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ABSTRACT 
 

 

A BICRITERIA RESCHEDULING PROBLEM ON UNRELATED PARALLEL 

MACHINES: NETWORK FLOW AND ENUMERATION BASED APPROACHES 

 

 

Özlen, Melih 

Ph.D., Department of Industrial Engineering 

Supervisor      : Prof. Meral Azizoğlu 

 

November 2006, 99 pages 

 

 

 This study considers bicriteria approaches to the minimum cost network flow 

problem and a rescheduling problem where those approaches find their applications. 

For the bicriteria integer minimum cost network flow problem, we generate all 

efficient solutions in two phases. The first phase generates the extreme supported 

efficient points that are the extreme points of the objective space of the continuous 

bicriteria network flow problem. In the second phase, we generate the nonextreme 

supported and unsupported efficient points by Integer Programming Based approaches. 

Our rescheduling problem considers parallel unrelated machine environments. 

The criteria are the total flow time as an efficiency measure and the total reassignment 

cost as a stability measure. We show that the problems that address linear functions of 

the two criteria can be represented by bicriteria network flow models. To generate all 

efficient solutions, we use a Classical Approach that is based on the optimal solutions of 

the singly constrained network flow problem and provide a Branch and Bound approach 

that starts with extreme supported efficient set and uses powerful bounds. To find an 
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optimal solution to any nonlinear function of the two criteria, we provide a Branch and 

Bound approach and an Integer Programming Based approach that eliminates some 

portions of the efficient set that cannot provide improved solutions. 

We contribute both to the network flow and scheduling literature by proposing 

algorithms to the bicriteria network flow models and applying them to a rescheduling 

problem that is bicriteria in nature. 

The results of our extensive computations with up to 100 jobs and 12 machines 

have revealed that, the Branch and Bound algorithm finds the efficient set in less 

computational effort compared to the classical approach. In minimizing a nonlinear 

function of the two criteria both IP Based approach and Branch and Bound algorithm 

perform quite satisfactory. 

  

Keywords: Bicriteria Network Flows, Rescheduling, Parallel Unrelated Machines, Total 

Flowtime, Total Reassignment Cost 
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ÖZ 
 

 

İLGİSİZ PARALEL MAKİNALARDA İKİ KRİTERLİ YENİDEN ÇİZELGELEME 

PROBLEMİ: AĞ AKIŞ VE BİRERLEME TABANLI YAKLAŞIMLAR 

 

 

Özlen, Melih 

Doktora, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi          : Prof. Meral Azizoğlu 

 

Kasım 2006, 99 sayfa 

 

 

 Bu çalışmada enaz maliyetli ağ akış problemine iki kriterli yaklaşımlar, ve bu 

yaklaşımların uygulandığı bir yeniden çizelgeleme problemi ele alınmaktadır.  

 İki kriterli kesikli enaz maliyetli ağ akış probleminin tüm verimli noktaları iki 

aşamada bulunmuştur. İlk aşamada sürekli iki kriterli enaz maliyetli ağ akış probleminin 

amaç uzayında köşe noktalarda yer alan, köşe destekli verimli noktalar bulunmuştur.  

İkinci aşamada, destekli olmayan verimli noktalar, ve köşe olmayan destekli verimli 

noktalar, Tam Sayılı Programlamaya dayalı yaklaşımlarla bulunmuştur. 

 Yeniden çizelgeleme problemimiz ilgisiz parallel makinalar ortamlarında ele 

alınmıştır.  Verimlilik ölçütü olarak toplam akış zamanı kriteri, ve tutarlılık ölçütü 

olarak toplam yeniden atama maliyeti kriteri kullanılmıştır. İki kriterin doğrusal 

fonksiyonunu ele alan problemlerin iki kriterli enaz maliyetli ağ akış modelleri 

kullanılarak ifade edilebileceği gösterilmiştir. Tüm verimli noktaların yaratılması için, 

tek kısıtlı ağ akışı probleminin en iyi çözümlerine dayalı Klasik Yöntem kullanılmıştır, 

ve köşe destekli verimli noktalarla başlayan Dal ve Sınır yöntemi önerilmiştir. İki 
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kriterin her hangi bir doğrusal olmayan fonksiyonun en iyi çözümünü bulmak için, 

verimli kümenin daha iyi çözümler sağlayamayacak kısımlarını eleyen, Tam Sayılı 

Programlamaya dayalı bir yöntem, ve Dal-Sınır yöntemi önerilmiştir. 

 Bu çalışmada iki kriterli ağ akış problemleri için çözüm yöntemleri önerilerek, 

ve bu önerilen yöntemler, doğası gereği iki kriterli olan bir yeniden çizelgeleme 

problemi üzerinde uygulanarak, hem ağ akışları ve hem de çizelgeleme alanlarına katkı 

yapılmıştır. 

 100 iş, ve 12 makinalı problemleri çözebilen geniş çaplı deneysel çalışmamızın 

sonuçları, Dal-Sınır yönteminin, Klasik yöntemle karşılaştırıldığında, tüm verimli 

noktaları daha az çözüm zamanı harcayarak bulduğunu göstermiştir. Doğrusal olmayan 

bir fonksiyonun en azlanmasında, Tam Sayılı Programlama tabanlı yöntem ve Dal-Sınır 

algoritmasının her ikisinin de oldukça başarılı oldukları görülmüştür. 

 

Anahtar Kelimeler: İki Kriterli Ağ Akışları, Yeniden Çizelgeleme, Paralel İlgisiz 

Makinalar, Toplam Akış Zamanı, Toplam Yeniden Atama Maliyeti 
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CHAPTER 1 

 

INTRODUCTION 
 

 

Scheduling, network flows, and multi-criteria optimization are well 

recognized areas in the Operations Research literature. These research areas are 

motivated by the practical problems that arise in a wide range of situations. 

Network flows find many applications in scheduling area as many 

scheduling problems have network representations, where the jobs may be accepted 

as activities and the flows may be a representative of the sequence. Hence, advances 

in network flow theory trigger the development of efficient solution procedures for 

the scheduling problems having network flow representations. 

Multi-criteria optimization is an important area of operations research, which 

finds its application on both network flow problems and scheduling problems. Many 

network flow problems like assignment, transportation, minimum cost network flow, 

might have several concerns like safety, reliability, resource usages in addition to the 

total cost criterion. The incorporation of those concerns necessitates the multi-

criteria formulation of the network flow problems.  

Many scheduling problems have both producer and consumer related 

concerns that may necessitate their simultaneous consideration in a multi-criteria 

context. Rescheduling is an important scheduling area where multi-criteria 

optimization finds its application. Rescheduling, has been a popular scheduling area 

since 1990’s as evidenced by increasing evolving literature. The main motivation 

behind this popularity is the recognition of the manufacturing environments that are 

very often prone to disruptions. Rescheduling problems usually trade-off between 

the stability and efficiency measures. The efficiency measures are usually producer 

and/or consumer related. These measures aim to optimize classical performance 

measures of scheduling, like total flow time, total weighted flow time, total 

tardiness. The stability measures consider the deviation between the initial and new 
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schedules. Simultaneous treatment of the efficiency and stability measures, takes 

one into the area of multi-criteria optimization. 

This thesis addresses a rescheduling problem on unrelated parallel machines 

that has network flow representation and multi-criteria nature. Our criteria are total 

flow time for efficiency and total reassignment cost for stability. The parallel 

unrelated machine total flow time and total reassignment cost problems are 

represented by minimum cost flow networks. The bicriteria problem defined for any 

function of the total flow time and total reassignment cost is a bicriteria minimum 

cost network flow problem. Hence any theory added to the bicriteria minimum cost 

network flow area helps the development of the solution approaches to our 

rescheduling problem. 

In this thesis, we develop some theory for bicriteria minimum cost network 

flow problem. We apply the theory on our rescheduling problem. We also propose 

some implicit enumeration based approaches for our rescheduling problem. 

The thesis is organized in two main parts: Chapter 2 and Chapter 3. Chapter 

2 addresses a bicriteria minimum cost network flow problem. Chapter 3 considers 

the parallel unrelated machine problem with total flow time and total reassignment 

cost criteria. Each chapter has its own introduction where the importance of the 

addressed problem is discussed. In Chapter 4, we conclude and point out some 

future research directions.  
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CHAPTER 2 

 

BICRITERIA INTEGER NETWORK FLOW PROBLEM 
 

 

Network flow problems are well studied and applied models of operations 

research. The network flow problem with the single objective of minimum total cost 

is a well recognized problem in the operations research literature (Ahuja et al. 

(1993). The importance of the single objective problem not only stems from its 

applicability but also its appearance as a subproblem in many models exploiting 

network flow structure. Moreover, single objective minimum cost network flow 

models have very special structure explained by integrality of the extreme points of 

its feasible polyhedron. This structure, called total unimodularity property, allows 

use of special linear programming technique, namely network simplex algorithm. 

Several well known operations research problems like transshipment, 

transportation, assignment, shortest path, maximum flow problems are special cases 

of the minimum cost network flow problem. The minimum cost objective associated 

with those problems might represent several concerns like minimizing the delivery 

time, maximizing the safety and reliability, minimizing the deterioration of goods, 

minimizing the shipping costs, minimizing the resource usages. In the basic model, 

these concerns are combined in a single total cost objective. But these concerns are 

usually in conflict. As mentioned in Hamacher (2007), applications with 

transportation planning faces conflicting criteria like minimization of cost for 

selected routes, minimization of arrival times at the destination points, minimization 

of deterioration of goods, maximization of safety, etc. This necessitates the 

multicriteria formulation of the network flow problem. The solution to the multi 

criteria problem is a set of efficient, i.e., non-dominated, solutions among which the 

decision maker is allowed to make a choice according to his/her preferences. 
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Note that the network flow applications require integer flows, which would 

be handled automatically, when there is a single objective. Incorporation of second 

objective, dispels the total unimodularity nature of the network flow models. Hence 

a need for integer programming based procedures arise. 

A bicriteria network flow (BCNF) problem is a special case of multicriteria 

network flow problem with two criteria and has attracted the attention of many 

researchers. The majority of the BCNF studies assume continuous flow values. Pulat 

et al. (1992), Lee and Pulat (1991), Sedeno-Noda and Gonzales-Martin (2000) and 

Sedeno-Noda and Gonzales-Martin (2003) are the most noteworthy examples. The 

associated studies formulate the BCNF problem as a parametric programming 

model, which is solved by network simplex algorithm. The parameter of the models 

are updated iteratively based on the solution of the previous iteration. 

The BCNF problem with integer flow values (BCINF) to find exact set of 

efficient solutions has been addressed in Lee and Pulat (1993), and Sedeno-Noda 

and Gonzales-Martin (2001). Sedeno-Noda and Gonzales-Martin (2001) argue that 

the algorithm by Lee and Pulat (1993) may miss some efficient points and introduce 

another network simplex based algorithm that implicitly assumes the connectivity of 

the adjacency graph. Przybylski et al. (2006) show that the adjacency graph is not 

connected for the BCINF problem, hence settle the incorrectness of Sedeno-Noda 

and Gonzales-Martin (2001)’s algorithm.  Przybylski et al. (2006) also mention that 

it is not likely to find the exact efficient set for the BCINF problem by simple 

simplex pivots and interchange arguments. As stated in Hamacher et al. (2007), 

exact algorithms to find the efficient set is missing in the current literature.  But 

there are few approximation based studies that find a representation of the efficient 

set, some noteworthy examples are due to Lee and Pulat (1991), Nikolova (1998) 

and Mustafa and Goh (1998).  Lee and Pulat (1991) extend their algorithm for the 

continuous BCNF problem to find all integer points.  Nikolova (1998) studies the 

problem of generating all supported efficient solutions. Mustafa and Goh (1998) 

consider bicriteria and tricriteria integer network flow problems and propose 

approximate solutions by adjusting the non-integer flows via an interactive 

approach. 

 



 5

For more details on the continuous and integer BCNF problems, the reader is 

referred to the survey paper of Hamacher et al. (2007) who give a thorough review 

of optimization and approximation algorithms.   

In this study, we propose a two-phase approach to generate the exact 

efficient set for the BCINF problem. In the first phase, we generate a simplex based 

approach to generate the efficient solutions of the continuous flow problem. These 

solutions form the extreme supported efficient set of the integer flow problem. The 

remaining efficient solutions are found by integer programming based solution 

procedures that use valid inequalities to ensure the generation of non-extreme 

supported or unsupported efficient solutions. 

The rest of the chapter is organized as follows: In section 2.1, we define our 

problem, in Section 2.2 we present our solution procedures. 

  

2.1    Problem Formulation 

  

 Let G = (N, A) be a network with node set N and arc set A. Let lij and uij be 

the integer non-negative lower and upper bounds on the flow values on each arc (i, j) 

∈  A and bi be the integer demand (if negative) or supply (if positive) of each node i 

∈  N. Let c1
ij and c2

ij be the non-negative integer cost coefficients for the unit flow 

on arc (i, j) ∈  A, in the objectives f1(x) and f2(x) respectively. The decision variable 

xij denotes the amount of flow on arc (i, j) ∈  A. The BCINF problem can be 

formulated as follows: 

Min f1(x) = 1

( , )
ij ij

i j A
c x

∈
∑               (2.1)  

Min f2(x) = 2

( , )
ij ij

i j A
c x

∈
∑               (2.2) 

subject to 

ij ji i
j N j N

x x b
∈ ∈

− =∑ ∑    i N∀ ∈             (2.3) 

 lij ≤ xij ≤ uij   ( , )i j A∀ ∈             (2.4) 

 xij is integer   ( , )i j A∀ ∈             (2.5) 
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Let X represents the set of feasible solutions to the BCINF problem. A 

feasible solution x∈X  is efficient if there does not exist any other feasible solution 

x′∈X with either f1(x′) < f1(x) and f2(x′) ≤ f2(x), or f1(x′) ≤ f1(x) and f2(x′) <  f2(x). An 

efficient solution x∈X is supported if it optimizes any convex combination of f1(x) 

and f2(x) (See Ehrgott and Gandibleux (2000)). In other words, x∈X is a supported 

efficient solution, if it is one of the optimal solutions to w1 f1(x) + w2 f2(x) for any w1, 

w2.  A supported efficient solution x∈X is extreme supported if it can be found by 

parameterizing on w1 > 0 and w2 > 0. An extreme supported efficient solution is a 

boundary efficient solution if it lies at the corners of the (f1(x), f2(x)), i.e., objective 

space. A supported efficient solution x∈X is non-extreme supported if lies on the 

convex combination of two adjacent extreme supported efficient solutions on the 

objective space. An efficient solution x∈X is unsupported if it is not optimal for any 

convex combination of f1(x) and f2(x). Figure 2.1 illustrates the images of all 

solutions in the objective space.  

   

 

 

 
 Figure 2.1 Efficient solutions 
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In Figure 2.1, X1, X3, X5, X8 and X11 are extreme supported efficient points. X1 

and X11 are boundary efficient points. X2 and X9 are non-extreme supported efficient 

points as they lie on the convex combination of two adjacent extreme supported 

points. X4 and X7 are unsupported efficient points. X4 and X7 cannot optimize any 

convex combination of f1(x) and f2(x), and therefore lie inside the triangle formed by 

two adjacent extreme supported efficient points.  X6 and X10 are inefficient points as 

they lie on or outside the triangle formed by adjacent extreme supported efficient 

points.   

 

2.2   Solution Procedures 

  

  In this section, we describe two procedures to generate the efficient solution 

set (Set E).  Both procedures use the boundary efficient solution set, they iterate 

starting from one boundary point and terminate when the other boundary point is 

reached. We describe the generation of the boundary efficient solution set (Set BE) 

in Section 2.2.1. 

 The first procedure generates all efficient solutions, using an optimal solution 

of a singly constrained minimum cost network flow problem. The second procedure 

first generates the set of extreme supported solutions (Set ESE), then having known 

Set ESE, it generates the set of non-extreme supported solutions (Set NSE) and the 

set of unsupported efficient solutions (Set UE). We present first and second 

procedures in Sections 2.2.2 and 2.2.3 respectively.   

  

2.2.1 Generation of Boundary Efficient solutions, Set BE   

  

Set BE can be generated through the solutions of the following hierarchical 

problem for p=1, s=2 and p=2, s=1, i.e., selecting one objective as primary, and the 

other as secondary. 

(P) Min fS(x) 

s.t. (2.3), (2.4), and (2.5) 

 fP(x) = fP
*(x)                (2.6) 
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where fP
*(x) is an optimal solution to the single objective, Min fP(x), network flow 

problem and can be found in polynomial time using network simplex algorithm. 

Now consider the following single objective network flow  problem. 

(P′)  Min fP(x) + Sε fS(x)  where Sε  > 0  and is sufficiently small. 

s.t. (2.3), (2.4), and (2.5)   

 

Corollary 2.1, below, defines a range for Sε  that makes (P) and (P′) equivalent.  

Corollary 2.1. (P) and (P′) are equivalent when ε S < 

( , )

1
( ) S

ij ij ij
i j A

u l c
∈

−∑
. 

Proof. Sε should be set small enough so that objective p, should not increase even 

for the largest possible reduction in objective s. Minimum increase in fP(x), is 1 unit, 

since cP
ij can only take integer values. Maximum increase in fS(x), is the difference 

between
( , )

s
ij ij

i j A
u c

∈
∑ , i.e., an upper bound on fS(x), and 

( , )

s
ij ij

i j A
l c

∈
∑ , i.e., a lower bound 

on fS(x). Hence Sε  (
( , )

s
ij ij

i j A
u c

∈
∑ -

( , )

s
ij ij

i j A
l c

∈
∑ )<1, i.e., Sε <

( , )

1
( ) S

ij ij ij
i j A

u l c
∈

−∑
should hold.

                                                                  ▄ 

  

 Let (f1(x*), f2(x*)) be the optimal solutions to problem (P′) with p=1, 2, 

when Sε  is set to 

( , )

1
( ) 1S

ij ij ij
i j A

u l c
∈

− +∑
.  These two solutions form set BE.  Note that 

fP(x*), with p=1, 2, are lower limits on the f1(x) and f2(x) values (f1
LB and f2

LB) of all 

efficient solutions, respectively. On the other hand, fS(x*), with s = 1, 2, are upper 

limits on the f1(x) and f2(x) values ( f1
UB and f2

UB ) of all efficient solutions, 

respectively.  These limits give an upper bound of  Min{f1
UB- f1

LB, f2
UB- f2

LB}+1  on 

the number of all efficient solutions.  The reader may refer to Steuer (1986), for 

generation of the boundary efficient solutions for the general bicriteria problem. 
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2.2.2   Generation of All Efficient Solutions: A Simultaneous Approach 

  

Consider the following singly constrained minimum cost network flow problem 

(Pk)   Min z = 
( , )

P
ij ij

i j A
c x

∈
∑  +  

( , )

1
( ) 1S

ij ij ij
i j A

u l c
∈

− +∑ ( , )

S
ij ij

i j A
c x

∈
∑  

 s.t. (2.3), (2.4), and (2.5) 

 
( , )

S
ij ij

i j A
c x

∈
∑ ≤ k               (2.7) 

 (Pk) is NP-Hard as its special case, singly constrained assignment problem, is 

NP-Hard (See Aggarwal (1985)).   

An optimal solution to (Pk) is an efficient solution provided that k is no 

smaller than fS
LB. (See, Haimes et al. (1971) for the general bicriteria problem) 

Procedure 2.1 below generates Set E  by varying the value of k between fS
UB 

and fS
LB and solving (Pk). The procedure can be implemented by taking either of the 

objectives as primary. 

  

Procedure 2.1 

Step 0. Let p=1 or 2.    

Find fS
UB and fS

LB and let k = fS
UB –1. 

Step 1. If k ≤ fS
LB then stop. 

 Solve (Pk).  Let the optimal solution be (f1
*, f2

*). 

 E = E ∪ (f1
*, f2

*) 

Step 2. k = fS
* - 1, go to Step 1. 

  

 The procedure iterates pseudo-polynomial number of times as there exists 

pseudo-polynomial number of efficient solutions. Each iteration returns a new 

efficient solution by solving (Pk), i.e., an NP-Hard problem, in exponential time. 

Hence the procedure has an exponential-time complexity.  

  

 

 

 



 10 

2.2.3   Generation of All Efficient Solutions: A Sequential Approach 

  

 We find the efficient set sequentially, by first generating the extreme 

supported efficient solutions, set ESE and then the non-extreme supported efficient 

solutions, set NSE and the unsupported efficient solutions, set UE. We next describe 

the generation of each set. 

  

Generation of Extreme Supported Efficient solutions, Set ESE 

  

 We generate Set ESE through successive solutions of (Pk) by varying the 

value of k, in range [fS
LB, fS

UB]. Our procedure to generate Set ESE, Procedure 2.2, is 

similar to Procedure 2.1.  It solves the Linear Programming (LP) relaxation of (Pk) 

and pivots in the slack variable of constraint  fS(x) ≤  k, whereas Procedure 2.1 solves 

(Pk) exactly.  Below is the stepwise description of the procedure used to generate set 

ESE. 

 

Procedure 2.2 

Step 0. Let p=1 or 2 

k=fS
UB-1 

Step 1. If k  ≤  fS
LB , then stop. 

Step 2. Solve the LP relaxation of (Pk). 

If the solution is non-integer, perform one simplex iteration by pivoting in 

the slack variable of constraint fS(x) ≤  k and get an integer solution. 

 Let the current integer solution be (f1, f2). 

 ESE = ESE ∪  (f1, f2) 

k = fS(x) – 1, go to Step 1 

 Each execution of Step 2 adds a new solution to Set ESE by solving the LP 

in polynomial time. Step 2 iterates pseudo-polynomial number of times as there 

exists pseudo-polynomial number of solutions in Set ESE. Hence the algorithm runs 

in pseudo-polynomial time. 

Theorem 2.1 shows that Procedure 2.2 generates all extreme supported 

efficient solutions, i.e., Set ESE.   
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Theorem 2.1. Procedure 2.2 generates all extreme supported efficient solutions, i.e., 

Set ESE. 

  

Proof. The correctness of Procedure 2 is based on finding the extreme supported 

efficient solutions by the LP relaxation of the singly constrained network flow 

problem. Each point in Set ESE corresponds to an extreme point of the 

corresponding unconstrained network flow problem (see Isermann (1974)). If the LP 

relaxation of the singly constrained network flow problem gives all integer variables 

then the resulting solution corresponds to one of the extreme points of the 

unconstrained network flow problem (see Glover et al. (1978)). Note that the 

optimal solution of our singly constrained network flow problem, (Pk), is an efficient 

point. If the LP relaxation of (Pk) provides all integer variables, the resulting 

solution is extreme supported efficient as it corresponds to one of the extreme points 

of the network flow problem. 

 If the LP relaxation gives a non-integral solution then the additional 

constraint is binding, hence the associated slack variable is zero, i.e., not in the basis 

(see Glover et al. (1978)). If the additional constraint is not binding, then the 

associated slack variable is positive, i.e., in the basis.  In the latter case, the resulting 

solution is integral as the remaining constraint set (constraint set of the MCNF 

problem) is totally unimodular.   

When the slack variable of a non-integral solution is pivoted, it takes the 

maximum value, smax, that does not violate feasibility. The resulting solution is 

integral (Klingman and Russell (1978)) and solves 
max

( )k sp −  problem where the slack 

variable is in the basis at level zero. The solution is degenerate and corresponds to 

the same extreme point of the LP relaxed solution of the (Pk) problem. This follows 

that there cannot exist any other extreme point, hence an extreme supported efficient 

point, having fS(x) value between k and k - smax+1. The basis for the 

max
( )k sp − problem is no more feasible for the 

max 1( )k sp − − problem, so one can conclude 

that the extreme point representing the basis is different for each extreme supported 

point. Our algorithm catches those extreme points and therefore finds all extreme 

supported efficient points.                                                                                      ▄
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The previous approaches to generate set ESE, formulate the BCNF problem 

as a parametric programming model so as to minimize f1(x) + λ f2(x) where λ > 0.  

For a specified λ, they solve the parametric model by the network simplex method 

and get an extreme supported efficient solution after which λ is updated by some 

adjustment procedure. The parametric model is resolved for each updated λ using 

network simplex method.  

Our algorithm solves the BCNF problem by the network simplex method 

only once for k=fS
UB-1 and finds the remaining ESE solutions by the dual-simplex 

iterations based on the optimal basis of the most recently generated solution. As the 

associated problems are not solved from scratch, one can expect higher efficiency.     

The definition of supported efficient solutions follows that they are optimal 

for the BCNF problem with the objective of wf1(x) + (1-w) f2(x), for some range of 

w values.  We hereafter let (f1
r(x), f2

r(x)) denote the rth extreme supported efficient 

solution, Sr, such that  f1
r-1(x) > f1

r(x) > f1
r+1(x) and f2

r-1(x) < f2
r(x) < f2

r+1(x) and let 

#ESE denote the number of solutions in Set ESE. 

 We let [wr-1, wr] denote a range for w for which (f1
r(x), f2

r(x)) is optimal, 

where w0=0. When w = wr, Sr and Sr+1 and the solutions that lie on their convex 

combination are alternate optimal. Hence wr equates the objective function values of 

those supported solutions, i.e., 

wr f1
r(x)  + (1-wr) f2

r(x)=wr f1
r+1(x)  + (1-wr) f2

r+1(x) 

This follows, 
1

2 2
1 1

1 1 2 2

( ) ( )
( ) ( ) ( ) ( )

r r

r r r r r
f x f xw

f x f x f x f x

+

+ +

−
=

− + −
    r = 1,..., #ESE -1 

In the next two subsections, we use wr values to generate the non-extreme 

supported and unsupported efficient sets. 

   

 

 

 

 

 

 

 



 13 

Generation of Non-extreme Supported Efficient solutions, Set NSE 

   

 Consider the following integer programming model. 

(Pr
NE)   Min wr f1(x) + (1- wr) f2(x) +  NEε  fP(x) 

 s.t.  (2.3), (2.4), (2.5) 

  fS(x)  ≤  fS
r(x)   -1              (2.8) 

 (Pr
NE) selects the solution with minimum wr f1(x) + (1- wr) f2(x) value and 

breaks the ties in favor of fP(x) value. 

 Note that when NEε = 0, Sr+1 solves (Pr
NE).   

Any solution on the convex combination of Sr and Sr+1, is non-extreme 

supported and such a solution has a lower fP(x) value than that of Sr+1.  An optimal 

solution to (Pr
NE)  is a non-extreme supported efficient  point between Sr and Sr+1 

having smallest fP(x) value, provided that NEε  is set according to Corollary 2.2. If 

such a non-extreme supported efficient solution does not exist, the optimal solution 

to (Pr
NE) is Sr+1. 

  

Corollary 2.2. For 1 1
2 2 1 1

1 1.
( ) ( ) ( ) ( )NE r r r r UB LB

P Pf x f x f x f x f f
ε + +<

− + − −
 , (Pr

NE) 

minimizes wr f1(x) + (1-wr) f2(x) and breaks the ties in favor of  fP(x) value. 

 

Proof. ε NE should be set small enough so that z = wr f1(x) + (1-wr) f2(x) value should 

not be increased even for the largest possible reduction in fP(x).  Let ∆z be the 

difference between optimal value and the objective value of any solution. This 

difference can be defined mathematically as follows: 

 ∆z= wr ∆f1 + (1-wr)∆f2 

  =  
1

2 2
1 1

2 2 1 1

( ) ( )
( ) ( ) ( ) ( )

r r

r r r r
f x f x

f x f x f x f x

+

+ +

−
− + −

∆f1+
1

1 1
1 1

2 2 1 1

( ) ( )
( ) ( ) ( ) ( )

r r

r r r r
f x f x

f x f x f x f x

+

+ +

−
− + −

∆f2      
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Since two objectives can only take integer values,  f2
r+1(x) – f2

r(x), f1
r(x) – 

f1
r+1(x), ∆f1 and ∆f2 are all integers. 1a b

c c c
− ≥  holds for any three integers a, b and c 

such that  a-b is positive. This follows   ∆z >  1 1
2 2 1 1

1
( ) ( ) ( ) ( )r r r rf x f x f x f x+ +− + −

 

such that  ∆z > 0. 

The maximum increase in fP(x) is fP
UB – fP

LB.   

Therefore,  (fP
UB – fP

LB) ε NE < 1 1
2 2 1 1

1
( ) ( ) ( ) ( )r r r rf x f x f x f x+ +− + −

 , 

equivalently,  1 1
2 2 1 1

1 1.
( ) ( ) ( ) ( )NE r r r r UB LB

P Pf x f x f x f x f f
ε + +<

− + − −
 should hold. 

                                                                                                                                

 ▄ 

  

Before solving (Pr
NE) with the hope of finding a non-extreme efficient 

solution between Sr and Sr+1, one may check for the conditions for the non-existence 

of those solutions. One such condition is stated in Corollary 2.3. 

   

Corollary 2.3. There is no non-extreme supported efficient solution that lies 

between two extreme supported efficient solutions Sr and Sr+1 if there is no integer 

(f1(x), f2(x)) point on the line connecting (f1
r(x), f2

r(x)) and (f1
r+1(x), f2

r+1(x)). 

   

Proof.  The non-extreme supported efficient solutions lie on the line connecting two 

adjacent extreme support efficient solutions. The f1(x) and f2(x) values of all 

solutions are integers as our parameters are integers. If there are no integer values 

(f1(x), f2(x)) on the line connecting (f1
r(x), f2

r(x)) and (f1
r+1(x), f2

r+1
 (x)), there cannot 

exist any non-extreme supported efficient solutions between Sr and Sr+1.    

                                                                                         ▄ 
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Corollary 2.3 implies that one may skip the region in the objective space 

defined by Sr and Sr+1, if there is no integer point on their convex combination. 

Moreover the result of the corollary can be used whenever a non-extreme supported 

efficient solution, say ˆ
rS , is reached and there is no integer point on the convex 

combination of  ˆ
rS and Sr+!. In such a case one may again proceed to the region 

defined by Sr+1 and Sr+2.  

  Note that, there does not exist an integer solution between Sr and Sr+1, if for 

each integer value of f1(x) between f1
r(x) and f1

r+1(x), the corresponding f2(x) value is 

continuous. The f2(x) value can be found using the following equation. 
1

1 1 2 2
2 2 1

1 1

( ( ) ( )).( ( ) ( ))( ) ( )
( ) ( )

r r r
r

r r
f x f x f x f xf x f x

f x f x

+

+

− −
= +

−
 where f1(x) ∈[f1

r+1(x)+1, f1
r(x)-1]. 

 This check can be made for each integer point f2(x) ∈[f2
r(x)+1, f2

r+1(x)-1] and  

the corresponding f1(x) values. 

 We now provide the stepwise description of the algorithm that solves the 

(Pr
NE) problem for each (Sr and Sr+1) pair.   

  

Procedure 2.3 

Step 0. Let p = 1 or 2   and r = 1. 

Step 1. r = r+1,   if r = # ESE  then stop. 

 k= fS
r(x) – 1 

Step 2. If there is no integer point on the line connecting (f1
r(x), f2

r(x)) and (f1
r+1(x), 

f2
r+1

 (x)) 

then go to Step 1 

Step 3. Solve (Pr
NE) with fS(x) ≤  k. 

Step 4. Let ˆ
rS be the solution with ( 1 2

ˆ ˆ( ), ( )r rf x f x ) 

 If ˆ
rS = Sr+1  then go to Step 1. 

 NSE = NSE ∪ ˆ
rS  

 If there is no integer point on the line connecting (f1
r(x), f2

r(x)) and  

( 1 2
ˆ ˆ( ), ( )r rf x f x ) then go to Step 1. 

 k = ˆ ( ) 1r
Sf x − , go to Step 3 
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Generation of Unsupported Efficient solutions,  Set UE 

  

 Consider the following inequality 

 wrf1(x) + (1-wr)f2(x) > zr  r = 1,..., #ESE -1         (2.9) 

where  zr = wr f1
r(x) + (1 – wr) f2

r(x) 

  

 The unsupported efficient solutions satisfy constraint set (2.9), for all r as 

they do not optimize any convex combination of  f1(x) and f2(x).  Corollary 2.4 

shows that (2.9) is not satisfied by any supported efficient solution, thereby 

providing a valid cut for any model that aims to find an unsupported efficient 

solution. 
   

Corollary 2.4. The constraint wr f1(x) + (1-wr)f2(x) > zr eliminates all supported 

efficient solutions. 
   

Proof. Two adjacent extreme supported efficient solutions, Sr and Sr+1, and any 

solution on their convex combination do not satisfy (2.9), as they minimize wr f1(x) 

+ (1 – wr) f2(x) with an objective function value of zr, i.e.,  zr = wr f1(x) + (1 – wr) 

f2(x) for  Sr and Sr+1,.  This follows,     wr f1(x) + (1-wr) f2(x)  > zr eliminates Sr and 

Sr+1, and any non-extreme efficient solution on their convex combination.  

Therefore, constraint set (2.9) defined over all adjacent extreme supported solution 

pairs, eliminates all supported efficient solutions.     

                                                         ▄ 
  

From the standpoint of using a mathematical programming software, we 

convert (2.9)  into ‘greater than or equal to’ type constraint.  Recall from the proof 

of Corollary 2.2 that the minimum increase in z value is 

ε r= 1 1
1 1 2 2

1
( ) ( ) ( ) ( )r r r rf x f x f x f x+ +− + −

 and hence constraint set (2.9) is equivalent to 

the following constraint set.  

wr f1(x)  + (1-wr) f2(x)   ≥  zr + 1 1
2 2 1 1

1
( ) ( ) ( ) ( )r r r rf x f x f x f x+ +− + −

         (2.10) 

             r = 1,..., #ESE -1       



 17 

 Constraint set (2.10)  eliminates the supported efficient solutions, but not the 

inefficient solutions. To eliminate the inefficient solutions, we use the efficiency 

definition and add either f1(x) ≤  f1
r(x) – 1   or  f2(x) ≤  f2

r(x) – 1, constraints for 

each r: 

 One can linearize this either/or type relation via a binary variable, Yr, as 

follows: 

 f1(x) ≤   f1
r(x) – 1 + (f1

UB(x) - f1
LB(x))( 1- Yr) 

 f2(x) ≤   f2
r(x) – 1 + (f2

UB(x) - f2
LB(x))Yr 

 The model to find an unsupported efficient solution can then be written as, 

(Pk
UE)  Min fP(x) +   ε S fS(x) 

 s.t.  (2.3), (2.4), (2.5) 

fS(x)  ≤  k 

  wr f1(x)  + (1-wr) f2(x)   ≥  zr + ε r  ∀ r    s.t.  fS
r(x)  ≤  k 

  f1(x) ≤   f1
r(x) – 1 + (f1

UB(x) - f1
LB(x))( 1- Yr)  ∀ r    s.t.  fS

r(x)  ≤  k 

  f2(x) ≤   f2
r(x) – 1 + (f2

UB(x) - f2
LB(x))Yr ∀ r    s.t.  fS

r(x)  ≤  k 

  Yr = 0 or 1 
 

For a given k in range (fS
LB(x), fS

UB(x)), (Pk
UE) either returns an unsupported 

efficient solution or concludes that no unsupported efficient solution having fS(x) 

value no bigger than k exists. Below is the formal description of the algorithm that 

uses (Pk
UE) to generate all unsupported efficient solutions. 

   

Procedure 2.4 

Step 0. Let p = 1 or 2,  k = fS
UB – 1 

Step 1. If k= fS
LB, then stop. 

 Solve (Pk
UE).   

If the solution is infeasible, all unsupported solutions are generated, stop. 

Step 2. Let (f1
u(x), f2

u(x)) be the solution. 

 UE = UE ∪  (f1
u(x), f2

u(x)) 

 k = fS(x) – 1,  go to Step 1 
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Procedure 2.4 iterates pseudo-polynomial number of times, as each execution 

of Step 2 returns a new unsupported efficient solution and there is pseudo-

polynomial number of unsupported efficient solutions. Step 2 solves an integer 

program (Pk
UE), in exponential time. So, the procedure runs in exponential time. 

In Chapter 3, we deal with a rescheduling problem that is bicriteria in nature 

and has a network flow representation. We, thus, apply the theory derived in this 

section to the bicriteria minimum cost network flow problem to deal with our 

rescheduling problem that trade-offs between total flow time and total reassignment 

cost objectives. 
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CHAPTER 3 

 

RESCHEDULING PROBLEM 

 

 
 Majority of the scheduling literature considers a manufacturing environment 

with no disruptions. However in manufacturing practice, the environment is very 

often subject to disruptions that makes the initial scheduling plan inefficient or even 

infeasible and necessitates rescheduling. The common disruptions are machine 

breakdowns, hence subsequent repairs, new order arrivals, order cancellations, 

changes in order specifications like priorities, release times, and due dates, and 

shortages of resources like materials, labor, tools and equipments. 

 We consider a parallel machine environment where the machines are subject 

to  disruptions and where the jobs are initially scheduled so as to minimize total flow 

time, i.e., total time the jobs spent in the system. Flow time gives a direct indication 

of the work-in-process inventory levels, hence its minimization is an important 

concern of many manufacturers.  

We assume the customer promises are given and the resource allocations are 

made according to the initial minimum flow time schedule.  During the execution of 

the initial plan, a disruption blocks the machines for a specified length of time.  

Thereafter, the manufacturer still aims to minimize the total flow time of the jobs 

that have not yet started, considering the disruption effect. However, the new 

minimum flow time schedule may deviate from the initial schedule, in terms of 

machine allocations. A deviation may cause disturbances, in particular, when the 

machine setups and resource allocations are made according to the initial 

allocations.  
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We aim to consider the trade-off between the efficiency of the new schedule, 

measured by the total flow time and the stability measured by the difference between 

the initial and new machine allocations. As a stability measure, we use the total 

reassignment cost. The jobs receive costs, i.e., penalties, according to the machines 

they are assigned in the new schedule. The reassignment cost of job i on machine j is 

zero, if job i is assigned to machine j in the initial schedule. We consider the 

unrelated parallel machine environment where the processing time of a job is 

dependent on the machine it is assigned on.  

The rest of the Chapter is organized as follows. In Section 3.1, we review the 

rescheduling literature. In Section 3.2, we introduce the basic definitions, notation, 

and define our problems. In Section 3.3, we present the optimization algorithms for 

each of our problems. The results of our experiments are presented in Section 3.4.  

 

3.1 Literature Review 

 

The rescheduling studies are of relatively recent origin. Almost all related 

work are published in 1990’s and 2000’s. Vieira et al.(2003) classify rescheduling 

strategies as dynamic with no schedule generation or predictive-reactive with 

schedule generation and update. Dynamic strategies can be dispatching rules or 

control-theoretic approaches. Rescheduling can be done periodic, event-driven or 

hybrid in predictive-reactive strategies. Schedule generation and schedule repair are 

the two methods used for rescheduling. Schedules can be robustly generated by 

taking disruptions into account. As a repair methodology right-shift scheduling, 

partial rescheduling or complete regeneration can be used. Raheja and Subramaniam 

(2002) review rescheduling in a job shop environment and identify the methods used 

in rescheduling. Right shift scheduling is the simplest strategy that recovers 

disruption by shifting all the jobs towards the right in the time horizon without 

changing the initial sequence. Affected operations rescheduling is a partial 

scheduling strategy where only the jobs that are affected from the disruptions are 

rescheduled. 
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Aytug et al. (2005) review the literature on executing production schedules 

in the presence of disruptions. A four dimensional taxonomy is introduced. The 

taxonomy is; Cause – object, state; Context – free or sensitive; Impact – time, 

material, quality, dependency, context; Inclusion; predictive and/or reactive. A 

number of directions for future work are suggested on; problem formulation, 

estimation of reconfiguration costs, using available information on the nature of 

disruptions and integrating with structural control. Henning and Cerda (2000) 

present a knowledge-based framework, based on the object oriented technology, for 

building scheduling systems aimed at solving real-world problems. The paper points 

out the most relevant aspects of the proposed framework architecture that support 

both predictive and reactive scheduling. 

 Hall and Potts (2005) consider inserting new jobs in a schedule without 

excessive disruption of the old jobs. New jobs must be inserted into the current 

schedule while preserving the original assignments as much as possible. They 

consider maximum lateness and total flow time as efficiency measures and the total 

sequence deviation and total completion time deviation between the initial and new 

schedules as stability measures. They utilize two different models, in the first model 

they minimize scheduling cost under a limit on the disruption amount and in the 

second model they simultaneously consider the two criteria in the objective function. 

They provide either efficient algorithms or show that such algorithms are unlikely to 

exist. Unal et al. (1997) consider the problem of rescheduling a facility modeled as a 

single machine in the face of newly arrived jobs with part-type dependent setup 

times. Their aim is to insert the new jobs in the schedule so as to minimize the total 

weighted completion time or the maximum completion time of the new jobs. They 

provide a polynomial-time algorithm for the maximum completion time problem. 

Daniels and Kouvelis (1995) formalize the robust scheduling concept for scheduling 

situations with uncertain or variable processing times. They consider a single-

machine environment and minimize the total flow time. O’Donovan et al. (1999) 

applies predictable scheduling approach to minimize total tardiness on a single 

machine with stochastic machine failures. Their procedure considers the case where 

the processing times are affected by machine breakdowns, and provides specialized 

rescheduling heuristics. 



 22 

 Bean et al. (1991) consider the rescheduling operations with release dates 

and multiple resources. They specify some optimality conditions and a solution 

approach. Their approach, called as Match-up Scheduling, follows the initial 

schedule until a disruption occurs. After a disruption, part of the schedule is 

reconstructed to match up with the initial schedule at some future time. Leung and 

Pinedo (2004) consider parallel machine scheduling, where the machines are 

identical and subject to repair and breakdown. Three objectives namely, the total 

completion time, the makespan, and the maximum lateness are considered. They 

analyze the case where the jobs have deadlines and are subject to precedence 

constraints.  

 Mason et al. (2004) work on rescheduling strategies for minimizing total 

weighted tardiness in complex job shops of semiconductor manufacturing 

environment. Three rescheduling strategies, namely right shift scheduling, fixed 

sequence rescheduling and complete rescheduling are examined, to investigate the 

efficiency of each strategy on the on-time delivery performance measured by the 

total weighted tardiness. Aktürk and Görgülü (1999) propose a rescheduling strategy 

and match-up point determination procedure to increase both the schedule quality 

and stability on modified flow shops (MFS) in which the machines are physically 

arranged in cellular form. Abumaizar and Svestka (1997) present an affected 

operations rescheduling algorithm in a job shop and compare it with complete 

rescheduling and Right-shift Scheduling strategies. Their results demonstrate the 

superiority of the Affected operations algorithm over other rescheduling methods. 

O’Kane (2000) describes research on the development of an intelligent simulation 

environment. The environment is used to analyze reactive scheduling scenarios in a 

specific flexible manufacturing systems (FMS) configuration. Various intelligent 

systems and concepts are developed and implemented to provide decision making 

and control across a FMS schedule lifetime. Sabuncuoğlu and Bayız (2000) study a 

reactive scheduling problem in classical job shop environments, and use mean 

tardiness and makespan as performance measures. Kutanoğlu and Sabuncuoğlu 

(2001) study reactive scheduling in dynamic job shops, where the machines are 

prone to unexpected failures. Their strategy is to reroute the jobs if one the machines 

on the original route fails. 
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 Rangsaritratsamee et al.(2004) propose a rescheduling methodology whose 

objective contains both efficiency and stability measures. Schedules are generated at 

each rescheduling point using a genetic local search algorithm that allows efficiency 

and stability to be balanced in a way that is appropriate for each situation. Mehta  

and Uzsoy (1998) present a predictable scheduling approach which can absorb 

disruptions without affecting planned external activities, while maintaining high 

shop performance. The procedure inserts additional idle time into the schedule to 

absorb the impacts of breakdowns. The amount and location of the additional idle 

time are determined from the breakdown and repair distributions as well as the 

structure of the predictive schedule. The effects of the disruptions on the planned 

support activities are measured by the deviations of the job completion times 

between the realized and predictive schedule. This approach is applied to maximum 

lateness (Lmax) problem in a job shop environment with random machine 

breakdowns.  

Wu, Storer and Chang (1993) develop rescheduling heuristics for single 

machine environments. They utilize makespan as the efficiency measure and start 

time and sequence deviation of the initial and new schedules as their stability 

measure. Li and Shaw (1996) consider dynamic scheduling on job shop 

environment.  They utilized a simulation model to evaluate their proposed heuristic 

against classical heuristics. 

 Alagöz and Azizoğlu (2003) and Azizoğlu and Alagöz (2005) address the 

trade-off between the total flow time and the number of reassigned jobs. Azizoğlu 

and Alagöz (2005) develop a polynomial time algorithm to generate all non-

dominated solutions, whereas Alagöz and Azizoğlu (2003) consider eligibility 

constraints and propose approximation and optimization algorithms. Curry and 

Peters (2005) consider total reassignment penalty as a stability measure and total 

tardiness as an efficiency measure. They propose a simulation study to test the 

efficiencies of some heuristic procedures and rescheduling strategies.  
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 Church and Uzsoy (1992) consider single machine and parallel identical 

machine environments to minimize the maximum lateness and the number of times 

rescheduling is done. They provide a simulation study to test the efficiencies of 

some rescheduling strategies like periodic, event-driven and continuous 

rescheduling. 

 In our study, we consider a rescheduling problem on unrelated parallel 

machine environments that address the trade-off between the total flow time and the 

total reassignment cost. Our model is a generalization of the identical parallel 

machine models in Alagöz and Azizoğlu (2003), and Azizoğlu and Alagöz (2005) 

that consider the trade-off between the total flow time and the number of reassigned 

jobs. Our aim is to contribute to the rescheduling literature by proposing a solution 

methodology for a bicriteria problem on unrelated parallel machine environments. 

 

3.2    Problem Definition 

 

We consider a manufacturing environment with m unrelated parallel 

machines. We assume all jobs are available at time zero, and each should be 

assigned to one of the machines, and processed without interruption. Each job i is 

characterized by an integer processing time pij time units on machine j.  

We assume the initial schedule is known. There is a disruption of D time 

units on one of the machines, say machine DM, after executing the initial schedule 

for DT time units. The job that is being processed on DM, and the jobs that start on 

or after DT on other machines are to be rescheduled at time DT.   We assume there 

are n such jobs. Once we take the reference starting point from time zero to DT, our 

rescheduling problem reduces to scheduling n jobs, available at time zero, on m 

unrelated parallel machines where machine j becomes available at time aj. 

Accordingly, aDM = D and aj is the completion time of the job processed at time DT 

on non-disrupted machine j. Note that,  multiple simultaneous disruptions can also 

be handled by letting aj = Dj where Dj is the time at which the disruption on machine 

j, is recovered. We assume D, DT, and aj are all integers. Figure 3.1 illustrates a 

rescheduling environment where DM=M1. 
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Figure 3.1 Example rescheduling environment 

 

 

 

The scheduling cost, that defines our efficiency measure, is the total flow 

time, F. Total flow time is the total time the jobs spent in the system and therefore is 

the direct indication of total work-in-process inventory levels. As we assume all zero 

ready times, the total flow time and total completion time are equivalent measures. If 

we let Ci denote the completion time of job i in the new schedule, total flow time, 

1

n

i
i

F C
=

= ∑ . The disruption cost that defines our stability measure is the total 

reassignment cost of jobs that are reassigned to different machines between initial 

and new schedules, shortly reassigned jobs. We let 

1         if job  is reassigned
0        otherwisei

i
R 

= 

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The total number of reassigned jobs, a special case of total reassignment cost 

with unique cost terms, is 
1

n

i
i

R
=
∑ . Total reassignment cost is defined by letting 

wrij  = integer cost (penalty) of assigning job i to machine j  

We can interpret wrij as the additional cost incurred due to the reassignment 

of job i to machine j. Such a cost might be incurred due to the additional set-up, 

adjustment, tooling, material/labor shifting done. 

The total reassignment cost, WRJ, is ij ii j
wr R∑ ∑ . 

A schedule S is said to be efficient with respect to F and WRJ if there exists 

no schedule S′ with F(S′) ≤  F(S) and WRJ(S′) ≤  WRJ(S) with at least one strict 

inequality. An efficient schedule s∈S is supported if it optimizes any weighted sum 

of WRJ and F. In other words, s∈S is a supported efficient solution, if it is one of the 

optimal solutions to w1 WRJ + w2 F for any non-negative w1, w2.  A supported 

efficient schedule s∈S is extreme supported efficient if it can be found by 

parameterizing on w1 and w2. A supported efficient schedule s∈S is nonextreme 

supported efficient if lies at the convex combination of two adjacent extreme 

supported efficient schedules on the (WRJ, F). An efficient schedule s∈S is 

unsupported if it is not optimal for any weighted sum of WRJ and F. 

The standard classification schemes for scheduling problems use three-field 

representation | |α β γ  where α is the machine environment, β is the constraints or 

special characteristics of the problem and γ is the objective function (see Lawler et 

al. (1989)).  We consider unrelated parallel machines and hence set α = R, when the 

parallel machines are identical, i.e., pi j= pi for all i and j, we set α = P. We have 

initial machine available times denoted by aj in β field. Moreover, we use the 

following constraints 

β =   F = F* :  total flow time should be kept at its minimum value 

β = WRJ = WRJ* : total reassignment cost should be kept at its minimum value 

β =     F ≤  k : total flow time can be at most k 

β =     WRJ ≤  k :  total reassignment cost can be at most k 

β =     aj : the machines have initial available times 
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We consider F, WRJ as efficiency and stability measures, hence we have,  

γ = F, WRJ : generating set of efficient schedules with respect to F and WRJ 

γ = f (F, WRJ) : finding an optimal schedule for a specified function of F and 

WRJ 

 

3.3 Solution Procedures 

 

In this section, we provide solution procedures to our problems that are 

described in detail in the following sections. 

 

3.3.1   The | |jR a F problem 

 

Kaspi and Montreuil (1988) show that the | |jP a F  problem can be solved 

in polynomial time by assigning the shortest available job to the earliest available 

machine. Lee and Liman (1992) and Mosheiov (1994) study the more general case 

of the | |jP a F  problem where the machines are unavailable at arbitrary, but not 

necessarily initial, times. 

A special case of the | |jR a F problem where pi j= pi or ∞  for all i and j, is 

formulated as a network flow problem in Alagöz and Azizoğlu (2003).  We now 

extend this network formulation to the arbitrary pij case. 

 

Our decision variable is defined as 

1        if job  is scheduled  position from last on machine .      
:

0        otherwise

th

ikj
i k j

X




 

The objective function requires the minimization of the total flow time 

values, i.e., 

Min 
1 1 1

( )
n n m

ij j ikj
i k j

kp a X
= = =

+∑∑∑               (3.1) 

kpij is the contribution of the processing time of job i to the total flow time if 

it is sequenced at kth position from last on machine j and aj is the start time of the 

first job on machine j. 
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The constraint sets are as stated below: 

1 1

1
n m

ikj
k j

X
= =

=∑∑    ∀ i            (3.2) 

  
1

1
n

ikj
i

X
=

≤∑    ∀ j, k            (3.3) 

  { }0,1ikjX ∈    ∀ i, j, k           (3.4) 

 Constraint sets (3.2) and (3.3) ensure that each job is scheduled exactly once 

and each position of each machine is occupied by at most one job. Constraint set 

(3.4) requires that the jobs cannot be preempted or splitted. Due to the total 

unimodularity of the constraint set of the network flow models (see Papadimitriou 

and Steiglitz (1982)), the Linear Programming (LP) relaxation of the model provides 

all integer solutions. Therefore constraint set (3.4) can be replaced by  

  0 ≤  Xikj ≤  1   ∀ i, j, k           (3.5) 

 

3.3.2  The | |jR a WRJ  problem 

 

WRJ can be forced to its lower bound of zero by applying the right-shift 

strategy to the initial schedule. The right-shift strategy shifts all jobs on DM, D time 

units to the right, while keeping other job assignments the same. The F value that 

solve | |jR a WRJ problem, i.e., F value of the right-shift schedule, gives an upper 

bound on the F values of all efficient schedules. 

   

3.3.3   The *| , |jR a F F WRJ=   problem 

 

Note that the F value that solves the | |jR a F  problem gives a lower bound 

on the F values of all efficient solutions. However the resulting schedule may not be 

efficient as there may exist alternate optimal schedules to the | |jR a F  problem 

having smaller WRJ values. Among the alternate optimal schedules to the total flow 

time problem, the one that has the smallest WRJ value, hence the efficient schedule 

requires an exact solution of the *| , |jR a F F WRJ=  problem.  In place of 
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incorporating F = F* to our network flow model, we can modify our objective 

function as F + ε WRJ WRJ, for a sufficiently small value of ε WRJ > 0. Theorem 3.1 

states this result formally and defines a range for ε WRJ. 

 

Theorem 3.1. The *| , |jR a F F WRJ= and | |j WRJR a F WRJε+ problems are 

equivalent when ε WRJ < 

1

1

{ }
n

j ij
i

Max wr
=
∑

. 

 

Proof. ε WRJ should be set small enough so that the total flow time value should not 

increase even for the largest possible reduction in the total reassignment cost. The 

minimum increase in the total flow time is one unit due to the integrality of the 

processing times. The maximum increase in the total reassignment cost is 

1
{ }

n

j ij
i

Max wr
=
∑ .  

Hence ε WRJ 
1

{ }
n

j ij
i

Max wr
=
∑ < 1, i.e., ε WRJ < 

1

1

{ }
n

j ij
i

Max wr
=
∑

 should hold.                                            

             ▄ 

 

In our experiments, we use ε WRJ = 

1

1

{ } 1
n

j ij
i

Max wr
=

+∑
 for the 

| |j WRJR a F WRJε+ problem. Note that, this result is presented in Chapter 2 for 

BCINF problem, we derived the ε  for our rescheduling problem using the  

1
{ }

n

j ij
i

Max wr
=
∑  as the upper bound, and zero value as the lower bound (See Corollary 

2.1). 
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3.3.4   The *| , |jR a WRJ WRJ F=   problem 
  

The right-shift schedule solves the | |jR a WRJ problem, as it produces an 

WRJ value of zero. However, wrij can be zero, even when a job is reassigned  In 

such a case, there can be a schedule, other than right-shift, having a zero WRJ value 

and smaller F value than that of the right-shift schedule. The efficient schedule 

having smallest F value, among the ones having zero WRJ value, can be found by 

solving the *| , |jR a WRJ WRJ F=  problem. Instead of treating WRJ=WRJ* 

constraint, we can modify the objective function as WRJ + ε F F for a sufficiently 

small value of ε F. Theorem 3.2 states this result formally and defines a range for 

ε F. 

  

Theorem 3.2. The *| , |jR a WRJ WRJ F=  and | |j FR a WRJ Fε+  problems are 

equivalent when ε F < 1

UB LBF F−
, where FUB and FLB are the F values that solves the 

| |jR a WRJ  and | |jR a F  problems respectively. 

  

Proof.  ε F  should be set small enough so that the total reassignment cost should not 

increase even for the largest possible reduction in total flow time. The minimum 

increase in the total reassignment cost is one unit due to integrality of wrij values. 

The maximum increase in the total flow time is FUB - FLB units.  

Henceε F [FUB - FLB] < 1, i.e, ε F < 1

UB LBF F−
 should hold.      

                                     ▄ 

In our experiments we use ε F = 1
1UB LBF F− +

. Note that, this result is 

previously presented in Chapter 2 for the BCINF problem (See Corollary 2.1). 
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3.3.5.  The constrained optimization problems 

 

The | , |j WRJR a WRJ s F WRJε≤ +  and | , |j FR a F s WRJ Fε≤ +  are singly-

constrained assignment problems. The additional constraints to the assignment 

model, WRJ ≤  s, and F ≤  s  are expressed as follows: 

 
, ,

ij ikj
i j k

wr X∑  ≤  s               (3.6) 

 
, ,

( )j ij ikj
i j k

a kp X+∑   ≤  s               (3.7) 

 For arbitrary coefficients, the singly-constrained assignment problem is NP-

Hard so are the | , |j WRJR a WRJ s F WRJε≤ +  and  | , |j FR a F s WRJ Fε≤ +  

problems. 

 

3.3.6   Generation of all extreme supported efficient schedules 

 

 We generate the extreme supported efficient solutions using an LP based 

procedure 2.2. Procedure 3.1 applies the steps of Procedure 2.2, to our rescheduling 

problem.  

 

Procedure 3.1 Generation of extreme supported efficient solutions 

Step 0. Let s=WRJUB-1 

Step 1. If s ≤  WRJLB + 1, then STOP 

Step 2. Solve the LP relaxation of (Ps) 

(Ps)    Min 
1 1 1

( )
n n m

ij j ikj
i k j

kp a X
= = =

+∑∑∑  + 

1

1

{ } 1
n

j ij
i

Max wr
=

+∑ , ,
ij ikj

i j k
wr X∑  

s.t  
1 1

1
n m

ikj
k j

X
= =

=∑∑    ∀ i     

  
1

1
n

ikj
i

X
=

≤∑    ∀ j, k      

  { }0,1ikjX ∈    ∀ i, j, k 

  
, ,

ij ikj
i j k

wr X∑ ≤ s  
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 If all decision variables are not integer,  

            then perform a single simplex iteration by pivoting in the  

slack variable of 
, ,

ij ikj
i j k

wr X∑ ≤  s 

 Let the current solution be (F*, WRJ*). 

 ESE = ESE ∪  (F*, WRJ*) 

 s = WRJ* – 1, Go to Step 1 

 

The following figure illustrates the progress of Procedure 3.1. 

 

 

 

 
 

Figure 3.2 Progress of Procedure 3.1 

 

 

 

 

 

 



 33 

 The steps followed by Procedure 3.1 are as follows: 

Step 0. Set s =WRJUB-1=s0 

Step 2. Solve the LP Relaxation of 
0sP  

 Pivot in the slack variable, identify extreme supported point 1. 

 Let the current solution be (F1*, WRJ1*). 

 ESE = ESE ∪  (F1*, WRJ1*) 

 s = WRJ1* – 1= s1 

Step 2. Solve the LP Relaxation of 
1s

P  

 Pivot in the slack variable, identify extreme supported point 2. 

 Let the current solution be (F2*, WRJ2*). 

 ESE = ESE ∪  (F2*, WRJ2*) 

 s = WRJ2* – 1= s2 

Step 2. Solve the LP Relaxation of 
2sP  

 Pivot in the slack variable, identify extreme supported point 3. 

 Let the current solution be (F3*, WRJ3*). 

 ESE = ESE ∪  (F3*, WRJ3*) 

 s = WRJ3* – 1= s3 

  

The procedure continues to iterate in a similar manner, until it hits to the 

other boundary point, namely (FUB, WRJLB). 

 

3.3.7   Generation of all efficient schedules 

 

 We develop two approaches to generate the efficient set. First approach, we 

call Integer Programming Based (IPB) approach, solves singly constrained 

optimization problems, successively. Second approach is a Branch and Bound 

method that makes implicit enumeration of the efficient schedules.   
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Integer Programming Based (IPB) Approach 

 

We generate the efficient schedules through the Procedure 3.2 below that 

varies the value of s between the WRJLB and WRJUB. Note that this procedure is 

Procedure 2.1 from Chapter 2, modified for our rescheduling problem. 

 

Procedure 3.2.  Classical Approach: Finding All Efficient Schedules 

Step 0. Solve the 

1

1| |
{ } 1

j n

j ij
i

R a F WRJ
Max wr

=

+
+∑

 problem and form a right-shift 

schedule. 

WRJLB = WRJ value of the right-shift schedule, i.e., zero 

WRJUB = WRJ value that solves the 

 

1

1| |
{ } 1

j n

j ij
i

R a F WRJ
Max wr

=

+
+∑

problem 

Let s = WRJUB – 1 

Step 1. Solve the 

1

1| , |
{ } 1

j n

j ij
i

R a WRJ s F WRJ
Max wr

=

≤ +
+∑

 problem 

 Let (F*, WRJ*) be the solution 

 E = E ∪ (F*, WRJ*) 

Step 2. If WRJ*=WRJLB then STOP 

 s = WRJ*  - 1 

 Go to Step 1 

 

 The following figure illustrates the progress of Procedure 3.2. 
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Figure 3.3 Progress of Procedure 3.2 

 

 

 

The steps followed by Procedure 3.1 are as follows: 

Step 0. Form the right shift schedule, and identify (FUB, WRJLB). 

            Solve | |j WRJR a F WRJε+  problem and identify (FLB, WRJUB). 

 s =WRJUB-1=s0 

Step 1. Solve the 

1

1| , |
{ } 1

j n

j ij
i

R a WRJ s F WRJ
Max wr

=

≤ +
+∑

 problem 

 Let (F1
*, WRJ1

*) be the solution 

 Point 1 in Figure 3.3 is the corresponding efficient point. 

 E = E ∪ (F1
*, WRJ1

*) 

Step 2. s = WRJ1
*  - 1 

Step 1. Solve the 

1

1| , |
{ } 1

j n

j ij
i

R a WRJ s F WRJ
Max wr

=

≤ +
+∑

 problem 

 Let (F2
*, WRJ2

*) be the solution 
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Point 2 in Figure 3.3 is the corresponding efficient point. 

 E = E ∪ (F2
*, WRJ2

*) 

Step 2. s = WRJ2
*  - 1 

Step 1. Solve the 

1

1| , |
{ } 1

j n

j ij
i

R a WRJ s F WRJ
Max wr

=

≤ +
+∑

 problem 

 Let (F3
*, WRJ3

*) be the solution 

Point 3 in Figure 3.3 is the corresponding efficient point. 

 E = E ∪ (F3
*, WRJ3

*) 

Step 2. s = WRJ3
*  - 1 

 

The procedure continues to iterate in a similar manner, until it hits to the 

other boundary point, namely (FLB, WRJUB). 

 Alternately, we could solve the | , |j FR a F k WRJ Fε≤ +  problem and vary 

the value of k between FLB and FUB. 

 Note that each step of Procedure 3.2 generates an efficient solution.  The 

| | ,jR a F WRJ  problem has at most { 1, 1}UB LB UB LBMin F F WRJ WRJ− + − + , i.e., 

pseudo-polynomial, number of efficient solutions. Hence the algorithm iterates 

pseudo-polynomial number of times. In each iteration, one has to solve singly-

constrained assignment problem for which polynomial algorithms cannot exist. 

 

A Branch and Bound (BAB) Approach 

 

Recall that the | | ,jR a F WRJ  problem is open. This justifies the use of 

implicit enumeration technique to find the exact set of efficient solutions. We, in this 

study, propose a branch and bound algorithm. 

Our branch and bound algorithm uses the following two phase approach to 

generate an initial approximate set of efficient solutions. 

Phase 1. Generation of extreme supported efficient solutions 

Phase 2. Generation of approximate non-extreme supported and unsupported 

efficient solutions in the neighborhood of the solutions found in Phase 1. 
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Phase 1: 

Recall that we can use Procedure 3.1 to find the extreme supported efficient 

solutions by using an LP solver. Alternatively, we could generate these solutions 

through the successive solutions of a linear assignment problem. We start with two 

known boundary solutions, S1 and S2, define ranges for w values of the weighted 

objective function over which each boundary point is better. In doing so, we solve 

the following inequality. 

 wF1 + (1-w)WRJ1=wF2 + (1-w) WRJ 2            (3.8) 

 where ( Fi, WRJ i) is the (F, WRJ) values of Si and Si s are ordered such that  

 Fi < Fi+1 and WRJ i > WRJi+1. 

Note that 2 1

1 2 2 1

WRJ WRJw
F F WRJ WRJ

−
=

− + −
 solves equation 3.8.   

 At w, S1 and S2 have the same objective function values. In ranges [w, 1] and 

[0, w], S1 and S2 are favored respectively. When a new extreme supported efficient 

solution is added, we reorder the solutions in such a way that F1 < F2 < F3 and  

WRJ1 > WRJ2 > WRJ3  and solve the following two equations simultaneously 

w1F1 + (1-w1) WRJ1=w1F2 + (1-w1) WRJ2     

 w2F2 + (1-w2) WRJ2=w2F3 + (1-w2) WRJ3.     

 Then in ranges [w1,1], [w2, w1] and [0, w2], S1, S2 and S3 are the best 

schedules respectively. Note that the ranges change once a new schedule is added. 

In general, once we have k efficient solutions, we solve k-1 equations: one 

for each adjacent pair and find k ranges. Exact ranges are available when all extreme 

supported solutions are found. 

Each iteration of our procedure either finds a new extreme supported 

efficient point, or returns a known extreme supported efficient point, by solving a 

linear assignment problem with weight wa. If the former case occurs then there 

exists an efficient point between Sa and Sa+1 and the weights are updated with the 

addition of the new schedule. If the latter case occurs then there cannot exist a 

supported efficient solution between Sa and Sa+1. Then we fix wa and proceed with 

wa+1 with the hope of generating a new extreme supported point. The algorithm 

terminates whenever all weights are fixed. 
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Procedure 3.3 

Step 0. Find S1 and S2 by solving the | |j FR a WRJ Fε+  and | |j WRJR a F WRJε+  

problems respectively. 

 r= # of known extreme supported efficient solutions 

 k=# of extreme supported efficient solutions with fixed ranges 

 r=2, k= 1 

 2 1
1

1 2 2 1

WRJ WRJw
F F WRJ WRJ

−
=

− + −
 

 SL = S2 

Step 1. Solve the assignment problem with the following objective  

Min (1 )k kw F w WRJ+ −  

Let SL be the solution 

 If SL is one of the extreme solutions (S1 or S2)  then go to Step 3. 

Step 2. If SL is either Sk or Sk+1 then fix wk let k=k+1, go to Step 1 

 If SL is a new schedule then reorder the schedules,  

update wk and wk+1 as follows 

 1

1 1

k k
k

k k k k

WRJ WRJw
F F WRJ WRJ

+

+ +

−
=

− + −
 

 2 1
1

1 2 2 1

k k
k

k k k k

WRJ WRJw
F F WRJ WRJ

+ +
+

+ + + +

−
=

− + −
 

 If all wk are fixed go to Step 3. 

 Go to Step 1 

Step 3. Stop, all r supported efficient solutions are generated. 

 

 Procedure 3.3 is similar to the methods proposed by Aneja and Nair (1979) 

for bicriteria transportation and Visee et al. (1998) for bicriteria knapsack problems. 

We illustrate the procedure by the following example problem 

 

Example: Consider six efficient solutions on the following figure 
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Figure 3.4 Efficient solution of example 

  

 

 

 Note, that ES1, ES2 and ES3 are extreme supported efficient, NES1 is 

nonextreme supported and US1, US2 are unsupported efficient solutions. Our 

algorithm will generate ES1, ES2 and ES3, through the following steps. 
  

Step 0. S1 = (99, 0) S2 = (42, 8)  r=2 k=1 

  w1 =
(8 0) 8

(99 42) (8 0) 65
−

=
− + −

=0.123  

 w-range best solution 

(0.123, 1] (42, 8)  

[0, 0.123) (99, 0) 

Step 1. Solve the assignment problem with w=0.123. 

 The optimal solution is at point (63, 5) 

 r=3 

 Ordered set of extreme supported efficient points are 

 S1 = (99, 0) S2 = (63, 5) S3 = (42, 8) 

Step 2. w1=
(5 0) 5

(99 63) (5 0) 41
−

=
− + −

=0.122  

 w2=
(8 5) 3

(63 42) (8 5) 24
−

=
− + −

=0.125  
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 w-range best solution 

 (0.125, 1] (42, 8) 

  (0.122, 0.125) (63, 5)  

 [0, 0.122) (99, 0) 

Step 1. Solve the assignment problem with w=0.125. 

 The optimal solution is at points (42, 8) and (63, 5) 

Step 2. k=2 

Step 1. Solve the assignment problem with w=0.122. 

 The optimal solution is at points (99, 0) and (63, 5) 

Step 2. k=3 

 All ranges are fixed 

Step 3. Stop 

 r=3 supported points are generated 

 Ordered set of extreme supported efficient points are 

 S1 = (99, 0) S2 = (63, 5) S3 = (42, 8) 

 

In solving the assignment problems in Step 0 and Step 2 we use the code 

generated by Volgenant (1996) designed for the rectangular assignment problems 

like ours. Note that our problem has n jobs to be assigned to n*m positions. Hence 

solving regular n*m by n*m assignment problem by defining n*m-n dummy jobs 

would not be an efficient way. The assignment code of Volgenant (1996) handles 

this inefficiency by coping with n by n*m rectangular assignment problem. The 

complexity of the algorithm is n2m. 

 

Phase 2: 

In Phase 2, we start from the first extreme point having minimum total flow 

time, thereby maximum total reassignment cost of all efficient solutions. For each 

job that is not on its initial machine, we assign it to its initial machine according to 

SPT order, while keeping the other assignments fixed. The resulting schedule is 

added to the list if it is not dominated by any schedule of the list. Among the newly 

added schedules we select the one having smallest flow time, and compare it with 

the next extreme supported solution in the list. Among those two schedules, we 
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continue with the one having smaller total flow time. We repeat the procedure, until 

the other extreme point of the list is reached. Then we start from this extreme point, 

i.e., the one having maximum total flow time and zero total reassignment cost and 

create new schedules by reassigning the jobs from their initial machines to each of 

the (m-1) machines, while keeping the other assignments fixed. The new schedules, 

if nondominated, are added to the list. We continue with the new schedule having 

smallest total reassignment cost or the next schedule of the list whichever has the 

smallest reassignment cost. We terminate whenever the other extreme point of the 

list is searched.  

We hereafter refer to our two phase procedure as greedy heuristic. 

 Our Branch and Bound algorithm starts with this list of approximate efficient 

solutions generated by greedy heuristic, add whenever a nondominated solution is 

found and remove whenever a solution in the list becomes dominated by a newly 

generated schedule. 

 Smith (1956) shows that Shortest Processing Time (SPT) rule minimizes the 

total flow time on a single machine. Hence, in any efficient sequence SPT should 

prevail within each machine. We make use of this result in constructing our branch 

and bound tree. 

We generate the partial solutions, i.e., nodes, of the branch and bound tree as 

follows: At each level, we decide on the job that should be assigned to the first 

available position of the earliest available machine. We also represent a solution in 

which no further assignment is made to the earliest available machine, this case 

corresponds to the removal of that machine. In selecting the first available job we 

recognize the prevailence of Shortest Processing Time (SPT) rule within each 

machine. Hence we never branch to a node representing the assignment of job i to 

machine j if  pij < plj and job l has assigned to machine j in the partial solution. 

 Figure 3.2 represents a partial branch and bound tree for n=7 jobs and m=3 

machines problem instance whose data are given in Table 3.1. 
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Table 3.1. An example problem instance 

 

i pi1 pi2 pi3 

1 67 6 72 
2 85 44 62 
3 81 33 55 
4 14 21 79 
5 54 97 86 
6 22 64 61 
7 22 94 72 

  

 

 

 Note that Shortest Processing Time orders of the jobs are as follows: 

    Machine 1     4-6-7-5-1-3-2 

    Machine 2    1-4-3-2-6-7-5 

    Machine 3    3-6-2-1-7-4-5 
   

 We assume the initial job assignments are 6-7-5 on machine 1, 1-4-3 on 

machine 2 and 2 on machine 3. Machine 1 is not available for 98 time units.  
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Figure 3.5 The partial branch and bound tree 

 

 

 

 Note that initially a1=98, a2=a3=0. Machines 2 and 3 are earliest available 

machines. Assume we arbitrarily select machine 2 for branching. The first node, 

called 0, represents the case where no further assignments will be made on machine 

2. The (o+1)st node at level 1 corresponds to the assignment of the oth job of the SPT 

sequence on machine 2. Hence the fourth node represents the assignment of job 3. If 

node 3 is selected for branching then a2=p32=33 and machine 3 becomes the earliest 

available machine, emanates six nodes, each node representing the assignment of a 

particular job to its first available position. The fifth node at level 2, is the fourth 

unscheduled job of SPT order on machine 3, i.e., job 7. If this node is selected for 

further branching a3=p73=72, hence machine 2 becomes the earliest available 

machine. At level 3, there are four candidate partial solutions, as job 3 was assigned 

to the first position of machine 2 and there are 3 unscheduled jobs that have higher 

processing times than that of job 3 on machine 2. These jobs are 2, 6 and 5. 

0 

0 1 4 3 2 7 6 5 

0 6 2 7 1 4 

m/c 2 

m/c 3 

5 

0 6 2 5 

m/c 2 
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 Note that there will be a maximum of n+m-1 levels, as n jobs will be 

assigned and there can be at most m-1, Node 0, selections. 

 We let Mi denote the set of machines that cannot process job i. Job i cannot 

be processed by machine j, if such an assignment violates the SPT order or cannot 

yield an efficient (non-dominated) schedule. 

 An assignment of job i to machine j violates SPT ordering if ,jij L jp p<  

where Lj is the last job assigned to machine j in the partial schedule. 

 We let PF(σ ) and PWRJ(σ ) be the total flow time and total reassignment cost 

of partial schedule σ . LBF(σ ) and LBWRJ(σ ) are lower bound on the total flowtime 

and total reassignment cost values of the partial schedule σ . UBF(WRJ) is an upper 

bound on the F values of the efficient schedules having a total reassignment cost of 

at least WRJ. Similarly UBWRJ(F) is an upper bound on the WRJ values of the 

efficient schedules having a total flow time value of at least F units. When job i is 

assigned to machine j and appended to σ , a lower bound on the total flow time 

value is PF(σ ) + (aj + pij) + Min { }
lr M r lr

l
a p

σ
∈

∈

+∑ where σ  is the set of unassigned 

jobs. If this bound is no smaller than UBF(LBWRJ(σ )), i.e., an upper bound on the 

flow time value of the schedules having a total reassignment cost of at least 

LBWRJ(σ ) then σ  is dominated by the approximate efficient schedule in our list 

having a total flow time value of UBF(LBWRJ(σ )). Similarly, if PWRJ(σ ) + wrij + 

Min { }
lr M lr

l
w

σ
∈

∈
∑ ≥  UBWRJ(LBF(σ )) then σ  is dominated by the schedule in our 

approximate efficient set having a total reassignment cost of UBWRJ(LBF(σ )). 

 Hence an assignment of job i to machine j is avoided if either 

 PF(σ ) + (aj + pij) + Min { }
lr M r lr

l
a p

σ
∈

∈

+∑  ≥  UBF(LBWRJ(σ ))  or 

            PWRJ(σ ) + wrij + Min { }
lr M lr

l
w

σ
∈

∈
∑ ≥  UBWRJ(LBF(σ )) 

 We hereafter refer to the above conditions as efficiency rules. 
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 We let Rj denote the set of jobs that can be processed on machine j. Among 

the machines for which Rj ≠ 0, we select the earliest available, i.e., the least loaded, 

one. If the first unsequenced job according to the SPT rule on the selected machine, 

cannot be assigned to any other machine, we fix that job on that machine and update 

set Mis, earliest available times and proceed. 

 For each job in Rj, we calculate a lower bound on WRJ and two lower bounds 

for F values. We let σ  denote the set of jobs appear in the current partial schedule. 

 

 Lower bound on WRJ, LBWRJ(σ ) 

 

 Note that LBWRJ(σ )= PWRJ(σ ) + LBWRJ(σ ) 

 PWRJ(σ ) = total reassignment cost of jobs in σ  

LBWRJ(σ )= a lower bound on the optimal total reassignment cost of  the  

         unscheduled jobs, i.e., the jobs that are not in σ . 

We let 

LBWRJ(σ ) = Min { }
ij M ij

i
wr

σ
∈

∈
∑  

i.e., we choose a weight among the jobs that can be assigned without 

violating the SPT order and having a potential of generating non-dominated 

schedules. 

 Referring to the Branch and Bound tree of Figure 3.2, if no information on 

the solutions exists, Mjs are constructed according to SPT rule.  

For a partial schedule where jobs 3 and 7 are assigned to machines 2 and 3 

respectively, the lower bound can be calculated as follows: 

M1={2, 3}, M2={3}, M4={2}, M5={ }, M6={3}   

 Total reassignment cost of partial schedule = wr73 

 Lower bound on the total reassignment cost of the remaining jobs = 

 wr11 + Min {wr41, wr43} + Min {wr61, wr62} 

as jobs 1, 4 and 6 cannot be assigned to their initial machines, job 1 can only 

be assigned to machine 1 due to the SPT order. 
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Lower bound on F 

 

 We propose two procedures to find a lower bound on the optimal flow time 

of unscheduled jobs 

 

i.  Lower Bound 1, LBF1(σ ) 

 

We assume all machines are identical and let pi= { }
ij M ijMin p∈ . Note that pi is 

the minimum processing time for job i, among the machines it can be assigned 

without violating SPT rule and efficiency rules. Clearly, an optimal total flow time 

value of the new identical machines problem is a lower bound on the optimal total 

flow time value of the original unrelated machines problem. The new problem is the 

| |j iP a C∑  problem of the scheduling literature whose optimal solution is due to 

following rule by Kaspi and Montreuil (1988): Order the jobs by SPT and assign 

them to the first available machine, in rotation. 

 

Recall our example problem, a lower bound on the total flow time for a 

partial schedule say node σ  in which jobs 3 and 7 are assigned to machines 2 and 3 

is found as follows: 

p1= p11 = 67 

p2= Min {p21, p22} = 44 

p4= Min {p41 p43} = 14 

p5= Min {p51, p52, p53} = 54 

p6= Min {p61, p62} = 22 

 

SPT order of pi values is 4-6-2-5-1. 

  

The lower bound schedule has the following assignments: 

Machine 1 1   a1=98 

Machine 2 4 6 2 a2=33 

Machine 3 5   a3=72 
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LBF1(σ ) =  (98+67) + (33+14) + (33+14+22) + (33+14+22+44) + (72+54) = 520 

PF(σ )   = Total Flow Time of the partial schedule  = 33 + 72 = 105 

LBF1(σ )  = LBF1(σ ) + PF(σ ) = 625 

 If there exists a nondominated schedule 's  in the list such that 

( ') ( )FF s LB σ≤  and ( ') ( )WRJWRJ s LB σ≤ then we fathom the node. 

 If a node cannot be fathomed by LBF1(σ ), we calculate a more powerful 

lower bound, LBF2(σ )  however at an expense of higher computational effort. 

 

ii.  Lower Bound 2, LBF2(σ ) 

 

 Consider the following assignment model 

 Min 
1 1 1

( )
n n m

ij j ikj
i k j

kp a X
= = =

+∑∑∑  + 

1

1

{ } 1
n

j ij
i

Max wr
=

+∑ , ,
ij ikj

i j k
wr X∑  

s.t  
1 1

1
n m

ikj
k j

X
= =

=∑∑    ∀ i      

  
1

1
n

ikj
i

X
=

≤∑    ∀ j, k     

  { }0,1ikjX ∈    ∀ i, j, k 

  where 

1   if job  is assigned to  position from last on machine 
0   otherwise

th

ikj
i k j

x
 

=  
 

  

  

For a partial schedule σ , where σ j is the set of jobs  assigned to machine j, 

and nj is the cardinality of set σ j we modify ajs as, 
j

j j ij
i

a a p
σ∈

= + ∑ , and solve the 

assignment model with the following objective function 

 Min
'

1 1

( )
j

j

n m

j ij ikj
i k j

a kp X
σ∈ = =

+∑ ∑∑ + 

1

1

{ } 1
n

j ij
i

Max wr
=

+∑

'

1 1

j

j

n m

ij ikj
i k j

wr X
σ∈ = =

∑ ∑∑  
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 where 'jn is an upper bound on the remaining number of jobs to be assigned 

on machine j. If the last job assigned to machine j is the lth job of the SPT order then 

at most n-l more jobs can be assigned to machine j. Moreover the jobs between l+1 

and n, in SPT order, may be assigned to other machines, hence we modify the upper 

bound, 'jn , as the number of unscheduled jobs with no smaller processing time than 

plj on machine j and do not violate efficiency rules. 

 Moreover while solving the assignment problem we let cikj=M if job i is the 

rth unscheduled job of Longest Processing Time (LPT) on machine j such that r < k, 

to avoid the assignment of any job to a position that is higher than its index, thereby 

avoiding a non-SPT ordering. After making these reductions, we solve the |σ | x 

1

'
m

j
j
j N

n
=
≠

∑  assignment problem using the rectangular assignment algorithm of 

Volgenant (1996). 

 The cost coefficients of the assignment model of our example problem for a 

partial schedule, in which jobs 3 and 7 are assigned to the first position of machines 

2 and 3 respectively, are calculated as follows: 

 Note that 2'n =3 as there are 3 unscheduled jobs having higher processing 

times than p32, these jobs are 2, 6 and 5. As there are two unscheduled jobs having 

higher processing times than p73, 3'n =2. As there are two scheduled jobs, there can 

be at most n-2=5 jobs on machine 1. Hence we solve 5 x 10(5+3+2) assignment 

problem. Job 1 cannot be assigned to machines 2 and 3 without violating SPT order. 

Hence c1k2 = c1k3 = M for all k. Jobs 2 and 6 cannot be assigned to machine 3, i.e., 

c2k2 = c6k2 = M for k=1, 2. Job 2 cannot be assigned to machine 1, except its first 

position, i.e., c2k1 = M for k > 1, as it is the last job of SPT on machine 1. If we have 

assigned job 2 to a later position we would have violated SPT order, as there is no 

unscheduled job with higher processing time. Moreover, we set c651=M as job 6 

cannot be scheduled fifth on machine 1. Job 4 cannot be assigned to machine 2, i.e., 

c4k2 = M for all k. Job 5 is the third longest unscheduled job on machine 1 hence c541 

= c551 = M. Similarly job 1 can only be assigned to the first or second position of 

machine 1 as it is the second longest unscheduled job. 

 All these information is gathered in Table 3.2. 



 49 

Table 3.2. Cost Coefficient Matrix of the Assignment Problem 

 
 Machine 1 
 1 2 3 4 5 
1 a1+p11+ 11wrε  a1+2p11+ 11wrε  M M M 
2 a1+p21+ 21wrε  M M M M 
4 a1+p41+ 41wrε  a1+2p41+ 41wrε  a1+3p41+ 41wrε  a1+4p41+ 41wrε  a1+5p41+ 41wrε  
5 a1+p51 a1+2p51 a1+3p51 M M 
6 a1+p61 a1+2p61 a1+3p61 a1+4p61 M 
   
 Machine 2 Machine 3 
 1 2 3 1 2 
1 M M M M M 
2 a2+p22+ 22wrε  a2+2p22+ 22wrε  a2+3p22+ 22wrε  M M 
4 M M M a3+p43+ 43wrε  a3+2p43+ 43wrε  
5 a2+p52+ 52wrε  M M a3+p53+ 53wrε  M 
6 a2+p62+ 22wrε  a2+2p62+ 22wrε  M M M 

 

where a1=98, a2=33, a3=72 

 

 

We add ijwrε   to (i, k, j) when machine j is not the initial machine of job i. 

For example job 5 was on machine 1 in the initial schedule, hence ε  appears in all 

entries for job 5 except the ones associated to machine 1. The optimal solution to the 

assignment gives the following schedule. 

Machine 1 4 - 1 

Machine 2 2 - 6 

Machine 3 5 

 LBF2(σ ) = (98+14) + (98+14+67) + (33+44) + (33+33+64) + (72+86) = 667 

 PF(σ )     = Total Flow Time of the partial schedule  

   = 105 

 LBF2(σ )    = Lower bound on the total flow time of σ  

    = 772 

 F( s )        = 772 

 WRJ( s )  = wr41 + wr11 + wr22 + wr62 + wr52 
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The actual total flow time of the schedule is F( s ) and the actual total 

reassignment cost is WRJ( s ). Note that actual flow time value is equal to the lower 

bound on the flow time value found using assignment solution, i.e., F( s ) = 

LBF2(σ ). We add the resulting schedule s  to the list of approximate efficient 

schedules if there does not exist a schedule 's  such that ( ') ( )F s F s≤  and 

( ') ( )WRJ s WRJ s≤ . If there exists a schedule ŝ  such that ˆ( ) ( )F s F s≥  and 

ˆ( ) ( )WRJ s WRJ s≥ , then  ŝ  is dominated by  s , and therefore is taken out of the list. 

 Note that Max{ LBF1(σ ), LBF2(σ )} is a lower bound on the optimal F 

values of the nodes emanating from σ . Hence when we proceed to “the next level, 

say node σ c, we first check whether there exists a schedule 's  such that 

1 2( ') { ( ),  ( )}  F FF s Max LB LBσ σ≤  and ( ') ( )WRJ s WRJ σ≤ . If such a schedule 's  

exists, we fathom the node. Otherwise, we calculate LBF1(σ c) and proceed.  

Our algorithm returns the set of all efficient solutions after evaluating all 

nodes, implicitly. 

 

3.3.8    The | | ( , )jR a f F WRJ  problem 

 

In this section, we address the problem of finding an optimal solution for a 

specified general non-decreasing function of F and WRJ.    

When, the function, f, is a linear function of F and WRJ then one can use an 

assignment model with the following objective function 

 Min w1 
, ,

( )j ij ikj
i j k

a kp X+∑  + w2
, ,

ij ikj
i j k

wr X∑   ≡   Min w1F + w2WRJ 

and find an optimal solution in polynomial time. 

When f is a non-linear function, finding an optimal solution to our model 

with constraint sets (3.2), (3.3), (3.4) and binary decision variables, would not be 

possible by available mathematical programming softwares. For non-linear f, one 

can generate all efficient solutions and select the one that minimizes the objective 

function value. However such an approach may not be time-efficient as each 

generation requires a solution of a singly-constrained assignment problem in 

exponential time.  To overcome this difficulty, we develop two optimization 

algorithms that implicitly generate the efficient set. The first algorithm, we call 
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Integer Programming Based (IPB) algorithm, solves successive constrained 

optimization problem. The second algorithm is a branch and bound approach that 

makes implicit enumeration of the efficient schedules. 

 

Integer Programming Based (IPB) Approach 

  

 An IPB algorithm starts with an initial feasible solution that is found by 

generating the extreme supported efficient solutions. Each iteration of the algorithm 

generates an efficient schedule by setting an upper limit on the F and WRJ values of 

any schedule that can improve the best known solution, namely fBEST. By setting 

these limits, we eliminate some portions of the objective space that cannot reside the 

optimal solution.  Kondakci et al. (1996) implement an idea of imposing upper 

limits on one criterion for their bicriteria single machine scheduling problem.     

 Moreover, we set lower limits on the F and WRJ values by solving the LP 

relaxations of the singly-constrained assignment problem. If the f value found by 

setting the lower limits is no better than fBEST, then we terminate by recording the 

optimality of the best known schedule. 

The smallest f value among the extreme supported efficient schedules is used 

as an initial fBEST. We update fBEST whenever a feasible schedule with smaller f value 

is reached.  Procedure 3.4, below, is the stepwise description of our approach. 

 

Procedure 3.4  Finding an Optimal Solution by Integer Programming Based 

Algorithm 

Step 0. Solve the 

1

1| |
{ } 1

j n

j ij
i

R a F WRJ
Max wr

=

+
+∑

 problem and form a right-shift 

schedule. 

 Let  FLB = F value that solves the 

1

1| |
{ } 1

j n

j ij
i

R a F WRJ
Max wr

=

+
+∑

 problem 

  FUB = F value of the right-shift schedule  

WRJLB = WRJ value of the right-shift schedule, i.e., zero 
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WRJUB=WRJ value that solves the

1

1| |
{ } 1

j n

j ij
i

R a F WRJ
Max wr

=

+
+∑

 problem 

Apply Procedure 3.1 to generate the set of  

extreme supported efficient schedules (ESE) 

fBEST =  { ( ( ), ( ))}s ESEMin f WRJ s F s∈  

 

Step 1. If f(FLB, WRJLB) ≥  fBEST  then STOP 

Find WRJa that solves f(FLB, WRJa) = fBEST 

WRJUB = 1aWRJ −    

If WRJUB ≤  WRJLB  then STOP 

Solve the LP Relaxation of the | , |j UB WRJR a WRJ WRJ F WRJε≤ + problem 

Let (F*, WRJ*) be the solution 

FLB = *F    

If f(FLB, WRJLB) ≥  fBEST  then STOP 

If the resulting solution is integer then  

fBEST = Min {fBEST , f(F*, WRJ*)} 

WRJUB = WRJ* -1 

  If WRJUB ≤  WRJLB  then STOP 

Repeat Step 1 

 
 

Step 2. Find Fa value that solves  f(Fa, WRJLB) = fBEST 

FUB = 1aF −    

If FUB ≤  FLB then STOP 

Solve the LP Relaxation of the | , |j UB FR a F F WRJ Fε≤ + problem 

Let (F*, WRJ*) be the solution 

WRJLB = *WRJ    

If  f(FLB, WRJLB) ≥  fBEST  then STOP 
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If the resulting solution is integer then 

fBEST = Min {fBEST , f(F*, WRJ*)} 

FUB = F* -1 

If FUB ≤  FLB  then STOP 

Go to Step 1 

 
 

Step 3. Solve  the | , |j UB WRJR a WRJ WRJ F WRJε≤ +  problem 

Let (F*, WRJ*) be the solution 

FLB = F* + 1 

WRJUB = WRJ* -1 

If FUB ≤  FLB  or WRJUB ≤  WRJLB  then STOP 

fBEST = Min {fBEST , f(F*, WRJ*)} 

Solve the | , |j UB FR a F F WRJ Fε≤ +  problem 

Let (F*, WRJ*) be the solution 

WRJLB = WRJ*+1   

FUB = F* -1 

 If FUB ≤  FLB  or WRJUB ≤  WRJLB  then STOP  

fBEST = Min {fBEST , f(F*, WRJ*)} 

Go to Step 1 

 

 The following figure illustrates the progress of Procedure 3.4. 
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Figure 3.6 Progress of Procedure 3.4 

 

 

 

Step 0. Initialize WRJLB, FLB, and fBEST, by identifying boundary points and  

generating set of extreme supported efficient solutions. 

Step 1.  Find WRJa that solves f(FLB, WRJa) = fBEST 

WRJUB = 1aWRJ −   = WRJu1 

Solve the LP Relaxation of the 1| , |j u WRJR a WRJ WRJ F WRJε≤ + problem 

Let (F1
*, WRJ1

*) be the solution 

Point 1 in Figure 3.6 is the corresponding efficient point 

FLB = *
1F   = Fmin1 

fBEST = Min {fBEST , f(F1
*, WRJ1

*)} 

WRJUB = WRJ1
* -1 

Step 1. Find WRJa that solves f(FLB, WRJa) = fBEST 

WRJUB = 1aWRJ −    

Step 2. Find Fa value that solves  f(Fa, WRJLB) = fBEST 

FUB = 1aF −   =Fu1 
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Solve the LP Relaxation of the 1| , |j U FR a F F WRJ Fε≤ + problem 

Let (F2
*, WRJ2

*) be the solution 

Point 2 in Figure 3.6 is the corresponding efficient point 

WRJLB = *WRJ   = WRJmin1  

fBEST = Min {fBEST , f(F2
*, WRJ2

*)} 

FUB = F2
* -1 

Step 1. Find WRJa that solves f(FLB, WRJa) = fBEST 

WRJUB = 1aWRJ −    = WRJu2 

Step 2. Find Fa value that solves  f(Fa, WRJLB) = fBEST 

FUB = 1aF −   =Fu2 

Step 3. Solve  the 2| , |j u WRJR a WRJ WRJ F WRJε≤ +  problem 

Let (F3
*, WRJ3

*) be the solution 

Point 3 in Figure 3.6 is the corresponding efficient point 

FLB = F3
* + 1 

WRJUB = WRJ3
* -1 

fBEST = Min {fBEST , f(F*, WRJ*)} 

Solve the 2| , |j u FR a F F WRJ Fε≤ +  problem 

Let (F4
*, WRJ4

*) be the solution 

Point 4 in Figure 3.6 is the corresponding efficient point 

WRJLB = WRJ4
*+1   

FUB = F4
* -1 

fBEST = Min {fBEST , f(F*, WRJ*)} 

 

 The procedure continues to iterate in a similar manner, until the upper bound 

and lower bound constraints hits to each other, thus the current problem becomes 

infeasible. 
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A Branch and Bound (BAB) Approach 

 

 We employ the branching scheme designed for the | | ,jR a F WRJ problem to 

solve the | | ( , )jR a f F WRJ  problem.  In doing so, we use the efficiency rules and 

lower bounds designed for the | | ( , )jR a f F WRJ  with the following modifications. 

 

Efficiency rules 

 

We put machine j to Mi if   

f(PF(σ ) + (aj + pij) + Min { }
ilr M r lr

l
a p

σ
∈

∈

+∑ , PWRJ(σ ) + wrij + Min { }
lr M lr

l
w

σ
∈

∈
∑ )≥  

fBEST where fBEST is the best known objective function value. 

 Note that PF(σ ) + (aj + pij) + Min { }
ilr M r lr

l
a p

σ
∈

∈

+∑ , is a lower bound on F 

values of the efficient schedules emanating from σ  when job i is assigned to 

machine j. Similarly, PWRJ(σ ) + wrij + Min { }
lr M lr

l
w

σ
∈

∈
∑ , is a lower bound on the 

associated WRJ values. This leads to a lower bound of f(PF(σ ) + (aj + pij) 

+ Min { }
ilr M r lr

l
a p

σ
∈

∈

+∑ , PWRJ(σ ) + wrij + Min { }
lr M lr

l
w

σ
∈

∈
∑ ) on the function value, 

which is compared with  fBEST. If it is no smaller, then the assignment of job i to 

machine j should be avoided, and this information should be used in further bound 

computations. 
 We initially take fBEST as the minimum f value of the extreme supported 

schedules and the approximate schedules generated by the greedy heuristic. We 

update fBEST whenever we find a complete solution with smaller f value. 

 

Lower Bounds 

 

We fathom node σ , if f(Max{LBF1(σ P), LBF2(σ P)},LBWRJ(σ P)) ≥  fBEST 

where σ P is the parent node of σ . If not, we first check whether f(LBF(σ ), 

LBWRJ(σ )) ≥  fBEST. If f(LBF1(σ ), LBWRJ(σ )) ≥  fBEST, we fathom the node. 

Otherwise we compute the assignment bound, LBF2(σ ). If f(LBF2(σ ), LBWRJ(σ )) ≥ 



 57 

fBEST, we fathom the node else we list the nodes in their nondecreasing order of  

f(Max(LBF1(σ ), LBF2(σ )), LBWRJ(σ )) values and select the node at the top of the 

list for branching. 

 When we solve the assignment problem at a particular node, we evaluate the 

resulting schedule, s . If f(F( s ),WRJ( s )) <  fBEST, we update fBEST. 

Whenever a need for rescheduling arises, i.e., machine disruption occurs, one 

can employ the above procedures. In this sense, they can be classified as on-line 

procedures. Moreover multiple simultaneous disruptions can be handled by 

modifying aj values. 
 

3.4 Computational Experience 

 

We conduct a computational experiment to assess the efficiency of our 

algorithms. We generate random problem instances having n = 40, 60, 80, 100 jobs 

and m = 4, 8, 12 machines. The job processing times, pijs, are drawn from two 

discrete uniform distributions between [1,100] and [50,100]. We select two levels 

for processing times, to see the effect of processing time variability and magnitude 

on the performance of our algorithms. Similarly, to see the effect of the variability 

and magnitude of the reassignment costs, wrijs, are drawn from two discrete uniform 

distributions between [1,60] and [30,60].  

The disruption duration, D, is set to three levels: Long (L), Medium (M) and 

Short (S). The aim here is to study the effect of the disruption duration on algorithm 

performances. For level L, D is set to the completion time of the last job on the 

disrupted machine in the initial schedule. Level M has the half of the duration of 

level L. Level S has half of the duration of level M.   

 

We consider the following two non-linear objective functions that are non-

decreasing in F and WRJ, similar to Kondakçı et al. (1996). 
2 2

1
LB LB

UB LB UB LB

F F WRJ WRJf
F F WRJ WRJ

   − −
= +   − −   

 

8 8

2
LB LB

UB LB UB LB

F F WRJ WRJf
F F WRJ WRJ

   − −
= +   − −   
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 We refer to f1 and f2 as quadratic and quasi-chebyschev functions 

respectively. 

To generate all efficient solutions, we generate 4x4x2x2x3=144 problem 

combinations, and to solve a nonlinear function we generate 144x2=288 problem 

combinations. For each problem combination, we consider 10 instances. Hence as a 

total of 1440 and 2880 problem instances are generated and solved for efficient set 

generation and nonlinear function minimization problems, respectively.  

We conduct all experiment on a PC with Intel Pentium 4 2.8 Ghz processor 

and 1 GB of RAM running under Linux, specifically Fedora Core 5, operating 

system. We implement our optimization and Branch and Bound algorithms in C, 

compiled with GCC 4 and utilized Borland C++BuilderX as the development 

environment. We solve our integer and linear programming models using CPLEX 

8.1.1. 

 We set a termination limit of 2 hours for 60 jobs and 3 hours for 80 and 100 

jobs for generation of efficient set algorithms (both classical approach and Branch 

and Bound algorithm). To our optimization algorithms, we set a termination limit of 

1 hour for 60 jobs and 1.5 hours for 80 and 100 jobs for both Integer Programming 

Based and Branch and Bound approaches. We use different termination limits due to 

different complexity levels of the problems. 

 We first investigate the performances of the algorithms we used in 

generation of the efficient set: The Classical Approach (CA) and Branch and Bound 

Algorithm (BAB). Tables 3.3 through 3.8 report the average and maximum 

computation times of the CA and BAB algorithm. The average and maximum 

number of nodes generated by the Branch and Bound algorithm are included. The 

tables also give the average and maximum number of efficient solutions, and the 

number of times BAB algorithm finds the efficient solutions quicker than CA. In 

Tables 3.3 and 3.4 the results associated to short disruption duration are reported for 

pij ~ U[1,100] and pij ~ U[50,100] respectively. In Tables 3.5 and 3.6, and Tables 3.7 

and 3.8, the same results are given for medium and long disruption duration cases, 

respectively. The tables do not include the instances for n=80, m=12 when the 

disruption duration is long, i.e. D=L, and pij~U[50,100], as our preliminary 

experiments have revealed that the majority of the instances could not be solved 
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within termination limit of 3 hours. Table 3.9 summarizes the average case results, 

in particular average number of efficient solutions, average CPU times of both 

algorithms. The table also includes the number of instances out of 10, where the 

Branch and Bound algorithm outperforms Classical Approach, in terms of solutions 

times. 
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As can be observed from the tables, as n increases the number of efficient 

solutions increases, for all problem combinations. From Table 3.6, we can observe 

the increase in the average number of efficient solutions with increasing n. On 

average there are 13, 25, 38 and 59 efficient solutions, for problems having 40, 60, 

80, and 100 jobs respectively. The difficulty of attaining an efficient solution 

increases considerably when n increases. In Table 3.4, we have two settings having 

the same average number of efficient solutions; n=60, m=8, wrij~U[1,60] and n=80, 

m=8, wrij~U[30,60]. The Classical algorithm generates the efficient set five times 

quicker for case 1 when compared to case 2. Similarly Branch and Bound algorithm 

generates the efficient set for the first case with three times of more computational 

effort, compared to the case of 60 jobs.  This is due to the fact, the number of integer 

variables increases with an increase in n for classical approach. For Branch and 

Bound algorithm, the number of choices increases as a function of n.  

As m increases, the ranges of F and WRJ decrease and that leads to a 

decrease in the number of efficient solutions. This behavior can be observed from 

Table 3.5, for the problems with 100 jobs, the average number of efficient solutions 

decrease with the increase in the number of machines, the average number of 

efficient solutions are 45, 26, and 13, for problems with 4, 8, and 12 machines, 

respectively. For fixed n, the performance of generating efficient set by the classical 

approach deteriorates with an increase in the number of efficient solutions. Note 

from Table 3.8 that where n=40, m=8, it takes 14 CPU seconds to generate 27 

efficient solutions, however, time increases to 25 CPU seconds where 37 efficient 

solutions are generated.  As m increases, the efficient solutions are generated in 

higher computational times, due to the increase in the number of integer decision 

variables, which is n2m. Note that the same number of efficient solutions is 

generated in less effort when m is small. In Table 3.4, we can observe this effect 

significantly, for the problems with 80 jobs, and reassignment cost in range between 

30 and 60, 10 efficient solutions exist on average for the cases with 8 and 12 

machines. The Classical approach generates the efficient set in 48 CPU seconds on 

average when m=8, and in 95 CPU seconds on average when m=12.  However, the 

performance of Branch and Bound algorithm (does not degrade) as m increases. 

Note that the number of levels of the Branch and Bound tree is n + m  - 1, and is less 
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sensitive to m which increases in very small increments and which is small 

compared to n.  

 In general, the performance of the classical approach is dependent on the 

number of integer variables (which increases with n and m) and number of efficient 

solutions. The effects of other parameters, the disruption duration, processing time 

variability, and reassignment cost variability are not as dominant, as these 

parameters do not change the number of integer variables.  

We observe that the disruption duration, processing time and reassignment 

cost distributions significantly affect the performance of the Branch and Bound 

algorithm. When the disruption duration is longer, the sequencing choices for the 

jobs are much more and this causes weak differentiation of the partial solutions 

which in turn increases the difficulty of attaining optimal solutions. This significant 

behavior can be easily observed when Tables 3.3 and 3.5 are compared. Note that 

the average CPU time of Branch and Bound algorithm to generate efficient set is 

equal 1.9 CPU seconds where the disruption duration is short (see Table 3.3). The 

CPU time increases to 43.8 seconds where the disruption duration is medium (see 

Table 3.5). Whenever the processing times are higher the disruption durations are 

longer and thus the problems are harder to solve. 

 When the variability of the processing times or reassignment costs decreases, 

the differentiation powers of the lower bounds decrease as the solutions become 

closer. As the power of the lower bounds directly affects the performance of the 

Branch and Bound algorithm, we observe smaller computational times when the 

ranges are wider. This relation is quite obvious from Table 3.5 the performance of 

the algorithm depends on reassignment cost variation. Note that when there are 100 

jobs and 4 machines, the efficient set is generated in 55 seconds for low variation 

case, and in 300 seconds when the variation is high. Moreover, we observe more 

significant affect of the processing time variability, as the processing time defines 

the range of efficient solutions more often. One can point out some exceptions 

which can be attributed to the randomness effect like dominant contributions of few 

instances to average performance. As can be more clearly seen from our summary 

table, i.e., Table 3.9, the Branch and Bound algorithm outperforms classical 

approach in vast majority of the problem combinations, (1031 times in 1260 
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instances). The only exception is D=L and pij ~ U[50,100] combination where 

performance of the classical approach is better (87 times in 120 instances). 

 We next analyze the performance of the algorithms used in finding an 

optimal solution for defined quadratic and quasi-chebyschev objective functions. 

Tables 3.10 through 3.15 report the maximum and average CPU times, and the 

number of nodes for the Branch and Bound algorithm. Specifically Tables 3.10 

reports the statistics for short disruption durations and processing time distribution 

in between 1 and 100, for quadratic and quasi-chebyschev objective functions. 

Tables 3.11 provides the pij~U[50,100] counterpart of this table. Tables 3.12 through 

3.15 are organized in a similar manner, and provide the results, for medium and long 

disruption durations, and processing time values within the ranges [1,100] and 

[50,100]. Tables 3.16 through 3.21 report the maximum and average CPU times and 

the percentage of the efficient solutions generated by the IP based algorithm. In a 

similar fashion to the results of Branch and Bound algorithm, Tables 3.16 and 3.17 

report the results for the short disruption duration, and two distributions of the 

processing times. Tables 3.18 through 3.21 provide the results for the medium and 

long disruption duration cases in the same order. We also include summary tables, 

Tables 3.22 through 3.27, for the average CPU times of the Classical Approach, IP 

based algorithm and Branch and Bound algorithm that could be used to find an 

optimal solution for any nondecreasing function of F and WRJ. Tables 3.22, and 

3.23 provide the results for the small disruption duration case, and for pij~U[1,100] 

and pij~U[50,100], respectively. Tables 3.24 through 3.27 summarize the statistics 

for medium and long disruption durations.   

 



 68 

 
 



 69 

 
 



 70 

 
 



 71 

 
 

 

 



 72 

 
 

 

 

 
 



 73 

 
 



 74 

 



 75 

 



 76 

 
 



 77 

 
 

 

 

 



 78 

Table 3.22 Comparison of Average Performances of Optimization Algorithms, 

pij ~U[1,100], D=S 
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Table 3.23 Comparison of Average Performances of Optimization Algorithms, 

pij ~U[50,100], D=S 
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Table 3.24 Comparison of Average Performances of Optimization Algorithms, 

pij ~U[1,100], D=M 
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Table 3.25 Comparison of Average Performances of Optimization Algorithms, 

pij ~U[50,100], D=M 
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Table 3.26 Comparison of Average Performances of Optimization Algorithms, 

pij ~U[1,100], D=L 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 83 

Table 3.27 Comparison of Average Performances of Optimization Algorithms, 

pij ~U[50,100], D=L 

 

 
 

 

 

When IPB and Branch and Bound algorithms are compared, no consistent 

dominance of one algorithm over the other can be observed, we find that, BAB is 

better than IPB for 1943 times in 2520 problem instances solved.  We see that the 

performances of both algorithms are highly dependent on the number of efficient 

solutions. The performance of IPB algorithm is more significantly dependent on the 

number of integer variables that increase with the number of jobs and the number of 

machines. There are some exceptions where the performance deteriorates with 

decreasing m which can be attributed to the superior performance of the integer 

programs that have many integer variables in their linear programming relaxations. 

The IPB algorithm performs better for quadratic function compared to the quasi-

chebyschev function. We can compare the average CPU times from Table 3.21, 

where the statistics for the IPB algorithm, for, pij~U[50,100], and D=L are reported, 

for quadratic and quasi-chebyschev functions. We observe from the tables that the 

average CPU times for quadratic function is smaller than those of quasi-chebyschev 

function.  This behavior can be attributed to the fact that in quasi-chebyschev 

function case, very few optimal solutions are in extreme supported solution set.   
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As can be observed from the tables the disruption duration, the processing 

time and reassignment cost distributions significantly affect the performance of the 

Branch and Bound algorithm. When the disruption duration is longer, the 

differentiation power of the partial solutions are weaker due to the existence of more 

sequencing alternatives. This adds to the complexity of the algorithm. This behavior 

can be observed from all tables. When the processing times are between 50 and 100, 

the disruption durations are longer, thus the CPU times are higher. When the 

processing times and reassignment costs are less variable, the solutions are more 

closer and hence their differentiation is harder. As a result, we observe the highest 

CPU times whenever the disruption duration are long, the processing times are in 

range [50,100] and the reassignment costs are in range [30,60] (see Table 3.15). The 

lowest CPU times are observed when the disruption duration is short, processing 

times are in range [1,100] and reassignment costs are in range [1,60] (see Table 

3.10). 

Quasi-chebyschev utility function usually leads to quicker solutions than 

quadratic utility function. Note from Table 3.13, that the average CPU times are 

smaller for quadratic function case compared to quasi-chebyschev function.  This 

can be attributed to the fact that the partial solutions are not very close to each other, 

which increases the power of differentiation. 

In general, for all parameter combinations and both objective function types, 

the IPB algorithm finds the optimal schedule by generating a small percentage of all 

efficient solutions. The higher percentages are associated to the cases with smaller 

number of efficient solutions, where the number of efficient solutions visited is also 

very small, and most of the solutions are extreme supported, which are generated at 

the initial step of the algorithm. Note that when n=80, the percentages are lower, as 

the number of efficient solutions is higher, and there exist many non-extreme 

supported, and unsupported solutions. The parameter effects on the performance of 

the Integer Programming Based algorithm is not as dominant as those of the Branch 

and Bound algorithm. We can conclude from the tables that the behavior of IPB 

algorithm is more consistent. Note that the worst performances of IPB algorithm are 

closer to their average counterparts when compared with those of BAB 

performances.  The results on all tables reveal that both algorithms solve all 
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instances in much smaller CPU time than that of spent in generating all efficient 

solutions by classical approach. 

We finally find the percentage of nodes evaluated till reaching the optimal 

solution and report the average case results. Table 3.28 reports the ratio of the 

optimality node to the total number of evaluated nodes.  
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As can be observed from the tables in majority of the problem combinations 

the optimal solutions are found at the very early nodes of the search. Note that on 

average, the majority of the optimal solutions is found before searching 10 percent 

of all nodes.  Moreover in many combinations we observe a ratio value zero, 

indicating the optimality of the initial solution. Note that the average percentages are 

higher when pij~U[50,100]. Due to the fact that, the lower bounds are weaker and 

hence give less reliable guide. For the case where pij~U[1,100] the averages are 

lower. This leads us to conclude that the lower bounds are good estimators of the 

optimal solutions and hence guide right solution paths. The solutions that are found 

at a preset termination limit are likely to be optimal or near optimal and hence a 

truncated Branch and Bound algorithm that terminates after a preset CPU time or 

number of node evaluations, can be a powerful alternative if the decision maker is 

interested with a near optimal, but not necessarily an optimal, solution. 
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CHAPTER 4 

 

CONCLUSION AND FUTURE RESEARCH DIRECTIONS 
 

 

 This study considers bicriteria approaches to the minimum cost network flow 

problem and a rescheduling problem where those approaches find their applications. 

For the bicriteria integer minimum cost network flow problem, we generate 

all efficient solutions in two phases. The first phase generates the extreme supported 

efficient points that are the extreme points of the objective space of the continuous 

BCNF problem. Our generation method differs from previous methods that are 

based on parametric analysis, in the sense that the efficient set is generated each time 

moving to the next adjacent point. Hence this phase may be preferred for the 

continuous BCNF problem if the decision maker is more interested with a specified 

portion of the objective space. In the second phase, we generate the other efficient 

points, i.e., nonextreme supported efficient points, unsupported efficient points by 

Integer Programming Based approaches. 

Our rescheduling problem assumes parallel unrelated machine environments. 

The criteria are the total flow time as an efficiency measure and the total 

reassignment cost as a stability measure. We show that any linear combination of the 

two criteria can be represented by a bicriteria minimum cost integer network flow 

model (BCINF). Hence we use the results derived for the BCINF problem to tackle 

with our rescheduling problem.  

In our rescheduling studies, we provide polynomial time algorithms to solve 

the hierarchical optimization problems. To generate all extreme supported efficient 

solutions, we use LP-based approach using slack pivoting and a weighted approach 

that are based on optimal assignment solutions. To generate all efficient solutions we 

propose two approaches. The first approach is an Integer Programming based and 

uses optimal solutions of the singly-constrained assignment problem. The second 
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approach implicitly enumerates all efficient solutions by Branch and Bound 

approach. Our Branch and Bound algorithm uses lower bounds on the total flow 

time and total reassignment cost. To find an initial set of approximate efficient 

solutions, we generate extreme supported efficient set by weighted approach and 

extend the set in a defined neighborhood. 

The results of our computational tests have revealed that our Branch and 

Bound algorithm is superior than the classical approach, for majority of the test 

problems.  

We use the same branching scheme and same bounds to minimize a 

composite function of the total flow time and total reassignment cost. The results of 

our computational tests have revealed that the Branch and Bound algorithm can 

solve problems up to 100 jobs and 12 machines. We also propose an algorithm that 

is based on Integer Programming. The algorithm eliminates a portion of the solution 

set that cannot reside an improved objective function value. The IP based algorithm 

also performs quite satisfactory and generates only a small portion of all efficient 

solutions. 

The models we have studied represent growth in the network flow and 

rescheduling areas. There are many further research directions most of noteworthy 

of which are discussed below: 

 

1) Addressing a stochastic version of the problem where the maintenance 

duration is not known with certainty. 

 

2)  Addressing a Tricriteria integer minimum cost network flow (TCINF) 

problem 

 Let f1(x), f2(x) and f3(x) be tricriteria. Finding optimal solutions to the 

following problems may be of help in developing the solution procedures for 

generating all efficient solutions and minimizing a composite function of tricriteria. 

   a)  Unconstrained problems 

       i.    Min  fi(x) + εj fj(x) i=1, 2, 3   j=1, 2, 3   i ≠  j 

 for appropriately selected values of εj. 
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       ii.    Min  fi(x) + εj fj(x) + εk fk(x)     

i=1, 2, 3    j=1, 2, 3   k=1, 2, 3   i ≠  j j ≠  k i ≠  k 

 for appropriately selected values of εj, εk. 

 

   b) Constrained Problems 

        i.     Min  fi(x) + εj fj(x) + εk fk(x) 

  s.t.    fj(x)  ≤  bj 

i=1, 2, 3    j=1, 2, 3   k=1, 2, 3   i ≠  j j ≠  k i ≠  k 

 for appropriately selected values of εj, εk. 

        ii.    Min  fi(x) + εj fj(x) + εk fk(x) 

  s.t.     fj(x)  ≤  bj 

  fk(x)  ≤  bk 

i=1, 2, 3    j=1, 2, 3   k=1, 2, 3   i ≠  j j ≠  k i ≠  k 

 for appropriately selected values of εj, εk. 

  

3) A Tricriteria rescheduling problem exploiting network flow structures 

 Once we set the criteria to total flow time, number of reassigned jobs, and 

total reassignment cost, the problem can be represented as a Tricriteria MCNF 

model., and hence the approaches derived for the TCINF problem can be used. 

Moreover by recognizing the special structures of rescheduling, hence scheduling, 

problems efficient enumeration schemes can be designed. We can benefit from the 

branching structure designed for our two criteria rescheduling problem as the 

decisions do not differ with an increase in the number of criteria. 

 

4) Bicriteria or Tricriteria problems with different efficiency and/or stability 

measures 

 In this study, we consider total flow time as an efficiency measure. When the 

jobs do have different priorities, a more suitable objective would be to minimize 

total weighted flow time. The incorporation of the weights destroy the network flow 

nature of the model, so the properties and procedures extended from network flows 

would not be of help. However total weighted flow time has also a very nice 

property that the optimal solution of the sequencing problem (which is weighted 
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shortest processing time rule) is known. This implies that we can employ our 

branching scheme for the total flow time problem to solve its weighted version. The 

only modification would be the modification of the bounding schemes. 

 As long as the efficient measures are concerned, in addition to our producer 

related performance measure of total flow time, we can consider a customer related 

performance measure, like maximum lateness, total tardiness. In such a case, the 

rescheduling problem will be treated as a tri-criteria problem together with our 

stability measure. Once the due-dates of the problem is accepted as the promises 

given according to the initial schedule’s completion times, any due-date related 

performance can serve as a stability measure. For example, maximum lateness, can 

be interpreted as the maximum completion time difference between initial and new 

schedules, which can be interpreted as the maximum delay in the delivery times. 

 

5) Constructing the initial schedule 

 In this study, we assume that the initial schedule is optimal according to our 

efficiency measure. It does not reside any idle time and any non-optimal allocations 

which would be favored by the new schedule. An initial schedule construction, by 

predicting the disruption time and duration would be another future research area. In 

construction the initial schedule, the idle times that will serve as buffers and light 

loading of the machines that are more likely to be disrupted, should be considered. 

 

6) Addressing the bicriteria assignment problem 

 In chapter 2, we develop solution approaches to the bicriteria minimum cost 

integer network flow problem. MCNF problems resides shortest path and 

assignment problems as special cases. In the literature, there is some research on 

bicriteria assignment problem, like singly constrained assignment problem. 

However, we are unaware of any reported study, on simultaneous optimization for 

assignment problems. Recognizing this gap, designing optimization algorithms for 

generation all efficient solutions and minimizing a composite function of the two 

criteria will be a worth-studying research area. 
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 As  a starting point, we can employ the following classical approach to 

generate all efficient solutions. We assume the two criteria are 
,

ij ij
i j

c x∑  and 
,

ij ij
i j

d x∑  

where 

1   if object  is assigned to resource 
0   otherwiseij

i j
x 

= 


 

and cij and dij are two different costs of assigning  object i  to resource j. 

 

Procedure for Generating all efficient solutions of  
, ,

 and ij ij ij ij
i j i j

c x d x∑ ∑ criteria 

Step 0. Solve the following assignment problems (P1) and (P2) to get two extreme 

efficient solutions 

(P1) Min 1
, ,

ij ij ij ij
i j i j

c x d xε+∑ ∑  

 s.t. 1                      ij
i

x j= ∀∑  

  1                      ij
j

x i= ∀∑  

  {0,1}ijx ∈  

(P2) Min 2
, ,

ij ij ij ij
i j i j

d x c xε+∑ ∑  

 s.t. 1                      ij
i

x j= ∀∑  

  1                      ij
j

x i= ∀∑  

  {0,1}ijx ∈  

For appropriately selected values of 1ε  and 2ε .  

Note that (P1) and (P2) give lower and upper bounds on the criteria values of 

all efficient solutions. 

Let CL and CU be the lower and upper bounds of 
,

ij ij
i j

c x∑  for all efficient 

schedules. 

Let k= CU -1 
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Step 1. Solve the following singly constrained assignment problem 

 

  Min 2
, ,

ij ij ij ij
i j i j

d x c xε+∑ ∑  

s.t. 1                      ij
i

x j= ∀∑  

 1                      ij
j

x i= ∀∑  

 
,

ij ij
i j

c x k≤∑  

 {0,1}ijx ∈  

An optimal solution is an efficient point. Let xij* be the optimal values of the 

decision variables. 

 

Step 2. If 
,

* 1ij ij L
i j

c x C≥ +∑  then 

 
,

* 1ij ij
i j

k c x= +∑  

 Go to Step 1 

 Stop, all efficient solutions are generated. 

 

 Alternatively in Step 0, we can set k=DU-1 where DU is an upper bound on 

the 
,

ij ij
i j

d x∑ values of all efficient solutions and solve the singly constrained 

assignment problem with the objective 1
, ,

Min ij ij ij ij
i j i j

c x d xε+∑ ∑  and constraint 

,
ij ij

i j
d x k≤∑ . 
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