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ABSTRACT 

 
THERMAL STRESS INTENSITY FACTOR EVALUATION  

FOR  
INCLINED CRACKS IN FUNCTIONALLY GRADED MATERIALS  

USING kJ -INTEGRAL METHOD 

 
 

Demirçivi, Bengi 
 

M.S., Department of Mechanical Engineering 
 

Supervisor: Asst. Prof. Dr. Serkan DA� 

 
November 2006, 88 pages 

 

 
The main objective of this study is to evaluate mixed mode stress intensity factors 

for inclined embedded cracks in functionally graded materials. Fracture analysis 

of inclined cracks requires the calculation of both Mode I and Mode II stress 

intensity factors ( IK , IIK ). In this study, kJ -integral is used to calculate IK  

and IIK . Equivalent domain integral approach is utilized to evaluate the kJ -

integral around the crack tip. The present study aims at developing a finite 

element model to study inclined crack problems in graded media under 

thermomechanical loading. A two dimensional finite element model is developed 

for inclined cracks located in a functionally graded medium. Structural and 

thermal problems are solved using two dimensional finite elements namely 8-

noded triangles. Material properties are sampled directly at the integration points 

of the elements, as required by the numerical integral evaluation. The main results 

of the study are the stress intensity factors at the crack tip for functionally graded 

materials subjected to thermomechanical loading. 

 

Keywords: Functionally Graded Material, kJ -Integral, Inclined Cracks, Mixed-

Mode Stress Intensity Factors  
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ÖZ 

 

FONKS�YONEL DERECELEND�R�LM�� MALZEMELERDEK�  
E��K ÇATLAKLARIN ISIL GER�LME ��DDET� FAKTÖRLER�N�N  

kJ -INTEGRAL METODUYLA HESAPLANMASI 
 
 

DEM�RÇ�V�, Bengi 

Yüksek Lisans, Makina Mühendisli�i Bölümü 

Tez Yöneticisi : Asst. Prof. Dr. Serkan DA� 

 

Kasım 2006, 88 sayfa 

 
 
Bu çalı�manın temel amacı, fonksiyonel derecelendirilmi� malzemelerdeki 

gömülü e�ik çatlakların karı�ık mod gerilme �iddeti faktörlerinin hesaplanmasıdır. 

E�ik çatlakların kırılma analizi, Mod I ve Mod II gerilme �iddeti faktörlerinin 

( IK , IIK ) hesaplanmasını gerektirir. Bu çalı�mada, IK  ve IIK  de�erlerini 

hesaplamak için  kJ -integrali kullanılmı�tır. Çatlak ucundaki kJ -integrali e�de�er 

alan integrali yakla�ımı kullanılarak hesaplanmı�tır. Bu çalı�ma, mekanik 

yükleme altında fonksiyonel derecelendirilmi� malzemelerdeki e�ik çatlak 

problemlerini incelemek için bir sonlu elemanlar modeli geli�tirmeyi amaçlar. 

Fonksiyonel derecelendirilmi� ortamda e�ik bir çatlak için iki boyutlu sonlu 

elemanlar modeli geli�tirilmi�tir. Yapısal ve ısısal problemler 8-nodlu üçgenler 

olan iki boyutlu sonlu elemanlarla modellenmi�tir. Malzeme özellikleri, sayısal 

integral hesaplarının gerektirdi�i gibi her bir elemanın tümle�tirme noktalarında 

örneklenmi�tir. Çalı�manın ba�lıca sonuçları, mekanik yükleme altında kalmı� 

fonksiyonel derecelendirilmi� malzemeler için çatlak ucunda olu�an gerilme 

�iddeti faktörleridir.  

 

Anahtar Kelimeler: Fonksiyonel Derecelendirilmi� Malzeme, kJ -Integrali, E�ik 

Çatlaklar,  Karı�ık-Mod Gerilme �iddeti Faktörleri 
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CHAPTER 1  

 
INTRODUCTION 

 
 

1.1 Functionally Graded Materials 

 
 
Materials science is developing to obtain the desired material property 

combinations for several engineering applications. Functionally Graded Materials 

(FGM’s) are a good promise to meet the needs of engineering problems especially 

in severe environments. A functionally graded material is a multi-component 

composite characterized by a compositional gradient from one component to the 

other. In contrast, traditional composites are homogeneous mixtures and they 

therefore involve a compromise between the desirable properties of the 

component materials. 

 

The FGM concept is originated in Japan during a space plane project in 1984, in 

the form of a proposed thermal barrier material capable of withstanding a surface 

temperature of 2000 K and a temperature gradient of 1000 K across a cross 

section less than 10 mm. Since 1984, FGM thin films have been comprehensively 

researched and are almost a commercial reality. FGM’s were initially introduced 

to take the advantage of different properties of their constituents, since significant 

proportions of an FGM contain the pure form of each component and the need for 

decrease is eliminated. For example, the toughness of a metal can be mated with 

the refractoriness (heat and corrosion resistance) of a ceramic, without any 

compromise in the mechanical strength and toughness of the metal side or the 

refractoriness of the ceramic side. It is claimed by Kim and Paulino that, with 

such materials it can be possible to improve thermal or mechanical stress 

relaxation and to increase loading strength and toughness along coating / substrate 

interfaces [1]. 
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In essence, FGM’s are characterized by spatially varied microstructures created 

by non-uniform distributions of the reinforcement phase with different properties, 

sizes, shapes, as well as by interchanging the role of reinforcement and matrix 

materials in a continuous manner. Therefore, the volume fractions of the 

constituent materials of FGM’s are varied continuously in a particular direction to 

create a certain type of material composition profile that is suitable for a given 

application. Consequently, these materials posses graded or continuously variable 

thermomechanical properties and the properties of both components can be fully 

utilized.  

 

Scientific research on FGM’s considers functions of gradients in materials 

comprising thermodynamic, mechanical, chemical, optical, electromagnetic, 

and/or biological aspects. FGM’s offer solutions for applications where severe 

operating conditions occur. For example, wear-resistant linings for handling large, 

heavy abrasive ore particles, rocket heat shields, heat exchanger tubes, 

thermoelectric generators, heat-engine components, plasma facings for fusion 

reactors, and electrically insulating metal/ceramic joints. They are also ideal for 

minimizing thermomechanical mismatch in metal-ceramic bonding. 

 

Recent advances in material processing have allowed manufacturing of wide 

diversity of FGM’s. Large bulk FGM’s can be produced by spark plasma sintering 

technique. FGM coatings can be manufactured by plasma spray or electron beam 

physical vapor deposition techniques. FGM coatings that are produced by these 

two methods can be modeled as orthotropic FGM’s. However, FGM’s which are 

produced by plasma sintering technique may be modeled as isotropic FGM’s as 

presented by Kim and Paulino [2]. 

 

If properly used, such materials may also be used to reduce stress concentration or 

stress intensity factors. Stress response of FGM’s differs substantially from those 

of their homogenous counterparts. For example, maximum stress is lower in an 

FGM than in a homogenous material in certain conditions [2]. 
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1.2 Literature Survey 

 
The fracture analyses can be carried out by employing several methods to 

calculate the stress intensity factors at the crack tips, such as stress-field theories, 

experimental techniques and J-integral. The J-integral is widely used in 

computational fracture mechanics analyses in order to evaluate stress intensity 

factors. In its generalized form, J is defined along a vanishingly small contour at a 

crack tip. This definition is known to be equivalent to the energy release rate for 

linear and nonlinear elastic materials. J can also be defined as a line integral over 

an arbitrary curve away from the crack tip under certain conditions. Rice 

presented that if the crack is in a homogenous medium subjected to mechanical 

loads and has traction free surfaces, J can be expressed as a path independent line 

integral [3].  

 

If the crack is an inclined crack and/or in a functionally graded medium and/or 

subjected to thermal stresses, the generalized definition of J cannot be converted 

to a single path independent line integral. However, in these cases, it is possible to 

reduce J to a form that consists of line and domain integrals. Equivalent Domain 

Integral (EDI)  approach is a systematic way of converting the generalized line 

integral definition of J to a domain independent form that contains both area and 

line integrals. By using the constitutive relations of plane isotropic 

thermoelasticity, the generalized definition of the J-integral is converted to an 

equivalent domain integral to calculate the thermal stress intensity factor. The EDI 

concept is previously explored to study crack problems in isotropic FGM’s under 

mechanical loads by Gu et al. [4]. 

 

The path-independent kJ -integral is presented for FGM’s considering plane 

elasticity by Kim and Paulino [1]. The formulation is a generalized procedure, 

since the crack orientation is arbitrary, not aligned with principal orthotropy 

directions. Equivalent domain integral approach is utilized for the calculation of 
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mixed-mode stress intensity factors and energy release rate. The performance of 

kJ -integral in computing mixed-mode stress intensity factors using a finite 

element method is examined in their study. The independent engineering 

constants such as elastic modulus, Poisson’s ratio and shear parameter are 

exponentially and linearly varied for various problems. It is concluded that plate 

size, material property gradation (isotropy or orthotropy) and boundary conditions 

play a significant role in fracture behavior of FGM’s. Numerical results show that 

Poisson’s ratio plays a significant role for mixed-mode crack problems with 

prescribed boundary conditions; whereas it has a negligible effect for pure Mode I 

crack problems. 

 

The effects of the material nonhomogeneity and orthotropy on fracture mechanics 

parameters are analyzed by Da� et al. [5]. Analytical and computational 

techniques are focused on the cracks that are lying along an interface in a graded 

orthotropic medium. The authors argue that the Mode I stress intensity factor and 

energy release rate for an interface crack are monotonically decreasing functions 

of the coating stiffness of the functionally graded material. The results of this 

study show that for a single crack or for periodic cracks at the interface, the 

energy release rate is the decreasing function of the nonhomogeneity constant, �, 

and an increasing function of the shear parameter, �, under uniform normal 

loading. The analytical approach constitutes of obtaining the general solution of 

governing partial differential equations for the graded orthotropic coating by 

means of Fourier transformations. The problem is modeled by means of 10-noded 

cubic triangular enriched finite elements. Enriched finite element utilization 

allows the direct calculation of SIF’s and the need for post processing is reduced. 

Comparisons between the analytical approach and enriched finite element 

application conclude that the finite element solutions are within the range of 

4.0± % of analytical results. It is claimed that this level of accuracy is hard to 

achieve when other means of finite element applications are utilized, such as 

Displacement Correlation Technique. 
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A study by Kim and Paulino [6] presents a general purpose formulation and finite 

element method implementation of mixed-mode crack problem for linearly elastic 

FGM’s. This study utilizes Displacement Correlation Technique (DCT), Modified 

Crack Closure (MCC) and Equivalent Domain Integral (EDI) to calculate stress 

intensity factors. Exponentially varying material properties are implemented to the 

finite element codes. Specially designed crack tip elements that emanate from the 

crack tip region, are used for FEM and the effect of crack tip element size is also 

investigated in detail. Several numerical results obtained from three calculation 

methods are compared and it is concluded that EDI and MCC techniques are 

superior to DCT, especially for mixed-mode crack problems such as slanted edge 

crack. kJ -integral method is claimed to be sensitive to the choice of the size of 

the crack tip elements.  

 

Graded finite elements which incorporate the material property gradient at the size 

scale of the element are utilized in the analysis of Kim and Paulino [7]. Using a 

generalized isoparametric formulation, performance of linear (Q4) and quadratic 

(Q8) elements are compared in different loading conditions, such as fixed grip, 

tension and bending. It is concluded that higher order elements (quadratic and 

higher) are superior to conventional homogenous elements based on the same 

shape functions. In order to investigate the influence of material properties on the 

stress response, linear and exponential variations of material properties are 

considered. Stress distribution of the exponentially varied material is smoother 

than the linearly varied material. It is concluded that graded elements provide a 

better approximation to the exact solution in every element.  

 

A three dimensional finite element technique is used to examine the behavior of 

semi-elliptical surface cracks in FGM coatings by Yıldırım et al. [8]. A transient 

thermal analysis is conducted on the 3D model and it is observed that crack 

surfaces contact with each other after a certain period of time, that is, crack 

closure occurs. The time and location for the initiation of the crack closure is 

determined by finding out the point around the crack front and the time at which 
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the SIF becomes zero. SIF’s are observed to go through a maximum as the FGM 

coating-substrate structure cools down from its initial temperature. It is concluded 

that a material property gradation in the coating can cause a decrease in the 

amplitude of Mode I SIF’s under both mechanical and thermal loading.  

 

For homogeneous materials, the fracture parameters such as IK , IIK  and  T -stress 

depend on the geometry, size and external loading. FGM’s possess material 

gradients through the layer which do not affect the order of singularity and the 

asymptotic angular functions which are presented in APPENDIX B. Paulino and 

Kim claimed that material gradients affect the fracture parameters [9]. T -stress 

has been extensively investigated for homogeneous materials. Larsson and 

Carlsson [10] investigated the T -stress in Mode I loading, and found that it 

affects the size and shape of the plastic zone and specimens with negative T -

stress have lower constraint than those with positive T -stress. A stress 

substitution method is used to evaluate T -stress and T -stress is claimed to have a 

significant influence on crack initiation angles in brittle fracture of FGM’s. 

 

T -stress has also been shown to have a significant influence on crack-tip 

toughness of isotropic FGM’s. Paulino and Kim [9] utilized the interaction 

integral approach to investigate the fracture behavior of FGM’s with emphasis on 

the T -stress. It is concluded for both homogeneous and FGM cases that negative 

T -stress decreases the crack initiation angle, however positive T -stress increases 

the crack initiation angle. It is discussed that material gradation has a significant 

influence on the sign and magnitude of T -stress. 
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1.3 Scope of the Study 

 
The aim of this study is to evaluate mixed mode stress intensity factors for 

inclined cracks in a functionally graded medium. A two dimensional finite 

element model is developed for this purpose using finite element software, 

ANSYS [11]. The path-independent kJ -integral is computed with the 

implementation of Equivalent Domain Integral method. EDI is implemented on 

the finite element model with the use of Gauss-Legendre Quadrature, a tool for 

the evaluation of integrals. The Gauss-Legendre Quadrature requires the integrand 

of the kJ -integral to be determined at each of the Gauss points. Therefore, 

subroutines are written in Ansys Parametric Design Language (APDL) to evaluate 

the required variables, such as stresses, strains, displacements and mechanical 

strain energy density function at the Gauss points of each element. An APDL 

subroutine is developed for the implementation of material property variations of 

FGM’s. The material properties are specified for each element at its centroid. A 

circular domain is selected around the crack tip for simplicity. In this circular 

domain, the mesh is finely tuned in order to obtain more accurate results. 8-noded 

quadrilaterals are used to mesh the model. However, 8-noded quadrilaterals are 

modeled such that three nodes share the same node number. Therefore, 8-noded 

triangular elements with same properties as quadrilaterals are used in finite 

element models. Furthermore, in order to simulate the stress concentration at the 

crack tip more accurately in DCT subroutines, the mesh is skewed at the crack tip 

and the 8-noded quadrilaterals are collapsed to triangles around the crack tip. 

After the kJ -integral is evaluated, the relation between mixed mode SIF’s and 

kJ -integral is used in another APDL subroutine to compute SIF’s. The model is 

subjected to thermal loads. In the previously determined time range, the reaction 

of the model at all of the time steps is analyzed. In order to examine the accuracy 

of the model, calculated SIF’s are compared with those available in the literature. 
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This thesis contains six chapters. An introduction, literature survey and the scope 

of the study are given in the present chapter. In Chapter 2, theories of elasticity 

and fracture are explained in detail. The two dimensional inclined crack problem 

is defined in Chapter 3. The details of the finite element modeling and the 

application of Equivalent Domain Integral (EDI) method are given in Chapter 4. 

The computed results and discussions are presented in Chapter 5. Finally, 

concluding remarks are given in Chapter 6. 
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CHAPTER 2  

 

FORMULATION OF kJ -INTEGRAL 

 

2.1 Theory of Elasticity 

 
Theory of elasticity focuses on the internal response of a continuous homogenous 

body to the action of external forces. This hypothetical body, illustrated in Figure 

2.1 is assumed to be in static equilibrium.  

 

 
 

Figure 2.1 Equilibrium of an arbitrary body. 
 

 

Using Newton’s principle of action and reaction , one can imagine that the body is 

cut by a fictitious plane passing through a point P, within the body and the 

removed portion is replaced by an equivalent force, F, acting on the cross-

sectional area, A, as shown in Figure 2.1. This force has the magnitude and 

direction needed to restore static equilibrium to the remaining portion of the body. 

Further, one can resolve F into components normal to the plane, nF , and 
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tangential to the plane, tF . The concept of stress at a point is obtained by 

shrinking the area, A , to infinitesimal dimensions. 

 

Formally, the normal stress,σ  and the shear stress, τ  are defined as 

 

A

Fn

A 0
lim

→
=σ

   A

Ft

A 0
lim

→
=τ

                                               (2.1.a, b) 

 

Clearly,σ  and τ  depend on the orientation of the plane passing through P and 

vary from point to point.  

 
 

A complete description of the stresses acting at a point can be obtained by 

constructing a Cartesian coordinate system at the point and examining the average 

forces per unit area acting on the faces of an infinitesimally small cube 

surrounding the point. Using the definition of normal and shear stresses from 

(2.1), the stresses on each face can be represented in Cartesian form, as shown in 

Figure 2.2.  

 

 
 
 

Figure 2.2 Cartesian components of stress in three dimensions 
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If the stresses are slowly varying across the infinitesimal cube, moment 

equilibrium about the centroid of the cube requires that, 

yxxy ττ =    zxxz ττ =   yzzy ττ =                                (2.2) 

 

As a result, the nine stress components depicted in Figure 2.2 reduce to six 

independent quantities that one can write in an array, called stress tensor, as 

follows 

 

�
�
�

�

�

�
�
�

�

�

=

zyzxz

yzyxy

xzxyx

ij

σττ
τστ
ττσ

σ                                    (2.3) 

where, ijσ  is the stress components expressed in indicial notation. 

 

Stress tensor is the outcome of the action of forces on the infinitesimal cube. 

When the distortion of the infinitesimally small cube is considered, the measure of 

distortion, called state of strain is introduced. The state of strain is described in 

terms of the displacements of the point from its undistorted position and its 

derivatives. In the Cartesian coordinate system, the displacements in the 

coordinate dimensions x, y and z are defined as u, v and w, respectively. Then, for 

small displacements in a continuous body, the strains in terms of the displacement 

gradients are given by 

 

x
u

x ∂
∂=ε        

y
v

y ∂
∂=ε           

z
w

z ∂
∂=ε  

 
x
v

y
u

xy ∂
∂+

∂
∂=γ               

x
w

z
u

xz ∂
∂+

∂
∂=γ                

y
w

z
v

yz ∂
∂+

∂
∂=γ              (2.4.a-f) 
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The strain tensor is defined as 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=
�
�

	




�
�

�




∂
∂

+
∂
∂=

z
yzxz

yz
y

xy

xzxy
x

i

j

j

i
ij x

u

x
u

ε
γγ

γ
ε

γ

γγ
ε

ε

22

22

22

2
1

                                            (2.5) 

 

Stress is a conceptual quantity related to the force acting at a point. It is assumed 

that a material medium exists such that the stress acts against some resistance. 

Similarly, strain is a kinematic quantity relating relative motion between points in 

a material medium.The definitions of both stress and strain tensors are 

independent of material medium in which they act. The relation between state of 

stress and state of strain is called the constitutive equation. The material is 

assumed to be isotropic and homogenous. However, this study concentrates on 

FGM’s for which material properties vary from point to point by a function.  The 

material properties for FGM’s are sampled for every single point and the 

constitutive relations given below are applied for each of the points. 

 

 Lame’s constants are introduced as follows, 

υ
αβ

21 −
= E

  ( )( )υυ
υλ

211 −+
= E

  ( )υ
µ

+
=

12
E

                   (2.6) 

 where, E is modulus of elasticity of the material 

  υ  is Poisson’s ratio of the material. 

 

The temperature difference is defined as,   

initialTTT −=∆=θ                          (2.7) 

 

Introducing the Kronecker Delta for indicial notation; 

�
�
�

≠
=

=
jiif

jiif
ij 0

1
δ                          (2.8) 
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For a general 3D state of stress, constitutive relation for thermal analysis can be 

written as follows, 

ijijkkijij δθβδελεµσ −+= 2             (2.9) 

 

The equations of motion that constitute the kinetics of the problem is obtained by 

analyzing the equilibrium conditions of the infinitesimal cube of Figure 2.2 and 

are given in indicial notation by 

2

2

, t
u

B i
ijij ∂

∂
=+ ρσ                                              (2.10) 

where,  jij ,σ  is the derivatives of stress tensor 

iB  is the body forces  

iu  is the displacements in indicial notation.  

 

In the absence of body forces and for the static case, (2.10) reduces to 

0, =jijσ                   (2.11) 

 

There are two special cases in which the anti-plane behavior is restricted and the 

governing equations of elasticity can be formulated in two dimensions. 

 

State of Plane Strain: All anti-plane strains are zero. 

0=zε    0=xzγ   0=yzγ                              (2.12) 

 

State of Plane Stress: All anti-plane stresses are zero. 

0=zσ                 0=xzτ            0=yzτ                                        (2.13) 
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2.2 Fracture Mechanics Theory 

 
Theory of fracture mechanics focuses on failure of structures containing cracks 

based on some calculation methods. All of these methods are developed for the 

derivation of Stress Intensity Factors (SIF’s).  An accurate prediction of stress 

intensity factors at crack tips is essential for assessing the strength and life of 

structures using fracture mechanics theories. The methods for extracting stress 

intensity factors from computed displacement solutions fall into two categories; 

displacement matching methods and energy based methods.  

 

Displacement matching methods assumes a form of the local solution and the 

value of the displacement near crack tip is used to determine the magnitude of the 

coefficients in the asymptotic expansion.  

 

Energy based methods relate the strength of the singular stress field to the energy 

release rate, i.e. the sensitivity of the total potential energy to the crack position. 

An expression for calculating the energy release rate in two dimensional cracks is 

given by Rice [3] and is known as the J-integral. The J-integral is a path 

independent contour integral involving the projection of the material force derived 

from Eshelby's [12] energy momentum tensor along the direction of the possible 

crack extension. An alternative form of the J-integral is transformed into a domain 

integral, namely, kJ -integral.  
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2.2.1 kJ -Integral Formulation 

 
Consider a loop �� around the crack tip as shown in Figure 2.3; 
 
 

 
 

 
Figure 2.3 Schematic of a kJ -integral path around the crack tip. 

 
 

Equivalent Domain Integral approach is a systematic way of converting the 

generalized line integral definition of J -integral to a domain independent form 

that contains only area integrals. By using this method, domain independent 

integrals can be derived for FGM’s subjected to thermal stresses.  

 

The generalized J -integral is converted to an area integral by carrying out the 

necessary modifications resulting from material property gradation and thermal 

strains [13]. 
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The path independent line integral, kJ  is defined in the following form [14]: 

( ) Γσ
ε

ε Γ
Γ

dunnWJ kijijkk � −=
→ ,0

lim                                                                (2.14) 

where, W   is the mechanical strain energy density function,  

kn  is the unit outward normal to εΓ ,  

ijσ  are the stress components,  

 i,j,k =1, 2, 3 

This form of formulation is not suitable for numerical analysis, since it is not 

feasible to evaluate stresses and strains along a vanishingly small contour. A 

convenient approach in the finite element implementation of the kJ -integral is to 

convert the generalized line integral definition to an equivalent domain integral 

(EDI) calculated around the crack tip.  

 

To define the equivalent domain integral, one should define an area � around the 

crack tip as shown in Figure 2.4.  

The integration path is the addition of four paths around the crack tip; 

εΓΓΓΓΓ +++= −+
CC0                                                  (2.15) 

and the integration area is introduced as; 

0 εΩ Ω Ω= −                        (2.16) 

 
 

Figure 2.4 kJ -integral integration path. 
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A piecewise smooth function, q is introduced as follows(APPENDIX C); 

�
�
�

=
εΓ

Γ
on

on
q

1

0 0                                        (2.17) 

Now, let us consider the line integral; 

( ) Γσ
Γ

dqnWun kkijij� −,                    (2.18) 

Utilizing the Kronecker Delta, one can write; 

jkjk nn δ=                                    (2.19) 

Combining (2.18) with (2.19), 

( ) Γδσ dnqWquI jkjkiijk � −= ,                                                                   (2.20) 

By utilizing the divergence theorem (APPENDIX A) in the plane, the line integral 

is converted to a domain integral. 

( ) ( ) ΩδσΓδσ
ΩΓ

dqWqu
x

dnqWquI kjkiij
j

jkjkiijk ��� −
∂
∂=−= ,,            (2.21) 

Concentrating on the integrand of the domain integral; 

( )qWu
x

S kjkiij
j

δσ −
∂
∂= ,            (2.22) 

Differentiating the terms with respect to jx  ,       

( ) ( ) jkjkiijjkjkjjkjiijkijij qWuqWWuuS ,,,,,,, δσδδσσ −+−−+=       (2.23) 

Kronecker Delta has the properties of, 

0, =jkjδ             kkjj WW ,, =δ                     (2.24.a, b) 

Combining (2.23) with (2.24.a ,b) 

( ) ( ) jkjkiijkkjiijkijij qWuqWuuS ,,,,,, δσσσ −+−+=                        (2.25)

               

First Term,  1S      Second Term, 2S  

Concentrating on the terms of 1S ,  

( )qWuuS kkjiijkijij ,,,,1 −+= σσ           (2.26) 
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expl

, ��
	



��
�




∂
∂+

∂
∂

∂
∂=

∂
∂=

kk

ij

ijk
k x

W
x

W
x
W

W
ε

ε
                     (2.27) 

expl
��
	



��
�




∂
∂

kx
W  is the explicit derivative of W and defined as, [14] 

kkkkkk x
W

x
W

x
W

x
W

x
W

x
W

∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂=��

	



��
�




∂
∂ θ

θ
α

α
β

β
λ

λ
µ

µ
expl

     (2.28) 

The definition of mechanical strain energy density function suggests that, 

ij
ij

W σ
ε

=
∂
∂

                          (2.29) 

Substituting (2.29) into (2.27) the following is obtained in indicial notation, 

( )
expl,,, kkijijk WW += εσ            (2.30) 

Differentiating (2.5) with respect to k and substituting into (2.30), 

( )
expl,, 2

1
k

i

j

j

i

k
ijk W

x

u

x
u

x
W +

�
�

	




�
�

�




∂
∂

+
∂
∂

∂
∂= σ                     (2.31) 

( )
22

, , expl

1 1
2 2

ji
k ij ij k

k j k i

uu
W W

x x x x
σ σ

∂∂= + +
∂ ∂ ∂ ∂

                                      (2.32) 

At this stage, one should interchange the dummy indices of the second term to 

simplify the equation. After necessary simplifications, one can obtain the 

following,[14] 

( )
expl,,, kkjiijk WuW += σ                       (2.33) 

Substituting (2.33) in (2.26), 

( )
expl,,,1 kkijij WuS −= σ                       (2.34) 

Using (2.11),  

0, =jijσ                         (2.35) 

(2.34) reduces to, 

( )
expl,1 kWS −=                        (2.36) 

As a result, the integrand of the domain integral can be written as follows, 

( ) ( ) jkjkiijk qWuqWS ,,expl, δσ −+−=          (2.37) 
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Hence, (2.21) can be written as follows, 

( ) ( ) ( )explk ij i ,k kj j ij i ,k kj , j ,k
j

I u q W q n d u W q d W q d
xΓ Ω Ω

σ δ Γ σ δ Ω Ω∂= − = − −
∂� �� ���   (2.38) 

Considering the line integral on �,   

( ) kjkjkiij bnqWu =− δσ ,                       (2.39) 

Taking the line integral of both sides of (2.15)  

0C C

k k k k k kI b d b d b d b d b d
εΓ Γ ΓΓ Γ

Γ Γ Γ Γ Γ
+ −

= = + + +� � � � �� � � � �                                  (2.40) 

The change of the orientation of εΓ curve can be observed in Figure 2.5. 

 
 

Figure 2.5 Re-orientation of the integration curves 
 

 

Since the q-function has a value of zero on 0Γ , 0=kb  on this curve. Substituting 

this fact and the re-orientation effects on (2.40), one can obtain, 

,new C C

k k k k kI b d b d b d b d
εΓ Γ Γ Γ

Γ Γ Γ Γ
+ −

= = − + +� � � �� � � �         (2.41) 

Substituting (2.39) in the line integral of the newly oriented curve, 

( )
,new C C

k kj ij i ,k j k kb d W u q n d b d b d
εΓ Γ Γ Γ

Γ δ σ Γ Γ Γ
+ −

= − + +� � � �� � � �               (2.42) 

 

 

 

kJ  
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Keeping in mind that 0 εΩ Ω Ω= −  and taking the limit as 0→εΓ  , and 

substituting (2.38) into (2.42) the following is obtained, 

( ) ( )

( ) ( )� �

����

+ −

−−−−

−−=

C C

dnqWudnqWu

dqWdqWuJ

jkjkiijjkjkiij

kjkjkiijk

Γ Γ

ΩΩ

ΓδσΓδσ

ΩΩδσ

,,

expl,,,

                 (2.43) 

Concentrating on the terms of line integrals on CΓ +  and CΓ − , it is observed that 

displacement derivatives with respect to k equals zero on these curves, therefore 

0, =jkiij nuσ                                               (2.44) 

Substituting (2.44) into (2.43),  

( ) ( )

� �

����

+ −

−−++ ++

−−=

C C

dqnWdqnW

dqWdqWuJ

kk

kjkjkiijk

Γ Γ

ΩΩ

ΓΓ

ΩΩδσ
expl,,,

                              (2.45) 

Let us combine the two terms which involve integrations along two crack faces  

CΓ +  and CΓ −  and define CΓ , the associated path of integration. The orientation of 

the curve can be changed and the corresponding normal for the integral can be 

evaluated on curve CΓ − . So, both integrals are evaluated over the same horizontal 

line. The path of integration can be denoted as CΓ . Therefore, the integral 

becomes; 

( ) ( ) ( )�����
+−+ −+−−=

C

dqnWWdqWdqWuJ kkjkjkiijk

ΓΩΩ

ΓΩΩδσ
expl,,,  (2.46) 

where, the notation of ( )−+ − WW  denotes the discontinuity (or jump) in the 

mechanical strain energy density across crack faces [1]. 

kJ - integral can be separated into Mode I and Mode II contributions as follows, 

( ) ( ) ΩΩδσ
ΩΩ

dqWdqWuJ jjiij ���� −−=
expl

1,,11,1                            (2.47.a) 

( ) ( ) ( )�����
+−+ −+−−=

C

dqnWWdqWdqWuJ jjiij

ΓΩΩ

ΓΩΩδσ 22,,22,2
expl

  (2.47.b) 

It can be observed that 1J  term does not have a line integral term. This is due to 

the fact that, 1 0n+ =  on both curves, CΓ +  and CΓ − . 
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2.2.2 1J -Integral Formulation 

 
Re-organizing the equation (2.47.a); 

( ) ( ) ΩΩδσ
ΩΩ

dqWdqWquJ jjjiij ���� −−=
expl

1,,1,1,1                    (2.48) 

The term W is the mechanical strain energy density function and is defined as,[14] 

m
ijijW εσ

2
1=                                          (2.49) 

 where m
ijε  is the mechanical strain and defined as 

ijij
m
ij δθαεε −=                                                                                                (2.50) 

 where θ  is the temperature difference 

 

Substituting (2.9) and (2.50) into (2.49) one can obtain 

22

2
3

2
θαβεθβελεεµ +−+= kkkkijijW          (2.51) 

The explicit derivative of mechanical strain energy density function is expressed 

as, 

( )
11111expl1

expl1, x
W

x
W

x
W

x
W

x
W

x
W

W
∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂=��

	



��
�




∂
∂= θ

θ
α

α
β

β
λ

λ
µ

µ
(2.52) 

Explicitly expressing the indicial notation of terms for plane strain condition, 

2,1,2222,1,1121,1,2211,1,111,1, quququququ jiij σσσσσ +++=                         (2.53) 

and 

( ) ( ) ( ) 2
2211

2
2211

2
22

2
12

2
11 2

3
2

2 θαβεεθβεελεεεµ ++−++++=W                   (2.54) 

then partial derivatives can be found as follows [14] 

( )2
22

2
12

2
11 2 εεε

µ µ ++==
∂
∂

F
W

                   

( )2
22112

1 εε
λ λ +==

∂
∂

F
W
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( )2211
2

2
3 εεθθα

β β +−==
∂
∂

F
W

                                                   

2

2
3 θβ

α α ==
∂
∂

F
W

                     

( )22113 εεβθαβ
θ θ +−==

∂
∂

F
W

               (2.55.a-e) 

The terms 
1 1 1 1

, , ,
x x x x
µ λ β α∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
are the derivatives of material properties and 

1x
θ∂

∂
 is the derivative of temperature difference with respect to 1x . 
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2.2.3 2J -Integral Formulation 

 
Re-organizing the equation (2.47.b); 

( ) ( ) ( )2 2 2 2 2
expl C

ij i , , j j , j ,J u q W q d W q d W W n q d
Ω Ω Γ

σ δ Ω Ω Γ+ − += − − + −�� �� � (2.56) 

Keeping in mind that (2.49) is still valid, the explicit derivative of mechanical 

strain energy density function is expressed as, 

( )
22222expl2

expl2, x
W

x
W

x
W

x
W

x
W

x
W

W
∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂=��

	



��
�




∂
∂= θ

θ
α

α
β

β
λ

λ
µ

µ
  (2.57) 

Explicitly expressing the indicial notation of terms for plane strain condition, 

2,2,2222,2,1121,2,2211,2,111,2, quququququ jiij σσσσσ +++=                   (2.58) 

Equations (2.54) and (2.55) are also valid for this integral.  

Concentrating on the ( )�
+−+ −

C

dqnWW
Γ

Γ2  term of 2J -integral, which is the 

integration along the crack faces of discontinuity in mechanical strain energy 

density as shown in Figure 2.6. 

 
 

Figure 2.6 Schematic of the line integral ( )�
+−+ −

C

dqnWW
Γ

Γ2  
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At this point, the mechanical strain energy density function in terms of stress 

components is required. 

( )
2

2344
1

kkijijW σ
µλµ

λσσ
µ +

−=                                            (2.59) 

For plane strain case, the explicit form of mechanical strain energy density 

function is as follows, 

( ) ( ) ( )2
332211

2
33

2
22

2
12

2
11 234

2
4
1 σσσ

µλµ
λσσσσ

µ
++

+
−+++=W               (2.60) 

For plane stress case, the explicit form of mechanical strain energy density 

function is as follows, 

( ) ( ) ( )2
2211

2
22

2
12

2
11 234

2
4
1 σσ

µλµ
λσσσ

µ
+

+
−++=W                                 (2.61) 

Note that the integrand of the line integral can be written as, 

( ) ( ) ( )ππ −−=− −+ ,, rWrWWW           (2.62) 

This term can be calculated by utilizing the asymptotic expressions for stress 

components near the crack tip. (APPENDIX B)  

When (B.1) equations are substituted into (2.62), one can obtain the following 

( ) 4
2
II sK T

W W
E Rπ

+ −− = −
′

           (2.63) 

where sT  is the nonsingular stress, or T-stress 

  

( )2

, plane stress

1 ,plane strain

tip

tip

tip

E

EE
υ

�
�′ = �
� −
�

                  (2.64) 

 

( ) ( )2
0

4

2
C

R R
II s

R

K Tx x
W W n q d W W dx dx

R RE r

δ

δΓ

Γ
π

−
+ − + + −

−

− = − − +
′� � �            (2.65) 

where, 12 −=+n  , unit normal to CΓ  curve as shown in Figure 2.6  

    
x

q
R

=  , q  function (APPENDIX C) 
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The line integral, ( )�
+−+ −

C

dqnWW
Γ

Γ2 is divided into two parts in (2.65). The 

first term is calculated numerically and second term is evaluated analytically. The 

values of δ  should be sufficiently small so that asymptotic representations can be 

used for stress components. Taking small values for δ also makes it feasible to 

assume the material properties to be constant for those small distances and equal 

to the crack tip material properties. 

 

Integrating the second term of (2.65), [14] 

( ) ( ) ( )
2

0

8 3

2 3
C

R
II sK T Rx

W W n q d W W dx
R E R

δ

Γ

δδΓ
π

−
+ − + + − −

− = − − +
′� �      (2.66) 

Substituting (2.66) into (2.56), 

( ) ( )

( ) ( )

2 2 2 2 expl

0

8 3

2 3

ij i , , j j , j ,

R
II s

J u q W q d W q d

K T Rx
W W dx

R E R

Ω Ω
δ

σ δ Ω Ω

δδ
π

−
+ −

= − −

−
− − +

′

�� ��

�
                 (2.67) 
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2.2.4 Stress Intensity Factor Calculation 

 
Rewriting (2.47) and (2.67) 

( ) ( ) ΩΩδσ
ΩΩ

dqWdqWquJ jjjiij ���� −−=
expl

1,,1,1,1    (2.68.a) 

( ) ( )

( ) ( )

2 2 2 2
expl

0

8 3

2 3

ij i , , j j , j ,

R
II s

J u q W q d W q d

K T Rx
W W dx

R E R

Ω Ω

δ

σ δ Ω Ω

δδ
π

−
+ −

= − −

−
− − +

′

�� ��

�
              (2.68.b) 

 

The relation between 1J  , 2J and  stress intensity factors IK , IIK  is given by, [6] 

2 2

1
I IIK K

J
E
+=

′
                                                     (2.69.a) 

2
2 I IIK K

J
E

= −
′

                    (2.69.b) 

 

A new quantity, 2Ĵ is introduced 

( ) ( ) ( )2 2 2 2 expl
0

R

ij i , , j j , j ,
x

Ĵ u q W q d W q d W W dx
R

δ

Ω Ω

σ δ Ω Ω
−

+ −= − − − −�� �� �   (2.70) 

Substituting this new quantity in (2.68.b) 

( )
2

8 3 2ˆ
2 3

II s I IIK T R K K
J

E R E
δδ

π
−

+ = −
′ ′

         (2.71) 

 

The quantity 2Ĵ  is computed numerically on a given domain for two values of δ , 

namely 1δ  and 2δ as shown in Figure 2.7.  
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Figure 2.7 Line integral paths for upper and lower crack faces 
 

 

When 1δ  and 2δ  are substituted into (2.71), 1
2Ĵ  and 2

2Ĵ  are obtained.   

( )1 11
2

8 32ˆ
2 3

II sI II K T RK K
J

E E R
δδ

π
−

= − −
′ ′

                 (2.72.a) 

( )2 22
2

8 32ˆ
2 3

II sI II K T RK K
J

E E R
δδ

π
−

= − −
′ ′

                           (2.72.b) 

Let  

8
2

II sK T
G

Eπ
= −

′
            (2.73) 

Substituting (2.69.b) and (2.73) in (2.72.a, b) 

1 1
2 2 1

ˆ 1
3

J J G
R

δδ 
 

= + −� �

� 	
                              (2.74.a) 

2 2
2 2 2

ˆ 1
3

J J G
R

δδ 
 

= + −� �

� 	
        (2.74.b) 

Subtracting (2.74.a) from (2.74.b) one can obtain, 

1 2
2 2

1 2
1 2

ˆ ˆ

1 1
3 3

J J
G

R R
δ δδ δ

−=

 
 
 


− − −� � � �
� 	 � 	

                                (2.75) 
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Substituting (2.75) in (2.74.a) 

1 2
1 2 2 1
2 2 1

1 2
1 2

ˆ ˆ
ˆ 1

3
1 1

3 3

J J
J J

R
R R

δδ
δ δδ δ


 
−= + −� �

 
 
 
 � 	− − −� � � �
� 	 � 	

                  (2.76) 

Organizing the terms, 

2 11 2
1 2 2 2

2
1 2

1 2

ˆ ˆ1 1
3 3

1 1
3 3

J J
R R

J

R R

δ δδ δ

δ δδ δ


 
 
 

− − −� � � �

� 	 � 	=

 
 
 


− − −� � � �
� 	 � 	

                                                        (2.77) 

At this stage, the terms of kJ - integral, namely 1J  and 2J are numerically known.  

Therefore, the values of stress intensity factors can be determined. 

Re-organizing (2.69.b) 

2

2II
I

E J
K

K
′

= −                                                                                                     (2.78) 

Substituting (2.78) into (2.69.a) 

2
2 2

1
2I

I

E J
K

K
J

E


 
′
+� �
� 	=

′
                                                       (2.79) 

 

Organizing the terms, the following equation is obtained, 

( ) ( )2 24 2
1 2

1
0

4I IK E J K E J′ ′− + =                                         (2.80.a) 

 

The same equation can be obtained for IIK  as follows 

( ) ( )2 24 2
1 2

1
0

4II IIK E J K E J′ ′− + =                                        (2.80.b) 
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The four roots of this equation are as follows 

( ) ( )
1

22 2
1 1 1 22

E
R J J J

′� �
 
= + +� �� �
� 	� �

 

( ) ( )
1

22 2
2 1 1 22

E
R J J J

′� �
 
= − + +� �� �
� 	� �

 

( ) ( )
1

22 2
3 1 1 22

E
R J J J

′� �
 
= − +� �� �
� 	� �

 

( ) ( )
1

22 2
4 1 1 22

E
R J J J

′� �
 
= − − +� �� �
� 	� �

             (2.81.a-d) 

One of the four roots is Mode I stress intensity factor, IK  and another one is 

Mode II stress intensity factor, IIK .  

 

The signs of the stress intensity factors are determined by monitoring relative 

normal and tangential displacements near the crack tip which are defined as  

−+ −= 22 uun∆   

−+ −= 11 uut∆                                                   (2.82.a-b) 

where the superscripts +  and −  refer to the upper and lower crack surfaces, 

respectively.  

In the finite element analysis, n∆  and t∆  are calculated in the close vicinity of the 

crack tip. A positive n∆  value implies that crack is open near the crack tip and IK  

is positive. Similarly, IIK  is positive if 0>t∆ .   

 

The value of T-stress can be determined after the calculation of Mode II SIF and 

G parameter defined in (2.75) 

2
8s

II

E
T G

K
π ′

= −                                                                                               (2.83) 
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CHAPTER 3  

 
PROBLEM DEFINITION 

 
 
In this study, inclined crack problems in isotropic FGM’s under steady-state 

thermal loading are considered. This chapter is dedicated to explain the geometry 

and thermal boundary conditions of the problem.  

 

3.1 Inclined Embedded Crack under Steady-State Thermal Loading 

 
The geometry of an embedded inclined crack in a FGM layer is shown in Figure 

3.1. The coordinate system is placed in the middle of the crack which has a length 

of a2 . The thickness of the FGM layer is set to 21 hhh += . The width of the 

FGM layer is W . The FGM layer has an embedded inclined crack at 1h   distance 

below the upper bound making an angle of φ  with the positive x -axis. 

Geometrical parameters are taken as: 0.21 =a
h  , 0.22 =a

h  and 0.10=a
W .  

 
 

 
 

 
Figure 3.1 Geometry and boundary conditions of an inclined embedded crack 

under steady-state thermal loading  
 



 

31 

Initially, the specimen is at a reference temperature 0T  for which all stress 

components are assumed to be zero. Right and left end planes 2
Wx = ±   are 

assumed to be insulated. Upper and lower bounds 1y h= , 2y h= −  are assumed to 

be kept at temperatures 1T  and 2T , respectively. Crack faces are assumed to be 

insulated.  

 

Surfaces at 1hy =  and 2hy −=  are assumed to be 100% ZrO2 and 100% Ni, 

respectively. Properties of ZrO2 and Ni are given in Table 3.1 as follows: 

 
Table 3.1 Thermomechanical Properties of ZrO2 and Ni 

 

 Modulus of 
Elasticity 

Poisson’s 
Ratio 

Thermal Expansion 
Coefficient 

Thermal 
Conductivity 

Ni  
(m) 175.8 GPa 0.25 13.91*10-6 °C-1 7 W/mK 

Zirconia 
(cr) 27.6 GPa 0.25 10.01*10-6 °C-1 1 W/mK 

 
 

The graded thermomechanical properties of the FGM layer are varied only in y  

direction and represented in the following form  

 

( ) ( )
1

21

1 
γ

��
	



��
�




+
−

−+=
hh
yh

EEEyE crmcr ,  12 hyh <<− ,                  

( ) ( )
2

21

1 
γ

νννν ��
	



��
�




+
−

−+=
hh
yh

y crmcr ,  12 hyh <<− ,                  

( ) ( )
3

21

1 
γ

αααα ��
	



��
�




+
−

−+=
hh
yh

y crmcr ,  12 hyh <<− ,   

( ) ( )
4

21

1 
γ

��
	



��
�




+
−

−+=
hh
yh

kkkyk crmcr ,  12 hyh <<− ,             (3.1.a-d) 
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where E  is the modulus of elasticity 

ν  is Poisson’s ratio 

 α  is the thermal expansion coefficient 

 k  is the thermal conductivity  

 
Subscripts cr and m refer to 100% ceramic and metal surfaces, respectively. The 

FGM layer shown above is assumed to be in a deformation state of plane strain. 



 

33 

 

CHAPTER 4  

 
FINITE ELEMENT IMPLEMENTATION 

 

4.1 Finite Element Method 

 
 
Finite element method is a numerical method that applies to real-world problems 

involving complicated physics, geometry, and/or boundary conditions. In this 

method, a given domain is divided into sub-domains, called finite elements, and 

an approximate solution to the problem is developed over each element. The main 

reason behind seeking approximate solution on a collection of finite elements is 

the fact that it is easier to represent a complicated function as a collection of 

simple polynomials. Subdivision of a whole domain and approximation approach 

allows accurate representation of complex geometries and inclusion of dissimilar 

material properties, just like FGMs. The finite element method converts a 

continuum problem to a discrete one, which is, converting a system with an 

infinite number of degrees of freedom into one with a finite number of degrees of 

freedom. 

 

Finite element method of a system ultimately represents a set of algebraic 

equations among the values of the dependent variables of the system at the 

selected nodes of the domain. The coefficients of algebraic equations are typically 

integrals of approximation functions multiplied by the data of the problem. The 

exact solution of these integrals is not always possible due to algebraic complexity 

of the data. In such cases, it is natural to seek for numerical evaluation of these 

integral expressions. 
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Numerical integration involves approximation of the integrand by a polynomial of 

sufficient degree, since the integral of a polynomial can be evaluated exactly. 

For instance, consider the integral; 

( ) dxxFI
b

a

x

x
�=                (4.1) 

The integrand ( )xF  can be approximated by a polynomial such as, 

( ) ( )xFxF i

N

i
i ψ�

=

≈
1

                                                                    (4.2) 

where iF  denotes the value of ( )xF  at the ith  point 

          ( )xiψ  denotes the polynomials of degree N-1 

This representation can also be viewed as the finite element interpolation of ( )xF . 

 

The transformation of the geometry and variable coefficients of the governing 

equation, in this study being the kJ -integral, from the global coordinates ( )yx ,  

to natural coordinates ( )ηξ ,  results in algebraically complex expressions and 

they preclude analytical evaluation of the integrals. The transformation of a given 

integral expression defined over master element to one on the domain Ω  

facilitates the numerical integration. 

 

The numerical integration scheme that is used in this study is the Gauss-Legendre 

Quadrature. This integration method requires the integral to be evaluated on a 

specific domain with respect to a specific coordinate system, that is, the integral 

must be expressed over a square region Ω̂ , with a natural coordinate system 

( )ηξ ,  to be such that ( ) 1,1 ≤≤− ηξ . Therefore, some transformations must be 

made over the elements to utilize this integration scheme.  
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Figure 4.1 Mapping of a master rectangular element to an arbitrary quadrilateral 

element of a finite element mesh 
 
 

Mapping of a rectangular element to a quadrilateral one is explained in Figure 4.1. 

It can be observed from Figure 4.1 that the natural coordinates and global 

coordinates are transformed such that the orientation of the element with respect 

to the global coordinates is also reflected to the transformation. The 

transformation relation between global coordinates and natural coordinates can be 

written as; 

( ) ( )�
=

=
N

i
ii xx

1

,, ηξψηξ       

( ) ( )�
=

=
N

i
ii yy

1

,, ηξψηξ              (4.3) 

where, ( )ηξψ ,i  are the shape functions that are used to express the geometry or 

shape of the element. 

The Gauss-Legendre Quadrature is based on the idea that the base Gauss points, 

ix , and the Gauss weights iW  can be chosen so that the sum of the r+1 

appropriately weighted values of the function yields the integral exactly when 

( )xF  is a polynomial of degree 2r+1.  
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A domain integral of the form, 

( ) dydxyxFI ��
Ω

= ,                                                                     (4.4) 

can be represented with Gauss-Legendre Quadrature as follows, 

( ) ( ) ( )
1 1 1

1 1 11 1 1

, , ,
r r r

i i i j i j
i j i

I F J d d F W d F W Wξ η ξ η ξ η η ξ η
= = =− − −

� �
= = =� �

� �� �
� � �� � �    (4.5) 

where J  is the Jacobian of the element 

A line integral of the form, 

( )�=
b

a

dxxGL                  (4.6) 

can be represented with Gauss-Legendre Quadrature as follows, 

( ) ( )��
=−

==
r

i
ii WGdGL

1

1

1

ξξξ                                                                                (4.7) 

For a double integral given in (4.4), the Gauss point locations (Figure 4.2.b) and 

Gauss weights for the 2nd order Gauss-Legendre Quadrature are given as; [15] 

( ) �
	



�
�


 ±±=
3

1,
3

1, ji ηξ   

1== ji WW                                                           (4.8) 

It should be noted that the integrand of the numerical integration in (4.4) must be 

expressed in terms of natural coordinates ( )ηξ , . Therefore, for this study, the 

domain integral component of kJ -integral must be calculated at each of the four 

Gauss points.  

For a line integral along 1x -axis given in (4.6) the Gauss point locations (Figure 

4.3) and Gauss Weights for the 2nd order Gauss-Legendre Quadrature are given 

as; [15] 

( ) �
	



�
�


 −±= 1,
3

1, ji ηξ                                                                                    (4.9) 

1=iW   
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Similar to the domain integral, the integrand of the numerical integration in (4.6) 

must be expressed in terms of natural coordinates ( )ηξ , . The integrands of line 

integral component of kJ -integral must be calculated at both of the Gauss points.  

 

In this study ANSYS finite element program is used to calculate the mixed-mode 

SIFs under thermal loads. Problems involving thermomechanical conditions 

require a two-step analysis that is thermal analysis combined with structural 

analysis. First the thermal problem is solved, and nodal temperatures are stored in 

the database and then the structural analysis is run to determine the deformations 

and stresses induced on the model. Therefore, different element types are required 

for thermal and structural analysis. PLANE77 is used for thermal analysis and 

PLANE82 is utilized for the structural analysis. The same mesh is used for both of 

the analyses. The shape functions and node numbers are the same for both of the 

elements. The only difference between the two element types is that PLANE77 is 

a thermal element and can only store thermal degree of freedoms and properties 

for the element, such as temperature. However, PLANE82 is a structural element 

that can store displacement, stress and other structural values of the element. Both 

of the element types utilize 2nd order Gauss-Legendre Quadrature ( 2=r ), that is 

2X2 Gauss points are used for integration and approximation processes. They are 

8-noded quadrilaterals as it can be seen in Figure 4.2.a-b.  

 
 

Figure 4.2.a Node numbers associated with PLANE82 structural element and 
PLANE77 thermal element. 
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Figure 4.2.b Gauss point locations for domain integrals on 8-noded quadrilateral 
 
 
 
 

 
 
 

Figure 4.3 Gauss point locations for line integral along x -axis on 8-noded 
quadrilaterals 
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Shape functions for PLANE77 and PLANE82 elements are given as follows, 

( )( )( )ηξηξψ ++−−−= 111
4
1

1   ( )( )ηξψ −−= 11
2
1 2

2  

( )( )( )ηξηξψ +−−+−= 111
4
1

3   ( )( )2
4 11

2
1 ηξψ −−=            (4.10.a-h) 

( )( )2
5 11

2
1 ηξψ −+=     ( )( )( )ηξηξψ −++−−= 111

4
1

6  

( )( )ηξψ +−= 11
2
1 2

7     ( )( )( )ηξηξψ −−++−= 111
4
1

8  

                                      

Equation (4.3) expresses the global coordinate transformation to the natural 

coordinates. Consider a dependent variable such as the displacement of the 

element nodes in global x direction, u. The finite element method allows the users 

to create two different meshes of elements for the approximation of the geometry, 

being global coordinate x, and the interpolation of dependent variable, being the 

displacement u.  

 

Depending on the degree of geometry approximation and the degree of dependent 

variable interpolation, finite element formulations are classified into three 

categories: 

 

- Subparametric Formulation represents the geometry with lower order elements 

than those used to interpolate for the dependent variable. 

 

- Isoparametric Formulation utilizes the same element to approximate the 

geometry and interpolate the dependent variable. 

 

- Superparametric Formulation utilizes higher order elements to represent the 

geometry. 
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In this study, isoparametric formulation will be used to investigate the behavior of 

functionally graded materials under mixed-mode conditions. That is, the same 

elements, therefore the same shape functions, will be utilized to approximate the 

geometry and interpolate the dependent unknowns. 

 

( ) ( )�
=

=
N

i
ii xx

1

,, ηξψηξ  Transformation of global coordinate x       (4.11.a-d) 

( ) ( )�
=

=
N

i
ii yy

1

,, ηξψηξ  Transformation of global coordinate y  

( ) ( )�
=

=
N

i
ii uu

1

,, ηξψηξ   Transformation of displacement in x direction, u   

( ) ( )�
=

=
N

i
ii vv

1

,, ηξψηξ  Transformation of displacement in y direction, v   
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4.2 Finite Element Solution Procedure 

 
 
In this study, a finite element method procedure is developed for the calculation of 

kJ -integral. For this purpose, a computer code is developed in ANSYS [11] by 

utilizing Ansys Parametric Design Language. The code simply aims at the 

evaluation of stress intensity factors around the crack tip in a functionally graded 

medium under thermal loads. As mentioned earlier by (2.69), SIF’s are related to 

the components of kJ -integral, namely 1J  and 2J . In this chapter, the numerical 

evaluation of 1J  and 2Ĵ  which are derived in (2.48) and (2.70) respectively are 

explained in detail.  

 

The analytical evaluation of 1J -integral in FGM layer is given by (2.48).  

Re-organizing this equation, 

( )( )�� −−=
Ω

Ωδσ dqWqWquJ jjjiij expl1,,1,1,1                    (4.12) 

Let 

( ) ( )( ),1 , 1 , ,1 expl
,n ij i j j j n

F u q W q W q Jξ η σ δ= − −                                          (4.13) 

where 
n

J  is the Jacobian of the nth element 

then for the nth element, 

( )
1 1

1
1 1

,n nJ F d dξ η ξ η
− −

= � �                                                                                  (4.14) 

 

Applying the Gauss-Legendre Quadrature given in (4.5) and substituting the 

weight values given in (4.8), the following is obtained 

( )
2 2

1
1 1

,n n i j
j i

J F ξ η
= =

=��                                                                                       (4.15) 

Summing 1nJ  contributions from all elements, 1J  can be calculated. 
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Considering (4.15) together with (4.8), it can be concluded that in order to 

evaluate 1J integral with Gauss-Legendre Quadrature, the integrand 

( )ηξ ,F must be evaluated at all Gauss points. Therefore, the values of ijσ , 1,iu , 

W , jq, , ( )
expl1,W and q at four Gauss points of an element must be determined to 

evaluate the integral.  

 

Considering the second component of kJ -integral, namely 2J -integral, it is 

concluded before in (2.70) that 2Ĵ  must be calculated in order to evaluate 2J -

integral. 

 

Reorganizing (2.70) 

( )( ) ( )2 ,2 , 2 , ,2 expl
0

ˆ
R

ij i j j j
x

J u q W q W q d W W dx
R

δ

σ δ
−

+ −

Ω

= − − Ω − −�� �         (4.16) 

    

 Domain Integral Part      Line Integral Part 

 

When the domain integral part is considered, some similarities are realized 

between 1J -integral and this part. It can be observed that, the values of 

2,iu , ( )
expl2,W  at the Gauss points are additionally required for the evaluation of 

this part.  

 

To sum up, the values of the variables in Table 4.1 must be known at every four 

Gauss points of an element, in order to evaluate the domain integrals over that 

element. 
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Table 4.1 The variables of 1J  and 2Ĵ  integrands that must be evaluated at every 
Gauss point. 
 
 

Indicial Explanation Explicit Needed for 

ijσ  Stress tensor 11σ , 22σ , 12σ  Both 

1,iu  
Derivative of displacements 
with respect to 1x -axis 

1u
x

∂
∂

 , 2u
x

∂
∂

 
1J  

2,iu  
Derivative of displacements 
with respect to 2x -axis 

1u
y

∂
∂

 , 2u
y

∂
∂

 
2Ĵ  

W  Mechanical Strain energy 
density function (2.51) Both 

( )
expl1,W  Derivative of W with respect 

to x-axis (2.52) 1J  

( )
expl2,W  Derivative of W with 

respect to y-axis (2.57) 2Ĵ  

J  Jacobian of transformation 
x y y x

J
ξ η ξ η

∂ ∂ ∂ ∂= −
∂ ∂ ∂ ∂

 Both 

q q-function (C.1) Both 

jq,  Derivative of q-function (C.2) and (C.3) Both 

 
 
 
 
 
 
 
 
 



 

44 

The evaluation of 2J integral additionally requires the determination of the 

following line integral, the value of which is also calculated by Gauss- Legendre 

Quadrature.  

( )
0

R x
L W W dx

R

δ−
+ −= −�                                                                                   (4.17) 

The locations (x, y) and the displacements (u, v) of Gauss points can be calculated 

numerically with the use of isoparametric formulations given in (4.11.a-d). 

However, in order to evaluate the Jacobian of transformation, the values of 

ηξηξ ∂
∂

∂
∂

∂
∂

∂
∂ xyyx

,,,  are must be known.  

 

When (4.11.a) and (4.11.b) are differentiated with respect to ξ  and η ,  

( ) ( )
�

= ∂
∂

=
∂

∂ 8

1

,,

i
i

i x
x

ξ
ηξψ

ξ
ηξ

                                                                       

( ) ( )
�

= ∂
∂

=
∂

∂ 8

1

,,

i
i

i x
x

η
ηξψ

η
ηξ

                                                                         

( ) ( )
�

= ∂
∂

=
∂

∂ 8

1

,,

i
i

i y
y

ξ
ηξψ

ξ
ηξ

                                                                         

( ) ( )
�

= ∂
∂

=
∂

∂ 8

1

,,

i
i

i y
y

η
ηξψ

η
ηξ

                                                                    (4.18.a-d) 

where, 
( )
ξ

ηξψ
∂

∂ ,i  and 
( )
η

ηξψ
∂

∂ ,i  are the derivatives of shape functions and can 

be evaluated by differentiating (4.10.a-h) with respect to ξ  and η , 

 ix  and iy  are the locations of 8-nodes of the element.  
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As reported in Table 4.1, the values of 
x
u

∂
∂

, 
x
v

∂
∂

,
y
u

∂
∂

, 
y
v

∂
∂

 are also required for 

the evaluation. When (4.11.c) and (4.11.d) are differentiated with respect to x and 

y,  

( )
�

= ∂
∂

=
∂
∂ 8

1

,

i
i

i u
x

yx
x
u ψ

 

( )
�

= ∂
∂

=
∂
∂ 8

1

,

i
i

i u
y

yx
y
u ψ

 

( )
�

= ∂
∂

=
∂
∂ 8

1

,

i
i

i v
x

yx
x
v ψ

 

( )
�

= ∂
∂

=
∂
∂ 8

1

,

i
i

i v
y

yx
y
v ψ

                                                                                 (4.19.a-d) 

 

where, 
( )
x

yxi

∂
∂ ,ψ

 and 
( )
y

yxi

∂
∂ ,ψ

 are the derivatives of shape functions given by 

(4.10.a-h) and can be evaluated by firstly transforming and substituting (4.11.a) 

and (4.11.b) and then differentiating (4.10.a-h) with respect to x and y. 

 iu  and iv  are the 8-nodal displacements of the element.  

 

When the total strain definition in (2.4.a-f) is utilized, the total engineering strains 

can be evaluated easily at the Gauss points of the element.  

 

Substituting (4.19.a-d) into (2.4.a-f) the total strains for plane strain case are 

calculated as follows 
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Once the total strains are known, the stresses at the Gauss points can be calculated 

with the use of (2.9) which gives the relation between stresses and strains under 

thermal loads. 

 

Mechanical strain energy density function, W, is expresses in terms of total strain 

components by (2.51). Therefore, W is a known quantity, once the total strains are 

known. However, the explicit derivatives of the mechanical strain energy density 

function ( )
expl1,W  and ( )

expl2,W  which are given by (2.52) and (2.57) respectively 

are not calculated directly. The evaluation of these variables requires the 

derivatives of Lame’s constants and temperature difference parameter with 

respect to a given Cartesian coordinate system x and y these derivatives 

are , , , , , , , , ,
x x x x x y y y y y
µ λ β α θ µ λ β α θ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
. 

 

By employing the preceding isoparametric formulation the derivatives with 

respect to x  can be calculated as follows; 

8

1

i
i

ix x
µ ψ µ

=

∂ ∂=
∂ ∂�    

8

1

i
i

ix x
λ ψ λ

=

∂ ∂=
∂ ∂�  

8

1

i
i

ix x
β ψ β

=

∂ ∂=
∂ ∂�  

8

1

i
i

ix x
α ψ α

=

∂ ∂=
∂ ∂�  

8

1

i
i

ix x
θ ψ θ

=

∂ ∂=
∂ ∂�                                                                                          (4.21.a-e) 

 

 

 

 

 



 

47 

Similarly, derivatives with respect to global coordinate y are as follows; 
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 where, iii βλµ ,, are Lame’s constants at 8-nodes of the element 

  iα  is the thermal expansion coefficient at 8-nodes of the element 

  iθ  is the temperature difference at 8-nodes of the element  

 

Up to this point, the calculation of 1J  and 2Ĵ -integrals are considered. Once these 

two terms are known, mixed-mode stress intensity factors calculation is 

straightforward as explained in Section 2.3.  

 

The relation between 2J  and 2Ĵ  given by (2.77) is employed to find out 2J -

integral value. Mode I stress intensity factor, IK   and Mode II stress intensity 

factor IIK  can be evaluated by simply finding the roots of (2.80.a) and (2.80.b), 

respectively. 
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CHAPTER 5  

 
RESULTS AND DISCUSSION 

 

5.1 Thermal SIF’s for an edge crack in an FGM Layer: Comparisons 

 

In order to validate the equivalent domain integral approach, the calculation of 

Mode I SIF’s for a horizontal edge crack in an FGM layer shown in Figure 5.1 is 

considered. 

 

 
 

Figure 5.1 A functionally graded layer under steady-state thermal loading 
 
 

The FGM layer of width W contains an edge crack length of which is denoted 

by a . The half-height is taken as 4*h W= . Initially, the layer is assumed to be 
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kept at a uniform reference temperature of 0T . Subsequently, the temperatures of 

surfaces at 1 0x = and 1x W=  are decreased to 1 00.2T T=  and 1 00.5T T= , 

respectively. All other surfaces including the crack faces are assumed to be 

insulated.  

 

The material behavior of the FGM layer is isotropic and in accordance with 

Figure 5.1, the material property distributions can be presented as follows,  

 

( ) ( )[ ]axExE += 101 exp β  

( ) ( )1 0 1expx x aα α ϖ� �= +� �                                                                              (5.1.a,c) 

( ) ( )[ ]axkxk += 101 exp δ  

3.0=υ   

where, β ,ϖ  and δ are the nonhomogeneity constants for elastic modulus, 

thermal expansion coefficient and thermal conductivity, respectively.  

 

The constants of 0E , 0α  and 0k  are given by, 

 ( )0 1E E x a= =−  , ( )0 1x aα α= =−   and ( )0 1k k x a= = −              (5.2.a-c) 

 

It can be noted that parameters other than the Poisson’s ratio have exponential 

variations with respect to 1x  direction. However, the Poisson’s ratio possesses a 

constant value of 0.3 throughout the FGM layer in order to make the problem 

analytically tractable in [13].    

 

In order to authenticate the developed finite element method, some comparisons 

of the thermal stress intensity factors to those reported by Walters et al. [16] and 

Erdogan and Wu [17] are presented in Table 4.1. The results of Walters et al. [16] 

and Erdogan and Wu [17] are given by means of a newly introduced parameter, 

normalized stress intensity factor.  
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The normalized stress intensity factor is defined as, 

( )
In

0 0 0

1IK
K

E T a

υ
α π

−
=                                                                                           (5.3) 

 

Erdogan and Wu [17] examined this problem analytically utilizing Fourier 

Transform techniques and the method of singular integral equations. Walters et al. 

[16] analyzed the case using a three dimensional finite element model with a 

domain integral approach.  

 
Table 5.1 Comparisons of the normalized Mode I stress intensity factor KIn for the 
case of plane strain condition, with crack ratio of a/W=0.5 and nonhomogeneity 
constants )10ln(=Wβ , ln(10)Wϖ = , )10ln(=Wδ  
 
 

 Domain sizes 01 2.0 TT =   
02 5.0 TT =  

EDI 0.1R
a =  0.0338 

 0.2R
a =  0.0340 

 0.3R
a =  0.0340 

 0.4R
a =  0.0340 

Walters et al. [16]  0.0335 

Da� [13]  0.0339 

Erdogan and Wu [17]  0.0335 

 
 
Note that four different domain radii are used in EDI calculations, as seen in 

Figure 5.2. The results calculated for various domain sizes, 0.1R
a = , 0.2, 0.3, 0.4 

are in good agreement with each other which implies that EDI possesses the 

required domain independence.  
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Examining the results given by Table 5.1, it can be observed that the normalized 

stress intensity factors obtained using EDI agree quite well with those given by 

Walters et al. [16] and Erdogan and Wu [17].  

 

 
 
 

Figure 5.2 Circular domains around the crack tip, for the isotropic FGM layer 
shown in Figure 5.1 considering plane strain.  

 
 
Identical finite element meshes are utilized in the solutions of different domain 

sizes. While conducting a thermo-structural analysis, the meshes are required to 

be finely tuned. Especially the mesh in the circular domain is refined in order to 

evaluate the stress intensity factors within a high degree of accuracy. For example, 

for the evaluation of the domain 0.4R
a = , the mesh in the domain possesses 

30511 quadrilateral elements.  

 

The deformed shape of the developed finite element model can be seen in Figure 

5.3. The temperature distribution in the FGM layer is plotted in Figure 5.4. The 

stress distribution in the FGM layer can be seen in Figure 5.5. 
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Figure 5.3 Deformed shape of the finite element model of the FGM layer 

0.5a
W = , )10ln(=Wβ , ln(10)Wϖ = , )10ln(=Wδ , 1 00.2*T T= , 2 00.5*T T=  

 

 
 

Figure 5.4 Temperature distribution in the FGM layer 0.5a
W = , )10ln(=Wβ , 

ln(10)Wϖ = , )10ln(=Wδ , 1 00.2*T T= , 2 00.5*T T=  
 

 K 
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Figure 5.5 Principal stress distribution in the FGM layer 0.5a
W = , )10ln(=Wβ , 

ln(10)Wϖ = , )10ln(=Wδ , 1 00.2*T T= , 2 00.5*T T=  
 

Pa 
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5.2 An Inclined Embedded Crack in an FGM Layer under Steady-State 

Thermal Stresses 

 
In this section sample results are given and discussed for the problem defined in 

Chapter 3. Thermal stress intensity factors are presented and compared to the ones 

obtained by a Displacement Correlation Technique [18]. Additionally, several 

result sets for thermal stress intensity factors and T -stress are plotted and 

discussed. Basically, the response of the inclined crack to variations in the 

orientation angle is examined. Additionally, the effect of changing thermal 

expansion coefficient and thermal conductivity on resulting parameters are 

analyzed.   

 

5.2.1 Finite Element Results 

 
The inclined embedded crack problem is redefined in detail in Figure 5.6. Upper 

crack tip and lower crack tips are named as A and B, respectively.  

 

 
 

Figure 5.6 Details of the geometry and thermal loading conditions for the inclined 
crack problem 
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Graded medium is modeled with triangular shaped elements. A triangular-shaped 

element is formed by defining the same node number for node locations 6, 7 and 8 

which are given in Figure 4.2.a. Material properties throughout the FGM layer 

change according to given functions by (3.1). 

 

Whole finite element mesh for an orientation angle of 6
πφ =  is presented in 

Figure 5.7. Whole mesh contains 60488 triangular elements.  

 

The bottom up modeling approach is followed during the modeling of the 

problem. While building the model from bottom up, the model is initially defined 

by utilizing the lowest-order solid model entities, keypoints. Keypoints are 

defined within the currently active Global Cartesian coordinate system. After 

initial pattern of keypoints are created, lines are defined by connecting these 

keypoints. Crack faces are modeled as two separate lines. Meshes are defined over 

areas, which are defined by enclosing boundaries, in this case being lines. 

 

 
 

Figure 5.7 Finite element mesh for Inclined Embedded Crack under thermal 

loading with 0.1a
W = , 2 2.0h

a = , 1 2.0h
a =  and nonhomogeneity constants of 

1 1.5γ = , 2 1.5γ = , 3 0.5γ = , 4 2.0γ =  
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Deformed shape of the whole finite element model is displayed in Figure 5.8. 

Deformed shapes of finite element meshes near crack tip A and crack tip B are 

presented in Figure 5.9 and 5.10, respectively. The domain of the both crack tips 

are modeled with 11722 elements for domain ratio of 0.1R
a = . 

 

 
Figure 5.8 Deformed shape of finite element mesh of inclined embedded crack 

with 0.1a
W = , 2 2.0h

a = , 1 2.0h
a =  and nonhomogeneity constants of 1 1.5γ = , 

2 1.5γ = , 3 0.5γ = , 4 2.0γ =  
 
 

 
 

Figure 5.9 Deformed shape near the crack tip A with 0.1a
W = , 2 2.0h

a = , 

1 2.0h
a =  and nonhomogeneity constants of 1 1.5γ = , 2 1.5γ = , 3 0.5γ = , 4 2.0γ =  
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Figure 5.10 Deformed shape near the crack tip B with 0.1a
W = , 2 2.0h

a = , 

1 2.0h
a =  and nonhomogeneity constants of 1 1.5γ = , 2 1.5γ = , 3 0.5γ = , 4 2.0γ =  

 
 

The response of the finite element model to the thermal boundary conditions is 

viewed in Figure 5.11. Thermal constraints on upper and lower boundary layers 

are defined as 1 02*T T=  and 2 0T T= , respectively.  

 
 

Figure 5.11 Temperature distribution of finite element mesh with 0 1100T K= and 

0.1a
W = , 2 2.0h

a = , 1 2.0h
a =  and nonhomogeneity constants of 1 1.5γ = , 

2 1.5γ = , 3 0.5γ = , 4 2.0γ =  
 

 K 
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Temperature distributions around crack tip A and crack tip B are presented in 

Figure 5.12 and Figure 5.13, respectively. Crack faces are modeled as insulated 

for simplicity. There is no heat conduction between crack faces and temperature 

distributions are distorted. Another approach of applying thermal boundary 

conditions to crack faces could be insulating the crack faces partially. 

 

 

 
 

Figure 5.12 Temperature distribution around crack tip A with 0 1100T K= and 

0.1a
W = , 2 2.0h

a = , 1 2.0h
a =  and nonhomogeneity constants of 1 1.5γ = , 

2 1.5γ = , 3 0.5γ = , 4 2.0γ =  
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Figure 5.13 Temperature distribution around crack tip B with 0 1100T K= and 

0.1a
W = , 2 2.0h

a = , 1 2.0h
a =  and nonhomogeneity constants of 1 1.5γ = , 

2 1.5γ = , 3 0.5γ = , 4 2.0γ =  
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5.2.2 Domain Independence: Comparison to DCT 

 
 
In order to investigate the effect of changing material properties and angle of 

crack on the behavior of parameters, the thermal stress intensity factors and T -

stresses are normalized.  Normalized thermal stress intensity factors are defined as 

follows, 

0K
K

K I
In =    

0K
K

K II
IIn =                           (5.3.a-b) 

 

where, 0 0K aσ π=  and 00 TE crcrασ = .                                      (5.4.a-b) 

Normalized T - stress is defined as 

0σ
s

sn

T
T =                                        (5.5) 

 

The stress intensity factors for the layer shown in Figure 3.1 are calculated using 

both the Equivalent Domain Integral method and Displacement Correlation 

Technique in order to validate the accuracy of the EDI technique. DCT method 

simply matches the displacement values of crack faces with the asymptotic stress 

fields. The APDL source code for the DCT is developed in the thesis by Yılmaz 

[18]. 

 

Steady-state stress intensity factors for various values of 3γ  are computed and 

presented in Table 5.2. Four different domain sizes 0.1R
a = , 0.2, 0.3 and 0.4 are 

modeled and corresponding results for each of them are presented in Table 5.2. 

Figure 5.14 presents four domain radii which are utilized to prove the domain 

independence of kJ -integral. 
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Figure 5.14 Finite element mesh of different domains 0.1R
a = , 0.2, 0.3 and 0.4 

 

 

Two different values of 3γ  and four different values of φ  are considered in the 

calculations. The comparisons of the normalized stress intensity factors calculated 

by EDI with the ones calculated by DCT are given in Table 5.2. 

 

Considering Table 5.2, it can be observed that the results computed using the EDI 

method is in good agreement with the results of DCT. Finite element application 

of equivalent domain integral is explained in Chapter 4. All parameters in the 

integrand of (2.46) are calculated at every four Gauss Points of every element. 

Furthermore, during thermomechanical analysis, temperatures of all nodes are 

calculated first, and they are applied as external loads to structural elements.  This 

coupled analysis requires a very fine mesh in order to produce accurate results. 

For this reason, the mesh inside and also outside of the integral domain around 

both crack tips are required to be very finely tuned. 
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Table 5.2 Normalized mixed-mode SIFs comparison, 5.11 =γ , 5.12 =γ , 4 2.0γ = . 

   EDI DCT 

   0.1R
a =  0.2R

a =  0.3R
a =  0.4R

a =   

InK (A) -0.0017 -0.0017 -0.0017 -0.0016 -0.0016 

IInK (A) 0.2108 0.2108 0.2108 0.2108 0.2096 

InK (B) 0.0017 0.0021 0.0018 0.0016 0.0017 
5.03 =γ  

IInK (B) 0.2108 0.2108 0.2108 0.2108 0.2096 

InK (A) 0.0011 0.0011 0.0011 0.0012 0.0012 

IInK (A) 0.1815 0.1815 0.1815 0.1815 0.1805 

InK (B) -0.0011 -0.0011 -0.0011 -0.0012 -0.0011 

0φ =
 

23 =γ  

IInK (B) 0.1815 0.1815 0.1815 0.1815 0.1805 

InK (A) 0.0656 0.0672 0.0665 0.0670 0.0656 

IInK (A) 0.0977 0.0966 0.0971 0.0968 0.0972 

InK (B) -0.0812 -0.0819 -0.0816 -0.0836 -0.0814 
5.03 =γ  

IInK (B) 0.3021 0.3019 0.3020 0.3014 0.3003 

InK (A) 0.0661 0.0677 0.0677 0.0675 0.0671 

IInK (A) 0.0692 0.0677 0.0677 0.0675 0.0680 

InK (B) -0.0801 -0.0805 -0.0802 -0.0801 -0.0804 

6
πφ =

 

23 =γ  

IInK (B) 0.2685 0.2684 0.2679 0.2675 0.2668 

InK (A) 0.1178 0.1173 0.1170 0.1172 0.1178 

IInK (A) 0.0571 0.0583 0.0590 0.0585 0.0570 

InK (B) -0.2377 -0.2384 -0.2458 -0.2409 -0.2373 
5.03 =γ  

IInK (B) 0.2105 0.2100 0.2100 0.2067 0.2100 

InK (A) 0.1291 0.1289 0.1290 0.1290 0.1290 

IInK (A) 0.0346 0.0352 0.0355 0.0352 0.0346 

InK (B) -0.2197 -0.2170 -0.2252 -0.2121 -0.2194 

3
πφ =

 

23 =γ  

IInK (B) 0.1849 0.1888 0.1781 0.1935 0.1840 

InK (A) 0.1143 0.1141 0.1140 0.1141 0.1142 

IInK (A) 0.0000 0.0000 0.0000 0.0000 0.0000 

InK (B) -0.2997 -0.2996 -0.2996 -0.2996 -0.2996 
5.03 =γ  

IInK (B) 0.0000 0.0000 0.0000 0.00000 0.00000 

InK (A) 0.1325 0.1325 0.1325 0.1325 0.1325 

IInK (A) 0.0000 0.0000 0.0000 0.0000 0.0000 
 InK (B) -0.2727 -0.2727 -0.2727 -0.2727 -0.2726 

2
πφ =

 

23 =γ  

IInK (B) 0.0000 0.0000 0.0000 0.0000 0.0000 
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When the results of each domain size is examined, EDI results for corresponding 

domain sizes are very close to eachother. Therefore, it can be concluded that the 

results of EDI analysis are domain independent. This property of kJ  - integral is 

explained in Chapter 2. All of the calculated SIF values are within 1% error range 

with respect to their corresponding DCT and domain size values. 

 

The need for very fine meshes drives the runtimes of equivalent domain integral 

to be considerably much longer than that of displacement correlation technique. In 

Table 5.2, four different domain sizes, being 0.1R
a = , 0.2, 0.3 and 0.4 are used 

to compute the stress intensity factor by means of the EDI technique. For small 

region calculations, 1.0=a
R , number of elements required to reach an accurate 

result is nearly 17,000. The runtimes for 1.0=a
R  is nearly 3 hours, whereas 

DCT runtime for the same mesh is 15 minutes. As the domain of integral is 

enlarged, the number of elements required to access an accurate result increases. 

Therefore, as the region is enlarged, the mesh inside and also outside of the 

domain is increased. For example, as the domain is enlarged to 4.0=a
R , the 

number of elements to calculate the SIF’s increases to 40,000 The discussions 

about runtimes and domain sizes is summarized in Table 5.3. 

 
Table 5.3 Total number of elements utilized for different domain size and 
corresponding runtimes 
 
 

Domain Size Total Number of 
Elements Runtime 

0.1R
a =  17,000 3 hours 

0.2R
a =  20,000 6 hours 

0.3R
a =  24,000 12 hours 

0.4R
a =  40,000 18 hours 
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5.2.3 Variations in the Thermal Expansion Coefficient 

 
In this section, the results regarding various nonhomogeneity constant of thermal 

expansion coefficient 3γ  are presented. Thermal expansion coefficient of FGM 

layer changes throughout the layer according to  the function given by (3.1.c). In 

order to investigate the response of the FGM layer to varying 3γ  values, several 

graphics are plotted. When 3γ  takes the value of 1.0, the thermal expansion 

coefficient varies linearly through the FGM layer. When 3γ  reaches to infinity, 

thermal expansion coefficient of ceramic material is dominant. Variations in the  

Mode I and Mode II thermal SIF’s of crack tip, A , for different nonhomogeneity 

constants of thermal expansion coefficient 3γ  are shown in Figure 5.15 and Figure 

5.16, respectively.  
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Figure 5.15 Normalized Mode I Stress Intensity Factors of crack tip A versus 

angle of crack, 0.1a
W = , 2 2.0h

a = , 1 2.0h
a = , 1 2 1.5γ γ= = , 4 2.0γ =  
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Mode I SIF approaches zero for every 3γ  value at an angle of 0=φ , and 

increases as φ  is increased from 0 to 2
πφ = . 

 

On the contrary, Mode II SIF exactly equals zero at the angle of 2
πφ =  

regardless of the thermal expansion coefficient behavior.  This is due to the fact 

that, the problem turns into a Mode I problem when the angle of crack equals 

2
π . Mode II SIF’s take a maximum value at the angle of 0=φ . 
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Figure 5.16 Normalized Mode II Stress Intensity Factors of crack tip A versus 

angle of crack, 0.1a
W = , 2 2.0h

a = , 1 2.0h
a = , 1 2 1.5γ γ= = , 4 2.0γ =  
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The behavior of Mode I and Mode II thermal SIF’s of crack tip B  for different 

nonhomogeneity constants of thermal expansion coefficient 3γ  are shown in 

Figure 5.17 and Figure 5.18. 

 

Mode I SIF for crack tip B are approximately zero for all thermal expansion 

coefficient values at angle of 0=φ . It can be observed from Figure 5.17 that all 

Mode I SIF’s possess negative values. This means that crack closure occurs near  

crack tip B, while crack tip A experiences a crack opening phenomena.  
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Figure 5.17 Normalized Mode I Stress Intensity Factors of crack tip B versus 

angle of crack, 0.1a
W = , 2 2.0h

a = , 1 2.0h
a = , 1 2 1.5γ γ= = , 4 2.0γ =  
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Mode II SIF’s end up with exactly zero value at the angle of 2
πφ = , while 

making a peak around 6
π . For metal rich thermal expansion coefficient behavior 

Mode II SIF takes its maximum value. 
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Figure 5.18 Normalized Mode II Stress Intensity Factors of crack tip B versus 

angle of crack, 0.1a
W = , 2 2.0h

a = , 1 2.0h
a = , 1 2 1.5γ γ= = , 4 2.0γ =  

 

 

One of the most appreciable aspects of the evaluation of SIF’s by equivalent 

domain integral method is that T -stress calculation is possible. By utilizing the 

simple equation introduced in (2.83), T -stresses at both crack tips can be 

calculated.  
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In Figure 5.19, it can be observed that, T -stress values are positive for upper 

crack tip A nearly upto a crack angle of 6
πφ = , for all values of 3γ . For crack 

angles larger than 6
πφ = , T -stress values become negative and make a 

minimum at about 3
πφ = . For angle of cracks larger than  3

πφ = , T -stress 

values tend to increase for 3 0.5γ =  and 3 1.0γ = . 
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Figure 5.19 Normalized T - stress of crack tip A versus angle of crack 
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a = , 1 2.0h
a = , 1 2 1.5γ γ= = , 4 2.0γ =  
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T -stress values are plotted for crack tip B in Figure 5.20. T -stress becomes 

minimum for crack angle of 0=φ .  At an angle of 4
πφ = , all of the T -stress 

values equal to zero, regardless of 3γ  value. This means that the asymptotic stress 

expression given in APPENDIX B does not have any T -stress contribution. 

Stress field is driven by only Mode I and Mode II SIF’s.  T -stress values tend to 

increase upto an angle of approximately 12
5πφ = , at which point there is a 

minimum.  For metallic thermal expansion coefficient behavior, T -stress value 

for angle of 0=φ  is minimum and for angle of 2
πφ = is maximum. 
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Figure 5.20 Normalized T - stress of crack tip B versus angle of crack 
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5.2.4 Variations in the Thermal Conductivity 

 
 
Heat conduction refers to the transport of energy in a medium due to a 

temperature gradient. Thermal conductivity is referred as a transport property, 

which provides an indication of the rate at which energy is transferred by the 

diffusion process. Thermal conductivity simply depends on the state of the matter.  

 

In this study, upper and lower boundaries are kept at temperatures of 1 02*T T=  

and 2 0T T= , respectively. For this prescribed boundary conditions, the conduction 

heat flux increases with increasing thermal conductivity. This section is dedicated 

to the results regarding the varying nonhomogeneity constant of thermal 

conductivity 4γ . The thermal conductivity of the FGM layer change throughout 

the layer by the function given by (3.1.d).  

 

Steady state temperature distribution for various values of the nonhomogeneity 

parameter of thermal conductivity, 4γ  are computed. For both crack tips A and B 

the temperature distributions are presented in Figure 5.21 and 5.22, respectively.  

 

As the angle of crack is increased while keeping the crack length constant, the 

crack tip A comes closer to the upper surface which has 0*2 TT = . This means 

that, as the crack tip comes closer to the surface, the temperature of the crack tip A 

increases. As expected, when the angle of crack is 2
π , the temperature reaches 

its maximum for all of the 4γ values.  

 

In contrast to the behavior of crack tip A, crack tip B experiences a temperature 

drop as the angle of crack increases. This is simply due to the fact that, crack tip B 

gets closer to the lower surface of the layer, which has a steady-state temperature 

of 0TT = .  



 

71 

As the crack tip B gets closer, it gets into cooler regions. It can be observed from 

Figure 5.22 that temperature at crack tip B decreases as the angle of crack is 

increased and for an angle of crack, 2
πφ = it reaches its minimum value. When 

∞→4γ , the material distribution becomes ceramic rich. For this case, thermal 

conductivity of ceramic material is dominant. In this material distribution case, 

temperature values of crack tip A and crack tip B for all angles are higher than any 

other 4γ  case. 
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Figure 5.21 Temperature distribution of the crack tip A  

0.1a
W = , 2 2.0h

a = , 1 2.0h
a =  1 2 1.5γ γ= = , 3 2.0γ =  

 



 

72 

1,0

1,1

1,2

1,3

1,4

1,5

1,6

 
 

0

BT
T

4 0.5γ =
4 1.0γ =
4 2.0γ =
4γ = ∞

0 6
π

3
π

2
π

φ  
 

Figure 5.22 Temperature distribution of the crack tip B,  

0.1a
W = , 2 2.0h

a = , 1 2.0h
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The behavior of Mode I and Mode II thermal SIF’s at crack tip A , for different 

nonhomogeneity constants of thermal conductivity 4γ  are plotted in Figure 5.23 

and Figure 5.24, respectively. 

 

Regarding the range of thermal conductivity behavior 0.25.0 4 ≤≤ γ , Mode I SIF 

of crack tip A takes its minimum value at an angle of 0=φ . The Mode I SIF tends 

to increase as the angle of crack is increased. Mode I SIF takes its maximum 

values at 2
πφ = . Moreover, Mode I SIF always takes positive values for 

material property distributions of the range 0.25.0 4 ≤≤ γ . This simply means 

that, crack tip A opens as the angle of crack is increased under the previously 

specified thermal conditions. 
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When the material behavior of thermal conductivity becomes ceramic dominant, 

every tendency of the Mode I SIF turns vice versa. Therefore, Mode I SIF takes a 

minimum value at 2
πφ = and at this point crack closure can be observed. 
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Figure 5.23 Normalized Mode I Stress Intensity Factors of crack tip A versus 

angle of crack, 0.1a
W = , 2 2.0h
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When the Mode II SIF of crack tip A is analyzed, it is observed in Figure 5.24 that 

it exactly equals to zero at 2
πφ = , regardless of the 4γ  value. This is an 

expected result and a checkpoint for the conducted analysis. When 2
πφ = , the 

problem is a simply Mode I problem and the Mode II SIF’s are exactly zero.  

 

For every 4γ  value, Mode II SIF takes its maximum value at 0=φ and tends to 

decrease as the angle of crack is increased. This is also an expected aspect of the 

problem, Mode II SIF contribution to the problem is more dominant in this case of 

orientation angle. 
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Figure 5.24 Normalized Mode II Stress Intensity Factors of crack tip A versus 

angle of crack, 0.1a
W = , 2 2.0h

a = , 1 2.0h
a = , 1 2 1.5γ γ= = , 3 2.0γ =  
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Figure 5.25 presents that the Mode I SIF of crack tip B, takes its maximum value 

at 0=φ  for cases of 0.25.0 4 ≤≤ γ . This maximum value is negative, which 

implies that crack closure always takes place regardless of the value of the crack 

angle. At the angle of 2
πφ = , it takes its minimum value for 40.5 2.0γ≤ ≤ .  

 

For the case of 4γ → ∞ , the scenario completely changes. When the angle of 

crack is 6
πφ = , Mode I SIF of crack tip B becomes zero for larger values of φ , 

it becomes positive, meaning that crack is opened. 

 

-0,3

-0,2

-0,1

0,0

0,1

0,2

 
 

( )InK B

4 0.5γ =

4 1.0γ =
4 2.0γ =
4γ = ∞

0 6
π

3
π

2
π

φ  
 
 

Figure 5.25 Normalized Mode I Stress Intensity Factors of crack tip B versus 

angle of crack, 0.1a
W = , 2 2.0h

a = , 1 2.0h
a = , 1 2 1.5γ γ= = , 3 2.0γ =  
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Mode II SIF for crack tip B equals exactly zero for the case of 2
πφ =  just like 

crack tip A as illustrated in Figure 5.26. Purely Mode I behavior is observed in 

this case.  

 

When Figure 5.26 and Figure 5.18 are compared, it is noted that Mode II SIF 

increases steeper than that of thermal conductivity and both of the plots tend to 

have a maximum at about angles 6
πφ = . When 4 0γ ≈ , metallic thermal 

conductivity behavior is dominant. As metallic behavior gets more dominant,  

Mode II SIF’s tend to decrease. 
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Figure 5.26 Normalized Mode II Stress Intensity Factors of crack tip B versus 

angle of crack, 0.1a
W = , 2 2.0h

a = , 1 2.0h
a = , 1 2 1.5γ γ= = , 3 2.0γ =  
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T -stress values for crack tip A are presented in Figure 5.27. It can be concluded 

from the figure that, as metallic behavior gets more dominant, T -stress values 

change in a more narrow range. T -stress values make a maximum at 0φ = . When 

the tendency of ceramic rich behavior is analyzed, T -stress values for angle of 

0φ = tend to increase more and more.  

 

In the analyses for thermal expansion coefficient which is plotted previously in 

Figure 5.19, T -stress values for all 3γ  values are close to each other. Coarsely, 

this behavior can be commented as T -stress is insensitive to 3γ  values for angle 

range of  0 3
πφ≤ ≤  . 
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Figure 5.27 Normalized T - stress of crack tip A versus angle of crack,  

0.1a
W = , 2 2.0h

a = , 1 2.0h
a = , 1 2 1.5γ γ= = , 3 2.0γ =  
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T -stress values of crack tip B for different thermal conductivity cases is plotted in 

Figure 5.28.  As the metallic thermal conductivity behavior gets more dominant in 

the analyses, T -stress values deviate around zero.  It can be concluded that purely 

metallic behavior of thermal conductivity results in approximately zero T -stress. 

Therefore, T -stress component of asymptotic stresses can be neglected for this 

cases. Moreover, embedded crack problems having 4
πφ =  have T -stress values 

that are exactly equal to zero, irrespective of the thermal conductivity behavior. 

Asymptotic stresses can be expressed in terms of Mode I and Mode II SIF’s only 

in this case. This trend is also observed for different 4γ values which are 

illustrated in Figure 5.20. 
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Figure 5.28 Normalized T - stress of  crack tip B versus angle of crack, 

0.1a
W = , 2 2.0h

a = , 1 2.0h
a = , 1 2 1.5γ γ= = , 3 2.0γ =  
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CHAPTER 6  

 
 

CONCLUDING REMARKS 

 

 

In this study, a computational method based on the generalized definition of J-

integral is developed to study crack problems in isotropic FGM’s under thermal 

stresses. Path independent J -integral is converted to an Equivalent Domain 

Integral that can be calculated over an arbitrary area around the crack tip. The 

developed formulation is integrated in a commercial finite element analysis tool. 

Thermal and structural problems are modelled and solved by applying two-step 

analysis.  

 

The problem of horizontal edge crack under thermomechanical loading is 

analyzed in order to verify the accuracy of EDI technique. The developed 

procedure is validated by comparing results of stress intensity factors to those 

reported in the literature. The results obtained using the equivalent domain 

integral approach is shown to be highly accurate and independent of domain size 

used in the finite element computations.  

 

The problem of inclined embedded crack in isotropic Functionally Graded 

Medium have been analyzed in this study. The Functionally Graded Medium is a 

bulk layer, that is material distribution changes throughout the layer. This study 

verifies the domain independence of kJ -integral and accuracy of Equivalent 

Domain Integral is proven.  

 

Mode I and Mode II stress intensity factors at both crack tips of the embedded 

crack are calculated. Additionally, T -stress values for both of the crack tips are 

extracted. T -stress can not be calculated with the use of displacement correlation 

technique. However, T -stress values can be calculated with the use of EDI 
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technique. Effects of variations in thermal expansion coefficient and thermal 

conductivity on these fracture parameters are presented graphically.   

 

The results are quite accurate; however, they may be improved by utilizing some 

other properties of finite element approach. In this study, material properties are 

assigned to the centroids of each element. During finite element preprocessing 

stage, the material properties can be assigned to more than one point inside one 

element. This approach could extensively improve the accuracy of the results. As 

the number of material property application points are increased, Functionally 

Graded Material behavior can be analyzed more accurately. The results can also 

be finely tuned when the mesh inside and outside the crack tip domains are 

refined. As the mesh is defined with more elements, the obtained results become 

pretty accurate. However, this requires a very good configuration of computing 

devices and software. One of the limiting aspects of utilizing very fine meshes is 

that runtimes for very fine meshes could also reach up to one day.  

 

 

The problems solved in this study are theoretical models, therefore they are not 

applied problems in reality. This work can be extended for realistic problems such 

as inclined edge cracks in FGM coatings that are bonded to a homogenous 

substrate. Future work could be focused on the analysis of steady-state and 

transient thermal loading on FGM coating and substrate systems. Boundary 

conditions could also be changed such that crack faces could experience partial 

insulation. Moreover, variations in other thermomechanical material properties 

could be analyzed, such as Poisson’s ratio. In this study, Poisson’s ratio is 

assumed to be constant throughout the FGM layer. The effect of variations in this 

material property parameter is investigated in the literature and reported to have 

significant effect on fracture behavior for certain cases. Additionally, this work is 

formulated for plane strain case. The formulation could be oriented such that it is 

possible to solve for plane stress problems. 
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APPENDIX A 

 
DIVERGENCE THEOREM 

 

Let ∇  denote the Del Operator in the two-dimensional Cartesian rectangular 

coordinate system (x, y) as shown in Figure A.1,  

y
e

x
e yx ∂

∂+
∂
∂=∇ ˆˆ                                                                                             (A.1) 

where xê  and yê  denote the unit vectors along x and y coordinates, respectively.  

 

If ( ),G x y
�

 is a vector function of class ( )Ω0C  in the domain Ω  shown in the 

Figure A.1, the following divergence theorem holds. 

 

 

 
 

 
 

Figure A.1 Divergence theorem in two dimensional domain 
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ˆG G Gdiv dx dy dxdy n ds
Ω Ω Γ

≡ ∇ ⋅ = ⋅� � �
� � ��

�          (A.2) 

where, unit normal can be represented as ˆ ˆ
x yn n i n j= +�

 

 vector function can be represented as ˆ ˆ
x yG G i G j= +

�
 

( ) dsGnGndydx
y

G

x
G

yyxx
yx ��

ΓΩ

+=��
	



��
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∂
∂

+
∂

∂
                                          (A.3) 

or in indicial notation, 

( )i
i j i i

i

G
dx dx n G ds

xΩ Γ


 
∂ =� �∂� 	
� ��                        (A.4) 

Here the dot denotes the scalar product of vectors, n̂  denotes the unit vector 

normal to the surface Γ  of the domain Ω ; xn  and yn  ( xG  and yG ) are the 

rectangular components of ( )Gn̂ ; and the circle on the boundary integral indicates 

that the integration is taken over the entire boundary. 
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APPENDIX B 

 

ASYMPTOTIC EXPRESSIONS FOR STRESS COMPONENTS 

 
 
 
 

 
 

Figure B.1 Crack tip coordinate system transformation 
 
 

For a crack seen in the Figure B.1, one can write the asymptotic stress expressions 

as follows, 

( ) ( ) ( ) 1 1,
2 2

I III II
ij ij ij s i j

K K
r f f T

r r
σ θ θ θ δ δ

π π
= + +                                       (B.1) 

 

where sT  is the non-singular stress, or so called T-stress.  
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The explicit form of asymptotic representations is as follows, 

( )11
3 3

, cos 1 sin sin sin 2 cos cos
2 2 2 2 2 22 2

I II
s

K K
r T

r r
θ θ θ θ θ θσ θ

π π
� � � �= − − + +� � � �
� � � �

 

( )22
3 3

, cos 1 sin sin sin cos cos
2 2 2 2 2 22 2

I IIK K
r

r r
θ θ θ θ θ θσ θ

π π
� �= + +� �
� �

      (B.2) 

( )12
3 3

, sin cos cos cos 1 sin sin
2 2 2 2 2 22 2

I IIK K
r

r r
θ θ θ θ θ θσ θ

π π
� �= + −� �
� �
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APPENDIX C 

 

q FUNCTION 

 

C.1 Circular region around the crack tip 

 

 
 
 

Figure C.1 Orientation of the q- function 
 

 

2 2
1 2 1

1
x x q

R
+ −=  �   

2 2
1 21

x x
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+

= −                                                  (C.1) 

 

The derivatives of the q- function with respect to coordinates, 

1
,1 2 2

1 2

x
q

R x x
= −

+
                                              (C.2) 

2
,2 2 2

1 2

x
q

R x x
= −

+
                                                                                            (C.3) 
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It is clear in the Figure C.2 that,  

1
q x

R
=    �   

x
q

R
=                                                       (C.4) 

 

 
 
 

Figure C.2 q- function for a circular path around the crack tip 
 

C.2 Rectangular region around the crack tip 

 
11

x
q

R
= +                  1x x R− =                                                                          (C.5) 

Combining the two relations, 

1
x R

q
R
−= +   �   

x
q

R
=                                                       (C.6) 

 

 
Figure C.3 q- function for a rectangular path around the crack tip 


