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ABSTRACT 
 
 

INTELLIGENT STABILIZATION CONTROL OF TURRET 
SUBSYSTEMS UNDER DISTURBANCES FROM 

UNSTRUCTURED TERRAIN 
 
 

Gümüşay, Özdemir 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Aydan M. ERKMEN 

Co-Supervisor: Prof. Dr. İsmet ERKMEN 

 

November 2006, 147 Pages 

 

 

In this thesis, an intelligent controller for gun and/or sight stabilization of turret 

subsystems is developed using artificial neural networks. A classical proportional, 

integral and derivative (PID) controller equipped with a non-linear unbalance 

compensation algorithm is used as the low-level controller. The gains of this PID 

controller are tuned using a multilayered back-propagation neural network. These 

gains are modeled as a function of the error between the command and feedback 

signals and this model is generated by the function fitting property of neural 

networks as an estimate. The network is called as the “Neural PID Tuner” and it 

takes the current and previous errors as inputs and outputs the PID gains of the 

controller. 

Columb friction is the most important non-linearity in turret subsystems that 

heavily lower the efficiency of the controller. Another multilayered back-

propagation neural network is used in order to increase the performance of the PID 

controller by identifying and compensating this Columb friction. This network 

utilizes the error between the output of the PID controller driving the physical 
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system with Columb friction and the output of the identical PID controller driving 

a virtual equivalent linear system without Columb friction. The linear dynamics of 

the physical system is identified using a single layer linear neural network with 

pure linear activation function and the equivalent virtual linear system is emulated 

using this identification. 

The proposed methods are applied to both computer simulations and hardware 

experimental setup. In addition, sensitivity and performance analysis are 

performed both by using the mathematical model and hardware experimental 

setup. 

 

Keywords: Intelligent Control, Neural Networks, Neural PID Tuner, Neural 

Friction Compensation, Stabilization Control. 
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HERHANGİ BİR ARAZİDEN GELEN BOZUCU ETKİLER 
ALTINDAKİ TARET ALT SİSTEMLERİNİN AKILLI 

STABİLİZASYON DENETİMİ 
 

GÜMÜŞAY, Özdemir 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı 

Tez Yöneticisi: Prof. Dr. Aydan M. ERKMEN 

Ortak Tez Yöneticisi: Prof. Dr. İsmet ERKMEN 

 

Kasım 2006, 147 Sayfa 

 

 

Bu çalışmada taret alt sistemlerinin silah ve/veya görüş stabilizasyonu için yapay 

sinir ağları kullanılarak akıllı bir denetleç tasarlanmıştır. Alt seviye denetimde 

doğrusal olmayan bozuk balansın da giderildiği klasik bir oransal, integral ve türev 

denetleci (PID) kullanılmıştır. Bu denetlecin kazançları çok katmanlı bir geri 

iletimli sinir ağı ile eniyilenmiştir. Bu denetleç parametreleri istek ve geri besleme 

sinyalleri arasındaki hatanın bir fonksiyonu olarak modellenmiş ve bu fonksiyon 

yapay sinir ağlarının fonksiyon yakınsama özelliği kullanılarak tahmin edilmiştir. 

Bu ağ “Sinirsel PID Eniyileyici” olarak adlandırılmıştır ve giriş olarak denetim 

hatasının şu anki ve geçmiş değerlerini almakta ve denetleç kazançlarını çıkış 

olarak vermektedir. 

Kuru sürtünme taret alt sistemlerinde denetim performansını düşüren doğrusal 

olmayan en önemli etmendir. PID denetlecinin performansını artırmak için başka 

birçok katmanlı geri iletimli sinir ağı kuru sürtünmenin öğrenilmesi ve giderilmesi 

için kullanılmıştır. Bu ağ sürtünmeyi öğrenmek için kuru sürtünme etkisinde olan 

fiziksel sistemi süren PID denetlecinin çıkışı ile kuru sürtünme etkisinde olmayan 

ve fiziksel sistemin doğrusal bir eşleniği olan yapay sistemi süren PID denetlecinin 
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çıkışı arasındaki hatadan yararlanmaktadır. Fiziksel sistemin doğrusal davranışı ise 

tek katmanlı doğrusal bir sinir ağı ile tanılanmaktadır ve yapay doğrusal sistem bu 

doğrusal tanılama sonucunu kullanmaktadır. 

Son olarak, önerilen metot bilgisayar simülasyonlarına ve deneysel bir prototipe 

uygulanmış ve sinir ağlarının hassasiyet ve performans analizleri yapılmıştır. 

 

Anahtar Kelimeler: Akıllı Denetim, Yapay Sinir Ağları, Sinirsel PID İyileyici, 

Sinirsel Sürtünme Giderici, Stabilizasyon Denetimi. 
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CHAPTER 1 
 
 

1. INTRODUCTION 
 
 

1.1 Intelligent Stabilization Control – Motivation   

 

Battle tanks are technologically the starting point of today’s modern land weapons 

both mechanically and electronically. For instance, with the invention of missiles, 

people started to use the knowledge of turret subsystems of battle tanks to design 

missile launcher platforms. These platforms are placed on both stationary and 

moving structures and are used to adjust the aiming of the missiles towards a 

target. 

Today, these kinds of turret subsystems have many high technology capabilities.  

For instance, day and night vision enables high firing accuracy at any whether 

conditions and for any time of a day. Another capability of today’s turret 

subsystems is automatic target tracking which enables high firing accuracy for the 

moving targets. This capability is especially critical for turret subsystems 

developed for air targets because of the high speed and high maneuvering 

capabilities of air targets. The distance between the target and the turret subsystem 

can be measured using laser or by other optical methods and this distance 

information is utilized in the ballistic calculations. Meteorically data can also be 

measured in today’s turret subsystems and these are used again for the ballistic 

calculations with the help of digital computers. Guided missiles or trajectories are 

also launched from today’s turret subsystems.  One of the most important 

capabilities of today’s turret subsystems is the fire on the move, which enables 

very high firing accuracy while moving on a rough terrain [2]. 



 
2 

As mentioned before, one of the most important and the most critical capability 

needed to be acquired is the “fire on the move” ability of turret subsystems. This 

capability is obtained basically by gun stabilization, which means holding the 

orientation of the gun stationary relative to a reference on the ground even under 

random disturbances generated by the vehicle moving on an unconstrained terrain 

[3].  

Previously, gun stabilization was realized based upon mechanical gyroscopes and 

analog/digital computers [4]. Up to now and even maybe in the future, the 

controller structure of these systems has been basically proportional + integral + 

derivative (PID) type classical controllers [3]. Although these kinds of classical 

controllers have many advantages; they cannot satisfy high performance criteria 

for complicated control tasks. 

One of the main advantages of these classical controllers is their simplicity. They 

are simple to understand and well known. Many researches are conducted 

elaborately on these techniques, which have always been mathematically well 

stated. Another advantage is their ease of implementation. In other words, these 

techniques do not require high computing power because of their numeric 

simplicity. Besides, the parameters of these controllers are easy to tune and many 

tuning methodologies can be found in the literature. Most of the parameters of 

these controllers have a physical meaning and therefore the designer can predict 

the controller sensitivity to parameter changes [5]. 

However, these control techniques have a very critical primordial disadvantage. 

The problem is that these control strategies are not adaptive and robust against 

changes in the operation environment. In order to solve these problems, gain 

scheduling or switching type controllers are implemented using classical 

controllers. For instance, in order to solve the stiction problem caused by Columb 

friction, high controller gains are used or a high frequency signal is added to the 

output of the controller in low speed regions. However, both of these methods 

require high actuation power and high controller bandwidths [1]. Tuning these 

controllers have permitted to locally enhance performance thus may easily be 

temporary.  For instance, a PID controller with a non-linear friction compensator 
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tuned in Ankara in the summer may not satisfy performance criterions at Erzurum 

in the winter. Like friction, there may be other uncertainties and non-linearities in 

the controlled system [49]. Because of the nature of uncertainty, a classical 

controller cannot compensate for these uncertainties without an estimator. 

Today, most of the battle tanks, used all over the world, are designed for fighting 

outside urban areas. However, starting with the wars in the Iraq and Bosnia, the 

battlefield changed from rural to urban areas [6]. This change from rural to urban 

thus changed the terrain from earth to concrete, which totally transformed the 

disturbance characteristics in their frequency and amplitudes. Therefore, the 

controllers tuned for stabilization on sand terrain are not any more suitable for 

stabilization on concrete terrain. 

As a summary, the control tasks needed for the aiming and stabilization of turret 

subsystems are very hard due to the challenges of today’s high-tech battlefield. 

The uncertainties and non-linearities of the controlled system and changes in the 

operational environment also increase the complexity of the control task. 

Therefore, the main motivation of this thesis is to develop a controller for the 

stabilization control of turret subsystems, which will handle these changes in the 

operational conditions (i.e. terrain and environmental changes) and in the system 

dynamics in order to minimize the control error under random disturbances from 

the rough terrain. 

 
1.2 Objective and Goals of the Study 

The stabilization control task of turret subsystems is complicated due to the 

uncertainties and non-linearities of the controlled system and due to changes of the 

operation environment. The types of the terrain and meteorogical conditions affect 

the disturbance frequency and amplitude characteristic. In addition, the dynamics 

of the system changes with changing environmental conditions. Such as, the 

friction of the system changes with changing outside temperature. 

The objective of this study is to design an intelligent controller, which will handle 

these unknown changes both in the controlled system and in the environment in 

order to have almost the same control performance under the influence of 
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disturbances from random terrain. Towards this objective, the goals of the 

proposed method are given below. 

The control task is named as “Gun Stabilization Control” and it requires the 

minimization of the transient and steady state control errors between the user 

command and the feedback signals. Due to the unknown changes of the 

environment and the controlled system, adaptation of this controller to the new 

environment is needed, which requires learning of the new environment. 

In addition, identification and compensation of system non-linearities will help the 

stabilization controller to increase the stabilization performance. Two main non-

linearities namely the unbalance and the Column friction affects the controller 

performance a lot and compensation algorithms will be used for these non-

linearities. These algorithms will also need learning of the new environment and 

identification of the controlled system dynamics. 

Since the proposed controller is designed for turret subsystems, which are 

controlled with digital computers, the last and may be the most important point 

will be the real-time implementation of the proposed controller on these digital 

computers. Therefore, the controller will be mathematically simple and will 

require minimum memory and hardware. 

 
1.3 Methodology 

In order to perform the stabilization control task, a classical PID controller is used 

in the low-level controller because of its simplicity. Using this PID controller, the 

error between the speed command from the user and the feedback signal from a 

speed feedback device is minimized by producing a torque signal for the actuation 

system. This PID controller is equipped with an unbalance compensator, which 

utilizes a g-sensitive accelerometer placed in the center of rotation (COR) of the 

corresponding axis. 

In order to handle the uncertainties in the controlled system and in the 

environmental conditions, the control gains of this PID controller is adjusted by a 

multilayered artificial neural network. This network is trained with back-
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propagation learning algorithm in order to minimize the control error of the PID 

controller. The parameters of this network such as the number of inputs and 

number of hidden layers are optimized by performing computer simulations on the 

mathematical model of a battle tank. 

The primary non-linearity of the system namely the Columb friction is identified 

and compensated in order to increase the controller performance. Again, a 

multilayered artificial neural network is used for identification of the Columb 

friction. This network is trained using back-propagation learning algorithm and it 

aims to minimize the error between the output of the PID controller driving the 

physical system and the output of the identical PID controller driving a virtual 

linear system, which is the linear estimate of the physical system. This linear 

system estimate is obtained by identifying the dynamics of the physical system 

with a single layer linear neural network in regions where the effect of Columb 

friction is minimized. 

The sensitivity of these networks to the sensor noise and quantization errors in the 

D/A and A/D conversions are analyzed and the performance of the controller is 

examined with different terrain conditions, changing system dynamics and 

changing user commands. 

 

1.4 Contributions of the Thesis 

In this study, an intelligent stabilization controller is developed for turret 

subsystems. This proposed controller is implemented on the mathematical model 

of a battle tank and results are given for different operational conditions. 

A unique Columb friction identification method is developed using two neural 

networks. The linear equivalent of the physical system is identified using a linear 

network and another multi-layered network utilizes this linear system estimate in 

order to identify the Columb friction characteristics of the system. Using this 

estimate, Columb friction is simply compensated by adding a correction signal to 

the output of the stabilization controller, which is the inverse of the estimated 

friction. 



 
6 

A hardware prototype is developed for the implementation of the proposed 

method. A scaled model of Challenger 2 tank is modified mechanically in order to 

represent real life applications. Feedback sensors and actuation electronics are 

added to the model. In addition to these, a sight camera for the visualization of 

stabilization performance and a wireless router for communication are added to the 

hardware prototype. The proposed controller is implemented using this prototype 

and the results are given in this report. 

 

1.5 Outline of the Thesis 

In the first chapter of this thesis, the motivation of this study, goals of the study 

and contributions to the literature is given. In the second chapter, a literature 

survey about stabilization and intelligent control techniques used in the study are 

represented. The third chapter is devoted to the proposed method giving the details 

of the proposed neural controller architecture. The simulation environment and the 

experimental setup are explained in detail in the fourth chapter. The simulation 

results on the mathematical model of a main battle tank and the test results on the 

experimental setup are discussed in the fifth chapter. The sensitivity analysis of the 

neural linear system identifier network and the performance analysis of the 

proposed neural controller are given in the sixth chapter. Finally, a conclusion is 

made and future works are stated in the seventh chapter. 
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CHAPTER 2 
 
 

2. LITERATURE SURVEY 
 
 
 
2.1 Battle Tanks and Turret Subsystems 

Beginning of 1900s shows the rise of turret subsystems. People wanted to protect 

themselves from enemy attacks while firing. To this end, they kept themselves 

behind armors and fired through a hole on this armor while tracking the enemy 

from another hole. The gun was sometimes heavy cannon or sometimes a simple 

machine gun. 

With time, the idea expanded to mobile armored gun structures. The pioneer was 

the German Army that introduced a tracked vehicle equipped, on top, with an 

armored stationary turret subsystem. British tanks named Mark I, II, III and IV 

were subsequently designed using the concept of this vehicle (Figure 2.1). After 

this one, larger vehicles were designed with many rotating or stationary turret 

subsystems. Guns on these vehicles were placed either at the sides or at the back 

or also at the front [7]. 

 

 
Figure 2.1 – Medium Mark B [7] 
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Turret subsystems were also used in fighting airplanes, especially in large 

airplanes, where there was more then one turret. In World War II (WWII), there 

were one turret on the tail and one on the tip of American airplanes [8]. 

Today, turret subsystems are used for many different purposes besides being still 

used on battle tanks. Turret subsystems can be found used in gunner and 

commander periscopes, commander’s auxiliary machine gun and for active 

protection purposes on today’s main battle tanks [9]. 

Turret subsystems can be found as launchers for missiles, platforms for electro-

optical devices such as thermal imaging cameras and laser range finders, seeker 

heads of guided missiles, platforms for many different calibers of guns such as 

0.50” caliber M2HB machine gun and 76mm caliber cannon for battle cruisers. 

A mechanical structure with electrical or hydraulic actuation, which consists of at 

least one movable axis, which is independently actuated, best defines a turret 

subsystem [9]. These subsystems usually carry one or more guns with or without 

optical devices and/or other detection and/or destruction equipments. Most of the 

time, turret subsystems are used to orient a gun or an electro-optical device to a 

target and therefore two axes (traverse and elevation) are usually enough to 

perform this task. 

Today’s modern battle tanks have still a two axis turret in order to aim rotation 

axes usually named as traverse and elevation (sometimes called azimuth) and both 

of these axes are gyro stabilized. Different from the previous battle tanks, today 

there are at least two turret subsystems on top of the main gun turret. These turret 

subsystems are gunner and commander periscopes, which usually use inverted 

mirrors for vision. In addition to these, sometimes a stabilized turret is used to aim 

and stabilize the machine gun of the commander. 

ASELSAN is one of the World leading companies dealing with these turret 

subsystems. Starting with the Turkish Pedestal Mounted Stinger Platform 

(TPMSP) project, which uses stinger missiles as main gun and 12.7mm machine 

gun as auxiliary gun, ASELSAN signed many contracts with Turkish Army and 
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foreign countries for systems, which have stabilized turret subsystems. Some of 

these systems are VOLKAN project for modernization of Leopard I tanks (Figure 

2.2), Netherlands Pedestal Mounted Stinger Platform project (Figure 2.3) and 

Stabilized Machine Gun Platform (STAMP) for Turkish Navy. All of the turret 

subsystems used in these projects have stabilization capability with many other 

high technology capabilities such as day and night vision, automatic target 

tracking, target distance measurements and guided missiles [9]. 

 
 

 
Figure 2.2 – Leopard 1A1 Tank modernized by ASELSAN 

 

 

 
Figure 2.3 – Pedestal Mounted Stinger System for Netherlands Army designed and 
produced by ASELSAN 
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2.2 Gun Stabilization 

When developed in WWI, battle tanks were noisy, dangerous and difficult to 

operate. It was really a hard job to aim the gun to the target with certain accuracy. 

For a tank standing still, aiming the gun is relatively easy however, at stand still all 

points on a large size tank are open targets for the enemy and it is hard to 

camouflage such a big vehicle. 

Thus, reducing the body target area achieved somewhat by keeping tanks in 

motion on the battlefield. In the primary versions of this idea, moving to a firing 

place and standing still here for a short enough time just for shooting was popular. 

After WWII, fighting vehicles such as British Centurion Mk 5 [11] were equipped 

with gun stabilization capability using gyroscopes for stabilization. This was an 

innovation for battle tanks because fixing the gun orientation towards the target 

became very easy. Actually, this was the first generation of gun stabilization 

systems. 

With this very early version of gun stabilization, orientation of the main gun in 

both elevation and traverse axis was held stationary relative to a reference on the 

ground. The error between the target point and the aimed point became 

independent of the movements of the vehicle. Only translational movements 

whose effect is minor were left and corrected by the gunner. 

The first generation gun stabilization is explained schematically in Figure 2.4 and 

Figure 2.5. In the first figure, the orientation of the gun is kept horizontal relative 

to the earth. In the upper view, the deviation from the target was only translational 

which is independent of the target distance. However, in the lower view, the 

orientation of the gun is kept steady relative to the vehicle and both angular and 

translational errors occurred. The rotational error results in very large aiming error, 

which increases with increasing target distance. The situation for the traverse axis 

is given in the second figure. For both of the figures, the errors obtained with the 

stabilized gun are only due to the translational movements of the vehicle and very 

low compared to the errors resulted in the non-stabilized gun case. 
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Figure 2.4 – Demonstration of gun stabilization on elevation axis 

 

  

Figure 2.5 – Demonstration of gun stabilization on traverse axis 

 

Although the first generation gun stabilization changed the role of the first battle 

tanks on battlefield, the performance was not enough resulting in low first round 

hit probability [12]. Before the invention of gun stabilization, the battle tanks were 

mobile weapons but capable of firing while standing still but after gun 

stabilization was introduced, the battle tanks became the main weapon of the 

battlefield. In the first generation gun stabilization systems, a rate gyroscope was 

used for each separate axis. These gyroscopes were used to sense the disturbances 

on the corresponding axis and this information was used to hold that axis 

stationary during the motion of the vehicle. The control structures of the first 

generation stabilization systems was using rate errors between the gyro feedback 
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and the command signal coming from the gunner’s handle, therefore there was a 

need for error in order to apply an action (this is so called error based control). 

For high first round hit probabilities, tolerance for error is usually very tight. 

Because of this requirement, second generation stabilization systems are 

introduced where disturbance gyroscopes measure disturbance rates on the moving 

vehicle platform [13]. This disturbance information is subsequently used to 

estimate turret motion as the reverse of the hull motion, and this estimated motion 

is applied to the control system in order to have the inverse motion of the 

disturbance. This technique is called disturbance feed-forward and has been found 

to increase the stabilization performance two ore three times more. 

In the second-generation stabilization systems, the gunner uses a stabilized 

periscope in order to aim the gun to the target. In these systems, the control system 

of the turret also tracks the orientation of this gunner periscope [12]. Therefore, the 

control task is not only stabilization of the turret but at the same time tracking the 

orientation of the periscope with acceptable performance. 

In today’s stabilization systems, holding the turret orientation stationary on the 

target is not enough because most of today’s targets do poses also “fire on the 

move” capability. The time for aiming and shooting has been greatly reduced [14]; 

therefore, there is a need for target tracking and fast reaction. Stabilization systems 

having target tracking capability are called third generation stabilization systems. 

The video trackers of gunner periscopes detect the target and bore-sight errors are 

used to aim the gun to the target. In this generation, unbalance compensation using 

accelerometers are used in addition to disturbance feed-forward technique because 

most of the turret subsystems using third generation stabilization systems have 

huge guns (120mm and 140mm guns for main battle tanks) resulting in high 

mechanical unbalances. This huge unbalance is compensated most of the system in 

order to increase the stabilization performance. For this compensation, an 

accelerometer which can measure both the gravity and the accelerations resulted in 

the vehicle motion is used. The same method is utilized in this study in order to 

compensate the non-linear unbalance effects. The detail of this method is given in 

chapter 3. 
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In today’s modern fighting vehicles with turret subsystems, the general trend is to 

use sensors in order to minimize the stabilization, aiming errors and maximize the 

firing accuracy. In order to realize these goals, ballistic calculations are made 

using the initial speed of the trajectory, speed and the direction of the wind and 

target distance. Using these values, corrections are produced to the gun position 

both in elevation and in traverse axis. 

However, there are many parameters which are not measurable but affecting the 

performance of the firing accuracy such as Columb friction, inertia changing with 

ammunition amount and payload, and disturbance characteristics. All of these 

unknown changes need information about the controlled system and the operation 

environment. However, these points are still not covered in today’s modern 

controllers for turret subsystems. 

In most of today’s turret subsystems, the stabilization controllers are mainly based 

on classical PID controllers. The structure of the controller changes depending on 

the system and becomes PI controller neglecting the derivative term or PIID 

controller using double integrator. Other than the PID controller, lead 

compensators, lag compensators or lead-lag compensators are used in the 

controllers. In addition, low-pass, high-pass or notch filters are used to eliminate 

the sensor noise and avoid the mechanical resonances. 

To improve the performance of the classical controller and to make it adaptive to 

the changes, gain scheduling or switching type controllers are also implemented 

for turret subsystems. In addition to these control techniques, modern control 

techniques like adaptive control or robust control are experimented on turret 

subsystems [15]. However, because of the complexity of the controlled system and 

uncertainties of the environment, none of these controllers handles the unknown 

changes both in the environment and in the physical system. 

The effect of these unknown changes should only be minimized by learning the 

new environment and estimating the dynamics of the controlled system. That is 

why an intelligent controller is developed in this study to handle the uncertainties 



 
14 

and non-linearities of the system. The methods developed in order to estimate and 

compensate for one of these non-linearities is given in the chapter 3. 

 

2.3 Stabilization Controllers 

Up to this point, the stabilization concept is used only for turret subsystems but 

there are other application areas of stabilization concept and these are the thing 

that we are familiar in our daily lives. The applications are mainly in consumer 

electronics or in automotive. There are also other applications in aerospace and 

chemistry. The process stabilization in chemical plant is out of the scope of this 

study therefore will not be discussed. 

The stabilization controllers are widely used in digital cameras in order to have 

high quality pictures and videos. Due to the disturbances coming from the users 

hand or from the platform on which the camera is fixed, the image quality 

decreases with the increasing disturbance amplitude. In order to eliminate the 

effect of these disturbances and to get sharp pictures, image stabilization is used. 

There are two approaches used for the image stabilization. These are called as 

optical stabilization and digital image stabilization [50]. In optical stabilization 

approach, the lens is actuated with small motors and gyroscopes or accelerometers 

are used in order to sense the disturbances. The measured disturbance data is used 

to actuate the lens of the camera in the opposite direction of the disturbance [50]. 

The digital image stabilization is rather different from the optical stabilization. In 

this approach, there is no moving part for the image stabilization. The effect of the 

disturbance on the retrieved image is detected using special algorithms and image 

stabilization is performed by moving some part of the frame in the opposite 

direction of disturbance [50]. 

Optical image stabilization is very similar to the stabilization of turret subsystems 

conceptually but the controlled mechanical systems are completely different. The 

challenges discussed in first chapter for the stabilization control of turret 

subsystems are not problem for image stabilization. The mechanics of the lenses 
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are almost ideal which means almost no non-linearity and uncertainties. In 

addition, the performance specifications are completely different. One or two pixel 

errors are acceptable for image stabilization but almost ten times better 

stabilization requirements are usual for the stabilization of turret subsystems. 

The stabilization controllers are also used for the stabilization of systems, which 

are naturally unstable. These systems can be motorcycles, unicycles and inverted 

pendulums. For instance, Dao and Lui [52] used a simple proportional controller 

for the stabilization of a unicycle but the proportional gain is scheduled using the 

non-linear mathematical model of the system. 

 

Figure 2.6 – Unicycle Robot in Motion 

 

Similarly, Yi, Song, Levandowski and Jayasuriya [51] used a robust sliding mode 

controller for the stabilization of a motorcycle. A detailed mathematical model of 

the system is used in this study for the stabilization control of the system. 

As mentioned before, stabilization controllers are also used in automobiles 

especially for safe drive under rainy or snowy whether conditions. Anti-skid 
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control is the most important property of today’s automobiles and it is known as 

“Electronic Brake force Distribution (EBD) system”. For this anti-skid control, 

accelerometers are utilized in order to sense the centrifugal forces on the vehicle 

especially while making turns. This measured acceleration data is used in order to 

calculate the brake forces for each wheel. For instance, while making a turn to the 

right, the brake force in the right wheels of the car is greater or less than the brake 

force in the left wheels depending on the angle of turn and road conditions [53]. 

Simple proportional controllers are widely used for the anti-skid control of today’s 

commercial automobiles but there are some academic studies, which can be 

applied to the future’s automobiles. One of these studies is performed by 

Fujimoto, Saito and Noguchi for the anti-skid control of an electrical vehicle on 

snowy conditions. They used observed based modern controllers for the 

stabilization of the electrical vehicle on the road [53]. 

 

Figure 2.7 – An Experimental Setup for Anti-Skid Control Studies 

 

As a summary, stabilization controllers are widely used in today’s technology and 

we have the benefit of stabilization even in our daily lives. Because of the 

performance requirements of the controller and environmental conditions of the 

plant under stabilization control, the challenges of turret stabilization is not valid 

for most of the other applications. In addition, there is limited computational 

power for most of the system needing stabilization control. Therefore, very simple 

stabilization controllers based on sensor measurement are used widely. 
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2.4 Friction Modeling and Compensation 

The friction heavily affects the stabilization controller performance for turret 

subsystems. Turret subsystems experience frequently the non-linearity caused by 

friction while the motion is stabilized. For this reason, a literature survey is 

performed about friction models and compensation techniques. 

Friction is a natural phenomenon, which affects almost all motion. It has been the 

subject of extensive study for centuries with the main objectives being the design 

of effective lubricating processes and the understanding of the mechanisms of 

wear. Whereas friction effects at moderate velocities are somewhat predictable, it 

is the effect of friction at low velocities, which is very difficult to model. The facts 

that; 

i) friction changes sign with velocity 

ii) asymmetric with respect to the velocity axis 

iii) has evolutionary characteristics 

iv) exhibits stick-slip phenomenon 

etc., aggravates the problem. Although friction effects have been well understood 

qualitatively, researchers have often relied on experimental data to formulate 

various mathematical models [24]. 

From a control point of view, the most popular friction model has been the static + 

Coulomb friction model originally proposed by Leanardo da Vinci in 1519 [25]. 

Whereas this model is sufficient for most applications, it fails to capture the low-

velocity effects such as the Stribeck effect, stick-slip motion, presliding 

displacement, etc., which play a significant role in high-precision position 

setpoint/tracking applications. To capture low-velocity friction effects, several 

researchers have proposed empirical models. For example, Tustin [26] proposed 

an exponential relationship between friction and velocity to fit the Stribeck curve. 

Hess and Soom [27] modeled the Stribeck curve using an inverse quadratic 

relationship between friction and velocity. In [28], Canudas de Wit et al. 



 
18 

approximated the exponential relationship proposed in [26] by a linearly 

parameterized model which fostered the design of an adaptive controller. 

Rabinowicz [29] integrated the stick-slip motion into a friction model, which takes 

into account the temporal phenomenons of dwell time and lag time. An alternative 

approach, known as the state-variable model, was proposed by researchers 

([30],[31],[32]) to capture the effects of time delay associated with friction. 

Whereas the qualitative interpretations provided by researchers from the field of 

tribology led to a better understanding of the friction phenomenon, it is the control 

of low-velocity mechanical systems in the presence of friction, which attracted the 

attention of many researchers from the control community. Specifically, the fact 

that some of the proposed models can be utilized during control synthesis has 

resulted in several interesting papers, for example, in [33], Armstrong explored the 

implications of the Stribeck effect on feedback control using a reduced order 

model of friction. Armstrong also established experimental procedures to stabilize 

the performance of the controller at low velocities. In [28], Canudas de Wit et al. 

designed an adaptive controller for dc motor drives utilizing a friction model, 

which was asymmetric in angular velocity. In [34], Canudas de Wit addressed the 

problem of adaptive friction compensation for robots during low-velocity 

operations using a linear parameterizable model (i.e., the conventional exponential 

function which represents the Stribeck effect was replaced by a linear 

parameterizable model to facilitate the design of an adaptive feedforward 

controller). In [35], Armstrong applied dimensional and perturbation analysis to 

solve a nonlinear low-velocity friction control problem. 

Almost in the half of the friction models and techniques for the compensation of 

the friction, a precise model of the physical system is used. In addition, in all of 

the compensation methods, a precise measurement of the relative speed is a must. 

For the methods without the system models, the friction is models are obtained 

using experimental data. Therefore, these models are valid only for the friction 

characteristics of the experimental conditions. 

For turret subsystems, it is very hard to obtain a precise mathematical model. 

Besides, the relative velocity measurements are not so precise because of the 
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sensor noise. Performing experiments in order to model the friction is not a 

solution for changing friction characteristics. 

In order to identify the friction characteristics of the physical systems, one 

approach is to estimate the dynamics of the physical system. The linear behavior 

of the physical system is identified in this study and therefore a literature survey is 

performed about system identification and virtual system emulation using system 

identification. 

 
2.5 System Identification and System Emulation 

The simulation of the system dynamics in order to mimic the system behaviors 

using system identification is called system emulation. There are plenty of system 

identification techniques in the literature. These techniques use the inputs to the 

system and the outputs of the system to estimate the system dynamics statistically. 

Guojun [38] analyzed the complexity and undecidability in the modeling of speed 

control system of hydraulic elevator. The back-propagation neural networks model 

is used in this study and it is formed by the system identification. 

Ping and Lihua [39] worked on the Diagonal Recurrent Neural Networks (DRNN) 

in order to examine the performance of DRNN with the dynamical system 

identification. They used these neural networks to identify the hydraulic servo 

system dynamical performance. 

Purwar, Kar and Jha [40] worked on the computationally efficient artificial neural 

network (ANN) model for system identification of unknown dynamic nonlinear 

continuous and discrete time systems. A single layer functional link ANN is used 

for the model where the need of hidden layer is eliminated by expanding the input 

pattern by Chebyshev polynomials. These models are linear in their parameters. 

The recursive least squares method with forgetting factor is used as on-line 

learning algorithm for parameter updating in their work. The good behavior of the 

identification method is tested on two single input single output (SISO) continuous 

time plants and two discrete time plants. Stability of the identification scheme is 

also addressed in this study. 
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Constant, Lagarrigues, Dagues, Rivals and Personnaz [41] presented a new model 

of an induction machine based on neural network theory. They introduced a neural 

model architecture, which is based on the Park model. They then describe the 

training procedure of the neural model, and give evaluations of its performance, 

for example on startups with a speed vector control. 

Jovanovic [42] presented a neural network approach for structural dynamic model 

identification. The neural network is trained and tested by using the responses 

recorded in a real frame during earthquakes. The results they obtained show the 

great potential of using neural networks in structural dynamic model identification. 

As a result of the survey, it is obvious those neural networks are widely used for 

the identification of dynamic systems. Back-propagation learning is the mostly 

used technique for the training of these neural networks. 

Before proceeding with the proposed controller architecture, a mathematical 

background is given covering the concepts about the intelligent control, artificial 

neural networks, back-propagation learning algorithm and least mean squares 

learning algorithm for the sake of completeness. 

 
2.6 Mathematical Background 

Mathematical details of learning techniques used in this study are stated in this 

section. In addition, general information about intelligent control and artificial 

neural networks covering the importance, needs and principles are given. 

2.6.1 Intelligent Control 

An intelligent system has the capability to act appropriately in an uncertain and 

unknown environment, where an appropriate action is the one that increase 

probability of success with success is the achievement of behavioral sub goals that 

support the system's ultimate goal [20].  

An intelligent system ([16],[17],[18]) is based upon capabilities such as 

perception, learning, reasoning, and making inferences or decisions from 

incomplete and uncertain information. This requires a knowledge system in which 
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the representation and processing of knowledge are main functions. For instance, 

approximation is a “soft” concept, and the capability to approximate for the 

purposes of comparison, pattern recognition, reasoning, and decision-making is 

the challenge of intelligence. Soft computing is an important branch of 

computational intelligence where fuzzy logic, probability theory, neural networks, 

and genetic algorithms are used synergistically to mimic reasoning and decision 

making of a human [19]. 

Adaptation and Learning 

The ability to adapt to changing conditions is a necessity in intelligent systems. 

Although adaptation does not necessarily require the ability to learn, it is almost 

impossible for systems to be able to adapt to a wide variety of unexpected changes 

without learning. Therefore, the capability called learning is an important aspect of 

(highly) intelligent systems. Learning is important for the stabilization control of 

turret subsystems. As stated many times before, there are always changes in the 

operation environment and the controller should adopt itself to this new 

environment in order to satisfy the controller goal for all operation conditions. 

Autonomy and Intelligence  

Autonomy in setting and achieving goals is an important aspect of intelligent 

control systems. When a system has the capability to act appropriately in an 

uncertain and unknown environment for long periods of time without external 

intervention it is said to be highly autonomous. There are degrees of autonomy; an 

adaptive control system can be expected as a system of higher autonomy than a 

control system with fixed controllers like classical PID controller, as it can cope 

with greater uncertainty than a fixed feedback controller can. Although for low 

autonomy no intelligence is necessary, for high degrees of autonomy, intelligence 

in the system is a must. For turret subsystems, the autonomy is very important. 

Many of the control problems are solved automatically without the action of the 

user. This is very logical for such fighting machines because a minor error may 

result in the loss of the crew in the turret subsystem. 
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Structures and Hierarchies 

In order to cope with complexity of the controller structure, an intelligent system 

must have an well-structured functional architecture for efficient analysis and 

evaluation of control strategies. This structure should be "sparse" and it should 

provide a mechanism to build levels of abstraction (resolution, granularity) or at 

least some form of partial ordering so to reduce complexity. An approach to study 

intelligent machines involving entropy emphasizes such efficient computational 

structures. Hierarchies (that may be approximate, localized or combined in 

hierarchies) that are able to adapt, may serve as primary vehicles for such 

structures to cope with complexity. The term "hierarchies" refers to functional 

hierarchies, or hierarchies of range and resolution along spatial or temporal 

dimensions, and it does not necessarily imply hierarchical hardware. Some of 

these structures may be hardwired in part. To cope with changing circumstances 

the ability to learn is essential so these structures can adapt to significant, 

unanticipated changes [20]. 

This concept is important for an intelligent controller while implementing to the 

turret subsystems. The computational power is very limited in turret subsystems 

because of the limited space and limited power. In addition, the simplicity and the 

ease of understanding of the controller are the unavoidable needed for a 

stabilization controller for turret subsystems. 

For these reasons, simple network structures, which are dedicated only for one 

purpose, are used and worked in parallel in the controller architecture proposed in 

this study. The controller divided into two parts one for the elevation and one for 

the traverse axis and distributed to two layers namely the low-level and high-level 

controllers. 

2.6.2 Artificial Neural Networks 

Neural networks are adaptive statistical models based on an analogy with the 

structure of the human brain. They are adaptive because they can learn to estimate 

the parameters of some population using a small number of exemplars (one or a 

few) at a time. Basically, neural networks are built from simple units, sometimes 
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called neurons or cells by analogy with the real thing. These units are linked by a 

set of weighted connections. Learning is usually accomplished by modification of 

the connection weights. Each unit codes or corresponds to a feature or a 

characteristic of a pattern that we want to analyze or that we want to use as a 

predictor. These networks usually organize their units into several layers. The first 

layer is called the input layer, the last one the output layer. The intermediate layers 

(if any) are called the hidden layers. The information to be analyzed is fed to the 

neurons of the first layer and then propagated to the neurons of the second layer 

for further processing. The result of this processing is then propagated to the next 

layer and so on until the last layer. Each unit receives some information from other 

units (or from the external world through some devices) and processes this 

information, which will be converted into the output of the unit. The goal of the 

network is to learn or to discover some association between input and output 

patterns, or to analyze, or to find the structure of the input patterns. The learning 

process is achieved through the modification of the connection weights between 

units [21].  

Commonly neural networks are adjusted, or trained, so that a particular input leads 

to a specific target output. Such a situation is shown in Figure 2.8. There, the 

network is adjusted, based on a comparison of the output and the target, until the 

network output matches the target. Typically, many such input/target pairs are 

needed to train a network. 

 

Figure 2.8 – General neural network training architecture 
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Neural networks have been trained to perform complex functions in various fields, 

including pattern recognition, identification, classification, speech, vision, and 

control systems. Today neural networks can be trained to solve problems that are 

difficult for conventional computers or human beings [22]. 

The learning algorithms used in this study is given in the following two sub-

sections for the sake of completeness. These algorithms are the least mean squares 

learning (LMS) method and its expansion to the multilayered networks back-

propagation learning algorithm. LMS learning algorithm is used for the training of 

the neural linear system identifier network and BP learning algorithms is used for 

the training of both the neural PID tuner and neural friction identifier. 

2.6.2.1 Linear Networks and Least Mean Squares (LMS) Learning 

The linear networks similar to the perceptrons, but their transfer function are linear 

rather than hard limiting. This allows their outputs to take on any value, whereas 

the perceptron output is limited to either 0 or 1. Linear networks, like the 

perceptron, can only solve linearly separable problems. 

Like the perceptron, the linear network has a decision boundary shown in Figure 

2.9 that is determined by the input vectors for which the net input n is zero. For 

0=n  the equation 0=+ bWp  specifies such a decision boundary. Input vectors in 

the upper right gray area lead to an output greater than 0. Input vectors in the 

lower left white area lead to an output less than 0. Thus, the linear network can be 

used to classify objects into two categories. However, it can classify in this way 

only if the objects are linearly separable [22].  

 

Figure 2.9 – Decision boundary representation for linear neural networks 
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The LMS algorithm, or Widrow-Hoff learning algorithm, is based on an 

approximate steepest descent procedure. Here again, linear networks are trained on 

examples of correct behavior. Widrow and Hoff had the insight that they could 

estimate the mean square error by using the squared error at each iteration [22]. 

Taking the partial derivative of the squared error with respect to the weights and 

biases at the kth iteration, we have, 
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Next, the partial derivative of the error can be obtained as; 
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Then, the Widrow-Hoff (LMS) learning algorithms can be formalized as; 

( ) ( ) ( ) ( )kpkekWkW Tη21 +=+       (2.7) 

and 

( ) ( ) ( )kekbkb η21 +=+        (2.8) 

Here e is the error vector and b is the bias vector, while η  is a learning rate. If η is 

large, learning occurs quickly, but if it is too large it can lead to instability of the 

learning process and errors might even increase and oscillate [22]. 

2.6.2.2 Back-Propagation Neural Networks 

Back-propagation neural networks are a class of networks that propagates inputs 

forward with all outputs is computed using sigmoid thresholding of the inner 

product of the corresponding weight and input vectors and all outputs at stage n 

are connected to all the inputs at stage n+1. It propagates the errors backwards by 

apportioning them to each unit according to the amount of this error the unit is 

responsible for [23]. 

In the following part the derivation of the stochastic Backpropagation algorithm 

for the general case is given.  

First, the variables of the network are defined. jx
r

 is the input vector for unit j (xji 

= ith input to the jth unit), jw
r

is the weight vector for unit j ( ijw ,  is the weight on 

ijx , ) , jjj xwz
rr

.= is the weighted sum of inputs for unit j, jo  is the output of unit j 

( ( )jj zo σ= ), jt  is the target for unit j, ( )jDownstream is the set of units whose 

immediate inputs include the output of j, Outputs  is the set of output units in the 

final layer. 

The notation can be simplified by imagining that the training set consists of 

exactly one example and so the error can simply be denoted by E .  
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It is needed to calculate 
ijw

E

,δ

δ
for each input weight ijw ,  for each output unit j. 

Note first that since jz  is a function of ijw ,  regardless of where in the network 

unit j is located,  
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Furthermore, 
jz

E

δ

δ
 is the same regardless of which input weight of unit j we are 

trying to update. So this quantity is denote by iρ  and called back propagation 

common term.  

Consider the case when Outputsj ∈ . It is known that 
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Since the outputs of all units jk ≠ are independent of ijw , , we can drop the 

summation and consider just the contribution to E  by j.  
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Thus, the network weight update term can be stated as; 
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Now consider the case when j is a hidden unit. Like before, we make the following 

two important observations.  

• For each unit k downstream from j, kz  is a function of jz  

• The contribution to error by all units jl ≠ in the same layer as j is 

independent of ijw ,  

We want to calculate 
ijw

E

,δ

δ
for each input weight ijw ,  for each hidden unit j. Note 

that ijw ,  influences just jz  which influences jo  which influences 

( )jDownstreamkzk ∈∀  each of which influence E . So we can write; 
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Again, note that all the terms except ijx ,  in the above product are the same 

regardless of which input weight of unit j we are trying to update. Like before, we 

denote this common quantity by jρ . Also note that k
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Thus,  
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Finally, the network weights are updated using the following equation; 
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( ) ( )
ijijij wkwkw ,,, 1 ∆+=+         (2.18) 

where 

ijjij xw ,, ηρ=∆         (2.19) 

As a summary, a literature survey is performed for the stabilization control of 

turret subsystems covering different methods for stabilization control, friction 

models and compensation techniques, intelligent control, neural networks and 

learning algorithms for the training of these networks. 

The stabilization control for turret subsystems are usually performed using 

classical control techniques. Modern control techniques and little work on 

intelligent control for turret subsystems can also be found. Compensation of 

system non-linearities shows considerable improvement on the controller 

performance according to the survey. In addition, identification of the system 

dynamics is used for these compensation algorithms. 

Using the information obtained from literature survey, an intelligent controller 

architecture is proposed using artificial neural networks and classical linear 

controller in the next chapter. 
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CHAPTER 3 
 
 

3. PROPOSED CONTROLLER ARCHITECTURE 
 
 

An intelligent stabilization controller architecture for turret subsystems is proposed 

in this chapter using a classical discrete PID controller, a disturbance compensator 

and three neural networks. The proposed intelligent controller architecture is given 

in Figure 3.1. 

 

Figure 3.1 – Proposed Controller Architecture 

 

The controller has two layers. The layer called “Low-Level Controller” is 

responsible from the stabilization of the corresponding axis of the turret 

subsystem. There is a classical discrete PID controller at this level and the 

performance of this controller is enhanced using an unbalance compensator. This 

unbalance compensator uses a gravity sensitive accelerometer in order to sense the 

unbalance. The details of the low-level controller are given in the next chapter. 
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In the second layer called as “High-Level Controller”, there are neural networks in 

which there is learning and adaptation of the low-level controller. The controller 

parameters of the classical PID controller are tuned in order to minimize the 

controller error using a multilayered neural network and this network is trained 

using back-propagation learning algorithm. In addition, there is a compensation 

algorithm for Columb friction using a multilayered neural network. A linear neural 

network is used for the linear identification of the physical system and the output 

of this identification is used for the training of the Columb friction compensation 

network. Details of these networks will be given in section 3.3. 

The details of the proposed intelligent stabilization controller architecture start 

with the low-level controller. The mathematical details of this low-level controller 

will be given in the next section. Then, mathematical derivations for the neural 

PID tuner network and design of this network will be stated. Finally, this chapter 

ends with the mathematical derivation of the networks used for the compensation 

of Columb friction and design of these networks. 

 
3.1 Low-Level Stabilization Controller 

In the proposed control architecture, the low-level controller is based on a well-

known, easy structured discrete PID controller. That can be stated as; 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )212)(11 −+−−++−−+−= kekekeKkeKkekeKkuku dip    (3.1) 

where  ( )ku :  controller output at time k 

 ( )ke :  error between the speed command and speed feedback at time k 

 pK : proportional gain of the PID controller 

 iK : integral gain of the PID controller 

 pK : derivative gain of the PID controller 

The proportional gain of this controller mainly works against high amplitude 

transient errors. When it senses an error, it produces an output proportional to this 

error. Due to this fact, proportional controllers suffer from output saturation and 
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constant steady state error may occur. The integral controller is introduced in order 

to overcome this constant error but high integral gain may cause oscillations in 

steady state. Therefore, in order to suppress these oscillations at steady state and to 

reduce the fluctuations while reaching this steady state, derivative controller is 

used [37]. Although derivative controller improves the controller performance 

especially in position control loops, derivative controller is usually either used 

with very low gains or is not used at all due to noise on the feedback signals. If 

derivative component of a PID controller is not used then the controller is called 

proportional + integral controller or PI controller. 

The schematic view of this control structure is shown in Figure 3.2 below. As seen 

from the figure, there are two possible speed feedback signals. If speed feedbacks 

are obtained using the resolver of the driving motor or any other relative speed 

feedback device, the axis in concern tracks the desired speed trajectory relative the 

structure on which it stands. For example, if the axis in concern is the elevation 

axis of a battle tank and speed feedback is obtained from resolver signal then 

elevation axis tracks the speed command relative to the traverse axis of the tank. 

This operation mode is often called as nonstab-mode or normal-mode. 

 

 

Figure 3.2 – Controller structure of a turret with discrete PID controller 
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On the other hand, if the speed feedback is obtained using the gyroscope signal, 

the axis in concern tracks the desired trajectory relative to a reference on the 

ground. Similarly, if the axis in concern is the elevation axis of a battle tank, the 

elevation axis tracks the speed commands relative to a reference on the ground. 

This operation mode is often called as stab-mode. 

Usually, in the mechanical design stage of turret subsystems, designers try to 

minimize the non-linear behavior of the system in order to simplify the controller 

design. However, one of these non-linear behaviors called unbalance cannot be 

overlooked because of the limitations of the mechanical structure that will result in 

unbalance that will directly affect controller performance. This non-linear effect 

should be then compensated for increased efficiency in performance. 

More specifically, unbalance compensation is required if maximum unbalance 

torque is comparable in magnitude with maximum torque of the driving motor. In 

this context, we should note that battle tanks with 105 mm main gun have 

unbalance values much less than the maximum torque of the elevation axis motor 

and in these systems unbalance is not compensated. However, tanks with 120 mm 

and higher caliber main guns have considerable unbalance values therefore in most 

of these systems unbalance compensation algorithms are used. 

 

 

Figure 3.3 – Controller structure of a turret with discrete PID controller and 
unbalance compensation 



 
34 

Since unbalance is a mechanical concept and its value does not change with time 

or with other effects, deterministic algorithms can be used with satisfactory 

performance. One of these algorithms used in the elevation axis of main battle 

tanks is based on linear accelerations in the direction perpendicular to the line of 

sight of the gun for the calculation of the unbalance torque. In this algorithm, a 

gravity sensitive accelerometer is placed at the center of rotation of the elevation 

axis. The measurement axis of this accelerometer is aligned with the direction, 

which is perpendicular to the line of sight. 

The measured accelerations are multiplied with the distance along the line of sight 

between the center of rotation (COR) and center of gravity (COG) with mass of 

the gun. The whole equation is given as; 

mlaT mu ××=         (3.2) 

where  ma  : Measured acceleration 

 l  : Distance along the line of sight between COR and COG 

 m  : Mass of the gun 

Using this equation, the unbalance torque can be calculated and corresponding 

control signal can be added to the output of the PID controller to compensate the 

unbalance. The schematic view of this control structure is shown in Figure 3.3. 

 
3.2 Neural PID Tuner  

Although there are, some methods to tune the parameters of a PID controller in 

time or frequency domain or in continuous or discrete time, but the controller 

performance cannot be met because of the complexity of the physical system. 

Therefore, designers apply offline methods to tune the controller up to some level 

and afterwards they tune online the controller manually by trial-end-error to reach 

the desired performance. 

In offline tuning processes, the dynamics of the physical system are usually time 

dependent and may also change with environmental effects resulting in a 

controller performance that may no longer be acceptable or even lead to 
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unstability. To solve these problems, adaptive controllers are developed but most 

of these controllers are model dependent and therefore the designer should obtain 

a closed form mathematical model of the physical system. 

These difficulties are the well-known challenges of the controller design process 

confronting control engineers. In order to minimize the design effort and obtain an 

adaptive type controller, which is not model dependent, a PID tuner neural 

network is used for battle tank turrets in this study. The parameters of this network 

are optimized by performing computer simulations with different parameters in 

order to have the best stabilization performance. 

 

 

Figure 3.4 - Controller structure of a turret with unbalance compensation and PID 
controller tuned by a BP-NN PID tuner. 

 

The place of this PID tuner network is in Figure 3.4 for a battle tank turret. As 

seen from this figure, PID tuner network inputs current and previous values of 

controller error signal between the command and feedback signals in order to tune 

the proportional (P), integral (I) and derivative (D) components of a PID controller 

based on the back propagation learning algorithm in order to minimize the 

controller error. 

The mathematical derivations of this PID tuner network will be given in the next 

subsection in detail. After this mathematical interpretation, the design of the 
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network parameters for the best stabilization performance will be given by 

performing computer simulations on a main battle tank mathematical model. 

3.2.1 Mathematical Derivations for Neural PID Tuner Network 

The back propagation neural network used for the tuning of the gains of the PID 

controller consists of an input, an output and M hidden layers. Current and 

previous values of error signal between the commanded signal and feedback signal 

are the inputs to the network. The outputs of the network are the proportional (P), 

integral (I) and derivative (D) gains of the PID controller. The block diagram of 

the neural PID tuner is shown in Figure 3.5 below. 

 

Figure 3.5 – Architecture of the neural PID tuner 

 

In Figure 3.5, n

ijw ,  represents the network weight between the neuron j  at layer 

1−n  and neuron i  at layer n . Similarly n

ib  represents the neuron bias of neuron i  

at layer n . The activation functions of the neurons are shown as f(•). The 

activation functions used in back-propagation neural networks are usually either 

logarithmic sigmoid (Figure 3.6) or hyperbolic sigmoid (Figure 3.7) functions. The 

type of the activation function used in this network and the reasons for this 

selection will be given in the design stage of this network. 
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Figure 3.6 – Logarithmic sigmoid function 

 

 

Figure 3.7 – Hyperbolic sigmoid function 

 

The PID tuner back propagation neural network aims to minimize the error 

between the commanded signal and the feedback signal at the next sampling 

period. In order to perform this, the network used the following cost function. 

( )22 )1(
2
1

))1()1((
2
1

+=+−+= kekykrJ      (3.3) 

where,  ( )1+kr  : Commanded signal 

  ( )1+ky  : Feedback signal 

  ( )1+ke  : Error signal 
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Using this cost function, the network weights are updated using the following 

update equation. 
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In this update equation, the network weight ( n

ijw , ) is updated using the current 

network weight, current and previous update terms ( n

ijw ,∆ ) , learning rate η  and 

momentum term α . 

Learning rate determines the speed of the learning process. Usage of high learning 

rate values increases the speed of the learning process but this may lead to 

unstability whereas using low values may lead very slow learning speed, which is 

practically unacceptable. Therefore the learning rate (η ) is a design parameter 

which should be determined carefully. 

In order to suppress oscillations of network weight updates in the learning process, 

the momentum term α  is introduced into the update equation, which behaves like 

a damper on the network weight adding inertia to the learning process. The 

importance of this momentum term in learning process and optimum values 

obtained by computer simulations will be given in the next section for both 

momentum term and learning rate. 

The update term n

ijw ,∆  is obtained using the following partial differential equation. 
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This equation can be expanded using the chain rule and the following equation can 

be obtained. In this equation ( )ku  denotes the control input to the plant. 
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The term n

iout  represents the neuron activation function output of neuron i  at 

layer n  and it is given as ( )n

in

n

i nfout = . 

The update term can be further simplified using the following equalities. 
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Using these equalities, following equality called back propagation common term 

n

iρ  can be defined as follows. 
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This common term can be obtained for previous network layers using the 

following equalities, 
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Further simplification of this equation results in a recursive equation given below, 
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Therefore, the network weight update equation can be rewritten as, 
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Up to now, only one unknown is left which is the change of plant output with 

respect to plant input 
( )
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δ +
. Since the proposed method do not use the 

mathematical model of the system, the best and easiest way is to use the following 

equality, 
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Therefore, if we know the sign of this term, we can merge the amplitude of the 

term with the learning term η  and simplify the network weight update equation as 

follows,  
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Since the common term 
n

iρ  is obtained recursively, its values at the output layer 

should be obtained. The following equations can be used to obtain the values of 

these common terms. 
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The update equation for the network biases is very similar to the update equation 

for the network weights. The equation is given below; 
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The expansion of the term )1( +∆ kb
n

i  is very similar to those used for weight 

update equation; therefore, it is not given here. The bias update equation obtained 

following the same approach is given as; 
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In this equation, different than the one obtained for network weights, the term 

( )kout
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The mathematical details of the neural PID tuner network are given under this 

title. In the next section, design process for the optimization of network parameters 

for the best stabilization performance will be given in detail. 

3.2.2 Design of the Neural PID Tuner Network 

The neural PID tuner is a multilayer neural network and uses two parameters 

called learning rate (η ) which determines how fast the learning occurs and 

momentum term (α ) which damps the learning process in order to reduce the fast 

changes in the network gains. In this chapter, the optimum values for these 

network parameters will be determined. 

The neural PID tuner uses an input layer with n-many inputs which are the present 

and previous control errors and an output layer which are the controller parameters 
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pK , iK  and dK . It also uses m-many hidden layers, which may also have more 

than one neuron. 

The inputs of the network are normalized using the maximum allowable error limit 

values (3 deg/sec, 0.05 rad/sec). This normalization is done in order to obtain 

uniform inputs to the sigmoid functions. Due to the shape of the sigmoid 

functions, they produce almost the same output if the input is larger than 1 or less 

than -1. Therefore, the inputs of the network is divided by the maximum allowable 

error value and by two in order to obtain inputs between -0.5 to 0.5. 

The parameters of the neural PID tuner, which are needed to be optimized, can be 

listed as the learning rate, momentum term, and number of inputs, number of 

hidden layers and number of neurons in these hidden layers. There is also need for 

the selection of the activation functions for each neuron. The details of the 

optimization of these parameters will be given in the following few pages. 

The learning process does not occur through the whole simulation. The training of 

the network stops after the controller reaches to a satisfactory performance level. 

This is done by utilizing the forgetting sum of the controller errors. In other words, 

the controller errors are accumulated with a forgetting term and if this sum 

becomes lower than a limit, which means that the controller reached a satisfactory 

performance, the training process of the network stops and network continues to 

run without training. The forgetting sum of the controller errors are calculated by 

the following equation. 

( ))()()1(.)( nfbkncmdnerrnerr −+−= λ      (3.25) 

Here in this equation, )(nerr  is the sum of the errors at time step n , λ  is the 

forgetting term which is a positive number between 0 and 1, and this term 

determines the decay of the effects of the previous errors in the present sum of 

errors. The term )(ncmd  is the speed command from the user and )(nfbk  is the 

speed feedback from the rate gyroscope of the corresponding axis. 
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In this study, forgetting term is used as 95.0=λ  and this value leads to the loss of 

an error value within approximately 1 second. Selection of low forgetting term 

values leads the learning process dependent mostly on the current controller errors 

and usage of high values leads to a learning process dependent mostly on the 

pervious controller errors. For low values, learning process slows down but for 

high values learning occurs fast. The value used in this study is determined by 

trial-and-error and it gives satisfactory performance. 

As stated before, the neural PID tuner has input and output layers and multi hidden 

layers. The number of hidden layers, number of neurons, which will be used in 

these hidden layers and type of the activation functions, are needed to be 

determined. 

 

Figure 3.8 – Controller Gains Obtained for Different Number of Hidden Layers for 
the Tank Moving on APG Track with a Speed of 10 km/h 
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Since the proposed neural network is aimed to be used in real-time applications for 

the control of turret subsystems, minimum number of hidden layers and minimum 

number of neurons in these layers are the goals of design. Addition of hidden 

layers to the network increases considerably the computational complexity of the 

algorithm therefore; simulations are performed using different numbers of hidden 

layers in order to determine the optimum number of hidden layers. 

The PID tuner network is simulated over the computer simulations for the tank 

moving on APG track with a speed of 10 km/h in stab-mode for elevation axis. In 

other words, the neural PID tuner performs the stabilization task for elevation axis 

while moving over the APG track. The simulation results are given only for 

elevation axis but the results obtained for traverse axis are very similar. 

The controller gains obtained in these simulations are given in Figure 3.8 as a 

figure matrix. In this figure, first column shows the proportional gain of the 

controller with respect to time, second column shows the integral gain of the 

controller with respect to time and the last column shows the derivative gain of the 

controller with respect to time. In all of the subfigures, there are three different 

data, which are obtained from other trials. The gain limits used in this simulations 

are 0 as minimum and 10 as maximum for pK , 0 as minimum and 0.3 as 

maximum for iK  and 0 as minimum and 1 as maximum for dK . 

For all simulations, learning rate is used as 0.01 and momentum term is used as 

0.5. These values are not the optimum values but these values give satisfactory 

performance for all cases. The optimization of these values will be discussed later. 

In addition, the initial network weights and initial biases are random numbers 

between 1.0−  and 1.0 . These values are not too critical for the network 

performance assuring that the network does not start with high controller gains. In 

order to satisfy this constraint, the initial weights and biases are chosen as non-

zero and small enough numbers. Choosing too small initial weights and biases 

increases the training time a little but large numbers may result in high initial 

control gains. Also starting with positive weights and biases forces the network for 
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positive weights and biases thought the simulation; therefore, use of both negative 

and positive numbers assures the uniformity of network weights and biases. 

The rows in the figure correspond to different number of hidden layers. First raw 

shows the results obtained for one hidden layer and the last one shows the results 

for four hidden layers. As can be seen from the figure, the controller gains do not 

change too much with different number of hidden layers. In other words, both the 

shape of the controller gain curves and gain values are similar for each number of 

hidden layers. On the other hand, the performance criterion which will determine 

performance increase or decrease of change in the number of hidden layers is not 

the controller gains since controller gain do not mirror the performance of the 

controller. The performance criterion of stabilization controller is surely the 

stabilization accuracy of the tank on APG track [48] for elevation axis and 

stabilization accuracy of the tank on sinus track. 

 

Figure 3.9 – Disturbance Speed for Elevation Axis on APG Track at 10 km/h 
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The disturbance speed affecting the elevation axis while the tank moves along the 

APG track with a speed of 10 km/h is given in Figure 3.9. With this disturbance 

effect, the deviations of the gun orientation from the ideal stabilization line for 

different number of hidden layers are given in Figure 3.10 as a figure matrix. Here 

the stabilization accuracy is given in mrads and is calculated as the standard 

deviation of the integral of the controller errors (Eqn-3.26) [48]. 

( ) 









−= ∫

t

dtFbkCmdstdAccStab
0

.       (3.26) 

In this figure, rows represent different number of hidden layers and columns 

represent the results obtained from different trials for each number of hidden layer. 

As can be seen from these results, increasing the number of hidden layers does not 

make any difference on the network performance. 

 

Figure 3.10 – Stabilization Accuracy of Elevation Axis on APG Track with 
Different Number of Hidden Layers 
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The stabilization accuracy values are more or less the same for all simulations. In 

addition, the controller gain trajectories are very similar for all cases. Therefore, 

due to the computational cost of using high number of hidden layers, it is decided 

to use only one hidden layer in the neural PID tuner in this study. 

In all of the simulations discussed above, tangent hyperbolic activation functions 

are used for all the neurons. Logarithmic sigmoid function is not used because its 

output for zero input is 0.5 and it gives always a positive output. In other words, if 

logarithmic sigmoid function is used in the network, the network always starts 

with the middle of the controller gain limits; this also causes the loss of sign 

information of the inputs and always outputs positive gains. Because of these 

reasons, tangent hyperbolic sigmoid function will be used in all of the neurons for 

the neural PID tuner. 

For the results discussed above, there were five neurons in the input layer and five 

neurons in all of the hidden layers. There are always three neurons in the output 

layer because there are three PID parameters, which are the outputs of the 

network. Up to this point, it is decided to use one hidden layer as a result of 

computer simulations and tangent hyperbolic activation functions for all neurons. 

After this point, the optimum number of neurons in the input layer and in the 

hidden layer will be searched. 

For this purpose, computer simulations are performed for different number of 

neurons in the input layer and in the hidden layer. The results obtained for learning 

rate 01.0=η  and momentum term 5.0=α  is given in  

Table 1. In these simulations, the initial values of the network weights and biases 

are random numbers between 1.0−  and 1.0 . 

As can be seen from the results shown in the table, for low number of neurons in 

the input layer, the stabilization accuracy becomes better with the increase of the 

number of neurons in the hidden layer. However, increase of the number of 

neurons in the input layer, makes the stabilization accuracy worse up to 10 

neurons. After this point, the stabilization accuracy becomes better with increasing 
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number of neurons in the input layer. In addition, it is obvious that for large 

number of neurons in the input layer, increase of neurons in the hidden layer 

makes the performance better up to 0.1674 mrad and further increase in the 

number of neurons in the hidden layer makes the stabilization accuracy worse. 

 

Table 1 – Stabilization Accuracy Values for Different Number of Neurons for the 
Input and Hidden Layers for 01.0=η  and 5.0=α  

Number of Neurons 
in the Hidden Layer 

Stabilization 
Accuracy in 

mrads 5 10 20 50 

2 0.1823 0.1643 0.1577 0.1538 

5 0.2088 0.1916 0.1698 0.1576 

10 0.2144 0.1900 0.1697 0.1696 

20 0.2121 0.1893 0.1800 0.1907 

N
u

m
b

er
 o

f 
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eu
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in
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p
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er
 

50 0.2003 0.1787 0.1674 0.1752 

 

 

Table 2 – Stabilization Accuracy Values for Different Number of Neurons for the 
Input and Hidden Layers for 02.0=η  and 5.0=α  

Number of Neurons 
in the Hidden Layer 

Stabilization 
Accuracy in 

mrads 5 10 20 50 

2 0.1522 0.1531 0.1520 0.1514 

5 0.1602 0.1536 0.1525 0.1523 

10 0.1765 0.1663 0.1530 0.1514 

20 0.1539 0.1591 0.1519 0.1810 

N
u

m
b

er
 o

f 
N

eu
ro

n
s 

in
 

th
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p

u
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er
 

50 1.4504 1.3848 0.1514 0.2301 

 

These conclusions are valid for the given learning rate and momentum term. In 

order to generalize these conclusions, other simulations are performed for different 
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learning rate values. In , the results are summarized for learning rate 02.0=η  and 

momentum term 5.0=α  and in , the results for learning rate 005.0=η  and 

momentum term 5.0=α  are given. 

The results obtained for learning rate values 02.0=η and 005.0=η are very 

similar to the results obtained for 01.0=η  although there are little exceptions. For 

learning rate 02.0=η , there are large stabilization accuracy values. These are due 

to the high oscillations in the system response due to the high controller gains 

obtained. Disregarding these two cases, the conclusions given above is still valid 

for these two learning rate values.  

 

Table 3 – Stabilization Accuracy Values for Different Number of Neurons for the 
Input and Hidden Layers for 005.0=η  and 5.0=α  

Number of Neurons 
in the Hidden Layer 

Stabilization 
Accuracy in 

mrads 5 10 20 50 

2 0.2810 0.1966 0.1718 0.1540 

5 0.2116 0.1965 0.1740 0.1570 

10 0.2634 0.2410 0.1631 0.1558 

20 0.2282 0.1580 0.1541 0.1533 

N
u

m
b

er
 o

f 
N

eu
ro

n
s 

in
 

th
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p

u
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er
 

50 0.3180 0.1593 0.1743 0.1528 

 

The results showed that, using large number of neurons in the input and hidden 

layers makes the stabilization accuracy better. However, the system response data 

in time domain shows that oscillations in the system response increases with 

increasing number of neurons in the input layer. This is mainly due to the 

increasing error history of the network. With large number of neurons in the input 

layer, the network continues to increase the controller gains even if the controller 

error is nearly zero. On the other hand, increase of the number of neurons in the 

hidden layer makes the network too sensitive to controller errors. In other words, 
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This effect is very similar to the case with high learning rate and affects the 

controller stability in a bad manner. 

The neural PID tuner is developed mainly for real-time applications. Therefore, 

the computational complexity is a very important issue. In order to implement the 

network on real-time computers, the number of neurons in the input layers and 

hidden layers must be minimized. In Figure 3.11 the stabilization accuracy values 

are represented as surfaces for different number of neuron values of input and 

hidden layers for three different learning rate values. From these figures, it is 

obvious that increasing the number of neurons in the input layer may decrease the 

stabilization performance and increasing the number of neurons in the hidden layer 

increases the stabilization performance almost for every case. However, after 20 

number of neurons in the hidden layer, further increase does not increase the 

stabilization performance. Therefore, an optimum value for the number of neurons 

in the hidden layer can be concluded as 20 and for the number of neurons in the 

input layer as 10 using these figures. 

Until now, the number of hidden layers, number of neurons in the input and 

hidden layers and activation functions for these neurons are determined. Only the 

optimum values of learning rate and momentum term values remain to be 

analyzed. After this point, the optimum values of learning rate and momentum 

term will be determined by performing computer simulations for different values 

of learning rate and momentum term and the values found in this optimization will 

be used in the final computer simulations in order to show the performance of the  

neural PID tuner network on the mathematical model of the main battle tank. 

In order to determine the optimum values of the learning rate and momentum 

term, computer simulations are performed using different values of the learning 

rate and momentum term. The simulations are performed two times for each 

combination. The values used for learning rate are 001.0 , 003.0 , 005.0 , 007.0 , 

01.0 , 02.0 , 03.0 , 04.0  and 05.0 . These values are determined by pre-simulations 

and 0.001 is the minimum performance limit and 0.05 is the maximum stability 

limit. The momentum term can only have values between 0 and 1 therefore the 



 
51 

numbers 0 , 1.0 , 2.0 , 3.0 , 4.0 , 5.0 , 6.0 , 7.0 , 8.0  and 9.0  are used in the 

simulations. 

 

Figure 3.11 – Stabilization Accuracy Surfaces for Different Number of Neurons in 
the Input and Hidden Layers and for Different Learning Rate Values 

 

The results are represented as stabilization accuracy surfaces in Figure 3.12 for the 

first trial and in Figure 3.13 for the second trial. Some the learning rate and 

momentum term values which makes the system unstable, the stabilization 

accuracy values are indicated with 0.3 mrad for easy visualization. 
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The results shows that for low values (between 001.0  and 01.0 ) of the learning 

rate, the stabilization performance is relatively low for almost all values of 

momentum term. Stabilization accuracy values vary between 0.15 mrad and 0.25 

mrad for these value of learning rate and for all momentum term values. Also 

results show that, usage of high learning rate with low momentum term causes 

unstability. On the other hand, using high learning rate values with high 

momentum term values also make the system unstable. 

For values of learning rate between 01.0  and 04.0  and momentum term values 

between 2.0  and 6.0 , the stabilization performance is always good and the system 

is always stable. However, stabilization accuracy values are nearly the same (0.15 

mrad) in this region. Therefore, the values of learning rate and momentum term 

should be selected form this region considering the stability of the system. The 

safest learning rate and momentum term values, which will give the best 

performance, are selected as the middle point of the bottom of the surface. The 

numerical values are 025.0=η  for the learning rate and 4.0=α  for the 

momentum term. 

 

Figure 3.12 – Stabilization Accuracy Values Obtained for Different Learning Rate 
and Momentum Term Values, Trail 1 (0.3 mrad Shows Unstable Cases) 
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Figure 3.13 - Stabilization Accuracy Values Obtained for Different Learning Rate 
and Momentum Term Values, Trail 2 (0.3 mrad Shows Unstable Cases) 

 

Now, all of the design parameters for the neural PID tuner are determined by 

performing computer simulations. These are; 

• The network has one input, one hidden and one output layer 

• All the neurons use tangent hyperbolic activation functions 

• There are 10 neurons in the input layer and 20 neurons in the hidden layer 

• The learning rate is 025.0=η  and momentum term is 4.0=α  

• Initial network weights and biases are random and between -0.1 and 0.1. 

The results showing the performance of the neural PID tuner network with these 

network parameters on both traverse and elevation axes are given in chapter 5. 

After the design of the neural PID tuner network, a friction compensation 

algorithm will be proposed in the next chapter. With the compensation of the 

Columb friction, it is expected to increase the stabilization performance 

considerably. 

 



 
54 

3.3 Neural Friction Compensator 

Columb friction is a natural phenomenon that always exists in mechanical 

systems. The aim of neural friction compensation network proposed in this section 

is to estimate this non-linear Columb friction characteristic and produce a 

correction signal, which is added to the controller output in order to eliminate the 

effect of Columb friction. If the compensator can apply a signal, which is the 

inverse of the Columb friction, the linear PID controller deals only with the linear 

dynamics of the physical system assuming that there is no other non-linearity in 

the system other than the Columb friction or other non-linearities in the system are 

also compensated by other methods such as by unbalance compensation given in 

section 3.1. 

The proposed neural friction compensator with the unbalance compensation 

algorithm mentioned before prepares a linearized turret subsystem for the classical 

PID controller used for stabilization control and this PID controller gives best 

performance with this linearized system. This is because of the fact that linear 

controllers give best performance with linear systems. 

In our case, turret subsystems have non-linear Columb friction, unbalance for both 

elevation and traverse axis. Other non-linearity may be due to the kinematics of 

the actuators but this non-linearity can be compensated by mathematical inverse 

kinematics. Therefore, the linear system assumption holds if both the non-linear 

unbalance and non-linear Columb friction are compensated. Of course, there will 

be some compensation error, which will affect the linearity of the system, but the 

neural PID tuner will compensate these errors. 

 

Figure 3.14 – Columb Friction Dependency on Relative Speed 



 
55 

The dependency of Columb friction on relative speed of the corresponding axis is 

shown in Figure 3.14. As seen from this figure, Columb friction is a function of 

relative velocity. It depends on the sign of the velocity and it opposes the motion 

by applying a force in the opposite direction of relative speed. Because of these 

facts, the proposed neural friction compensator uses the relative velocity of the 

physical system to estimate the Columb friction on the system using the function 

fitting property of neural networks. 

 

Figure 3.15 – Outputs of a PID Controller for Systems with and without Columb 
Friction 

 

The torque demand output of a classical PID controller for systems with and 

without Columb friction is given in Figure 3.15. As seen from the figure, the 

output of the controller is a pure sinus for a sinus command for the system without 

Columb friction but sudden jumps occurs in the controller output for the system 

with Columb friction. The amplitude of these jumps is actually the magnitude of 

the Columb friction, which exists on the physical system. 

The approach used in this study is to estimate the output of the PID controller, 

which drives a linearized virtual system emulation of the real system in order to 

train the neural network, which estimates the function relationship between the 

relative speed and Columb friction. For this reason, the linear dynamics of the 

physical system is identified in the regions where the Columb friction effects are 

minimized and this identification is used for the emulation of a virtual linear 

system. This emulated system is driven by a PID controller, which has the same 
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initial conditions and controller gains with the PID controller driving the real 

physical system. 

Due to the nature of the Columb friction, it is a constant torque opposing the 

motion of the system for large relative velocities. In this region, the non-linear 

effect of the Column friction is minimum since it is only a constant torque. 

Therefore, the linear system dynamics is identified in this region with high relative 

velocities. On the other hand, the friction non-linearity is most active for low 

relative velocities because in this region relative speed changes its sign resulting in 

the change of friction torque. Therefore, the network for the estimation of the 

Columb friction is trained in this region with low relative velocities. The flow 

chart of the proposed friction compensation algorithm is given in Figure 3.16. As 

seen from this figure, when the relative velocity is low, friction compensation 

network is trained using the output of the PID controller and linear system 

emulator. For the large velocities, the training of this friction compensation 

network stops and training of the linear system identifier starts. 

 

Figure 3.16 – Flowchart of the proposed neural friction identifier and compensator 
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After this point, the mathematical details of the neural linear system identifier 

network will be given in the next section. After this mathematical interpretation, 

the mathematical derivations of the neural friction compensation network will be 

given. Finally, the design of the parameters of these networks will be given using 

the mathematical model of a battle tank. 

3.3.1 Neural Linear System Identifier Network and System Emulator 

The proposed neural system emulator uses the linear system identification of the 

physical system in order to approximate this system with a linearized virtual 

system. The block diagram of this algorithm is shown in Figure 3.17. As seen from 

the figure, the estimated system linear system parameters are used by the linear 

system emulator for the virtual linear system and this virtual system is controller 

using a linear PID controller in order to estimate the PID output of the system if 

there were no Columb friction in the system. 

 

 

Figure 3.17 – Block Diagram for the Estimation of the Linear Dynamics of the 
System and Emulation of the Virtual Linear System 

 

For the estimation of the linear dynamics of the real physical system, the discrete 

time linear system representation given as ( ) ( )nu
zbzb

zazaa
ky

r

r
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1
 is 

used where ( )ku  is the input to the physical system, ( )ky  is the system response, 

z  is the time delay operator and n  is the time index. The given equality can be 

rewritten as; 
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( ) ( ) ( ) ( ) ( ) ( ) ( )rkybkybkybrkuakuakuaky rr −−−−−−−−++−+= LL 211 2110    (3.27) 

Using this equality and the function fitting property of neural networks, the system 

response at the current time ( )ky  can be estimated by ( )ky~  with the following 

linear neural network. 

 

Figure 3.18 - Architecture of the neural linear system emulator 

 

The network weights 1w , 2w , …, 1+rw  correspond to the weights 0a , 1a , …, ra in 

the same order and the network weights 2+rw , 3+rw , …, 12 +rw  correspond to the 

remaining weights 1b , 2b , …, rb  in the same order. 

The network weights are updated using the gradient decent technique. Using this 

technique, the network is trained using the following weight update equation; 

( ) ( ) ( )
( )kw

kJ
kwkw

i

ii
δ

δ
η−=+1    where   ( ) ( ) ( )( )2~ kykykJ −=   (3.28) 

The learning rate η  determines the speed of learning but using high values for this 

parameter may cause instability in the process. Further expanding the weight 

update equation, the following equality is obtained; 

( ) ( ) ( )
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( ) ( )( )kyky
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Since the present physical system output ( )ky  does not depend on the network 

weights, the term 
( )
( )kw

ky

iδ

δ
 is equal to zero. Therefore, the network weight update 

equation can be rewritten as; 

( ) ( ) ( )
( )

( ) ( )( )kyky
kw

ky
kwkw

i

ii
~

~
21 −+=+

δ

δ
η      (3.30) 

Using equation 3.27, the term 
( )
( )kw

ky

iδ

δ~
 is equal to the corresponding input to the 

node i which is denoted as ( )kqi . Therefore, the network weight update equation 

is finally written as; 

( ) ( ) ( ) ( ) ( )( )kykykqkwkw iii
~21 −+=+ η      (3.31) 

The network weights are the estimated system parameters 1a , 2a ,…, ra  and 

1b , 2b ,…, rb  and these parameters are used for the emulation of a virtual linear 

system. 

The mathematical details for the linear system identification network and linear 

virtual linear system emulation are given here. The mathematical details of the 

friction compensation network are given in the next section using the results 

obtained in this section. 

3.3.2 Mathematical Derivations for the Friction Compensator Network 

The friction compensation network used for the estimation of the Columb friction 

is a multilayered neural network trained using back-propagation learning 

algorithm. The schematic view of the neural friction compensator is given below 

in Figure 3.19. The output of this network is the estimated Columb friction and 

inverse sign of this output is added to the output of the stabilization controller in 

order to compensate the Columb friction existing on the physical system. 
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Figure 3.19 - Architecture of the neural friction identifier and compensator 

 

Similar to the neural PID tuner network, the proposed neural friction compensator 

aims to minimize an error signal. This time, this error signal is the difference 

between the output of the PID controller that controls the real physical system and 

the output of the PID controller that controls the virtual linear system emulation. 

The network searches optimum compensation minimizing the cost function given 

below as a function of the aforementioned error: 

( ) ( )22 )1(~
2
1

))1(~1(
2
1

+=+−+= kekukuJ      (3.32) 

where, ( )1+ku  : Output of the PID controller driving the physical system 

 ( )1~ +ku  : Output of the PID controller driving the virtual system 

 ( )1~ +ke  : Emulation error 

The network weights are updated using the following network weight update 

equation that incorporates the cost function given in eqn.3.32. This update 

equation is the same as the weight update equation of the neural PID tuner and 

therefore the remaining approach is very similar to the one derived for the neural 

PID tuner. 
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Here again η  represents the learning rate and α  represents the momentum term 

and determination of these parameters will be given in the next section. The term 

)1(, +∆ kw
n

ij  is expanded to have the following equality.   
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In this expansion, the partial derivative of ( )1~ +ku  with respect to the network 

weight ( )kw
n

ij ,  is zero because the output of the PID controller driving the linear 

system model is not dependent on the friction compensation term and therefore it 

is not a function of the network weights of the friction compensation network. 

In order to relate this partial derivative term to the network parameters, the 

variable ( )1+ku  should be further expanded. The output of the PID controller was 

introduced in the chapter 3 as; 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )212)(11 −+−−++−−+−= kekekeKkeKkekeKkuku dip    (3.35) 

From this equation, it is clear that the variable u  is a function of its previous 

values, proportional, integral and derivative gains of the PID controller, error 

signal between the command and feedback signals and its previous values. 

Therefore, there is a need to examine the relationships between the terms given 

above and the network weights of the compensator. 

First, the previous value of the output of the PID controller is examined. Since the 

PID controller output at the last time step can only be affected by the outputs of 

the friction compensator before the last step, the term ( )kureal  is not a function of 

( )kw
n

ij , . Therefore, the term 
( )
( )kw

ku
n

ij ,δ

δ
 is equal to zero. 
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Secondly, the error terms are examined. The error between the command and the 

feedback signals at the last time step is affected by the friction compensator 

outputs at time steps before this last time step. Therefore, the terms 
( )

( )kw

ke
n

ij ,δ

δ
 and  

( )
( )kw

ke
n

ij ,

1

δ

δ −
 are identically zero but the term 
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1
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 may be not be zero. 

Knowing these facts, the partial derivative term 
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Finally, using the above equation and the fact that the user command signal is not 

dependent on the network weights of the friction compensator, the following 

equality is obtained; 
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Using the equation given above, the partial derivative of the performance index 

relative to the network weights can be written as; 
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The output of the physical system y  is a function of the input denoted by τ  which 

is the sum of the friction compensator output and that of the PID controller driving 

the physical system. Therefore, the following equality can be written. 

( ) ( ) ( ) ( )( )kfkuffky c

~
1 +==+ τ       (3.39) 

Similar to the approach used in the derivations of the PID tuner algorithm, the 

partial derivative of the system output ( )1+ky  with respect to the friction 

compensator output ( )kfc

~
 can be written as; 
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Using the above equation and chain rule expansion of equation 3.37, the following 

equality can be obtained; 
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In this equation, because of the structure of the PID controller, the controller gains 

pK , iK  and dK  are all positive. The term 
( )

( )kf

ky

c

~
1

δ

δ +
 is obviously also a positive 

quantity. Therefore, we can join the summation of these controller gains with the 

absolute value term to obtain a positive quantity denoted as β . After these 

simplifications, the equation can be rewritten as; 
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The back propagation common term can be defined in this case as follows; 
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This common term can be obtained for previous network layers using the 

following equalities, 
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Further simplification of this equation results in a recursive equation given below, 
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Therefore, the network weight update equation can be rewritten as, 
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Since the combined term β  is a positive term, we can join β  with the learning 

rate η  in order to have a single learning rate term η ′ . With this little modification, 

the network weight update equation is finally written as; 
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After giving the mathematical details of the friction compensation network, the 

design of the parameters of friction compensation network will be given in the 

next section. 

3.3.3 Design of the Neural Linear System Identifier and Neural 
Friction Compensation Networks 

The first step in the design of the neural friction compensator is that of the neural 

linear system identifier. This network identifies the linear behavior of the physical 

system in order to generate a virtual system emulator. This linear system emulator 

is controlled by the same PID controller driving the real system and the 

comparison of these outputs creates the errors between these two PID controllers 

that are used to train the neural friction compensator. 

The neural linear system identifier is a single layer network. Therefore, the only 

things, which need an optimization, are the number of neurons in this layer, which 

is actually the order of the system, the learning rate, and momentum term values of 

the network. For this optimization, the performance criteria are the speed and the 

stability of the learning of the system dynamics. 
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For fast learning, the learning rate should be as high as possible but after some 

value of the learning rate, the learning process may become unstable. In addition, 

the momentum term damps the learning process but using large values for this 

parameter may lead too damped learning of the network. Therefore, the optimum 

values for these parameters should be determined. 

For the system order value, the value should be large enough to cover all the 

dynamics of the system but using very large values does not increase the 

performance of the network. In addition, large number of neurons in the network 

makes the real-time implementation of the network harder. Therefore, for the best 

performance, the optimum system order value should be determined. 

For this purpose, simulations are performed for different values of system order. In 

these simulations, the errors between the output of the real system and the output 

of the system identifier are compared. This comparison is given in Figure 3.20. As 

seen from the figure, the performance of the neural system identifier increases 

with the increase of the system order. After the value 10, the decrease in the final 

error value stops but learning speed of the network continues to increase. 

However, large system order values increase the identification error while 

increasing the learning speed. Therefore, the system order value 10 is selected as 

the optimum value for the elevation axis simulations. The results for the traverse 

axis are very similar due to the mechanical similarity of the axis with the elevation 

axis and the system order 10 will be used in the traverse axis simulations. 

The neural system identifier will emulate a virtual system, which is the linear 

approximation of the real system. For this virtual system emulator to start, the 

neural linear system identifier should reach to a satisfactory estimation level. In 

order to sense the performance level of the network, forgetting sum of the absolute 

values of the identification error is used. In Figure 3.21, the forgetting sum of the 

identification errors for different system order values are given. In these 

calculations, the forgetting term is used as 0.99 and which leads the sum to forget 

a value approximately after 5 seconds. 
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Figure 3.20 – System Identification Errors of the Proposed Neural Linear System 
Identifier for Different System Order Values for the Elevation Axis in APG Track 
at 10 km/h Speed 

 

 

Figure 3.21 – Forgetting Sum Values for the System Identification Errors of the 
Proposed Neural System Identifier for Different System Order Values for the 
Elevation Axis on APG Track at 10 km/h Speed 
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Again, the selected system order 10 gives the best results in this figure. In the 

simulations with the neural friction compensator, the neural system emulator will 

be activated after the forgetting sum of the identification errors falls below 1. This 

approximately takes 50 seconds. Therefore, the neural system emulator will be 

activated after 50 seconds of the simulation start. 

As mentioned many times before, the system identifier aims to identify the linear 

behavior of the real system. For the system in concern, the only non-linearity left 

is the Columb friction. In order to avoid this non-linearity, the neural identifier is 

trained only for relative speed of the axis greater than a threshold. Since the 

Columb friction shows the non-linearity in the low speed region, the network is 

not trained in low velocity region. In these simulations and the simulations after 

this point, this speed threshold is used as 1 deg/s for both axes. This value is 

selected as small as possible for good linear identifier training and as large as 

possible for good neural friction compensator training since the friction 

compensator is trained in this low velocity region. 

The results given above is obtained for the learning rate value 01.0=η  and 

momentum term value 5.0=α . What happens to the identification errors with 

different values of η  and α ? The answer to this question is given with 

simulations given in Figure 3.22, which shows that increasing the learning rate, 

increase the learning speed but again the identifier gives the best performance with 

the system order value 10. This is simply because of the system dynamics. The 

system dynamics or the system order does not change with the learning rate of the 

identifier. 
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Figure 3.23 – Forgetting Sum of Identification Errors for Different System Orders 
and Different Learning Rates for the Elevation Axis on APG Track at 10 km/h 

 

The last parameters remaining to be optimized are the learning rate and 

momentum term values. These values are optimized by computer simulations by 

trying different values and comparing the forgetting sum of the resulting 

identification errors. 

The final forgetting sum values of the identification errors are given in  

Table 4 for different values of the learning rate and momentum term for 100 

seconds long simulations. The results shown by ‘U’ means unstable learning of the 

system dynamics. In this case, the identification starts with low values but 

increases with time. 

The results show that, low values of the learning rate results in high identification 

error. In these cases, increasing the momentum term increases the identification 

performance. On the other hand, high values of learning rate with small 

momentum term values, starts with relatively high identification errors and 

learning becomes unstable for high values of momentum term. 
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Table 4 – Final Forgetting Sum Values of the System Identification Errors for 
Different Values of the Learning Rate and Momentum Term (100 seconds 
Simulation) 

η  α  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.001 4 4 4 3.5 3.3 3.0 2.5 2.2 1.6 1.0 

0.003 2.5 2.5 2.0 1.8 1.6 1.4 1.2 1.0 0.9 0.8 

0.006 1.4 1.3 1.2 1.1 1.0 1.0 1.0 0.9 0.9 1.0 

0.01 1.0 1.0 0.9 0.9 0.9 0.8 0.8 0.8 0.9 1.3 

0.03 0.8 0.8 0.8 0.8 0.8 0.9 1.0 1.1 1.3 U 

0.05 0.9 0.9 1.0 1.0 1.1 1.2 1.2 1.4 1.6 U 

0.07 1.0 1.0 1.0 1.1 1.1 1.2 1.4 1.5 U U 

0.1 1.1 1.1 1.1 1.2 1.3 1.3 1.4 1.8 U U 

0.2 1.2 1.3 1.3 1.4 1.6 1.8 U U U U 

0.4 1.6 1.8 1.8 1.8 U U U U U U 

 
 

For medium learning rate values, increasing the momentum term increases the 

identification performance up to some point. Further increase of the momentum 

term for these cases results in a decrease in the identification performance. 

The best value obtained in all of the simulations is 0.8 and this value is obtained 

only for learning rate values 01.0=η  and 03.0=η . For these two learning rate 

values, although the final values of the forgetting term is the same for some values 

of the momentum term, the identification error decreases faster for 03.0=η  and 

for momentum term value 4.0=α . Therefore these values will be used in the 

computer simulations after this point. 

The neural system identifier, which will be used for the neural friction 

compensator design, is completed and system order, learning rate and momentum 



 
70 

term values are determined. After this point, the design of the neural friction 

compensator will be given. 

The proposed neural friction compensator is a multi-layered neural network and 

back propagation is used to train the network. The network uses the relative 

velocity and its previous values of the corresponding axes as the inputs and 

outputs the estimated Columb friction of the system. The network is trained based 

on the error between the PID controller output of the real system and the PID 

controller output of the virtual system emulation. 

Since the network is multilayered, the first thing is the decision of the number of 

layers. The system has an input and output layer and n-many hidden layers. For 

different number of hidden layers and other network parameters, there are lots of 

combinations and there may be multiple optimum points. Therefore, simulations 

will be performed with the network with only one hidden layer and after the 

completed design, the effect of the number of hidden layers will be analyzed. 

The network has only one neuron in the output layer because the network only 

outputs the estimated Columb friction. In the input layer, increasing the number of 

neurons gives damping to the network and the estimated friction value is applied 

to the system with a considerable delay. On the other hand, small number of 

neurons in the input layer makes the network too sensitive to the changes in the 

resolver speed inputs. Therefore, the number of neurons in the input layer should 

be carefully selected. 

Since there are many design parameters of the network and there are many local 

optimum points of these parameters, the design approach is to fix the number of 

neurons in the input layers and in the hidden layer. Keeping in mind the points 

discussed above, the number of neurons in the input layer is selected as 10 and 

number of neurons in the hidden layer is selected as 5. These values are selected as 

small as possible in order to decrease the computational complexity of the 

network. 



 
71 

Therefore, there remains two design parameters to be determined, namely the 

learning rate and momentum term. The optimum values of these parameters are 

searched for the network with; 

• An input layer with 10 neurons 

• An output layer with 1 neuron 

• One hidden layer with 5 neurons 

• Hyperbolic tangent activation function for all neurons 

For this purpose, computer simulations are performed for different values of the 

learning rate and momentum term and the estimation performance of the proposed 

neural friction compensator is compared. 

 

Table 5 – Percentage Error Values of Estimated Columb Friction Value for the 
Elevation Axis (U: Unstable Learning, N: Insufficient Learning) 

α   η  0.0001 0.0003 0.0007 0.001 0.003 0.007 0.01 

0.0 N N N %17.3 %14.0 %18.7 U 

0.2 N N %14.7 %16.7 %16.7 %15.3 U 

0.4 N N %17.3 %17.3 %14.0 %62.0 U 

0.6 N N %16.0 %12.7 %15.3 U U 

0.8 N %17.3 %12.7 %17.3 %14.7 U U 

 

The results obtained for different values of the learning rate and momentum term 

values showing the different percentage error of the estimated Columb friction 

value for the elevation axis is given in  

Table 5. For low values of the learning rate, the learning is so slow that the 

network cannot learn the friction characteristics in 250 seconds of simulation. On 

the other hand, for large values of learning rate, the learning process is so fast that 

the learning process becomes unstable and the network converges to wrong values. 
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From this table, the learning rate value 003.0=η  gives the best performance. 

Although the lowest error is obtained using learning rate value as 0007.0=η  and 

momentum term value 8.0=α , the network learns the friction characteristics with 

003.0=η  and 4.0=α  faster than the parameters with lowest error. Therefore, the 

network parameters 003.0=η  and 4.0=α  are selected as the optimum 

parameters for the neural friction compensator. 

For the previous simulations, the network has only one hidden layer. In order to 

see the effect of the number of hidden layers on the network performance, 

simulations are performed for two and three number of hidden layers. However, 

the simulation results show that addition of hidden layers to the network slows 

down the learning process. In order to increase the speed of learning, learning rate 

must be high for networks for multiple hidden layers. Again for the sake of 

simplicity and for minimum computational cost, one hidden layer is the optimum 

number for the neural friction compensator. 

The last thing to investigate is the effect of number of neurons in the input and 

hidden layer on the system performance. In order to see this effect, again 

simulations are performed for different number of neurons in the input and hidden 

layer. The results of these simulations are given in Table 6. 

According to these results, the best performance is obtained with 5 neurons in the 

input layer and 5 neurons in the hidden layer considering the maximum error 

value. However, if rise time is considered, these parameters are not the optimum 

ones. The network with 15 neurons in the input layer and 3 neurons in the hidden 

layer gives the best performance in both settling time and steady state error. In 

addition, the rise time and maximum error values are not so high for these values. 

Therefore these values can be selected as the optimum ones. By doing this, we 

changed the number of neurons in the input and hidden layers and obtained better 

performance. In order to seek for parameters, which will result with the best 

performance, simulations can be performed with these number of neurons with 

different learning rates, momentum terms and with different number of layers but 

the performance obtained as a result of the current simulations are expectable. 
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Table 6 – Simulation Results for Different Numbers of Neurons in the Input and 
Hidden Layer for 003.0=η  and 4.0=α  (U: Unstable Learning)  

# In. 
Neurons 

5 10 15 5 10 15 5 10 15 

# Hid. 

Neurons 
3 3 3 5 5 5 10 10 10 

Max.Error %15.3 %12.0 %10.7 %8.0 %16.7 %18 %9.3 U U 

Rise Time 28sec 45sec 32sec 32sec 28sec 38sec 32sec U U 

Settling 
Time 

125sec 76sec 52sec 58sec 55sec 100sec 50sec U U 

Steady 
State 
Error 

%9.3 %8.0 %6.7 %8.0 %8.0 %10.0 %8.0 U U 

 

As a consequence from all the simulations obtained up to now for the neural 

friction compensator, the optimum network parameters are determined as; 

• One input layer with 15 neurons 

• One hidden layer with 3 neurons 

• Learning rate 003.0=η  

• Momentum term 4.0=α  

• Tangent hyperbolic activation function for all neurons 

• Random initial weights between -0.0001 and 0.0001 

The Columb friction, which is applied to the system, and the estimated friction 

characteristic are given in Figure 3.24. As seen from the figure, the estimated 

friction is slightly greater than the actual one. This is simply because of the very 

small delay in the estimated friction. The estimated friction changes its sign a little 

time after the actual friction direction change. Therefore, in order to reduce this 
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error, the neural friction compensator applies a slightly higher friction torque to 

the system. 

 

Figure 3.24 – Simulation Results for Neural Friction Compensator for Learning 
Rate 003.0=η , momentum term 4.0=α , 15 Neurons in the Input Layer and 3 
Neurons in the Hidden Layer for the Elevation Axis 

 

The results for the traverse axis are very similar because of the similarity of the 

mechanical structure. Therefore, the same network parameters can be used for 

both elevation and traverse axis. 

Now, all the parameters are determined for all the networks in the proposed 

controller architecture. Therefore, the simulations results for elevation and traverse 

axis using the mathematical model of the main battle tank will be given in chapter 

5 using the networks parameters determined for all networks used in this study. 
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CHAPTER 4 

 
 

4. SIMULATION ENVIRONMENT AND HARDWARE 
EXPERIMENTAL SETUP 

 
 

The proposed control architecture is applied both to a computer simulation and 

also a real physical system. The computer simulation is performed using the 

mathematical model of Leopard 1A1 main battle tank. The mathematical model is 

realized running MATLAB® [43], Simulink® [44] and SimMechanics® [45] in 

an integrated manner. 

SimMechanics® is a module of Simulink® and it is used to model physical 

systems with functional blocks. The details of this computer program and the 

mathematical models will be given in the following pages. 

On the other hand, hardware implementation is done on a 1/6 scale model main 

battle tank which is a scaled version of the British Challenger II tank and the 

actuation system is designed to in order to be very similar to the one in the original 

tank. The controller is implemented on Diamond System’s Athena CPU board, 

which is an industrial computer with PC/104 format. Using MATLAB® and 

xPC® Target [47] computer programs the controller is implemented on this 

computer running real-time. 
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4.1 The Mathematical Model of a Main Battle Tank 

In this study, the proposed neuro controller architecture is applied to the 

mathematical model of Leopard 1 main battle tank which aims being as close as to 

the dynamics of the real system as possible. In order to represent the whole 

dynamics of the system, which is excited by the proposed controller, the turret of 

the main battle tank, including the traverse and elevation axis, is modeled in many 

details. In addition, the vehicle of the tank and the ground such as APG track are 

modeled in order to simulate the disturbance characteristics of the real tank. 

The visualization of this computer simulation is performed using the Virtual 

Reality Toolbox® of MATLAB®. A screen shot of the visual environment is given 

in Figure 4.1 below. 

Most of the dynamic and kinematic parameters such as inertias and link lengths 

are obtained using the solid modeling program I-DEAS® and the rest of the 

parameters, which are stiffness of torsional springs, damping functions, activation 

angles of hard stops, are either estimated or found from the literature or from 

documents of the Leopard 1 tank. 

 

Figure 4.1 – Visualization Environment of Computer Simulation 

 

The physical system is modeled using SimMechanics® which is a part of 

Simulink® by using functional blocks. In order to explain the usage of this 
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computer program, an example is given for the mathematical model of a four bar 

mechanism. The mechanism could be modeled using ground connection block to 

fix two link of the mechanism to a frame, revolute joint block in order to define 

the axis of rotations and a body blocks defining the mass, COR, COG and inertia 

matrix of the links. A screen shot is given for the model of a four bar mechanism 

in Figure 4.2. 

 

Figure 4.2 – Mathematical Modeling of a Four Bar Mechanism with 
SimMechanics 

 

The mathematical model of the main battle tank is obtained using similar 

approaches and the details of this mathematical model will be given in the 

following pages. First, the mathematical model of the hull, which is the vehicle 

part of the main battle tank, will be represented and then the mathematical model 

of the turret will be explained. 

The hull model consists of the following functional blocks: 

• Body of the hull 

• Suspension system 

• Tracks 

• Tire-ground interaction 

The body of the hull is modeled as a lumped mass on the center of gravity (COG) 

of the hull body (Figure 4.3). This assumption is considered to be valid because of 

the high rigidity of the hull body and this approach also simplifies the 
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mathematical model considerably. In order to model the body of the hull, a 

standard “body” block of SimMechanics is used. In this block, mass, inertia matrix 

and joint coordinates of the hull body is defined (Figure 4.4). 

 

Figure 4.3 – Center of Gravity Representation of the Hull and the Wheels 

 

The suspension system of the tank consists of wheels, torsional bars, dampers and 

hard stops. The wheels are modeled as lumped masses on their COGs. Again 

standard “Body” blocks are used to model the wheels. 

 

Figure 4.4 – Definition of The Joint Connections for the Hull of the Tank 
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For every wheel, there is always a torsional bar and a hard stop but dampers are 

not used for wheels, which are in the middle of the body. The schematic view of 

the suspension system is given in Figure 4.5.  

The damper and torsional bar is assumed to be linear and therefore they could be 

modeled using “Spring&Damper” block of SimMechanics. The damping and 

spring coefficients are obtained from the maintenance documents of the real tank. 

The hard stop is modeled as a linear spring, which is active only for some values 

of the angle of the torsional bar. In other words, the hard stops apply forces to the 

wheels only if the angle of the torsional bar exceeds the critical angle and the 

applied force is only in the direction pushing the tires towards the ground. 

 

Figure 4.5 – Suspension System of Leopard 1 Tank 

 

Tracks are modeled using the simplest track model in the literature called rubber 

band model. In this model, track is modeled as a rubber band with a total length of 

L and stiffness k encircling the wheels. If the length of the rubber band deviates 

from L, a force proportional to this deviation and stiffness k is applied to the tires 

in order to keep the length of the tracks at length L. The model is explained 

schematically in Figure 4.6 given below. The summation of all individual lengths 

il  is kept constant by applying a force to the tires in the direction of the line il  
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shown in the figure. These direction of these forces are given for the interaction of 

two tires in the figure. 

 

Figure 4.6 – Track Model of the Main Battle Tank (Rubber Band Model) 

 

The tire-ground interaction is modeled as if there is a spring-damper pair between 

the tires and the ground. This is done by calculating the interference area of the 

wheel and the ground and a force is applied to the tires proportional to this 

calculated interference area, the stiffness of the ground, which is the spring 

coefficient, and the damping of the ground. The applied force to the tires are given 

in equation 4.1 and k is the coefficient of stiffness, b is the coefficient of damping 

and A is the interference are of the wheel and the ground. 

 AbAkF &.. +=         (4.1) 

The turret including both the traverse and the elevation axis is modeled using a 

similar approach and again SimMechanics is used as the modeling tool. The 

mechanical structure of the traverse axis is given in Figure 4.7. 

 

Figure 4.7 – Mechanical Structure of the Traverse Axis 
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As can be seen from the figure, the traverse axis is actuated by a servomotor 

through a gearbox. Since there is a mechanical anti-backlash mechanism in the 

actuation system, the backlash effects are minimized. Because of this 

minimization, backlash is not included in the mathematical model. 

The body of the traverse axes called the turret is modeled as a lumped mass at the 

center of gravity of the geometry. The mass, inertia matrix and joint connection 

locations are obtained using the solid modeling program I-DEAS. The Columb 

friction between the turret and the hull of the tank is included in the mathematical 

model and its effect on the dynamics of the system is considerably important. 

The elevation axis called the gun of the system is modeled very similar to the 

traverse axis because of the mechanical similarities. The mechanical structure of 

the gun is shown in Figure 4.8. There is a sector gear which is fixed on the gun is 

driven by a gear motor which is fixed on the turret of the system. There is again an 

anti-backlash mechanism to prevent backlash effects in the system therefore 

backlash is not included in the mathematical model. The dynamic and kinematic 

parameters of the gun are obtained from solid modeling program I-DEAS. 

 

Figure 4.8 – Mechanical Structure of the Elevation Axis 

 

The obtained mathematical model of the main battle tank can be used to simulate 

the real physical system in all kinds of terrains. In this study, in order to test the 

proposed neuro controller, APG track is used for elevation axis and sinus track is 

used for the traverse axis. A screen shot of the visualization environment is given 

in Figure 4.9 while the system passes over the APG track. 
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Figure 4.9 – The Main Battle Tank Passes Over the APG Track in the Model 

 

The mathematical model obtained in this study is verified by using the data 

obtained from the real system but this verification is not included in this report. 

The details of this verification process and details of the mathematical model can 

be found in the reference Error! Reference source not found.. 

4.2 Hardware Experimental Setup 

The hardware experimental setup developed for this study uses a 1/6 scale 

Challenger 2 main battle tank prototype. The model is almost the true copy of the 

original tank. The prototype is tracked vehicle and the vehicle suspension system 

with springs and metal-plastic tracks. The turret can rotate in both traverse and 

elevation axis. The picture of the tank prototype is given in Figure 4.10. 

 

Figure 4.10 – The Experimental Setup (Challenger 2 1/6 Model Tank) 
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For this study, the mechanics of the traverse axis is modified in order to simulate 

the traverse axis actuation system of the Leopard 1 tank. A ring gear is added to 

the traverse axis and a gear motor is used to drive the axis. A motor controller is 

added to the system in order to drive the traverse axis motor. The picture of the 

modified traverse axis actuation system is given in Figure 4.11. 

 

Figure 4.11 – Traverse Axis Actuation System of the Model Tank 

 

Two rate gyroscopes are added to the system. One is fixed on the traverse axis and 

used as a feedback gyroscope. The other gyroscope is fixed onto the vehicle and it 

is used as a disturbance gyroscope. The pictures of these gyroscopes are given in 

Figure 4.12. 

    

Figure 4.12 – Feedback Gyroscope (On the Left, Fiberoptic) and Disturbance 
Gyroscope (On the Right, MEMS) 
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There is also PC/104 form factor computer, which has built-in analog and digital 

I/O channels in the system. The producer of this computer is Diamond Systems 

Inc. and the type number is the ATHENA-660MHz. This computer is used as the 

target computer of xPC target application. The computer reads the analog inputs 

from the feedback and disturbance gyroscopes and produces an analog output to 

the motor driver. The controller is implemented on this computer and the computer 

can run the algorithms at 1000 Hz sampling frequency. The picture of the control 

computer is given in Figure 4.13. 

  

Figure 4.13 – Control Computer Used in the Experimental Setup 

 

The hardware implementation medium of the proposed architecture is explained 

schematically in Figure 4.14. As can be seen from this figure, the controller model 

is designed in the host computer using MATLAB and Simulink as block diagrams 

and C codes. Then this controller model is compiled and emdebbed into the target 

computer. Since the target computer has its own kernel and there is no overhead 

other than the control software, this computer can run the control code on real-

time. 
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Figure 4.14 – xPC Target Implementation of the Proposed Neural Controller on 
the Model Main Battle Tank 

 

The target computer waits for a start message from the host computer. After it 

receives the start message, the target computer starts to run the controller. With 

wireless TCP/IP connection, any data can be obtained from the target computer 

real-time and any command signal or any parameter change can be sent using this 

connection. 

In the experimental setup, the backlash between the traverse axis ring gear and 

motor pinion is minimized and therefore can be ignored. On the other hand, 

considerable Columb friction exists in the system. 

The details of the mathematical model and hardware experimental setup are given 

in this chapter. The results obtained as a result of the implementation of the 

proposed controller architecture will be given in the next chapter. 
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CHAPTER 5 

 
 

5. RESULTS AND DISCUSSIONS 
 
 

5.1 Proposed Neuro Controller Applied to the Computer Simulations 

The proposed neuro controller is applied to the mathematical model of the 

Leopard 1 tank for the stabilization control of both traverse and elevation axis. The 

controller architecture is shown here again in Figure 5.1 for the sake of ease in 

interpretation of the results. 

 

Figure 5.1 – Proposed Neuro Controller Architecture 
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In the following sections, the proposed control modules namely the neural PID 

tuner, neural linear system identifier and neural friction compensator are applied to 

the system model in the following order. First the neural PID tuner is applied to 

the system without friction compensation (neural linear system identifier + neural 

friction compensator). The results are obtained for the network parameters 

designed in chapter 3, which are the learning rate, momentum term, activation 

function type, number of inputs, number of hidden layers and number of neurons 

in these hidden layers. Then, friction compensation is applied to the system at the 

same time with the neural PID tuner and results showing the effect of friction 

compensation on the control performance are given in detail. 

Before passing to the simulation results, the software prepared for these 

simulations will be discussed. Since the simulation are performed on Simulink 

environment, the three controller module (neural PID tuner, neural system 

identifier and neural friction compensator) are coded in C language in order to 

obtain C-MEX S-functions for simulink. 

 

Figure 5.2 – Graphical User Interface for Neural PID Tuner 
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The graphical user interface developed for neural PID tuner is given in Figure 5.2. 

Using the interface, the limits are entered for each controller gain. In addition, the 

learning rate and momentum term are defined from here. The network structure, 

which determines the number of layers and number of neurons in these layers and 

activation function types for each layer are entered using this interface. Initial 

values for network weights and biases are also entered from this interface.  

 

Figure 5.3 - Graphical User Interface for Neural Linear System Identifier and 
System Emulator 

A similar user interface is prepared for the neural linear system identifier and 

system emulator and learning rate, momentum term, system order and initial 

weights are entered using this interface. The screen shot is given in Figure 5.3. 

 

Figure 5.4 – Graphical User Interface for Neural Friction Compensator 
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The user interface prepared for the neural friction compensator is given in Figure 

5.4. From this interface, the learning rate and momentum term are entered. 

Similarly, network structure showing the number of layers and number of neurons 

in these layers is entered here. Activation function types and initial values of 

network weights and biases are also entered using this interface. 

Before giving the results of the simulations, the parameters used in these 

simulations will be listed in Table 7 for the neural PID tuner, in Table 8 for the 

neural linear system identifier and in Table 9 for the neural friction compensator 

for the sake of completeness. 

 

Table 7 – Network Parameters Used in the Computer Simulations for the Proposed 
Neural PID Tuner 

 Elevation Axis Traverse Axis 

Number of Hidden 
Layers 

1 1 

Number of Neurons in 
the Input Layer 

10 10 

Number of Neurons in 
the Hidden Layer 

20 20 

Activation Function 
Type 

Tangent Hyperbolic 
Sigmoid Function 

Tangent Hyperbolic 
Sigmoid Function 

Learning Rate 0.025 0.025 

Momentum Term 0.4 0.4 

Proportional Gain 
Limits 

0 (min) , 5 (max) 0 (min) , 10 (max) 

Integral Gain Limits 0 (min) , 0.5 (max) 0 (min) , 0.5 (max) 

Derivative Gain Limits 0 (min) , 1 (max) 0 (min) , 1 (max) 

Initial Network Weights Random Between -0.001 
and 0.001 

Random Between -0.001 
and 0.001 

Initial Network Biases Random Between -0.001 
and 0.001 

Random Between -0.001 
and 0.001 
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Table 8 – Network Parameters Used in the Computer Simulations for the Proposed 
Neural Linear System Identifier 

 Elevation Axis Traverse Axis 

System Order 10 10 

Learning Rate 0.03 0.03 

Momentum Term 0.4 0.4 

Initial Network Weights 0 0 

Activation Speed >1 deg/sec >1 deg/sec 

 

 

Table 9 – Network Parameters Used in the Computer Simulations for the Proposed 
Neural Friction Compensator 

 Elevation Axis Traverse Axis 

Number of Hidden 
Layers 

1 1 

Number of Neurons in 
the Input Layer 

15 15 

Number of Neurons in 
the Hidden Layer 

3 3 

Activation Function 
Type 

Tangent Hyperbolic 
Sigmoid Function 

Tangent Hyperbolic 
Sigmoid Function 

Learning Rate 0.003 0.003 

Momentum Term 0.4 0.4 

Output Gain 0.4 0.6 

Initial Network Weights 
Random Between -0.0001 

and 0.0001 
Random Between -0.0001 

and 0.0001 

Activation Speed <1 deg/sec <1 deg/sec 
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5.1.1 Neural PID Tuner Applied to the Computer Simulations 

The proposed neural PID tuner is applied to the mathematical model of the 

Leopard 1 tank in both traverse and elevation axis. The task of the PID controller 

is the stabilization of the corresponding axis and this is done by using a feedback 

gyroscope. The controller uses the error between the aiming command signal from 

the joystick and the speed feedback from the gyroscope. The controller uses this 

error signal in order to generate an output torque at the corresponding actuator 

(servo motor) using a discrete PID controller given as; 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )212)(11 −+−−++−−+−= kekekeKkeKkekeKkuku dip  (5.1) 

Here in this equation, pK  is the proportional gain, iK  is the integral gain and dK  

is the derivative gain of the controller and these controller gains are tuned using 

the proposed neural PID tuner. 

For the simulations performed in this chapter, the mathematical model of the main 

battle tank goes over the APG track with different speeds for 350 seconds for the 

elevation axis simulations and the model goes over the sinus track for 350 seconds 

for the traverse axis simulations.  

The controller architecture for the elevation axis is given in Figure 5.5. The same 

figure is shown before and given here as a repetition. For the traverse axis, the 

controller structure is shown in Figure 5.6. In both of the two axes, the joystick 

command is zero therefore the speed of the gun relative to a reference on the 

ground will remain as zero. 

The controller gain limits used in the simulations are 0 as minimum and 5 as 

maximum for the proportional gain, 0 as minimum and 1 as maximum for the 

integral gain and 0 as minimum and 1 as maximum for the derivative gain. It is 

worth to note that with the combination of the controller gains within these limits, 

the system may become unstable. 
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Figure 5.5 – Controller Architecture for Neural PID Tuner Simulations for 
Elevation Axis 

 

 
Figure 5.6 - Controller Architecture for Neural PID Tuner Simulations for 
Traverse Axis 

 

The training of the neural PID controller is allowed only when the forgetting sum 

of the controller error exceeds 0.015 rad/s (1 deg/s). This value may be decreased 

but leads to fast increase in the controller gains, which decreases the safety 

margin. Instead of fast increase in the controller parameters, we desire to increase 

considerably the stabilization performance by the neural friction compensator. 

This will be demonstrated a few pages later. 
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Figure 5.7 – Stabilization Performance of the PID Controller with Neural PID 
Tuner for the Elevation Axis 

 

The stabilization performance of the proposed PID controller with the neural PID 

tuner is given in Figure 5.7 for the elevation axis. The figure shows the feedback 

gyroscope signal. The stabilization accuracy value obtained in this simulation is 

0.1679 mrads. 

The gyroscope speed, which is actually the controller error because the speed 

command is zero, decreases gradually during the training of the network. This 

decrease in error is shown in the following figures. 

 

Figure 5.8 – Feedback Gyroscope Signal for Time Range 0 and 5 seconds 
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In Figure 5.8, the gyroscope speed signal is given for time range 0 and 5 seconds. 

In this time range, the controller starts with zero gains and training of the network 

starts. After 300 seconds where the same disturbance is applied to the system, the 

controller error or the gyroscope speed feedback is given in Figure 5.9. Both the 

oscillations in the system response and error values are decreased considerably. 

 

Figure 5.9 – Feedback Gyroscope Signal for Time Range 300 and 305 second 

 

The controller parameters namely the proportional gain pK , integral gain iK  and 

derivative gain dK  are given in Figure 5.10. In this figure, the controller 

parameters are given for the full simulation time range and for the very first of the 

simulation. As seen from these figures, the integral gain reaches its final value in a 

very short time. The derivative gain is nonzero for a short time and settles to zero 

for the remaining of the simulation. The proportional gain increases gradually in 

order to decrease the controller errors. Due to the high friction in the elevation 

axis, the proportional gain continues to increase but this increase stops after the 

addition of neural friction compensator to the controller architecture. 

The figure shows that the controller parameters are learned by the proposed neural 

PID tuner in a very short time. For the elevation axis, the final values of integral 

and derivative gains are reached almost in 3 seconds. 
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Figure 5.10 – Controller Gains for the Elevation Axis Simulations 

 

Simulations are also performed using the proposed PID controller tuned with the 

neural PID tuner for the traverse axis. The feedback gyroscope signal is given in 

Figure 5.11. Since the speed command in this simulation is zero, this gyroscope 

signal is equal to the controller error. Since the disturbance profile is a sinus for 

the traverse axis, the error decrease with time is not so obvious from the figure but 

a closer look may help see this error decrease. The stabilization accuracy value 

obtained for this simulation for the traverse axis is 0.2441 mrads. This value is a 

little high compared to the elevation axis and this difference is due to the high 

inertia of the traverse axis compared to the inertia of the elevation axis. 

 

Figure 5.11 - Stabilization Performance of the PID Controller with Neural PID 
Tuner for the Traverse Axis 
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Figure 5.12 - Feedback Gyroscope Signal for Time Range 0 and 10 seconds 

 

 

Figure 5.13 – Feedback Gyroscope Signal for Time Range 300 and 310 seconds 

 

For the first figure (Figure 5.12), first 10 seconds of the simulation is given. The 

oscillations in the system response and error values are notable.  

For the second figure (Figure 5.13), the time range between 300 and 310 seconds 

is given. The oscillations in the system response vanished and the error 

magnitudes decrease considerable in this time range. 
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Figure 5.14 - Controller Gains for the Traverse Axis Simulations 

 

The change of the controller gains during the simulation performed for traverse 

axis is given in Figure 5.14. Again a closer look for the beginning of the 

simulation is given in this figure. As seen from the figure, the integral gain settles 

to its final value within very short time. In addition, the derivative gain reaches its 

final value in this short time period. The proportional gain again increases 

gradually due to high friction in the traverse axis. 

After this point, the proposed neural friction compensator with the neural linear 

system identifier will be added to the controller architecture. The details of the 

neural friction compensator design and simulation results will be given in section 

5.1.2. 

5.1.2 Neural PID Tuner + Neural Friction Compensator Applied to the 
Computer Simulations 

In the previous section, the results of the neural PID tuner on the mathematical 

model are provided. In this section, however, the proposed neural friction 

compensator will be added to the neural PID tuner in order to analyze the 

stabilization performance under the influence of high friction effects. 

The controller gains of the proposed neural PID tuner are given in Figure 5.15 for 

the elevation axis on APG track with 10 km/h speed. As can be seen from the 

figure, the integral gain reaches its final value in a very short time. The 

proportional gain continues to increase with time due to the Columb friction in the 
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system. However, this increase stops after the neural friction compensator learns 

the friction characteristics of the system and compensates the friction. The 

stabilization accuracy obtained in this simulation is mrad for elevation axis. 

 

Figure 5.15 – Simulation Result for the Elevation Axis – PID Controller 
Parameters Learned Through the Simulation on APG Track with 10 km/h Speed 

 

The effect of the friction compensation on the stabilization accuracy value is really 

considerable. Before the friction compensation is activated, the stabilization 

accuracy obtained is 0.3 mrad. After the activation of the friction compensator, 

this value decreases to 0.13 mrad. This means 57% improvement in the 

stabilization performance for the elevation axis. The results of the simulations 

related to the stabilization performance of the elevation axis for the final computer 

simulation are given in Figure 5.16. 
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Figure 5.16 – Stabilization Performance of the Elevation Axis on APG Track with 
10 km/h Speed for the Final Simulation 

 

The controller gains obtained from the computer simulations learned by the 

proposed neural PID tuner for the traverse axis is given in Figure 5.17. As seen 

from the figure, proportional, integral and derivative gains increase gradually with 

time. This increase is large in the beginning of the simulation and parameter 

increase slows down at the end due to the decrease in the controller error. 

The stabilization accuracy of the traverse axis is given in Figure 5.18. At the 

beginning of the simulation, the stabilization performance is not satisfactory. 

However, after the training of the neural PID tuner, the stabilization accuracy 

becomes 0.39 mrad. This value is larger than the stabilization accuracy of the 

elevation axis and this is mainly due to high inertia of the traverse axis. This 

stabilization performance increases a lot with the activation of the neural friction 

compensator. The stabilization accuracy value becomes 0.04 mrad and this means 

%90 increase in the stabilization performance. 
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Figure 5.17 - Simulation Result for the Traverse Axis – PID Controller Parameters 
Learned Through the Simulation on Sinus Track with 10 km/h Speed 

 

Considering the neural linear system identifier, the estimation error of the network 

for the elevation axis is given in Figure 5.19. The error of the network decreases to 

very low values (approximately 0.01 rad/sec or 0.6 deg/sec) in the first 50 seconds. 

This error value increases a little with the activation of the neural friction 

compensator and this is due to the change in the system dynamics with the 

addition of friction compensator. Error in the estimation of the system response 

decreases again slowly to 0.6 deg/sec at the end of the simulation. 
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Figure 5.18 - Stabilization Performance of the Traverse Axis on Sinus Track with 
10 km/h Speed for the Final Simulation 

 

The error of the neural linear system identifier for the traverse axis is given in 

Figure 5.20. As seen from the figure, the network starts with almost zero 

estimation error and decreases slowly to approximately 1 deg/sec value. Again this 

error increases with the activation of the neural friction compensator but decreases 

considerable at the end of the simulation.  

 

 
Figure 5.19 – Estimation Error of the Neural Linear System Identifier for the 
Elevation Axis on APG Track with 10 km/h for the Final Simulation 
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Figure 5.20 - Estimation Error of the Neural Linear System Identifier for the 
Traverse Axis on Sinus Track with 10 km/h for the Final Simulation 

 

 
Figure 5.21 - Simulation Results for Neural Friction Compensator for Learning 
Rate 003.0=η , momentum term 4.0=α , 15 Neurons in the Input Layer and 3 
Neurons in the Hidden Layer for the Traverse Axis 
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The result of the neural friction compensator for the elevation axis is not repeated 

here but is given in Figure 3.24. As seen from this figure, the Columb friction 

present in the system is learned within a very short time (approximately in 50 

seconds) after the activation of the training of the network. The figure showing the 

result of the friction learning process for the traverse axis is given Figure 5.21. 

Again the Columb friction present in the traverse axis is learned in a very short 

time by the proposed network and with a very low error. 

The results of the computer simulations for both elevation and traverse axes are 

given above. In these simulations, the results of the three networks are obtained 

and represented here. After this point, the proposed controller architecture will be 

applied to the experimental setup and the results obtained in this study will be 

discussed. 

5.2 Proposed Neural Controller Applied on the Experimental Setup 

The proposed neural controller architecture consisting of the neural PID tuner, 

neural linear system identifier and the neural friction compensator is also applied 

on the experimental setup developed for this study. 

Before passing to the simulation results for the experimental setup, the control 

model used in these simulations will be given in detail. As mentioned before, 

Simulink and xPC Target is used for the real-time implementation of the proposed 

neural controller. The block diagram of the neural controller used in the 

experimental setup is shown in Figure 5.22. 

As seen from the figure, the controller consists of a plenty of sub-blocks. The 

blocks named ‘SIGNALS FROM THE PLANT’ and ‘SIGNALS TO THE 

PLANT’ are the interfaces with the real physical plant used to read the feedback 

signals and send the actuation signal to the actuation system. 

The block named ‘SYSTEM MODE’ is used to switch between the system modes 

STAB MODE and NON-STAB MODE. In stab mode, the feedback sensor is the 

feedback gyroscope, which is on the turret of the model tank. In non-stab mode, 

the difference between the feedback gyroscope and the disturbance gyroscope 
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placed on the vehicle of the model tank is used as the feedback signal since there 

is no resolver or other sensor, which is, can measure the relative motion of the 

turret. 

The block named ‘FAULT CHECK’ is used to protect the system from the cases, 

which may damage the system. This block captures the case in which the actuation 

signal is above a threshold for a time period in order to protect the cables from 

damage by twisting because holding the actuation signal high for a period of time 

causes the traverse axis to turn to the same direction with many turns. 

 

Figure 5.22 – Simulink Block Diagram of the Neural Controller for the 
Experimental Setup 

 

The speed command signals are generated in the block named ‘COMMAND 

GENERATOR’. In this block, the signal shapes like sinus, block and saw tooth 

can be generated. In addition, speed offset can be added to these signals by using 

this block. The speed commands generated by this block are applied to a rate 

limiter in order not to give speed commands, which exceeds the acceleration limits 

(± 240 deg/s) of the turret of the model tank. 
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Some of the signals like feedback signals and controller gains are plotted and 

recorded using the block named ‘SCOPES’. In this block, many signals can be 

displayed and saved instantaneously. 

The proposed neural PID tuner algorithm is implemented in the block named 

‘NEURAL PID TUNER’. This block uses the controller errors as the input and 

outputs the proportional ( pK ), integral ( iK ) and derivative ( dK ) gains for the PID 

controller which is implemented in the block named ‘PID CONTROLLER’. 

The linear system identification is performed in the block ‘NEURAL LINEAR 

SYSTEM IDENTIFIER’. This block uses the response of the real physical system, 

which is the relative speed of the turret, and actuation signal, which is the output 

of the PID controller of the system as the inputs and outputs the estimated system 

response. The same block also emulated the virtual linear system. 

Finally the block named ‘NEURAL SYSTEM EMULATOR’ is used to generate 

the actuation signal for the linear virtual emulated system. The block uses the 

speed command as the input and controls the virtual linear emulated system. 

For the design of these neural components of the proposed controller architecture, 

a similar optimization procedure can be applied for the controller developed for 

the experimental setup. However, the parameters of the neural components are 

tuned by trial and error for the experimental setup for the sake of simplicity. The 

controller parameters and the structure of the networks are summarized in Table 

10 for the neural PID tuner, in Table 11 for the neural linear system identifier and 

in Table 12 for the neural friction compensator. 

In this section, the simulation results of the tests performed on the experimental 

setup will be given for different test conditions. First, the results of the test with 

only the neural PID tuner will be given and discussed. Then, the results of the 

neural linear system identifier and the linear system emulation will be given. 

Finally, the estimated frictional characteristics of the system by the proposed 

neural friction compensator will be given and discussed. 
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Table 10 – Network Parameters Used in the Experimental Setup for the Proposed 
Neural PID Tuner 

 Traverse Axis 

Number of Hidden Layers 1 

Number of Neurons in the Input Layer 5 

Number of Neurons in the Hidden Layer 5 

Activation Function Type Tangent Hyperbolic Sigmoid Fun. 

Learning Rate 0.00005 

Momentum Term 0.4 

Proportional Gain Limits 0 (min) , 8 (max) 

Integral Gain Limits 0 (min) , 40 (max) 

Derivative Gain Limits 0 (min) , 0.001 (max) 

Initial Network Weights Random Between -0.01 and 0.01 

Initial Network Biases Random Between -0.01 and 0.01 

 

 

Table 11 – Network Parameters Used in the Experimental Setup for the Proposed 
Neural Linear System Identifier 

 Traverse Axis 

System Order 5 

Learning Rate 0.00001 

Momentum Term 0.9 

Initial Network Weights 0 

Activation Speed >5 deg/sec 
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Table 12 – Network Parameters Used in the Experimental Setup for the Proposed 
Neural Friction Compensator 

 Traverse Axis 

Number of Hidden Layers 1 

Number of Neurons in the Input Layer 15 

Number of Neurons in the Hidden Layer 5 

Activation Function Type Tangent Hyperbolic Sigmoid Fun. 

Learning Rate 0.0005 

Momentum Term 0.4 

Output Gain 4 Volt 

Initial Network Weights 
Random Between -0.001 and 

0.001 

Activation Speed <5 deg/sec 

 

First result for the neural PID tuner on the experimental setup is shown for the 

case for which the vehicle is not moving but a speed command is applied to the 

controller. The tracking result of the system is given in Figure 5.23 for the first 20 

seconds. 



 
108 

 

Figure 5.23 – Tracking Performance of the Traverse Axis for a Sinus Speed 
Command with 30 deg/s Amplitude and 0.1 Hz Frequency 

 

In this test, a sinus speed command with 30 deg/s amplitude and a frequency of 0.1 

Hz is applied to the controller. The proposed neural PID tuner starts with zero 

gains and is trained in order to track the speed command with minimum error. 

The figure showing the tracking error at the beginning and the end of the test is 

given in Figure 5.24. As seen from this figure, the peak tracking error in the 

beginning of the test is approximately 7 deg/s and this error becomes 

approximately 1.5 deg/s at the end of the test. 

 
Figure 5.24 – Tracking Errors for the Test with Sinus Speed Command with 30 
deg/s Amplitude and 0.1 Hz Frequency 



 
109 

 

 

Figure 5.25 – Controller Gains Tuned by the Neural PID Tuner for the Test with 
Sinus Speed Command of 30 deg/s Amplitude and 0.1 Hz Frequency 

 

The controller parameters tuned by the neural PID tuner during the test is given in 

Figure 5.25. As seen from the figure, the controller gains are increased gradually 

in order to minimize the tracking error. 

After this test, a stabilization test is performed using only the PID tuner on the 

experimental setup. The speed command is zero in this test and the vehicle makes 

randomly turns in the CW and CCW directions. 

The speed errors occurred during the test is given in Figure 5.26. As seen from the 

figure, the speed error reaches to approximately to 7 deg/s in the beginning of the 

test. After the training of the PID parameters by the neural PID tuner, the 

stabilization speed error decreases to approximately to 2 deg/s. 
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Figure 5.26 – Stabilization Speed Error for the Stabilization Test with only PID 
Tuner 

 

The stabilization performance of the traverse axis of the model tank is given in 

Figure 5.27. The stabilization performance in the beginning of the test is 

calculated as 12.1 mrad. This value is really high considering real life examples. 

Towards the end of the test, the stabilization performance increases to 4.9 mrad. 

This value is still high but with time, the stabilization performance increases with 

the increase of the controller parameters by the neural PID tuner. 

 

 
Figure 5.27 – Stabilization Position Error for the Stabilization Test with only PID 
Tuner 



 
111 

 

The controller gains learned by the neural PID tuner are given in Figure 5.28. As 

seen from the figure, the controller parameters increase gradually with time in 

order to minimize the controller error. For the given time testing period, controller 

parameters continuously increases which ends when the performance of the 

controller reaches a satisfactory value. 

 

Figure 5.28 – Controller Gains Tuned by the Neural PID Tuner for the 
Stabilization Test with only the PID Tuner 

 

After giving the results of the neural PID tuner for the case with only the PID 

tuner, the results of the neural linear system identifier and linear system emulator 

will be discussed. In this part of the report, we will compare and discuss the 

outputs of the PID controllers that are driving the real system and the other is 

driving the linear virtual system emulator. 

In order to show the results of the neural linear system identifier and the linear 

system emulator, a test is performed on the experimental setup with stationary 

vehicle and a sinus speed command of 10 deg/s amplitude and 0.1 Hz frequency. 

One of the outputs of the PID controllers is driving the real physical system and 

the other is driving the linear system emulator is given in Figure 5.29. As seen 
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from the figure, the output of the PID controller driving the real physical system 

has sudden jumps due to the Columb friction. In these regions, the relative speed 

of the traverse axis changes its direction and therefore the Columb friction changes 

its direction. 

 

Figure 5.29 – Outputs of the PID Controllers One is Driving the Real System and 
the Other is Driving the Linear System Emulator for a Sinus Speed Command of 
10 deg/s Amplitude and 0.1 Hz Frequency 

 

The output of the PID controller driving the linear system emulator is very similar 

to the output of the PID controller driving the real physical system if the jumps are 

eliminated. The proposed neural friction compensator performs this elimination of 

the jumps. It used the error between these two PID controller outputs in order to 

learn the friction characteristics and tries to make the output of the PID controller 

driving the real physical system as close to the output of the PID controller driving 

the linear system emulation as possible. 

A similar test is performed for a sinus speed command of 30 deg/s amplitude and 

0.1 Hz frequency. The results are very similar. Two figures show that the emulated 

system identified by proposed neural linear system identifier represents the 

characteristics of the real physical system if there were no Columb friction. 
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Figure 5.30 - Outputs of the PID Controllers One is Driving the Real System and 
the Other is Driving the Linear System Emulator for a Sinus Speed Command of 
30 deg/s Amplitude and 0.1 Hz Frequency 

 

The neural friction compensator network is analyzed using the same test. At the 

beginning of the test, both the neural PID tuner and the neural friction 

compensator start from zero. As time passes, both the PID tuner and the neural 

friction compensator are trained in order to reach a satisfactory control 

performance. 

The friction characteristics estimated by the neural friction compensator network 

is shown in Figure 5.31. As seen from the figure, at the beginning of the test, 

because of the initial conditions of the network, the estimated friction is not true. 

However, the estimated friction starts to catch the real Columb friction, which 

exists on the system after the time stamp 50 sec. 
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Figure 5.31 – Estimated Friction of the Traverse Axis of the Experimental Setup 
for a Sinus Speed Command of 30 deg/s Amplitude and 0.1 Hz Frequency 

 

The network almost learns the Columb friction in 200 seconds. This time period 

needed to learn the true value of the friction is considered to be satisfactory. 

The test conditions are the same with the test performed for the case with only PID 

tuner. Therefore, it is possible to compare the results of these two tests. This 

comparison will show the performance improvement of the addition of the neural 

friction compensator to the controller. 

The results are given in Figure 5.32. As seen from the figure, the tracking errors 

are very similar in the beginning of the test since the friction compensator is not 

trained yet. After the training of the friction compensator, the tracking error is less 

for the case with friction compensation compared to the case with only PID tuner. 

The result is not so clear due to the high noise in the feedback signal but the 

improvement of the addition of the neural friction compensator to the controller 

will be obvious in the stabilization test. 
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Figure 5.32 – Tracking Errors of the Traverse Axis of the Experimental Setup for 
Cases with PID Controller and PID Controller + Friction Compensator for a Sinus 
Speed Command of 30 deg/s Amplitude and 0.1 Hz Frequency 

 

Before passing to the results of the stabilization test with the addition of the 

proposed neural friction compensator to the controller, the controller parameters 

tuned by the neural PID tuner is given in Figure 5.33. As seen from the figure, the 

controller gains are lower for the case with friction compensation then the case 

without the friction compensator. Therefore, a better tracking result is obtained 

with lower PID controller gains with the addition of the neural friction 

compensator to the controller. 
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Figure 5.33 – Controller Gains Obtained for Cases with PID Tuner and PID Tuner 
+ Friction Compensator 

 

The neural controller including the proposed neural friction compensator is tested 

on the experimental setup while speed command is zero and the vehicle moves on 

a random terrain making turns to the left and to the right. The disturbance applied 

to the traverse axis is given in Figure 5.34. 

The PID controller parameters learned by the neural PID tuner is given in Figure 

5.35. As seen from the figure, the controller gains increases gradually in order to 

minimize the controller error. Compared to the results with only the PID tuner 

given in Figure 5.28, the controller gains are almost the half at the end of the test. 

This mainly due to low controller error occurred during the test as a result of the 

addition of the neural friction compensator. 
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Figure 5.34 – Disturbance Speed Applied to the Traverse Axis of the Experimental 
Setup for the test of the Neural Friction Compensator 

 

 
Figure 5.35 – Controller Gains of the PID Controller Tuned during the 
Stabilization Tests in which the Neural Friction Compensator is Included 

 

The stabilization performance obtained as a result of this test is given in Figure 

5.36. As seen from the figure, the stabilization performance at the beginning of the 

test is approximately 5.2 mrad and this value decreases to 1.0 mrad at the end of 
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the test. This increase in the stabilization performance is due to the friction 

compensator used with the neural PID tuner. 

 
Figure 5.36 – Stabilization Performance of the Traverse Axis Including the 
Proposed Neural Friction Compensator 

 

Considering the results of the stabilization test performed for the case with only 

PID tuner, the stabilization performance at the end of the test is 5 times better with 

the addition of the neural friction compensator to the controller. In addition, much 

better stabilization accuracy values are obtained with almost half of the PID 

controller gains. 

The estimated Columb friction in this test is given in Figure 5.37. As seen from the 

figure, the friction compensation torque applied to the system has approximately 

1.7 volts and the instantaneous values changes according to the turret position at 

which the friction changes its sign and the acceleration of the system at this point. 

As a result of the tests using the experimental setup, the stabilization accuracy 

becomes approximately 1.0 mrad with the training of the neural PID tuner and the 

neural friction compensator. If the neural friction compensator is not used, the 

stabilization performance is 5 times worse and the PID controller gains at the end 
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of the test are approximately 2 times greater considering the use of the neural 

friction compensator. Results are given in Figure 5.33. 

 
Figure 5.37 – Estimated Columb Friction in the Stabilization Test Performed for 
the Traverse Axis of the Experimental Setup 

 

The estimated Columb friction value is not constant because of the changing 

frictional characteristics of the system with the turret position and acceleration of 

the motion. 

In this chapter, the results of the computer simulations on the mathematical model 

of a battle tank with the network parameters designed in chapter 3 and the results 

of the test performed on the hardware experimental setup are given and discussed 

in detail. In the next section, the sensitivity of the linear system identifier network 

to the sensor noise and quantization errors and performance analysis of the 

proposed controller will be given. 
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CHAPTER 6 
 
 

6. SENSITIVITY AND PERFORMANCE ANALYSIS 
 

 

The proposed controller architecture is both applied to the computer simulations 

and applied on the experimental setup. In the computer simulations, sensors and 

actuators were ideal. On the other hand, there were sensor noise and quantization 

errors in the experimental setup. 

In this section, the sensitivity of the proposed networks to sensor noises will be 

examined. Then, the performance of the proposed controller architecture will be 

explored. 

In sensitivity analysis part of this section, the sensitivity of the estimated system 

response, and the output of the neural linear system identifier to sensor noises and 

quantization errors will be analyzed. This analysis will be given only for the neural 

linear system identifier network because of the simplicity of the network. Other 

two networks (neural PID tuner and neural friction compensator) are very similar 

to the neural linear system identifier network and the same approach can be used 

to analyze these networks. Therefore the sensitivity analysis of these networks is 

left as a future work. 

The performance of the proposed controller architecture will be analyzed using the 

mathematical model of the main battle tank. The critical parameters of the system, 

which can be changed in practice, namely the Columb friction, disturbance 

characteristics and inertia, are changed slightly during simulations and the 

adaptation of the controller is analyzed using the results of these simulations. 
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6.1 Sensitivity Analysis of the Neural Linear System Identifier 
Network for Sensor Noise and Quantization Errors 

In order to estimate the system dynamics of the controlled system, a linear 

artificial neural network is proposed and the details of this network are given in 

the section 3. In this part of the report, the sensitivity of the estimated system 

response output of the network to the sensor noise and quantization errors in 

digitization will be analyzed. 

In computer simulations reported in chapter 5, the sensors and actuators were 

ideal. In other words, there were no noise on the sensors and the control signals are 

ideally transformed to actuator motions. In this chapter, the effect of these sensor 

noise and quantization errors on the estimated system response will be determined. 

In practice, sensor manufacturers specify an upper bound for the measurement 

errors of the corresponding sensor. In this analysis, the upper bound given for the 

feedback gyroscope used in the experimental setup will be used. 

For the actuation of the system, an analog signal is generated for the servo motor 

driver. The quantization error of the experimental setup in the digital-to-analog 

conversion will be used in these analyses. 

 

Figure 6.1 – Structure of the Proposed Neural Linear System Identifier 
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The structure of the proposed neural linear system identifier is given in Figure 6.1. 

In this figure, the inputs of the network are the present and previous values of the 

system inputs ( ( )ku , ( )1−ku , …, ( )rku − ) and the previous system responses 

( ( )1−ky , …, ( )rky − ). The network outputs the estimated system response 

( ( )ko ) of the present time. 

Let us define sensor noise on the system response as y∆  and quantization error on 

the actuation signal as u∆ . Therefore, the actual values of the network inputs can 

be defined as ( ) ( ) ( )kukuku ∆+= , …, ( ) ( ) ( )rkurkurku −∆+−=−  and 

( ) ( ) ( )111 −∆+−=− kykyky , …, ( ) ( ) ( )rkyrkyrky −∆+−=−  and the desired 

output of the network can be defined as ( ) ( ) ( )kokoko ∆+=  where ( )ko∆  is the 

error due to the sensor noise and quantization error. 

The output error of the network ( )ko∆  can be rewritten as; 

( ) ( ) ( )kokoko −=∆         (6.1) 

this can be expanded as; 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )rkykyrkukukuf

rkykyrkukukufko

−−−−−

−−−−=∆

,...,1,,...,1,

,...,1,,...,1,
   (6.2) 

Here in this equation, ( )•f  represents the activation function of the network, 

which is a pure linear xy =  function. 

The Taylor expansion of the first term in equation 6.2 around ( )ku , …, ( )rku − , 

( )1−ky , …, ( )rky −  is given as; 
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Neglecting the higher order terms (H.O.T.) of the expansion and putting the Taylor 

expansion of the first term in its place in equation 6.2 gives the following equality; 
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   (6.4) 

As mentioned before, the activation function is actually a pure linear function of 

the multiplication of network weights and network inputs. 

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )rkywkyw
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11
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 (6.5) 

 

Therefore, the partial derivative terms given in equation 6.4 are the network 

weights of the neural linear system identifier. Rewriting equation 6.4 gives the 

following equation; 

( ) ( ) ( ) ( ) ( )rkywkywrkuwkûwko rrr −∆++−∆+−∆++∆=∆ +++ 12211 ...1...  (6.6) 

After obtaining this equation, two different approaches are used in the analysis. 

First approach is the maximum error approach and second one is a statistical 

approach. 

In the maximum error approach, the errors in the inputs due to sensor noise and 

quantization errors are assumed as ( ) 1∆≤∆ ku , ( ) 21 ∆≤−∆ ku , …, 

( ) 1+∆≤−∆ rrku , ( ) 21 +∆≤−∆ rky , …, ( ) 12 +∆≤−∆ rrky . Using this assumption, 

the maximum error due to the errors in the input can be found as; 

121221112211 ...... ++++++ ∆++∆+∆++∆+∆=∆ rrrrrr wwwww   (6.7) 

Other approach is based on the statistical characteristics of the input errors. In this 

approach, the errors in the network inputs are assumed as normally distributed 

with 0 average and known standard deviation. In this approach, the errors in the 
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inputs are assumed independent of each other. Using these assumptions, the 

variance of the error in the network output can be found as; 

( )[ ] ( ) ( ) 2
12

2
12

2
1

2
1 ... ++++= rrwwkoV σσ      (6.8) 

Here in this equation, the parameters 1σ , …, 12 +rσ  are the standard deviations of 

the errors on ( )ku , …, ( )rku − , ( )1−ky , …, ( )rky −  respectively. 

After obtaining these equations, the numerical values will be put into the equations 

in order to obtain the output error of the network and compare these error 

amplitudes with the network output amplitudes.  

 

Figure 6.2 – Output Error of the Proposed Neural Linear System Identifier due to 
the Sensor Noise and Quantization Errors in the D/A Conversion for the Elevation 
Axis 

 

The maximum error of the feedback gyroscope used in the experimental setup is 

0.95 degrees/second and the standard deviation of the sensor noise is 

approximately 0.14 degrees/second. The control computer analog output ports 
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have 12-bit digital-to-analog converters therefore the maximum quantization error 

at these D/A conversion is 0025.0
2

20
13

=  volts since the analog output of the 

computer can produce voltages between 10− V and 10V. Since the quantization 

error distribution is uniform and have zero mean, the standard deviation of the 

quantization error is 0. 

Putting these numeric values into the equations 6.7 and 6.8, the maximum output 

error and standard deviation of the output error are given in Figure 6.2. In this 

figure, the output of the network is also given. Comparing the network output and 

the output error values given in the figure, the errors on the network output due to 

the sensor noise and quantization errors are less than 1% of the network output. 

This percentage is given for the maximum error approach case. The percentage of 

the output error with respect to the network output for the statistical approach case 

is really very low, even less than 0.00005% of the network output. 

 

 
Figure 6.3 - Output Error of the Proposed Neural Linear System Identifier due to 
the Sensor Noise and Quantization Errors in the D/A Conversion for the Traverse 
Axis 
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The situation is not very different than the elevation axis for the traverse axis. The 

output error of the network for the traverse axis is given in Figure 6.3. Again the 

error in the network output due to the sensor noise and quantization errors are very 

low compared to the estimated system response output of the network. The 

percentage error on the network output is approximately 0.75% for the maximum 

error approach case and this value decreases to almost zero for the statistical 

approach case. 

6.2 Performance Analysis of the Proposed Neural Controller 

In this section, the performance of the proposed neural controller architecture will 

be analyzed by performing computer simulations with the mathematical model and 

performing tests on the hardware experimental setup. 

The performance analysis of the proposed controller will be conducted in three 

stages. In the first stage, the performance of the proposed neural PID tuner will be 

analyzed using the mathematical setup with varying disturbance characteristics 

and varying plant dynamics. In the second stage, the performance of the proposed 

neural friction compensator will be analyzed using the mathematical model with 

varying frictional characteristics. In the last stage, the performance of the whole 

proposed neural controller will be analyzed using the hardware experimental 

setup. 

6.2.1 Performance of the Proposed Neural PID Tuner on the 
Mathematical Model 

The performance of the proposed neural PID tuner is analyzed using the 

mathematical model of the main battle tank. In these analyses, the disturbance 

characteristics of the system are changed with time by increasing the speed of the 

tank over the APG track. The same analysis is repeated by changing inertia of the 

turret by either increasing or decreasing it. 

In the first part, the tank goes over the APG track with 10 km/h speed. After some 

time period, the tank speeds up to 30 km/h and finally the tank speeds up to 40 

km/h speed. The disturbance characteristics on the system during the simulations 
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for the elevation axis are given in Figure 6.4. As seen from the figure, the 

disturbance speed on the elevation axis increases considerably with the increasing 

tank speed. 

 

Figure 6.4 – The Disturbance Speed Excerpted on the Elevation Axis for the 
Performance Analysis of the Neural PID Tuner 

 

With this disturbance applied to the elevation axis, the stabilization performance 

of the elevation axis is given in Figure 6.5. As seen from the figure, the 

stabilization performance decreases a little with the increasing tank speed. The 

disturbance accuracy is 0.30 mrad for the tank speed 10 km/h and becomes 0.32 

mrad for the tank speeds 30 km/h and 40 km/h. The performance decrease for this 

simulation is 6.7% for both 30 km/h and 40 km/h tank speeds. 

The same simulation is performed by fixing the PID parameters after a training 

period on the APG track with 10 km/h tank speed. The stabilization performance 

of the elevation axis is given in Figure 6.6. As seen from the figure, the 

stabilization performance decreases sharply with the increasing tank speed. For the 

tank speed 30 km/h, the stabilization accuracy is obtained as 0.78 mrad and for the 

40 km/h speed, the value is obtained as 1.43 mrad. In other words, the stabilization 
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performance decreases approximately 250% for the tank speed 30 km/h and %500 

for the tank speed 40 km/h. As a result, the neural PID tuner configures the 

controller parameters so that the stabilization performance is kept satisfactory for 

all tank speeds.  

 

Figure 6.5 – Stabilization Performance of the Elevation Axis for Different Tank 
Speed on the APG Track 

 

After analyzing the neural PID tuner performance for different tank speed on APG 

track, the performance of the network is analyzed with varying the inertia of the 

plant. In this analysis, the inertia of the system increases incrementally 

approximately 300% after a time period. In the first 100 seconds, the PID tuner is 

trained with the original plant inertia and the inertia is increases 300% between 

time range 100 and 150 seconds. The stabilization performance of the elevation 

axis is given in Figure 6.7. As seen from the figure, the stabilization accuracy 

value becomes 3 times greater than the stabilization accuracy value obtained for 

the original plant inertia. In other words, the stabilization accuracy for the original 

plant inertia was 0.30 mrad and increased 200% for the 300% increased inertia and 

become 0.88 mrad. 
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Figure 6.6 - Stabilization Performance of the Elevation Axis for Different Tank 
Speed on the APG Track (Fixed PID Parameters) 

 

 
Figure 6.7 - Stabilization Performance of the Elevation Axis for Varying Elevation 
Axis Inertia on the APG Track 

 

The same simulation is repeated for the fixed PID parameters. The PID parameters 

are tuned during the first 100 seconds and fixed after this time step. With the 
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increasing plant inertia, the stabilization performance is obtained as shown in 

Figure 6.8. As seen from the figure, the stabilization performance decreased 

approximately 370% for the fixed PID parameters. 

To sum up, the stabilization performance increases 70% with the proposed neural 

PID tuner considering the fixed PID parameter case. This performance increase is 

relatively small considering the previous analysis for different tank speeds and this 

is mainly due to the high inertia change and limited actuation power of the plant. 

 

Figure 6.8 - Stabilization Performance of the Elevation Axis for Varying Elevation 
Axis Inertia on the APG Track (Fixed PID Parameters) 

 

The inertia of the system decreased in computer simulations but the results 

obtained for fixed PID parameter case and usage of PID tuner case is not so 

different because the PID parameters freeze with the decrease of the plant inertia. 

Therefore, the proposed neural PID tuner does not increase the stabilization 

performance of the system but the stabilization performance increases as a result 

of the decrease in the plant inertia. 
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6.2.2 Performance Analysis of the Proposed Neural Friction 
Compensator on the Mathematical Model 

The performance of the proposed neural friction compensator is analyzed on the 

mathematical model of the main battle tank by changing suddenly the Columb 

friction of the corresponding axis. Because of the similarity of the elevation and 

traverse axis considering the actuation mechanisms and controller architectures, 

the results are shown only for the elevation axis. 

In the simulations performed for the elevation axis in order to analyze the 

performance of the friction compensation algorithm, the tank goes over the APG 

track with a speed of 10 km/h. While the tank goes over the track, the friction 

value changes suddenly. After this sudden change, an error occurs between the 

emulated virtual linear system response and the real system with friction. This 

error leads the neural friction compensator to learn the new friction characteristics. 

In the first part of the analysis, the friction existing on the elevation axis is 

decreased by 25% after the neural friction compensator reaches the steady state for 

the original friction characteristics. After this decrease, the friction value is 

decreased by 25% more (totally 50%). The results of this simulation are given in 

Figure 6.9.  

As seen from the figure, the neural friction compensator adapts itself to the new 

friction characteristics in a short time. For the first decrease of the friction value, 

the estimated friction value decreases gradually to the new friction value and the 

estimated friction value reaches to the steady state in approximately 20 seconds. 

For the second decrease of the friction value, the response is faster and the 

estimated friction value reaches to steady state approximately in 5 seconds. 

Considering the real life applications, these time periods needed to learn the new 

frictional characteristics are considered to be very short. 
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Figure 6.9 – Performance Analysis of the Proposed Neural Friction Compensator 
for Decreasing Frictional Effects 

 

In the second part of the analysis, the friction value is increased suddenly by 50% 

after the estimated friction value reached to steady state for the original friction 

value. The friction value is increased by 50% more (totally 100%) after the 

adaptation of the friction compensator to the new frictional characteristics. The 

results of the simulation are given in Figure 6.10. 

The results are very similar to the case with decreasing friction values. Again the 

proposed network learns the new frictional characteristics in a very short time. For 

the first increase, the time needed to learn the new friction value is approximately 

35 seconds and it becomes 30 seconds for the seconds increase. 



 
133 

 

Figure 6.10 - Performance Analysis of the Proposed Neural Friction Compensator 
for Increasing Frictional Effects (Blue: Real Friction, Red: Estimated Friction) 

 

As a result of these analyses, the proposed neural friction compensator adapts 

itself to new frictional characteristics even for sudden changes in the frictional 

effects. The time periods needed for this adaptation are really promising 

considering the amplitude of the increase in the friction values. With this 

adaptation, the PID controller is not affected by the changing friction in the system 

and the stabilization performance of the system is kept steady for changing 

frictional characteristics. 

6.2.3 Performance of the Proposed Neural Controller Architecture on 
the Experimental Setup 

The results of the proposed neural controller architecture consisting of the neural 

PID tuner, neural linear system identifier and the neural friction compensator are 

given in the previous section. In this section, the performance of the proposed 

neural controller will be analyzed for different speed command signal shapes and 

signal frequencies. In these tests, the vehicle will remain stationary and the turret 

will move. The feedback gyroscope will be used as the feedback sensor. 
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Figure 6.11 – Tracking Speed Errors of the Test for a Sinus Speed Command with 
10 deg/s Amplitude for the Traverse Axis of the Experimental Setup 

 

In the first part of the analysis, a sinus speed command is applied to the controller 

with amplitude of 10 deg/s but the frequency of the signal increased. The tracking 

speed errors obtained in these tests are given in Figure 6.11. As seen from the 

figure, for frequency of 0.1 Hz, the tracking error becomes almost zero at the end 

of the test. This is not so clear in the figure but after the elimination of the sensor 

noise, the maximum tracking error becomes approximately 0.4 deg/s for 0.1 Hz 

frequency. This maximum tracking error at the end of the test is kept as 0.4 deg/s 

for the 0.5 Hz frequency but it becomes approximately 2 deg/s for the frequency of 

3 Hz. 
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Figure 6.12 – Controller Gains Tuned by the Neural PID Tuner for a Sinus Speed 
Command of 10 deg/s Amplitude and Different Frequencies for the Traverse Axis 
of the Experimental Setup 

 

The controller gains obtained in these tests are given in Figure 6.12. As seen from 

the figure, the controller gains for the lowest frequency 0.1 Hz are relatively low 

and reached the steady state values just at the beginning of the test. For the 

frequency value of 0.5 Hz, the controller gains are higher. On the other hand, the 

controller gains are increased fast and almost reach their steady state values in the 

beginning of the test for the frequency value of 3 Hz. For all of the frequency 

values, the controller gains do not reach to their limit values. For the frequency 

values of 0.5 Hz and 3 Hz, the controller gains do not reach to their steady state 

values in 600 seconds. 
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Figure 6.13 – Estimated Columb Friction for the Sinus Speed Command of 10 
deg/s Amplitude and Different Frequencies for the Traverse Axis of the 
Experimental Setup 

 

The estimated friction obtained from these tests is given in Figure 6.13. For the 

frequency value of 0.1 Hz, the friction characteristic is learned approximately in 

60 seconds. Although the learning time is less for the frequency of 0.5 Hz, it 

shows fluctuations after some point. These fluctuations may be due to the change 

in the position of the turret where the friction changed its sign. On the other hand, 

the time period needed to learn the friction characteristics of the system is larger 

for the frequency value of 3 Hz. In addition, the estimated friction value fluctuates 

around the steady state estimation value. The increase of the learning time is 

mainly due to short training time periods created by the fast changing speed of the 

signal. 
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As a summary of these tests on the experimental setup, increasing the frequency of 

the signal decreases the tracking performance and leads to higher controller gains. 

In addition, the estimated friction is affected by the frequency of the motion and 

fluctuations occurred in the estimated friction value. In addition, the time needed 

to learn the friction value increased due to the decrease in the training time periods 

of the neural friction compensator. 

After analyzing the effect of the frequency of the speed command signal on the 

performance of the proposed neural controller architecture, the effect of the signal 

shape will be analyzed. For this purpose, tests are performed with block signals 

with amplitude of 10 deg/s and frequencies of 0.1 Hz and 3 Hz. 

 

Figure 6.14 – Tracking Speed Errors for the Speed Command of 10 deg/s 
Amplitude and Different Frequencies for Different Signal Shapes for the Traverse 
Axis of the Experimental Setup 

 

The results for the tracking error both for sinus and block speed commands for 

frequencies of 0.1 Hz and 3 Hz are given in Figure 6.14. As seen from the figure, 
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for the frequency value of 0.1 Hz, the tracking error is larger in the beginning of 

the test but the tracking error becomes almost the same at the end of the test. For 

the frequency value of 3 Hz, the tracking errors obtained for both sinus and block 

speed commands are almost the same throughout the whole test. 

 

Figure 6.15 – Controller Parameters Tuned by the Neural PID Tuner with Speed 
Command of 10 deg/s Amplitude and Different Frequencies and Signal Shapes 

 

The controller parameters obtained as a result of these tests are given in Figure 

6.15. As seen from the figure, the controller gains increases from sinus signal to 

the block signal shape. For all of the speed command cases, the PID controller 

gains reaches almost their steady state values in 550 seconds. In addition, the 

controller gains do not reach their limit values for all of the cases therefore there is 

still some margin for the increase of the PID controller gains. 

The results showing the estimated friction of the traverse axis in these tests are 

given in Figure 6.16. As seen from the figure, for the frequency of 0.1 Hz, the time 

period needed to learn the friction value increases from 60 seconds to 200 seconds 

as a result of the decrease in the training time period. Since the speed command is 
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a block signal, the neural friction compensator is trained for a very short time since 

the neural friction compensator is trained only when the relative speed of the turret 

is below a threshold. 

 

Figure 6.16 – Estimated Friction Values of the Traverse Axis of the Experimental 
Setup for Different Signal Shapes and Different Signal Frequencies with 
Amplitude of 10 deg/s 

 

Considering the case with frequency value of 3 Hz, the time period needed to learn 

the friction value for the block speed command decreases relative to the case with 

sinus speed command. However, the steady state value of the estimated friction 

value is a little higher than the Columb friction that exists on the real physical 

system. 

As a result of the tests performed with different signal shapes, the performance of 

the neural friction compensator is affected by the signal shape. The time needed to 

train the neural friction compensator is dependent on the relative speed threshold 

and therefore longer time periods in this training region makes the learning 

process faster. 
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CHAPTER 7 
 
 

7. CONCLUSION AND FUTURE WORK 
 
 

The objective of this study is stated to develop an intelligent controller for the 

stabilization of turret subsystems under disturbances from unstructured terrain as 

the environmental conditions and the dynamics of the mechanical system changes. 

The main motivation is to handle the varying disturbance characteristics from 

terrain to terrain and the dynamical changes of the mechanical system for instance 

the Columb friction from hot environment to cold environment. 

A very important criterion of this study is to keep the delevoped controller 

architecture simple in order to ensure the real-time implementation of the 

controller. For this purpose, it is decided to base the controller to a classical PID 

controller but further equipping it with intelligent algorithms are used to tune its 

controller gains. 

As a result of a literature survey, a backpropagation network is used to tune the 

controller gains of this PID controller. This network mainly aims to minimize the 

error between the commanded signal and the feedback signal and it can be thought 

as an optimal controller, which tracks a given signal with minimum error. This 

PID based neural controller did not provide enough satisfaction in its stabilization 

performance therefore additional algorithms have been developed in order to 

enhance the performance of the controller. 

The main problem of the controller was the system non-linearities, one of the non-

linearities of the system being the unbalance in the elevation axis. This unbalance 

is compensated using a simple algorithm with the help of a gravity sensitive 

accelerometer that is placed at the center of rotation of the elevation axis. 
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The second non-linearity of the system was the Columb friction. This non-linearity 

was rather complicated therefore and intelligent algorithm is used to compensate 

for this non-linearity. A backpropagation neural network is decided to use for the 

compensation of the Columb friction. This network was very similar to the 

network used for the tuning of the PID controller. 

This network aims to compensate the Columb friction by adding a correction 

signal to the output of the PID controller. This is done simply by identifying the 

system dynamics and finding the PID controller output if the system was an ideal 

linear system. In order to find the output of the PID controller for the linear 

system, a virtual linear system is emulated using the identified system. The neural 

friction compensator aims to make the output of the PID controller closer to the 

output of the PID controller for the linearized system emulation. 

The proposed neural controller is applied to both a mathematical simulation model 

of a main battle tank namely the Leopard 1 tank with detailed vehicle, suspension 

and turret models and to hardware experimental setup. The hardware is a 1/6 true 

scale model of Challenger 2 tank and the mechanics and the actuation mechanism 

of the model tank is modified for this study. 

The simulation results with the mathematical model show that the proposed neural 

controller is suitable for the stabilization of the turret subsystem. The controller 

gains of the PID controller are tuned in order to satisfy the performance criterions 

in a very short time. In addition, the Columb friction, which exists on the 

mechanical system, is identified and compensated in a very short time with high 

accuracy. The addition of the neural friction compensator resulted in a 10 times 

higher stabilization performance. 

Many tests are performed on the hardware with the proposed neural controller. 

The results obtained in these tests are also satisfactory. Although the stabilization 

accuracy values obtained in the experimental setup is larger than the stabilization 

accuracy values for the mathematical simulation model, this is mainly due to the 

ideal behavior of the model in the simulation and power limitations of actuation in 
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the hardware setup. The addition of the neural friction compensation algorithm to 

the controller increased the stabilization performance up to 5 times better values. 

In addition, sensitivity analysis is performed for the neural linear system identifier 

network because of its simplicity. In this analysis, the sensor noise in the feedback 

signals and the quantization errors in the actuation system are considered. Two 

methods are used in this analysis. In the first method, the maximum values of the 

errors are used but in the second method, the statistical behavior of the errors are 

used. The results showed that the sensitivity of the network to sensor noise and 

quantization errors is almost negligible. 

Performance analysis of the proposed neural controller is performed both using the 

mathematical model of the main battle tank and the experimental setup. In these 

analyses, the dynamics of the system is changed in the mathematical model in 

order to examine the performance of the controller. The dynamics changed in 

these tests are the turret inertia and the Columb friction values. Also performance 

analysis is performed with changing disturbance characteristics. This is done by 

changing the tank speed on the APG track. 

The performance of the proposed neural controller is analyzed on the experimental 

setup with different speed command signal shapes, amplitudes and frequencies. As 

a result of these analyses, the performance of the proposed neural controller is 

considered to be satisfactory. The controller adapted itself to new signal shapes, 

signal amplitudes and signal frequencies. One problem was the very short time for 

the training of the neural friction compensator caused by the high rate of change of 

the command signals. 

The sensitivity analysis of the neural PID tuner and the neural friction 

compensation networks are left for future works. A very similar procedure, which 

is used in the analysis of the linear neural system identifier, will be followed for 

these networks and the only two differences are the activation function type and 

the number of layers of the networks. 
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To sum up, an intelligent controller for the stabilization control of turret 

subsystems under disturbances from unstructured terrain is developed in this 

study. The proposed neural controller is both analyzed in the mathematical model 

of a main battle tank and on the experimental setup developed for this study. The 

results showed that the performance of the controller is satisfactory considering 

the stabilization and the tracking performance of the controller. 
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