A BICRITERIA RESCHEDULING PROBLEM ON UNRELATED PARALLEL
MACHINES: NETWORK FLOW AND ENUMERATION BASED APPROACHES

A THESISSUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MELIH OZLEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

IN
INDUSTRIAL ENGINEERING

NOVEMBER 2006



Approval of the Graduate School of Natura and Applied Sciences

Prof. Dr. Canan Ozgen

Director

| certify that this thesis satisfies al the requirements as athesis for the degree of Doctor

of Philosophy.

Prof. Dr. Caglar Glven
Head of Department

Thisisto certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and quality, as athesis for the degree of Doctor of Philosophy.

Prof. Dr. Mera Azizoglu

Supervisor

Examining Committee M embers

Prof. Dr. Murat Koksalan (METU, IE)
Prof. Dr. Mera Azizoglu (METU, IE)
Prof. Dr. ihsan Sabuncuoglu (Bilkent Univ., IE)
Assoc. Prof. Dr. Canan Sepil (METU, IE)

Asst. Prof. Dr. Ayten Tirkcan (METU, IE)




| hereby declare that all information in this document has been obtained and
presented in accor dance with academic rules and ethical conduct. | also declare
that, asrequired by theserulesand conduct, | have fully cited and referenced all

material and resultsthat are not original to this work.

Name, Last name : Melih Ozlen

Signature



ABSTRACT

A BICRITERIA RESCHEDULING PROBLEM ON UNRELATED PARALLEL
MACHINES: NETWORK FLOW AND ENUMERATION BASED APPROACHES

Ozlen, Melih
Ph.D., Department of Industrial Engineering

Supervisor  : Prof. Meral Azizoglu

November 2006, 99 pages

This study considers bicriteria approaches to the minimum cost network flow
problem and a rescheduling problem where those gpproaches find their applications.

For the bicriteria integer minimum cost network flow problem, we generate all
efficient solutions in two phases. The first phase generates the extreme supported
efficient points that are the extreme points of the objective space of the continuous
bicriteria network flow problem. In the second phase, we generate the nonextreme
supported and unsupported efficient points by Integer Programming Based approaches.

Our rescheduling problem considers parallel unrelated machine environments.
The criteria are the total flow time as an efficiency measure and the total reassignment
cost as a stability measure. We show that the problems that address linear functions of
the two criteria can be represented by bicriteria network flow models. To generate all
efficient solutions, we use a Classical Approach that is based on the optimal solutions of
the singly constrained network flow problem and provide a Branch and Bound gpproach

that starts with extreme supported efficient set and uses powerful bounds. To find an
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optimal solution to any nonlinear function of the two criteria, we provide a Branch and
Bound approach and an Integer Programming Based approach that eliminates some
portions of the efficient set that cannot provide improved solutions.

We contribute both to the network flow and scheduling literature by proposing
algorithms to the bicriteria network flow models and gpplying them to a rescheduling
problem that is bicriteriain nature.

The results of our extensive computations with up to 100 jobs and 12 machines
have reveded that, the Branch and Bound algorithm finds the efficient set in less
computational effort compared to the classical approach. In minimizing a nonlinear
function of the two criteria both IP Based gpproach and Branch and Bound algorithm
perform quite satisfactory.

Keywords: Bicriteria Network Flows, Rescheduling, Parallel Unrelated Machines, Total
Flowtime, Total Reassignment Cost
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ILGISiZ PARALEL MAKINALARDA iKi KRITERLI YENIDEN CiZELGELEME
PROBLEMI: AG AKIS VE BIRERLEME TABANLI YAKLASIMLAR

Ozlen, Melih
Doktora, Endustri Muhendidligi Bolimu
Tez Y Oneticisi : Prof. Meral Azizoglu

Kasim 2006, 99 sayfa

Bu caismada enaz maliyetli ag akis problemine iki kriterli yaklasimlar, ve bu
yaklasimlarin uygulandigi bir yeniden ¢izelgeleme problemi ele alinmaktadr.

iki kriterli kesikli enaz maliyetli ag akis probleminin tim verimli noktalar iki
asamada bulunmustur. ilk asamada surekli iki kriterli enaz maliyetli ag akis probleminin
amag uzayinda kose noktalarda yer alan, kose destekli verimli noktalar bulunmustur.
Ikinci asamada, destekli olmayan verimli noktalar, ve kise olmayan destekli verimli
noktaar, Tam Sayil1 Programlamaya dayal: yaklasimlarla bulunmustur.

Yeniden gizelgeleme problemimiz ilgisiz paralled makinaar ortamlarinda ele
alinmstir.  Verimlilik Olgitu olarak toplam akis zamant kriteri, ve tutarlilik olguth
olarak toplam yeniden atama maliyeti kriteri kullanlmustir. iki kriterin dogrusal
fonksiyonunu ele aan problemlerin iki kriterli enaz maliyetli ag akis modelleri
kullanilarak ifade edilebilecegi gosterilmistir. TUm verimli noktalarin yaratiimasi igin,
tek kisith ag akisi probleminin en iyi ¢ozimlerine dayal1 Klasik Y 6ntem kullamlmustar,
ve kose destekli verimli noktalarla baslayan Da ve Simir yontemi onerilmistir. iki
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kriterin her hangi bir dogrusal olmayan fonksyonun en iyi ¢ozimuni bulmak igin,
verimli kimenin daha iyi ¢oziimler saglayamayacak kisimlarint eleyen, Tam Sayil
Programlamaya dayal1 bir yontem, ve Da-Sinir yontemi 6nerilmistir.

Bu caismada iki kriterli ag akis problemleri icin ¢ozim yontemleri 6nerilerek,
ve bu Onerilen yontemler, dogasi geregi iki kriterli olan bir yeniden cizelgeleme
problemi Uzerinde uygulanarak, hem ag akislari ve hem de cizelgeleme alanlarina katki
yapil mgtar.

100 is, ve 12 makinal1 problemleri ¢cozebilen genis ¢apli deneysel ¢alismamzin
sonuclar,, Dal-Sinir yonteminin, Klasik yontemle karsilastinldiginda, tim verimli
noktaart daha az ¢6zUm zaman harcayarak buldugunu gostermistir. Dogrusa olmayan
bir fonksiyonun en azlanmasinda, Tam Sayil1 Programlama tabanli yontem ve Dal-Sinir

algoritmasinin her ikisinin de oldukga basarili olduklart goralmuistar.

Anahtar Kelimeler: ki Kriterli Ag Akislar1, Yeniden Cizelgeleme, Paralel llgisiz
Makinaar, Toplam Akis Zamani, Toplam Y eniden Atama Maliyeti
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CHAPTER 1

INTRODUCTION

Scheduling, network flows, and multi-criteria optimization are well
recognized areas in the Operations Research literature. These research areas are
motivated by the practical problems that arise in awide range of situations.

Network flows find many applications in scheduling area as many
scheduling problems have network representations, where the jobs may be accepted
as activities and the flows may be a representative of the sequence. Hence, advances
in network flow theory trigger the development of efficient solution procedures for
the scheduling problems having network flow representations.

Multi-criteria optimization is an important area of operations research, which
finds its application on both network flow problems and scheduling problems. Many
network flow problems like assignment, transportation, minimum cost network flow,
might have several concerns like safety, reliability, resource usages in addition to the
total cost criterion. The incorporation of those concerns necessitates the multi-
criteriaformulation of the network flow problems.

Many scheduling problems have both producer and consumer related
concerns that may necessitate their simultaneous consideration in a multi-criteria
context. Rescheduling is an important scheduling area where multi-criteria
optimization finds its agpplication. Rescheduling, has been a popular scheduling area
since 1990's as evidenced by increasing evolving literature. The main motivation
behind this popularity is the recognition of the manufacturing environments that are
very often prone to disruptions. Rescheduling problems usually trade-off between
the stability and efficiency measures. The efficiency measures are usually producer
and/or consumer related. These measures aim to optimize classical performance
measures of scheduling, like total flow time, total weighted flow time, total

tardiness. The stability measures consider the deviation between the initial and new
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schedules. Simultaneous treatment of the efficiency and stability measures, takes
one into the area of multi-criteria optimization.

This thesis addresses a rescheduling problem on unrelated parallel machines
that has network flow representation and multi-criteria nature. Our criteria are total
flow time for efficiency and total reassignment cost for stability. The parallel
unrelated machine total flow time and total reassignment cost problems are
represented by minimum cost flow networks. The bicriteria problem defined for any
function of the total flow time and total reassignment cost is a bicriteria minimum
cost network flow problem. Hence any theory added to the bicriteria minimum cost
network flow area helps the development of the solution approaches to our
rescheduling problem.

In this thesis, we develop some theory for bicriteria minimum cost network
flow problem. We apply the theory on our rescheduling problem. We also propose
some implicit enumeration based approaches for our rescheduling problem.

The thesis is organized in two main parts: Chapter 2 and Chapter 3. Chapter
2 addresses a bicriteria minimum cost network flow problem. Chapter 3 considers
the paralel unrelated machine problem with total flow time and total reassignment
cost criteria. Each chapter has its own introduction where the importance of the
addressed problem is discussed. In Chapter 4, we conclude and point out some

future research directions.



CHAPTER 2

BICRITERIAINTEGER NETWORK FLOW PROBLEM

Network flow problems are well studied and applied models of operations
research. The network flow problem with the single objective of minimum total cost
is a well recognized problem in the operations research literature (Ahuja et al.
(1993). The importance of the single objective problem not only stems from its
applicability but also its appearance as a subproblem in many models exploiting
network flow structure. Moreover, single objective minimum cost network flow
models have very special structure explained by integrality of the extreme points of
its feasible polyhedron. This structure, called total unimodularity property, alows
use of special linear programming technique, namely network simplex agorithm.

Several well known operations research problems like transshipment,
transportation, assignment, shortest path, maximum flow problems are specia cases
of the minimum cost network flow problem. The minimum cost objective associated
with those problems might represent several concerns like minimizing the delivery
time, maximizing the safety and reliability, minimizing the deterioration of goods,
minimizing the shipping costs, minimizing the resource usages. In the basic model,
these concerns are combined in asingle total cost objective. But these concerns are
usualy in conflict. As mentioned in Hamacher (2007), applications with
trangportation planning faces conflicting criteria like minimization of cost for
selected routes, minimization of arrival times at the destination points, minimization
of deterioration of goods, maximization of safety, etc. This necessitates the
multicriteria formulation of the network flow problem. The solution to the multi
criteria problem is a set of efficient, i.e., non-dominated, solutions among which the
decision maker is allowed to make a choice according to his/her preferences.



Note that the network flow applications require integer flows, which would
be handled automatically, when there is a single objective. Incorporation of second
objective, dispels the total unimodularity nature of the network flow models. Hence
aneed for integer programming based procedures arise.

A bicriteria network flow (BCNF) problem is a special case of multicriteria
network flow problem with two criteria and has attracted the attention of many
researchers. The majority of the BCNF studies assume continuous flow values. Pulat
et a. (1992), Lee and Pulat (1991), Sedeno-Noda and Gonzales-Martin (2000) and
Sedeno-Noda and Gonzales-Martin (2003) are the most noteworthy examples. The
associated studies formulate the BCNF problem as a parametric programming
model, which is solved by network simplex algorithm. The parameter of the models
are updated iteratively based on the solution of the previous iteration.

The BCNF problem with integer flow values (BCINF) to find exact set of
efficient solutions has been addressed in Lee and Pulat (1993), and Sedeno-Noda
and Gonzaes-Martin (2001). Sedeno-Noda and Gonzales-Martin (2001) argue that
the algorithm by Lee and Pulat (1993) may miss some efficient points and introduce
another network simplex based algorithm that implicitly assumes the connectivity of
the adjacency graph. Przybylski et a. (2006) show that the adjacency graph is not
connected for the BCINF problem, hence settle the incorrectness of Sedeno-Noda
and Gonzales-Martin (2001)’'s algorithm. Przybylski et a. (2006) also mention that
it is not likely to find the exact efficient set for the BCINF problem by simple
simplex pivots and interchange arguments. As stated in Hamacher et al. (2007),
exact algorithms to find the efficient set is missing in the current literature. But
there are few approximation based studies that find a representation of the efficient
set, some noteworthy examples are due to Lee and Pulat (1991), Nikolova (1998)
and Mustafa and Goh (1998). Lee and Pulat (1991) extend their algorithm for the
continuous BCNF problem to find all integer points. Nikolova (1998) studies the
problem of generating all supported efficient solutions. Mustafa and Goh (1998)
consider bicriteria and tricriteria integer network flow problems and propose
approximate solutions by adjusting the non-integer flows via an interactive
approach.



For more details on the continuous and integer BCNF problems, the reader is
referred to the survey paper of Hamacher et al. (2007) who give a thorough review
of optimization and approximation algorithms.

In this study, we propose a two-phase approach to generate the exact
efficient set for the BCINF problem. In the first phase, we generate a simplex based
approach to generate the efficient solutions of the continuous flow problem. These
solutions form the extreme supported efficient set of the integer flow problem. The
remaining efficient solutions are found by integer programming based solution
procedures that use valid inequalities to ensure the generation of non-extreme
supported or unsupported efficient solutions.

The rest of the chapter is organized as follows: In section 2.1, we define our

problem, in Section 2.2 we present our solution procedures.
21  Problem Formulation

Let G = (N, A) be a network with node set N and arc set A. Let |;; and u;; be
the integer non-negative lower and upper bounds on the flow values on each arc (i, j)
| A and b; be the integer demand (if negative) or supply (if positive) of each node i
| N. Let ¢’y and ¢?; be the non-negative integer cost coefficients for the unit flow
onarc (i,j) I A, in the objectives f1(x) and fx(x) respectively. The decision variable
X;j denotes the amount of flow on arc (i, j)) I A. The BCINF problem can be
formulated as follows:

Min  fix)= § c\x, (2.1)
@i, A

Min  f)= § c%x, (2.2)
@i, A

subject to

ax-ax=h "il N (2.3)

iTN iTN

|ij§Xij§Uij " (i, j)T A (2.4)

Xij isinteger ", )T A (2.5)



Let X represents the set of feasible solutions to the BCINF problem. A
feasible solution xI X is efficient if there does not exist any other feasible solution
X'I X with either f1(x") < f1(x) and f(x") < fa(x), or fi(x) < fi(x) and f(xX) < fx(x). An
efficient solution xI X is supported if it optimizes any convex combination of f1(x)
and f(x) (See Ehrgott and Gandibleux (2000)). In other words, xI X is a supported
efficient solution, if it is one of the optimal solutions to wy f1(x) + w; f2(x) for any wy,
Wo. A supported efficient solution xI X is extreme supported if it can be found by
parameterizing on w; > 0 and w, > 0. An extreme supported efficient solution is a
boundary efficient solution if it lies at the corners of the (f1(x), f2(x)), i.e., objective
space. A supported efficient solution xI X is non-extreme supported if lies on the
convex combination of two adjacent extreme supported efficient solutions on the
objective space. An efficient solution xI X is unsupported if it is not optimal for any
convex combination of fi(x) and fx(x). Figure 2.1 illustrates the images of all
solutions in the objective space.

filx)

falx)

Figure 2.1 Efficient solutions



In Figure 2.1, X3, X3, Xs, Xg and X;; are extreme supported efficient points. X3
and Xi; are boundary efficient points. X, and Xg are non-extreme supported efficient
points as they lie on the convex combination of two adjacent extreme supported
points. X4 and X; are unsupported efficient points. X4 and X; cannot optimize any
convex combination of f1(x) and fx(x), and therefore lie inside the triangle formed by
two adjacent extreme supported efficient points. Xs and X are inefficient points as
they lie on or outside the triangle formed by adjacent extreme supported efficient

points.

2.2 Solution Procedures

In this section, we describe two procedures to generate the efficient solution
set (Set E). Both procedures use the boundary efficient solution set, they iterate
starting from one boundary point and terminate when the other boundary point is
reached. We describe the generation of the boundary efficient solution set (Set BE)
in Section 2.2.1.

Thefirst procedure generates all efficient solutions, using an optimal solution
of a singly constrained minimum cost network flow problem. The second procedure
first generates the set of extreme supported solutions (Set ESE), then having known
Set ESE, it generates the set of non-extreme supported solutions (Set NSE) and the
set of unsupported efficient solutions (Set UE). We present first and second
proceduresin Sections 2.2.2 and 2.2.3 respectively.

2.2.1 Generation of Boundary Efficient solutions, Set BE

Set BE can be generated through the solutions of the following hierarchical
problem for p=1, s=2 and p=2, s=1, i.e., selecting one objective as primary, and the
other as secondary.

(P)  Minfgx)
st. (2.3), (2.4), and (2.5)
fo(x) = fp (X) (2.6)



where fp (X) is an optimal solution to the single objective, Min fa(X), network flow

problem and can be found in polynomial time using network simplex algorithm.
Now consider the following single objective network flow problem.

(P)  Minfp(x) + esffX) where e, >0 and issufficiently small.

st. (2.3), (2.4), and (2.5)

Corollary 2.1, below, defines arange foreg that makes (P) and (P’) equivalent.

Corollary 2.1. (P) and (P") are equivaent when e s < — ! —-
a (uij - Iij)C ij

(LA

Proof. egshould be set small enough so that objective p, should not increase even
for the largest possible reduction in objective s. Minimum increase in fp(X), is 1 unit,
since c”j can only take integer values. Maximum increase in f5(x), is the difference

between § u,c’, , i.e., an upper bound on fgx), and § I,c’, ,i.e, alower bound

@i, A (i A

ij

onfy(x). Henceeg (8 u,c, - a ;¢ )<L ie, es<— 1 — should hold.
()1 A (i) A a (- ljcy
L)1 A

Let (fi(X), f2X)) be the optima solutions to problem (P) with p=1, 2,

. 1 .
wheneg issetto — . These two solutions form set BE. Note that

a (uij - Iij)CSij +1
(LA

fo(X), with p=1, 2, are lower limits on the fy(x) and fx(x) values (f;"° and f,"°) of all
efficient solutions, respectively. On the other hand, fg(x ), with s = 1, 2, are upper

Y® and f,”® ) of al efficient solutions,

limits on the fi(x) and fy(x) vaues ( f;
respectively. These limits give an upper bound of Min{f,"®- f;"B, £,°5- £,-®} +1 on
the number of all efficient solutions. The reader may refer to Steuer (1986), for

generation of the boundary efficient solutions for the general bicriteria problem.



2.2.2 Generation of All Efficient Solutions: A Simultaneous Approach

Consider the following singly constrained minimum cost network flow problem

(P) Minz= o Cpi' -+ 5 o CSi» :
k (i% A . (a)] A(uij } Iij)CSij +1 (i% A i
]
st. (2.3), (2.4), and (2.5)
q @ s k 2.7)

(.1 A

(Px) isNP-Hard as its special case, singly constrained assignment problem, is
NP-Hard (See Aggarwal (1985)).

An optimal solution to (Py) is an efficient solution provided that k is no
smaller than fs-°. (See, Haimes et al. (1971) for the general bicriteria problem)

Procedure 2.1 below generates Set E by varying the value of k between fg”®
and f$-° and solving (Py). The procedure can be implemented by taking either of the
objectives as primary.

Procedure 2.1

Step 0. Let p=1or 2.
Find fs”® and fg-® and let k = fg”° —1.

Step 1. If k < f&-° then stop.
Solve (Py). Let the optimal solution be (f;’, f2).
E=EE(f,f)

Step 2. k="fs - 1, go to Step 1.

The procedure iterates pseudo-polynomial number of times as there exists
pseudo-polynomial number of efficient solutions. Each iteration returns a new
efficient solution by solving (Py), i.e., an NP-Hard problem, in exponential time.
Hence the procedure has an exponential-time complexity.



2.2.3 Generation of All Efficient Solutions: A Sequential Approach

We find the efficient set sequentialy, by first generating the extreme
supported efficient solutions, set ESE and then the non-extreme supported efficient
solutions, set NSE and the unsupported efficient solutions, set UE. We next describe

the generation of each set.

Generation of Extreme Supported Efficient solutions, Set ESE

We generate Set ESE through successive solutions of (Py) by varying the
value of k, in range [f<°, fs°°]. Our procedure to generate Set ESE, Procedure 2.2, is
similar to Procedure 2.1. It solves the Linear Programming (LP) relaxation of (Py)
and pivots in the slack variable of constraint fg(x) < k, whereas Procedure 2.1 solves
(Py) exactly. Below is the stepwise description of the procedure used to generate set
ESE.

Procedure 2.2
Step 0. Let p=1or 2

k=fs~°-1
Step 1. If k < fs, then stop.
Step 2. Solve the LP relaxation of (Py).

If the solution is non-integer, perform one simplex iteration by pivoting in

the slack variable of constraint fs(x) < k and get an integer solution.

L et the current integer solution be (fy, f2).

ESE= ESE E (f1,f)

k=1gx)—1,goto Step 1

Each execution of Step 2 adds a new solution to Set ESE by solving the LP
in polynomial time. Step 2 iterates pseudo-polynomial number of times as there
exists pseudo-polynomia number of solutions in Set ESE. Hence the algorithm runs
in pseudo-polynomial time.

Theorem 2.1 shows that Procedure 2.2 generates all extreme supported
efficient solutions, i.e., Set ESE.

10



Theorem 2.1. Procedure 2.2 generates all extreme supported efficient solutions, i.e.,
Set ESE.

Proof. The correctness of Procedure 2 is based on finding the extreme supported
efficient solutions by the LP relaxation of the singly constrained network flow
problem. Each point in Set ESE corresponds to an extreme point of the
corresponding unconstrained network flow problem (see Isermann (1974)). If the LP
relaxation of the singly constrained network flow problem gives all integer variables
then the resulting solution corresponds to one of the extreme points of the
unconstrained network flow problem (see Glover et a. (1978)). Note that the
optimal solution of our singly constrained network flow problem, (Py), is an efficient
point. If the LP relaxation of (Py) provides al integer variables, the resulting
solution is extreme supported efficient as it corresponds to one of the extreme points
of the network flow problem.

If the LP relaxation gives a non-integral solution then the additional
constraint is binding, hence the associated slack variable is zero, i.e., not in the basis
(see Glover et a. (1978)). If the additional constraint is not binding, then the
associated slack variable is positive, i.e,, in the basis. In the latter case, the resulting
solution is integral as the remaining constraint set (constraint set of the MCNF
problem) is totally unimodular.

When the dack variable of a non-integral solution is pivoted, it takes the
maximum value, Swx, that does not violate feasibility. The resulting solution is

integral (Klingman and Russell (1978)) and solves (p,_, ) problem where the slack

variable is in the basis at level zero. The solution is degenerate and corresponds to
the same extreme point of the LP relaxed solution of the (Px) problem. This follows
that there cannot exist any other extreme point, hence an extreme supported efficient
point, having fgx) vaue between k and k - Suxt+1l. The basis for the

(P« s, ) problemis no more feasible for the (p,_, __,) problem, so one can conclude

that the extreme point representing the basis is different for each extreme supported
point. Our algorithm catches those extreme points and therefore finds all extreme
supported efficient points. =

11



The previous approaches to generate set ESE, formulate the BCNF problem
as a parametric programming model so as to minimize fi(x) + | fx(x) where | >0.
For a specified | , they solve the parametric model by the network simplex method
and get an extreme supported efficient solution after which | is updated by some
adjustment procedure. The parametric model is resolved for each updated | using
network simplex method.

Our algorithm solves the BCNF problem by the network simplex method
only once for k=fs'®-1 and finds the remaining ESE solutions by the dual-simplex
iterations based on the optimal basis of the most recently generated solution. As the
associated problems are not solved from scratch, one can expect higher efficiency.

The definition of supported efficient solutions follows that they are optimal
for the BCNF problem with the objective of wfi(x) + (1-w) fx(x), for some range of
w values. We hereafter let (f,'(x), f2'(x)) denote the r™ extreme supported efficient
solution, S;, such that f,"*(x) > f'(x) > f,"}(x) and " (x) < f'(x) < £, (x) and let
#ESE denote the number of solutionsin Set ESE.

We let [wr.1, W] denote a range for w for which (f;'(x), f2'(x)) is optimal,
where wo=0. When w = w;, S and S+ and the solutions that lie on their convex
combination are aternate optimal. Hence w; equates the objective function values of
those supported solutions, i.e.,

we F () + (1-w) B 00=w f1 (%) + (1-wr) £ (%)

r+l1 r
Thisfollows, w, =— fr{l (X)- ffﬂ(x) r r=1,., #ESE -1
fr - 7+ f,7(x)- 1, (X

In the next two subsections, we use w; values to generate the non-extreme

supported and unsupported efficient sets.
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Generation of Non-extreme Supported Efficient solutions, Set NSE

Consider the following integer programming mode!.
(PN5) Minw; fo(x) + (1- wy) f2(X) + e fr(X)
st. (2.3),(2.4), (2.5)
fax) < fs(x) -1 (2.8)

(P"F) selects the solution with minimum w; f1(x) + (1- w;) f2(X) value and
breaks the tiesin favor of fp(x) vaue.

Note that when e, = 0, S..1 solves (P,"%).

Any solution on the convex combination of S and S+i, IS non-extreme
supported and such a solution has a lower fp(x) value than that of S.+1. An optimal
solution to (P,\F) is a non-extreme supported efficient point between S and S+1
having smallest fp(x) value, provided that e is set according to Corollary 2.2. If

such a non-extreme supported efficient solution does not exist, the optimal solution
to (P,"5) is S1.

1 1
B0 00+ £ (0)- 7% fP- 11

minimizes w; f1(X) + (1-w;) f2(x) and breaks the tiesin favor of fp(x) value.

Corollary 2.2. For e, < . (P"F)

p

Proof. e ne should be set small enough so that z = w; f1(x) + (1-w;) f2(x) value should
not be increased even for the largest possible reduction in fp(x). Let Az be the
difference between optimal value and the objective value of any solution. This
difference can be defined mathematically as follows:

Az= W, Afp+ (1-wWp)Af2

AR A N (- 19 \
700- K00+ 00- P00 5700 B+ K (- 7

f
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Since two objectives can only take integer values, f,""*(x) — f2'(x), f1(X) —
f1""1(x), Af; and Af, are dll integers. %- % 3 % holds for any three integersa, b and ¢

1
) - £ 00+ 11 (0 7700

such that a-b is positive. This follows Az >

such that Az> 0.

The maximum increase in fp(X) isfp" " — fp-°.

1
Therefore,  (fr° — %) ene < — r r — ,
£, 00 - 700+ £, (%) - £77(%)
equivalently, e < L 1 should hold
- szl(X)' fzr (X)+ flr (X)' lel(X) fUBP' fLBP
m

Before solving (P,"F) with the hope of finding a non-extreme efficient
solution between S and S.+1, one may check for the conditions for the non-existence
of those solutions. One such condition is stated in Corollary 2.3.

Corollary 2.3. There is no non-extreme supported efficient solution that lies
between two extreme supported efficient solutions S and S+ if there is no integer
(f1(x), f2(X)) point on the line connecting (f:"(x), f2'(x)) and (" *(x), f""1(x)).

Proof. The non-extreme supported efficient solutions lie on the line connecting two
adjacent extreme support efficient solutions. The fi(x) and fx(x) values of al
solutions are integers as our parameters are integers. If there are no integer values
(f1(x), f2(x)) on the line connecting (f'(x), f2'(X)) and (f;""1(x), f."** (X)), there cannot

exist any non-extreme supported efficient solutions between S and S+ 1.
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Corollary 2.3 implies that one may skip the region in the objective space
defined by S and S.+3, if there is no integer point on their convex combination.

Moreover the result of the corollary can be used whenever a non-extreme supported

efficient solution, say ér , 1S reached and there is no integer point on the convex

combination of ér and S.i. In such a case one may again proceed to the region
defined by S+1 and S+».

Note that, there does not exist an integer solution between S and S+, if for
each integer value of f1(x) between f,'(x) and f1""*(x), the corresponding f»(x) value is

continuous. The f»(x) value can be found using the following equation.

£,00 = 1, (0 + {007 ROV 00 70D yere i 1 1,409+, f(0)-1].
F09- £77(%)

This check can be made for each integer point f2(x) | [f2'(x)+1, f2(x)-1] and
the corresponding f1(x) values.

We now provide the stepwise description of the algorithm that solves the
(P,"%) problem for each (S and S.+1) pair.

Procedure 2.3
StepO.Letp=21or2 andr= 1.
Stepl.r=r+1, ifr =#ESE then stop.
k=fd(x) — 1
Step 2. If there is no integer point on the line connecting (f1'(x), f2'(x)) and (f," *(x),
1 ()
then go to Step 1
Step 3. Solve (P,F) with fg(x) < k.

Step 4. Let S be the solution with ( £, (x), f, (x))
If ér = S+1 thengoto Step 1.
NSE=NSE E S
If there is no integer point on the line connecting (f1'(X), f.'(x)) and
(f7(X), 7 (%)) then go to Step 1.

k= f/(x)-1,goto Step 3
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Generation of Unsupported Efficient solutions, Set UE

Consider the following inequality
wifi(X) + (1-wp)fa(X) > z r=1,.,#ESE-1 (2.9
where z.=w;f1'(x) + (1 —w) f2'(X)

The unsupported efficient solutions satisfy constraint set (2.9), for al r as
they do not optimize any convex combination of fi(x) and fx(x). Corollary 2.4
shows that (2.9) is not satisfied by any supported efficient solution, thereby
providing a valid cut for any model that aims to find an unsupported efficient

solution.

Corollary 2.4. The constraint w; f1(x) + (1-wy)f2(X) > z eliminates all supported

efficient solutions.

Proof. Two adjacent extreme supported efficient solutions, S and S+, and any
solution on their convex combination do not satisfy (2.9), as they minimize w; f1(x)
+ (1 —w;) f2(xX) with an objective function value of z, i.e,, z =w, fi(x) + (1 —w)
fo(x) for S and S+1,. Thisfollows,  w; fi(X) + (1-w) f2(X) > z eliminates S and
S+1, and any non-extreme efficient solution on their convex combination.
Therefore, constraint set (2.9) defined over all adjacent extreme supported solution

pairs, eliminates all supported efficient solutions.

From the standpoint of using a mathematical programming software, we
convert (2.9) into ‘greater than or equal to’ type constraint. Recall from the proof
of Corollay 22 that the minimum increase in 2z vaue is

1

=—F - - ——— and hence constraint set (2.9) is equivalent to
fo00- L)+ 1, (- f,7(x)

€r

the following constraint set.

1
) - £, 00+ 11 (9 7700

w, f1(X) + (1-wy) fo(X) > z+ (2.10)

r=1,.,#ESE-1
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Constraint set (2.10) eliminates the supported efficient solutions, but not the
inefficient solutions. To eliminate the inefficient solutions, we use the efficiency
definition and add either f;(x) < f,"(X)—1 or fo(x) < f5'(X) — 1, constraints for
eachr:

One can linearize this either/or type relation via a binary variable, Y;, as
follows:

) < f0) =1+ (FL7°(9 - i °(0)(1- V)

B < 00 -1+ (f7°(9) - =20V

The model to find an unsupported efficient solution can then be written as,
(PF) Minfa(x) + e sfyx)

st.  (2.3),(24),(25)

fo(x) < k

we f1(X) + (1-wp) fa(X) > z+ e, "r st fs(X) < k
)< f100) =1+ (FUB) -f18))(1-Y,) " r st fe(¥) < k
B < () =1+ (RUB(X) - F2B(X)Y; "rost fd(x) < k
Y,=0orl

For a given k in range (f<2(X), fs"2(x)), (P’F) either returns an unsupported
efficient solution or concludes that no unsupported efficient solution having fg(x)
value no bigger than k exists. Below is the formal description of the algorithm that

uses (P«”F) to generate all unsupported efficient solutions.

Procedure 2.4
Step0.Letp=1or2, k=fs? -1
Step 1. If k= fs-, then stop.
Solve (PF).
If the solution isinfeasible, all unsupported solutions are generated, stop.
Step 2. Let (f1"(x), 2"(x)) be the solution.
UE=UE E (f\'(x), f2'(x))
k=1gx)—1, goto Step 1
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Procedure 2.4 iterates pseudo-polynomia number of times, as each execution
of Step 2 returns a new unsupported efficient solution and there is pseudo-
polynomial number of unsupported efficient solutions. Step 2 solves an integer
program (P,”F), in exponential time. So, the procedure runs in exponential time.

In Chapter 3, we deal with arescheduling problem that is bicriteriain nature
and has a network flow representation. We, thus, apply the theory derived in this
section to the bicriteria minimum cost network flow problem to dea with our
rescheduling problem that trade-offs between total flow time and total reassignment
cost objectives.
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CHAPTER 3

RESCHEDULING PROBLEM

Majority of the scheduling literature considers a manufacturing environment
with no disruptions. However in manufacturing practice, the environment is very
often subject to disruptions that makes the initial scheduling plan inefficient or even
infeasible and necessitates rescheduling. The common disruptions are machine
breakdowns, hence subsequent repairs, new order arrivals, order cancellations,
changes in order specifications like priorities, release times, and due dates, and
shortages of resources like materials, 1abor, tools and equipments.

We consider a parallel machine environment where the machines are subject
to disruptions and where the jobs are initially scheduled so as to minimize total flow
time, i.e., total time the jobs spent in the system. Flow time gives a direct indication
of the work-in-process inventory levels, hence its minimization is an important
concern of many manufacturers.

We assume the customer promises are given and the resource allocations are
made according to the initial minimum flow time schedule. During the execution of
the initial plan, a disruption blocks the machines for a specified length of time.
Thereafter, the manufacturer still aims to minimize the total flow time of the jobs
that have not yet started, considering the disruption effect. However, the new
minimum flow time schedule may deviate from the initial schedule, in terms of
machine allocations. A deviation may cause disturbances, in particular, when the
machine setups and resource allocations are made according to the initia
allocations.
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We aim to consider the trade-off between the efficiency of the new schedule,
measured by the total flow time and the stability measured by the difference between
the initial and new machine allocations. As a stability measure, we use the total
reassignment cost. The jobs receive costs, i.e., penalties, according to the machines
they are assigned in the new schedule. The reassignment cost of job i on machinej is
zero, if job i is assigned to machine j in the initial schedule. We consider the
unrelated paralel machine environment where the processing time of a job is
dependent on the machine it is assigned on.

The rest of the Chapter is organized as follows. In Section 3.1, we review the
rescheduling literature. In Section 3.2, we introduce the basic definitions, notation,
and define our problems. In Section 3.3, we present the optimization algorithms for

each of our problems. The results of our experiments are presented in Section 3.4.

31 Literature Review

The rescheduling studies are of relatively recent origin. Almost all related
work are published in 1990's and 2000's. Vieira et al.(2003) classify rescheduling
strategies as dynamic with no schedule generation or predictive-reactive with
schedule generation and update. Dynamic strategies can be dispatching rules or
control-theoretic approaches. Rescheduling can be done periodic, event-driven or
hybrid in predictive-reactive strategies. Schedule generation and schedule repair are
the two methods used for rescheduling. Schedules can be robustly generated by
taking disruptions into account. As a repair methodology right-shift scheduling,
partial rescheduling or complete regeneration can be used. Raheja and Subramaniam
(2002) review rescheduling in ajob shop environment and identify the methods used
in rescheduling. Right shift scheduling is the simplest strategy that recovers
disruption by shifting all the jobs towards the right in the time horizon without
changing the initial sequence. Affected operations rescheduling is a partia
scheduling strategy where only the jobs that are affected from the disruptions are
rescheduled.
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Aytug et al. (2005) review the literature on executing production schedules
in the presence of disruptions. A four dimensional taxonomy is introduced. The
taxonomy is; Cause — object, state; Context — free or sensitive; Impact — time,
material, quality, dependency, context; Inclusion; predictive and/or reactive. A
number of directions for future work are suggested on; problem formulation,
estimation of reconfiguration costs, using available information on the nature of
disruptions and integrating with structural control. Henning and Cerda (2000)
present a knowledge-based framework, based on the object oriented technology, for
building scheduling systems aimed at solving real-world problems. The paper points
out the most relevant aspects of the proposed framework architecture that support
both predictive and reactive scheduling.

Hall and Potts (2005) consider inserting new jobs in a schedule without
excessive disruption of the old jobs. New jobs must be inserted into the current
schedule while preserving the origina assignments as much as possible. They
consider maximum lateness and total flow time as efficiency measures and the total
sequence deviation and total completion time deviation between the initia and new
schedules as stability measures. They utilize two different models, in the first model
they minimize scheduling cost under a limit on the disruption amount and in the
second model they simultaneoudly consider the two criteria in the objective function.
They provide either efficient algorithms or show that such algorithms are unlikely to
exist. Unal et a. (1997) consider the problem of rescheduling a facility modeled as a
single machine in the face of newly arrived jobs with part-type dependent setup
times. Their am is to insert the new jobs in the schedule so as to minimize the total
weighted completion time or the maximum completion time of the new jobs. They
provide a polynomial-time agorithm for the maximum completion time problem.
Daniels and Kouvelis (1995) formalize the robust scheduling concept for scheduling
situations with uncertain or variable processing times. They consider a single-
machine environment and minimize the total flow time. O’ Donovan et al. (1999)
applies predictable scheduling approach to minimize total tardiness on a single
machine with stochastic machine failures. Their procedure considers the case where
the processing times are affected by machine breakdowns, and provides speciaized

rescheduling heuristics.
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Bean et al. (1991) consider the rescheduling operations with release dates
and multiple resources. They specify some optimality conditions and a solution
approach. Their approach, called as Match-up Scheduling, follows the initial
schedule until a disruption occurs. After a disruption, part of the schedule is
reconstructed to match up with the initial schedule at some future time. Leung and
Pinedo (2004) consider paralel machine scheduling, where the machines are
identical and subject to repair and breakdown. Three objectives namely, the total
completion time, the makespan, and the maximum lateness are considered. They
analyze the case where the jobs have deadlines and are subject to precedence
constraints.

Mason et al. (2004) work on rescheduling strategies for minimizing total
weighted tardiness in complex job shops of semiconductor manufacturing
environment. Three rescheduling strategies, namely right shift scheduling, fixed
sequence rescheduling and complete rescheduling are examined, to investigate the
efficiency of each strategy on the on-time delivery performance measured by the
total weighted tardiness. Aktlrk and Gorgull (1999) propose a rescheduling strategy
and match-up point determination procedure to increase both the schedule quality
and stability on modified flow shops (MFS) in which the machines are physicaly
arranged in cellular form. Abumaizar and Svestka (1997) present an affected
operations rescheduling algorithm in a job shop and compare it with complete
rescheduling and Right-shift Scheduling strategies. Their results demonstrate the
superiority of the Affected operations algorithm over other rescheduling methods.
O’'Kane (2000) describes research on the development of an intelligent simulation
environment. The environment is used to analyze reactive scheduling scenariosin a
specific flexible manufacturing systems (FMS) configuration. Various intelligent
systems and concepts are developed and implemented to provide decision making
and control across a FM S schedule lifetime. Sabuncuoglu and Bayiz (2000) study a
reactive scheduling problem in classical job shop environments, and use mean
tardiness and makespan as performance measures. Kutanoglu and Sabuncuoglu
(2001) study reactive scheduling in dynamic job shops, where the machines are
prone to unexpected failures. Their strategy is to reroute the jobs if one the machines

on the original route fails.
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Rangsaritratsamee et a.(2004) propose a rescheduling methodology whose
objective contains both efficiency and stability measures. Schedules are generated at
each rescheduling point using a genetic local search algorithm that allows efficiency
and stability to be balanced in a way that is appropriate for each situation. Mehta
and Uzsoy (1998) present a predictable scheduling approach which can absorb
disruptions without affecting planned external activities, while maintaining high
shop performance. The procedure inserts additional idle time into the schedule to
absorb the impacts of breakdowns. The amount and location of the additiona idle
time are determined from the breakdown and repair distributions as well as the
structure of the predictive schedule. The effects of the disruptions on the planned
support activities are measured by the deviations of the job completion times
between the realized and predictive schedule. This approach is applied to maximum
lateness (Lmax) problem in a job shop environment with random machine
breakdowns.

Wu, Storer and Chang (1993) develop rescheduling heuristics for single
machine environments. They utilize makespan as the efficiency measure and start
time and sequence deviation of the initidl and new schedules as their stability
measure. Li and Shaw (1996) consider dynamic scheduling on job shop
environment. They utilized a simulation model to evauate their proposed heuristic
against classical heuristics.

Alagdz and Azizoglu (2003) and Azizoglu and Alag6z (2005) address the
trade-off between the total flow time and the number of reassigned jobs. Azizoglu
and Alag6z (2005) develop a polynomia time algorithm to generate al non-
dominated solutions, whereas Alagbz and Azizoglu (2003) consider eligibility
constraints and propose approximation and optimization agorithms. Curry and
Peters (2005) consider total reassignment penalty as a stability measure and total
tardiness as an efficiency measure. They propose a simulation study to test the

efficiencies of some heuristic procedures and rescheduling strategies.
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Church and Uzsoy (1992) consider single machine and paralel identical
machine environments to minimize the maximum lateness and the number of times
rescheduling is done. They provide a simulation study to test the efficiencies of
some rescheduling strategies like periodic, event-driven and continuous
rescheduling.

In our study, we consider a rescheduling problem on unrelated parallel
machine environments that address the trade-off between the total flow time and the
total reassignment cost. Our model is a generaization of the identical paralel
machine models in Alagdz and Azizoglu (2003), and Azizoglu and Alagbz (2005)
that consider the trade-off between the total flow time and the number of reassigned
jobs. Our am is to contribute to the rescheduling literature by proposing a solution

methodology for a bicriteria problem on unrelated parallel machine environments.

3.2 Problem Definition

We consider amanufacturingenvironment  with  m  unrelated parallel
machines. We assume al jobs are available at time zero, and each should be
assigned to one of the machines, and processed without interruption. Each job i is
characterized by an integer processing time pj;; time units on machinej.

We assume the initial schedule is known. There is a disruption of D time
units on one of the machines, say machine DM, after executing the initial schedule
for DT time units. The job that is being processed on DM, and the jobs that start on
or after DT on other machines are to be rescheduled at time DT. We assume there
are n such jobs. Once we take the reference starting point from time zero to DT, our
rescheduling problem reduces to scheduling n jobs, available a time zero, on m
unrelated parallel machines where machine j becomes available a time a;.
Accordingly, apm = D and g is the completion time of the job processed at time DT
on non-disrupted machine j. Note that, multiple simultaneous disruptions can also
be handled by letting = D; where D; is the time at which the disruption on machine
J, is recovered. We assume D, DT, and g are all integers. Figure 3.1 illustrates a
rescheduling environment where DM=ML.
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Figure 3.1 Example rescheduling environment

The scheduling cost, that defines our efficiency measure, is the total flow
time, F. Total flow time is the total time the jobs spent in the system and therefore is
the direct indication of total work-in-process inventory levels. As we assume all zero
ready times, the total flow time and total completion time are equivalent measures. If
we let C; denote the completion time of job i in the new schedule, total flow time,

F :g C, . The disruption cost that defines our stability measure is the total
i=1

reassignment cost of jobs that are reassigned to different machines between initial

and new schedules, shortly reassigned jobs. We | et

il if jobi isreassigned

- } 0 otherwise

R
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The total number of reassigned jobs, a special case of total reassignment cost
with unique cost terms, is é R . Total reassignment cost is defined by letting
i=1
wrj; = integer cost (penalty) of assigning job i to machine |
We can interpret wrj; as the additional cost incurred due to the reassignment
of job i to machine j. Such a cost might be incurred due to the additional set-up,
adjustment, tooling, material/labor shifting done.

The total reassignment cost, WRJ,is § .8 ,Wi,R .

A schedule Sis said to be efficient with respect to F and WRJ if there exists
no schedule S’ with F(S) < F(S and WRIJ(S) < WRIJ(S) with at least one strict
inequality. An efficient schedule sl Sis supported if it optimizes any weighted sum
of WRJ and F. In other words, sl Sis asupported efficient solution, if it is one of the
optimal solutions to wy WRJ + w, F for any non-negative w;, w,. A supported
efficient schedule sl S is extreme supported efficient if it can be found by
parameterizing on w; and w.. A supported efficient schedule sl S is nonextreme
supported efficient if lies at the convex combination of two adjacent extreme
supported efficient schedules on the (WRJ, F). An efficient schedule sl S is
unsupported if it is not optimal for any weighted sum of WRJ and F.

The standard classification schemes for scheduling problems use three-field
representation a |b |g where a is the machine environment,  is the constraints or
specia characteristics of the problem and vy is the objective function (see Lawler et
al. (1989)). We consider unrelated parallel machines and hence set o = R, when the
parallel machines are identical, i.e., p;j= p; for al i and j, we set o = P. We have
initial machine available times denoted by g in p field. Moreover, we use the
following constraints

B= F=F : tota flow time should be kept at its minimum value

B=WRJ=WRJ : total reassignment cost should be kept at its minimum value

B= F < k:tota flow time can be at most k

B= WRI< k: total reassignment cost can be at most k

B= & :themachines haveinitial available times
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We consider F, WRJ as efficiency and stability measures, hence we have,
vy = F, WRJ : generating set of efficient schedules with respect to F and WRJ
y = f (F, WRJ) : finding an optimal schedule for a specified function of F and
WRJ

3.3 Solution Procedures

In this section, we provide solution procedures to our problems that are
described in detail in the following sections.

33.1 The R]|a; |F problem

Kaspi and Montreuil (1988) show that the P|a; |F problem can be solved

in polynomial time by assigning the shortest available job to the earliest available
machine. Lee and Liman (1992) and Mosheiov (1994) study the more general case
of the P|a, |F problem where the machines are unavailable at arbitrary, but not
necessarily initial, times,

A specid case of the R|a, | F problem where p;j= p; or oo for all i and j, is
formulated as a network flow problem in Alagéz and Azizoglu (2003). We now
extend this network formulation to the arbitrary p;; case.

Our decision variable is defined as

X i1 if jobi isscheduled k™ position from last on machinej.
“'l0  otherwise

The objective function requires the minimization of the total flow time

values, i.e,,
Min 8 a a (kp, +a,) X, (3.1)
i=1 k=1 j=1

kpij is the contribution of the processing time of job i to the total flow time if
it is sequenced at k™ position from last on machine j and g is the start time of the

first job on machinej.
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The constraint sets are as stated below:

é. é. Xig =1 " (3.2
k=1 j=1

én. Xix £1 "k (3.3)
i=1

XijT {0,]} ! i!j! k (34)

Constraint sets (3.2) and (3.3) ensure that each job is scheduled exactly once
and each position of each machine is occupied by at most one job. Constraint set
(3.4) requires that the jobs cannot be preempted or splitted. Due to the total
unimodularity of the constraint set of the network flow models (see Papadimitriou
and Steiglitz (1982)), the Linear Programming (L P) relaxation of the model provides
all integer solutions. Therefore constraint set (3.4) can be replaced by

0< Xi=1 "1,k (3.5

3.3.2 The R|a; [WRJ problem

WRJ can be forced to its lower bound of zero by applying the right-shift
strategy to the initial schedule. The right-shift strategy shifts all jobs on DM, D time
units to the right, while keeping other job assignments the same. The F value that
solve R|a; [WRJ problem, i.e., F value of the right-shift schedule, gives an upper

bound on the F values of all efficient schedules.

333 The R|a,,F =F" [WRJ problem

Note that the F value that solves the R|a, |F problem gives a lower bound

on the F values of all efficient solutions. However the resulting schedule may not be

efficient as there may exist aternate optimal schedules to the R|a, |F problem

having smaller WRJ values. Among the alternate optimal schedules to the total flow
time problem, the one that has the smallest WRJ value, hence the efficient schedule

requires an exact solution of the R|aj,F:F* I[WRJ problem. In place of
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incorporating F = F to our network flow model, we can modify our objective
function as F + e wry WRJ, for a sufficiently small value of e wg; > 0. Theorem 3.1

states this result formally and defines arange for e wr.

Theorem 3.1. The R|a,F=F |[WRJand R|a, |F +e,,WRJ problems are

equivalent when e wry < !

Max;{wr;}

Qo

1

Proof. e wry should be set small enough so that the total flow time value should not
increase even for the largest possible reduction in the total reassignment cost. The
minimum increase in the total flow time is one unit due to the integrality of the

processing times. The maximum increase in the total reassgnment cost is

J
a Max,{wr;}.
i=1
Hence e wry 8 Max {wr,}<1,i.e., ewri< n; should hold.
i= [o]
1 a Max{wr,}
i=1
|
. 1
In our experiments, we use ewrs = for the

é. Maxj{wrij}+1

i=1
R|a, | F +&,,WRJ problem. Note that, this result is presented in Chapter 2 for
BCINF problem, we derived the e for our rescheduling problem using the

é Max;{wr;} as the upper bound, and zero value as the lower bound (See Corollary
i=1

2.1).

29



334 The R|a;,WRJ =WRJ" |F problem

The right-shift schedule solves the R|a; [WRJ problem, as it produces an

WRJ value of zero. However, wrj; can be zero, even when a job is reassigned In
such a case, there can be a schedule, other than right-shift, having a zero WRJ value
and smaller F value than that of the right-shift schedule. The efficient schedule
having smallest F value, among the ones having zero WRJ value, can be found by
solving the R|a;,WRJ=WRJ|F problem. Instead of treating WRI=WRJ*
constraint, we can modify the objective function as WRJ + e ¢ F for a sufficiently
small value of e . Theorem 3.2 states this result formally and defines a range for

€ E.

Theorem 3.2. The R|a, ,WRJ=WRJ"|F and R|a,|WR]+e.F problems are

equivalent when € < 1 , Where Fyg and F_g are the F values that solves the
us "~ LB

Rla, [WRJ and R|a, |F problems respectively.

Proof. €¢ should be set small enough so that the total reassignment cost should not
increase even for the largest possible reduction in total flow time. The minimum
increase in the total reassignment cost is one unit due to integrality of wrj; values.
The maximum increase in the total flow timeis Fyg - FLg units.
Hence€¢ [Fus - Fug] < 1,i.¢, ¢ < ———— should hold.

uB - I:LB

. 1 . .
In our experiments we use e = ——— . Note that, this result is

FUB - FLB +1

previously presented in Chapter 2 for the BCINF problem (See Corollary 2.1).
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3.3.5. The constrained optimization problems

TheR|a,,WRJ £s|F +e,, WR] and R|a,,F £s|WRJ +e.F are singly-

constrained assignment problems. The additional constraints to the assignment

model, WRJ < s, and F < s are expressed as follows:

é. W Xy <°S (3.6)

ik

a (@ +kp)X, <s 3.7)

i,j.k
For arbitrary coefficients, the singly-constrained assignment problem is NP-
Had so are the R|a,WRIE£s|F+e,,WRJ and R|a,F£s|WR]+eF

problems.
3.3.6 Generation of all extreme supported efficient schedules

We generate the extreme supported efficient solutions using an LP based
procedure 2.2. Procedure 3.1 applies the steps of Procedure 2.2, to our rescheduling

problem.

Procedure 3.1 Generation of extreme supported efficient solutions

Step 0. Let s=WRJYE-1

Step 1. If s< WRJI'P + 1, then STOP

Step 2. Solve the LP relaxation of (Ps)

(P) Min 388 ¢y +a)X, +———— JwX,
=L k= Max {wr,} +1 "X

1
W

1
AN

st aaX,=1 "
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If all decision variables are not integer,
then perform a single simplex iteration by pivoting in the

slack varigble of § wr, X, < s
i,j.k

L et the current solution be (F*, WRJ*).
ESE= ESE E (F*, WRJ¥)
s=WRJ*-1,GotoStep 1

The following figure illustrates the progress of Procedure 3.1.

WR1= £, VRl 2 E, WR £ & [LUSNES
A - - - -
L
t,',_'“
I |
1% .
2 ) '."":1- -
1 b RERE T | & lFLB-WRJUﬂ:'

Sy 5 5y 5 "

. - - - WrRJ

Figure 3.2 Progress of Procedure 3.1
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Step O.
Step 2.

Step 2.

Step 2.

The steps followed by Procedure 3.1 are as follows:
Set s=WRIup-1=%
Solve the LP Relaxation of P,

Pivot in the slack variable, identify extreme supported point 1.
L et the current solution be (F1*, WRJ;*).

ESE=ESE E (Fi*, WRJ*)

s=WRJ* -1=5;

Solve the LP Relaxation of P,

Pivot in the slack variable, identify extreme supported point 2.
L et the current solution be (F2*, WRJ*).

ESE=ESE E (F;*, WRJ,*)

Ss=WRL* -1=s

Solve the LP Relaxation of P,

Pivot in the slack variable, identify extreme supported point 3.
L et the current solution be (Fs*, WRJs*).

ESE=ESE E (F3*, WRJ3*)

s=WRIJ* —1=53

The procedure continues to iterate in a similar manner, until it hits to the

other boundary point, namely (Fus, WRJ.g).

3.3.7 Generation of all efficient schedules

call Integer Programming Based (IPB) approach, solves singly constrained
optimization problems, successively. Second approach is a Branch and Bound

We develop two approaches to generate the efficient set. First gpproach, we

method that makes implicit enumeration of the efficient schedules.
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Integer Programming Based (1 PB) Approach

We generate the efficient schedules through the Procedure 3.2 below that
varies the value of s between the WRJ g and WRIJys. Note that this procedure is
Procedure 2.1 from Chapter 2, modified for our rescheduling problem.

Procedure 3.2. Classical Approach: Finding All Efficient Schedules

Step 0. Solve the Ra; |F + ! WRJ problem and form a right-shift

Maxj{wrij} +1

Qo

1

schedule.
WRJ, s = WRJ value of the right-shift schedule, i.e., zero
WRJys = WRJ value that solves the

Rla, |F+— ! WRJ problem
a Max;{wr} +1

Lets=WRJ, -1

iy

Step 1. Solvethe R|a; ,\WRJ £ s|F + ! WRJ problem

Max;{wr;} +1

Qo

1

Let (F, WRJ") be the solution
E=EE(F,WRJ)

Step 2. If WRJ =WRJ, g then STOP
s=WRJ -1
GotoStep 1

The following figure illustrates the progress of Procedure 3.2.



F W = 5, WR = 5, WHR =5, WRJ = 5,
i - - - -
(Fua WRJ, g)
-
&
&
L ]
2 .
1 o (F o WRY, )
0
3 Sig 5 N >
- - - - WiRJ

Figure 3.3 Progress of Procedure 3.2

The steps followed by Procedure 3.1 are as follows:
Step 0. Form the right shift schedule, and identify (Fus, WRJ.g).

Solve R|a; | F +€,,WRJ problem and identify (Fis, WRJug).

s=WRIJys-1=%

Step 1. Solvethe R|a; ,\WRJ £ s|F + ! WRJ problem

Max;{wr;} +1

Qo

1

Let (F1, WRJ;) be the solution
Point 1 in Figure 3.3 is the corresponding efficient point.
E=EE (F,,WRJ))

Step2.s= WRJ; -1

Step 1. Solvethe R|a; ,\WRJ £ s|F + ! WRJ problem

é Maxj{wrij} +1
i=1

Let (F2, WRJ, ) be the solution

35



Point 2 in Figure 3.3 is the corresponding efficient point.
E=E E (F,, WRJ,)
Step2.s= WRJ, -1

Step 1. Solvethe R|a; ,\WRJ £ s|F + ! WRJ problem

Max;{wr;} +1

Qo

1

Let (Fs3, WRJs ) be the solution
Point 3 in Figure 3.3 is the corresponding efficient point.
E=E E (Fs, WRJs)

Step2.s= WRJ; -1

The procedure continues to iterate in a similar manner, until it hits to the
other boundary point, namely (F s, WRJusg).
Alternately, we could solve the R|a;,F £k |WRJ +e.F problem and vary

the value of k between F g and Fyg.
Note that each step of Procedure 3.2 generates an efficient solution. The

Rl|a, |F,WRJ problem has a mostMin{F, - Fz+1WRJ,;;-WRJ ;+1, ie,

pseudo-polynomial, number of efficient solutions. Hence the agorithm iterates
pseudo-polynomial number of times. In each iteration, one has to solve singly-
constrained assignment problem for which polynomial agorithms cannot exist.

A Branch and Bound (BAB) Approach

Recall that the R|a, |F,\WRJ problem is open. This justifies the use of

implicit enumeration technique to find the exact set of efficient solutions. We, in this
study, propose a branch and bound algorithm.

Our branch and bound algorithm uses the following two phase approach to
generate an initial approximate set of efficient solutions.
Phase 1. Generation of extreme supported efficient solutions
Phase 2. Generation of approximate non-extreme supported and unsupported
efficient solutions in the neighborhood of the solutions found in Phase 1.
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Phase 1:

Recall that we can use Procedure 3.1 to find the extreme supported efficient
solutions by using an LP solver. Alternatively, we could generate these solutions
through the successive solutions of a linear assignment problem. We start with two
known boundary solutions, S; and S, define ranges for w values of the weighted
objective function over which each boundary point is better. In doing so, we solve
the following inequality.

wF1 + (I-W)WRJ1=wk; + (1-w) WRIJ 2 (3.8

where ( Fi, WRJ)) isthe (F, WRJ) values of S and S s are ordered such that

Fi < Fir1and WRJ; > WRJj 1.

WRJ, - WRJ,
F - F, +WRJ, - WRJ,

Note that w=

solves equation 3.8.

At w, § and S, have the same objective function values. In ranges [w, 1] and
[0, W], S and S, are favored respectively. When a new extreme supported efficient
solution is added, we reorder the solutions in such a way that F1 < F, < F3 and
WRJ; > WRJ; > WRJ3 and solve the following two equations simultaneously

wiF1 + (1-wy) WRI;=w;F, + (1-wy) WRIJ;

WoF2 + (1-wo) WRI=WoF3 + (1-Ws) WRI.

Then in ranges [wy,1], [W2, wi] and [0, wy], S, S and S are the best
schedules respectively. Note that the ranges change once a new schedule is added.

In general, once we have k efficient solutions, we solve k-1 equations: one
for each adjacent pair and find k ranges. Exact ranges are available when all extreme
supported solutions are found.

Each iteration of our procedure either finds a new extreme supported
efficient point, or returns a known extreme supported efficient point, by solving a
linear assignment problem with weight w,. If the former case occurs then there
exists an efficient point between S, and S.+1 and the weights are updated with the
addition of the new schedule. If the latter case occurs then there cannot exist a
supported efficient solution between S, and S..1. Then we fix w, and proceed with
Wa+1 With the hope of generating a new extreme supported point. The algorithm
terminates whenever al weights are fixed.
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Procedure 3.3
Step 0. Find S; and S by solving the R|a, [WRJ +e.F and R|a; |F +€,5,WRJ
problems respectively.

r= # of known extreme supported efficient solutions

k=# of extreme supported efficient solutions with fixed ranges

r=2,k=1

w = WRJ, - WRJ,

' F- F,+WRJ, - WRJ,
S=%

Step 1. Solve the assignment problem with the following objective
MinwF +(1- w, )WRJ
Let S be the solution
If S is one of the extreme solutions (S; or ;) then go to Step 3.
Step 2. If S iseither Scor Si:1 then fix wi let k=k+1, goto Step 1
If S isanew schedule then reorder the schedules,
update wi and Wi 1 as follows

__ WRJ,,- WRJ,
F.- F.., *WRJ,., - WRJ,

W

WRJ,.,, - WRJ, 4
Fk+1 - Fk+2 +VVRJ|<+2 - WRJk+1

Wk+1 -

If all wy are fixed go to Step 3.
GotoStep 1
Step 3. Stop, al r supported efficient solutions are generated.

Procedure 3.3 is similar to the methods proposed by Aneja and Nair (1979)
for bicriteriatransportation and Visee et a. (1998) for bicriteria knapsack problems.

We illustrate the procedure by the following example problem

Example: Consider six efficient solutions on the following figure
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Figure 3.4 Efficient solution of example

Note, that ES;, ES, and ES; are extreme supported efficient, NES; is
nonextreme supported and US;, US, are unsupported efficient solutions. Our
algorithm will generate ES;, ES, and ES;, through the following steps.

Step0.S.= (99,0) S=(42,8) r=2 k=1

Wy = (8-0) =3=o.123
(99- 42)+(8- 0) 65
w-range best solution

(0.123, 1] (42, 8)
[0, 0.123) (99, 0)
Step 1. Solve the assignment problem with w=0.123.
The optimal solution is at point (63, 5)
r=3
Ordered set of extreme supported efficient points are
S1=(99,0) = (63, 5) Ss= (42, 8)

Step 2. wi= (5-0) =2 0122
(99- 63)+(5- 0) 41
W= 8-9 -3 _0a25

~ (63- 42)+(8-5) 24
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w-range best solution
(0.125, 1] (42, 8)
(0.122,0.125) (63, 5)
[0, 0.122) (99, 0)
Step 1. Solve the assignment problem with w=0.125.
The optimal solution is at points (42, 8) and (63, 5)
Step 2. k=2
Step 1. Solve the assignment problem with w=0.122.
The optimal solution is at points (99, 0) and (63, 5)
Step 2. k=3
All ranges are fixed
Step 3. Stop
r=3 supported points are generated
Ordered set of extreme supported efficient points are
S1=(99,0) $=(63,5) Ss= (42, 8)

In solving the assignment problems in Step 0 and Step 2 we use the code
generated by Volgenant (1996) designed for the rectangular assignment problems
like ours. Note that our problem has n jobs to be assigned to n* m positions. Hence
solving regular n*m by n*m assignment problem by defining n*m-n dummy jobs
would not be an efficient way. The assignment code of Volgenant (1996) handles
this inefficiency by coping with n by n*m rectangular assignment problem. The
complexity of the algorithm is n’m.

Phase 2:

In Phase 2, we start from the first extreme point having minimum total flow
time, thereby maximum total reassignment cost of al efficient solutions. For each
job that is not on its initial machine, we assign it to its initial machine according to
SPT order, while keeping the other assignments fixed. The resulting schedule is
added to the list if it is not dominated by any schedule of the list. Among the newly
added schedules we select the one having smallest flow time, and compare it with

the next extreme supported solution in the list. Among those two schedules, we
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continue with the one having smaller total flow time. We repeat the procedure, until
the other extreme point of the list is reached. Then we start from this extreme point,
i.e., the one having maximum total flow time and zero total reassignment cost and
create new schedules by reassigning the jobs from their initial machines to each of
the (m-1) machines, while keeping the other assignments fixed. The new schedules,
if nondominated, are added to the list. We continue with the new schedule having
smallest total reassignment cost or the next schedule of the list whichever has the
smallest reassignment cost. We terminate whenever the other extreme point of the
list is searched.

We hereafter refer to our two phase procedure as greedy heuristic.

Our Branch and Bound algorithm starts with this list of approximate efficient
solutions generated by greedy heuristic, add whenever a nondominated solution is
found and remove whenever a solution in the list becomes dominated by a newly
generated schedule.

Smith (1956) shows that Shortest Processing Time (SPT) rule minimizes the
total flow time on a single machine. Hence, in any efficient sequence SPT should
prevail within each machine. We make use of this result in constructing our branch
and bound tree.

We generate the partial solutions, i.e., nodes, of the branch and bound tree as
follows: At each level, we decide on the job that should be assigned to the first
available position of the earliest available machine. We also represent a solution in
which no further assignment is made to the earliest available machine, this case
corresponds to the removal of that machine. In selecting the first available job we
recognize the prevailence of Shortest Processing Time (SPT) rule within each
machine. Hence we never branch to a node representing the assignment of job i to
machinej if p; < p;j andjob | has assigned to machinej in the partial solution.

Figure 3.2 represents a partial branch and bound tree for n=7 jobs and m=3

machines problem instance whose data are given in Table 3.1.
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Table 3.1. An example problem instance

Pi1 Pi2 Pis

67 6 72
85 44 62
81 33 55
14 21 79

54 97 86
22 64 61
22 94 72

~NOoO o, WNBE

Note that Shortest Processing Time orders of the jobs are as follows:
Machine 1 4-6-7-5-1-3-2
Machine 2 1-4-3-2-6-7-5
Machine 3 3-6-2-1-7-4-5

We assume the initial job assignments are 6-7-5 on machine 1, 1-4-3 on
machine 2 and 2 on machine 3. Machine 1 is not available for 98 time units.
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Figure 3.5 The partia branch and bound tree

Note that initially a;=98, a,=a3z=0. Machines 2 and 3 are earliest available
machines. Assume we arbitrarily select machine 2 for branching. The first node,
called O, represents the case where no further assignments will be made on machine
2. The (o+1)® node at level 1 corresponds to the assignment of the 0" job of the SPT
sequence on machine 2. Hence the fourth node represents the assignment of job 3. If
node 3 is selected for branching then a,=pz,=33 and machine 3 becomes the earliest
available machine, emanates six nodes, each node representing the assignment of a
particular job to its first available position. The fifth node at level 2, is the fourth
unscheduled job of SPT order on machine 3, i.e,, job 7. If this node is selected for
further branching as=p7s=72, hence machine 2 becomes the earliest available
machine. At level 3, there are four candidate partia solutions, as job 3 was assigned
to the first position of machine 2 and there are 3 unscheduled jobs that have higher

processing times than that of job 3 on machine 2. These jobs are 2, 6 and 5.
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Note that there will be a maximum of n+m-1 levels, as n jobs will be
assigned and there can be at most m-1, Node 0, selections.

We let M; denote the set of machines that cannot process job i. Job i cannot
be processed by machine j, if such an assignment violates the SPT order or cannot
yield an efficient (non-dominated) schedule.

An assignment of job i to machine j violates SPT ordering if p; < P i

where L isthe last job assigned to machinej in the partial schedule.

We let Pe(s ) and Purs(Ss ) be the total flow time and total reassignment cost
of partial schedule s . LBr(s ) and LBwriy(S ) are lower bound on the total flowtime
and total reassignment cost values of the partial schedule s . UBr(WRJ) is an upper
bound on the F values of the efficient schedules having a total reassignment cost of
a least WRJ. Similarly UBwgry(F) is an upper bound on the WRJ values of the
efficient schedules having a total flow time value of at least F units. When job i is

assigned to machine j and appended to s , a lower bound on the total flow time

vaueis Pe(s ) + (a + py) + & Min,;,, {a, + p,} where § is the set of unassigned

s
jobs. If this bound is no smaller than UB(LBwrs(S )), i.€., an upper bound on the
flow time value of the schedules having a total reassignment cost of at least
LBwri(s ) then s is dominated by the approximate efficient schedule in our list

having a total flow time value of UBg(LBwri(S )). Similarly, if Puri(s ) + wrjj +

a Min;,, {w,}> UBuwriLBr(s )) then s is dominated by the schedule in our

s
approximate efficient set having atotal reassignment cost of UBwr3(LBr(S )).

Hence an assignment of job i to machinej isavoided if either

Pe(s )+ (& +pi) + & Min,,, {a +p,} > UBE(LBuri(s )) or
s
Puri(S ) +wWrij + & Min,;, {W,} > UBury(LBe(s ))
s

We hereafter refer to the above conditions as efficiency rules.



We let R; denote the set of jobs that can be processed on machine j. Among
the machines for which R, # 0, we select the earliest available, i.e., the least loaded,
one. If the first unsequenced job according to the SPT rule on the selected machine,
cannot be assigned to any other machine, we fix that job on that machine and update
set Mis, earliest available times and proceed.

For each job in R;, we calculate alower bound on WRJ and two lower bounds

for F values. We let s denote the set of jobs appear in the current partial schedule.
Lower bound on WRJ, LBwrs(S )

Note that LBwri(S )= Pwri(S ) + LBwri(S)

Pwri(S ) = total reassignment cost of jobsin s

LBwri(S )= alower bound on the optimal total reassignment cost of the
unscheduled jobs, i.e., the jobsthat arenotin s .

We let

LBuwri(S) = Q Min;g , {wr;}

ils

i.e.,, we choose a weight among the jobs that can be assigned without
violating the SPT order and having a potential of generating non-dominated
schedules.

Referring to the Branch and Bound tree of Figure 3.2, if no information on
the solutions exists, M;s are constructed according to SPT rule.

For a partial schedule where jobs 3 and 7 are assigned to machines 2 and 3
respectively, the lower bound can be calculated as follows:

Mi={2, 3}, M={3}, Ms={2}, Ms={ }, Ms={ 3}

Total reassignment cost of partial schedule =wrz3

L ower bound on the total reassignment cost of the remaining jobs =

Wr11 + Min {wWrgg, Wrag} + Min {wrg;, Wrgz}

asjobs 1, 4 and 6 cannot be assigned to their initial machines, job 1 can only
be assigned to machine 1 due to the SPT order.
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Lower bound on F

We propose two procedures to find a lower bound on the optimal flow time
of unscheduled jobs

i Lower Bound 1, LBgi(s )

We assume all machines are identical and let pi=Min;;,,, { p;} . Note that p; is

the minimum processing time for job i, among the machines it can be assigned
without violating SPT rule and efficiency rules. Clearly, an optimal total flow time
value of the new identical machines problem is a lower bound on the optimal total
flow time value of the original unrelated machines problem. The new problem is the

Pla, |é C. problem of the scheduling literature whose optimal solution is due to

following rule by Kaspi and Montreuil (1988): Order the jobs by SPT and assign

them to the first available machine, in rotation.

Recall our example problem, a lower bound on the total flow time for a
partial schedule say node s in which jobs 3 and 7 are assigned to machines 2 and 3
isfound as follows:
p1= pu = 67
P2= Min{pa, p22} = 44
pPs= Min{pa pss} = 14
ps= Min{ps1, P2, Ps3} = 54
Ps= Min {ps1, Pe2} = 22

SPT order of p; valuesis 4-6-2-5-1.

The lower bound schedule has the following assignments:

Machine 1 1 ;=98
Machine 2 4 6 2 =33
Machine 3 5 =72
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LBri(S)=  (98+67) + (33+14) + (33+14+22) + (33+14+22+44) + (72+54) = 520
Pe(s) = Total Flow Time of the partial schedule = 33+ 72 =105
LBri(s ) = LBri(S )+ Pe(s )=625

If there exists a nondominated schedule s' in the list such that
F(s) £LB:(s) and WRI(s') £ LB,g, (s ) then we fathom the node.

If a node cannot be fathomed by LBri(s ), we calculate a more powerful

lower bound, LBrx(s ) however at an expense of higher computational effort.

ii. Lower Bound 2, LBgy(s )

Consider the following assignment model
n n m 1
Min é. é. é. (kpij +aj)xikj + J é. Wrij Xikj
i=1 k=1 j=1 a MaXJ{WI’”} +1 i,j.k
i=1

st aaX,=1 "

X, 1{0,3 "0k
where

_ 11 ifjobi isassigned to k™ position from last on machineju
N }0 otherwise E

For apartial schedule s , where s j is the set of jobs assigned to machine j,

and nj is the cardindity of set s j we modify ajs as, a, =a, + a p, » and solve the

ils;
assignment model with the following objective function

1 vva

QJ°3

o 4 & o g
MinQ A a (& +kp)Xy + aa
iVs; k=l j=1 é Man{Wl‘ij}+l iVs| k=l j

i=1

ik
1
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where n; 'is an upper bound on the remaining number of jobs to be assigned

on machinej. If the last job assigned to machinej is the I™ job of the SPT order then
at most n-I more jobs can be assigned to machine j. Moreover the jobs between 1+1
and n, in SPT order, may be assigned to other machines, hence we modify the upper

bound, n; ", as the number of unscheduled jobs with no smaller processing time than

pi;; on machine j and do not violate efficiency rules.

Moreover while solving the assignment problem we let ci=M if job i is the
r'™ unscheduled job of Longest Processing Time (LPT) on machine j such that r < k,
to avoid the assignment of any job to a position that is higher than its index, thereby

avoiding a non-SPT ordering. After making these reductions, we solve the |§| x

é n', assignment problem using the rectangular assignment algorithm of
v
Volgenant (1996).

The cost coefficients of the assignment model of our example problem for a
partial schedule, in which jobs 3 and 7 are assigned to the first position of machines
2 and 3 respectively, are calculated as follows:

Note that n',=3 as there are 3 unscheduled jobs having higher processing

times than ps,, these jobs are 2, 6 and 5. As there are two unscheduled jobs having

higher processing times than pz3, n';=2. As there are two scheduled jobs, there can

be a most n-2=5 jobs on machine 1. Hence we solve 5 x 10(5+3+2) assignment
problem. Job 1 cannot be assigned to machines 2 and 3 without violating SPT order.
Hence cye = ciks = M for al k. Jobs 2 and 6 cannot be assigned to machine 3, i.e.,
Cae = Cee = M for k=1, 2. Job 2 cannot be assigned to machine 1, except its first
position, i.e., Czq = M for k> 1, asit is the last job of SPT on machine 1. If we have
assigned job 2 to a later position we would have violated SPT order, as there is no
unscheduled job with higher processing time. Moreover, we set Cg1=M as job 6
cannot be scheduled fifth on machine 1. Job 4 cannot be assigned to machine 2, i.e,,
Cae = M for al k. Job 5 is the third longest unscheduled job on machine 1 hence Csa1
= Cs51 = M. Similarly job 1 can only be assigned to the first or second position of
machine 1 asit is the second longest unscheduled job.

All these information is gathered in Table 3.2.
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Table 3.2. Cost Coefficient M atrix of the Assignment Problem

Machine 1
1

ar;tput ewr,
artpat eWr,,
artput €Wr,

a1t Ps
a1t Pe1

Machine 2
1
M

8yt Pt €W,
M

Ayt Pspt veSZ
8yt Pt €WT,,

2

at+ 2p11+ vell
M

at+ 2p41+ eWI‘41

art+2ps;
art+2pPs

2
M

Ayt 2Pyt W,
M
M

ar+ 2p62+ veZZ

3
M

M
at+ 3p41+ ewr,,

ar+3ps;
ar+3pPs1

3
M

ar+ 3p22+ ewr,,
M

M
M

4
M

M
at+ 4p41+ eWI‘41

M
ar+4pe;

Machine 3
1
M
M

agt Pagt EWI,

g+ Psat EWI,
M

5
M

M
at 5p41+ ewr,,

M
M

2
M
M

agt+2Psat EWN
M

M

where a;=98, a,=33, a;=72

We add ewr; to (i, k, j) when machine j is not the initial machine of job i.

For example job 5 was on machine 1 in the initial schedule, hence e appearsin all
entries for job 5 except the ones associated to machine 1. The optimal solution to the

assignment gives the following schedule.

Machine 1 4 - 1
Machine 2 2 - 6
Machine 3 5

LBra(S ) = (98+14) + (98+14+67) + (33+44) + (33+33+64) + (72+86) = 667

Pe(s ) =Tota Flow Time of the partial schedule
=105

LBrx(s ) = Lower bound on the total flow time of s
=772

F(s) =772

WRI(S) =Wra + Wrys + Wps + Wrep + Wr'sp
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The actual total flow time of the schedule is F(S) and the actua total
reassignment cost is WRJ(S). Note that actual flow time value is equal to the lower
bound on the flow time value found using assignment solution, i.e., F(S) =
LBrx(s ). We add the resulting schedule S to the list of approximate efficient
schedules if there does not exist a schedule s' such that F(s) £ F(S) and

WRI(s') EWRI(S) . If there exists a schedule § such that F(8)3 F(S) and
WRJI(S) 3 WRI(S), then S isdominated by S, and thereforeistaken out of the list.

Note that Max{ LBri(s ), LBr2(s )} is a lower bound on the optima F
values of the nodes emanating from s . Hence when we proceed to “the next level,
say node s . we first check whether there exists a schedule s' such that

F(s) £ Maq{ LB.,(s), LB.,(s)} and WRI(S) EWRIJ(s). If such a schedule s'

exists, we fathom the node. Otherwise, we calculate LBr1 (s ¢) and proceed.
Our algorithm returns the set of all efficient solutions after evaluating all

nodes, implicitly.
338 The R|a | f(F,WRJ) problem

In this section, we address the problem of finding an optimal solution for a
specified general non-decreasing function of F and WRJ.
When, the function, f, is alinear function of F and WRJ then one can use an

assignment model with the following objective function

Minws § (& +kp,) Xy +Wo Q W, X, = MinwiF + waWRJ

i,j.k i,j.k
and find an optimal solution in polynomial time.

When f is a non-linear function, finding an optimal solution to our model
with constraint sets (3.2), (3.3), (3.4) and binary decision variables, would not be
possible by available mathematical programming softwares. For non-linear f, one
can generate all efficient solutions and select the one that minimizes the objective
function value. However such an approach may not be time-efficient as each
generation requires a solution of a singly-constrained assignment problem in
exponential time. To overcome this difficulty, we develop two optimization
algorithms that implicitly generate the efficient set. The first algorithm, we call
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Integer Programming Based (IPB) algorithm, solves successive constrained
optimization problem. The second algorithm is a branch and bound approach that
makes implicit enumeration of the efficient schedules.

Integer Programming Based (1 PB) Approach

An IPB agorithm starts with an initial feasible solution that is found by
generating the extreme supported efficient solutions. Each iteration of the algorithm
generates an efficient schedule by setting an upper limit on the F and WRJ values of
any schedule that can improve the best known solution, namely fgesr. By setting
these limits, we eliminate some portions of the objective space that cannot reside the
optimal solution. Kondakci et a. (1996) implement an idea of imposing upper
limits on one criterion for their bicriteria single machine scheduling problem.

Moreover, we set lower limits on the F and WRJ values by solving the LP
relaxations of the singly-constrained assignment problem. If the f value found by
setting the lower limits is no better than fgesr, then we terminate by recording the
optimality of the best known schedule.

The smallest f value among the extreme supported efficient schedulesis used
as an initial fgesr. We update fgest whenever a feasible schedule with smaller f value

isreached. Procedure 3.4, below, is the stepwise description of our approach.

Procedure 3.4 Finding an Optimal Solution by Integer Programming Based

Algorithm
Step 0. Solve the R|a, |F +—; ! WRJ problem and form a right-shift
a Max,{wr} +1
i=1
schedule.
Let Fg = F valuethat solvesthe R|a; |F +— ! WRJ problem
a Max;{wr;} +1

1

Fus = F value of the right-shift schedule
WRJ, s = WRJ value of the right-shift schedule, i.e., zero
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Step 1.

Step 2.

WRJus=WRJ value that solvestheR | a; | F +—; ! WRJ problem
a Max{wr;} +1
i=1

Apply Procedure 3.1 to generate the set of
extreme supported efficient schedules (ESE)

feesr= Ming e{ f (WRI(S), F(5))}

If f(FLB, VVRJLB) > fBESI' then STOP
Find VVRJa that solves f(FLB, VVRJa) = fBEST

WRJue = @MRJ, - 1

If WRJus < WRIJ g then STOP

Solve the L P Relaxation of the R|a;,WRJ £WRJ,; | F +€,,,WRJ problem

Let (F', WRJ) be the solution

Fie= &F §

If f(FLg, WRJ.g) > fgesr then STOP

If the resulting solution is integer then
faest = Min {faesr , f(F, WRJ)}
WRJys = WRJ -1
If WRJus < WRIJ g then STOP
Repeat Step 1

Find F, value that solves f(Fa, WRIJ.g) = fgesr

Fus= éF.- 1

If Fus < FLgthen STOP

Solve the L P Relaxation of theR|a,,F £ F )z |[WRJ +e.F problem
Let (F, WRJ") be the solution

WRJis = §VRI |}

If f(FLs, WRJg) > fgesr then STOP
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If the resulting solution is integer then
faest = Min {faesr , f(F, WRJ)}
Fue=F -1
If Fus < Fig then STOP
GotoStep 1

Step 3. Solve the R|a;,WRJ £WRJ; | F +€,,,WRJ problem

Let (F, WRJ") be the solution

Fe=F +1

WRJys = WRJ -1

If Fug < Fie or WRJug < WRJ.g then STOP
faesr = Min {faesr , f(F', WRJ)}

Solvethe R|a;,F £ F;; [WRJ +e.F problem

Let (F, WRJ") be the solution
WRIJ s = WRT +1
Fus=F -1
If Fug < Fis or WRJyg < WRJ g then STOP
feesr = Min {fgesr , f(F", WRJ)}
GotoStep 1

The following figure illustrates the progress of Procedure 3.4.
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Figure 3.6 Progress of Procedure 3.4

Step 0. Initialize WRI, g, Fig, and fgesr, by identifying boundary points and
generating set of extreme supported efficient solutions.
Step 1. Find WRI, that solves f(FLB, VVRJa) = fBEST

WRJyg = @VRI, - 1= WRIy
Solve the L P Relaxation of the R|a;,WRJ £WRJ],, | F +&,,,WWRJ problem

Let (F1, WRJ;') be the solution
Point 1 in Figure 3.6 is the corresponding efficient point
Fie= gFl* E]: Frmint
faesr = Min { feesr , f(F1', WRJ, )}
WRJus = WRJ; -1
Step 1. Find WRJ, that solves f(Fig, WRJa,) = fesr
WRJue = @MRJ, - 1
Step 2. Find F, value that solves f(Fa, WRJ_g) = fgesr

Fus= éF.g- 1=Fu



Step 1.

Step 2.

Step 3.

Solve the LP Relaxation of theR|a;,F £ F;, [WRJ +e_F problem

Let (F2, WRJ, ) be the solution

Point 2 in Figure 3.6 is the corresponding efficient point
WRJis = §MVRI" = WRIin

feesr = Min { fgest , f(F2, WRJ; )}

Fus=F2 -1

Find WRJ, that solves f(FLg, WRJa) = fgesr

WRIys = @VRJ, - 1 = WRI,

Find F, value that solves f(Fa, WRIJ.g) = fgesr

Fus = 6F, (- 1=Fu

Solve the R|a;, WRJ £WRJ,, | F +€,,,WRJ problem

Let (Fs3, WRJs ) be the solution

Point 3 in Figure 3.6 is the corresponding efficient point
Fle=Fs +1

WRJys = WRJ; -1

faesr = Min {faesr , f(F', WRJ)}

Solvethe R|a;,F £F,, |[WRJ +e.F problem

Let (F4, WRJ, ) be the solution

Point 4 in Figure 3.6 is the corresponding efficient point
WRJ g = WRI, +1

Fus=Fq -1

faesr = Min {faesr , f(F', WRJ)}

The procedure continues to iterate in a similar manner, until the upper bound

and lower bound constraints hits to each other, thus the current problem becomes

infeasible.
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A Branch and Bound (BAB) Approach

We employ the branching scheme designed for the R|a, | F,WRJ problem to
solve the R|a, | f(F,WRJ) problem. In doing so, we use the efficiency rules and

lower bounds designed for the R|a, | f (F,WRJ) with the following modifications.

Efficiency rules

We put machinej to M;if

f(Pe(s ) + (a + py) +& Min,y {a +p,}, Pura(s ) + wrj + @ Min,, {w,})>

s s
feesr where fgesr is the best known objective function value.

Note that Pe(s ) + (& + py) +@ Min,;,, {& +p,}, is alower bound on F

s
values of the efficient schedules emanating from s when job i is assigned to

machine j. Similarly, Pwri(S ) + wrjj + é Min,; v {W}, is a lower bound on the

s
associated WRJ values. This leads to a lower bound of f(Pe(s ) + (& + pj)

+@ Min,, {a +p,}, Pura(s ) + wry + § Min,,, {w,}) on the function value,

s s
which is compared with fgesr. If it is no smaller, then the assignment of job i to
machine j should be avoided, and this information should be used in further bound
computations.
We initially take fgesr as the minimum f value of the extreme supported
schedules and the approximate schedules generated by the greedy heuristic. We
update fgesr whenever we find a complete solution with smaller f value.

Lower Bounds

We fathom node s , if f(Max{LBri(S p), LBr2(S p)} ,LBuri(S p)) > faesr
where s p is the parent node of s . If not, we first check whether f(LBg(s ),
LB\/\,RJ(S )) > fBESI'- If f(LBFl(S ), LBV\,RJ(S )) > fBESI', we fathom the node.

Otherwise we compute the assignment bound, LBg2(s ). If f(LBr2(S ), LBwri(S )) >
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feesr, we fathom the node else we list the nodes in their nondecreasing order of
f(Max(LBri(s ), LBr2(S )), LBuri(s )) values and select the node at the top of the
list for branching.

When we solve the assignment problem at a particular node, we evaluate the
resulting schedule, 5. If f(F(S),WRJ(S)) < fgesr, we update fgesr.

Whenever a need for rescheduling arises, i.e., machine disruption occurs, one
can employ the above procedures. In this sense, they can be classified as on-line
procedures. Moreover multiple simultaneous disruptions can be handled by

modifying & values.

34  Computational Experience

We conduct a computational experiment to assess the efficiency of our
algorithms. We generate random problem instances having n = 40, 60, 80, 100 jobs
and m = 4, 8, 12 machines. The job processing times, pjjs, are drawn from two
discrete uniform distributions between [1,100] and [50,100]. We select two levels
for processing times, to see the effect of processing time variability and magnitude
on the performance of our algorithms. Similarly, to see the effect of the variability
and magnitude of the reassignment costs, wrj;s, are drawn from two discrete uniform
distributions between [1,60] and [30,60].

The disruption duration, D, is set to three levels: Long (L), Medium (M) and
Short (S). The aim here is to study the effect of the disruption duration on algorithm
performances. For level L, D is set to the completion time of the last job on the
disrupted machine in the initial schedule. Level M has the half of the duration of
level L. Level Shas half of the duration of level M.

We consider the following two non-linear objective functions that are non-
decreasing in F and WRJ, similar to Kondakgi et a. (1996).




We refer to f; and f, as quadratic and quasi-chebyschev functions
respectively.

To generate all efficient solutions, we generate 4x4x2x2x3=144 problem
combinations, and to solve a nonlinear function we generate 144x2=288 problem
combinations. For each problem combination, we consider 10 instances. Hence as a
total of 1440 and 2880 problem instances are generated and solved for efficient set
generation and nonlinear function minimization problems, respectively.

We conduct all experiment on a PC with Intel Pentium 4 2.8 Ghz processor
and 1 GB of RAM running under Linux, specifically Fedora Core 5, operating
system. We implement our optimization and Branch and Bound algorithms in C,
compiled with GCC 4 and utilized Borland C++BuilderX as the development
environment. We solve our integer and linear programming models using CPLEX
8.1.1.

We set atermination limit of 2 hours for 60 jobs and 3 hours for 80 and 100
jobs for generation of efficient set algorithms (both classical approach and Branch
and Bound algorithm). To our optimization algorithms, we set a termination limit of
1 hour for 60 jobs and 1.5 hours for 80 and 100 jobs for both Integer Programming
Based and Branch and Bound approaches. We use different termination limits due to
different complexity levels of the problems.

We first investigate the performances of the algorithms we used in
generation of the efficient set: The Classical Approach (CA) and Branch and Bound
Algorithm (BAB). Tables 3.3 through 3.8 report the average and maximum
computation times of the CA and BAB agorithm. The average and maximum
number of nodes generated by the Branch and Bound algorithm are included. The
tables also give the average and maximum number of efficient solutions, and the
number of times BAB agorithm finds the efficient solutions quicker than CA. In
Tables 3.3 and 3.4 the results associated to short disruption duration are reported for
pij ~ U[1,100] and p;; ~ U[50,100] respectively. In Tables 3.5 and 3.6, and Tables 3.7
and 3.8, the same results are given for medium and long disruption duration cases,
respectively. The tables do not include the instances for n=80, m=12 when the
disruption duration is long, i.e. D=L, and p;~U[50,100], as our preliminary

experiments have revealed that the magjority of the instances could not be solved
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within termination limit of 3 hours. Table 3.9 summarizes the average case results,
in particular average number of efficient solutions, average CPU times of both
algorithms. The table also includes the number of instances out of 10, where the
Branch and Bound algorithm outperforms Classical Approach, in terms of solutions

times.

Table 3.3 'erformance of Efficient Set Generation Algorithms, p ; ~U|1,104, £ =§

Classical Approach Branch& Bound
no|m| wrif - - . —
CPU time (sec) | # Efficient Solutions | CPU time (3ec) # Modes
Avp Max Ayn Mg x Awn Ml Ay Max

3 LTLs0] 0.6 Lo 4 11 0.0 0.l g2l 1410
trango)| 07 1.1 4 8 00 0l 974 3,008
anl = L[1.60] 0.7 1.5 3 T 01 n3 1151 3,905
LT30,60] 04 0.8 2 3 0o 0o 97 675
|| 1600 n&] 20 3 5 i 02 387 I 690
L[ 3A0] 0.3 39 2 3 i 11 181 1577
1 L[L.50] 34 &.0 9 12 0.3 0.5 2373 3,581
L[E0,60] 410 &40 # I3 03 015 1238 5814
sal & L[1.60] 1.6 7 3 K 03 16 1,294 T.268
LT30,60] 38 19.5 4 10 0.2 0.e 1,657 .06 1
13 U[le0] 32 5 3 ki (1] (15 I 435 5,557
L3060] 1.7 45 2 5 ni 12 B2 3,436
1 LTLa0] LI} 287 11 17 1.2 2 5342 L1679
L3060] N2 a6 13 6 | 5 44 I 1,950 a5, 134
an | & L[1.60] 13.3 313 T 14 12 2.3 4836 12,334
L3000 153] 417 & 12 1.0 25 5211 12,047
13 L[1,60] 132 S48 4 10 | 4 41 2,900 9,603
L[30,60] 219 52,1 4.7 7 1.3 37 6,347 17,182
4 |LR]L80] 488 1118 1% 35 48 113 18412 41.109
LT3060]| 3] 3487 17 36 7.7 178 43,430 180,011
1ol & L]1.60] 48.0] 1272 19 17 #83 382 17,370 &0.791
CT3060] 567 1003 7 12 33 10§ 15,258 51,824
12 L|1.&0] 515 1548 4 11 L.d 343 10,311 46,0139
L[anah] Mol 1358 4 b x12 3 7884 20,167
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Table 3.4 Performance of Efficient Sct Generation Algorithms, p;~U|S0,100], D=5

Classical Approach Branch&Bound
AT ™Y [ CPL time (sec) | # Efficient Solutions | CPU time (sec) # Nodes
Ay Mix Avp Mpx Avg Melix A Mrinix

4 | LILs0] 14 4.0 3 1§ 0.1 08 %70 3,462
U20,611) 11 | & & 0 0,1 03 nsu 1,950
40 | = LI 1 A0 1.5 1R 3 7 03 7 a4 1,480
posi] 22 a3 5 7 02 Lol LAz 1,611
12 LI[1 Ai0F] L3 (i} 2 4 0,0 1l 17 1262
LI[20,60] L9 44 3 i 01 07 3EN 2179
. | LIL601 | 65 105 14 19 08 08 3316 1,648
U30,611) 0.7 3 13 272 |2 | & A Rdn X0 2on
sl | = LI 160 9.1 191 10 17 ik 211 5894 R
U060l 243 56.0 12 25 3.8 76 17722 ] 46138
12 [ a0 BNy Ala 4 7 |0 &7 2380 |2, a6
LIJ 20,641 14,13 44 7 & a 1.4 43 250 3,624
. | LLe0l | 302 &9.0 20 26 18 70 11468 31450
LI[30,611) 54,2 134 2 19 33 Tl 13 6 46, 158 Lo, 102
Wil & LI 1,60 44 6 1042 13 24 136 324 19378 43,044
U060l 487 G5 10 14| 105 268 20010] 43581
12 L[| 4(F] 527 Q07 10 1§ 42 4 14X 5 34,375 103, (142
LIj20.640] 052 2437 10 23 38,0 2434 T8 854 301,407
o |ULL60) | 1256] 3860 29 30| 189 R3] 55502 | 120.036
U060 4014] 9394 3 6t | 80| 1112 316406 | 800814
100! & LI[1.460F] 15007 2290 22 32 17,2 9266 L30) 466 ThG.66 |
T30601] 2183 3698 17 20| 530] 1278 134893 | 345,085
12 LI 1,66 1340 2624 13 28 133.5 L T3 126 203,258
= Uaoead)] 2074 T35 7 3 27 105, 1 85 e | 246, 566
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Table 3.5 Performance of Efficient Set Generation Algerithms, p ;~U|L,100], =M

Classical Appruach Branch& Bound
1™ "™ | CPU time sex) | # Ffficient Solutions | CPU time (sec) # Nodes
Avp Mlan Avp e Avp Max Ave Max

4 LR 1.% T 12 35 k2 {116 2.0a7 £.263
U[30,60] 1.8 Y 10 16 02 e 6,180
a0l & 1AM 1.3 27 5 11 Ik 1 12 1,534 1439
U[30,60] 0o K 4 6 1 03 e 7 684
N Y 2.1 18 s 10 D2 03 1,404 3,566
U[30,641] 13 1A 3 R | 4 1,094 5,575
4 [u1Le0] 155 473 23 2 16 23| 10495 15,835
LI 340,641 4.7 e R 26 36 24 k3 270013 i Y31
el & UJ Lady 8.0 £l G 28 27 135 L1037 46 762
LI 30,541) 1.6 234 ) 20 7 1.8 f.114 281492
3 | VL1607 54 143 B I 9 0 3400 10,461
U|30,60] 40 2.0 3 7 0.3 1.0 2313 5,833
4 I 1 1364 T34 2% 45 106,22 1.6 A0 543 112202
U[30.540] 10085 72122 40} 5 2213 a2 1949 268 SEd 844
o | & LI 1 6 2,0 b3 | 13 24 fh, % 323 X286 104,237
U[30.640] 428 LEW | 15 2% 72 288 47371 204 905
12 L1 60 243 53 ki 1% 1003 %3 18,606 46,243
U30.60] 50,5 1154 11 pry 11.% 4.4 30,240 249,393
3 U] Lo} 1443 i T 43 74 asd ERER 165 032 G 8l
U|30.60] 39887 108000 47 79| 2998  S71.8| 1855189 | 6,296 106
oal & 11,80 2023 53849 i) 52 0T 20764 423432 | 2ZR06,813
LI[30,60] 1288 534 5 22 31 352 11414k 174,471 5049 215
12 1I]1 a1 124 4 5323 14 45 2and 19%29) 2739R% | 2174 723
“U[30,50] 114.2 [N | 11 17 174 M3 61,24k 170,224
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Table 3.6 Performance of Efficient Set Generation Algorithms, p ;~LU[50,100], =M

Classical Approach DBranch&Bound
A ™Y TTCPL time (se0) | # Efficient Solutions | CPU time (sec) % Nodes
Avg Max Avn Miax Avg Max Avg Max

T 45 156 19 18 DS 1.4 3,498 5842
LI 341 &0 44 R 17 7 (LX) 17 412 18117
a | & L[ 1.£i60] 45 T3 13 19 1.3 e 5,270 14,718
L3060 62 97 1% 1% (TR | 5 5,759 13,6418
12 |8 R 33 al T 13 b3 [ | 1% 4 8l
- L3060 64 152 ] G 1.5 105 <, BRI 25 435
4 [ A 309 4.3 il 43 53 116 3d 541 £ 503
L3060 ab.8 131.1 41 a8 3.5 694 422,095 Q96 867
i | & LI Led) . 449.4 20 28 18.4 alT 58 128 L&0. 013
L3060 w1 1520 i) al 781 la73 3E62TE 063 357
1z (] P | 283 517 13 2 121 400 21242 74,170
LI 30,60] 4% 4 ¥z 15 2 102 22 26,2608 T0,742
4 |8 R 4RE S5 2063 2 L1l 71 G2.R 3310 402,577 I 414 W%
L3060 i 4 20K T H5 a9 14775 27330 14082670 [ 33 .03657K
s | & LI 1 .£i60] 14012 2314 3k 45 24 bt g 501,417 T 329 052
L3060 235 R 26 3l 44 244 4 ARt G Q62 1] T 128,374
12 UL 1587 271758 26 40| 20037 S8a53| 1494865 | 4035 765
Op0.80)| 274.1] 3367 75 4% | ss88| 24101 13114527 5702283
4 UpLao] | 2439 3] 10800 Al 114 | 30589] 108000 115394794 | 33 121 0573
UE0a0]] T205 4] 10RO 0 17 I | 10378 108005 57200, 180 | 74,512 024
ol g LUILE0L|  4042] 6607 T 61| 47530 1oa0nn| 3412,054 | 17,291 895
LI|30,50] 4136 13403 47 Gl | 46207 108001 142405491 | 39035579
12 .60 4325 e 4 37 al alTe3 108003 4277677 [ 10,947,764
Tl UE0a0) | 10Ed s 176l 39 66 | 40081 108001 T483475 | 30328 508
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Tuble 3.7 Performance of Efficient Set Generation Algorithms, p ;~U|1L, 11|, }=L

Classical Approach Branch& Bound
| wré-' - - - 3 - B -
CIU iime (sec) | # EMcient Soluiums CPL line {sec) # Modes
Avg Max Avg Max Avyg Max Avg Max
4 UTLed) g0 17.2 24 A6 L& 54 L6, 003 4,408
U[3060] 15.1 B9 5 33 b 1.8 53 43 074 145 734
anl & L[1,40] 4.4 1.3 13 2 0y 11 12,165 47 455
TIT360,50] 37 g7 0 1% 0 3z A 3R671
12 Ul 1,50] 34 13.2 10 20 13 63 17.602 631 676
LI 30,60] 3.7 7.9 7 11 03 15 7007 33583
1 ULaa) | 1380 3787 il [0 4% 4 l9% 281,301 Al 052
U[30,60]] 14523 6488.5 81 120 2358 12111 27684979 | 12544 461
ail & L[1L,A0] 73l 1WA 27 Al A1 6] AS9T3] 2ETION | 24 438002
LI[30,50] iTs 63, [ 23 A5 122 350 |55 407 T, T
12 Ul 1,50] 137 743 15 2 SEE| 1558 247 835 1,104 T84
L 30,60] 214 46,1 11 17 a7 1410 IR, 63K 136,677
1 ULLAD) | 3330.5] [0S0 aj 1230 20399 04854 ©7T6A34 | 54,037,760
U[30,60] | 33962 108000 120 09| 55748 108000 46 346 135 | 106 709 165
anl = ULEDp | 1v3l 2442 35 A1 A2T 6] 3141 1| 1,239 33K 7477 454
ULaosn]] 2212 5636 39 &3 21556 N800 14459375 | T2 270898
12 UlLs0] | 1347 4068 2% T2 19241 108000 3.638.208 | 20278 86l
LD30sd)] 1531] 4353 2540 6 ER18| Ad200| FATRA1A | 44,150,970

Tuble 3.8 Performunce of Efficient Set Generation Algorithms, p ; ~U[50,100], D=L

Classical Approach Branch&Dound
n(m | wwif 2 7 3 = ” 7
CI'U tumne (sec) # Elicienl Solulvons CPU e (sec) # Nodes
Avi Mlax Ay Max Hov Max Avi Max
% LI[1.Ad) 204 il .6 43 ] 14 4 2914 146,221 ART (186
D[30,60] 31,2 (=R 54 " S84 1871 |02z 00 3,083 568
a0l & L[ 1,460 3.5 25 % 27 3 il 94,7 178,514 483 /08
L3, 60] 25,2 3R 3T 55 239 T4 25T 857 AT 023
12 U106 11 149 & 20 31 14 | &Y R1.972 HT419
7| Ufa0,60] 211 TR 21 47 1128 Qa7 333135 215304013
4 L Lad| 6.2 deed 4 76 87 153912 72000 10155466 | 48 44% 896
L0600 14023 710 127 168 - - - -
sl & L Lad| 541 116 & 45 71 21113 72000] 4902327 | 16016238
L3050 2080 35610 ah 108 33876 T2000) AT 44372 | 51773380
12 L[ 1,460 %27 1377 33 45 1936 | 720000 3528 T00 | 12941 /28
T UpE,60] 1545 IS 40 i e i 22745 303 RH T.7654,133
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As can be observed from the tables, as n increases the number of efficient
solutions increases, for all problem combinations. From Table 3.6, we can observe
the increase in the average number of efficient solutions with increasing n. On
average there are 13, 25, 38 and 59 efficient solutions, for problems having 40, 60,
80, and 100 jobs respectively. The difficulty of attaining an efficient solution
increases considerably when n increases. In Table 3.4, we have two settings having
the same average number of efficient solutions; n=60, m=8, wr;j~U[1,60] and n=80,
m=8, wr;j~U[30,60]. The Classical algorithm generates the efficient set five times
quicker for case 1 when compared to case 2. Similarly Branch and Bound algorithm
generates the efficient set for the first case with three times of more computational
effort, compared to the case of 60 jobs. Thisisdue to the fact, the number of integer
variables increases with an increase in n for classica approach. For Branch and
Bound algorithm, the number of choices increases as a function of n.

As m increases, the ranges of F and WRJ decrease and that leads to a
decrease in the number of efficient solutions. This behavior can be observed from
Table 3.5, for the problems with 100 jobs, the average number of efficient solutions
decrease with the increase in the number of machines, the average number of
efficient solutions are 45, 26, and 13, for problems with 4, 8, and 12 machines,
respectively. For fixed n, the performance of generating efficient set by the classical
approach deteriorates with an increase in the number of efficient solutions. Note
from Table 3.8 that where n=40, m=8, it takes 14 CPU seconds to generate 27
efficient solutions, however, time increases to 25 CPU seconds where 37 efficient
solutions are generated. As m increases, the efficient solutions are generated in
higher computational times, due to the increase in the number of integer decision
variables, which is n’m. Note that the same number of efficient solutions is
generated in less effort when m is small. In Table 3.4, we can observe this effect
significantly, for the problems with 80 jobs, and reassignment cost in range between
30 and 60, 10 efficient solutions exist on average for the cases with 8 and 12
machines. The Classical approach generates the efficient set in 48 CPU seconds on
average when m=8, and in 95 CPU seconds on average when m=12. However, the
performance of Branch and Bound agorithm (does not degrade) as m increases.

Note that the number of levels of the Branch and Bound treeisn+ m -1, and isless
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sensitive to m which increases in very small increments and which is small
compared to n.

In general, the performance of the classical approach is dependent on the
number of integer variables (which increases with n and m) and number of efficient
solutions. The effects of other parameters, the disruption duration, processing time
variability, and reassignment cost variability are not as dominant, as these
parameters do not change the number of integer variables.

We observe that the disruption duration, processing time and reassignment
cost distributions significantly affect the performance of the Branch and Bound
algorithm. When the disruption duration is longer, the sequencing choices for the
jobs are much more and this causes weak differentiation of the partial solutions
which in turn increases the difficulty of attaining optimal solutions. This significant
behavior can be easily observed when Tables 3.3 and 3.5 are compared. Note that
the average CPU time of Branch and Bound algorithm to generate efficient set is
equa 1.9 CPU seconds where the disruption duration is short (see Table 3.3). The
CPU time increases to 43.8 seconds where the disruption duration is medium (see
Table 3.5). Whenever the processing times are higher the disruption durations are
longer and thus the problems are harder to solve.

When the variability of the processing times or reassignment costs decreases,
the differentiation powers of the lower bounds decrease as the solutions become
closer. As the power of the lower bounds directly affects the performance of the
Branch and Bound algorithm, we observe smaller computational times when the
ranges are wider. This relation is quite obvious from Table 3.5 the performance of
the agorithm depends on reassignment cost variation. Note that when there are 100
jobs and 4 machines, the efficient set is generated in 55 seconds for low variation
case, and in 300 seconds when the variation is high. Moreover, we observe more
significant affect of the processing time variability, as the processing time defines
the range of efficient solutions more often. One can point out some exceptions
which can be attributed to the randomness effect like dominant contributions of few
instances to average performance. As can be more clearly seen from our summary
table, i.e.,, Table 3.9, the Branch and Bound agorithm outperforms classica
approach in vast maority of the problem combinations, (1031 times in 1260
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instances). The only exception is D=L and p;j ~ U[50,100] combination where
performance of the classical approach is better (87 timesin 120 instances).

We next analyze the performance of the algorithms used in finding an
optimal solution for defined quadratic and quasi-chebyschev objective functions.
Tables 3.10 through 3.15 report the maximum and average CPU times, and the
number of nodes for the Branch and Bound agorithm. Specifically Tables 3.10
reports the statistics for short disruption durations and processing time distribution
in between 1 and 100, for quadratic and quasi-chebyschev objective functions.
Tables 3.11 provides the p;~U[50,100] counterpart of this table. Tables 3.12 through
3.15 are organized in a similar manner, and provide the results, for medium and long
disruption durations, and processing time values within the ranges [1,100] and
[50,100]. Tables 3.16 through 3.21 report the maximum and average CPU times and
the percentage of the efficient solutions generated by the IP based algorithm. In a
similar fashion to the results of Branch and Bound algorithm, Tables 3.16 and 3.17
report the results for the short disruption duration, and two distributions of the
processing times. Tables 3.18 through 3.21 provide the results for the medium and
long disruption duration cases in the same order. We also include summary tables,
Tables 3.22 through 3.27, for the average CPU times of the Classical Approach, IP
based agorithm and Branch and Bound algorithm that could be used to find an
optimal solution for any nondecreasing function of F and WRJ. Tables 3.22, and
3.23 provide the results for the small disruption duration case, and for p;~U[1,100]
and p;;~U[50,100], respectively. Tables 3.24 through 3.27 summarize the statistics

for medium and long disruption durations.
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Table 3.10 Performance of the Branch and Bound Algorithm, p ;~U[1,100], D=8

Crpadratic Fungtion

Ouasi-Chehyehey Function

mo (| owrlf | CPLU time (sec) # Nodes CPI time (ser) 4 Modes
Avp | Man Avp Max Ave | Max Avp Max

4 LI 160 [LX1] 0.1 141 al3 0.4 0.1 las 327
L[30,641] [LX1] .1 427 7a4 .4 0,1 327 Tove

an | g L[ 1,60] (111 i1 AR aTT .1 0,2 IRE 1olT
LI)30.640] [LX1] .0 48 406 0.4 0.0 42 348

12 L 160 [LX1] 0.1 176 763 L] 0.1 140 470

“ Uz, 60] w0l |45 1 406 ol oz IE 1771

1 ULl 01 e EH] L9865 0.1 03 794 L5947
o0l o1 o2 1,333 2.060 N E 1,142 2,380

sl & LI 1,60 i1 i any 1523 i1 0.3 LI 1,320
LI[30, 1] {1 [1s] T4 5,205 0,1 0.4 451 1522

17 L&l 01 05 07 3.214 0.2 07 532 2,724
LI)30.640] [LX1] i1 87 633 0.4 0.1 184 1,206

4 L[ 1,60 (k3 1.5 |, X318 2756 0.3 0.7 | 434 63
LI[30, 1] 7 20 4,044 12 796 0.5 I.5 3 145 4,452

ao | 5 L1601 04 10 1,385 3,367 0.4 13 1498 5,320
LI|30.50] 3 R 1803 5134 0.3 0.8 1,542 5336

12 L[ 1,60 (k35 1.4 [l 1 956 0.4 |2 TI% 012
“[Uposa| 06| 33 2,308 5,045 07 34 2,21% %300

4 LI 1 60} 1.3 246 d.732 7.113 1.2 2.7 3410 TA51
30,607 340 100 14 0859 51,857 2.1 = G484 26,067

1ual & LI| 161k 2.5 12.9 4 81k 2ip213 2.1 JLRE 3414 14505
30,641 1.2 24 o113 15763 L1 1.7 4,015 1.377

12 LI 160k 3.5 17.1 4087 17.557 3.5 144 4132 13311
U[30.60] X L5 284 4672 0.5 1.8 1,087 5,745
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Table 3.11 Performance of the Branch and Bound Algorithm, p ;~U[30,100], D =¥

Cuadratic Funclion

Dugsi-Cheby chey Funglion

7 |(m| weif | CPU time {sec) # Modes CPU time {sec) # Nodes
Ave | Mas Avp % FiEY Ave | Max Avp Max

4 L] 1.6d] . 0.1 1b6 403 0.0 .1 206 721
L3000] {1 0l 3l #le (1.0 {1 208 R27
a0 | % LT1,60] LN 0 33 aTy il 1 263 51T
L3080 01 03 479 1,138 TR 491 1500
12 L]1.80] .3 0.0 11 38 0.0 [LX1] 13 1400
L30.00] {10 0l v 542 (1.0 [+2 £l 545
4 LTL (2 0.3 G5 1,637 0z 0.3 AT LGl
v3os0| 03] 03 2.231 4,045 03l o 1.797 2,154
so | % L|1.60] 13 110 B 2 690 i .7 Al 1,643
el I 3,348 0 %36 i 1.0 7 354 G760
12 LTLs0) 1.5 il T34 4 270 05 29 a7d 4021
vsos0|  04] oo o84 1,882 o4l 0o 762 1,841
4 |LIL.60] s 13 |, 744 4,846 0 K | 508 3805
U30.60] 25| a7 15,468 14, 156 19 64 2 1093 <1704
a0 | ¢ LLLLS0I 14| 37 2,666 8.141 11 20 2.014 33851
L|30.60] 14] 45 3679 12,821 12 2 2,505 6,221
5 LULL60] 25| o7 1,003 71,695 1ol 52 7 fi% 10,270
LT30.60] 33 194 09 43,710 23 134 5,183 32,579
4 LLLLsY) 29| a6 7 31761 23 48 7.339 23,566
L 3060] LT [ e LOT. TH) 319,156 155 3449 T8.273 189, 655
1o | & FELLE] va| 268 12.700% 3 422 74 187 [TNEE] 23.742
L3060 4] 363 28 008 £00TE 74 3l 200026 £d.437
12 L1} 4.3 2735 2331 U Rak 4.2 13.7 2088 11295
T L 3040] 27 2176 G515 5 850 36] 148 3580 28 el
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Table 3.12 I'erformance of the Branch and Bound Algorithm, p ;~U[1,100], I =3

(ruadratic Fumction

Qnasi-Chebychev Function

wo|m | owei | L PLGme (sec) H Yoakes CPL Ginie {56 # Mades
Avo Max Avy Max Avg | Wiax Avo Max

4 L] 1.640] L.l 0.3 Tal 31.647 0l 3 al% 2,104
L30,40] 0.l 0 | PN i, 2 £33 212
a0 | 8 L]1.60] L.l 0.1 i34 1088 01 2 343 1401
L] 30,00 .0 0l 354 | 40k A Lk Ih1 71 1,359
12 LTLa0] C.l 0.2 42 972 0.l 3 306 1232
B INEE L1 03 Sl 2,313 0.1 3 305 3,74
4 LT150] c.7 1.7 3652 1012 . 1.4 v 5578
L ]30,60] 1.1 ar 1827 75,7794 % LRl THTR 14,774
e LT, 0.7 a2 2, T | 0,R3R 0.7 29 iy 0,337
L|30.60] L3 0.& 250 1o 145 0z 5 1,306 3,735
1 L[1,61] [ 07 T 3,820 1,2 k& ks 2627
i NERC L.l 0.3 HEE 2,718 0.2 (.4 153 2733
i L 1.ed1] gAY 133 1k, i Fa, 04 23 u4 # 30 BN
L[30.60] 8.7 L 6 251 305,302 a.l 2410 41,147 185 348
s | g L 1.640] 1.4 G0 4,065 18,101 1.2 30 3550 Th,HIH
L30.60] 15 B L7045 A2, 00 2.4 ) 15,140 531
11 LLed) 2.1 7.3 340 6,584 2.1 a4 3,235 12,549
L30,40] in 70 I 7425 30,090 20 G0 13,751 il
1 L L] 17.3 115 41.445 1%4.191 1204 468 PLCS 10K 563
L]30ad)| 102.4] 4163 373452 | 2418580 pu 2T 355073 1.433.211
1ol s UThed] | 1278 10125 Ion 38R L, 195,743 D5nl 6187 L4, 540 Al 251
L] 360481 11.5 il 97T 175,493 0.4 154 13452 124, ThH3
12 LILA0] | 1025 T84 TH.6E] S2EORT FO)  TL0A 65574 465 655
o NEE ER 1.6 L3201 TL2l% 4.1 112 18,359 5719
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Table 3.13 Performance of the Branch and Bound Algorithm, p ;~U[50,100], D=3

Ouadratic Function

Quasi-Chebychey Function

a |m| wer | CPU Lme (sec) # Nodes CTU time {sec) # Nodes
Ave | Max Avp Max Ave | Max Avg Max

4 LI[1,560] (11 02 An3 2374 0l 02 391 | 162
LI[30, 60 0.2 (4 2187 7038 0.1 0.3 1,127 2825
anl g L 1.60] 0.2 0.4 ThE 1,505 0.1 0.4 524 1,446
[30,60] (3,2 0.4 1,052 T RS 02 0.4 G948 X502
12 U[1,s0] .1 02 184 1,041 0.1 0.2 365 Q77
LI|30,60] 3.1 0.4 474 1,060 0.1 0.4 414 1,236
4 U050 TIER fi.601 24801 a7 24 3 368 15,652
LA, 60 G4 2748 112168 333 043 441 130 52 608 140 343
g | w LI T80 1.4 .4 4 386 13,481 1a 49 44110 13380
LI[30,.60] 127 36,2 TR ] 237,469 f i 18,6 39 605 104,938
17 L UIL6Y] 1.1 17 1,773 448 14 34 2,167 011
L[30,60] (LR 1.4 2279 4 546 7 1.8 1,874 7,731
4 LI[1,560] 13,7 0. | Th W0 193,749 131 477 4%, 120 | 111,658
upoeo | stool wsa1| asswari| weresso| 2428 4xz3] zodr7ie | 3544325
aol g LI T 60 244 16532 67 ThT S01.307 16 1) 1021 39436 271,231
UI[30,60] TR T2 168, 184 3al, 73T 207 4.5 98,755 | &7 ol
ol uso | 79.5] 4udd4] 123848 784621 23| ss23] 170488 [ pLooazie
L3060 UR3| 371M 43 ARG H1EARD 415 1562 140,628 517825
4 LIT1,&0] S04 1994 5 26R28T1 | 12625600 | 384.4| 13247 1553452 7201 662
UEoe0)] S1i44) 5400000 50,710.566 [ §2956,065 | 4505 a) 240000 38251 353 | 58670260
e UfL60] | 37346 2RG98 20088 | 4 554 507 | 252 5] [T9nR 379162 | 2.4BA018
UL20,60]| 14506 4978.9] 5341417 | IK661,348 | 434 7] IRI6.3] | 705840 | 6408 3H)
o |ulLeo | 7sos] a7io4]  s7sess | ssorias| gus4l deros]  simdee | s 160361
Tl URoe0]| 6340 24976l Lé3a 775 | 6548700 | 34| 7737 a03 587 | 25563812
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Table 3.14 Perfermance of the Branch and Bound Algorithm, p ;~ U[1,100], D=L

Quadratic Funclion Quasi-Chebyehey Funetion
| wrij | CPL time (sec) # Modes CPL time (5ec) # Nodes
Aovip Max Avg Kax A Max Avg Max

4 T 1.a6] 14 |4 4,546 17,274 3 1.0 2872 92,9005
LI 30.60] 0.8 Bt 16 263 34,330 0.7 2.1 10,385 32047
a0l & L1680 014 2.1 4,237 25002 115 2.2 3, 1406 17,168
LI 30.a0| 03 1.4 3.343 19,308 03 1.2 2 dbo 12753
12 1,60 nT 3.3 4,010 23,151 | 1 .4 5,200 30,993
LI 20.450] 0.1 0.5 1,771 49,6453 0.2 0.8 1,360 8,251
4 [ .a6] i 0.9 L A0 3131 462 152 AT4 253 194,284
3060|1204 6led| 1289 8BED 6,074 663 TET| 3581 G K24 3014 404
&0l & 160 A0 4| 32952 Q44 385 9042751 /O] ATI0E 993,154 S0 007
LI 20.60] T 5.9 33264 174,362 23 6.3 28,851 e, 734
12 L0 )| %4 34,0 37087 175,661 05 516 3 ATH I8%,359
L2060 0.5 2.9 7,648 37,716 1.0 3.3 7170 30,229
4 e A0 2 47940 3 A03.300 | 4398547 | S6R & 31259 | R04.97T 7,650,353
L3060 2464.4] 54000 12661738 | 61899384 | 2112.6| 3400.0[ 13982 858 | 50,139.803
g0l & T[1 660 153 1] #9935 10,4 1L871,915 90| S08.% I58,5308 37,932
LJ206a0]] 8313 48888 3,741,512 | 36,028,091 | 513.3| 27689 2,634,158 | 17,084,437
12 1,60 TR4 6 5400.0) 147404 | 10665006 [ TA0 T 54001 |, 028,300 7,398,240
L2060 301.2| 2363, 8] 1845108 | 13,440,357 [ 2505 18477 1,280,883 Q294 035

Table 3.15 Perfermance of the Branch and Bound Algerithm, p ; ~ U[S0,10H)], D=L

Quadraise Funciien

Quasi-Chebychey Funelion

| m wrif | CPLU time (580) # Nodes CPLT time (58c) # Nodes
Ave Max Awp Max A Max Awvp Max

4 LI 1,66 27 9.3 33,538 | 28551 | (3.4 21470 74,843
L 3da0] 143 5.7 156204 624,546 7.0 102 111,655 164,301
! s LIt 661 33 87 21,008 RT3 x4 GG |2 638 35691
L2060 558 16.5 a7 853 143,151 23 7.6 23.11p 81,9564
12 U1 ,a0 13 6.2 |1, VRR 52499 20 .0 8,982 45,544
LI 20.60] EX.) 243 23,700 109 685 13 7.1 Lo0ds 350729
4 UTLa0] | 493 0] 36000 3,608,920 | 24021050 | 414 §) 32009 2516504 | 184588539
L2060 34267 3600,0[ 43,344,540 | 61,975,700 | 2707.1( 3600,0] 30,113,167 | 45837410
a0l & U160 192 8 T&4.5 GRO,OIR 2,112,327 |23 8 461.% 382,724 1,106,505
L2060 1717.3] 3600.0) 16,423,830 | 35978323 | 4385 11585 4047710 10$53,027
12 UlL.68] ns5| 2598 1l,521 942256 4ul| 2678 208 | 353,858
LI[30.60] 651 1287 138,323 627,303 194 e 11, /20 181,207
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Table 3.16 erformance of the II' Based Algorithm, p ;— U|L100], D=8

Chwadratic Function

Ouasi-Chebyvehey Function

i ] WFEf CPU time (see) ¥ Generated CPU time {sech Yo Generated
Avp Max Avp Max Avg Max Avg | Max

1 LT 1,60] 0.5 1.1 al) 75 L6 1.2 63 75
LIT30,60] 0.6 1.3 56 75 0.6 1.0 a3 74

| 8 L[ led] 0.9 1.2 3l a7 0.9 1.2 5l 67
L[30.60] 0.9 1.0 27 a7 0.4 1.0 27 67

12 L[ 1.64] 1.5 2.0 44 5 1.0 2.4 44 T3
L3060 21 47 25 &0 1.8 34 25 a0

q LIT 160 2.6 R.6 56 bl 28 [0 57 Al
L1360 2.2 5.9 44 f13 2.0 1.8 44 a6

0 g L1.60] 2.3 4.1 35 75 22 3.7 33 13
LI 30,60 3.2 5.1 2 b7 3.3 6.3 52 67

12 LI[1.60] 3.3 14.9 7 Hil 5.6 12.8 57 B

B L i3 4.1 in il A 19 36 4]

4 L1607 3.5 I14.5 52 3 5.6 10.3 ii B6
LI30.60] 4,3 9.5 37 45 7.4 13.5 40 a6

T LI1.60) 6.4 12.0 63 ] .8 244 &7 B3
LI30.60] 7. 29.2 51 7 10.0 209 36 s

2 LT 1.60] 7.8 153.4 52 &0 2.6 6.3 54 Bl
30,600 6.8 R.6 39 75 6.9 9.6 41 74

4 LT 1.60] 8.6 15.9 47 57 12.5 26.8 49 &
L3050 16.2 479 46 i 21.0 113.0 46 50

100 g U 1.68] 2 20.3 48 LE] 13.1 33.2 52 B3
LI 30066 15.0 T2 52 () 15.7 344 33 L1l

2 LI 1.6 il 1002.5 51 a7 347 148.4 54 Tl

T UALAN) 13.0 21.1 ] &0 222 1030 i) B0
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Table 3.17 Performance of the TP Based Algorithm, p ,~ U[S0,100], D =§

Quadratic Function

Quasi-Chebychey Function

" " Wi CTU time (sec) %% Generated CPU time (zec) % Generated
Avg Max Avg | Max Avp Max Avg | Max
A L.[1.60] 0.6 14 37 T 0.7 1.2 a4 0
LI[30,60] 0.6 1.2 59 75 0.6 1.0 L] 75
10 3 L] 1L,a0] 1.2 32 a3 75 |2 .1 (%] 75
LA 060 1.6 4.5 5l &3 18 4.9 il 3
12 L.[1,60] 2.7 42 21 75 26 14 2 73
L 30,60] 2R 4.6 20 3 3.0 4.6 20 83
4 L.| 1,60 1.9 a3 48 71 1.9 4.7 30 71
U[3D0,60] 19 128 47 7 52 123 a2 T
60 2 1[1,60] 4.4 2.6 sli] ] 4.5 2.5 e B
LI 30,64 3.7 11L& 41 57 3.l 8.7 42 a7

12 L] 1,60 Gy 18.0 54 75 6.6 14.1 Gl 7
~ | U30,60] 13.5 460G 2 80 13.8 224 a7 ai
4 L]1,60] 4.3 13.6 44 Gl 5.9 2213 A4 5
U[30,60] 12.2 27.1 a1 2 12.0 289 A0 54
80 y LT1,60] 0.7 26.6 42 33 127 269 45 a7
U[20,60) 13.8 3.6 44 75 141 40.7 4 G0
12 LT1,607 124 44 35 7 52 504 36 75
UI30,60] 174 356 a6 7 217 T2 47 75
4 L Lal] 0.4 2002 a0 iR 153 377 44 S
U[20.60) 8.0 103.5 26 42 44.7 1219 30 42
100 1 L.[1.60] 172 135 46 10 134 5E.1 30 50
LJ|30,60] 14.2 24 41} Hi 4.0 F1.2 43 HiY
iz L. 1,60 1810} 482 47 7 232 31.7 31 67
LI[A 0,60 16.1 27 k¥ a0 3R 16415 44 a7
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Table 3.18 Performance of the II' Based Algorithm, p;—~ U[1,100], D =W

Ouadratic Function

Ougsi=-Chebychey Function

" m wrij CFL time (sec) %0 Generated CPU time (s4x) %o Generated
Ave ¥nx Avp Max Avp Max Avg Max

4 L [ 1 ,6lf|'} LLE] 1.4 58 10 0% zu a4 1M
L3064 .5 1.4 i1 H3 (.o 23 B3 X3

m 2 L.| 1,61} LI 1.7 4 1CHb 0.7 1.4 4 140D
LI[A0.640] 0.7 1.5 T3 16D 0.8 1.5 77 140

12 L[1,60] 1.0 1.9 6 100 1.2 EN | fad 100
UT30.60] 1.2 20 &6 100 1.3 |.9 BA 100

4 LT1,60] 2.7 7.8 43 53 4.2 53 44 33
U[30.60] 1.0 0.3 is 47 20 a2 18 33

60 3 L[1,60] 2.0 6.4 &8 100 16 14.1 74 100
L3060 2.5 T4 &5 100 2.5 7.5 67 100

17 L]1.60] 3.3 8.2 92 100 3.4 5.4 22 100
UI30.60] 31 6.7 iR 100 A3 6.9 a8 100

4 L1607 .9 16.0 12 52 B.5 22.0 2 57
UT30.0e0] 1] 44.3 2R 47 20,0 SRS iz 53

80 g LT1.60] 5.7 0.8 50 R0 6.4 17.2 fill &0
LI[30.60] 145 41.3 51 75 19.0 305 =7 £1

12 L.[1,60] 5.6 64 T 10H) 12.7 305 A 100
L3060 9.4 224 34 101} 10.4 250 fd 100

4 L]1.60] 2 221.3 i3 43 332 2384 34 43
U30.60] 102.5 056 30 58 30| 244246 iz Lk

ool ® LT1,60] 278 #3.3 16 45 323 2016 41 S0
L3060 8.8 419 6 S0 239 a7.0 7 50

12 LT 1L6l] 248 354 5l il 358 1221 a2 il
LI[30.60] iz 123.7 55 75 5 1248 sl 75
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Table 3.19 Performance of the 1P Based Algorithm, g ;~ U[SO,100], IY=M{

Quadratic Function

OQuasi-Chebychey Function

E ] 23 Wrif CTU tinse {sec) % Generated CPU fime (zec) Yo Gemerated
Avp Max Avp | Max Avg Max Avg | Max

A LT1.600 0.5 1.7 53 B 0.7 3.0 5% &6
LI[30,60] 0.8 2.0 48 fd 1.2 4, 50 79

40 8 L[ 1,60] 1.3 3.l 38 75 1.1 2.7 57 T3
LI[30, 607 1.8 4.3 52 78 L.¢ 5.0 51 T8

12 UT1.60] 1.6 0.5 6 106 2.0 7.0 i [ (D
LI[30,607 1.6 4.6 62 1060 &2 5.2 73 1)

4 L1 60] 1.7 1.3 4] 5B 4.5 24.0 42 58
LI[30,60] 28 79 30 36 6.3 17.8 32 50

el 8 LT 1601 4.5 10.1 54 Fa 6.6 14,1 i6 73
LI[30,60] 12.3 337 44 = 158 43.6 43 89

12 LI L6071 4.0 7.0 55 78 6.5 179 58 78
U[30,60] 4.4 11.5 41 7 5.5 154 42 T

4 LT 1,601 14.2 5.9 15 48 18.5 6.4 39 i1
LI[30,60] 126 214.8 25 37 i6.8 186.4 a5 33

50 3 L[ 1.60] 5.8 8.7 39 i 8.8 272 40 50
U[30,60] 229 57.1 13 18 347 g7 37 48

13 1I[160] 12.] 3R 44 73 6.8 5.0 46 73
LI[30,60] 36.8 240 46 63 ilg 126.7 46 69

4 LI 1.60] 24.7 102.3 29 45 4.5 1572 30 5l
LI[30L60] 162 1015 1% 28 ELRY 205.6 21 A4

won | & Ul l.60] 154 20.8 RX] 44 isd 74.9 35 54
LI 30, 60 ] 71.3 231.% 24 42 ak.1 184.4 as 30

12 LI T.60] ani Ha.0 17 46} i3 240 8 30 54
I 6.7 138.3 23 41 68 2327 30 52
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Table 3.20 Performance of the TP Based Algorithm, g ;~ U[1,100], =L

Ouadratic Funclion Lasi-Chebychey Funclion
mo| om wrif CPL time sec) | % Generaled | CPILimedsec) | % Generated
Avg Max Avg | Max Avg Max Ave | Max
4 U100 0.4 24 41 oy 0.8 2.1 41 o7
L[30.0407] 0.9 10 32 53 22 4.6 37 ]
a0 | g LULLAD] 1.3 a5l s | 7 28] el [ m
L3060 1.2 ER1] o] 1014 | 7 .4 o [(H)
12 L 1.60] 1.7 4.5 a7 1000 1z L 6 1K)
~ | L[30.60] L3 28 72 100 1.5 34 73 LU
i U] 1.60] 10.1 4x.1 2 41 250 821 31 44
L[30,60] 7.5 a06.4 20 3 73 219 20 26
&0 2 UL 1A0] 540 £ 50 a3 77 8.0 Al K]
L7[30,60] 4.3 10,1 i6 44 (=R 13.% 30 A0
12 U100 4.3 9.4 37 100 0.3 12.1 S0 28
L|30.60) 4.0 4 a1 75 5.4 17.0 i1 ]
4 UL 1.2 e ] 23 2 2428 81387 25 33
L 30,640 TR 54000 |7 21 R7 10 414.0 17 23
g | o [HLLA0] ¥ i 34 3 WK 227 413 S8
|| 300,64] 1.3 731 34 45 13 5 41,3 33 43
12 U100 255 Hii 47 H3 240 391 48 K]
~ | L30.60] 16.1 412 47 67 198 47.4 47 o7

Tahle 3.21 Performance of the [P Based Algorithm, p , ~ L[5(,1H)], D=L

Cuadralic Funclion Chmnsi-Chebychey Funclion
n | m wrif CPU time {sec) % Generated CPU time {sex) %o Generated
Ave Max Avp Ml Avp Max Avp Max
4 1I[1,60] 1.4 2.8 i T4 2.2 31 40 03
U[30,60] 23 5.7 a0 39 3.7 7.2 32 39
al s L]1,60] 1.3 3.1 47 Nl 2.5 4.5 an 67
U[30.60] 3.0 83 35 46 4.0 17.8 6 56
12 LI)1,a60] 1.5 4.6 A8 G2 2.6 f,0 a2 62
LI[30,60] 1.7 3.9 31 88 kR 134 iz §8
4 UJ1.60] 32 9.4 27 3 449 0.8 28 58
L] 30,641 6.4 243 17 23 225 T2.4 20 &b
o0 | g UJL,60] 9.5 320 38 49 199 367 42 5l
L] 30,60 11.% 34,7 27 38 12.7 LR 27 44
12 LI[1,40] 3.3 13,1 44 5 3.3 20.1 43 3G
U[30,60] 5.1 127 28 34 1-1.8 39.5 33 47
i LIj1,60] 1iL7 288 23 3 3.4 214.3 25 32
U30,64] 26 19277 13 | & 5949 53305 14 |8
2wl 2 L1.60] 21.0 %3 32 A6 223 49,0 12 46
LI[30,60] 29.9 171.8 19 23 72.0 173.7 22 i)
12 UJ1.60] 26,4 211 9 38 34.9 T0.0 30 38
L 30,640 i6.2 2241 27 35 44.1 170,43 26 g
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Table 3.22 Comparison of Average Performances of Optimization Algorithms,
Bij ~U[1,100], D=S

_ Classic ‘ -'h-'el:ﬂgﬂ CPU Times: (sed) :
| om wrif Appriech Quadratic Functinn Quusi-Chebychev Function
ITE BAR CWT L gl i RAR CNT

1 1] 1,607 .o 1.3 0.0 10 06 0.0 [}
L3060 n7? [.é& 0.0 1 L .10 16k
N 07 09 ool 1w vy o1 10
T[30.60 04 ne an LY} R [{R]] [{]
12 1] 1.60] n& 1.3 0.0 10 1 & 0.0 10
L[30.60] & 21 0.0 10 14 (] 10
4 1]1,60] 34 Xh 0.1 10 2158 a1 10
L3068 4.0 el 01 10 20 0.1 10
a0 | n L1.60] 1.6 23 01 14 22 .1 16k
L3060 IR 12 0l 10 i3 [N 10
12 L[ 1,60] iz 33 01 10 A6 0.2 10
L[30,60] 1.7 13 an 10 4 (N1 16
1 1] 1,60] 11.1 3.3 0.3 10 Sk 0.3 10
L|30.60 36.2 4.3 0.7 14 T4 .5 16k
wo | u L 1,60] 155 f.d 04 14 L% 4 16k
L3060 |58 7.4 03 LY} [ 03 10
12 111 601 132 7.8 03 10 o0& 04 10
T[30.67) .8 i, 8 0.6 10 & 07 10
4 1]1,60] 4% 8 &6 |.3 10 123 1.2 10
L3060 5.3 152 3.0 10 210 21 10
wil ® |r'[1,flUJ -’lt’f.ﬂ bl 13 .lJ 131 21 16k
L3060 50,7 150 s [[¥] 157 [ 0 I
12 [ 1,60] Y ile KR 10 4.7 33 10
T[30,60] i 13,0 0.6 10 e e ] 16

78



Table 3.23 Comparison of Average Perfor mances of Optimization Algorithms,
p; ~U [50,100], D=S

. Clisis Average UPL Times (sec)
n | m wrrif Appronch Quadratic Function Cruasi-Chebychev Function
1P} BAR CNL 1rp BAR (Y |
4 U 1.60| 14 G (r.[ 10 0.7 (AL 10
LI[30,60] 1.1 0.5 01 10 0.5 2.0 10
an | 4 LI[1.60] 1.8 1.2 0l 1 1.2 0.1 10
L3060 22 1.6 (3.1 L0 ] 1.1 1
i L 1.60| 0.3 2.7 (3.0y 10 2.4 Al 10
LI[30 0] 0.9 28 ooy 1o 0 00 10
4 LI[1.60] 6.3 1.9 0.2 10 1.9 0.2 110
TI[30.60] a7 39 0.2 10 32 0.3 1]
a0 | 8 U 1,a0] 41 4.4 nz 10 4.5 1.3 10
L3060 245 37 K] 10 &1 b 10
13 L1607 B0 6.7 0.2 10 0.0 ] 10
~ U300 145 13.5 0.4 1] 128 0.4 10
4 LI 1.a0) 302 4.3 (). 10 54 1.3 11
LI 30 60 5472 122 2.5 ) 120 1.9 10
ar | # UlL.a0] 44 6 07 L4 1D 12.7 1.1 110
TI[30.60] AR7 138 |4 10 14.1 1.2 10
12 L[ 1,60] 527 12.4 23 10 13.2 1.9 10
| LIJ 30 60 052 17.4 31 k) 217 23 L
1 U 1.60| 1256 9.4 24 10 135 2.3 10
UI[30,60] 401.4 286 20,0 0 34.7 15.5 g
100! % LI[1.60] 1507 17.2 0.4 i) 334 7.4 ]
L] 30640 2183 142 114 7 4.0 7.4 i
1y LUIL6D] 1399 180 a8l v 212 22| 10
LI[30 40] 2078 16.1 57 i 338 ig) 10
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Table 3.24 Comparison of Average Performances of Optimization Algorithms,
pij ~U[1,100], D=M

B Ol Avernge CP'U 'Times (sec)
A | m i Approadh Quadratic Function {asi-Chebychey Flm_ctiun
IPB BAB CNT IPD BAD CNT
4 LI 1,60 1.9 {16 0.1 10 R {1 10
30,607 1.3 0.5 0.1 10 0.6 0.1 10
40| @ LI 1,60 1.3 {18 0,1 10} 7 .1 n
L | 30460 05 0.7 0.1 10 4 .0 10
12 LI 1,60 21 1.tk 0.1 1t 12 a1 10
I E 1.3 13 0.1 10 L3 .1 10
4 LI 1,60 145 2.7 07 10} 41 .6 10
L | 3040 4.7 3.0 1.1 L& LAY . 10
ao | @ LI 1,60 .9 2.0 0.7 4 3n 0.7 £l
L | 5060 V.6 2.5 0.3 10 24 .2 10
12 LI 1,60 5.4 33 0.2 10 34 1,2 10
“ L3060 4.0 31 01 1 13 ] T
4 [UI.60] 136.4 6.0 30/ 4 %5 23] @
L |30L60] 1U0% 5 B.O 5.7 4 200 a.1 )
v P VR 26,0 57 14 @ é 4 EE
L| 3060 425 14.5 2.5 i 194 2.4 )
12 | U601 24.3 8 6 I 127 21
L| 30,60 365 9.4 30| 1o 104 28] 10
4 LI 1,60 1443 & 2 173 5 5312 12,0 &
L | 3040 UaR T 1025 102.4 2 ad3.0 By 0 b
ool @ LI T,60] 2023 T8 137.8 5 5273 03 & 7
L | 30.40] 2IR 8 158 11.5 4 239 4.4 )
12 LI 1,60] 1244 24 8 2.5 f 35 h &9 1 7
L|30.60] 1142 121 3%l 1o 315 a1 1o

80




Table 3.25 Comparison of Average Performances of Optimization Algorithms,
pij ~U[50,100], D=M

| Clgssic Average CPU Times (sec)

n|m Wiy Approach Quadratic Functinn Quagi-Chebychey Functinn
L1 BAR CNT I'B BAR CNT
4 LI 1,60 4.3 .3 .1 10 0.7 1 10
L[30.60] 44 0.8 a.2 10 12 0.1 10
il g L1, &Y 4.4 1.2 .2 1) 1.1 (1 1)
LI 340,60) 62 1.8 a2 10 1.9 02 10
13 U[L60] 23 1.6 0.1 10 2.0 0.1 10
U[30,60] hd 16 i | [0 12 0.1 N
4 Lij 1,60 oy 1.7 .9 L 4.5 0y 10
IT20.60] 588 28 9.4 1 6.3 4.9 4
ai | g TI[ 1, a0 ing 4.5 1.6 9 f.6 .6 10
LI 340.60] LiE 123 12,7 £ 15.8 6.6 f
12 UL L60] 283 4.0 11 10 0.3 .4 10
U[30.60] 494 4.4 0.8 10 5.3 0.7 10
4 LiJ 1,66 ddb.5 14.2 18.7 7 18.5 13.1 7
LI 20.a0] 694 4 32.6 S10.0 0 368 2425 0
an | = TI[ 1, a0] 1402 58 24.0% 4 o8 6.1 7
LI 30,60] 235 8% 2249 TR 3 4.7 a7 R
12 U160 1587 121 749.3 J 168 323 3
© | UL30,60] 274.1 J6.8 #8.3 4 3.9 43.5 o
4 LIJ1, 60 24305 24.7 5640 () 4.5 3sdd 1
LI[30.60] 72054 362 31144 4 F09) 4505 6 0
100 s L8 e 4042 15.4 373.6 4 350 2525 5
[ 30,60) 9136 713 (454 & 0 58 4447 2
12 U160 4325 303 T80.8 2 a3 7934 i
U[20,60] 1084 5 36.7 634.9 i 045 2034 3
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Table 3.26 Comparison of Average Perfor mances of Optimization Algorithms,
pij ~U[1,100], D=L

Clussic Average CPL Times (sec)

" m wrif Approach OQuadratic Function Duasi-Chebychey Function
1P BADB CNT 1P BALB OCNT

4 L1601 5.0 0o 04 7 08 0.3 o
3060 18.1 0.9 08 7 z2 0.7 7

an| LI 1.6} 44 1.3 (k4 4] 1.7 .5 10
L3040 3.7 12 02 o 1.7 0.2 10

12 L[ 1.6 5.6 1.7 (r7 10 22 I.1 10

“ | UA0.60] 3.7 1.5 01 10 1.5 Q.2 10

4 Ul1.60] 138.0 10.1 2000 2 230 15.2 7
20460 19522 1.5 12004 2 7.3 7717 |

a0l s U 1.60] 375 30 3404 7 77 2804 i
LI 3060 37h 4.3 37 3 . 5 2.5 7

(2 Ul 1.60] EEN) 4.5 24 3 i3 035 f

LI 2060 21.4 4.1 (k¥ 1 30 |4 10

4 U 1,60] 33315 18.2 8562 1 248 568,58 4
3060 3062 T3 24054 4 2 a7 1 21124 ]

an| LI 160} 1173 Q2 1331 3 11.0} Rl f
060 2212 21.5 Bal.A 2 115 3132 4

12 L[ 1.6 1347 253 TR G ] 246 FALT 3

T UA0.60] 1531 16.1 30l.2 2 1.8 2509 2
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Table 3.27 Comparison of Average Performances of Optimization Algorithms,
pij ~U[50,100], D=L

i Classic Average CPU T.in:u's (sec)

B omo wry Approach Quudratic Function (uaxi-Chebychey Function
1PB BAB CNT IPB BAB CNT
4 UL60] 20.4 1.4 27 f 22 2.1 7
U346 32 23 143 ] 7 7.0 1
il s L] 160 133 1.3 2.3 3 2.3 2.4 a]
L 30.60] 2532 3.4 sS4 2 4.1} 2.5 3]
12 TI[1.60] 11.1 1.5 18 7 16 2.0 i)
~U[30.60] 211 L7 33 f i3 1.3 B
4 UT1,60] 300.2 2 493 1) ] 4.9 4148 0
L2060 L4023 &4 34267 ) 213 27971 (0
col g L] 1604 Hd. | 9.3 1924 3 199 123.8 )
[ 30.60] 208.9 11.% 17172 1] 12.7 438.9 1]
12 UL.60] 82.7 3.4 633 3 3.5 40.2 3
U[20.60] 154 8 il 631 1 148 199 4

When IPB and Branch and Bound agorithms are compared, no consistent
dominance of one algorithm over the other can be observed, we find that, BAB is
better than IPB for 1943 times in 2520 problem instances solved. We see that the
performances of both algorithms are highly dependent on the number of efficient
solutions. The performance of 1PB agorithm is more significantly dependent on the
number of integer variables that increase with the number of jobs and the number of
machines. There are some exceptions where the performance deteriorates with
decreasing m which can be attributed to the superior performance of the integer
programs that have many integer variables in their linear programming relaxations.
The IPB agorithm performs better for quadratic function compared to the quasi-
chebyschev function. We can compare the average CPU times from Table 3.21,
where the statistics for the IPB algorithm, for, p;~U[50,100], and D=L are reported,
for quadratic and quasi-chebyschev functions. We observe from the tables that the
average CPU times for quadratic function is smaller than those of quasi-chebyschev
function. This behavior can be attributed to the fact that in quasi-chebyschev

function case, very few optimal solutions are in extreme supported solution set.
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As can be observed from the tables the disruption duration, the processing
time and reassignment cost distributions significantly affect the performance of the
Branch and Bound agorithm. When the disruption duration is longer, the
differentiation power of the partial solutions are weaker due to the existence of more
sequencing alternatives. This adds to the complexity of the algorithm. This behavior
can be observed from all tables. When the processing times are between 50 and 100,
the disruption durations are longer, thus the CPU times are higher. When the
processing times and reassignment costs are less variable, the solutions are more
closer and hence their differentiation is harder. As a result, we observe the highest
CPU times whenever the disruption duration are long, the processing times are in
range [50,100] and the reassignment costs are in range [30,60] (see Table 3.15). The
lowest CPU times are observed when the disruption duration is short, processing
times are in range [1,100] and reassignment costs are in range [1,60] (see Table
3.10).

Quasi-chebyschev utility function usualy leads to quicker solutions than
quadratic utility function. Note from Table 3.13, that the average CPU times are
smaller for quadratic function case compared to quasi-chebyschev function. This
can be attributed to the fact that the partial solutions are not very close to each other,
which increases the power of differentiation.

In general, for all parameter combinations and both objective function types,
the IPB agorithm finds the optimal schedule by generating a small percentage of all
efficient solutions. The higher percentages are associated to the cases with smaller
number of efficient solutions, where the number of efficient solutions visited is also
very small, and most of the solutions are extreme supported, which are generated at
the initial step of the algorithm. Note that when n=80, the percentages are lower, as
the number of efficient solutions is higher, and there exist many non-extreme
supported, and unsupported solutions. The parameter effects on the performance of
the Integer Programming Based agorithm is not as dominant as those of the Branch
and Bound algorithm. We can conclude from the tables that the behavior of 1PB
algorithm is more consistent. Note that the worst performances of IPB agorithm are
closer to their average counterparts when compared with those of BAB

performances. The results on all tables reveal that both algorithms solve all
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instances in much smaller CPU time than that of spent in generating all efficient
solutions by classical approach.

We findly find the percentage of nodes evaluated till reaching the optimal
solution and report the average case results. Table 3.28 reports the ratio of the
optimality node to the total number of evaluated nodes.
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As can be observed from the tables in majority of the problem combinations
the optimal solutions are found at the very early nodes of the search. Note that on
average, the magjority of the optimal solutions is found before searching 10 percent
of all nodes. Moreover in many combinations we observe a ratio value zero,
indicating the optimality of the initial solution. Note that the average percentages are
higher when p;;~U[50,100]. Due to the fact that, the lower bounds are weaker and
hence give less reliable guide. For the case where p;j~U[1,100] the averages are
lower. This leads us to conclude that the lower bounds are good estimators of the
optimal solutions and hence guide right solution paths. The solutions that are found
a a preset termination limit are likely to be optimal or near optima and hence a
truncated Branch and Bound algorithm that terminates after a preset CPU time or
number of node evaluations, can be a powerful alternative if the decision maker is

interested with a near optimal, but not necessarily an optimal, solution.
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CHAPTER 4

CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This study considers bicriteria approaches to the minimum cost network flow
problem and arescheduling problem where those approaches find their applications.

For the bicriteria integer minimum cost network flow problem, we generate
all efficient solutions in two phases. The first phase generates the extreme supported
efficient points that are the extreme points of the objective space of the continuous
BCNF problem. Our generation method differs from previous methods that are
based on parametric analysis, in the sense that the efficient set is generated each time
moving to the next adjacent point. Hence this phase may be preferred for the
continuous BCNF problem if the decision maker is more interested with a specified
portion of the objective space. In the second phase, we generate the other efficient
points, i.e., nonextreme supported efficient points, unsupported efficient points by
Integer Programming Based approaches.

Our rescheduling problem assumes parallel unrelated machine environments.
The criteria are the total flow time as an efficiency measure and the total
reassignment cost as a stability measure. We show that any linear combination of the
two criteria can be represented by a bicriteria minimum cost integer network flow
model (BCINF). Hence we use the results derived for the BCINF problem to tackle
with our rescheduling problem.

In our rescheduling studies, we provide polynomial time algorithms to solve
the hierarchical optimization problems. To generate all extreme supported efficient
solutions, we use LP-based approach using slack pivoting and a weighted approach
that are based on optimal assignment solutions. To generate all efficient solutions we
propose two approaches. The first approach is an Integer Programming based and
uses optimal solutions of the singly-constrained assignment problem. The second
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approach implicitly enumerates all efficient solutions by Branch and Bound
approach. Our Branch and Bound agorithm uses lower bounds on the total flow
time and total reassignment cost. To find an initial set of approximate efficient
solutions, we generate extreme supported efficient set by weighted approach and
extend the set in a defined neighborhood.

The results of our computational tests have revealed that our Branch and
Bound agorithm is superior than the classical approach, for majority of the test
problems.

We use the same branching scheme and same bounds to minimize a
composite function of the total flow time and total reassignment cost. The results of
our computational tests have revealed that the Branch and Bound agorithm can
solve problems up to 100 jobs and 12 machines. We aso propose an agorithm that
is based on Integer Programming. The agorithm eliminates a portion of the solution
set that cannot reside an improved objective function value. The IP based algorithm
also performs quite satisfactory and generates only a small portion of al efficient
solutions.

The models we have studied represent growth in the network flow and
rescheduling areas. There are many further research directions most of noteworthy
of which are discussed below:

1) Addressing a stochastic version of the problem where the maintenance

duration is not known with certainty.

2) Addressing a Tricriteria integer minimum cost network flow (TCINF)
problem

Let fi(x), fa(x) and f3(x) be tricriteria. Finding optimal solutions to the
following problems may be of help in developing the solution procedures for
generating all efficient solutions and minimizing a composite function of tricriteria

a) Unconstrained problems
i. Min fix)+¢fix) 1=1,2,3 j=1,2,3 i# ]
for appropriately selected values of ;.
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ii. Min fi(X)+8jfj(X)+8kfk(X)
i=1,2,3 j=1,2,3 k=1,2,3 i#jj# ki# k
for appropriately selected values of ¢j, ex.

b) Constrained Problems

i. Min fi(x) + & fj(x) + e fu(X)
st. fi(x) < by
i=1,2,3 j=1,2,3 k=1,2,3 i#jj# ki k
for appropriately selected values of ¢j, ex.

ii. Min fi(x) + & fj(x) + &k fu(X)
st.  fix) < by

fillX) < by

i=1,2,3 j=1,2,3 k=1,2,3 i#jj# ki k
for appropriately selected values of ¢j, ex.

3) A Tricriteriarescheduling problem exploiting network flow structures

Once we set the criteria to total flow time, number of reassigned jobs, and
total reassignment cost, the problem can be represented as a Tricriteria MCNF
model., and hence the approaches derived for the TCINF problem can be used.
Moreover by recognizing the special structures of rescheduling, hence scheduling,
problems efficient enumeration schemes can be designed. We can benefit from the
branching structure designed for our two criteria rescheduling problem as the
decisions do not differ with an increase in the number of criteria.

4) Bicriteria or Tricriteria problems with different efficiency and/or stability
measures

In this study, we consider total flow time as an efficiency measure. When the
jobs do have different priorities, a more suitable objective would be to minimize
total weighted flow time. The incorporation of the weights destroy the network flow
nature of the model, so the properties and procedures extended from network flows
would not be of help. However tota weighted flow time has also a very nice

property that the optimal solution of the sequencing problem (which is weighted
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shortest processing time rule) is known. This implies that we can employ our
branching scheme for the total flow time problem to solve its weighted version. The
only modification would be the modification of the bounding schemes.

As long as the efficient measures are concerned, in addition to our producer
related performance measure of total flow time, we can consider a customer related
performance measure, like maximum lateness, total tardiness. In such a case, the
rescheduling problem will be treated as a tri-criteria problem together with our
stability measure. Once the due-dates of the problem is accepted as the promises
given according to the initial schedule’s completion times, any due-date related
performance can serve as a stability measure. For example, maximum |lateness, can
be interpreted as the maximum completion time difference between initial and new

schedules, which can be interpreted as the maximum delay in the delivery times.

5) Constructing the initial schedule

In this study, we assume that the initial schedule is optimal according to our
efficiency measure. It does not reside any idle time and any non-optimal allocations
which would be favored by the new schedule. An initial schedule construction, by
predicting the disruption time and duration would be another future research area. In
construction the initial schedule, the idle times that will serve as buffers and light

loading of the machines that are more likely to be disrupted, should be considered.

6) Addressing the bicriteria assignment problem

In chapter 2, we develop solution approaches to the bicriteria minimum cost
integer network flow problem. MCNF problems resides shortest path and
assignment problems as special cases. In the literature, there is some research on
bicriteria assignment problem, like singly constrained assignment problem.
However, we are unaware of any reported study, on simultaneous optimization for
assignment problems. Recognizing this gap, designing optimization algorithms for
generation al efficient solutions and minimizing a composite function of the two
criteriawill be aworth-studying research area.
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As a starting point, we can employ the following classical approach to

generate all efficient solutions. We assume the two criteriaare § c;% and a d; %
N N

where
_ 11 if object i isassigned to resource
% = 10 otherwise

and ¢;; and d;; are two different costs of assigning object i to resource j.

Procedure for Generating all efficient solutionsof § c; x; and a d; x; criteria
i ij

Step 0. Solve the following assignment problems (P1) and (P2) to get two extreme

efficient solutions

(P1) Min § ¢x +€,Q d;X,
i] i]

st.  ax =1 j
é x, =1 "
]
x1{03

s.t. ax; =1 ]
8 x, =1 d
J
X 1 {03

For appropriately selected values of e, and e, .
Note that (P1) and (P2) give lower and upper bounds on the criteria values of
all efficient solutions.

Let C. and Cy be the lower and upper bounds of § c; % for al efficient
i

schedules.
Let k= Cu-1
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Step 1. Solve the following singly constrained assignment problem

Min é d, X, +e2é G, X;
] ]

1

=X
I

S.t.

Qo _ Qo - Qo -
X
11
'—\

x: £k

]

Y

x1{03
An optimal solution is an efficient point. Let x;* be the optimal values of the

decision variables.

Step 2. If é ¢ % * 2 C_+1 then
1]
k:é. G % *+1
]

GotoStep 1
Stop, al efficient solutions are generated.

Alternatively in Step 0, we can set k=Dy-1 where Dy is an upper bound on
the § d; %, values of al efficient solutions and solve the singly constrained
B

assignment problem with the objective Min § ¢

A G X +elé, d;x; and constraint
1] ij

é dijxij £k.
]
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