

A BICRITERIA RESCHEDULING PROBLEM ON UNRELATED PARALLEL

MACHINES: NETWORK FLOW AND ENUMERATION BASED APPROACHES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

MELİH ÖZLEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

INDUSTRIAL ENGINEERING

NOVEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan Özgen

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor

of Philosophy.

 Prof. Dr. Çağlar Güven

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and quality, as a thesis for the degree of Doctor of Philosophy.

 Prof. Dr. Meral Azizoğlu

 Supervisor

Examining Committee Members

Prof. Dr. Murat Köksalan (METU, IE) ___________________

Prof. Dr. Meral Azizoğlu (METU, IE) ___________________

Prof. Dr. İhsan Sabuncuoğlu (Bilkent Univ., IE) ___________________

Assoc. Prof. Dr. Canan Sepil (METU, IE) ___________________

Asst. Prof. Dr. Ayten Türkcan (METU, IE) ___________________

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name, Last name : Melih Özlen

Signature :

 iv

ABSTRACT

A BICRITERIA RESCHEDULING PROBLEM ON UNRELATED PARALLEL

MACHINES: NETWORK FLOW AND ENUMERATION BASED APPROACHES

Özlen, Melih

Ph.D., Department of Industrial Engineering

Supervisor : Prof. Meral Azizoğlu

November 2006, 99 pages

 This study considers bicriteria approaches to the minimum cost network flow

problem and a rescheduling problem where those approaches find their applications.

For the bicriteria integer minimum cost network flow problem, we generate all

efficient solutions in two phases. The first phase generates the extreme supported

efficient points that are the extreme points of the objective space of the continuous

bicriteria network flow problem. In the second phase, we generate the nonextreme

supported and unsupported efficient points by Integer Programming Based approaches.

Our rescheduling problem considers parallel unrelated machine environments.

The criteria are the total flow time as an efficiency measure and the total reassignment

cost as a stability measure. We show that the problems that address linear functions of

the two criteria can be represented by bicriteria network flow models. To generate all

efficient solutions, we use a Classical Approach that is based on the optimal solutions of

the singly constrained network flow problem and provide a Branch and Bound approach

that starts with extreme supported efficient set and uses powerful bounds. To find an

 v

optimal solution to any nonlinear function of the two criteria, we provide a Branch and

Bound approach and an Integer Programming Based approach that eliminates some

portions of the efficient set that cannot provide improved solutions.

We contribute both to the network flow and scheduling literature by proposing

algorithms to the bicriteria network flow models and applying them to a rescheduling

problem that is bicriteria in nature.

The results of our extensive computations with up to 100 jobs and 12 machines

have revealed that, the Branch and Bound algorithm finds the efficient set in less

computational effort compared to the classical approach. In minimizing a nonlinear

function of the two criteria both IP Based approach and Branch and Bound algorithm

perform quite satisfactory.

Keywords: Bicriteria Network Flows, Rescheduling, Parallel Unrelated Machines, Total

Flowtime, Total Reassignment Cost

 vi

ÖZ

İLGİSİZ PARALEL MAKİNALARDA İKİ KRİTERLİ YENİDEN ÇİZELGELEME

PROBLEMİ: AĞ AKIŞ VE BİRERLEME TABANLI YAKLAŞIMLAR

Özlen, Melih

Doktora, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Prof. Meral Azizoğlu

Kasım 2006, 99 sayfa

 Bu çalışmada enaz maliyetli ağ akış problemine iki kriterli yaklaşımlar, ve bu

yaklaşımların uygulandığı bir yeniden çizelgeleme problemi ele alınmaktadır.

 İki kriterli kesikli enaz maliyetli ağ akış probleminin tüm verimli noktaları iki

aşamada bulunmuştur. İlk aşamada sürekli iki kriterli enaz maliyetli ağ akış probleminin

amaç uzayında köşe noktalarda yer alan, köşe destekli verimli noktalar bulunmuştur.

İkinci aşamada, destekli olmayan verimli noktalar, ve köşe olmayan destekli verimli

noktalar, Tam Sayılı Programlamaya dayalı yaklaşımlarla bulunmuştur.

 Yeniden çizelgeleme problemimiz ilgisiz parallel makinalar ortamlarında ele

alınmıştır. Verimlilik ölçütü olarak toplam akış zamanı kriteri, ve tutarlılık ölçütü

olarak toplam yeniden atama maliyeti kriteri kullanılmıştır. İki kriterin doğrusal

fonksiyonunu ele alan problemlerin iki kriterli enaz maliyetli ağ akış modelleri

kullanılarak ifade edilebileceği gösterilmiştir. Tüm verimli noktaların yaratılması için,

tek kısıtlı ağ akışı probleminin en iyi çözümlerine dayalı Klasik Yöntem kullanılmıştır,

ve köşe destekli verimli noktalarla başlayan Dal ve Sınır yöntemi önerilmiştir. İki

 vii

kriterin her hangi bir doğrusal olmayan fonksiyonun en iyi çözümünü bulmak için,

verimli kümenin daha iyi çözümler sağlayamayacak kısımlarını eleyen, Tam Sayılı

Programlamaya dayalı bir yöntem, ve Dal-Sınır yöntemi önerilmiştir.

 Bu çalışmada iki kriterli ağ akış problemleri için çözüm yöntemleri önerilerek,

ve bu önerilen yöntemler, doğası gereği iki kriterli olan bir yeniden çizelgeleme

problemi üzerinde uygulanarak, hem ağ akışları ve hem de çizelgeleme alanlarına katkı

yapılmıştır.

 100 iş, ve 12 makinalı problemleri çözebilen geniş çaplı deneysel çalışmamızın

sonuçları, Dal-Sınır yönteminin, Klasik yöntemle karşılaştırıldığında, tüm verimli

noktaları daha az çözüm zamanı harcayarak bulduğunu göstermiştir. Doğrusal olmayan

bir fonksiyonun en azlanmasında, Tam Sayılı Programlama tabanlı yöntem ve Dal-Sınır

algoritmasının her ikisinin de oldukça başarılı oldukları görülmüştür.

Anahtar Kelimeler: İki Kriterli Ağ Akışları, Yeniden Çizelgeleme, Paralel İlgisiz

Makinalar, Toplam Akış Zamanı, Toplam Yeniden Atama Maliyeti

 viii

To My Family

 ix

ACKNOWLEDGMENTS

 I would like to thank my Supervisor Prof. Meral Azizoğlu for her guidance,

contributions, and support throughout this study. She spent every piece of effort to

improve our research, improve me, and make my life better. She will always be an ideal

figure of a researcher, a teacher, and a supervisor for me all through my life.

 I would like to thank Prof. Murat Köksalan, Prof. İhsan Sabuncuoğlu, Assoc.

Prof. Canan Sepil and Asst. Prof. Ayten Türkcan for their valuable suggestions, and

contributions to this study.

 I would like to thank to my family, without their support I couldn’t be where I

am, and couldn’t be who am I. Namely, I thank to my parents Serap Özlen, and Murat

Özlen, and my brother Erkin Özlen.

 In my years of assistantship and Ph. D. research, Tevhide Altekin, Sakine Batun,

Pelin Bayındır, Baykal Hafızoğlu, Tülin İnkaya, Fatma Kılınç, Zeynep Kirkizoğlu, and

Ayten Türkcan provide every mean of support to me, and their existence make my life

easier, and make me feel that I am a member of a large family. I would also like to

thank to my friends Julide Akşiyote, Barış Canlı, Makbule Çubuk, Onur Sarıoğlu, Selim

Sandıkçıoğlu, and Tuba Pınar Yıldırım, for their support even in the hardest parts of this

study.

 Although their names are not mentioned individually here, I am grateful to all

the professors, friends, colleagues, and students at the department for their valuable

contributions to my life, and for their presence which I will always miss.

Finally, I would like to thank to a very special person, Berrak Dağ. I am very

fortunate, to have her in my life, she is my energy and my inspiration for life. She

constantly believed in and motivated me, so that I can finally complete this study.

 x

TABLE OF CONTENTS

PLAGIARISM ……………………………………………………………. iii

ABSTRACT …………………………………………………………….. iv

ÖZ ……………………………………………………………………….... vi

DEDICATION …………………………………………………………….. viii

ACKNOWLEDGMENTS ……………………………………………….... ix

TABLE OF CONTENTS …………………………………………………. x

LIST OF TABLES ………………………………………………………. xii

LIST OF FIGURES ……………………………………………………….. xiv

CHAPTER

 1. INTRODUCTION …………………………………………………… 1

2. BICRITERIA INTEGER NETWORK FLOW PROBLEM ………… 3

2.1 Problem formulation ……………………………………………. 5

2.2 Solution procedures …………………………………………….. 7

 2.2.1 Boundary efficient solutions, Set BE …………………… 7

 2.2.2 Generation of all efficient solutions: a simultaneous approach 9

 2.2.3 Generation of all efficient solutions: a sequential approach 10

 3. RESCHEDULING PROBLEM ……………………………………… 19

 3.1 Literature review …………………………………………….. 20

 3.2 Problem definition …………………………………………… 24

 3.3 Solution procedures ………………………………………….. 27

 3.3.1 The | |jR a F problem ………………………………….. 27

 3.3.2 The | |jR a WRJ problem ……………………………... 28

 xi

 3.3.3. The *| , |jR a F F WRJ= problem ……………………... 28

 3.3.4 The *| , |jR a WRJ WRJ F= problem ………………….. 30

 3.3.5 The constrained optimization problems ………………… 31

 3.3.6 Generation of all extreme supported efficient schedules .. 31

 3.3.7 Generation of all efficient schedules 33

 3.3.8 The | | (,)jR a f F WRJ problem .. 50

 3.4 Computational Experience .. 57

 4. CONCLUSION AND FUTURE RESEARCH DIRECTIONS ………. 88

REFERENCES ……………………………………………………………… 94

VITA ……………………………………………………………………….. 99

 xii

LIST OF TABLES

Table 3.1. An example problem instance …………………………………. 42

Table 3.2. Cost Coefficient Matrix of the Assignment Problem …………... 49

Table 3.3 Performance of Efficient Set Generation Algorithms,

pij~U[1,100], D=S ………………….. 59

Table 3.4 Performance of Efficient Set Generation Algorithms,

pij ~U[50,100], D=S ……………….. 60

Table 3.5 Performance of Efficient Set Generation Algorithms,

pij ~U[1,100], D=M ………………... 61

Table 3.6 Performance of Efficient Set Generation Algorithms,

pij ~U[50,100], D=M ……………..... 62

Table 3.7 Performance of Efficient Set Generation Algorithms,

pij ~U[1,100], D=L ………………… 63

Table 3.8 Performance of Efficient Set Generation Algorithms,

pij ~U[50,100], D=L ……………….. 63

Table 3.9 Average Performance of Efficient Set Generation Algorithms …. 64

Table 3.10 Performance of the Branch and Bound Algorithm,

pij ~U[1,100], D=S ………………..... 68

Table 3.11Performance of the Branch and Bound Algorithm,

pij ~U[50,100], D=S …..…………...... 69

Table 3.12 Performance of the Branch and Bound Algorithm,

pij ~U[1,100], D=M ...…..…………... 70

Table 3.13 Performance of the Branch and Bound Algorithm,

pij ~U[50,100], D=M ………………. 71

Table 3.14 Performance of the Branch and Bound Algorithm,

 xiii

pij ~U[1,100], D=L ………………… 72

Table 3.15 Performance of the Branch and Bound Algorithm,

pij ~U[50,100], D=L ……………….. 72

Table 3.16 Performance of the IP Based Algorithm,

pij ~U[1,100], D=S ……………… 73

Table 3.17 Performance of the IP Based Algorithm,

pij ~U[50,100], D=S ….…………….. 74

Table 3.18 Performance of the IP Based Algorithm,

pij ~U[1,100], D=M ………………... 75

Table 3.19 Performance of the IP Based Algorithm,

pij ~U[50,100], D=M ..…………….. 76

Table 3.20 Performance of the IP Based Algorithm,

pij ~U[1,100], D=L ………………... 77

Table 3.21 Performance of the IP Based Algorithm,

pij ~U[50,100], D=L ………………. 77

Table 3.22 Comparison of Average Performances of Optimization Algorithms,

pij ~U[1,100], D=S …………………. 78

Table 3.23 Comparison of Average Performances of Optimization Algorithms,

pij ~U[50,100], D=S ………………... 79

Table 3.24 Comparison of Average Performances of Optimization Algorithms,

pij ~U[1,100], D=M ……………...... 80

Table 3.25 Comparison of Average Performances of Optimization Algorithms,

pij ~U[50,100], D=M ………………. 81

Table 3.26 Comparison of Average Performances of Optimization Algorithms,

pij ~U[1,100], D=L …………………. 82

Table 3.27 Comparison of Average Performances of Optimization Algorithms,

pij ~U[50,100], D=L ………………... 83

Table 3.28 Optimality Node Percentages, pij ~U[1,100] …………………… 86

 xiv

LIST OF FIGURES

Figure 2.1 Efficient solutions ………………………………………………. 6

Figure 3.1 Example rescheduling environment ..…………………………… 25

Figure 3.2 Progress of Procedure 3.1 ………………………………………. 32

Figure 3.3 Progress of Procedure 3.2 ………………………………………. 35

Figure 3.4 Efficient solution of example …………………………………… 39

Figure 3.5 The partial branch and bound tree ………………………………. 43

Figure 3.6 Progress of Procedure 3.4 ………………………………………. 54

 1

CHAPTER 1

INTRODUCTION

Scheduling, network flows, and multi-criteria optimization are well

recognized areas in the Operations Research literature. These research areas are

motivated by the practical problems that arise in a wide range of situations.

Network flows find many applications in scheduling area as many

scheduling problems have network representations, where the jobs may be accepted

as activities and the flows may be a representative of the sequence. Hence, advances

in network flow theory trigger the development of efficient solution procedures for

the scheduling problems having network flow representations.

Multi-criteria optimization is an important area of operations research, which

finds its application on both network flow problems and scheduling problems. Many

network flow problems like assignment, transportation, minimum cost network flow,

might have several concerns like safety, reliability, resource usages in addition to the

total cost criterion. The incorporation of those concerns necessitates the multi-

criteria formulation of the network flow problems.

Many scheduling problems have both producer and consumer related

concerns that may necessitate their simultaneous consideration in a multi-criteria

context. Rescheduling is an important scheduling area where multi-criteria

optimization finds its application. Rescheduling, has been a popular scheduling area

since 1990’s as evidenced by increasing evolving literature. The main motivation

behind this popularity is the recognition of the manufacturing environments that are

very often prone to disruptions. Rescheduling problems usually trade-off between

the stability and efficiency measures. The efficiency measures are usually producer

and/or consumer related. These measures aim to optimize classical performance

measures of scheduling, like total flow time, total weighted flow time, total

tardiness. The stability measures consider the deviation between the initial and new

 2

schedules. Simultaneous treatment of the efficiency and stability measures, takes

one into the area of multi-criteria optimization.

This thesis addresses a rescheduling problem on unrelated parallel machines

that has network flow representation and multi-criteria nature. Our criteria are total

flow time for efficiency and total reassignment cost for stability. The parallel

unrelated machine total flow time and total reassignment cost problems are

represented by minimum cost flow networks. The bicriteria problem defined for any

function of the total flow time and total reassignment cost is a bicriteria minimum

cost network flow problem. Hence any theory added to the bicriteria minimum cost

network flow area helps the development of the solution approaches to our

rescheduling problem.

In this thesis, we develop some theory for bicriteria minimum cost network

flow problem. We apply the theory on our rescheduling problem. We also propose

some implicit enumeration based approaches for our rescheduling problem.

The thesis is organized in two main parts: Chapter 2 and Chapter 3. Chapter

2 addresses a bicriteria minimum cost network flow problem. Chapter 3 considers

the parallel unrelated machine problem with total flow time and total reassignment

cost criteria. Each chapter has its own introduction where the importance of the

addressed problem is discussed. In Chapter 4, we conclude and point out some

future research directions.

 3

CHAPTER 2

BICRITERIA INTEGER NETWORK FLOW PROBLEM

Network flow problems are well studied and applied models of operations

research. The network flow problem with the single objective of minimum total cost

is a well recognized problem in the operations research literature (Ahuja et al.

(1993). The importance of the single objective problem not only stems from its

applicability but also its appearance as a subproblem in many models exploiting

network flow structure. Moreover, single objective minimum cost network flow

models have very special structure explained by integrality of the extreme points of

its feasible polyhedron. This structure, called total unimodularity property, allows

use of special linear programming technique, namely network simplex algorithm.

Several well known operations research problems like transshipment,

transportation, assignment, shortest path, maximum flow problems are special cases

of the minimum cost network flow problem. The minimum cost objective associated

with those problems might represent several concerns like minimizing the delivery

time, maximizing the safety and reliability, minimizing the deterioration of goods,

minimizing the shipping costs, minimizing the resource usages. In the basic model,

these concerns are combined in a single total cost objective. But these concerns are

usually in conflict. As mentioned in Hamacher (2007), applications with

transportation planning faces conflicting criteria like minimization of cost for

selected routes, minimization of arrival times at the destination points, minimization

of deterioration of goods, maximization of safety, etc. This necessitates the

multicriteria formulation of the network flow problem. The solution to the multi

criteria problem is a set of efficient, i.e., non-dominated, solutions among which the

decision maker is allowed to make a choice according to his/her preferences.

 4

Note that the network flow applications require integer flows, which would

be handled automatically, when there is a single objective. Incorporation of second

objective, dispels the total unimodularity nature of the network flow models. Hence

a need for integer programming based procedures arise.

A bicriteria network flow (BCNF) problem is a special case of multicriteria

network flow problem with two criteria and has attracted the attention of many

researchers. The majority of the BCNF studies assume continuous flow values. Pulat

et al. (1992), Lee and Pulat (1991), Sedeno-Noda and Gonzales-Martin (2000) and

Sedeno-Noda and Gonzales-Martin (2003) are the most noteworthy examples. The

associated studies formulate the BCNF problem as a parametric programming

model, which is solved by network simplex algorithm. The parameter of the models

are updated iteratively based on the solution of the previous iteration.

The BCNF problem with integer flow values (BCINF) to find exact set of

efficient solutions has been addressed in Lee and Pulat (1993), and Sedeno-Noda

and Gonzales-Martin (2001). Sedeno-Noda and Gonzales-Martin (2001) argue that

the algorithm by Lee and Pulat (1993) may miss some efficient points and introduce

another network simplex based algorithm that implicitly assumes the connectivity of

the adjacency graph. Przybylski et al. (2006) show that the adjacency graph is not

connected for the BCINF problem, hence settle the incorrectness of Sedeno-Noda

and Gonzales-Martin (2001)’s algorithm. Przybylski et al. (2006) also mention that

it is not likely to find the exact efficient set for the BCINF problem by simple

simplex pivots and interchange arguments. As stated in Hamacher et al. (2007),

exact algorithms to find the efficient set is missing in the current literature. But

there are few approximation based studies that find a representation of the efficient

set, some noteworthy examples are due to Lee and Pulat (1991), Nikolova (1998)

and Mustafa and Goh (1998). Lee and Pulat (1991) extend their algorithm for the

continuous BCNF problem to find all integer points. Nikolova (1998) studies the

problem of generating all supported efficient solutions. Mustafa and Goh (1998)

consider bicriteria and tricriteria integer network flow problems and propose

approximate solutions by adjusting the non-integer flows via an interactive

approach.

 5

For more details on the continuous and integer BCNF problems, the reader is

referred to the survey paper of Hamacher et al. (2007) who give a thorough review

of optimization and approximation algorithms.

In this study, we propose a two-phase approach to generate the exact

efficient set for the BCINF problem. In the first phase, we generate a simplex based

approach to generate the efficient solutions of the continuous flow problem. These

solutions form the extreme supported efficient set of the integer flow problem. The

remaining efficient solutions are found by integer programming based solution

procedures that use valid inequalities to ensure the generation of non-extreme

supported or unsupported efficient solutions.

The rest of the chapter is organized as follows: In section 2.1, we define our

problem, in Section 2.2 we present our solution procedures.

2.1 Problem Formulation

 Let G = (N, A) be a network with node set N and arc set A. Let lij and uij be

the integer non-negative lower and upper bounds on the flow values on each arc (i, j)

∈ A and bi be the integer demand (if negative) or supply (if positive) of each node i

∈ N. Let c1
ij and c2

ij be the non-negative integer cost coefficients for the unit flow

on arc (i, j) ∈ A, in the objectives f1(x) and f2(x) respectively. The decision variable

xij denotes the amount of flow on arc (i, j) ∈ A. The BCINF problem can be

formulated as follows:

Min f1(x) = 1

(,)
ij ij

i j A
c x

∈
∑ (2.1)

Min f2(x) = 2

(,)
ij ij

i j A
c x

∈
∑ (2.2)

subject to

ij ji i
j N j N

x x b
∈ ∈

− =∑ ∑ i N∀ ∈ (2.3)

 lij ≤ xij ≤ uij (,)i j A∀ ∈ (2.4)

 xij is integer (,)i j A∀ ∈ (2.5)

 6

Let X represents the set of feasible solutions to the BCINF problem. A

feasible solution x∈X is efficient if there does not exist any other feasible solution

x′∈X with either f1(x′) < f1(x) and f2(x′) ≤ f2(x), or f1(x′) ≤ f1(x) and f2(x′) < f2(x). An

efficient solution x∈X is supported if it optimizes any convex combination of f1(x)

and f2(x) (See Ehrgott and Gandibleux (2000)). In other words, x∈X is a supported

efficient solution, if it is one of the optimal solutions to w1 f1(x) + w2 f2(x) for any w1,

w2. A supported efficient solution x∈X is extreme supported if it can be found by

parameterizing on w1 > 0 and w2 > 0. An extreme supported efficient solution is a

boundary efficient solution if it lies at the corners of the (f1(x), f2(x)), i.e., objective

space. A supported efficient solution x∈X is non-extreme supported if lies on the

convex combination of two adjacent extreme supported efficient solutions on the

objective space. An efficient solution x∈X is unsupported if it is not optimal for any

convex combination of f1(x) and f2(x). Figure 2.1 illustrates the images of all

solutions in the objective space.

 Figure 2.1 Efficient solutions

 7

In Figure 2.1, X1, X3, X5, X8 and X11 are extreme supported efficient points. X1

and X11 are boundary efficient points. X2 and X9 are non-extreme supported efficient

points as they lie on the convex combination of two adjacent extreme supported

points. X4 and X7 are unsupported efficient points. X4 and X7 cannot optimize any

convex combination of f1(x) and f2(x), and therefore lie inside the triangle formed by

two adjacent extreme supported efficient points. X6 and X10 are inefficient points as

they lie on or outside the triangle formed by adjacent extreme supported efficient

points.

2.2 Solution Procedures

 In this section, we describe two procedures to generate the efficient solution

set (Set E). Both procedures use the boundary efficient solution set, they iterate

starting from one boundary point and terminate when the other boundary point is

reached. We describe the generation of the boundary efficient solution set (Set BE)

in Section 2.2.1.

 The first procedure generates all efficient solutions, using an optimal solution

of a singly constrained minimum cost network flow problem. The second procedure

first generates the set of extreme supported solutions (Set ESE), then having known

Set ESE, it generates the set of non-extreme supported solutions (Set NSE) and the

set of unsupported efficient solutions (Set UE). We present first and second

procedures in Sections 2.2.2 and 2.2.3 respectively.

2.2.1 Generation of Boundary Efficient solutions, Set BE

Set BE can be generated through the solutions of the following hierarchical

problem for p=1, s=2 and p=2, s=1, i.e., selecting one objective as primary, and the

other as secondary.

(P) Min fS(x)

s.t. (2.3), (2.4), and (2.5)

 fP(x) = fP
*(x) (2.6)

 8

where fP
*(x) is an optimal solution to the single objective, Min fP(x), network flow

problem and can be found in polynomial time using network simplex algorithm.

Now consider the following single objective network flow problem.

(P′) Min fP(x) + Sε fS(x) where Sε > 0 and is sufficiently small.

s.t. (2.3), (2.4), and (2.5)

Corollary 2.1, below, defines a range for Sε that makes (P) and (P′) equivalent.

Corollary 2.1. (P) and (P′) are equivalent when ε S <

(,)

1
() S

ij ij ij
i j A

u l c
∈

−∑
.

Proof. Sε should be set small enough so that objective p, should not increase even

for the largest possible reduction in objective s. Minimum increase in fP(x), is 1 unit,

since cP
ij can only take integer values. Maximum increase in fS(x), is the difference

between
(,)

s
ij ij

i j A
u c

∈
∑ , i.e., an upper bound on fS(x), and

(,)

s
ij ij

i j A
l c

∈
∑ , i.e., a lower bound

on fS(x). Hence Sε (
(,)

s
ij ij

i j A
u c

∈
∑ -

(,)

s
ij ij

i j A
l c

∈
∑)<1, i.e., Sε <

(,)

1
() S

ij ij ij
i j A

u l c
∈

−∑
should hold.

 ▄

 Let (f1(x*), f2(x*)) be the optimal solutions to problem (P′) with p=1, 2,

when Sε is set to

(,)

1
() 1S

ij ij ij
i j A

u l c
∈

− +∑
. These two solutions form set BE. Note that

fP(x*), with p=1, 2, are lower limits on the f1(x) and f2(x) values (f1
LB and f2

LB) of all

efficient solutions, respectively. On the other hand, fS(x*), with s = 1, 2, are upper

limits on the f1(x) and f2(x) values (f1
UB and f2

UB) of all efficient solutions,

respectively. These limits give an upper bound of Min{f1
UB- f1

LB, f2
UB- f2

LB}+1 on

the number of all efficient solutions. The reader may refer to Steuer (1986), for

generation of the boundary efficient solutions for the general bicriteria problem.

 9

2.2.2 Generation of All Efficient Solutions: A Simultaneous Approach

Consider the following singly constrained minimum cost network flow problem

(Pk) Min z =
(,)

P
ij ij

i j A
c x

∈
∑ +

(,)

1
() 1S

ij ij ij
i j A

u l c
∈

− +∑ (,)

S
ij ij

i j A
c x

∈
∑

 s.t. (2.3), (2.4), and (2.5)

(,)

S
ij ij

i j A
c x

∈
∑ ≤ k (2.7)

 (Pk) is NP-Hard as its special case, singly constrained assignment problem, is

NP-Hard (See Aggarwal (1985)).

An optimal solution to (Pk) is an efficient solution provided that k is no

smaller than fS
LB. (See, Haimes et al. (1971) for the general bicriteria problem)

Procedure 2.1 below generates Set E by varying the value of k between fS
UB

and fS
LB and solving (Pk). The procedure can be implemented by taking either of the

objectives as primary.

Procedure 2.1

Step 0. Let p=1 or 2.

Find fS
UB and fS

LB and let k = fS
UB –1.

Step 1. If k ≤ fS
LB then stop.

 Solve (Pk). Let the optimal solution be (f1
*, f2

*).

 E = E ∪ (f1
*, f2

*)

Step 2. k = fS
* - 1, go to Step 1.

 The procedure iterates pseudo-polynomial number of times as there exists

pseudo-polynomial number of efficient solutions. Each iteration returns a new

efficient solution by solving (Pk), i.e., an NP-Hard problem, in exponential time.

Hence the procedure has an exponential-time complexity.

 10

2.2.3 Generation of All Efficient Solutions: A Sequential Approach

 We find the efficient set sequentially, by first generating the extreme

supported efficient solutions, set ESE and then the non-extreme supported efficient

solutions, set NSE and the unsupported efficient solutions, set UE. We next describe

the generation of each set.

Generation of Extreme Supported Efficient solutions, Set ESE

 We generate Set ESE through successive solutions of (Pk) by varying the

value of k, in range [fS
LB, fS

UB]. Our procedure to generate Set ESE, Procedure 2.2, is

similar to Procedure 2.1. It solves the Linear Programming (LP) relaxation of (Pk)

and pivots in the slack variable of constraint fS(x) ≤ k, whereas Procedure 2.1 solves

(Pk) exactly. Below is the stepwise description of the procedure used to generate set

ESE.

Procedure 2.2

Step 0. Let p=1 or 2

k=fS
UB-1

Step 1. If k ≤ fS
LB , then stop.

Step 2. Solve the LP relaxation of (Pk).

If the solution is non-integer, perform one simplex iteration by pivoting in

the slack variable of constraint fS(x) ≤ k and get an integer solution.

 Let the current integer solution be (f1, f2).

 ESE = ESE ∪ (f1, f2)

k = fS(x) – 1, go to Step 1

 Each execution of Step 2 adds a new solution to Set ESE by solving the LP

in polynomial time. Step 2 iterates pseudo-polynomial number of times as there

exists pseudo-polynomial number of solutions in Set ESE. Hence the algorithm runs

in pseudo-polynomial time.

Theorem 2.1 shows that Procedure 2.2 generates all extreme supported

efficient solutions, i.e., Set ESE.

 11

Theorem 2.1. Procedure 2.2 generates all extreme supported efficient solutions, i.e.,

Set ESE.

Proof. The correctness of Procedure 2 is based on finding the extreme supported

efficient solutions by the LP relaxation of the singly constrained network flow

problem. Each point in Set ESE corresponds to an extreme point of the

corresponding unconstrained network flow problem (see Isermann (1974)). If the LP

relaxation of the singly constrained network flow problem gives all integer variables

then the resulting solution corresponds to one of the extreme points of the

unconstrained network flow problem (see Glover et al. (1978)). Note that the

optimal solution of our singly constrained network flow problem, (Pk), is an efficient

point. If the LP relaxation of (Pk) provides all integer variables, the resulting

solution is extreme supported efficient as it corresponds to one of the extreme points

of the network flow problem.

 If the LP relaxation gives a non-integral solution then the additional

constraint is binding, hence the associated slack variable is zero, i.e., not in the basis

(see Glover et al. (1978)). If the additional constraint is not binding, then the

associated slack variable is positive, i.e., in the basis. In the latter case, the resulting

solution is integral as the remaining constraint set (constraint set of the MCNF

problem) is totally unimodular.

When the slack variable of a non-integral solution is pivoted, it takes the

maximum value, smax, that does not violate feasibility. The resulting solution is

integral (Klingman and Russell (1978)) and solves
max

()k sp − problem where the slack

variable is in the basis at level zero. The solution is degenerate and corresponds to

the same extreme point of the LP relaxed solution of the (Pk) problem. This follows

that there cannot exist any other extreme point, hence an extreme supported efficient

point, having fS(x) value between k and k - smax+1. The basis for the

max
()k sp − problem is no more feasible for the

max 1()k sp − − problem, so one can conclude

that the extreme point representing the basis is different for each extreme supported

point. Our algorithm catches those extreme points and therefore finds all extreme

supported efficient points. ▄

 12

The previous approaches to generate set ESE, formulate the BCNF problem

as a parametric programming model so as to minimize f1(x) + λ f2(x) where λ > 0.

For a specified λ, they solve the parametric model by the network simplex method

and get an extreme supported efficient solution after which λ is updated by some

adjustment procedure. The parametric model is resolved for each updated λ using

network simplex method.

Our algorithm solves the BCNF problem by the network simplex method

only once for k=fS
UB-1 and finds the remaining ESE solutions by the dual-simplex

iterations based on the optimal basis of the most recently generated solution. As the

associated problems are not solved from scratch, one can expect higher efficiency.

The definition of supported efficient solutions follows that they are optimal

for the BCNF problem with the objective of wf1(x) + (1-w) f2(x), for some range of

w values. We hereafter let (f1
r(x), f2

r(x)) denote the rth extreme supported efficient

solution, Sr, such that f1
r-1(x) > f1

r(x) > f1
r+1(x) and f2

r-1(x) < f2
r(x) < f2

r+1(x) and let

#ESE denote the number of solutions in Set ESE.

 We let [wr-1, wr] denote a range for w for which (f1
r(x), f2

r(x)) is optimal,

where w0=0. When w = wr, Sr and Sr+1 and the solutions that lie on their convex

combination are alternate optimal. Hence wr equates the objective function values of

those supported solutions, i.e.,

wr f1
r(x) + (1-wr) f2

r(x)=wr f1
r+1(x) + (1-wr) f2

r+1(x)

This follows,
1

2 2
1 1

1 1 2 2

() ()
() () () ()

r r

r r r r r
f x f xw

f x f x f x f x

+

+ +

−
=

− + −
 r = 1,..., #ESE -1

In the next two subsections, we use wr values to generate the non-extreme

supported and unsupported efficient sets.

 13

Generation of Non-extreme Supported Efficient solutions, Set NSE

 Consider the following integer programming model.

(Pr
NE) Min wr f1(x) + (1- wr) f2(x) + NEε fP(x)

 s.t. (2.3), (2.4), (2.5)

 fS(x) ≤ fS
r(x) -1 (2.8)

 (Pr
NE) selects the solution with minimum wr f1(x) + (1- wr) f2(x) value and

breaks the ties in favor of fP(x) value.

 Note that when NEε = 0, Sr+1 solves (Pr
NE).

Any solution on the convex combination of Sr and Sr+1, is non-extreme

supported and such a solution has a lower fP(x) value than that of Sr+1. An optimal

solution to (Pr
NE) is a non-extreme supported efficient point between Sr and Sr+1

having smallest fP(x) value, provided that NEε is set according to Corollary 2.2. If

such a non-extreme supported efficient solution does not exist, the optimal solution

to (Pr
NE) is Sr+1.

Corollary 2.2. For 1 1
2 2 1 1

1 1.
() () () ()NE r r r r UB LB

P Pf x f x f x f x f f
ε + +<

− + − −
 , (Pr

NE)

minimizes wr f1(x) + (1-wr) f2(x) and breaks the ties in favor of fP(x) value.

Proof. ε NE should be set small enough so that z = wr f1(x) + (1-wr) f2(x) value should

not be increased even for the largest possible reduction in fP(x). Let ∆z be the

difference between optimal value and the objective value of any solution. This

difference can be defined mathematically as follows:

 ∆z= wr ∆f1 + (1-wr)∆f2

 =
1

2 2
1 1

2 2 1 1

() ()
() () () ()

r r

r r r r
f x f x

f x f x f x f x

+

+ +

−
− + −

∆f1+
1

1 1
1 1

2 2 1 1

() ()
() () () ()

r r

r r r r
f x f x

f x f x f x f x

+

+ +

−
− + −

∆f2

 14

Since two objectives can only take integer values, f2
r+1(x) – f2

r(x), f1
r(x) –

f1
r+1(x), ∆f1 and ∆f2 are all integers. 1a b

c c c
− ≥ holds for any three integers a, b and c

such that a-b is positive. This follows ∆z > 1 1
2 2 1 1

1
() () () ()r r r rf x f x f x f x+ +− + −

such that ∆z > 0.

The maximum increase in fP(x) is fP
UB – fP

LB.

Therefore, (fP
UB – fP

LB) ε NE < 1 1
2 2 1 1

1
() () () ()r r r rf x f x f x f x+ +− + −

 ,

equivalently, 1 1
2 2 1 1

1 1.
() () () ()NE r r r r UB LB

P Pf x f x f x f x f f
ε + +<

− + − −
 should hold.

 ▄

Before solving (Pr
NE) with the hope of finding a non-extreme efficient

solution between Sr and Sr+1, one may check for the conditions for the non-existence

of those solutions. One such condition is stated in Corollary 2.3.

Corollary 2.3. There is no non-extreme supported efficient solution that lies

between two extreme supported efficient solutions Sr and Sr+1 if there is no integer

(f1(x), f2(x)) point on the line connecting (f1
r(x), f2

r(x)) and (f1
r+1(x), f2

r+1(x)).

Proof. The non-extreme supported efficient solutions lie on the line connecting two

adjacent extreme support efficient solutions. The f1(x) and f2(x) values of all

solutions are integers as our parameters are integers. If there are no integer values

(f1(x), f2(x)) on the line connecting (f1
r(x), f2

r(x)) and (f1
r+1(x), f2

r+1
 (x)), there cannot

exist any non-extreme supported efficient solutions between Sr and Sr+1.

 ▄

 15

Corollary 2.3 implies that one may skip the region in the objective space

defined by Sr and Sr+1, if there is no integer point on their convex combination.

Moreover the result of the corollary can be used whenever a non-extreme supported

efficient solution, say ˆ
rS , is reached and there is no integer point on the convex

combination of ˆ
rS and Sr+!. In such a case one may again proceed to the region

defined by Sr+1 and Sr+2.

 Note that, there does not exist an integer solution between Sr and Sr+1, if for

each integer value of f1(x) between f1
r(x) and f1

r+1(x), the corresponding f2(x) value is

continuous. The f2(x) value can be found using the following equation.
1

1 1 2 2
2 2 1

1 1

(() ()).(() ())() ()
() ()

r r r
r

r r
f x f x f x f xf x f x

f x f x

+

+

− −
= +

−
 where f1(x) ∈[f1

r+1(x)+1, f1
r(x)-1].

 This check can be made for each integer point f2(x) ∈[f2
r(x)+1, f2

r+1(x)-1] and

the corresponding f1(x) values.

 We now provide the stepwise description of the algorithm that solves the

(Pr
NE) problem for each (Sr and Sr+1) pair.

Procedure 2.3

Step 0. Let p = 1 or 2 and r = 1.

Step 1. r = r+1, if r = # ESE then stop.

 k= fS
r(x) – 1

Step 2. If there is no integer point on the line connecting (f1
r(x), f2

r(x)) and (f1
r+1(x),

f2
r+1

 (x))

then go to Step 1

Step 3. Solve (Pr
NE) with fS(x) ≤ k.

Step 4. Let ˆ
rS be the solution with (1 2

ˆ ˆ(), ()r rf x f x)

 If ˆ
rS = Sr+1 then go to Step 1.

 NSE = NSE ∪ ˆ
rS

 If there is no integer point on the line connecting (f1
r(x), f2

r(x)) and

(1 2
ˆ ˆ(), ()r rf x f x) then go to Step 1.

 k = ˆ () 1r
Sf x − , go to Step 3

 16

Generation of Unsupported Efficient solutions, Set UE

 Consider the following inequality

 wrf1(x) + (1-wr)f2(x) > zr r = 1,..., #ESE -1 (2.9)

where zr = wr f1
r(x) + (1 – wr) f2

r(x)

 The unsupported efficient solutions satisfy constraint set (2.9), for all r as

they do not optimize any convex combination of f1(x) and f2(x). Corollary 2.4

shows that (2.9) is not satisfied by any supported efficient solution, thereby

providing a valid cut for any model that aims to find an unsupported efficient

solution.

Corollary 2.4. The constraint wr f1(x) + (1-wr)f2(x) > zr eliminates all supported

efficient solutions.

Proof. Two adjacent extreme supported efficient solutions, Sr and Sr+1, and any

solution on their convex combination do not satisfy (2.9), as they minimize wr f1(x)

+ (1 – wr) f2(x) with an objective function value of zr, i.e., zr = wr f1(x) + (1 – wr)

f2(x) for Sr and Sr+1,. This follows, wr f1(x) + (1-wr) f2(x) > zr eliminates Sr and

Sr+1, and any non-extreme efficient solution on their convex combination.

Therefore, constraint set (2.9) defined over all adjacent extreme supported solution

pairs, eliminates all supported efficient solutions.

 ▄

From the standpoint of using a mathematical programming software, we

convert (2.9) into ‘greater than or equal to’ type constraint. Recall from the proof

of Corollary 2.2 that the minimum increase in z value is

ε r= 1 1
1 1 2 2

1
() () () ()r r r rf x f x f x f x+ +− + −

 and hence constraint set (2.9) is equivalent to

the following constraint set.

wr f1(x) + (1-wr) f2(x) ≥ zr + 1 1
2 2 1 1

1
() () () ()r r r rf x f x f x f x+ +− + −

 (2.10)

 r = 1,..., #ESE -1

 17

 Constraint set (2.10) eliminates the supported efficient solutions, but not the

inefficient solutions. To eliminate the inefficient solutions, we use the efficiency

definition and add either f1(x) ≤ f1
r(x) – 1 or f2(x) ≤ f2

r(x) – 1, constraints for

each r:

 One can linearize this either/or type relation via a binary variable, Yr, as

follows:

 f1(x) ≤ f1
r(x) – 1 + (f1

UB(x) - f1
LB(x))(1- Yr)

 f2(x) ≤ f2
r(x) – 1 + (f2

UB(x) - f2
LB(x))Yr

 The model to find an unsupported efficient solution can then be written as,

(Pk
UE) Min fP(x) + ε S fS(x)

 s.t. (2.3), (2.4), (2.5)

fS(x) ≤ k

 wr f1(x) + (1-wr) f2(x) ≥ zr + ε r ∀ r s.t. fS
r(x) ≤ k

 f1(x) ≤ f1
r(x) – 1 + (f1

UB(x) - f1
LB(x))(1- Yr) ∀ r s.t. fS

r(x) ≤ k

 f2(x) ≤ f2
r(x) – 1 + (f2

UB(x) - f2
LB(x))Yr ∀ r s.t. fS

r(x) ≤ k

 Yr = 0 or 1

For a given k in range (fS
LB(x), fS

UB(x)), (Pk
UE) either returns an unsupported

efficient solution or concludes that no unsupported efficient solution having fS(x)

value no bigger than k exists. Below is the formal description of the algorithm that

uses (Pk
UE) to generate all unsupported efficient solutions.

Procedure 2.4

Step 0. Let p = 1 or 2, k = fS
UB – 1

Step 1. If k= fS
LB, then stop.

 Solve (Pk
UE).

If the solution is infeasible, all unsupported solutions are generated, stop.

Step 2. Let (f1
u(x), f2

u(x)) be the solution.

 UE = UE ∪ (f1
u(x), f2

u(x))

 k = fS(x) – 1, go to Step 1

 18

Procedure 2.4 iterates pseudo-polynomial number of times, as each execution

of Step 2 returns a new unsupported efficient solution and there is pseudo-

polynomial number of unsupported efficient solutions. Step 2 solves an integer

program (Pk
UE), in exponential time. So, the procedure runs in exponential time.

In Chapter 3, we deal with a rescheduling problem that is bicriteria in nature

and has a network flow representation. We, thus, apply the theory derived in this

section to the bicriteria minimum cost network flow problem to deal with our

rescheduling problem that trade-offs between total flow time and total reassignment

cost objectives.

 19

CHAPTER 3

RESCHEDULING PROBLEM

 Majority of the scheduling literature considers a manufacturing environment

with no disruptions. However in manufacturing practice, the environment is very

often subject to disruptions that makes the initial scheduling plan inefficient or even

infeasible and necessitates rescheduling. The common disruptions are machine

breakdowns, hence subsequent repairs, new order arrivals, order cancellations,

changes in order specifications like priorities, release times, and due dates, and

shortages of resources like materials, labor, tools and equipments.

 We consider a parallel machine environment where the machines are subject

to disruptions and where the jobs are initially scheduled so as to minimize total flow

time, i.e., total time the jobs spent in the system. Flow time gives a direct indication

of the work-in-process inventory levels, hence its minimization is an important

concern of many manufacturers.

We assume the customer promises are given and the resource allocations are

made according to the initial minimum flow time schedule. During the execution of

the initial plan, a disruption blocks the machines for a specified length of time.

Thereafter, the manufacturer still aims to minimize the total flow time of the jobs

that have not yet started, considering the disruption effect. However, the new

minimum flow time schedule may deviate from the initial schedule, in terms of

machine allocations. A deviation may cause disturbances, in particular, when the

machine setups and resource allocations are made according to the initial

allocations.

 20

We aim to consider the trade-off between the efficiency of the new schedule,

measured by the total flow time and the stability measured by the difference between

the initial and new machine allocations. As a stability measure, we use the total

reassignment cost. The jobs receive costs, i.e., penalties, according to the machines

they are assigned in the new schedule. The reassignment cost of job i on machine j is

zero, if job i is assigned to machine j in the initial schedule. We consider the

unrelated parallel machine environment where the processing time of a job is

dependent on the machine it is assigned on.

The rest of the Chapter is organized as follows. In Section 3.1, we review the

rescheduling literature. In Section 3.2, we introduce the basic definitions, notation,

and define our problems. In Section 3.3, we present the optimization algorithms for

each of our problems. The results of our experiments are presented in Section 3.4.

3.1 Literature Review

The rescheduling studies are of relatively recent origin. Almost all related

work are published in 1990’s and 2000’s. Vieira et al.(2003) classify rescheduling

strategies as dynamic with no schedule generation or predictive-reactive with

schedule generation and update. Dynamic strategies can be dispatching rules or

control-theoretic approaches. Rescheduling can be done periodic, event-driven or

hybrid in predictive-reactive strategies. Schedule generation and schedule repair are

the two methods used for rescheduling. Schedules can be robustly generated by

taking disruptions into account. As a repair methodology right-shift scheduling,

partial rescheduling or complete regeneration can be used. Raheja and Subramaniam

(2002) review rescheduling in a job shop environment and identify the methods used

in rescheduling. Right shift scheduling is the simplest strategy that recovers

disruption by shifting all the jobs towards the right in the time horizon without

changing the initial sequence. Affected operations rescheduling is a partial

scheduling strategy where only the jobs that are affected from the disruptions are

rescheduled.

 21

Aytug et al. (2005) review the literature on executing production schedules

in the presence of disruptions. A four dimensional taxonomy is introduced. The

taxonomy is; Cause – object, state; Context – free or sensitive; Impact – time,

material, quality, dependency, context; Inclusion; predictive and/or reactive. A

number of directions for future work are suggested on; problem formulation,

estimation of reconfiguration costs, using available information on the nature of

disruptions and integrating with structural control. Henning and Cerda (2000)

present a knowledge-based framework, based on the object oriented technology, for

building scheduling systems aimed at solving real-world problems. The paper points

out the most relevant aspects of the proposed framework architecture that support

both predictive and reactive scheduling.

 Hall and Potts (2005) consider inserting new jobs in a schedule without

excessive disruption of the old jobs. New jobs must be inserted into the current

schedule while preserving the original assignments as much as possible. They

consider maximum lateness and total flow time as efficiency measures and the total

sequence deviation and total completion time deviation between the initial and new

schedules as stability measures. They utilize two different models, in the first model

they minimize scheduling cost under a limit on the disruption amount and in the

second model they simultaneously consider the two criteria in the objective function.

They provide either efficient algorithms or show that such algorithms are unlikely to

exist. Unal et al. (1997) consider the problem of rescheduling a facility modeled as a

single machine in the face of newly arrived jobs with part-type dependent setup

times. Their aim is to insert the new jobs in the schedule so as to minimize the total

weighted completion time or the maximum completion time of the new jobs. They

provide a polynomial-time algorithm for the maximum completion time problem.

Daniels and Kouvelis (1995) formalize the robust scheduling concept for scheduling

situations with uncertain or variable processing times. They consider a single-

machine environment and minimize the total flow time. O’Donovan et al. (1999)

applies predictable scheduling approach to minimize total tardiness on a single

machine with stochastic machine failures. Their procedure considers the case where

the processing times are affected by machine breakdowns, and provides specialized

rescheduling heuristics.

 22

 Bean et al. (1991) consider the rescheduling operations with release dates

and multiple resources. They specify some optimality conditions and a solution

approach. Their approach, called as Match-up Scheduling, follows the initial

schedule until a disruption occurs. After a disruption, part of the schedule is

reconstructed to match up with the initial schedule at some future time. Leung and

Pinedo (2004) consider parallel machine scheduling, where the machines are

identical and subject to repair and breakdown. Three objectives namely, the total

completion time, the makespan, and the maximum lateness are considered. They

analyze the case where the jobs have deadlines and are subject to precedence

constraints.

 Mason et al. (2004) work on rescheduling strategies for minimizing total

weighted tardiness in complex job shops of semiconductor manufacturing

environment. Three rescheduling strategies, namely right shift scheduling, fixed

sequence rescheduling and complete rescheduling are examined, to investigate the

efficiency of each strategy on the on-time delivery performance measured by the

total weighted tardiness. Aktürk and Görgülü (1999) propose a rescheduling strategy

and match-up point determination procedure to increase both the schedule quality

and stability on modified flow shops (MFS) in which the machines are physically

arranged in cellular form. Abumaizar and Svestka (1997) present an affected

operations rescheduling algorithm in a job shop and compare it with complete

rescheduling and Right-shift Scheduling strategies. Their results demonstrate the

superiority of the Affected operations algorithm over other rescheduling methods.

O’Kane (2000) describes research on the development of an intelligent simulation

environment. The environment is used to analyze reactive scheduling scenarios in a

specific flexible manufacturing systems (FMS) configuration. Various intelligent

systems and concepts are developed and implemented to provide decision making

and control across a FMS schedule lifetime. Sabuncuoğlu and Bayız (2000) study a

reactive scheduling problem in classical job shop environments, and use mean

tardiness and makespan as performance measures. Kutanoğlu and Sabuncuoğlu

(2001) study reactive scheduling in dynamic job shops, where the machines are

prone to unexpected failures. Their strategy is to reroute the jobs if one the machines

on the original route fails.

 23

 Rangsaritratsamee et al.(2004) propose a rescheduling methodology whose

objective contains both efficiency and stability measures. Schedules are generated at

each rescheduling point using a genetic local search algorithm that allows efficiency

and stability to be balanced in a way that is appropriate for each situation. Mehta

and Uzsoy (1998) present a predictable scheduling approach which can absorb

disruptions without affecting planned external activities, while maintaining high

shop performance. The procedure inserts additional idle time into the schedule to

absorb the impacts of breakdowns. The amount and location of the additional idle

time are determined from the breakdown and repair distributions as well as the

structure of the predictive schedule. The effects of the disruptions on the planned

support activities are measured by the deviations of the job completion times

between the realized and predictive schedule. This approach is applied to maximum

lateness (Lmax) problem in a job shop environment with random machine

breakdowns.

Wu, Storer and Chang (1993) develop rescheduling heuristics for single

machine environments. They utilize makespan as the efficiency measure and start

time and sequence deviation of the initial and new schedules as their stability

measure. Li and Shaw (1996) consider dynamic scheduling on job shop

environment. They utilized a simulation model to evaluate their proposed heuristic

against classical heuristics.

 Alagöz and Azizoğlu (2003) and Azizoğlu and Alagöz (2005) address the

trade-off between the total flow time and the number of reassigned jobs. Azizoğlu

and Alagöz (2005) develop a polynomial time algorithm to generate all non-

dominated solutions, whereas Alagöz and Azizoğlu (2003) consider eligibility

constraints and propose approximation and optimization algorithms. Curry and

Peters (2005) consider total reassignment penalty as a stability measure and total

tardiness as an efficiency measure. They propose a simulation study to test the

efficiencies of some heuristic procedures and rescheduling strategies.

 24

 Church and Uzsoy (1992) consider single machine and parallel identical

machine environments to minimize the maximum lateness and the number of times

rescheduling is done. They provide a simulation study to test the efficiencies of

some rescheduling strategies like periodic, event-driven and continuous

rescheduling.

 In our study, we consider a rescheduling problem on unrelated parallel

machine environments that address the trade-off between the total flow time and the

total reassignment cost. Our model is a generalization of the identical parallel

machine models in Alagöz and Azizoğlu (2003), and Azizoğlu and Alagöz (2005)

that consider the trade-off between the total flow time and the number of reassigned

jobs. Our aim is to contribute to the rescheduling literature by proposing a solution

methodology for a bicriteria problem on unrelated parallel machine environments.

3.2 Problem Definition

We consider a manufacturing environment with m unrelated parallel

machines. We assume all jobs are available at time zero, and each should be

assigned to one of the machines, and processed without interruption. Each job i is

characterized by an integer processing time pij time units on machine j.

We assume the initial schedule is known. There is a disruption of D time

units on one of the machines, say machine DM, after executing the initial schedule

for DT time units. The job that is being processed on DM, and the jobs that start on

or after DT on other machines are to be rescheduled at time DT. We assume there

are n such jobs. Once we take the reference starting point from time zero to DT, our

rescheduling problem reduces to scheduling n jobs, available at time zero, on m

unrelated parallel machines where machine j becomes available at time aj.

Accordingly, aDM = D and aj is the completion time of the job processed at time DT

on non-disrupted machine j. Note that, multiple simultaneous disruptions can also

be handled by letting aj = Dj where Dj is the time at which the disruption on machine

j, is recovered. We assume D, DT, and aj are all integers. Figure 3.1 illustrates a

rescheduling environment where DM=M1.

 25

Figure 3.1 Example rescheduling environment

The scheduling cost, that defines our efficiency measure, is the total flow

time, F. Total flow time is the total time the jobs spent in the system and therefore is

the direct indication of total work-in-process inventory levels. As we assume all zero

ready times, the total flow time and total completion time are equivalent measures. If

we let Ci denote the completion time of job i in the new schedule, total flow time,

1

n

i
i

F C
=

= ∑ . The disruption cost that defines our stability measure is the total

reassignment cost of jobs that are reassigned to different machines between initial

and new schedules, shortly reassigned jobs. We let

1 if job is reassigned
0 otherwisei

i
R 

= 


 26

The total number of reassigned jobs, a special case of total reassignment cost

with unique cost terms, is
1

n

i
i

R
=
∑ . Total reassignment cost is defined by letting

wrij = integer cost (penalty) of assigning job i to machine j

We can interpret wrij as the additional cost incurred due to the reassignment

of job i to machine j. Such a cost might be incurred due to the additional set-up,

adjustment, tooling, material/labor shifting done.

The total reassignment cost, WRJ, is ij ii j
wr R∑ ∑ .

A schedule S is said to be efficient with respect to F and WRJ if there exists

no schedule S′ with F(S′) ≤ F(S) and WRJ(S′) ≤ WRJ(S) with at least one strict

inequality. An efficient schedule s∈S is supported if it optimizes any weighted sum

of WRJ and F. In other words, s∈S is a supported efficient solution, if it is one of the

optimal solutions to w1 WRJ + w2 F for any non-negative w1, w2. A supported

efficient schedule s∈S is extreme supported efficient if it can be found by

parameterizing on w1 and w2. A supported efficient schedule s∈S is nonextreme

supported efficient if lies at the convex combination of two adjacent extreme

supported efficient schedules on the (WRJ, F). An efficient schedule s∈S is

unsupported if it is not optimal for any weighted sum of WRJ and F.

The standard classification schemes for scheduling problems use three-field

representation | |α β γ where α is the machine environment, β is the constraints or

special characteristics of the problem and γ is the objective function (see Lawler et

al. (1989)). We consider unrelated parallel machines and hence set α = R, when the

parallel machines are identical, i.e., pi j= pi for all i and j, we set α = P. We have

initial machine available times denoted by aj in β field. Moreover, we use the

following constraints

β = F = F* : total flow time should be kept at its minimum value

β = WRJ = WRJ* : total reassignment cost should be kept at its minimum value

β = F ≤ k : total flow time can be at most k

β = WRJ ≤ k : total reassignment cost can be at most k

β = aj : the machines have initial available times

 27

We consider F, WRJ as efficiency and stability measures, hence we have,

γ = F, WRJ : generating set of efficient schedules with respect to F and WRJ

γ = f (F, WRJ) : finding an optimal schedule for a specified function of F and

WRJ

3.3 Solution Procedures

In this section, we provide solution procedures to our problems that are

described in detail in the following sections.

3.3.1 The | |jR a F problem

Kaspi and Montreuil (1988) show that the | |jP a F problem can be solved

in polynomial time by assigning the shortest available job to the earliest available

machine. Lee and Liman (1992) and Mosheiov (1994) study the more general case

of the | |jP a F problem where the machines are unavailable at arbitrary, but not

necessarily initial, times.

A special case of the | |jR a F problem where pi j= pi or ∞ for all i and j, is

formulated as a network flow problem in Alagöz and Azizoğlu (2003). We now

extend this network formulation to the arbitrary pij case.

Our decision variable is defined as

1 if job is scheduled position from last on machine .
:

0 otherwise

th

ikj
i k j

X




The objective function requires the minimization of the total flow time

values, i.e.,

Min
1 1 1

()
n n m

ij j ikj
i k j

kp a X
= = =

+∑∑∑ (3.1)

kpij is the contribution of the processing time of job i to the total flow time if

it is sequenced at kth position from last on machine j and aj is the start time of the

first job on machine j.

 28

The constraint sets are as stated below:

1 1

1
n m

ikj
k j

X
= =

=∑∑ ∀ i (3.2)

1

1
n

ikj
i

X
=

≤∑ ∀ j, k (3.3)

 { }0,1ikjX ∈ ∀ i, j, k (3.4)

 Constraint sets (3.2) and (3.3) ensure that each job is scheduled exactly once

and each position of each machine is occupied by at most one job. Constraint set

(3.4) requires that the jobs cannot be preempted or splitted. Due to the total

unimodularity of the constraint set of the network flow models (see Papadimitriou

and Steiglitz (1982)), the Linear Programming (LP) relaxation of the model provides

all integer solutions. Therefore constraint set (3.4) can be replaced by

 0 ≤ Xikj ≤ 1 ∀ i, j, k (3.5)

3.3.2 The | |jR a WRJ problem

WRJ can be forced to its lower bound of zero by applying the right-shift

strategy to the initial schedule. The right-shift strategy shifts all jobs on DM, D time

units to the right, while keeping other job assignments the same. The F value that

solve | |jR a WRJ problem, i.e., F value of the right-shift schedule, gives an upper

bound on the F values of all efficient schedules.

3.3.3 The *| , |jR a F F WRJ= problem

Note that the F value that solves the | |jR a F problem gives a lower bound

on the F values of all efficient solutions. However the resulting schedule may not be

efficient as there may exist alternate optimal schedules to the | |jR a F problem

having smaller WRJ values. Among the alternate optimal schedules to the total flow

time problem, the one that has the smallest WRJ value, hence the efficient schedule

requires an exact solution of the *| , |jR a F F WRJ= problem. In place of

 29

incorporating F = F* to our network flow model, we can modify our objective

function as F + ε WRJ WRJ, for a sufficiently small value of ε WRJ > 0. Theorem 3.1

states this result formally and defines a range for ε WRJ.

Theorem 3.1. The *| , |jR a F F WRJ= and | |j WRJR a F WRJε+ problems are

equivalent when ε WRJ <

1

1

{ }
n

j ij
i

Max wr
=
∑

.

Proof. ε WRJ should be set small enough so that the total flow time value should not

increase even for the largest possible reduction in the total reassignment cost. The

minimum increase in the total flow time is one unit due to the integrality of the

processing times. The maximum increase in the total reassignment cost is

1
{ }

n

j ij
i

Max wr
=
∑ .

Hence ε WRJ
1

{ }
n

j ij
i

Max wr
=
∑ < 1, i.e., ε WRJ <

1

1

{ }
n

j ij
i

Max wr
=
∑

 should hold.

 ▄

In our experiments, we use ε WRJ =

1

1

{ } 1
n

j ij
i

Max wr
=

+∑
 for the

| |j WRJR a F WRJε+ problem. Note that, this result is presented in Chapter 2 for

BCINF problem, we derived the ε for our rescheduling problem using the

1
{ }

n

j ij
i

Max wr
=
∑ as the upper bound, and zero value as the lower bound (See Corollary

2.1).

 30

3.3.4 The *| , |jR a WRJ WRJ F= problem

The right-shift schedule solves the | |jR a WRJ problem, as it produces an

WRJ value of zero. However, wrij can be zero, even when a job is reassigned In

such a case, there can be a schedule, other than right-shift, having a zero WRJ value

and smaller F value than that of the right-shift schedule. The efficient schedule

having smallest F value, among the ones having zero WRJ value, can be found by

solving the *| , |jR a WRJ WRJ F= problem. Instead of treating WRJ=WRJ*

constraint, we can modify the objective function as WRJ + ε F F for a sufficiently

small value of ε F. Theorem 3.2 states this result formally and defines a range for

ε F.

Theorem 3.2. The *| , |jR a WRJ WRJ F= and | |j FR a WRJ Fε+ problems are

equivalent when ε F < 1

UB LBF F−
, where FUB and FLB are the F values that solves the

| |jR a WRJ and | |jR a F problems respectively.

Proof. ε F should be set small enough so that the total reassignment cost should not

increase even for the largest possible reduction in total flow time. The minimum

increase in the total reassignment cost is one unit due to integrality of wrij values.

The maximum increase in the total flow time is FUB - FLB units.

Henceε F [FUB - FLB] < 1, i.e, ε F < 1

UB LBF F−
 should hold.

 ▄

In our experiments we use ε F = 1
1UB LBF F− +

. Note that, this result is

previously presented in Chapter 2 for the BCINF problem (See Corollary 2.1).

 31

3.3.5. The constrained optimization problems

The | , |j WRJR a WRJ s F WRJε≤ + and | , |j FR a F s WRJ Fε≤ + are singly-

constrained assignment problems. The additional constraints to the assignment

model, WRJ ≤ s, and F ≤ s are expressed as follows:

, ,

ij ikj
i j k

wr X∑ ≤ s (3.6)

, ,

()j ij ikj
i j k

a kp X+∑ ≤ s (3.7)

 For arbitrary coefficients, the singly-constrained assignment problem is NP-

Hard so are the | , |j WRJR a WRJ s F WRJε≤ + and | , |j FR a F s WRJ Fε≤ +

problems.

3.3.6 Generation of all extreme supported efficient schedules

 We generate the extreme supported efficient solutions using an LP based

procedure 2.2. Procedure 3.1 applies the steps of Procedure 2.2, to our rescheduling

problem.

Procedure 3.1 Generation of extreme supported efficient solutions

Step 0. Let s=WRJUB-1

Step 1. If s ≤ WRJLB + 1, then STOP

Step 2. Solve the LP relaxation of (Ps)

(Ps) Min
1 1 1

()
n n m

ij j ikj
i k j

kp a X
= = =

+∑∑∑ +

1

1

{ } 1
n

j ij
i

Max wr
=

+∑ , ,
ij ikj

i j k
wr X∑

s.t
1 1

1
n m

ikj
k j

X
= =

=∑∑ ∀ i

1

1
n

ikj
i

X
=

≤∑ ∀ j, k

 { }0,1ikjX ∈ ∀ i, j, k

, ,

ij ikj
i j k

wr X∑ ≤ s

 32

 If all decision variables are not integer,

 then perform a single simplex iteration by pivoting in the

slack variable of
, ,

ij ikj
i j k

wr X∑ ≤ s

 Let the current solution be (F*, WRJ*).

 ESE = ESE ∪ (F*, WRJ*)

 s = WRJ* – 1, Go to Step 1

The following figure illustrates the progress of Procedure 3.1.

Figure 3.2 Progress of Procedure 3.1

 33

 The steps followed by Procedure 3.1 are as follows:

Step 0. Set s =WRJUB-1=s0

Step 2. Solve the LP Relaxation of
0sP

 Pivot in the slack variable, identify extreme supported point 1.

 Let the current solution be (F1*, WRJ1*).

 ESE = ESE ∪ (F1*, WRJ1*)

 s = WRJ1* – 1= s1

Step 2. Solve the LP Relaxation of
1s

P

 Pivot in the slack variable, identify extreme supported point 2.

 Let the current solution be (F2*, WRJ2*).

 ESE = ESE ∪ (F2*, WRJ2*)

 s = WRJ2* – 1= s2

Step 2. Solve the LP Relaxation of
2sP

 Pivot in the slack variable, identify extreme supported point 3.

 Let the current solution be (F3*, WRJ3*).

 ESE = ESE ∪ (F3*, WRJ3*)

 s = WRJ3* – 1= s3

The procedure continues to iterate in a similar manner, until it hits to the

other boundary point, namely (FUB, WRJLB).

3.3.7 Generation of all efficient schedules

 We develop two approaches to generate the efficient set. First approach, we

call Integer Programming Based (IPB) approach, solves singly constrained

optimization problems, successively. Second approach is a Branch and Bound

method that makes implicit enumeration of the efficient schedules.

 34

Integer Programming Based (IPB) Approach

We generate the efficient schedules through the Procedure 3.2 below that

varies the value of s between the WRJLB and WRJUB. Note that this procedure is

Procedure 2.1 from Chapter 2, modified for our rescheduling problem.

Procedure 3.2. Classical Approach: Finding All Efficient Schedules

Step 0. Solve the

1

1| |
{ } 1

j n

j ij
i

R a F WRJ
Max wr

=

+
+∑

 problem and form a right-shift

schedule.

WRJLB = WRJ value of the right-shift schedule, i.e., zero

WRJUB = WRJ value that solves the

1

1| |
{ } 1

j n

j ij
i

R a F WRJ
Max wr

=

+
+∑

problem

Let s = WRJUB – 1

Step 1. Solve the

1

1| , |
{ } 1

j n

j ij
i

R a WRJ s F WRJ
Max wr

=

≤ +
+∑

 problem

 Let (F*, WRJ*) be the solution

 E = E ∪ (F*, WRJ*)

Step 2. If WRJ*=WRJLB then STOP

 s = WRJ* - 1

 Go to Step 1

 The following figure illustrates the progress of Procedure 3.2.

 35

Figure 3.3 Progress of Procedure 3.2

The steps followed by Procedure 3.1 are as follows:

Step 0. Form the right shift schedule, and identify (FUB, WRJLB).

 Solve | |j WRJR a F WRJε+ problem and identify (FLB, WRJUB).

 s =WRJUB-1=s0

Step 1. Solve the

1

1| , |
{ } 1

j n

j ij
i

R a WRJ s F WRJ
Max wr

=

≤ +
+∑

 problem

 Let (F1
*, WRJ1

*) be the solution

 Point 1 in Figure 3.3 is the corresponding efficient point.

 E = E ∪ (F1
*, WRJ1

*)

Step 2. s = WRJ1
* - 1

Step 1. Solve the

1

1| , |
{ } 1

j n

j ij
i

R a WRJ s F WRJ
Max wr

=

≤ +
+∑

 problem

 Let (F2
*, WRJ2

*) be the solution

 36

Point 2 in Figure 3.3 is the corresponding efficient point.

 E = E ∪ (F2
*, WRJ2

*)

Step 2. s = WRJ2
* - 1

Step 1. Solve the

1

1| , |
{ } 1

j n

j ij
i

R a WRJ s F WRJ
Max wr

=

≤ +
+∑

 problem

 Let (F3
*, WRJ3

*) be the solution

Point 3 in Figure 3.3 is the corresponding efficient point.

 E = E ∪ (F3
*, WRJ3

*)

Step 2. s = WRJ3
* - 1

The procedure continues to iterate in a similar manner, until it hits to the

other boundary point, namely (FLB, WRJUB).

 Alternately, we could solve the | , |j FR a F k WRJ Fε≤ + problem and vary

the value of k between FLB and FUB.

 Note that each step of Procedure 3.2 generates an efficient solution. The

| | ,jR a F WRJ problem has at most { 1, 1}UB LB UB LBMin F F WRJ WRJ− + − + , i.e.,

pseudo-polynomial, number of efficient solutions. Hence the algorithm iterates

pseudo-polynomial number of times. In each iteration, one has to solve singly-

constrained assignment problem for which polynomial algorithms cannot exist.

A Branch and Bound (BAB) Approach

Recall that the | | ,jR a F WRJ problem is open. This justifies the use of

implicit enumeration technique to find the exact set of efficient solutions. We, in this

study, propose a branch and bound algorithm.

Our branch and bound algorithm uses the following two phase approach to

generate an initial approximate set of efficient solutions.

Phase 1. Generation of extreme supported efficient solutions

Phase 2. Generation of approximate non-extreme supported and unsupported

efficient solutions in the neighborhood of the solutions found in Phase 1.

 37

Phase 1:

Recall that we can use Procedure 3.1 to find the extreme supported efficient

solutions by using an LP solver. Alternatively, we could generate these solutions

through the successive solutions of a linear assignment problem. We start with two

known boundary solutions, S1 and S2, define ranges for w values of the weighted

objective function over which each boundary point is better. In doing so, we solve

the following inequality.

 wF1 + (1-w)WRJ1=wF2 + (1-w) WRJ 2 (3.8)

 where (Fi, WRJ i) is the (F, WRJ) values of Si and Si s are ordered such that

 Fi < Fi+1 and WRJ i > WRJi+1.

Note that 2 1

1 2 2 1

WRJ WRJw
F F WRJ WRJ

−
=

− + −
 solves equation 3.8.

 At w, S1 and S2 have the same objective function values. In ranges [w, 1] and

[0, w], S1 and S2 are favored respectively. When a new extreme supported efficient

solution is added, we reorder the solutions in such a way that F1 < F2 < F3 and

WRJ1 > WRJ2 > WRJ3 and solve the following two equations simultaneously

w1F1 + (1-w1) WRJ1=w1F2 + (1-w1) WRJ2

 w2F2 + (1-w2) WRJ2=w2F3 + (1-w2) WRJ3.

 Then in ranges [w1,1], [w2, w1] and [0, w2], S1, S2 and S3 are the best

schedules respectively. Note that the ranges change once a new schedule is added.

In general, once we have k efficient solutions, we solve k-1 equations: one

for each adjacent pair and find k ranges. Exact ranges are available when all extreme

supported solutions are found.

Each iteration of our procedure either finds a new extreme supported

efficient point, or returns a known extreme supported efficient point, by solving a

linear assignment problem with weight wa. If the former case occurs then there

exists an efficient point between Sa and Sa+1 and the weights are updated with the

addition of the new schedule. If the latter case occurs then there cannot exist a

supported efficient solution between Sa and Sa+1. Then we fix wa and proceed with

wa+1 with the hope of generating a new extreme supported point. The algorithm

terminates whenever all weights are fixed.

 38

Procedure 3.3

Step 0. Find S1 and S2 by solving the | |j FR a WRJ Fε+ and | |j WRJR a F WRJε+

problems respectively.

 r= # of known extreme supported efficient solutions

 k=# of extreme supported efficient solutions with fixed ranges

 r=2, k= 1

 2 1
1

1 2 2 1

WRJ WRJw
F F WRJ WRJ

−
=

− + −

 SL = S2

Step 1. Solve the assignment problem with the following objective

Min (1)k kw F w WRJ+ −

Let SL be the solution

 If SL is one of the extreme solutions (S1 or S2) then go to Step 3.

Step 2. If SL is either Sk or Sk+1 then fix wk let k=k+1, go to Step 1

 If SL is a new schedule then reorder the schedules,

update wk and wk+1 as follows

 1

1 1

k k
k

k k k k

WRJ WRJw
F F WRJ WRJ

+

+ +

−
=

− + −

 2 1
1

1 2 2 1

k k
k

k k k k

WRJ WRJw
F F WRJ WRJ

+ +
+

+ + + +

−
=

− + −

 If all wk are fixed go to Step 3.

 Go to Step 1

Step 3. Stop, all r supported efficient solutions are generated.

 Procedure 3.3 is similar to the methods proposed by Aneja and Nair (1979)

for bicriteria transportation and Visee et al. (1998) for bicriteria knapsack problems.

We illustrate the procedure by the following example problem

Example: Consider six efficient solutions on the following figure

 39

Figure 3.4 Efficient solution of example

 Note, that ES1, ES2 and ES3 are extreme supported efficient, NES1 is

nonextreme supported and US1, US2 are unsupported efficient solutions. Our

algorithm will generate ES1, ES2 and ES3, through the following steps.

Step 0. S1 = (99, 0) S2 = (42, 8) r=2 k=1

 w1 =
(8 0) 8

(99 42) (8 0) 65
−

=
− + −

=0.123

 w-range best solution

(0.123, 1] (42, 8)

[0, 0.123) (99, 0)

Step 1. Solve the assignment problem with w=0.123.

 The optimal solution is at point (63, 5)

 r=3

 Ordered set of extreme supported efficient points are

 S1 = (99, 0) S2 = (63, 5) S3 = (42, 8)

Step 2. w1=
(5 0) 5

(99 63) (5 0) 41
−

=
− + −

=0.122

 w2=
(8 5) 3

(63 42) (8 5) 24
−

=
− + −

=0.125

 40

 w-range best solution

 (0.125, 1] (42, 8)

 (0.122, 0.125) (63, 5)

 [0, 0.122) (99, 0)

Step 1. Solve the assignment problem with w=0.125.

 The optimal solution is at points (42, 8) and (63, 5)

Step 2. k=2

Step 1. Solve the assignment problem with w=0.122.

 The optimal solution is at points (99, 0) and (63, 5)

Step 2. k=3

 All ranges are fixed

Step 3. Stop

 r=3 supported points are generated

 Ordered set of extreme supported efficient points are

 S1 = (99, 0) S2 = (63, 5) S3 = (42, 8)

In solving the assignment problems in Step 0 and Step 2 we use the code

generated by Volgenant (1996) designed for the rectangular assignment problems

like ours. Note that our problem has n jobs to be assigned to n*m positions. Hence

solving regular n*m by n*m assignment problem by defining n*m-n dummy jobs

would not be an efficient way. The assignment code of Volgenant (1996) handles

this inefficiency by coping with n by n*m rectangular assignment problem. The

complexity of the algorithm is n2m.

Phase 2:

In Phase 2, we start from the first extreme point having minimum total flow

time, thereby maximum total reassignment cost of all efficient solutions. For each

job that is not on its initial machine, we assign it to its initial machine according to

SPT order, while keeping the other assignments fixed. The resulting schedule is

added to the list if it is not dominated by any schedule of the list. Among the newly

added schedules we select the one having smallest flow time, and compare it with

the next extreme supported solution in the list. Among those two schedules, we

 41

continue with the one having smaller total flow time. We repeat the procedure, until

the other extreme point of the list is reached. Then we start from this extreme point,

i.e., the one having maximum total flow time and zero total reassignment cost and

create new schedules by reassigning the jobs from their initial machines to each of

the (m-1) machines, while keeping the other assignments fixed. The new schedules,

if nondominated, are added to the list. We continue with the new schedule having

smallest total reassignment cost or the next schedule of the list whichever has the

smallest reassignment cost. We terminate whenever the other extreme point of the

list is searched.

We hereafter refer to our two phase procedure as greedy heuristic.

 Our Branch and Bound algorithm starts with this list of approximate efficient

solutions generated by greedy heuristic, add whenever a nondominated solution is

found and remove whenever a solution in the list becomes dominated by a newly

generated schedule.

 Smith (1956) shows that Shortest Processing Time (SPT) rule minimizes the

total flow time on a single machine. Hence, in any efficient sequence SPT should

prevail within each machine. We make use of this result in constructing our branch

and bound tree.

We generate the partial solutions, i.e., nodes, of the branch and bound tree as

follows: At each level, we decide on the job that should be assigned to the first

available position of the earliest available machine. We also represent a solution in

which no further assignment is made to the earliest available machine, this case

corresponds to the removal of that machine. In selecting the first available job we

recognize the prevailence of Shortest Processing Time (SPT) rule within each

machine. Hence we never branch to a node representing the assignment of job i to

machine j if pij < plj and job l has assigned to machine j in the partial solution.

 Figure 3.2 represents a partial branch and bound tree for n=7 jobs and m=3

machines problem instance whose data are given in Table 3.1.

 42

Table 3.1. An example problem instance

i pi1 pi2 pi3

1 67 6 72
2 85 44 62
3 81 33 55
4 14 21 79
5 54 97 86
6 22 64 61
7 22 94 72

 Note that Shortest Processing Time orders of the jobs are as follows:

 Machine 1 4-6-7-5-1-3-2

 Machine 2 1-4-3-2-6-7-5

 Machine 3 3-6-2-1-7-4-5

 We assume the initial job assignments are 6-7-5 on machine 1, 1-4-3 on

machine 2 and 2 on machine 3. Machine 1 is not available for 98 time units.

 43

Figure 3.5 The partial branch and bound tree

 Note that initially a1=98, a2=a3=0. Machines 2 and 3 are earliest available

machines. Assume we arbitrarily select machine 2 for branching. The first node,

called 0, represents the case where no further assignments will be made on machine

2. The (o+1)st node at level 1 corresponds to the assignment of the oth job of the SPT

sequence on machine 2. Hence the fourth node represents the assignment of job 3. If

node 3 is selected for branching then a2=p32=33 and machine 3 becomes the earliest

available machine, emanates six nodes, each node representing the assignment of a

particular job to its first available position. The fifth node at level 2, is the fourth

unscheduled job of SPT order on machine 3, i.e., job 7. If this node is selected for

further branching a3=p73=72, hence machine 2 becomes the earliest available

machine. At level 3, there are four candidate partial solutions, as job 3 was assigned

to the first position of machine 2 and there are 3 unscheduled jobs that have higher

processing times than that of job 3 on machine 2. These jobs are 2, 6 and 5.

0

0 1 4 3 2 7 6 5

0 6 2 7 1 4

m/c 2

m/c 3

5

0 6 2 5

m/c 2

 44

 Note that there will be a maximum of n+m-1 levels, as n jobs will be

assigned and there can be at most m-1, Node 0, selections.

 We let Mi denote the set of machines that cannot process job i. Job i cannot

be processed by machine j, if such an assignment violates the SPT order or cannot

yield an efficient (non-dominated) schedule.

 An assignment of job i to machine j violates SPT ordering if ,jij L jp p<

where Lj is the last job assigned to machine j in the partial schedule.

 We let PF(σ) and PWRJ(σ) be the total flow time and total reassignment cost

of partial schedule σ . LBF(σ) and LBWRJ(σ) are lower bound on the total flowtime

and total reassignment cost values of the partial schedule σ . UBF(WRJ) is an upper

bound on the F values of the efficient schedules having a total reassignment cost of

at least WRJ. Similarly UBWRJ(F) is an upper bound on the WRJ values of the

efficient schedules having a total flow time value of at least F units. When job i is

assigned to machine j and appended to σ , a lower bound on the total flow time

value is PF(σ) + (aj + pij) + Min { }
lr M r lr

l
a p

σ
∈

∈

+∑ where σ is the set of unassigned

jobs. If this bound is no smaller than UBF(LBWRJ(σ)), i.e., an upper bound on the

flow time value of the schedules having a total reassignment cost of at least

LBWRJ(σ) then σ is dominated by the approximate efficient schedule in our list

having a total flow time value of UBF(LBWRJ(σ)). Similarly, if PWRJ(σ) + wrij +

Min { }
lr M lr

l
w

σ
∈

∈
∑ ≥ UBWRJ(LBF(σ)) then σ is dominated by the schedule in our

approximate efficient set having a total reassignment cost of UBWRJ(LBF(σ)).

 Hence an assignment of job i to machine j is avoided if either

 PF(σ) + (aj + pij) + Min { }
lr M r lr

l
a p

σ
∈

∈

+∑ ≥ UBF(LBWRJ(σ)) or

 PWRJ(σ) + wrij + Min { }
lr M lr

l
w

σ
∈

∈
∑ ≥ UBWRJ(LBF(σ))

 We hereafter refer to the above conditions as efficiency rules.

 45

 We let Rj denote the set of jobs that can be processed on machine j. Among

the machines for which Rj ≠ 0, we select the earliest available, i.e., the least loaded,

one. If the first unsequenced job according to the SPT rule on the selected machine,

cannot be assigned to any other machine, we fix that job on that machine and update

set Mis, earliest available times and proceed.

 For each job in Rj, we calculate a lower bound on WRJ and two lower bounds

for F values. We let σ denote the set of jobs appear in the current partial schedule.

 Lower bound on WRJ, LBWRJ(σ)

 Note that LBWRJ(σ)= PWRJ(σ) + LBWRJ(σ)

 PWRJ(σ) = total reassignment cost of jobs in σ

LBWRJ(σ)= a lower bound on the optimal total reassignment cost of the

 unscheduled jobs, i.e., the jobs that are not in σ .

We let

LBWRJ(σ) = Min { }
ij M ij

i
wr

σ
∈

∈
∑

i.e., we choose a weight among the jobs that can be assigned without

violating the SPT order and having a potential of generating non-dominated

schedules.

 Referring to the Branch and Bound tree of Figure 3.2, if no information on

the solutions exists, Mjs are constructed according to SPT rule.

For a partial schedule where jobs 3 and 7 are assigned to machines 2 and 3

respectively, the lower bound can be calculated as follows:

M1={2, 3}, M2={3}, M4={2}, M5={ }, M6={3}

 Total reassignment cost of partial schedule = wr73

 Lower bound on the total reassignment cost of the remaining jobs =

 wr11 + Min {wr41, wr43} + Min {wr61, wr62}

as jobs 1, 4 and 6 cannot be assigned to their initial machines, job 1 can only

be assigned to machine 1 due to the SPT order.

 46

Lower bound on F

 We propose two procedures to find a lower bound on the optimal flow time

of unscheduled jobs

i. Lower Bound 1, LBF1(σ)

We assume all machines are identical and let pi= { }
ij M ijMin p∈ . Note that pi is

the minimum processing time for job i, among the machines it can be assigned

without violating SPT rule and efficiency rules. Clearly, an optimal total flow time

value of the new identical machines problem is a lower bound on the optimal total

flow time value of the original unrelated machines problem. The new problem is the

| |j iP a C∑ problem of the scheduling literature whose optimal solution is due to

following rule by Kaspi and Montreuil (1988): Order the jobs by SPT and assign

them to the first available machine, in rotation.

Recall our example problem, a lower bound on the total flow time for a

partial schedule say node σ in which jobs 3 and 7 are assigned to machines 2 and 3

is found as follows:

p1= p11 = 67

p2= Min {p21, p22} = 44

p4= Min {p41 p43} = 14

p5= Min {p51, p52, p53} = 54

p6= Min {p61, p62} = 22

SPT order of pi values is 4-6-2-5-1.

The lower bound schedule has the following assignments:

Machine 1 1 a1=98

Machine 2 4 6 2 a2=33

Machine 3 5 a3=72

 47

LBF1(σ) = (98+67) + (33+14) + (33+14+22) + (33+14+22+44) + (72+54) = 520

PF(σ) = Total Flow Time of the partial schedule = 33 + 72 = 105

LBF1(σ) = LBF1(σ) + PF(σ) = 625

 If there exists a nondominated schedule 's in the list such that

(') ()FF s LB σ≤ and (') ()WRJWRJ s LB σ≤ then we fathom the node.

 If a node cannot be fathomed by LBF1(σ), we calculate a more powerful

lower bound, LBF2(σ) however at an expense of higher computational effort.

ii. Lower Bound 2, LBF2(σ)

 Consider the following assignment model

 Min
1 1 1

()
n n m

ij j ikj
i k j

kp a X
= = =

+∑∑∑ +

1

1

{ } 1
n

j ij
i

Max wr
=

+∑ , ,
ij ikj

i j k
wr X∑

s.t
1 1

1
n m

ikj
k j

X
= =

=∑∑ ∀ i

1

1
n

ikj
i

X
=

≤∑ ∀ j, k

 { }0,1ikjX ∈ ∀ i, j, k

 where

1 if job is assigned to position from last on machine
0 otherwise

th

ikj
i k j

x
 

=  
 

For a partial schedule σ , where σ j is the set of jobs assigned to machine j,

and nj is the cardinality of set σ j we modify ajs as,
j

j j ij
i

a a p
σ∈

= + ∑ , and solve the

assignment model with the following objective function

 Min
'

1 1

()
j

j

n m

j ij ikj
i k j

a kp X
σ∈ = =

+∑ ∑∑ +

1

1

{ } 1
n

j ij
i

Max wr
=

+∑

'

1 1

j

j

n m

ij ikj
i k j

wr X
σ∈ = =

∑ ∑∑

 48

 where 'jn is an upper bound on the remaining number of jobs to be assigned

on machine j. If the last job assigned to machine j is the lth job of the SPT order then

at most n-l more jobs can be assigned to machine j. Moreover the jobs between l+1

and n, in SPT order, may be assigned to other machines, hence we modify the upper

bound, 'jn , as the number of unscheduled jobs with no smaller processing time than

plj on machine j and do not violate efficiency rules.

 Moreover while solving the assignment problem we let cikj=M if job i is the

rth unscheduled job of Longest Processing Time (LPT) on machine j such that r < k,

to avoid the assignment of any job to a position that is higher than its index, thereby

avoiding a non-SPT ordering. After making these reductions, we solve the |σ | x

1

'
m

j
j
j N

n
=
≠

∑ assignment problem using the rectangular assignment algorithm of

Volgenant (1996).

 The cost coefficients of the assignment model of our example problem for a

partial schedule, in which jobs 3 and 7 are assigned to the first position of machines

2 and 3 respectively, are calculated as follows:

 Note that 2'n =3 as there are 3 unscheduled jobs having higher processing

times than p32, these jobs are 2, 6 and 5. As there are two unscheduled jobs having

higher processing times than p73, 3'n =2. As there are two scheduled jobs, there can

be at most n-2=5 jobs on machine 1. Hence we solve 5 x 10(5+3+2) assignment

problem. Job 1 cannot be assigned to machines 2 and 3 without violating SPT order.

Hence c1k2 = c1k3 = M for all k. Jobs 2 and 6 cannot be assigned to machine 3, i.e.,

c2k2 = c6k2 = M for k=1, 2. Job 2 cannot be assigned to machine 1, except its first

position, i.e., c2k1 = M for k > 1, as it is the last job of SPT on machine 1. If we have

assigned job 2 to a later position we would have violated SPT order, as there is no

unscheduled job with higher processing time. Moreover, we set c651=M as job 6

cannot be scheduled fifth on machine 1. Job 4 cannot be assigned to machine 2, i.e.,

c4k2 = M for all k. Job 5 is the third longest unscheduled job on machine 1 hence c541

= c551 = M. Similarly job 1 can only be assigned to the first or second position of

machine 1 as it is the second longest unscheduled job.

 All these information is gathered in Table 3.2.

 49

Table 3.2. Cost Coefficient Matrix of the Assignment Problem

 Machine 1
 1 2 3 4 5
1 a1+p11+ 11wrε a1+2p11+ 11wrε M M M
2 a1+p21+ 21wrε M M M M
4 a1+p41+ 41wrε a1+2p41+ 41wrε a1+3p41+ 41wrε a1+4p41+ 41wrε a1+5p41+ 41wrε
5 a1+p51 a1+2p51 a1+3p51 M M
6 a1+p61 a1+2p61 a1+3p61 a1+4p61 M

 Machine 2 Machine 3
 1 2 3 1 2
1 M M M M M
2 a2+p22+ 22wrε a2+2p22+ 22wrε a2+3p22+ 22wrε M M
4 M M M a3+p43+ 43wrε a3+2p43+ 43wrε
5 a2+p52+ 52wrε M M a3+p53+ 53wrε M
6 a2+p62+ 22wrε a2+2p62+ 22wrε M M M

where a1=98, a2=33, a3=72

We add ijwrε to (i, k, j) when machine j is not the initial machine of job i.

For example job 5 was on machine 1 in the initial schedule, hence ε appears in all

entries for job 5 except the ones associated to machine 1. The optimal solution to the

assignment gives the following schedule.

Machine 1 4 - 1

Machine 2 2 - 6

Machine 3 5

 LBF2(σ) = (98+14) + (98+14+67) + (33+44) + (33+33+64) + (72+86) = 667

 PF(σ) = Total Flow Time of the partial schedule

 = 105

 LBF2(σ) = Lower bound on the total flow time of σ

 = 772

 F(s) = 772

 WRJ(s) = wr41 + wr11 + wr22 + wr62 + wr52

 50

The actual total flow time of the schedule is F(s) and the actual total

reassignment cost is WRJ(s). Note that actual flow time value is equal to the lower

bound on the flow time value found using assignment solution, i.e., F(s) =

LBF2(σ). We add the resulting schedule s to the list of approximate efficient

schedules if there does not exist a schedule 's such that (') ()F s F s≤ and

(') ()WRJ s WRJ s≤ . If there exists a schedule ŝ such that ˆ() ()F s F s≥ and

ˆ() ()WRJ s WRJ s≥ , then ŝ is dominated by s , and therefore is taken out of the list.

 Note that Max{ LBF1(σ), LBF2(σ)} is a lower bound on the optimal F

values of the nodes emanating from σ . Hence when we proceed to “the next level,

say node σ c, we first check whether there exists a schedule 's such that

1 2(') { (), ()} F FF s Max LB LBσ σ≤ and (') ()WRJ s WRJ σ≤ . If such a schedule 's

exists, we fathom the node. Otherwise, we calculate LBF1(σ c) and proceed.

Our algorithm returns the set of all efficient solutions after evaluating all

nodes, implicitly.

3.3.8 The | | (,)jR a f F WRJ problem

In this section, we address the problem of finding an optimal solution for a

specified general non-decreasing function of F and WRJ.

When, the function, f, is a linear function of F and WRJ then one can use an

assignment model with the following objective function

 Min w1
, ,

()j ij ikj
i j k

a kp X+∑ + w2
, ,

ij ikj
i j k

wr X∑ ≡ Min w1F + w2WRJ

and find an optimal solution in polynomial time.

When f is a non-linear function, finding an optimal solution to our model

with constraint sets (3.2), (3.3), (3.4) and binary decision variables, would not be

possible by available mathematical programming softwares. For non-linear f, one

can generate all efficient solutions and select the one that minimizes the objective

function value. However such an approach may not be time-efficient as each

generation requires a solution of a singly-constrained assignment problem in

exponential time. To overcome this difficulty, we develop two optimization

algorithms that implicitly generate the efficient set. The first algorithm, we call

 51

Integer Programming Based (IPB) algorithm, solves successive constrained

optimization problem. The second algorithm is a branch and bound approach that

makes implicit enumeration of the efficient schedules.

Integer Programming Based (IPB) Approach

 An IPB algorithm starts with an initial feasible solution that is found by

generating the extreme supported efficient solutions. Each iteration of the algorithm

generates an efficient schedule by setting an upper limit on the F and WRJ values of

any schedule that can improve the best known solution, namely fBEST. By setting

these limits, we eliminate some portions of the objective space that cannot reside the

optimal solution. Kondakci et al. (1996) implement an idea of imposing upper

limits on one criterion for their bicriteria single machine scheduling problem.

 Moreover, we set lower limits on the F and WRJ values by solving the LP

relaxations of the singly-constrained assignment problem. If the f value found by

setting the lower limits is no better than fBEST, then we terminate by recording the

optimality of the best known schedule.

The smallest f value among the extreme supported efficient schedules is used

as an initial fBEST. We update fBEST whenever a feasible schedule with smaller f value

is reached. Procedure 3.4, below, is the stepwise description of our approach.

Procedure 3.4 Finding an Optimal Solution by Integer Programming Based

Algorithm

Step 0. Solve the

1

1| |
{ } 1

j n

j ij
i

R a F WRJ
Max wr

=

+
+∑

 problem and form a right-shift

schedule.

 Let FLB = F value that solves the

1

1| |
{ } 1

j n

j ij
i

R a F WRJ
Max wr

=

+
+∑

 problem

 FUB = F value of the right-shift schedule

WRJLB = WRJ value of the right-shift schedule, i.e., zero

 52

WRJUB=WRJ value that solves the

1

1| |
{ } 1

j n

j ij
i

R a F WRJ
Max wr

=

+
+∑

 problem

Apply Procedure 3.1 to generate the set of

extreme supported efficient schedules (ESE)

fBEST = { ((), ())}s ESEMin f WRJ s F s∈

Step 1. If f(FLB, WRJLB) ≥ fBEST then STOP

Find WRJa that solves f(FLB, WRJa) = fBEST

WRJUB = 1aWRJ −  

If WRJUB ≤ WRJLB then STOP

Solve the LP Relaxation of the | , |j UB WRJR a WRJ WRJ F WRJε≤ + problem

Let (F*, WRJ*) be the solution

FLB = *F  

If f(FLB, WRJLB) ≥ fBEST then STOP

If the resulting solution is integer then

fBEST = Min {fBEST , f(F*, WRJ*)}

WRJUB = WRJ* -1

 If WRJUB ≤ WRJLB then STOP

Repeat Step 1

Step 2. Find Fa value that solves f(Fa, WRJLB) = fBEST

FUB = 1aF −  

If FUB ≤ FLB then STOP

Solve the LP Relaxation of the | , |j UB FR a F F WRJ Fε≤ + problem

Let (F*, WRJ*) be the solution

WRJLB = *WRJ  

If f(FLB, WRJLB) ≥ fBEST then STOP

 53

If the resulting solution is integer then

fBEST = Min {fBEST , f(F*, WRJ*)}

FUB = F* -1

If FUB ≤ FLB then STOP

Go to Step 1

Step 3. Solve the | , |j UB WRJR a WRJ WRJ F WRJε≤ + problem

Let (F*, WRJ*) be the solution

FLB = F* + 1

WRJUB = WRJ* -1

If FUB ≤ FLB or WRJUB ≤ WRJLB then STOP

fBEST = Min {fBEST , f(F*, WRJ*)}

Solve the | , |j UB FR a F F WRJ Fε≤ + problem

Let (F*, WRJ*) be the solution

WRJLB = WRJ*+1

FUB = F* -1

 If FUB ≤ FLB or WRJUB ≤ WRJLB then STOP

fBEST = Min {fBEST , f(F*, WRJ*)}

Go to Step 1

 The following figure illustrates the progress of Procedure 3.4.

 54

Figure 3.6 Progress of Procedure 3.4

Step 0. Initialize WRJLB, FLB, and fBEST, by identifying boundary points and

generating set of extreme supported efficient solutions.

Step 1. Find WRJa that solves f(FLB, WRJa) = fBEST

WRJUB = 1aWRJ −   = WRJu1

Solve the LP Relaxation of the 1| , |j u WRJR a WRJ WRJ F WRJε≤ + problem

Let (F1
*, WRJ1

*) be the solution

Point 1 in Figure 3.6 is the corresponding efficient point

FLB = *
1F   = Fmin1

fBEST = Min {fBEST , f(F1
*, WRJ1

*)}

WRJUB = WRJ1
* -1

Step 1. Find WRJa that solves f(FLB, WRJa) = fBEST

WRJUB = 1aWRJ −  

Step 2. Find Fa value that solves f(Fa, WRJLB) = fBEST

FUB = 1aF −   =Fu1

 55

Solve the LP Relaxation of the 1| , |j U FR a F F WRJ Fε≤ + problem

Let (F2
*, WRJ2

*) be the solution

Point 2 in Figure 3.6 is the corresponding efficient point

WRJLB = *WRJ   = WRJmin1

fBEST = Min {fBEST , f(F2
*, WRJ2

*)}

FUB = F2
* -1

Step 1. Find WRJa that solves f(FLB, WRJa) = fBEST

WRJUB = 1aWRJ −   = WRJu2

Step 2. Find Fa value that solves f(Fa, WRJLB) = fBEST

FUB = 1aF −   =Fu2

Step 3. Solve the 2| , |j u WRJR a WRJ WRJ F WRJε≤ + problem

Let (F3
*, WRJ3

*) be the solution

Point 3 in Figure 3.6 is the corresponding efficient point

FLB = F3
* + 1

WRJUB = WRJ3
* -1

fBEST = Min {fBEST , f(F*, WRJ*)}

Solve the 2| , |j u FR a F F WRJ Fε≤ + problem

Let (F4
*, WRJ4

*) be the solution

Point 4 in Figure 3.6 is the corresponding efficient point

WRJLB = WRJ4
*+1

FUB = F4
* -1

fBEST = Min {fBEST , f(F*, WRJ*)}

 The procedure continues to iterate in a similar manner, until the upper bound

and lower bound constraints hits to each other, thus the current problem becomes

infeasible.

 56

A Branch and Bound (BAB) Approach

 We employ the branching scheme designed for the | | ,jR a F WRJ problem to

solve the | | (,)jR a f F WRJ problem. In doing so, we use the efficiency rules and

lower bounds designed for the | | (,)jR a f F WRJ with the following modifications.

Efficiency rules

We put machine j to Mi if

f(PF(σ) + (aj + pij) + Min { }
ilr M r lr

l
a p

σ
∈

∈

+∑ , PWRJ(σ) + wrij + Min { }
lr M lr

l
w

σ
∈

∈
∑)≥

fBEST where fBEST is the best known objective function value.

 Note that PF(σ) + (aj + pij) + Min { }
ilr M r lr

l
a p

σ
∈

∈

+∑ , is a lower bound on F

values of the efficient schedules emanating from σ when job i is assigned to

machine j. Similarly, PWRJ(σ) + wrij + Min { }
lr M lr

l
w

σ
∈

∈
∑ , is a lower bound on the

associated WRJ values. This leads to a lower bound of f(PF(σ) + (aj + pij)

+ Min { }
ilr M r lr

l
a p

σ
∈

∈

+∑ , PWRJ(σ) + wrij + Min { }
lr M lr

l
w

σ
∈

∈
∑) on the function value,

which is compared with fBEST. If it is no smaller, then the assignment of job i to

machine j should be avoided, and this information should be used in further bound

computations.
 We initially take fBEST as the minimum f value of the extreme supported

schedules and the approximate schedules generated by the greedy heuristic. We

update fBEST whenever we find a complete solution with smaller f value.

Lower Bounds

We fathom node σ , if f(Max{LBF1(σ P), LBF2(σ P)},LBWRJ(σ P)) ≥ fBEST

where σ P is the parent node of σ . If not, we first check whether f(LBF(σ),

LBWRJ(σ)) ≥ fBEST. If f(LBF1(σ), LBWRJ(σ)) ≥ fBEST, we fathom the node.

Otherwise we compute the assignment bound, LBF2(σ). If f(LBF2(σ), LBWRJ(σ)) ≥

 57

fBEST, we fathom the node else we list the nodes in their nondecreasing order of

f(Max(LBF1(σ), LBF2(σ)), LBWRJ(σ)) values and select the node at the top of the

list for branching.

 When we solve the assignment problem at a particular node, we evaluate the

resulting schedule, s . If f(F(s),WRJ(s)) < fBEST, we update fBEST.

Whenever a need for rescheduling arises, i.e., machine disruption occurs, one

can employ the above procedures. In this sense, they can be classified as on-line

procedures. Moreover multiple simultaneous disruptions can be handled by

modifying aj values.

3.4 Computational Experience

We conduct a computational experiment to assess the efficiency of our

algorithms. We generate random problem instances having n = 40, 60, 80, 100 jobs

and m = 4, 8, 12 machines. The job processing times, pijs, are drawn from two

discrete uniform distributions between [1,100] and [50,100]. We select two levels

for processing times, to see the effect of processing time variability and magnitude

on the performance of our algorithms. Similarly, to see the effect of the variability

and magnitude of the reassignment costs, wrijs, are drawn from two discrete uniform

distributions between [1,60] and [30,60].

The disruption duration, D, is set to three levels: Long (L), Medium (M) and

Short (S). The aim here is to study the effect of the disruption duration on algorithm

performances. For level L, D is set to the completion time of the last job on the

disrupted machine in the initial schedule. Level M has the half of the duration of

level L. Level S has half of the duration of level M.

We consider the following two non-linear objective functions that are non-

decreasing in F and WRJ, similar to Kondakçı et al. (1996).
2 2

1
LB LB

UB LB UB LB

F F WRJ WRJf
F F WRJ WRJ

   − −
= +   − −   

8 8

2
LB LB

UB LB UB LB

F F WRJ WRJf
F F WRJ WRJ

   − −
= +   − −   

 58

 We refer to f1 and f2 as quadratic and quasi-chebyschev functions

respectively.

To generate all efficient solutions, we generate 4x4x2x2x3=144 problem

combinations, and to solve a nonlinear function we generate 144x2=288 problem

combinations. For each problem combination, we consider 10 instances. Hence as a

total of 1440 and 2880 problem instances are generated and solved for efficient set

generation and nonlinear function minimization problems, respectively.

We conduct all experiment on a PC with Intel Pentium 4 2.8 Ghz processor

and 1 GB of RAM running under Linux, specifically Fedora Core 5, operating

system. We implement our optimization and Branch and Bound algorithms in C,

compiled with GCC 4 and utilized Borland C++BuilderX as the development

environment. We solve our integer and linear programming models using CPLEX

8.1.1.

 We set a termination limit of 2 hours for 60 jobs and 3 hours for 80 and 100

jobs for generation of efficient set algorithms (both classical approach and Branch

and Bound algorithm). To our optimization algorithms, we set a termination limit of

1 hour for 60 jobs and 1.5 hours for 80 and 100 jobs for both Integer Programming

Based and Branch and Bound approaches. We use different termination limits due to

different complexity levels of the problems.

 We first investigate the performances of the algorithms we used in

generation of the efficient set: The Classical Approach (CA) and Branch and Bound

Algorithm (BAB). Tables 3.3 through 3.8 report the average and maximum

computation times of the CA and BAB algorithm. The average and maximum

number of nodes generated by the Branch and Bound algorithm are included. The

tables also give the average and maximum number of efficient solutions, and the

number of times BAB algorithm finds the efficient solutions quicker than CA. In

Tables 3.3 and 3.4 the results associated to short disruption duration are reported for

pij ~ U[1,100] and pij ~ U[50,100] respectively. In Tables 3.5 and 3.6, and Tables 3.7

and 3.8, the same results are given for medium and long disruption duration cases,

respectively. The tables do not include the instances for n=80, m=12 when the

disruption duration is long, i.e. D=L, and pij~U[50,100], as our preliminary

experiments have revealed that the majority of the instances could not be solved

 59

within termination limit of 3 hours. Table 3.9 summarizes the average case results,

in particular average number of efficient solutions, average CPU times of both

algorithms. The table also includes the number of instances out of 10, where the

Branch and Bound algorithm outperforms Classical Approach, in terms of solutions

times.

 60

 61

 62

 63

 64

 65

As can be observed from the tables, as n increases the number of efficient

solutions increases, for all problem combinations. From Table 3.6, we can observe

the increase in the average number of efficient solutions with increasing n. On

average there are 13, 25, 38 and 59 efficient solutions, for problems having 40, 60,

80, and 100 jobs respectively. The difficulty of attaining an efficient solution

increases considerably when n increases. In Table 3.4, we have two settings having

the same average number of efficient solutions; n=60, m=8, wrij~U[1,60] and n=80,

m=8, wrij~U[30,60]. The Classical algorithm generates the efficient set five times

quicker for case 1 when compared to case 2. Similarly Branch and Bound algorithm

generates the efficient set for the first case with three times of more computational

effort, compared to the case of 60 jobs. This is due to the fact, the number of integer

variables increases with an increase in n for classical approach. For Branch and

Bound algorithm, the number of choices increases as a function of n.

As m increases, the ranges of F and WRJ decrease and that leads to a

decrease in the number of efficient solutions. This behavior can be observed from

Table 3.5, for the problems with 100 jobs, the average number of efficient solutions

decrease with the increase in the number of machines, the average number of

efficient solutions are 45, 26, and 13, for problems with 4, 8, and 12 machines,

respectively. For fixed n, the performance of generating efficient set by the classical

approach deteriorates with an increase in the number of efficient solutions. Note

from Table 3.8 that where n=40, m=8, it takes 14 CPU seconds to generate 27

efficient solutions, however, time increases to 25 CPU seconds where 37 efficient

solutions are generated. As m increases, the efficient solutions are generated in

higher computational times, due to the increase in the number of integer decision

variables, which is n2m. Note that the same number of efficient solutions is

generated in less effort when m is small. In Table 3.4, we can observe this effect

significantly, for the problems with 80 jobs, and reassignment cost in range between

30 and 60, 10 efficient solutions exist on average for the cases with 8 and 12

machines. The Classical approach generates the efficient set in 48 CPU seconds on

average when m=8, and in 95 CPU seconds on average when m=12. However, the

performance of Branch and Bound algorithm (does not degrade) as m increases.

Note that the number of levels of the Branch and Bound tree is n + m - 1, and is less

 66

sensitive to m which increases in very small increments and which is small

compared to n.

 In general, the performance of the classical approach is dependent on the

number of integer variables (which increases with n and m) and number of efficient

solutions. The effects of other parameters, the disruption duration, processing time

variability, and reassignment cost variability are not as dominant, as these

parameters do not change the number of integer variables.

We observe that the disruption duration, processing time and reassignment

cost distributions significantly affect the performance of the Branch and Bound

algorithm. When the disruption duration is longer, the sequencing choices for the

jobs are much more and this causes weak differentiation of the partial solutions

which in turn increases the difficulty of attaining optimal solutions. This significant

behavior can be easily observed when Tables 3.3 and 3.5 are compared. Note that

the average CPU time of Branch and Bound algorithm to generate efficient set is

equal 1.9 CPU seconds where the disruption duration is short (see Table 3.3). The

CPU time increases to 43.8 seconds where the disruption duration is medium (see

Table 3.5). Whenever the processing times are higher the disruption durations are

longer and thus the problems are harder to solve.

 When the variability of the processing times or reassignment costs decreases,

the differentiation powers of the lower bounds decrease as the solutions become

closer. As the power of the lower bounds directly affects the performance of the

Branch and Bound algorithm, we observe smaller computational times when the

ranges are wider. This relation is quite obvious from Table 3.5 the performance of

the algorithm depends on reassignment cost variation. Note that when there are 100

jobs and 4 machines, the efficient set is generated in 55 seconds for low variation

case, and in 300 seconds when the variation is high. Moreover, we observe more

significant affect of the processing time variability, as the processing time defines

the range of efficient solutions more often. One can point out some exceptions

which can be attributed to the randomness effect like dominant contributions of few

instances to average performance. As can be more clearly seen from our summary

table, i.e., Table 3.9, the Branch and Bound algorithm outperforms classical

approach in vast majority of the problem combinations, (1031 times in 1260

 67

instances). The only exception is D=L and pij ~ U[50,100] combination where

performance of the classical approach is better (87 times in 120 instances).

 We next analyze the performance of the algorithms used in finding an

optimal solution for defined quadratic and quasi-chebyschev objective functions.

Tables 3.10 through 3.15 report the maximum and average CPU times, and the

number of nodes for the Branch and Bound algorithm. Specifically Tables 3.10

reports the statistics for short disruption durations and processing time distribution

in between 1 and 100, for quadratic and quasi-chebyschev objective functions.

Tables 3.11 provides the pij~U[50,100] counterpart of this table. Tables 3.12 through

3.15 are organized in a similar manner, and provide the results, for medium and long

disruption durations, and processing time values within the ranges [1,100] and

[50,100]. Tables 3.16 through 3.21 report the maximum and average CPU times and

the percentage of the efficient solutions generated by the IP based algorithm. In a

similar fashion to the results of Branch and Bound algorithm, Tables 3.16 and 3.17

report the results for the short disruption duration, and two distributions of the

processing times. Tables 3.18 through 3.21 provide the results for the medium and

long disruption duration cases in the same order. We also include summary tables,

Tables 3.22 through 3.27, for the average CPU times of the Classical Approach, IP

based algorithm and Branch and Bound algorithm that could be used to find an

optimal solution for any nondecreasing function of F and WRJ. Tables 3.22, and

3.23 provide the results for the small disruption duration case, and for pij~U[1,100]

and pij~U[50,100], respectively. Tables 3.24 through 3.27 summarize the statistics

for medium and long disruption durations.

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

Table 3.22 Comparison of Average Performances of Optimization Algorithms,

pij ~U[1,100], D=S

 79

Table 3.23 Comparison of Average Performances of Optimization Algorithms,

pij ~U[50,100], D=S

 80

Table 3.24 Comparison of Average Performances of Optimization Algorithms,

pij ~U[1,100], D=M

 81

Table 3.25 Comparison of Average Performances of Optimization Algorithms,

pij ~U[50,100], D=M

 82

Table 3.26 Comparison of Average Performances of Optimization Algorithms,

pij ~U[1,100], D=L

 83

Table 3.27 Comparison of Average Performances of Optimization Algorithms,

pij ~U[50,100], D=L

When IPB and Branch and Bound algorithms are compared, no consistent

dominance of one algorithm over the other can be observed, we find that, BAB is

better than IPB for 1943 times in 2520 problem instances solved. We see that the

performances of both algorithms are highly dependent on the number of efficient

solutions. The performance of IPB algorithm is more significantly dependent on the

number of integer variables that increase with the number of jobs and the number of

machines. There are some exceptions where the performance deteriorates with

decreasing m which can be attributed to the superior performance of the integer

programs that have many integer variables in their linear programming relaxations.

The IPB algorithm performs better for quadratic function compared to the quasi-

chebyschev function. We can compare the average CPU times from Table 3.21,

where the statistics for the IPB algorithm, for, pij~U[50,100], and D=L are reported,

for quadratic and quasi-chebyschev functions. We observe from the tables that the

average CPU times for quadratic function is smaller than those of quasi-chebyschev

function. This behavior can be attributed to the fact that in quasi-chebyschev

function case, very few optimal solutions are in extreme supported solution set.

 84

As can be observed from the tables the disruption duration, the processing

time and reassignment cost distributions significantly affect the performance of the

Branch and Bound algorithm. When the disruption duration is longer, the

differentiation power of the partial solutions are weaker due to the existence of more

sequencing alternatives. This adds to the complexity of the algorithm. This behavior

can be observed from all tables. When the processing times are between 50 and 100,

the disruption durations are longer, thus the CPU times are higher. When the

processing times and reassignment costs are less variable, the solutions are more

closer and hence their differentiation is harder. As a result, we observe the highest

CPU times whenever the disruption duration are long, the processing times are in

range [50,100] and the reassignment costs are in range [30,60] (see Table 3.15). The

lowest CPU times are observed when the disruption duration is short, processing

times are in range [1,100] and reassignment costs are in range [1,60] (see Table

3.10).

Quasi-chebyschev utility function usually leads to quicker solutions than

quadratic utility function. Note from Table 3.13, that the average CPU times are

smaller for quadratic function case compared to quasi-chebyschev function. This

can be attributed to the fact that the partial solutions are not very close to each other,

which increases the power of differentiation.

In general, for all parameter combinations and both objective function types,

the IPB algorithm finds the optimal schedule by generating a small percentage of all

efficient solutions. The higher percentages are associated to the cases with smaller

number of efficient solutions, where the number of efficient solutions visited is also

very small, and most of the solutions are extreme supported, which are generated at

the initial step of the algorithm. Note that when n=80, the percentages are lower, as

the number of efficient solutions is higher, and there exist many non-extreme

supported, and unsupported solutions. The parameter effects on the performance of

the Integer Programming Based algorithm is not as dominant as those of the Branch

and Bound algorithm. We can conclude from the tables that the behavior of IPB

algorithm is more consistent. Note that the worst performances of IPB algorithm are

closer to their average counterparts when compared with those of BAB

performances. The results on all tables reveal that both algorithms solve all

 85

instances in much smaller CPU time than that of spent in generating all efficient

solutions by classical approach.

We finally find the percentage of nodes evaluated till reaching the optimal

solution and report the average case results. Table 3.28 reports the ratio of the

optimality node to the total number of evaluated nodes.

 86

 87

As can be observed from the tables in majority of the problem combinations

the optimal solutions are found at the very early nodes of the search. Note that on

average, the majority of the optimal solutions is found before searching 10 percent

of all nodes. Moreover in many combinations we observe a ratio value zero,

indicating the optimality of the initial solution. Note that the average percentages are

higher when pij~U[50,100]. Due to the fact that, the lower bounds are weaker and

hence give less reliable guide. For the case where pij~U[1,100] the averages are

lower. This leads us to conclude that the lower bounds are good estimators of the

optimal solutions and hence guide right solution paths. The solutions that are found

at a preset termination limit are likely to be optimal or near optimal and hence a

truncated Branch and Bound algorithm that terminates after a preset CPU time or

number of node evaluations, can be a powerful alternative if the decision maker is

interested with a near optimal, but not necessarily an optimal, solution.

 88

CHAPTER 4

CONCLUSION AND FUTURE RESEARCH DIRECTIONS

 This study considers bicriteria approaches to the minimum cost network flow

problem and a rescheduling problem where those approaches find their applications.

For the bicriteria integer minimum cost network flow problem, we generate

all efficient solutions in two phases. The first phase generates the extreme supported

efficient points that are the extreme points of the objective space of the continuous

BCNF problem. Our generation method differs from previous methods that are

based on parametric analysis, in the sense that the efficient set is generated each time

moving to the next adjacent point. Hence this phase may be preferred for the

continuous BCNF problem if the decision maker is more interested with a specified

portion of the objective space. In the second phase, we generate the other efficient

points, i.e., nonextreme supported efficient points, unsupported efficient points by

Integer Programming Based approaches.

Our rescheduling problem assumes parallel unrelated machine environments.

The criteria are the total flow time as an efficiency measure and the total

reassignment cost as a stability measure. We show that any linear combination of the

two criteria can be represented by a bicriteria minimum cost integer network flow

model (BCINF). Hence we use the results derived for the BCINF problem to tackle

with our rescheduling problem.

In our rescheduling studies, we provide polynomial time algorithms to solve

the hierarchical optimization problems. To generate all extreme supported efficient

solutions, we use LP-based approach using slack pivoting and a weighted approach

that are based on optimal assignment solutions. To generate all efficient solutions we

propose two approaches. The first approach is an Integer Programming based and

uses optimal solutions of the singly-constrained assignment problem. The second

 89

approach implicitly enumerates all efficient solutions by Branch and Bound

approach. Our Branch and Bound algorithm uses lower bounds on the total flow

time and total reassignment cost. To find an initial set of approximate efficient

solutions, we generate extreme supported efficient set by weighted approach and

extend the set in a defined neighborhood.

The results of our computational tests have revealed that our Branch and

Bound algorithm is superior than the classical approach, for majority of the test

problems.

We use the same branching scheme and same bounds to minimize a

composite function of the total flow time and total reassignment cost. The results of

our computational tests have revealed that the Branch and Bound algorithm can

solve problems up to 100 jobs and 12 machines. We also propose an algorithm that

is based on Integer Programming. The algorithm eliminates a portion of the solution

set that cannot reside an improved objective function value. The IP based algorithm

also performs quite satisfactory and generates only a small portion of all efficient

solutions.

The models we have studied represent growth in the network flow and

rescheduling areas. There are many further research directions most of noteworthy

of which are discussed below:

1) Addressing a stochastic version of the problem where the maintenance

duration is not known with certainty.

2) Addressing a Tricriteria integer minimum cost network flow (TCINF)

problem

 Let f1(x), f2(x) and f3(x) be tricriteria. Finding optimal solutions to the

following problems may be of help in developing the solution procedures for

generating all efficient solutions and minimizing a composite function of tricriteria.

 a) Unconstrained problems

 i. Min fi(x) + εj fj(x) i=1, 2, 3 j=1, 2, 3 i ≠ j

 for appropriately selected values of εj.

 90

 ii. Min fi(x) + εj fj(x) + εk fk(x)

i=1, 2, 3 j=1, 2, 3 k=1, 2, 3 i ≠ j j ≠ k i ≠ k

 for appropriately selected values of εj, εk.

 b) Constrained Problems

 i. Min fi(x) + εj fj(x) + εk fk(x)

 s.t. fj(x) ≤ bj

i=1, 2, 3 j=1, 2, 3 k=1, 2, 3 i ≠ j j ≠ k i ≠ k

 for appropriately selected values of εj, εk.

 ii. Min fi(x) + εj fj(x) + εk fk(x)

 s.t. fj(x) ≤ bj

 fk(x) ≤ bk

i=1, 2, 3 j=1, 2, 3 k=1, 2, 3 i ≠ j j ≠ k i ≠ k

 for appropriately selected values of εj, εk.

3) A Tricriteria rescheduling problem exploiting network flow structures

 Once we set the criteria to total flow time, number of reassigned jobs, and

total reassignment cost, the problem can be represented as a Tricriteria MCNF

model., and hence the approaches derived for the TCINF problem can be used.

Moreover by recognizing the special structures of rescheduling, hence scheduling,

problems efficient enumeration schemes can be designed. We can benefit from the

branching structure designed for our two criteria rescheduling problem as the

decisions do not differ with an increase in the number of criteria.

4) Bicriteria or Tricriteria problems with different efficiency and/or stability

measures

 In this study, we consider total flow time as an efficiency measure. When the

jobs do have different priorities, a more suitable objective would be to minimize

total weighted flow time. The incorporation of the weights destroy the network flow

nature of the model, so the properties and procedures extended from network flows

would not be of help. However total weighted flow time has also a very nice

property that the optimal solution of the sequencing problem (which is weighted

 91

shortest processing time rule) is known. This implies that we can employ our

branching scheme for the total flow time problem to solve its weighted version. The

only modification would be the modification of the bounding schemes.

 As long as the efficient measures are concerned, in addition to our producer

related performance measure of total flow time, we can consider a customer related

performance measure, like maximum lateness, total tardiness. In such a case, the

rescheduling problem will be treated as a tri-criteria problem together with our

stability measure. Once the due-dates of the problem is accepted as the promises

given according to the initial schedule’s completion times, any due-date related

performance can serve as a stability measure. For example, maximum lateness, can

be interpreted as the maximum completion time difference between initial and new

schedules, which can be interpreted as the maximum delay in the delivery times.

5) Constructing the initial schedule

 In this study, we assume that the initial schedule is optimal according to our

efficiency measure. It does not reside any idle time and any non-optimal allocations

which would be favored by the new schedule. An initial schedule construction, by

predicting the disruption time and duration would be another future research area. In

construction the initial schedule, the idle times that will serve as buffers and light

loading of the machines that are more likely to be disrupted, should be considered.

6) Addressing the bicriteria assignment problem

 In chapter 2, we develop solution approaches to the bicriteria minimum cost

integer network flow problem. MCNF problems resides shortest path and

assignment problems as special cases. In the literature, there is some research on

bicriteria assignment problem, like singly constrained assignment problem.

However, we are unaware of any reported study, on simultaneous optimization for

assignment problems. Recognizing this gap, designing optimization algorithms for

generation all efficient solutions and minimizing a composite function of the two

criteria will be a worth-studying research area.

 92

 As a starting point, we can employ the following classical approach to

generate all efficient solutions. We assume the two criteria are
,

ij ij
i j

c x∑ and
,

ij ij
i j

d x∑

where

1 if object is assigned to resource
0 otherwiseij

i j
x 

= 


and cij and dij are two different costs of assigning object i to resource j.

Procedure for Generating all efficient solutions of
, ,

 and ij ij ij ij
i j i j

c x d x∑ ∑ criteria

Step 0. Solve the following assignment problems (P1) and (P2) to get two extreme

efficient solutions

(P1) Min 1
, ,

ij ij ij ij
i j i j

c x d xε+∑ ∑

 s.t. 1 ij
i

x j= ∀∑

 1 ij
j

x i= ∀∑

 {0,1}ijx ∈

(P2) Min 2
, ,

ij ij ij ij
i j i j

d x c xε+∑ ∑

 s.t. 1 ij
i

x j= ∀∑

 1 ij
j

x i= ∀∑

 {0,1}ijx ∈

For appropriately selected values of 1ε and 2ε .

Note that (P1) and (P2) give lower and upper bounds on the criteria values of

all efficient solutions.

Let CL and CU be the lower and upper bounds of
,

ij ij
i j

c x∑ for all efficient

schedules.

Let k= CU -1

 93

Step 1. Solve the following singly constrained assignment problem

 Min 2
, ,

ij ij ij ij
i j i j

d x c xε+∑ ∑

s.t. 1 ij
i

x j= ∀∑

 1 ij
j

x i= ∀∑

,

ij ij
i j

c x k≤∑

 {0,1}ijx ∈

An optimal solution is an efficient point. Let xij* be the optimal values of the

decision variables.

Step 2. If
,

* 1ij ij L
i j

c x C≥ +∑ then

,

* 1ij ij
i j

k c x= +∑

 Go to Step 1

 Stop, all efficient solutions are generated.

 Alternatively in Step 0, we can set k=DU-1 where DU is an upper bound on

the
,

ij ij
i j

d x∑ values of all efficient solutions and solve the singly constrained

assignment problem with the objective 1
, ,

Min ij ij ij ij
i j i j

c x d xε+∑ ∑ and constraint

,
ij ij

i j
d x k≤∑ .

 94

REFERENCES

Abumaizar, R. J. and Svestka, J. A., 1997. Rescheduling job shops under random

disruptions. International Journal of Production Research, 35, 2065-2082.

Aggarwal, V., 1985. A lagrangean-relaxation method for the constrained assignment

problem. Computers and Operations Research, 12, 97-106.

Ahuja R.K.,. Magnanti T.L and Orlin J.B., 1993. Network Flows Theory, Algorithms

and Applications. Prentice Hall.

Aktürk, M. S. and Görgülü, E., 1999. Match-up scheduling under a machine

breakdown. European Journal of Operational Research, 112, 81-97.

Alagöz, O., and Azizoğlu, M., 2003. Rescheduling of identical parallel machines

under machine eligibility constraints. European Journal of Operational Research,

149, 523-532.

Aneja, Y.P., and Nair K.P.K., 1979. Bicriteria transportation problem. Management

Science, 25, 73-78.

Azizoğlu, M., and Alagöz, O., 2005. Parallel machine rescheduling with machine

disruptions. IIE Transactions, 37, 1113-1118.

Aytuğ, H., Lawley, M.A., McKay, K., Mohan, S., and Uzsoy, R., 2005. Executing

production schedules in the face of uncertainties: A review and some future

directions. European Journal of Operational Research, 161, 86-110.

Bean, J. C., Birge, J. R., Mittenthal, J., and Noon, C. E., 1991. Matchup scheduling

with multiple resources, release dates and disruptions. Operations Research 39, 470-

483.

Church L.K. and Uzsoy R., 1992. Analysis of periodic and event-driven

rescheduling policies in dynamic shops, International Journal of Computer

Integrated Manufacturing, 5, 153-163.

Curry J. and Peters B., 2005. Rescheduling parallel machines with stepwise

increasing tardiness and machine assignment stability objectives, International

Journal of Production Research, 43, 3231-3246.

 95

Daniels, R. L., and Kouvelis, P., 1995. Robust scheduling to hedge against

processing time uncertainty in single stage production. Management Science, 41,

363-376.

Ehrgott M., and Gandibleux X., 2000. A survey and annotated bibliography of

multiobjective combinatorial optimization, OR Spectrum, 22, 425-460.

Glover, F., Karney, D., Klingman, D., and Russell R., 1978. Solving singly

constrained transshipment problem. Transportation Science, 12, 277-297.

Hall, N. G., and Potts, C. N., 2005. Rescheduling for new orders. Operations

Research, 52, 440-453.

Haimes, Y. Y., Wismer, D. A. and Lasdon, L. S. 1971. On bicriterion formulation of

the integrated systems identifica-tion and system optimization, IEEE Transactions

on Systems, Man. and Cybernetics, 1, 296-97.

Hamacher, H. W., Pedersen, C. R., and Ruzika S., 2007. Multiple objective

minimum cost flow problems: a review. European Journal of Operational Research,

176, 1404-1422.

Henning, G. P., and Cerda, J., 2000. Knowledge-based predictive and reactive

scheduling in industrial environments. Computers and Chemical Engineering, 24,

2315-2338.

Isermann H., 1974. Proper efficiency and the linear vector maximum problem.

Operations Research, 22, 189-191.

Kaspi M., and Montreuil B., 1988. On the scheduling of identical parallel processes

with arbitrary initial processor available time, Research Report 88-12, School of

Industrial Engineering, Purdue University;.

Klingman, D, and Russell, R., 1978. A streamlined simplex approach to the singly

constrained transportation problem. Naval Research Logistics, 25, 681-695.

Kondakçı S., Azizoğlu M., and Köksalan M., 1996. Note: Bicriteria Scheduling for

Minimizing Flow Time and Maximum Tardiness, Naval Research Logistics, 43,

929-936.

Kutanoğlu, E., and Sabuncuoğlu, I., 2001. Routing-based Reactive Scheduling

Policies for Machine Failures in Job Shops. International Journal of Production

research, 39, 3141-3158.

 96

Lawler, E. L., and Lenstra, J. K., Rinnooy Kan, A. H. G., Shmoys, D. B., 1989.

Sequencing and scheduling: Algorithms and complexity, Reports BS-R8909, Centre

for Mathematics and Computers Science, Amsterdam.

Lee C.Y., and Liman S.D., 1992. Single-machine flow-time scheduling with

scheduled maintenance, Acta informatica, 29, 375-382.

Lee H., and Pulat P.S., 1991. Bicriteria network flow problems: continous case,

European Journal of Operational Research, 51, 119-236.

Lee H., and Pulat P.S., 1993. Bicriteria network flow problems: integer case,

European Journal of Operational Research, 66, 148-157.

Leung, J. Y.-T., and Pinedo, M., 2004. A note on scheduling parallel machines

subject to breakdown and repair. Naval Research Logistics, 51, 60-71.

Li E. and Shaw W., 1996. Flow-time performance of modified-scheduling heuristics

in a dynamic rescheduling environment, Computers and Industrial Engineering, 31,

213 - 216.

Mason S. J., Jin, S., and Wessels, C. M., 2004. Rescheduling strategies for

minimizing total weighted tardiness in complex job shops. International Journal of

Production Research, 42, 613-628.

Mehta, S. V., and Uzsoy, R. M., 1998. Predictable scheduling of a job shop subject

to breakdowns. IEEE Transactions on robotics and automation, 14, 365-378.

Mosheiov G., 1994. Minimizing the sum of job completion times on capacitated

parallel machines, Mathematical and Computer Modeling, 20, 91-99.

Mustafa A. and Goh M., 1998. Finding integer efficient solutions for bicriteria and

tricriteria network flow problem using DINAS, Computers and Operations

Research, 25, 139-157.

Nikolova M., 1998. Properties of the effective solutions of the multicriteria network

flow problem, Problems of Engineering Cybernetics and Robotics,. 47, 104-111.

O’Donovan, R., Uzsoy, R., and McKay, K. N., 1999. Predictable scheduling of a

single machine with breakdowns and sensitive jobs. International Journal of

Production Research, 18, 4217-4233.

O’Kane, J. F., 2000. A knowledge-based system for reactive scheduling decision-

making in FMS. Journal of Intelligent Manufacturing, 11, 461-474.

 97

Papadimitriou, C. H., and Steiglitz, K., 1982. Combinatorial Optimization:

Algorithms and Complexity. Prentice Hall, NJ.

Przybylski A., Gandibleux X. and Ehrgott M., 2006. The bi-objective integer

minimum cost flow problem – incorrectness of Sedeno-Noda and Gonzales-Martin’s

algoritm, Computers and Operations Research, 33, 1459-1463.

Pulat P.S., Huarng F., and Lee H., 1992. Efficient solutions for the bicriteria

network flow problem, Computers and Operations Research,19, 649-655.

Raheja, A. S., and Subramaniam, V., 2002. Reactive recovery of job shop schedules

– A review. International Journal of Advanced Manufacturing Technologies, 19,

756-763.

Rangsaritratsamee, R., Ferrell Jr., W. G., and Kurz, M. B., 2004. Dynamic

rescheduling that simultaneously considers efficiency and stability. Computers and

Industrial Engineering, 46, 1-15.

Sabuncuoğlu, I., and Bayız, M., 2000. Analysis of reactive scheduling problems in a

job shop environment. European Journal of Operational Research, 126, 567-586.

Sedeno-Noda A., and Gonzales-Martin C., 2000. The biobjective minimum cost

flow problem, European Journal of Operational Research, 124, 591-600.

Sedeno-Noda A., and Gonzales-Martin C., 2001. An algorithm for the biobjective

integer minimum cost flow problem, Computers and Operations Research, 28, 139-

156.

Sedeno-Noda A. and Gonzales-Martin C., 2003. An alternative method to solve the

biobjective minimum cost flow problem, Asia-Pacific Journal of Operational

Research, 20, 241-260.

Smith, W. E., 1956. Various optimizers for single stage production. Naval Research

Logistics Quarterly, 70, 93-113.

Steuer, R. E., 1986. Multiple criteria optimization: theory, computation and

application. John Wiley & Sons, Inc.

Visee, M., Teghem, J., Pirlot, M., and Ulungu, E.L., 1998. Two-phases method and

branch and bound procedures to solve the bi-objective knapsack problem. Journal of

Global Optimization, 12, 139-155.

 98

Ünal, A. T., Uzsoy, R., and Kıran, A. S., 1997. Rescheduling on a single machine

with part-type dependent setup times and deadlines. Annals of Operations Research,

70, 93-113.

Vieira, G. E., Herrmann, J. W., and Lin, E., 2003. Rescheduling manufacturing

systems: A framework of strategies, policies and methods. Journal of Scheduling, 6,

39-62.

Volgenant, A. 1996. Linear and semi-assignment problems: a core oriented

approach. Computers and Operations Research, 23, 917-932.

Wu S.D., Storer R.H. and Chang P.C., 1993. One-machine rescheduling heuristics

with efficiency and stability as criteria, Computers and Operations Research, 20, 1-

14.

 99

VITA

 Melih Özlen was born in Ankara on March 30, 1980. He graduated in 1997

from T.E.D. Ankara College. He received his B.S. degree in July 2001 and M.S.

degree in August 2003 in Industrial Engineering from the Middle East Technical

University. He has worked as a teaching and research assistant in the department

from September 2002 to November 2006. His main areas of interest are

combinatorial optimization, scheduling, and supply chain management.

