 

(Larson and Kraus, 1989). Uda et al., (1996) developed a contour line change model 

for coasts with steep slopes. Uda’s model still makes the fundamental assumption of 

small incident wave angles. The model was used to simulate beach evolution behind 

breakwaters and to model the development of a river mouth delta (Uda et al., 1998). 

These contour line models can be viewed as a group of one-dimensional models 

linked by cross-shore interchange of sediment between them. The cross-shore 

transport is calculated based on the difference between the existing profile shape 

changes such as the formation of beach berms and nearshore bars (Dabees, 2000). 

Another contour line model, NLINE, that simulates long-term 3-D morphology 

changes for complex beach/structure configurations and allows the local profile 

formation of bars and berms is developed by Dabees and Kamphuis (1999; 2000). 

 

In fully three-dimensional (3-D) models, the hydrodynamics equations are written 

in three dimensions. Finite difference models, for example, schematize the domain 

over a 3-D grid, as shown in Figure 2.2.  
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Figure 2.2 Three-dimensional (3-D) modeling (Kamphuis, 2000) 
 
 
 

A complete 3-D representation requires longer computer time and memory yet still 

some fully 3-D models have been successfully developed. Three-dimensional 

models can be simplified into two-dimensional (2-D) models. Using vertically 

integrated values for the fluid flow, results in a 2-D model with a horizontal 

computational grid (2-DH model), shown in Figure 2.3. This type of models can be 

applied to solve medium-term transport problems (Kamphuis, 2000). 

 
 
 

 
 

Figure 2.3 Two-dimensional (2-DH) modeling (Kamphuis, 2000) 
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A simplification of the 3-D model can be achieved by ignoring all alongshore 

variations in water levels, fluid velocities and their derivatives. This results in a 

cross-shore model (2-DV model) calculated over a 2-D vertical grid, shown in 

Figure 2.4. These models are essentially short-term models (Kamphuis, 2000).  

 

 
 

Figure 2.4 Two-dimensional (2-DV) modeling (Kamphuis, 2000) 
 
 
 
Combining the two concepts in 2-D modeling, 2-DH and 2-DV, quasi-three-

dimensional models (Q3-D) have been developed. This type of models are 

computationally extensive and requires detailed data for model verification. 

Recently, promising results are being acquired by quasi-3D models which operate 

on the dynamic scale of long-wave energy variations (Reniers et al., 2001). 

Examples of such models are LITPACK (Danish Hydraulics Institute), 3D-SHORE 

(Shimizu et al., 1996), and TELEMAC (Pechon and Teisson, 1996). De Vriend et 

al. (1993) referred to this class of models as medium-term coastal area models as 

their temporal scales vary from 1 to 5 years. 

 

In this study, the numerical model developed is based on previous studies of one-

dimensional shoreline change models: GENESIS (Hanson, 1987) and ONELINE 

(Dabees and Kamphuis, 1998). A one-dimensional model approach is preferred due 

to the facts that this type of models have wide ranged applicabilities in temporal and 
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spatial scales, requires less detailed input data and computer time and may give both 

qualitatively and quantitatively acceptable results which may be used for both 

engineering and scientific purposes. 
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CHAPTER 3 
 
 

ONE-DIMENSIONAL NUMERICAL MODELLING 
 
 
 
In this chapter, the development of a shoreline evolution model based on “one-line” 

theory in the Middle East Technical University, Civil Engineering Department, 

Coastal and Harbor Engineering Laboratory is given. 

 

The topics that are discussed in detail include the investigation of developed 

methodologies representing sea bottom effect on waves and interactions between 

waves and coastal structures (i.e. groins and jetties). 

 

3.1 ONE-LINE THEORY 

 

“One-line” theory was first introduced by Pelnard-Considere (1956). In his study, 

the shoreline change at a groin was expressed by closed-form mathematical 

solutions for certain idealized cases and the results were verified with laboratory 

experiments. Afterwards, these mathematical equations set up the framework of 

numerical shoreline evolution models. The fundamental assumption of the theory is 

the concept of “equilibrium beach profile”, that cross-shore transport effects such as 

storm-induced erosion and cyclical movement of shoreline position associated with 

seasonal changes in wave climate are assumed to cancel over a long simulation 

period and the migration of shoreline position in time is due to longshore sediment 

transport only. Although equilibrium beach profile assumption is verified by 

numerous observations, in cases such that excessive erosion happens in front of a 

seawall, bottom slope changes and equilibrium profile vanishes along the seawall 

(Hanson and Kraus, 1986). Another important assumption is that the longshore 

sediment transport is limited over an active depth from berm height at the shore side 

to a certain depth called as “depth of closure” at the sea side (Capobianco et al., 

2002).  
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3.2 EQUILIBRIUM BEACH PROFILE 

 

The existence of an equilibrium beach profile (sometimes called equilibrium beach 

profile) is a basic assumption of many conceptual and numerical coastal models. 

Dean (1990) listed characteristic features of profiles as follows: 

 

• Profiles tend to be concave upwards. 

• Fine sand is associated with mild slopes and coarse sand with steep slopes. 

• The beach (above the surf zone) is approximately planar. 

• Steep waves result in milder inshore slopes and a tendency for bar 

formation. 

 

Based on studies of beaches in many environments, Bruun (1954) and Dean (1976, 

1977) have shown that many ocean beach profiles exhibit a concave shape such that 

the depth varies as the two-thirds power of distance offshore along the submerged 

portions as given in equation (3.1); 

 

3/2
yAd p ⋅=          (3.1) 

 

where d is the water depth at distance y from the shoreline and Ap is the profile 

shape parameter which can be calculated from sediment characteristics (particle size 

or fall velocity) alone (see Figure 3.1).  

 
 
 

 
 

Figure 3.1 Beach profile shape (Dean’s Profile) 
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Moore (1982) and Dean (1983) graphically relate the profile shape parameter (Ap) 

to the median grain size (D50). Kamphuis (2000) redefines this graphical 

relationship with an exponential relationship given as 

 

2
50 )]ln(086.004.1[ DAp ⋅+=   for  0.0001 ≤ D50 ≤ 0.001 meters  (3.2) 

 

In the model, an equilibrium beach profile defined above has been used to represent 

the actual sea bottom profile. 

 

3.3 GOVERNING EQUATIONS 

 

Following the assumptions of “one-line” theory, a mathematical model for long-

term shoreline evolution can be described by a conservation of mass equation (3.3) 

and an equation of sediment transport for a sandy beach system (3.5) or (3.6). 

 
 
 

 
 

Figure 3.2 Definition sketch for conservation of mass for a sandy beach system 
 
 
 
As the principle of mass conservation applies to the system at all times, the 

following differential equation is obtained, 
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where y is the shoreline position, x is the longshore coordinate, t is the time, Q is the 

longshore sand transport, q represents sand sources or losses along the coast (such 

as river discharges, beach nourishment or net cross-shore sand loss), Dc is the depth 

of closure and B is the berm height. The depth of closure can be calculated from 

equation (3.4) presented by Hallermeier (1978) where Hs,12 and T are the significant 

wave height exceeded 12 hours per year and associated period respectively. 
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For the calculation of longshore sediment transport rate, several mathematical 

expressions are available. Examples of such expressions are the CERC formula 

(3.5) (SPM, 1984), and the Kamphuis (1991) formula (3.6). 
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Q is the volume of sediment moving alongshore per unit time, K is the 

dimensionless empirical proportionality coefficient presented by SPM (1984) as 

KSPM sig = 0.39 based on computations utilizing the significant wave height. ρs is 

sediment density taken as 2,650 kg/m3 for quartz-density sand and ρ is the water 

density (1,025 kg/m3 for 33 parts per thousand (ppt) salt water and 1,000 kg/m3 for 

fresh water). g is the gravitational acceleration (9.81 m/sec2); and p is the in-place 

sediment porosity taken as 0.4. The breaker index (γb) is taken as 0.78 for flat 

beaches and increases to more than 1.0 depending on beach slope (Weggel, 1972). 

Hb and αb are the significant breaking wave height and breaking wave angle 

respectively. 
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In the Kamphuis (1991) formula, the effect of significant wave period (T), median 

particle size in surf zone (D50) and the beach slope (mb) at the depth of breaking 

found from equation (3.7) and the distance from still water beach line to the breaker 

line are taken into consideration in addition to the significant breaking wave height 

and breaking wave angle. The in-place sediment porosity is taken as 0.32. CK is 

used as an empirical calibration factor. 

 

2/12/3

3

2 −
⋅⋅= bpb dAm         (3.7) 

 

Both CERC and Kamphuis longshore transport formulas are utilized in shoreline 

evolution models extensively. Although these expressions have been verified by 

several researches for years, their predictive capabilities are affected by numerous 

parameters. Because it is a very difficult task to represent the whole longshore 

transport mechanism with one simple expression. The determination of the type of 

expression to be utilized depends on the user as well as the climate data available. It 

has been seen that the Kamphuis (1991) formula produces more consistent 

predictions than the CERC formula for both spilling and plunging breaking wave 

conditions due to inclusion of wave period in the expression, which has significant 

influence on the breaker type. However, it seems most appropriate to use the CERC 

formula for storm events and the Kamphuis (1991) formula for low-energy events 

(less than 1 m in wave height) (Wang et al., 2002).  Another advantage of using the 

CERC expression is that it takes into consideration the density of the sediment 

grains which may vary for beaches composed of coral sands, coal, etc (Komar, 

1977). Further discussion on some available longshore sediment transport formulas 

is presented in Artagan (2006). In the development of the model, for the calculation 

of longshore sediment transport rates, the Kamphuis (1991) formula is utilized. 
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3.4 MODEL STRUCTURE 

 

For the purpose of investigating long-term shoreline changes, a numerical model 

based on “one-line” theory has been developed in the Middle East Technical 

University, Civil Engineering Department, Coastal and Harbor Engineering 

Laboratory. Simply, the model requires several input data and gives an output of 

new shoreline orientation after a time step. The model structure is drawn in Figure 

3.3. 

 
 
 

 
 

Figure 3.3 Model structure 
 
 
 
The input data consists of site specific wave climate data, morphological features 

and existing or planned structural information (such as groins, breakwaters, 

beachfills). The wave data, a set of wave events including deep water wave heights, 

periods, angles, corresponding closure depths and frequencies of occurrence for 

each wave direction per year, is obtained from either a wave history data or a wind 

climate study depending on the available type of data recorded by local 

meteorological stations. Another major input is the initial shoreline orientation and 
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physical characteristics (such as median grain size in the surf zone, bottom slope or 

shape, berm height). The shoreline orientation is represented by an appropriate 

discretized shoreline. The last input data is the structural information such as the 

location and length of a groin or offshore distance of a detached breakwater. After 

all necessary input data is entered to the model, the shoreline is subjected to waves 

and its evolution in time is observed. 

 

The spatial and temporal changes in shoreline orientation are computed by two 

modules; wave transformation and morphology modules. The wave transformation 

module is where wave refraction, shoaling, diffraction and breaking calculations are 

conducted to evaluate local breaking conditions for all grid cells along the 

discretized shoreline. In the module, the deep water wave parameters are first 

transformed into breaking wave parameters and then the effects of diffracting 

sources are considered and the breaking wave heights and angles within the 

sheltered zone of structures are re-calculated. The output data is used in the 

morphology module to calculate local sediment transport rates and changes in the 

shoreline due to alongshore sediment transport. The updated shoreline is used as 

input for the following time step and the same procedures continue until the end of 

simulation time. 

 

3.5 NUMERICAL MODELLING 

 

The governing equations (3.3) and (3.6) are solved numerically using a finite 

difference technique discretizing the shoreline into a finite grid and the simulation 

time into small time steps. Two schemes are available for finite difference; explicit 

and implicit. An explicit scheme is easier to programme compared with an implicit 

scheme due to the fact that boundary conditions and constraints become more 

complex to define in an implicit scheme (Şafak, 2006). However, an explicit 

scheme leads to more critical stability problems which effect the accuracy of the 

solution. In the development of GENESIS (Hanson, 1987) and ONELINE (Dabees 

and Kamphuis, 1998), an implicit scheme was adopted based on a given method by 
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Perlin and Dean (1978). In this study, an explicit scheme is utilized for 

programming shoreline evolution. 

 

3.5.1 Grid System 

 

The shoreline is discretized by a grid spacing of ∆x and (N+1) calculation cells are 

formed, the position of shoreline is defined by (N+1) y coordinates of 

corresponding grids on the x axis (see Figure 3.4). For the calculation of y values at 

the next ∆t time step, (N+2) Q values are needed. In a staggered grid system, the Q 

values are defined between two consecutive grid points whereas q values are 

defined at the grid points. The direction of sediment transport between two 

calculation cells is determined from the angle between wave crests and breaking 

bottom contour line such that if the waves are approaching to the coast from left to 

right looking from shore-side, it is assumed to have a positive transport and a 

negative one for the waves approaching from right to left (see Figure 3.4). 

 
 
 

 
 

Figure 3.4 Grid system used for numerical modeling 
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The numerical solution of equation of mass conservation (3.3) using an explicit 

scheme is as follows; 

 









+

∆

−
⋅

+

∆
+= +

i

ii

c

ii q
x

QQ

BD

t
yy 1*

)(
     (3.8) 

 

where the prime (*) indicates a quantity at the next time step and ∆x is the distance 

between two consecutive grids. The shoreline position of a calculation cell ∆t time 

later is calculated by the difference in longshore transport rates entering in (Qi) and 

out (Qi+1) of the cell and net cross-shore gain or loss (qi) over the active profile, 

(DLT+B). If there are no sources or sinks, qi is taken to be equal to 0. Further 

confining the sediment transport only to longshore sediment transport (cross-shore 

or other sediment transport mechanisms are not considered), then the seaward limit 

of the active profile is taken as the depth where no longshore sediment transport 

exists. To be used in computations for shoreline evolution and bypassing around 

coastal structures (Şafak, 2006), this depth is defined as the limiting depth of 

longshore sediment transport (DLT) and is related to wave breaking wave height 

(Hb), the key process in the longshore transport. It is given in equation (3.9) 

presented by Hallermeier (1978) where Hb and T are the breaking wave height and 

associated period respectively. 
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Figure 3.5 The i’th calculation cell in the numerical model 
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The i’th calculation cell in Figure 3.4 is drawn in detail in Figure 3.5 such that a 

section of shoreline with ∆x length moves in cross-shore direction as backward or 

forward. Along the section, shoreline position is assumed to have a value of y, and 

y
* after ∆t time. 

 

To calculate sediment transport rates between two consecutive grids, the variables, 

introduced in the transport expression (3.6), changing alongshore have also (N+2) 

values. In most of the cases, all the parameters included in equation (3.6) except the 

breaking wave height, angle and bottom slope at breaking depth may be assumed 

identical to all grids. Under changing shoreline conditions, breaking wave angle (αb) 

measured between the bottom contours and wave crests also changes. Then, the 

local breaking wave angle called as the effective breaking wave angle (αeb) between 

two consecutive grid points is defined as; 
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where αb is the breaking wave angle with respect to x axis (see Figure 3.4). The 

breaking wave height alongshore the discretized shoreline is obtained from a wave 

transformation procedure including shoaling, refraction, breaking and diffraction 

mechanisms. 

 

3.5.2 Boundary Conditions 

 

In order to link the modeled shoreline to the outside environment and to solve 

equation (3.3), the boundary conditions for either y or Q at the two lateral ends of 

the beach are essential. Commonly applied lateral boundary conditions are 

Neumann or radiation boundary condition that represents the natural beach 

condition where the change in shoreline position is negligibly small and Dirichlet 

boundary condition which represents for an impermeable shore-normal barrier 

where sediment transport rate is equal to zero. Another type of boundary condition 
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controls the cross-shore movement of shoreline as backward in case of seawall and 

as forward in case of tombolo formation behind detached breakwater.  

The numerical solution of conservation of mass equation (3.8) requires (N+2) Q 

values for the calculation of (N+1) y values in time. Since the major parameter in 

the calculation of longshore sediment transport, the effective breaking wave angle is 

not defined at the two lateral ends, sediment transport rates at these ends are defined 

with respect to corresponding boundary condition. If the boundary holds for no 

significant shoreline change with time, 0=
∂

∂

t

y
, equation (3.3) then yields 

0=
∂

∂

x

Q
which may be expressed as Q1=Q2 or QN+2=QN+1. If a complete shore-

normal barrier that interrupts the longshore sediment movement, exists at one end 

of the shoreline, then this condition can be expressed as Q1=0 or QN+2=0. 

 

The complete barrier lateral boundary condition can also be introduced as an 

internal constraint at any interior location in the grid system, to represent the 

applications of groins or jetties as coastal defense measures depending on their 

capacity of wave energy absorption and sediment transport blocking. The amount of 

sediment blocked by the structure is related to the seaward extent of the groin with 

respect to the critical offshore distance that corresponds to the depth of closure 

(Dabees, 2000). The amount of wave energy absorption capacity, which also 

controls the sediment blocking, is expressed with the permeability of the groin. The 

details of the calculations of bypassing and permeability conditions about groins in 

the developed model are discussed extensively by Şafak (2006). 

 

3.5.3 Stability Criterion 

 

The determination of the sizes of time interval (∆t) and grid spacing (∆x) depends 

on the stability parameter (Rs) when other parameters are kept constant in equation 

(3.12). For small breaking wave angles, the stability parameter is given as: 

 

5.0≤sR           (3.11) 
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where 
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The stability parameter gives an estimate of the numerical accuracy of the solution 

such that accuracy increases with decreasing values of Rs (Hanson and Kraus, 

1986). 

 

3.6 WAVE TRANSFORMATION CALCULATIONS 

 

The deep water significant wave parameters obtained from either a wave climate 

study or existing wave history data should be transformed into breaking conditions 

in order to be used in the longshore sediment transport expressions, (3.5) or (3.6). 

Wave transformation is governed by several processes like refraction, shoaling, 

diffraction, dissipation due to friction, dissipation by percolation, breaking, 

additional growth due to the wind, wave-current interaction and wave-wave 

interactions (CEM, 2003). 

 

In the wave transformation calculations, small amplitude wave theory is used and 

two major mechanism; breaking (including bottom effects; shoaling and refraction) 

and diffraction are considered. First, breaking wave parameters, breaking height 

(Hb), angle (αb), and depth (db) are calculated including the effects of refraction and 

shoaling. Then, the diffraction effects are considered and the breaking wave height 

(Hb) and angle (αb) are modified to account for changes in wave patterns from each 

diffraction source at the breaking depth, db. 

 

3.6.1 Wave Breaking 

 

Waves approaching the coast increase in steepness as water depth decreases. When 

the wave steepness reaches to a limiting value, the wave breaks, dissipating energy 

and inducing nearshore currents and an increase in mean water level. Waves break 
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in a water depth approximately equal to the wave height. The surf zone is the region 

extending from the seaward boundary of wave breaking to the limit of wave uprush. 

Within the surf zone, wave breaking is the dominant hydrodynamic process (CEM, 

2003). There are several methods for calculating breaking wave parameters. A 

comparison of these methods is available in Artagan (2006). The undiffracted wave 

height (Hb) is determined by solving equation (3.13) (CEM, 2003) iteratively for 

Hb, 
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where Hb is the breaking wave height, Ho is the deep water significant wave height, 

α0 is the deep water wave angle between wave crests and bottom contours, g is the 

gravitational acceleration (taken as 9.81 m/sec2), γb is the breaker depth index given 

by (3.14) and assumed to be equal to 0.78, Co and Cgo are the deep water wave 

celerity and group celerity respectively and are calculated by equations (3.14), 

(3.16) and (3.17). 

 

bbb dH /=γ          (3.14) 

 

2
0 56.1 TL ⋅=          (3.15) 

 

TLC /00 =          (3.16) 

 

00 5.0 CCg ⋅=   (for deep water waves)    (3.17) 

 

Lo is the deep water wave length and T is the significant wave period. db is 

calculated from (3.14) replacing the values of γb and Hb. The breaking wave angle 

αb is calculated from Snell’s Law as a refraction equation (3.18). 
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The breaking wave length Lb is determined from equation (3.19) in which Gravity 

Wave Table (SPM, 1984) is introduced for the calculation of tanh(kdb) where the 

wave number k is equal to 2π/L. 

 

)tanh(0 bb dkLL ⋅⋅=         (3.19) 

 

In the model, for calculating the values of tanh(kdb), a subroutine including Gravity 

Wave Table is used. 

 

3.6.2 Wave Diffraction 

 

Wave diffraction is a process of wave propagation based on the lateral transfer of 

wave energy from points of greater to lesser wave height along the crest 

(perpendicular to the direction of wave propagation) of a wave that has a variable 

height along its crest (CEM, 2003). As in common with the other wave motions of 

sound, light, and electromagnetic waves, when the water waves encounter an 

obstacle during their propagation, they pivot about the edge of the obstacle and 

move into the shadow zone of the obstacle (Goda, 1985). The wave crest 

orientations and wave heights in the shadow zone are significantly changed. 

Therefore, the determination of diffracted wave heights and angles within the 

vicinity of coastal structures and formations like headlands is very important in 

order to accurate evaluation of shoreline evolution caused by longshore sediment 

transport. 

 

The diffraction coefficient is defined by equation (3.20) as the ratio of the diffracted 

wave height at a point in the lee of the breakwater to the incident wave height at the 

tip of the breakwater. 

 

idd HHK /=          (3.20) 
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In the shoreline change model, the incident wave height is assumed to be the 

undiffracted breaking wave height calculated at the breaker line. In order to 

determine diffraction coefficient and simulate interactions between shoreline and 

coastal structures in the model, either regular or irregular wave approach is utilized. 

Before utilizing an approach in the model, a comparison of the proposed methods 

has been made for a single groin. The background and comparison of the methods 

are given in next parts. 

 

3.6.2.1 Regular Wave Diffraction 

 

The simplest and classical approach for estimating wave diffraction is to consider 

regular or monochromatic waves in uniform depth interacting with a single straight 

breakwater (Briggs et al., 1995). The general problem of diffraction was originally 

solved by Sommerfeld (1896) for the diffraction of light passing the edge of a semi-

infinite screen. Penny and Price (1952) showed that the same solution applies to the 

diffraction of linear surface waves on water of constant depth that propagate past 

the end of a semi-infinite thin, vertical-faced, rigid, impermeable barrier. Thus, the 

diffraction coefficients in the structure lee include the effects of the diffracted 

incident wave and the much smaller diffracted wave that reflects completely from 

the structure.  

 

The diffraction coefficient for regular waves within the vicinity of a semi-infinite 

breakwater is expressed by; 

 

),,( id
L

r
fK αβ=         (3.21) 

 

where r/L is the ratio of radial distance from the breakwater tip to the point of 

interest to the wave length at the tip of breakwater, β is the angle between the 

breakwater alignment and this radial, and αi is the incident wave angle between the 

extension of the breakwater alignment and incident wave direction (see Figure 3.6) 

(Penny and Price, 1952). 
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Figure 3.6 Wave diffraction, definition of terms (CEM, 2003) 
 

 
 
Wiegel (1962) summarized the Penny and Price (1952) solution (3.21) and prepared 

conventional diffraction diagrams for approach angles varying by 15 degrees 

intervals from 15 to 180 degrees that can be found in Wiegel (1962) and the Shore 

Protection Manual (1984). Figure 3.7 shows Wiegel’s (1962) results for an 

approach angle (αi) of 60 degrees (SPM, 1984). 

 
 
 

 
 

Figure 3.7 Diffraction diagram for regular waves, for an approach angle (αi) of 60 

degrees (SPM, 1984) 
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An interesting feature demonstrated by Figure 3.7 is that for this approach angle, 

the value of the diffraction coefficient along a line in the lee of the breakwater that 

extends from the breakwater tip in the direction of the approaching wave is 

approximately 0.5. This is true not only for the approach angle of 60 deg, but for 

any approach angle. Note also that for a given location in the lee of a breakwater, a 

one-dimensional spectrum of waves that comes from the same direction will 

undergo a greater decrease in height (energy density) for successively higher 

frequency waves in the spectrum. Increasing frequencies mean shorter wavelengths 

and consequently larger values of r/L (for given values of β and αi). Thus the 

diffracted spectrum will have a shift in energy density towards the lower frequency 

portion of the spectrum (CEM, 2003). 

 

To compute diffraction coefficient behind a groin with monochromatic theory in a 

numerical model, either the Fresnel integrals and several trigonometric functions 

must be evaluated (Kraus, 1984) or the diffraction coefficients should be 

determined from diagrams for corresponding grid points in the shadow zone of the 

groin which may require interpolations between diffraction contour lines and also 

for intermediate approach angles. 

 

3.6.2.2 Irregular Wave Diffraction 

 

Sea waves can not be adequately described by using the frequency spectrum alone. 

Irregular waves specified solely by the frequency spectrum would appear as so 

called long-crested waves which have straight, parallel crestlines. The patterns of 

random sea wave crests are composed of many component waves propagating in 

various directions. Therefore, the concept of directional spectrum is needed to be 

introduced to describe the state of superimposed directional components. 

 

The previous discussion of wave diffraction was concerned with monochromatic 

waves. The effects of wave diffraction on an individual wave depend on the 

incident wave frequency and direction. Thus, each component of a directional wave 

spectrum will be affected differently by wave diffraction and have a different Kd 
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value at a particular point in the lee of a breakwater. The irregular wave diffraction 

methodology is simply based on the superposition of diffraction of several 

monochromatic waves having a range of representative frequencies and directions 

(CEM, 2003). 

 

Goda, Takayama, and Suzuki (1978) developed diffraction calculation method and 

prepared diffraction diagrams for random sea waves introducing directional wave 

spectrum, which considers the structure as an obstacle blocking out a part of this 

spectrum. The effective diffraction coefficient is defined as follows; 
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where (Kd)eff denotes the diffraction coefficient of random sea waves (i.e., the ratio 

of diffracted to incident heights of significant or other representative waves), Kd(f, 

αi) is the diffraction coefficient of component (regular) waves with frequency f and 

direction αi, and m0 is the integral (zero moment) of the directional spectrum, αi,max 

and αi,min are the limits of the spectral wave component directions, and S(f, αi) is the 

spectral energy density for the individual components (Goda, 1985). 

 

Goda (1985) states that the degree of directional spreading of wave energy, 

represented by spreading parameter (Smax) greatly affects the extent of wave 

refraction and diffraction. The deep water spreading parameter (Smax0) can be 

determined either from Figure 3.8 for a deep water wave steepness value (H0/L0) or 

from equation (3.23) where U is the wind speed and fp denotes the frequency at the 

spectral peak which can be calculated from (3.24) for a given significant wave 

period (T). 
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Figure 3.8 Relationship between spreading parameter and deep water wave 

steepness (Goda, 1985) 

 

2/5
0max )/2(5.11 −⋅⋅⋅= gUfS pπ       (3.23) 

 

T
f p

⋅
=

05.1

1
         (3.24) 

  

For engineering applications, until that time when the nature of the directional wave 

spectrum becomes clear on the basis of detailed field observations, Goda (1985) 

suggests the following values of spreading parameter (Smax0) in deep water given in 

Table 3.1. 
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Table 3.1 Directional spreading parameter in deep water (Smax0) for different wave 

types (Goda, 1985) 

 

Wave Type Smax0 

Wind waves 10 

Swell with short to medium decay distance 
(with relatively large wave steepness) 

25 

Swell with medium to long decay distance 
(with relatively large wave steepness) 

75 

 
 
 
The spectral diffraction diagrams are given for different Smax (spreading parameter 

at the tip of the diffracting source) values (10 and 75) and in the near and distant 

areas of a semi-infinite breakwater. When using these diagrams, the effect of wave 

refraction upon the parameter Smax0 must be taken into account, because most 

breakwaters are built in relatively shallow water compared to the predominant wave 

length, and the directional wave spectrum has transformed from that to 

corresponding to deep water. The effect of wave refraction upon the parameter Smax0 

can be estimated from the curves in Figure 3.9 for given deep water spreading 

parameter (Smax0), wave length (Lo) and deep water wave angle (α0) (Goda, 1985). 

 

 
 

Figure 3.9 Estimation of spreading parameter (Smax) in shallow water area (Goda, 

1985) 
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In Figure 3.10, the diffraction diagram for irregular waves in the near area of a 

semi-infinite breakwater is given. The diffraction coefficients for spreading 

parameters other than Smax =10 and Smax =75 are interpolated. The angle of approach 

direction in these diagrams is normal to the breakwater orientation. In case of 

oblique incidence of waves, the diffraction coefficient can be calculated by rotating 

the axis of the breakwater while keeping the wave direction and the coordinate axes 

at their original positions. This technique produces some error when the angle 

between the principal direction of wave approach and the line normal to the 

breakwater exceeds ±45 degrees (Goda, 1985). However, this error may be 

neglected during one-dimensional modeling of shoreline changes, because the “one-

line” theory works well with small breaking wave angles. The diagrams show also a 

small change in the peak period ratio as the waves extend into the breakwater lee 

(see Figure 3.10). For monochromatic waves the wave period would not change. 

 
 
 

 
 
Figure 3.10 Diffraction diagram for random sea waves of normal incidence in the 

near area of a semi-infinite breakwater (Goda, 1985) 
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As shown in Figure 3.10, the effective diffraction coefficient values are quite 

different from those of regular waves. For example, the diffraction coefficient of 

random waves along the boundary of the geometric shadow (or the straight line 

from the tip of the breakwater parallel to the wave direction) takes the value of 

about 0.7, while regular wave diffraction theory gives a diffraction coefficient of 

about 0.5. The difference between the predictions increases in the sheltered area 

behind the breakwater, and would result in an underestimation of wave height there 

if diagrams for regular wave diffraction were employed. Therefore, direct 

application of conventional diagrams prepared for regular waves with constant 

period and single directional component to real situations is not recommended and 

may lead erroneous results (Goda, 1985). 

 

The determination of diffraction coefficients using irregular wave approach is not 

effective with the direct use of diagrams in numerical modeling. For numerical 

modeling in the computer medium, approximate equations are obtained by means of 

regression analyses of these diagrams and relative figures. Some of these sets of 

equations are available in Kraus (1984), Leont’yev (1999) and Kamphuis (2000). 

 

3.6.2.2.1 Kraus’s (1984) Method 

 

The method is based on considerations of the relative incident wave energy 

penetrating into the shadow zone. The cumulative relative wave energy, PE(θ), at a 

point in the shadow zone of a diffracting source depends on the angle θ measured 

counterclockwise from the principal wave direction to the point and the spreading 

parameter (Smax) at the tip of the source. The cumulative distribution curves for 

Smax=5, 10, 25, and 75 are given in Figure 3.11.  
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Figure 3.11 Cumulative distribution of relative wave energy with respect to 

azimuth from wave direction (Goda, 1985) 

 
 
 
For the purpose of the computer routine, following approximate best-fit 

interpolative equations (3.25)-(3.27) are given to describe the curves in Figure 3.11 

(Kraus, 1984). In equations (3.25)-(3.27), Kraus (1984) introduces dimensionless 

parameters, W and A, to find the cumulative relative wave energy, PE(θ). In Figure 

3.12, the shadow angle (θ) varies from –π/2 to π/2 and is defined as negative inside 

the shadow zone and positive outside. 
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Figure 3.12 Definition sketch of wave diffraction near a groin 
 
 

 
2
maxmax 000103.0270.031.5 SSW ⋅−⋅+=      (3.25) 

 

θ⋅=
W

S
A max  (θ in radians)       (3.26) 

 

]1)[tanh(50)( +⋅= APE θ  (%)      (3.27) 

 

Kraus states that equations (3.25)-(3.27) for the calculation of cumulative relative 

wave energy agree with the Figure 3.11 with a maximum error of about 2% of full 

scale in the interval 10 ≤ Smax ≤ 75. 

 

With Smax given at the tip, the diffraction coefficient Kd(θ) for a given point in the 

lee of a diffracting source is then calculated from equation (3.28). 
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K =         (3.28) 

 

The aforementioned procedure is also used by GENESIS (Hanson and Kraus, 1989) 

and LITLINE (Danish Hydraulics Institute, Denmark) for the calculation of 

diffraction coefficients. However, the effect of wave incidence angle is neglected 

and refracted Smax values are obtained from the curves given by 30 degrees of 

approach angle in Figure 3.9 (Hanson, 1987; LITLINE). 

 

3.6.2.2.2 Leont’yev’s (1999) Method 

 

Based on the theory of Goda et al. (1978) for irregular waves, Leont’yev (1999) 

introduces a set of equations for the calculation of diffraction coefficient Kd in the 

shadow zone behind the structures. As described in above procedure (Kraus, 1984) 

the diffraction coefficient depends on the spreading parameter (Smax) and the 

shadow angle θ. Leont’yev (1999) states that in most practical cases a typical value 

of Smax falls in the range 25 - 75 m and variations of Smax within these limits have a 

rather weak influence on the Kd value, therefore to simplify the calculations, the 

uniform value Smax = 50 is used and approximate changes in Kd in the sheltered zone 

of diffracting sources with θ (in radians) are given by the following set of equations: 
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On the contrary to the definition of the shadow angle θ in Kraus (1984), Leont’yev 

defines θ as positive in the shadow zone and negative in the illuminated region. The 

boundary of the wave shadow area where the value of Kd approaches to 1 

corresponds to a shadow angle θ = –π/6. On the line coinciding with the wave 

direction, where θ = 0, Kd is close to 0.7 (Leont’yev, 1999). 
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3.6.2.2.3 Kamphuis’s (2000) Method 

 

Goda (1985) assumes that all the energy in the directional spectrum of incoming 

wave ray at a structure for which α<αi is blocked by the structure and removed from 

the spectrum. Along the shadow line, half of the incident wave energy is assumed to 

be lost, and since the wave energy is directly proportional to the second power of 

wave height, along the shadow line H is found as; ii HHH 71.02 == , where Hi is 

the incident wave height (Kamphuis, 2000). Using Goda’s method and some 

additional assumptions, Kamphuis introduces simple expressions for diffraction 

behind a groin relating the wave energy reaching a point behind the groin to the 

angle θ. 

 

2000025.00093.071.0 θθ ⋅+⋅+=dK    for   -90 ≤ θ ≤ 0   (3.30) 

)sin(37.071.0 θ⋅+=dK    for   0 ≥ θ ≥ 40     (3.31) 

)sin(17.083.0 θ⋅+=dK    for   40 ≥ θ ≥ 90     (3.32) 

 

As θ approaches to 90 degrees, Kd converges to 1.0, but in theory measuring such 

an angle from the shadow line of the groin is not possible on a straight beach for a 

single groin. This case leads some problems that will be discussed later. 

  

3.6.2.2.4 Proposed Diffraction Method 

 

In the numerical model, a modified diffraction methodology based on Kamphuis’s 

(2000) method has been followed. The diffraction coefficient is computed for the 

shadow angle (θ) at the point of interest in the shadow zone of the structure from 

equation (3.30). To compute the diffraction coefficient Kd in the transition zone, the 

trend of Kd coefficient in the shadow zone is linearly extended up to a value 1.0 

accepting the fact that diffraction coefficient should be equal to 1.0 beyond the 

sheltered zone. Using the diffraction coefficients Kd,G and Kd,S computed at points G 

(at the groin) and S (at the end of shadow zone) respectively (see Figure 3.12), the 
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diffraction coefficient Kd,C at any point C in the transition zone of the structure is 

computed from equation (3.33); 
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where [SC] is the distance between the point of interest to the end of shadow zone 

on the breaker line and [GS] is the alongshore length of shadow zone on the breaker 

line. The end of the transition zone is determined by where the diffraction 

coefficient computed from equation (3.33) reaches to value of 1.0. Therefore, the 

length of sheltered zone on the breaker line where the diffraction coefficient 

changes is governed by the incident wave angle at the seaward tip of the structure 

(αi) and the trend in the variation of Kd in the shadow zone. The final diffracted 

breaking wave height in the sheltered zone is computed by the following equation. 

 

bdbd HKH ⋅=         (3.34) 

 

The determination of another breaking parameter controlling the longshore 

sediment transport, wave breaking angle in the vicinity of diffracting structures is 

explained by the combined refraction-diffraction phenomena, which is discussed in 

the forthcoming parts. 

 

3.6.2.3 Comparison of Methods 

 

The diffraction is the key process that governs the shoreline changes in the shadow 

zones of coastal structures. It has significant effects on the wave heights and angles, 

which are the main parameters of longshore sediment transport expression. To 

decide on the methodology that will represent the diffraction mechanism in the 

numerical model, a comparison has been made for the alongshore variation of 

diffraction coefficient at the downdrift side of a groin (see Figure 3.13) calculated 

with available methodologies; Goda et al. (1978), SPM (1984), Kraus (1984), 

Leont’yev (1999) and Kamphuis (2000) together with the proposed method. 
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The comparison of methods is made for a single groin having 200 meters apparent 

length on a straight shoreline with a bottom profile known as Dean’s Profile (1977). 

Since it is said in Wang et al. (2002) that Kamphuis’s formula (1991) for longshore 

sediment transport gives more consistent predictions for low-energy events (less 

than 1 m in wave height), the deep water wave height, period and approach angle 

(measured between wave crests and straight bottom contour lines) are given as 1.0 

meter, 4.0 seconds and 17.3 degrees of which value drops to 15.0 degrees at the tip 

of the groin due to bottom effect respectively. The simulation durations are 100 

hours and 1000 hours to represent short- and long-term changes. The deep water 

wave steepness has a value of 0.040 which is acceptable for Turkish coasts (Ergin 

and Özhan, 1986). The respective spreading parameter at the tip of the groin is 

found to have a value of 11.2 from Figure 3.9. The shadow zone extends 46 meters 

from groin to right on the breaking line defined by 5 grids with 10 meters grid 

spacing. The median grain size diameter and the berm height are assumed as 0.4 

millimeters and 2.0 meters respectively.  

 
 
 

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

0 50 100 150 200 250

Alongshore Distance From Groin, x (m)

D
if

fr
a
c

ti
o

n
 C

o
e

ff
ic

ie
n

t,
 K

d

Proposed

Kamphuis (2000)

Leont'yev (1999)

Kraus (1984)

SPM (1984)

Goda et al. (1978)

 
 

Figure 3.13 The alongshore variation of diffraction coefficient at the downdrift side 

of the groin 
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As shown in Figure 3.13, the regular wave diffraction theory (SPM, 1984) 

underestimates the diffraction coefficients in the shadow zone and overestimates in 

the transition zone when compared with irregular wave diffraction theory. The 

results of methodologies representing irregular wave diffraction theory differ from 

each other such that Kd computed from Leont’yev’s expression (1999) reaches to 

the value of 1.0, which means the alongshore end of sheltered zone, at a distance 

from groin, whereas the expressions given by Kraus (1984) and Kamphuis (2000) 

computes Kd smaller then 1.0 till the end of modeled shoreline and theoretically 

converge to 1.0 for θ = 90o. This situation leads to a problem of that the sediment 

mass is not conserved within the control volume of the model and the effects of 

diffraction process is felt at all downdrift grid points alongshore no matter how far 

they are from the source of diffraction. In order to get rid of this conservation and 

extended diffraction effect problem, Leont’yev’s expression may be utilized, yet, 

this expression is derived for a uniform value of spreading parameter Smax = 50 and 

thus may underestimate Kd in the shadow zone for random waves with small 

spreading parameters like Smax = 10. In the sheltered zone of the groin, Kamphuis’s 

expression is in good agreement with irregular wave diffraction diagrams.  

 

Furthermore, to observe the effects of different diffraction methods on the shoreline 

change at the downdrift of the same groin, short- and long-term shoreline changes 

are given in Figures 3.14 and 3.15 respectively. The methodologies considered are; 

SPM (1984), Kraus (1984), Leont’yev (1999) and Kamphuis (2000) together with 

the proposed method. Since the alongshore variation of the diffraction coefficient 

(Kd) obtained from the irregular wave diffraction diagrams (Goda et al., 1978) is 

almost same with the one obtained from Kamphuis’s (2000) method (see Figure 

3.13), these diagrams (Goda et al., 1978) are not considered.  
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Figure 3.14 The shoreline change at the downdrift side of the groin after 100 hours 
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Figure 3.15 The shoreline change at the downdrift side of the groin after 1000 
hours 

 
 
 
As shown in Figure 3.14, in short term, the methodology applied governs the 

shoreline change in the sheltered zone of the groin. However, after 1000 hours 

which is not long enough considering “one-line” theory’s limitations, the shoreline 

tends to have an equilibrium planform regardless of the diffraction methodology 
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utilized in the model (see Figure 3.15). The results of shoreline changes obtained 

from different diffraction methods show similarity both quantitatively and 

qualitatively. 

  

Concluding from above discussions, in order to represent wave diffraction 

phenomena within the sheltered zones of shore-normal diffracting coastal structures 

(groins, jetties etc.) in the numerical model, the proposed method is utilized. In 

comparison with the other methods presented (especially the direct use of 

diagrams), the method applied is simpler, eliminates the conservation of mass and 

extended diffraction effect problems and gives results match well with the results of 

other methods in terms of long-term shoreline changes. 

 

3.6.3 Combined Refraction and Diffraction 

 

In cases where the depth is relatively constant between the tip of the structure and 

the point under consideration that is the breaker line in the model, the diffraction 

analyses discussed above are adequate to define the resulting wave conditions. 

However, if the depth changes significantly, then wave amplitudes will change 

because of shoaling effects. If the harbor bottom contours are not essentially 

parallel to the diffracting wave crests, then wave amplitudes and crest orientations 

will be affected by refraction (CEM, 2003). 

 

Where depth changes in the lee of a diffracting source are sufficient for combined 

refraction and diffraction effects to be significant, the resulting wave height and 

direction changes can be investigated by either a numerical or a physical model 

study (CEM, 2003). Examples of such numerical model studies and some 

sophisticated methods for the calculation of combined refraction-diffraction in the 

lee of a structure are available in Berkhoff (1972), Liu and Lozano (1979), Radder 

(1979), and Liu (1982). Physical models that investigate the combined effects of 

refraction and diffraction are also routinely conducted (see Hudson et al. 1979). 
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Dabees (2000) states that the linear diffraction theory developed for water of 

constant depth (pure diffraction) predicts circular patterns of diffracted wave fronts, 

yet, shoaling and refraction due to varying water depths play an important role in 

modifying wave patterns behind structures (see Figure 3.16). Field studies shows 

that wave amplitude dispersion in shallow water changes the circular wave pattern 

into an arc of decreasing radius (Weishar and Byrne, 1978). 

 
 
 

 
 

Figure 3.16 Illustration of pure diffraction and combined refraction-diffraction 

processes (modified from Dabees, 2000) 

 
 
 
To consider combined refraction-diffraction effect in the lee of a diffracting source, 

the breaking wave angle, which is an important parameter in determination of the 

longshore sediment transport and is calculated from Snell’s Law (3.18), is reduced 

due to diffraction in the shadow and transition zones. The end of the transition zone 

is defined previously as the point where Kd is equal to 1.0 again. 

 

The methodology considering the two physical phenomena, refraction and 

diffraction, treated in GENESIS by Hanson (1987) is summarized in three steps; 

 

• Waves are calculated from deep water to breaking depth, including the 

effects of refraction and shoaling. The influence of structure is ignored. 
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• The calculated breaking wave heights at the location affected by diffraction 

are recalculated using the wave height at the location of the tip of diffracting 

structure and an appropriate diffraction coefficient. 

 

• Wave refraction from the diffracting tip to a specified location inside the 

shadow region, is determined with Snell’s Law (3.18). 

 

Another approach to consider the effect of diffraction on breaking wave angles in 

the sheltered zones of the structures is introduced by Kamphuis (2000) such that the 

diffracted breaking wave angle is simply related to the undiffracted breaking angle 

and the diffraction coefficient. In Figure 3.17, the diffracted breaking wave angles 

in the sheltered zone of a groin are illustrated. 

 

The diffracted breaking angle behind a groin for any point inside and outside the 

shadow zone is found from following equation; 

 

375.0
dbbd K⋅= αα         (3.35) 

 
 

 
 

Figure 3.17 Diffracted breaking wave angles in the sheltered zone of a groin 
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Kamphuis (2000) states that inside the shadow zone, a further decrease in the 

breaking angle, resulting directly from wave diffraction, must be taken into account. 

The wave from the end of the groin according to the equation (3.35) will have a 

breaking angle of  

 

bbbs ααα ⋅=⋅= 88.0)71.0( 375.0       (3.36) 

  

Since the breaking angle at the structure is zero, a simple proportionality ratio is 

introduced so that for 
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the adjusted breaking angle is  
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where lgb is the groin length from the seaward tip of groin to the breaking location, 

αi is the incident wave angle at the seaward tip of the groin, αb is the undiffracted 

breaking angle, [GB] is the distance away from the groin and αbd is the diffracted 

wave angle (see Figure 3.17). 

 

The variation of breaking wave angle at the downdrift side of a 200 meters long 

groin is given for an incidence wave angle of 30 degrees and the effects of 

refraction and diffraction both separately and in combination which is the actual 

case behind a groin is illustrated in Figure 3.18.  
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Figure 3.18 The alongshore variation of breaking wave angle at the downdrift side 

of the groin 

 
 
 
As shown in Figure 3.18, the variations of the breaking wave angle in the sheltered 

zone of a groin for two idealized cases where it is assumed that only refraction or 

only diffraction process exists, are given to stress that the breaking wave angle 

found from Snell’s Law (3.18) decreases further in the sheltered zone of the groin 

due to diffraction effect when considering combined refraction-diffraction process. 

The alongshore distance to the end of shadow zone (where Kd = 0.71) and to the end 

of the transition zone at the breaker depth from the groin is about 100 and 200 

meters respectively. In the shadow zone, Kamphuis’s (2000) combined refraction-

diffraction methodology computes smaller values for the breaking wave angle than 

the methodology given in Hanson (1987), whereas in the transition zone they 

compute almost the same values for the breaking wave angle. In the numerical 

model, Kamphuis’s (2000) methodology providing a simpler approach to compute 

the diffracted breaking wave angles is utilized. 
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3.7 GROINS AS SHORE PROTECTION MEASURES 

 

Groins are the oldest and most common shore-connected, beach stabilization 

structures which are usually perpendicular or nearly at right angles to the shoreline 

and relatively short when compared to navigation jetties at tidal inlets. Groins are 

constructed to maintain a minimum, beach width for storm damage reduction or to 

control the amount of sand moving alongshore. Modern coastal engineering practice 

is to combine beach nourishment with groin construction to permit sand to begin 

immediately to bypass the groin field. Due to many examples of poorly designed 

and improperly sited groins caused by lack of understanding of their functional 

design, or failure to implement the correct construction sequence, or failure to fill 

up the groin compartments with sand during construction, or improper cross-

sectional shape, the use of groins for shore protection is discouraged by coastal zone 

management policies in many countries (CEM, 2003).  

 

The purpose of a groin field (series of groins) is to divide a shoreline into short 

sections that can reoriginate themselves with respect to the incoming waves 

(Kamphuis, 2000). For the proper functioning of shore-normal groins, SPM (1984) 

recommends a spacing ratio (Xg/Yg) between 2.0 to 3.0 where Xg is the spacing 

between the groins and Yg is the groin length measured from inital shoreline (see 

Figure 3.19). Groins that are spaced too closely cause sediment to bypass the 

compartments between groins. Spacing groins too far apart allows erosion of beach 

material between the groins. Therefore, an optimum design should consider both 

facts that a groin field should have the maximum sediment entrapment capacity 

while the amounts of erosion in groin compartments and at the downdrift of the 

groin field are in allowable limits. 
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Figure 3.19 Definition sketch for a groin field 
 
 
 
Another recommendation about functional design of groin fields, which is also 

illustrated in Figure 3.19, is that groin lengths are decreased along a line converging 

to the shoreline from the last full-length groin in the direction of net longshore 

sediment transport (Qnet), making an angle of about 6 deg with the natural shoreline 

and reducing the spacing to maintain the same Xg/Yg ratio (2.0-3.0) used in the 

design (CEM, 2003). The principle of groin shortening is employed at the end of 

groin systems in order to develop a transition between the groin system and the 

adjacent natural beach and to reduce downdrift erosion. Bruun (1952) indicates that 

in a long series of groins, the shortening should probably be carried out on the 

updrift side also, to insure a smooth passage to the unprotected coast. He further 

indicates that if the series consists only of a few groins, the shortening should start 

with the second groin from the updrift end. This would result in all the groin system 

being a transitional section. Kressner (1928) found in model tests that only three or 

four groins need to be shortened at the downdrift end of the system. 

 

To observe the effects of spacing ratios on the performance of a groin field, sample 

simulations are carried out with the numerical model developed for different sets of 

wave data input given Table 3.2 and for different spacing ratios as Xg/Yg = 1.0, 2.0, 

3.0, 4.0, 5.0 and 6.0. For each wave data set, the deep water wave approach angle 

(degrees measured between wave crests and straight bottom contour lines), wave 

frequency and steepness are kept constant and taken as 45 degrees, 5000 hours and 

0.042 respectively, whereas the deep water wave height and period are as given in 

Table 3.2. The groin field is composed of 5 impermeable shore-normal groins 50 
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meters long each with a spacing varying from 50 meters to 300 meters. The 

sediment entrapment capacity of the groin field for each spacing ratio and at each 

wave set is determined with the net area of sediment entrapped (An) found simply 

from the algebraic sum of areas of accretion (+) and erosion (-) in groin 

compartments (see Figure 3.20).  

 
 
 

Table 3.2 Wave data sets used in sample simulations 

 
 H0 (m) T (sec) α0 (deg) f (hrs) 

Wave Set-1 0.8 3.5 45 5000 

Wave Set-2 1.0 4.0 45 5000 

Wave Set-3 1.2 4.3 45 5000 

Wave Set-4 1.5 4.8 45 5000 

 
 
 

 
 

Figure 3.20 Areas of accretion and erosion in groin compartments 
 
 
 

For each wave set, the changes in the net area of sediment entrapped as the spacing 

between groins is increased are illustrated in Figure 3.21. 
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Figure 3.21 Variation of the net area of sediment entrapped 
 
 
 
As shown in Figure 3.21, the net area of sediment entrapped in groin compartments 

increases as the net longshore sediment transport rate increases. For Wave Set-1, the 

net area (An) is minimum compared to other wave sets and spacing seems to have 

no effect on sediment entrapment capacity. Similarly, for Wave Set-2, the net area 

remains almost the same for spacing ratios 2.0, 3.0, 4.0 and 5.0 and the maximum 

capacity is reached for spacing ratio equal to 3.0. However, as the net longshore 

sediment transport rate increases, spacing ratio becomes effective on the net area of 

sediment entrapped in groin compartments, that is observed for Wave Set-3 and -4. 

For these wave sets, spacing ratios 4.0 and 5.0 give maximum net area respectively. 

Considering entrapment capacity, greater spacing values (4.0-5.0) seem to be better 

for the functional design of groin fields. However the amounts of erosion in 

compartments also increases for increasing spacing ratios (see Figure 3.22) due to 

the facts that groins work more individually and more time is required for 

compartments to be filled up or to have an equilibrium planform, that can be 

observed also from the decreases in An for spacing ratio ,  Xg/Yg = 6.0, for all wave 

sets. 
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(b) 
 

Figure 3.22 Shoreline positions at the groin field after 5000 hours for wave set 
 
 
 

In Figure 3.22, the shoreline positions at the groin field for two spacing ratios (2.0 

and 4.0) after 5000 hours simulation with the Wave Set-2 are illustrated. The groin 
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field for spacing ratio equal to 2.0 starts at 1300 meters on the shoreline  and has a 

spacing of 100 meters (see Figure 3.22.a). For spacing ratio equal to 4.0 (200 

meters), the groin field starts at 1100 meters on the shoreline (see Figure 3.22.b). As 

it can be easily seen from the figure, the amounts of erosion in groin compartments 

after 5000 hours is greater for the spacing ratio,  Xg/Yg = 4.0, which concludes that 

the allowable landward limit of erosion is an important parameter to be considered 

in the functional design of groin fields and a spacing ratio between 2.0 to 3.0 may 

be applicable for most of the common practices as it is also recommended in 

literature. Another thing that may be concluded from the results is that the 

numerical model is able to show the validity of the recommended spacing ratio 

values. 
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CHAPTER 4 
 
 

MODEL BENCHMARKING WITH ANALYTICAL SOLUTIONS 
 
 
 
In this chapter, general background information about analytical solutions for 

shoreline changes, analytical solutions for accretion and erosion (including 

diffraction) at groins and jetties and comparison of results of these solutions and the 

numerical model developed are presented. 

 

4.1 BACKGROUND OF ANALYTICAL SOLUTIONS 

 

Mathematical modeling of shoreline change is a powerful and flexible engineering 

technique for understanding and predicting the long-term evolution of the plan 

shape of sandy beaches. In particular, mathematical models provide a concise, 

quantitative means of describing systematic trends in shoreline evolution commonly 

observed at groins, jetties, and detached breakwaters (Larson et al., 1987).  

 

Qualitative and quantitative understanding of idealized shoreline response to the 

governing processes is necessary for investigating the response of the beach to 

engineering actions. By developing analytical or closed-form solutions originating 

from mathematical models that describe the basic physics involved, essential 

features of beach response may be derived, isolated, and more readily 

comprehended than in complex approaches such as numerical and physical 

modeling. Also, with an analytical solution as a starting point, direct estimates can 

be readily made of characteristic parameters associated with a phenomenon, such as 

the time elapsed before bypassing of a groin occurs, percentage of volume lost from 

a beach fill, and growth of a salient behind a detached breakwater. In addition, 

analytical models avoid inherent numerical stability and numerical diffusion 

problems encountered in mathematical models (Larson et al., 1987). 
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Another useful property of analytic solutions is the capability of obtaining 

equilibrium condition from asymptotic behavior. However, the complexity of beach 

change implies that results obtained from an analytic model should be interpreted 

with care and with awareness of the underlying assumptions. Analytic solutions of 

mathematical models cannot be expected to provide quantitatively accurate results 

in situations involving complex boundary conditions and complex wave inputs. In 

engineering design, a numerical model of shoreline evolution would usually be 

more appropriate (Larson et al., 1987). 

 

Pelnard-Considere (1956) is the first to employ mathematical modeling as a method 

of describing shoreline evolution. He introduces the “one-line” theory and verifies 

its applicability with laboratory experiments of shoreline change at a groin. 

 

Grijm (1961) studies delta formation from rivers discharging sand. The sand 

transport rate is set to be proportional to twice the incident breaking wave angle to 

the shoreline, and two different analytical solutions are presented. The governing 

equations (sand transport and mass conservation) are expressed in polar coordinates 

and solved numerically. Grijm (1965) further develops this technique and presents 

solutions for a wide range of delta formations. Komar (1973) also presents 

numerically obtained solutions of delta growth under simplified conditions.  

 

LeMéhauté and Brebner (1961) discuss solutions for shoreline change at groins, 

with and without bypassing of sand, and the effect of sudden injection of material at 

a given point. Bakker and Edelman (1965) modify the longshore sand transport rate 

equation to allow for an analytical treatment without linearization.  

 

Bakker (1968) extends the “one-line” theory to include two lines describing beach 

planform change. The beach profile is divided into two parts; one relating to 

shoreline movement and one relating to the movement of an offshore contour (see 

Figure 4.1). The two-line theory provides a better description of sand movement 

downdrift of a long groin because it describes representative changes in the 

contours seaward of the groin head. The two-line theory is further developed in 
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Bakker et al. (1971), in which diffraction behind a groin is treated. In this case, it 

becomes necessary to numerically solve the governing equations. 

 
 
 

 
 

Figure 4.1 The two-line theory (after Bakker 1968) 
 
 

 
In LeMéhauté and Soldate (1977), analytical solutions of the linearized shoreline 

change equation are discussed together with the spread of a rectangular beach fill. 

LeMéhauté and Soldate (1978; 1979) develop a numerical model that includes 

variation in sea level, wave refraction and diffraction, rip currents, and the general 

influence of coastal structures on long-term shoreline evolution. 

 

A summary of analytical solutions of the one-line model is given in Walton and 

Chiu (1979). Two derivations of the linearized shoreline change equation are 

presented together with another approach resulting in a nonlinear model. New 

solutions include beach fill placed in a triangular shape, a rectangular gap in a 

beach, and a semi-infinite rectangular fill. 

 

Hanson and Larson (1987) present comparisons between analytical and numerical 

solutions concluding that the inability to include wave refraction in the analytic 

solution is significantly more restrictive for the applicability of the analytic solution 

than the small angle approximation. 
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Dean (1983) gives a short survey of some solutions applicable to beach nourishment 

calculations, especially in the form of characteristic quantities describing loss 

percentages.  

 

Larson et al. (1987) review previous solutions and introduce a large number of new 

solutions. The new solutions are derived either from analogies with heat conduction 

or through the Laplace transform technique. Solutions describing shoreline change 

without coastal structures are presented that are applicable both to natural and 

artificial beach forms. Also, several solutions describing river-delta formation are 

presented. 

 

Bodge and Kraus (1991) derive values on the diffusion coefficient (ε) for different 

coastal sites around the United States. The analytical solution for the accumulation 

updrift a groin or jetty is least-square fitted against the measured shoreline evolution 

with diffusion coefficient (ε) as the only free parameter (and neglecting bypassing).  

 

Walton (1994) presents an analytical solution for the case of a rectangular beach fill 

with tapered ends. The loss of fill material with elapsed time is calculated for 

different beach fill configurations. For comparison, Hanson and Kraus (1993) 

present numerical solutions for a tapered fill. 

 

4.2 ANALYTICAL SOLUTIONS FOR SHORELINE CHANGES AT 

GROINS AND JETTIES 

 

The easiest way to test the validity of the numerical model is to compare it with the 

analytical solutions for cases such where a change in shoreline occurs due to 

obstacles like groins, jetties and detached breakwaters. However, in order to treat 

such a case analytically, the situation has to be idealized to a large degree (Larson et 

al., 1987). The analytical solution for shoreline change at a groin or any thin shore-

normal structure is introduced first by Pelnard-Considere (1956). The existence of 

an equilibrium beach profile, which means that the seafloor is in equilibrium with 
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average wave conditions, is the major assumption of this solution. A definition 

sketch for shoreline change at a specific location at any time is given in Figure 4.2.    

 
 
 

 
 

Figure 4.2 Shoreline change at a specific location at any time 
 
 
 
The local shoreline orientation with respect to a coordinate system at any time, as 

shown in Figure 4.2, is ∂y/∂x and the effective local breaking wave angle (αeb) with 

respect to the new shoreline is defined as  

 

)arctan(
x

y
beb

∂

∂
−= αα         (4.1) 

 

where αb is the incident breaking wave angle. A general form of longshore sediment 

transport rate formula is given in equation (4.2) (Pelnard-Considere, 1956); 

  

)2sin(0 bQQ α⋅=          (4.2) 
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where Q0 is the amplitude of longshore sediment transport, and substituting 

equation (4.1) into (4.2), results in 

 








∂

∂
−⋅= )(2sin0

x

y
QQ bα        (4.3) 

 

For small breaking angles, it can be assumed that 

 

ebeb αα 2)2sin( ≅         (4.4) 

 

and equation (4.3) becomes   
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If the amplitude of the longshore sand transport rate and the incident breaking wave 

angle are constant (independent of x and t) and no sources or sinks exists, the 

following equation may be derived from (3.3) and (4.5) 
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where ε is the diffusion coefficient defined as 
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Since equation (4.6) is formally identical to the one-dimensional equation 

describing conduction of heat in solids or the diffusion equation, many analytical 

solutions can be generated by applying the proper analogies between initial and 

boundary conditions for shoreline evolution and the processes of heat conduction 

and diffusion (Larson et al., 1987).       
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4.2.1 Accretion 

 

The analytical solution for accretion at a groin considers an initially straight 

shoreline (y = 0 along the x-axis) which is in equilibrium with the same incident 

breaking wave angle (αb) existing everywhere, thus leading to a uniform sand 

transport rate along the shoreline. To represent accretion at a complete barrier, a 

boundary condition given in (4.8) is introduced such that at time t = 0, a thin groin 

is instantaneously placed at x = 0, blocking all transport (see Figure 4.3). 

 
 
 

 
 

Figure 4.3 Shoreline change at the updrift of a groin 
 

 
 

00 =Q at x=0         (4.8) 

 

Substituting equation (4.8) into (4.5), the following equation is obtained.  
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Equation (4.9) states that the shoreline at the groin is at every instant parallel to the 

wave crests. The solution for the accretion at a complete barrier is given in Larson 

et al. (1987) as 
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where ε is the diffusion coefficient, αb is the incident breaking wave angle and ierfc 

function is known as the “first integral of complementary error function”.  

 

The “error function” (erf) is encountered in integrating the normal distribution 

(which is a normalized form of the Gaussian function). It is an entire function 

defined as: 
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The “complementary error function” (erfc) and the “first integral of complementary 

error function” are given in equation (4.12) and (4.13) respectively. The erf and erfc 

functions are shown in Figure 4.4. 
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Figure 4.4 Error and complementary error functions 
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Substituting (4.13) into (4.10) yields 
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where y is the shoreline position at any distance (x) and time (t), ε is the diffusion 

coefficient, αb is the incident breaking wave angle and erfc function is the 

complementary error function (4.12). 

 

4.2.2 Erosion (Including Diffraction) 

 

In the shadow region of a long groin or jetty, it may be an oversimplification to 

neglect the process of wave diffraction. Erosion just behind the jetty will be 

overestimated if diffraction is neglected because the wave height is assumed to be 

constant alongshore. Accordingly, by including a variation in wave height (and thus 

in the amplitude of the sand transport rate) in the shadow region, a more realistic 

description of shoreline change will be obtained (Larson et al. 1987). 

 

There are a number of ways to account for varying amplitude in the longshore sand 

transport rate (resulting from varying wave height). One way is to divide the 

shadow region into distinct solution areas, each having constant amplitude of the 

sand transport rate. The incident breaking wave angle may also be varied from one 

solution area to another. Another way is to assume either the amplitude of the 

longshore sediment transport rate or the incident breaking wave angle as a function 

of x in the sheltered zone (Larson et al., 1987). A definition sketch for shoreline 

change at the downdrift of a groin is given in Figure 4.5.  
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Figure 4.5 Shoreline change at the downdrift of a groin 
 
 
 
For the case, in which the incident breaking wave angle is a continuous function of 

x, the governing differential equation for the shoreline (Larson et al., 1987) takes a 

different form: 
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The variation of the incident breaking wave angle, αb, is given by equation (4.16);  
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)tan( ig LS α⋅=         (4.17) 

 

where αv is the incident breaking angle at the groin, αh is the angle in the 

illuminated region and Sg is the length of sheltered zone on the breaker line, along 

which breaking wave angle is assumed to be a function of x, and is found from 

equation (4.17). L is the length of groin from breaker line to the seaward tip of groin 
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and αi is the incident wave angle at the seaward tip of the groin (see Figure 4.5). 

The analytical solution for this problem is 
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for t > 0 and 0 ≤ x ≤ Sg, 
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for t > 0 and x > Sg, where i2
erfc(x) is the “second integral of complementary error 

function” given in equation (4.20). 
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Larson et al. (1987) states that the solution obtained for a variable breaking wave 

angle overestimates the rates of erosion behind the groin since it is assumed that the 

amplitude of the longshore sand transport rate is the same everywhere (and thus that 

the wave height, in principle, is constant). In reality, diffraction reduces the wave 

height in the shadow region and, accordingly, the amplitude of the longshore sand 

transport rate there (Larson et al., 1987). It is also said in Larson et al. (1987) that 

despite this reduction, equations (4.18) and (4.19) provide a better description of the 
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actual situation than the commonly used solution without diffraction for which 

maximum erosion will always appear immediately adjacent to the groin. 

 

4.2.3 Model Benchmarking with Analytical Solutions 

 

The benchmarking of the numerical model with the analytical solution of accretion 

and erosion (including diffraction) at a complete barrier is carried out for wave 

parameters such that deep water significant wave height and period are 1.0 meter 

and 4.0 seconds respectively as Kamphuis’s (1991) longshore sediment transport 

formula, which gives more consistent predictions for wave height less than 1.0 m 

(Wang et al., 2002), is used in the model. Considering small breaking wave angle 

assumption of “one-line” theory, the comparison for accretion is done for breaking 

wave angles; -2.0, -5.0 and -10.0 degrees resulting sediment transport in negative 

direction. The expected shoreline changes computed from analytical solution and 

numerical model after a year have been shown in Figure 4.6. 
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Figure 4.6 Accretion at a groin after a year 
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As shown in Figure 4.6, the numerical model results match well with the analytical 

solution results both qualitatively and quantitatively even for large breaking wave 

angles such as 10.0 degrees. 

 

The benchmarking of the numerical model with the analytical solution of the 

erosion including diffraction at a complete barrier is carried out for the breaking 

wave angles given as 2.0, 5.0 and 10.0 degrees resulting a sediment transport in 

positive direction. The expected shoreline changes computed from analytical 

solution and numerical model after a year have been shown in Figure 4.7. 
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Figure 4.7 Erosion at a groin after a year 
 
 

 
As shown in Figure 4.7, the results of the numerical model and analytical solutions 

for erosion (including diffraction) are in good agreement showing that the 

assumptions made for calculation of breaking wave parameters in the sheltered 

zones of shore-normal diffracting coastal structures (groins, jetties etc.) works well 

enough to match with the analytical solution for erosion. 
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CHAPTER 5 
 
 

A CASE STUDY 
 
 
 
In this chapter, an application of the numerical model developed to a case study is 

presented. The model results and field measurements for shoreline changes at a 

groin field constructed to the east of Kızılırmak river mouth at Bafra alluvial plain 

are compared. 

 

5.1 INTRODUCTION 

 

Benchmarking a numerical model with analytical solutions is easy and 

straightforward. The behavior of the model for an idealized case, where less 

unknown parameters exist, is important to check the numerical and theoretical 

background of the model. However, in order to be used in engineering and scientific 

practices, the model should also be tested with actual cases, which is rather a 

difficult task due to the fact that simplifying the complex natural phenomena with 

assumptions and mathematical expressions may lead the model give erroneous 

results. 

 

To test the numerical model with actual field data, an application of the model to 

case of a groin field in Bafra Delta, where Kızılırmak River discharges into Black 

Sea (see Figure 5.1), is performed. Due to the construction of flow regulation 

structures (Altınkaya and Derbent Dams) on Kızılırmak River, the amount of 

sediment carried to the sea has reduced over years resulting coastal erosion, up to 

30 m. per year in the region (Kökpınar et al., 2005). To the east side of the river 

mouth, a shore protection system consists of 2 Y-shaped groins and 6 I-shaped 

groins exist (see Figure 5.2). The performance of the first part of the system 

constructed formerly, 2 Y-shaped groins and I-shaped groin, is studied by Kökpınar 

et al. (2005) and Şafak (2006). The second part of the system that consists of a 
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series of 5 groins is used to benchmark the model in this study. Measured field data 

including shoreline positions between the years 2003-2004 is obtained from State 

Hydraulic Works (DSİ) to be used in this case study.  

 
 
 

 
 

Figure 5.1 Location of Bafra alluvial plain 
 
 
 

 
 

Figure 5.2 Plan view of the existing shore protection system at the Kızılırmak river 

mouth (Google Earth, 2006) 
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5.2 WAVE CLIMATE STUDY 

 

Shoreline evolution is the result of a time history of short-term uncorrelated wave 

events occurring quasirandomly. This time history is rarely available. Instead, a 

wave hincasting study can be performed to determine the wave climate of the 

region from available hourly wind data measured by a local meteorological station 

for years. For each direction, the wind velocities and fetch lengths are used to 

hindcast the yearly or seasonal deep water wave characteristics of the shoreline and 

a long-term wave statistics study is carried out to determine annual or seasonal log-

linear probability distribution function of deep water significant wave height.  

 

In the wave climate study of the site, wind data measured by Sinop Meteorological 

Station between the years 1966-1985 is obtained from DMİGM (General 

Directorate of Meteorological Affairs). The location of the site is open to waves 

approaching from North-West (NW), North-North-West (NNW), North (N), North-

North-East (NNE), North-East (NE), East-North-East (ENE), East (E), and East-

South-East (ESE). Further performing a refraction analysis, waves from West-

North-West (WNW) direction are also found to be effective at site. The wave 

directions for Bafra region (see Figure 5.3) and the fetch distances for these 

directions given by Şafak (2006) are presented in Table 5.1. 

 
 
 

Table 5.1 Fetch distances for all directions (Şafak, 2006) 
  

FETCH  DISTANCES (km.) 

WNW 617 
NW 502 

NNW 373 
N 330 

NNE 331 
NE 333 

ENE 382 
E 349 

ESE 282 
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Figure 5.3 Wave directions for Bafra region 
 
 
 
Using the 20 year wind data, which contains measured hourly average wind 

velocities (greater than 3 m/sec as storm condition), and corresponding directions, 

and the fetch distances for all directions, a history of storm waves are obtained. 

Since the available shoreline measurements are limited to 1-year, a seasonal based 

wave data input is assumed to represent the actual wave conditions better, 

minimizing the effect of wave data sequence discussed in Şafak (2006). To prepare 

the wave data input for the model, seasonal based long-term wave statistics are 

carried out and seasonal probability distribution functions of deep water significant 

wave heights for wave directions are obtained (see Table 5.2 below and Figure 

A.1). 
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Table 5.2 Seasonal probability distribution functions of deep water significant wave 

heights for all directions 

 
(a) 

 
SPRING 

WNW (H1/3)0 = -1,16415 · ln[Q(>(H1/3)0)] - 2,52560 

NW (H1/3)0 = -0,67208 · ln[Q(>(H1/3)0)] - 0,67498 

NNW (H1/3)0 = -0,62682 · ln[Q(>(H1/3)0)] - 1,23558 

N (H1/3)0 = -0,73463 · ln[Q(>(H1/3)0)] - 2,53321 

NNE (H1/3)0 = -0,81140 · ln[Q(>(H1/3)0)] - 3,54757 

NE (H1/3)0 = -0,59711 · ln[Q(>(H1/3)0)] - 2,92491 

ENE (H1/3)0 = -0,69954 · ln[Q(>(H1/3)0)] - 3,81844 

E (H1/3)0 = -0,61388 · ln[Q(>(H1/3)0)] - 2,40942 

ESE (H1/3)0 = -0,89984 · ln[Q(>(H1/3)0)] - 1,65921 

 
 

(b) 
 

SUMMER 

WNW (H1/3)0 = -0,83344 · ln[Q(>(H1/3)0)] - 0,85088 

NW (H1/3)0 = -0,47994 · ln[Q(>(H1/3)0)] - 0,09014 

NNW (H1/3)0 = -1,08848 · ln[Q(>(H1/3)0)] - 2,98325 

N (H1/3)0 = -0,53178 · ln[Q(>(H1/3)0)] - 1,38129 

NNE (H1/3)0 = -0,54152 · ln[Q(>(H1/3)0)] - 1,55141 

NE (H1/3)0 = -0,40662 · ln[Q(>(H1/3)0)] - 1,68711 

ENE (H1/3)0 = -0,32677 · ln[Q(>(H1/3)0)] - 1,17609 

E (H1/3)0 = -0,63888 · ln[Q(>(H1/3)0)] - 2,69580 

ESE (H1/3)0 = -0,39799 · ln[Q(>(H1/3)0)] - 0,02891 
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Table 5.2 Seasonal probability distribution functions of deep water significant wave 

heights for all directions (cont'd) 

 
(c) 

 
AUTUMN 

WNW (H1/3)0 = -0,91052 · ln[Q(>(H1/3)0)] - 1,50401 

NW (H1/3)0 = -0,91534 · ln[Q(>(H1/3)0)] - 2,02811 

NNW (H1/3)0 = -0,67122 · ln[Q(>(H1/3)0)] - 1,02061 

N (H1/3)0 = -0,50100 · ln[Q(>(H1/3)0)] - 1,11103 

NNE (H1/3)0 = -0,70440 · ln[Q(>(H1/3)0)] - 2,44382 

NE (H1/3)0 = -0,69852 · ln[Q(>(H1/3)0)] - 2,62370 

ENE (H1/3)0 = -0,85805 · ln[Q(>(H1/3)0)] - 3,44642 

E (H1/3)0 = -0,49856 · ln[Q(>(H1/3)0)] - 1,64814 

ESE (H1/3)0 = -0,35914 · ln[Q(>(H1/3)0)] - 0,13706 

 
 

(d) 
 

WINTER 

WNW (H1/3)0 = -1,30946 · ln[Q(>(H1/3)0)] - 2,79346 

NW (H1/3)0 = -0,93719 · ln[Q(>(H1/3)0)] - 1,35410 

NNW (H1/3)0 = -0,95615 · ln[Q(>(H1/3)0)] - 1,89742 

N (H1/3)0 = -0,62741 · ln[Q(>(H1/3)0)] - 1,69882 

NNE (H1/3)0 = -1,00414 · ln[Q(>(H1/3)0)] - 3,93210 

NE (H1/3)0 = -0,74371 · ln[Q(>(H1/3)0)] - 2,97941 

ENE (H1/3)0 = -0,59101 · ln[Q(>(H1/3)0)] - 2,29947 

E (H1/3)0 = -0,84345 · ln[Q(>(H1/3)0)] - 3,88403 

ESE (H1/3)0 = -1,01960 · ln[Q(>(H1/3)0)] - 2,65864 

 
 
 
One major assumption in the preparation of wave data input is such that the effects 

of smaller but more frequent waves are considered to be more appropriate to use 

rather than higher waves with less frequency. To check the validity of this 
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assumption, in this respect, a concept of average wave height based on a 

probabilistic approach is developed. 

 

By using the long-term statistics in seasonal time scale, the average deep water 

significant heights (Hsa) of waves coming from every direction, their periods and 

seasonal frequencies in hours for each season are calculated as (Güler, 1997; Güler 

et al., 1998 and Şafak, 2006); 

  

∑
∑ ⋅

=
i

ii

sa
P

HP
H

)(
        (5.1) 

 

where Hi is the wave height and Pi is the occurrence probability of wave with height 

Hi. Occurrence probability (Pi) of wave with height (Hi) is computed by using the 

corresponding frequencies within the given range as follows; 

 

)()( kHQkHQP iii +−−=        (5.2) 

  

where Q is the exceedence probability and k is an assigned range to compute 

occurrence probability.  

 

Average deep water wave steepness in Bafra region is calculated as 0.042 from 

extreme wave statistics (Şafak, 2006), which is consistent with the value given in 

Ergin and Özhan (1986) and thus, significant wave period for a given average deep 

water significant wave height (Hsa) is calculated as: 

 

saHT ⋅= 91.3         (5.3) 

  

In Table 5.3, the seasonal wave data input for the model consisting of average wave 

heights, corresponding periods and seasonal frequencies from all directions is 

presented. 
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Table 5.3 Average wave heights, corresponding periods and seasonal frequencies 

from all directions for each season 

 
 SPRING SUMMER AUTUMN WINTER 

 Hsa T f Hsa T f Hsa T f Hsa T f 

 (m) (sec) (hrs) (m) (sec) (hrs) (m) (sec) (hrs) (m) (sec) (hrs) 

WNW 1.63 5.00 246 1.31 4.47 657 1.38 4.60 368 1.78 5.21 267 

NW 1.15 4.20 577 0.97 3.86 1393 1.39 4.61 210 1.41 4.64 459 

NNW 1.11 4.12 208 1.56 4.88 135 1.15 4.20 344 1.43 4.67 271 

N 1.21 4.31 53 1.02 3.95 96 0.99 3.89 132 1.11 4.12 100 

NNE 1.29 4.43 23 1.03 3.97 75 1.18 4.25 51 1.47 4.75 40 

NE 1.08 4.06 11 0.91 3.72 15 1.18 4.24 38 1.22 4.32 31 

ENE 1.18 4.24 7 0.84 3.58 18 1.33 4.51 33 1.08 4.06 29 

E 1.10 4.10 29 1.12 4.14 22 0.99 3.89 44 1.32 4.49 18 

ESE 1.37 4.58 301 0.90 3.71 851 0.87 3.64 1153 1.49 4.77 150 

 
 
 
 
5.3 MODELLING OF SITE 

 

The groin field constructed in addition to the first part is modeled starting from 

Groin-3 to Groin-8 with 200 meter spacing between adjacent groins (see Figure 5.4) 

on a discretized shoreline that was measured in 2003 by State Hydraulic Works, 

(DSİ). From the physical analysis of the sediment samples taken from the site, the 

median grain size diameter (D50) is determined as 0.23 millimeters (Kökpınar et al., 

2005). The berm height (B), the landward end of the active profile, is assumed as 2 

meters. Starting from Groin-3, the apparent lengths of the groins are given as 175, 

195, 200, 200, 180 and 175 meters respectively. It is assumed that no source or sink 

exists in the application of numerical modeling for the case in Bafra region. The 

sequence of wave data input (see Table 5.3) in the simulation starts with spring 

waves from WNW to ESE directions and continues with summer, autumn and 

winter waves. 
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                           Figure 5.4 Bafra delta shore protection system plan 
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5.4 RESULTS 

 

The change in shoreline position computed by the numerical model after 1 year 

simulation time, the off-shore positions of seasonal average limiting depths of 

longshore sediment transport (DLT,season*) and the measured shoreline positions in 

years 2003 and 2004 representing initial and final shoreline positions respectively 

are presented in Figure 5.5. 
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Figure 5.5 Comparison of the site measurements with the numerical simulation 
 
 

 
As shown in Figure 5.5, the shoreline change at the groin field computed by the 

numerical model after a simulation time of 1 year matches well with the shoreline 

position measured in 2004 qualitatively in general and quantitatively at some 

locations. Although the general trend in shoreline change is reflected in the model 

result, quantitatively, there are some differences between the result and field 

measurement which may be due to many reasons in such a complex and dynamic 

coastal region where, as stated in Kökpınar et al. (2005), an approximately 1-km-

wide band of shoreline has eroded since 1988 (see Figure 5.4). The sequence of 
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wave data input which is discussed in Şafak (2006), the bottom profile shape 

assumption, used methodologies in wave climate and transformation studies are all 

effective parameters in numerical modeling of shoreline evaluation and might be 

responsible for quantitative disagreement between the measured and computed 

shoreline positions at some locations of site. During the simulation, the limiting 

depth of longshore sediment transport for each wave direction of the season is 

observed to be smaller than the depth of seaward tips of the structures concluding 

that negligible amount of sediment bypassing around structures happens. 
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CHAPTER 6 
 
 

CONCLUSION 
 
 
 
The recent studies show that promising results are being achieved with complex 

three-dimensional models as the computer technology advances and the knowledge 

about coastal hydrodynamics increases. There are already many available software 

packages capable of modeling complex problems and tested in many site 

applications. However, for simpler cases or the cases with not enough available 

input data, numerical models based on “one-line” theory are still the most effective 

and easiest to apply to both idealized and actual cases.  

 

Numerical modeling of complex physical phenomena involves assumptions 

depending on available knowledge and source. Every assumption may ease the 

problem to be handled, meanwhile it may limit the capabilities of the model or 

decrease the accuracy of the solution. Numerical models based on “one-line” 

theory, which include many assumptions and limitations, are generally utilized to 

achieve qualitative results at first glance. However, the capability of these models to 

present a qualitative reflection of shoreline changes even for complex actual cases 

have inspired many other complex modeling techniques. In this respect, the 

numerical model developed is based on “one-line” theory. Further discussions on 

the representation of physical coastal processes (e.g., wave transformation, 

longshore sediment transport mechanism) are made to achieve a generalized and 

powerful engineering tool.  

 

In the numerical model, an explicit scheme is utilized due to its easiness while 

defining boundary conditions and constraints, yet, in order to increase the stability 

and accuracy of the model, an implicit scheme is recommended. For the estimation 

of deep water waves from measured wind data, a concept of average wave height 

based on a probabilistic approach is developed. The transformation of deep water 
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waves to breaking waves is carried out by a wave transformation module in the 

numerical model which computes breaking wave parameters considering also the 

effects of diffraction in the sheltered zones of the structures. Shoreline changes are 

assumed to be due to longshore sediment transport only and hence, a limiting depth 

of longshore sediment transport as the seaward end of the active profile is defined 

respectively. 

 

In this study, special emphasis is given on to wave diffraction phenomenon within 

the sheltered zones of coastal structures while developing a numerical model based 

on previous studies of one-dimensional models. Available approaches for the 

computation of the diffracted wave breaking heights within the sheltered zone of a 

single groin are compared and a simpler approach, which is also more compatible 

with the theory of “one-line”, is followed to describe irregular wave diffraction in 

the model. Furthermore, for the computation of the diffracted breaking wave angles, 

a combined refraction-diffraction methodology introduced by Kamphuis (2000) is 

followed. 

 

The model is benchmarked with both analytical solutions and actual field data. The 

results of the comparison of the model with the analytical solutions of accretion and 

erosion (including diffraction) shows that the model gives both qualitatively and 

quantitatively consistent results with the analytical solutions for some idealized 

cases. The application of the model in the case study at Bafra Delta proves that the 

model result and field measurement are in good agreement qualitatively in general 

and quantitatively at some locations.  

 

In conclusion, considering the limitations and capabilities of shoreline change 

models based on “one-line” theory, it can be said that the numerical model 

developed is found to be applicable to actual field cases and it should be tested with 

several more case studies or laboratory experiments for further calibration and 

verification of the model as a future recommendation. 
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APPENDIX A 
 
 
SEASONAL BASED LONG-TERM PROBABILITY DISTRIBUTIONS FOR 

SIGNIFICANT DEEP WATER WAVES AT BAFRA DELTA 
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Figure A.1 Probability distributions of deep water significant wave heights for 

seasons 
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Figure A.1 Probability distributions of deep water significant wave heights for 
seasons (cont’d) 
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APPENDIX B 
 
 

SAMPLE SIMULATIONS 
 
 
 
The execution of the numerical model is introduced for two hypothetical cases; a 

single groin subjected to uni-directional waves on an initially straight shoreline and 

a groin field under waves coming from different directions on an initially irregular 

shoreline. 

 

Simulation 1: A Single Groin 

 

The simplest case to which the numerical model can be applied is a single groin 

subjected to uni-directional waves on an initially straight shoreline. There are three 

major inputs for the model; initial shoreline, structural information and wave data 

(see Figure 3.3). The execution of the numerical model starts with the definition of 

shoreline position and site specific characteristics. The initial shoreline position 

may be defined in two different ways; either it can be assumed to be initially 

straight or it can be defined from a file named as “kiyi_cizgisi” that consists of 

shoreline coordinates in x (alongshore) and y (off-shore) directions. The wave data 

includes significant deep water wave height (H0) in meters and corresponding 

period (T) in seconds, deep water wave approach angle (α0) in degrees and the 

frequency (f) in hours and is read from a file named as “dalga”. The wave data 

used for this simulation is given in Table B.1. 

 
 
 

Table B.1 The wave data input used for Simulation 1 
 

1.000 , 4.000 , 30.000 , 1000 
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Initial shoreline: 

[1]:Initially straight shoreline 

[2]:Read from file 

1 

Enter the length of shoreline in m.: 

1000 

Initial shoreline coordinate in m.: 

0.0 

Enter the alonghsore distance increment, dx, in m.: 

10 

Enter time increment, dt, in hours. 

0.5 

Enter the median grain size diameter (D50) in m.: 

0.0004 

Enter beach berm height above still water level: 

2.0 

... 

 

After the initial shoreline position and the wave data input are entered to the 

program, the structural information is given. For a single groin, the alongshore 

location of the groin with respect to x=0, the groin length measured from initial 

shoreline position to the tip of the groin and the permeability coefficient of the groin 

(Şafak, 2006) are given. 

 

Enter the number of sources/sinks: 

0 

Enter the number of seawalls: 

0 

Enter the number of tapered beach fills: 

0 

Enter the number of offshore breakwaters: 

0 

Enter the number of groins: 

1 

Enter the distance of groin 1 from left: 

500 

Enter the length of groin 1: 

200 
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Enter the permeability of groin 1: 

0 

Enter the number of repetitions: 

1 

0.7862 

Execute the program with a smaller "dt" value. 

 

At the end of the simulation, if the stability condition is not satisfied (Rs ≤ 0.5), user 

is asked to run the program again with a new dt value smaller enough to satisfy the 

stability. 

 

... 

Enter time increment, dt, in hours. 

0.25 

... 

Enter the number of repetitions: 

1 

0.3931 

 

If the stability is satisfied, the program displays the output that consists of initial 

and computed shoreline positions with structures’ illustrations (see Figure B.1). 

 

 
 

Figure B.1 Final output of the program for Simulation 1 
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Simulation 2: A Groin Field 

 

In this simulation, the numerical model is applied to a groin field subjected to 

waves from different directions on an initially irregular shoreline. The initial 

shoreline position coordinates is read from file (see Table B.2). The numerical 

model sets the first x coordinate equal to 0 and changes other x coordinates 

accordingly to make it easy to define locations of the structures with respect to x=0. 

 
 
 

Table B.2 The initial shoreline data used for Simulation 2 
 

383.1210  , 484.7350 

536.7830  , 570.6886 

842.0127  , 681.5559 

1211.9881 , 746.2285 

1655.9586 , 755.4674 

2099.9290 , 700.0338 

2636.3934 , 616.8833 

3228.3540 , 515.2549 

3737.0702 , 450.5824 

4347.5296 , 413.6266 

5031.9841 , 450.5824 

5383.1210 , 516.3462 

 
 
 
The first coordinate value in “kiyi_cizgisi” is the x coordinate and the second 

one separated with a comma is the y coordinate both in meters. The wave data input 

used is given in Table B.3. The sequence of waves is given with a descending order 

of deep water wave approach angles herein. 

 
 
 

Table B.3 The wave data input used for Simulation 2 
 

1.264 , 4.397 ,  67,000 ,  78 

1.526 , 4.831 ,  53,886 , 206 

0.989 , 3.889 ,  31,386 , 250 

1.239 , 4.353 ,   8,886 , 185 

1.073 , 4.051 , -13,614 , 135 

1.011 , 3.932 , -36,214 ,  58 

0.977 , 3.865 , -58,614 , 151 
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Initial shoreline: 

[1]:Initially straight shoreline 

[2]:Read from file 

2 

Enter the alonghsore distance increment,dx, in m.: 

25 

Enter time increment, dt, in hours. 

0.5 

Enter the median grain size diameter (D50) in m.: 

0.0004 

Enter beach berm height above still water level: 

2 

Enter the number of sources/sinks: 

0 

Enter the number of seawalls: 

0 

Enter the number of tapered beach fills: 

0 

Enter the number of offshore breakwaters: 

0 

Enter the number of groins: 

5 

Enter the distance of groin 1 from left: 

1500 

Enter the length of groin 1: 

200 

Enter the permeability of groin 1: 

0 

Enter the distance of groin 2 from left: 

2000 

Enter the length of groin 2: 

200 

Enter the permeability of groin 2: 

0 

Enter the distance of groin 3 from left: 

2500 

Enter the length of groin 3: 

200 

Enter the permeability of groin 3: 

0 

Enter the distance of groin 4 from left: 

3000 

Enter the length of groin 4: 

200 

Enter the permeability of groin 4: 

0 

Enter the distance of groin 5 from left: 

3500 

Enter the length of groin 5: 

200 

Enter the permeability of groin 5: 

0 

Enter the number of repetitions: 

1 

0.0830 

0.2355 

0.1335 

0.2637 
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0.0819 

0.0273 

0.0188 

 

As the stability conditions for all directions are satisfied, then the resulting output of 

the program is given in Figure B.2. 

 
 
 

 
 

Figure B.2 Final output of the program for Simulation 2 
 


