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ABSTRACT 

 
 

A STUDY OF NATURAL CONVECTION IN MOLTEN METAL UNDER A 

MAGNETIC FIELD 

 

Güray, Ersan 

Ph.D., Department of Engineering Sciences 

Supervisor: Assoc. Prof. Hakan Işık Tarman 

 

September 2006, 141 pages 

 

The interaction between thermal convection and magnetic field is 

of interest in geophysical and astrophysical problems as well as 

in metallurgical processes such as casting or crystallization. A 

magnetic field may act in such a way to damp the convective 

velocity field in the melt or to reorganize the flow aligned with 

the magnetic field. This ability to manipulate the flow field is of 

technological importance in industrial processes. In this work, a 

direct numerical simulation of three-dimensional Boussinesq 

convection in a horizontal layer of electrically conducting fluid 

confined between two perfectly conducting horizontal plates 

heated from below in a gravitational and magnetic field is 

performed using a spectral element method. Periodic boundary 

conditions are assumed in the horizontal directions. The 

numerical model is then used to study the effects of imposing 

magnetic field. Finally, a low dimensional representation scheme 

is presented based on the Karhunen-Loeve approach. 

 

Keywords: RB convection, magnetoconvection, spectral element 

methods, low dimensional model, Karhunen Loeve Galerkin. 
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ÖZ 
 

 
MANYETİK BİR ALANIN ETKİSİ ALTINDAKİ ERİYİK METAL 

AKIŞKANDA DOĞAL KONVEKSİYON AKIMLARI 

 

Güray, Ersan 

Doktora, Mühendislik Bilimleri Bölümü 

Tez Yöneticisi: Assoc. Prof. Hakan Işık Tarman 

 

Eylül 2006, 141 sayfa 

 

Isıl konveksiyon ve manyetik alan arasındaki etkileşim döküm ve 

kristalizasyon gibi metalürji konularının yanısıra jeofizik ve 

astrofizik konularıyla da ilişkilidir. Manyetik alan konvektif hız 

alanını sönümlendirebildiği gibi akışı manyetik alana bağlı 

yeniden şekillendirebilir. Bu, akışı ustalıkla yönlendirebilme 

özelliği endüstriyel işlemlerde teknolojik bir önem teşkil eder. Bu 

çalışmada, yerçekimi ve manyetik alan altındaki iki tam elektrik 

iletken tabakayla sınırlandırılmış, alttan ısıtılan, bir elektrik 

iletken akışkan tabakasında cereyan eden üç boyutlu Boussinesq 

konveksiyonunun spektral eleman yöntemi kullanılarak tam 

olarak nümerik benzetimi gerçekleştirilir. Yatay yönlerde 

periyodik sınır koşulları ele alınır. Sonrasında, nümerik model 

uygulanan manyetik alanın etkilerini çalışmak üzere kullanılır. 

Son olarak, Karhunen-Loeve yaklaşımıyla elde edilen düşük 

boyutlu sistemin çözümü ele alınmıştır.  

 

Anahtar Kelimeler: RB konveksiyonu, manyetokonveksiyon, 

spektral eleman yöntemleri, düşük boyutlu model, Karhunen 

Loeve Galerkin. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 
The interaction between convection and magnetic field, 

magneto-convection, has been researched for a long time 

motivated by astrophysical and geophysical observations. 

Dynamics of sunspots and molten motion in the mantles of 

planets involve not only thermal effects but also strong 

magnetic forces. Magneto-convection is also of prevalent 

research interest in some industrial processes such as molten 

metal casting and crystallization. In crystal growth or steel 

production processes, magneto-convective motion governs the 

molecular bonding. During the process of crystal production, 

polycrystal silicon is heated from below and crystal develops 

during melting process. However, non-uniform distribution of 

dopant inhibits the development of well quality crystal. The 

impurities in a molten metal membrane can be limited by an 

external magnetic field during production. To organize the 

convective flow, an external magnetic field is applied to 

electrically conducting fluid; as a result, it determines the 

quality of the product. The magnetic field in any direction 

within the plane of the convective roll axis acts towards 

inhibition of forms of convective motions as stated by 

Chandrasekhar [1]. 

 

An electrically conducting infinite convective layer is the 

simplest geometry to numerically study the interaction 

between thermal convection and externally imposed magnetic 
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field. In this work, the influence of magnetic field on thermal 

convection in the layer bounded from top and bottom by 

perfectly conducting rigid plates is numerically simulated and 

analyzed. Flow driven by a heat source is resisted against by 

the gravity and Lorentz forces. While gravitation acts in 

direction of heat gradient, Lorentz force due to magnetic 

induction acts in any direction causing strong electromagnetic 

damping by Joule dissipation. The model equations governing 

the dynamics of magnetic field interaction with convective 

motion include divergence free conditions for induced 

magnetic field and velocity field, momentum conservation, 

energy transport and hydromagnetic equations. Dimensionless 

forms of these equations involve well known parameters, 

Rayleigh (Ra), Chandrasekhar (Q) numbers characterizing 

dynamics and thermal (Pr) and magnetic (Pm) Prandtl 

numbers characterizing material properties.  

 

Rayleigh number is the ratio of buoyancy force to viscous 

dissipative effect of fluid and Chandrasekhar number is the 

ratio of the time scale of viscous dissipation to the time scale 

of Joule dissipation that implicitly states the strength of the 

magnetic field. Thermal αυ=Pr  and magnetic λυ=Pm  

Prandtl numbers designate thermal α  and magnetic λ  

diffusivities relative to viscosity υ  of convective fluid. 

Dynamics of the magneto-convection depends on the ratio 

Pm Pr  fundamentally. This ratio indicates the relative 

magnitudes of magnetic diffusivity and thermal diffusivity. The 

variety of solutions depending upon to this ratio was pointed 

out by Veronis in 1959 [2]. In the case studied here, magnetic 

diffusivity is high ( αλ >> ) which corresponds to the 

experimental situations involving liquid metals. Infact, 
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magnetic Prandtl number comes out to be very small in most 

of the natural events. Even in the deepest layer of the sun 

mantle, chromo-sphere, it is about 410  −  and in the outer part 

of it, corona, it drops to until 6  −10 , where it corresponds to 

plasma. It is about 8 10−  in the earth’s core which is made up 

with liquid iron and 6 10−  in the black holes and neutron stars.  

 

1.1 Earlier Research 

 

The influence of magnetic field in a layer in which convection is 

driven by buoyancy is a special problem with the existence of 

double diffusion. Even though magnetic diffusion is accepted 

as dominant process in this study, this approach is in 

agreement with many applications or events. In 1955, Lehnert 

[3] stated that a uniform applied magnetic field has a 

pronounced effect on the decay of turbulence in a conducting 

fluid. He modelled the problem with linear equations and 

Deissler [4] had analyzed the problem numerically using these 

linear set of equations in 1963. In sixties, a Taylor series 

expansion of variables in time had been used by Nestlerade 

and Lumley [5] to solve the case with a strong field. Linear 

theory of magneto-convective mechanism is extensively 

discussed by Chandrasekhar [1] for various boundary 

conditions and the results were in a good agreement with the 

experiments by Nakagawa [6]. In these experiments, the 

linear relation between critical Ra number and the strength of 

magnetic field was reported which is also shown in the linear 

analysis of Chandrasekhar [1]. In the first systematic study of 

the development of nonlinear magneto-convection, preliminary 

results were given by Spiegel [7] and Weiss [8]. A general 

review can be found in literature for the nonlinear analysis of 
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the motion by Weiss [9].  In this review, double diffusive 

motion is considered with time dependent magnetic equation 

by means of the case where energy transfer mostly occurs by 

radiation. There exist a long series of research [10-13] headed 

by F.H. Busse et al. restricting attention to the case αλ >> . 

This corresponds to the physical situation that while the 

induced magnetic field is hardly modified by convection, the 

ambient homogeneous magnetic field affects the convective 

motions.  

 

The emerging picture [10-12], [14-16] of the underlying 

dynamics under the influence of a vertical magnetic field 

reveals that the interaction of convection with the magnetic 

field causes Lorentz forces. They in turn are opposing the 

horizontal motions in recirculating natural convective flows. As 

the horizontal motion is ever present at the onset of 

convection in the form of two-dimensional rolls in the 

neighborhood of the critical Rayleigh number, the Lorentz 

force stabilizes the fluid and the onset of convection is shifted 

towards higher critical Ra. The increase of the critical Ra with 

an increasing Q is calculated by Chandrasekhar [1] using a 

linear stability analysis. Another important effect of the 

vertical magnetic field is the reduction in the horizontal length 

scales of convection. This is in a way minimization of Joule 

dissipation by reducing horizontal motions. The convection 

rolls become unstable to three dimensional disturbances in the 

form of waves which travel along the rolls and manifest 

themselves as transverse oscillations of the rolls. The 

inhibiting influence of the vertical magnetic field on the onset 

of oscillations is even stronger than the stabilizing influence on 

the onset of convection. A horizontal magnetic field, on the 
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other hand, has the most inhibiting effect on the onset of 

oscillation [13], [16]. The resulting Lorentz forces inhibit three 

dimensional oscillatory motion and give rise to transition into 

two dimensional convective roll pattern aligned with the 

magnetic field. This is a configuration with considerably less 

Joule dissipation. The additional delay of the oscillatory 

instability due to the horizontal magnetic field causes a much 

enlarged region of stable rolls.     

 

1.2 Scope of the Work 

 

In this thesis, numerical simulations are performed on problem 

with the same physical parameters chosen in literature by 

imposing an external magnetic field inclined relative to the 

horizontal direction. In particular, the effect of the horizontal 

and vertical components of the external strong magnetic field 

is examined. The condition PrPm <<  (or equivalently αλ >> ) is 

taken into consideration. In this limit, the interaction terms 

between the velocity and the fluctuating components of the 

magnetic field in the hydromagnetic equation become 

negligible and the advection of the magnetic field by the 

velocity field is omitted as stated in the studies of Clever and 

Busse [11-13]. This is referred to as quasi-static 

approximation and as a result only additional linear terms 

appear in the equation of motion thus resulting in considerable 

simplification in the model equations and in the numerical 

simulations. In order to simulate the real cases and to 

compare with existing results in literature, Pr is selected to be 

0.05 and 0.1.  
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Main objective of this study is to simulate magneto-convective 

flow numerically by using a spectral element method and to 

interpret the effects of the magnetic field over natural 

convection. The spectral element method is developed in the 

early eighties by Patera [17]. It is based on the weak 

(variational) form of the governing equations. In spectral 

element methods, the basis functions are hierarchical and 

follow easier rules of construction, for instance, they can be 

derived from Chebyshev or Legendre polynomials. As the order 

is increased, the former set of basis functions is simply 

augmented by a new set of polynomials constructed from the 

previous set. Therefore, in spectral element methods, the 

order of approximation is user-dependent and can even vary 

from element to element. There are numerical advantages in 

using the Chebyshev or Legendre polynomials instead of 

regularly spaced Lagrange interpolants.  

  

The numerical scheme used in this work builds on the work of 

Schumack et al. [18] and Guessous [19]. The main features of 

the scheme are its treatment of the pressure term and the use 

of rescaled Legendre-Lagrangian interpolants to represent the 

velocity, temperature and the induced magnetic field. The 

treatment of the pressure term avoids the complicated 

staggered grids approach and instead pressure is 

approximated with lower order polynomials than velocity. For 

other numerical approaches, we refer to Chandrasekhar [1], 

publications of Clever and Busse [12], [13] and a numerical 

computation by a finite difference scheme, Möβner and Müller 

[20]. The validity of results is also shown in comparison with 

the experiment by [21]. 
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In Chapter 2, the geometry of the problem, the system of 

model partial differential equations and dimensionless 

numbers are presented, and in addition the numerical scheme 

is constructed. In Chapter 3, a weak solution is obtained by 

applying Galerkin projection to the set of partial differential 

equations. Test functions are used to test the accuracy and 

consistency of the numerical scheme. In the next chapter 4, 

the weak formulation is performed for only the computation of 

the velocity field. On the other hand explicit values of induced 

magnetic field are evaluated in strong form at nodes by means 

of the differential operators. Analysis for stationary and time 

dependent flows are presented separately in Chapter 5. A 

preliminary work on a low dimensional representation scheme 

is presented in Chapter 6 based on the Karhunen-Loeve 

approach. In Chapter 7, results are summarized and main 

points of conclusions are drawn. 
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CHAPTER 2 

 

 

MAGNETO-CONVECTIVE MOTION 

 

 

 
The fluid layer, between perfectly conducting rigid plates 

with a depth d  extending to infinity in the horizontal 

directions x  and y , is heated from below and an inclined 

external magnetic field 0B  is applied in the yz  plane with 

angle χ  from y  axis (Figure 2.1).  

 

 

 

Figure 2.1 Computational domain and external vector fields. 

 

 

Motionless state is maintained until a minimum temperature 

difference between bottom and top surfaces of the layer is 

reached and in this state the temperature varies in a linear 

manner. The heat is transmitted by means of pure 

conduction. The density of the heated fluid slowly drops due 

to thermal expansion and the balance between buoyancy, 

viscous and magnetic (Lorentz) forces maintains conductive 
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no-motion state. When the temperature difference is high 

enough or the magnitude of the magnetic field 0B  is not 

adequate to inhibit motion, the layer rapidly resolves itself 

into a number of cells with roll motion which is ascension in 

the middle of a cell and a descension at the common 

boundary between a cell and its neighbours (Figure 2.2). 

   

 

 

Figure 2.2 Ascendance of hot fluid, descendence of cold fluid 

in a roll action. 

 

 

2.1 Model Equations 

 
Mathematical model of magneto-convection in such a layer is 

constructed using Navier-Stokes equations which entails 

mass and momentum conservation including forcing terms of 

gravitation and magnetic fields. Various coefficients such as 

density ρ , kinematic viscosity υ  or thermal diffusivity α  are 

temperature dependent. The variation of these coefficients 

with temperature fundamentally depends upon the 

volumetric expansion coefficient, β  which is a small number 

for fluids and gases as indicated in Chandrasekhar [1]. In 

addition to this, temperature differences are assumed to be 
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very small, therefore those equations can be arranged 

according to Boussinesq approximation that the variations in 

the coefficients are ignored except the variability of the 

density ρ  appearing in the external gravitation term in the 

momentum equation is not. Conservation of mass and 

momentum for incompressible fluids under Boussinesq 

approximation can then be written respectively as:  Θ′  

0~ =⋅∇ u ,                                                                    (2.1) 

( ) ( )BJueuu
u ~~1~P

~1~~
~

0

2

00

×+∇+−∇−=∇⋅+
∂

∂

ρ
υ

ρ

ρ

ρ
zg

t
 

 
.                 (2.2) 

where u~  is the velocity field, P
~
 is the pressure, J

~
 is the 

current density and B
~
 is the magnetic field. Here, “~” refers 

to a total value of the variable. g  is the acceleration of 

gravity in the opposite direction to ze  and 0ρ  is the density 

at a reference temperature 0T . According to the Ampere’s 

law, the relation between the current density and the 

magnetic field is: 

JB
~

4
~

 πµ=×∇                                                                (2.3) 

where µ  is the magnetic permeability of the fluid. By 

substitution of (2.3) into (2.2), Lorentz forcing term ( )BJ
~~

×  is 

redefined in a simple manner:  

( ) ( )BBueuu
u ~~

4

1~P
~1~~

~

0

2

00

××∇+∇+−∇−=∇⋅+
∂

∂

πµρ
υ

ρ

ρ

ρ
zg
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         (2.4) 

or identically; 

( ) ( )BBu
eB
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4

1~
8

~

P
~1~~

~

0

2

0

2

0
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











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∂
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.   (2.5) 

Conservation of energy leads to the heat transport equation 

for the temperature field, T
~
: 



 

 11

( ) T
~

T
~~T

~
2∇=∇⋅+

∂

∂
  

 

 
αu

t
                                                   (2.6) 

in which heating due to viscous dissipation is neglected. 

Additionally, the interaction between the velocity field, u~  

and the magnetic field, B
~
 is governed by Maxwell’s 

equations. Since we are not interested in the effects of 

propagation of electromagnetic waves, the relation with 

respect to displacement currents is omitted. Charge density 

and its time variation are also dropped because they are 

relatively small [1]. Therefore Maxwell’s equations give: 

0
~

=∇ B ,                                                                     (2.7)                                                      

t 

 

∂

∂
−=×∇

B
E

~
~

,                                                              (2.8) 

together with (2.3). Here, E
~
 is the electric field. Ohm’s law 

for moving materials relative to a magnetic field B
~
 dictates:                      

( )BuEJ
~~~~

×+= σ                                                              (2.9) 

where σ  is the coefficient of electrical conductivity. By 

substitution of the curl of (2.3) and (2.9) into (2.8), it turns 

out to be an equation involving only the magnetic and 

velocity fields: 

( ) ( )[ ]BBu
B ~~~
~

×∇×−∇=××∇−
∂

∂
  λ

t
                                      (2.10) 

or by using some vector identities; 

( ) ( ) BuBBu
B ~~~~~
~

2∇+∇⋅+∇⋅−=
∂

∂
   λ

t
.                                    (2.11) 

In (2.11), magnetic diffusivity is presented in a combined 

form:  

µσπ
λ

 4

1
= .                                                               (2.12) 
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The total values u~ , P
~
 and T

~
 can be decomposed as in the 

usual approach to their components representing variables 

in no-motion (conduction) state and in convection state: 

( ) ( )tzyxtzyx ,,,0,,,~ uu ′+= ,                                             (2.13)   

( ) ( )tzyxztzyx ,,,P)(P,,,P
~

′+=
(

,                                          (2.14) 

( ) ( )tzyxztzyx ,,,)(T,,,T
~

Θ′+=
(

,                                         (2.15) 

and the total magnetic field consists of two parts; externally 

imposed uniform magnetic field applied in the direction Be  in 

the yz  plane with a magnititude 0B  and the induced 

magnetic field b′  which exists with convective motion: 

( ) ( )t,z,y,xBBt,z,y,x
~

0B0 b  e B ′
λ

α
+= .                                 (2.16) 

In the no-motion state of conduction, the pressure and 

temperature fields, P
(
 and T

(
 vary only in the vertical z 

direction. Here, primed variables represent fluctuations over 

the conduction state in the state of convection. Density is 

assumed to obey:  

( )[ ]00 TT
~

1 −−= βρρ .                                                    (2.17)   

When pure conduction is considered and (2.17) is 

substituted, the momentum (2.5) and the heat transport 

(2.6) equations respectively give:                                                                                           

( )[ ] zg
z

e 
 

 
0

0

TT1
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−−−=
∂

∂ (
(

β
ρ

,                                            (2.18) 

0
T
2

2

=
∂

∂

z 

 
(

.                                                                 (2.19) 

A linear temperature distribution in z  is obtained by (2.19) 

as:                

 ( )
( )









−

−
+=

2
1

2

TT
TT 01

0
d

z
z

(
.                                          (2.20) 
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Advection term in (2.4) is rearranged for the improvement 

of numerical accuracy. (2.13) is substituted for velocity field 

and ( )uu ~~ ∇⋅  is rewritten in the form of: 

( ) ( ) ωu
uu

uu
uu

uu ′×′−






 ′⋅′
∇=′×∇×′−







 ′⋅′
∇=′∇⋅′

22
.             (2.21)  

Substitution of equations from (2.13) to (2.16), (2.20) and 

(2.21) into (2.1), (2.5-2.7) and (2.11) gives with the final 

form of the equations of motion: 

0=′⋅∇ u ,                                                                  (2.22) 
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0=′⋅∇ b ,                                                                  (2.25) 
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  (2.26) 

where Π′  is the stagnation pressure in dimensional form: 

πµ

λ

α

ρ
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2
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   yz

.                                 (2.27) 

All variables are normalized by dividing with the 

characteristic values: 

2d

x
x = ,

α42
d

t
t = , 
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u
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01 TT −

Θ′
=Θ , 

22
04 dαρ
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The dimensionless form of the governing equations is then: 

0=⋅∇ u ,                                                                   (2.28)                                       
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( ) Θ∇+=Θ∇⋅+
∂
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2
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,                                             (2.30)          

0=⋅∇ b ,                                                                   (2.31) 

ub    








∂

∂
+

∂

∂
−=∇

z
Sin

y
Cos χχ2 ,                                         (2.32) 

where the primes are dropped for the dimensionless 

variables. In reducing (2.26) into the form (2.32), the scope 

of this study involving convective fluid with high magnetic 

diffusivity λ  (liquid metals) is taken into consideration. 

Following [13], this is referred to as quasi-static 

approximation. Dimensionless form of the total magnetic 

field is introduced as: 

beeB    
λ

α
χχ ++= zy SinCos .                                           (2.33) 

Here, ( )zyx u,u,u=u  and ( )zyx b,b,b=b  are the dimensionless 

forms of the velocity and the induced magnetic fields. ye  and 

ze  are the unit vectors in the y  and z  directions, 

respectively. Θ  is the temperature fluctuation in 

dimensionless form in the convective state. ω  is the vorticity 

which is the curl of velocity and Π  is the dimensionless form 

of combined scalar terms. The dimensionless parameters 

Rayleigh ( *Ra ) and Chandrasekhar ( *Q ) numbers are 

modified in accordance with the scaling based on the half-

depth as defined by:     

( )
υα

β

8

TT

8

3
01 dg −

==
Ra

Ra* ,                                              (2.34)                 

ρµυλ4

B

4

22
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==

Q
Q* .                                                        (2.35) 

Thermal Prandtl (Pr ) does not change: 

α

υ
=Pr .                                                                    (2.36) 
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All physical variables are subjected to periodic boundary 

conditions in the horizontal  x  and y  directions. Due to the 

rigid plates on  z  boundaries, no slip boundary conditions for 

u , perfectly conducting boundary conditions for Θ  and 

electrically high conductive boundary conditions for the 

induced magnetic field, b , are imposed such that: 

100 m===
∂

∂
=

∂

∂
=Θ=   z      

z
  

z
z

yx at
 

 

 

 
   and   b

bb
u .            (2.37) 

 

2.2 Discretizations 

A spectral element numerical scheme for pure Rayleigh 

Benard convection (RBC) is constructed by Guessous [19], 

which is based on the earlier works by Patera [17], Schumack 

et al. [18] and Orszag [22].  

While Fourier expansions are used for the discretization of the 

variables in the horizontal  x  and y  directions due to the 

assumption of periodicity, a polynomial type basis is used for 

the approximation in the vertical direction. As developed in 

the work of Schumack et.al. [18], and applied in the study of 

Guessous [19], velocity and temperature approximation in 

the z  direction are based on the rescaled Lagrange-Legendre 

interpolants expansion. The absence of boundary conditions 

for the pressure variable at 1±=z  is accommodated by an 

expansion based on two order less Legendre polynomial 

expansion than those for the other variables. This replaces 

the need to use staggered grid approach and thus simplifying 

the implementation.  
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2.2.1 Computational Grids on Horizontal Domain 

 

Consideration of periodicity in the horizontal  x  and y  

directions naturally restricts the computational domain to a 

rectangular box with an aspect ratio 2:2 yx ss=Γ , where xs  

and ys  are the dimensionless lengths of the box in the 

horizontal directions: 

 
2

0
d

L
sx x

x =≤≤ ,                                                         (2.38) 

2
0

d

L
sy

y

y =≤≤                                                           (2.39) 

with 11 +≤≤− z  and 0≥t . 

 

All physical variables are represented by their Fourier 

expansions in the   x and y  directions: 
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,       (2.40)                     

where ζm  and ηn  are the wave numbers with 

xs2πζ = ,                                                                (2.41) 

ys2πη =                                                                   (2.42) 

and m  and n  are integers in the range  

 
2

m
2

1 xx NN
≤≤− ,                                                        (2.43) 

 
2

n
2

1
yy NN

≤≤− .                                                        (2.44) 

Here, xN  and yN  represent the horizontal resolution. The 

collocation points in the horizontal directions are: 



 

 17
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,                                                               (2.45) 
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⋅

⋅
=

η

π2
.                                                               (2.46) 

For each wave index pair ( )nm, , the periodic boundary 

conditions (2.37) for the physical variables, u , Θ  and b  

are: 
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,                             (2.47) 

( )tzyxtzyx ,,,,,
n2

,
m2

Θ=






 ⋅
+

⋅
+Θ

η

π

ζ

π
,                            (2.48) 

( )tzyxtzyx ,,,,,
n2

,
m2

bb =






 ⋅
+

⋅
+

η

π

ζ

π
.                             (2.49) 

 

2.2.2 Quadrature in the Vertical Direction 

 

The collocation points in the vertical z direction are the 

Legendre-Gauss-Lobatto quadrature points. The Legendre-

Gauss-Lobatto quadrature points are computed as the roots 

of:  

( ) ( ) ( )zLzzq
ZN

′−=  21                                                       (2.50) 

where prime denotes the differentiation with respect to z  

and 
ZNL  is the Legendre polynomial of order zN  which can be 

obtained from the Rodrigues’ formula: 

( ) ( ) Z

Z

Z

ZZ

N

N

N

Z

NN z
dz

d

N
zL 1

!2

1 2
−= .                                         (2.51) 

The quadrature points consist of two collocation points, 

which are specified a priori as the boundary nodes 10 −=z  

and 1=
ZNz , and 1−zN  roots of Legendre polynomial ( )zL

ZN
′ . 

The interior collocation points satisfy some three term 
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relations as a general property of Jacobi polynomials. These 

relations are derived in [23] for Legendre polynomials and 

here they can be manipulated by using the properties of 

Legendre polynomials: 

( ) ( ) ( )zL
N

N
zL

N

N
zLz

ZZZ N

z

z

N

z

z

N 11
12

1

12
+−

+

+
+

+
=                           (2.52) 

( ) ( ) ( )zL
N

zL
N

zL
ZZZ NN

z

N 11
12

1

12

1
−−

′
+

+′
+

−=                            (2.53) 

( ) ( )
( )

( )
( )

( )zL
N

NN
zL

N

NN
zLz

ZZZ N

z

zz

N

z

zz

N 11
2

12

1

12

1
1 +−

+

+
−

+

+
=′−              (2.54) 

Substitution of (2.54) into (2.50) gives a direct relation in 

terms of the Legendre polynomials: 

( )
( )

( )
( )

( )zL
N

NN
zL

N

NN
zq

ZZ N

z

zz

N

z

zz

11
12

1

12

1
+−

+

+
−

+

+
=                         (2.55) 

To obtain the convenient recursive relation for the 

computation of the roots using Newton method, 

differentiation of ( )zq  in (2.55) is necessary: 

( )
( )

( )
( )

( )zL
N

NN
zL

N

NN
zq

ZZ N

z

zz

N

z

zz

11
12

1

12

1
+−

′
+

+
−′

+

+
=′ .                      (2.56) 

Substitution of (2.53) in to the equation (2.56) provides a 

simple form: 

( ) ( ) ( )zLNNzq
ZNzz 1+−=′ .                                               (2.57) 

The roots of 0)( =zq  are computed by Newton iteration:  

( )
( )

( ) ( )
( ) ( )zLN

zLzL
z

zq

zq
zz

Z

ZZ

Nz

NNk

jk

j

k

jk

j

k

j
12

111

+

−
+=

′
−=

+−+                             (2.58) 

Initial values of z  are chosen as the Chebyshev points: 









=

z

o

j
N

j
z

π
cos                                                              (2.59) 
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for 11 −≤≤ ZNj . Iteration is performed for each node until 

satisfactory accuracy is obtained. Corresponding weights are 

given by [24] as: 

( )

( )( )
( )













+

+

=
−

 

 

           

1

2

1

2

2

zz

jN

zz

j

NN

xL

NN

w

Z

            for      

.

, and 

11

0

−≤≤

==

z

z

Nj

Njj

           (2.60) 

  

In the works of Schumack [18] and Guessous [19], the 

velocity and temperature variables are expanded in z  by 

rescaled Lagrange Legendre interpolants, ( )zhp  for each pair 

( )nm,  in Fourier space. Rescaled Legendre-Lagrangian 

interpolants are obtained by dividing the Lagrangian 

interpolants by the square root of the corresponding 

quadrature weights [24]: 

( )
( ) ( ) ( )

( ) ( ) ( ) iiiNZZ

N

i

i

i
wzzzLNN

zLz

w

zh
zh

Z

Z

   

 

−+

′
−

−==
1

1 2

,                     (2.61) 

Here, at the grid (collocation) points, iz , the rescaled 

Lagrangian interpolants (2.61) satisfy the Lagrangian 

property: 

( )
( )

i

ij

i

ji

ji
ww

zh
zh

δ
==                                                      (2.62) 

where δ  is the usual Kronecker Delta tensor. In the case of 

magneto-convection, the additional flow variable, namely, 

the induced magnetic field is expanded in terms of the same 

interpolants, and thus all variables are now represented in 

the form:   

( ) ( )iiiij

N

j

ji zhtzzhtztz
Z

⋅

















Θ=⋅

















Θ=

















Θ ∑
=

)()()( ,n,m,,n,m,,n,m,
ˆ

ˆ
ˆ

0
b

u

b

u

b

u

   (2.63)                           
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Here, over-bar denotes the rescaled values of the variables.  

 

Π̂  is expanded in terms of two order less Legendre 

polynomials: 

( ) ( ) ( )∑
−

=
−⋅Π=Π

1

1
1,n,m,,n,m,ˆ

ZN

j

j zLtjtz .                                   (2.64)  

 

2.2.3 Temporal Discretization 

 

In this study, as indicated earlier, fluid in the layer is 

assumed to be incompressible therefore the discrete 

operators of the linear terms will be constant or time 

independent coefficient tensors. In this case, linear terms, 

i.e. the viscous term and the pressure are considered 

implicitly [25]. Nonlinear advection and forcing terms are 

implemented explicitly. In summary time discretization is 

performed using a semi-implicit scheme. Advection and 

forcing terms are discretized in time using second order 

Adams-Bashforth method and the others using Crank-

Nicolson. Both methods have second order accuracy. After 

the temporal discretization, governing equations (2.28) to 

(2.32) are written in the form: 

01 =⋅∇ +nu  ,                                                               (2.65)                                      

{ } { } ,Pr  Pr               

 PrQPrRa-             
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(2.66)  
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( ) ( )

( ),             
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





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





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u
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            (2.67)      

,0=⋅∇
n

b                                                                 (2.68) 

 nn

z
Sin

y
Cos ub    









∂

∂
+

∂

∂
−=∇ χχ2 .                                    (2.69) 

 

Here, t∆  and n  denote the size of the constant time-step 

and the time level, respectively.  Divergence free condition 

on the velocity field (2.65) is enforced at time level 1+n . 

Since induced magnetic field is directly connected to the 

velocity field by the quasi-steady relationship (2.69), a 

solenoid velocity field will generate a solenoid induced 

magnetic field. Therefore, there is no need to satisfy the 

divergence free condition on the magnetic field and thus 

(2.68) is implicitly satisfied. These set of partial differential 

equations are compacted by rearranging in the following 

form: 

01 =⋅∇ +nu ,                                                               (2.70) 

nnn

t
gu +Π∇=









∆
−∇ ++ 112 2

Pr ,                                         (2.71) 

nn

t
f=Θ









∆
−∇ +12 2

Pr ,                                                   (2.72) 

nn qb  =∇ 2 .                                                                (2.73)  

where ng , n
f  and nq  are the forcing terms at the th

n  level in 

(2.66), (2.67) and (2.69):                            
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,Pr        

 Pr QRaPr        

 Pr QRaPr 
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n
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



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
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ef  ,    (2.75) 
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
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∂
−= χχ .                                         (2.76) 

The boundary conditions are imposed as: 

10011
m===

∂

∂
=

∂

∂
=Θ=

++
  z      

z
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n
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xnn at
 

 

 

 
   and   b

bb
u .      (2.77) 

 
Before the application of Galerkin projection, the equations 

(2.70) to (2.73) should be rewritten in terms of Fourier 

coefficients. For each wave index pair ( )nm, , the 

differentiation in the horizontal directions can be expressed 

in the form of product with the wave numbers: 
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in x  and      
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in y  directions. Here, ℑ  is the fourier operator and ζmx =k  

and ηny =k  are the wave numbers in x  and y  directions, 

respectively. 
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After substitution of (2.78) and (2.79), the system of partial 

differential equations from (2.70) to (2.73) are represented 

in Fourier space as: 

0ˆˆˆ 111
=

∂

∂
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+++ n
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ikik uuu ,                                           (2.80) 
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where n
ĝ , n

f̂  and n
q̂  are the forcing terms from (2.74) to 

(2.76) in Fourier space:                            
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and 
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Here, { } ( )     zii ∂∂=∇ℑ ,n,m ηζ  and { } 2222
kz −∂∂=∇ℑ  are 

representations of the gradient and laplacian operators in 

Fourier space and
222

yx kkk += . Boundary conditions become: 
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In this multi-step scheme, there exists a difficulty at the 

beginning stage ( 0=t ) because the only known values of the 

variables are those: 

( )0,n,m,ˆˆ 0
zuu = ,                                                          (2.92) 

( )0,n,m,ˆˆ 0
zΘ=Θ ,                                                         (2.93) 

( )0,n,m,ˆˆ 0
zbb = ,                                                          (2.94) 

However, the scheme needs two levels of starting values in 

order to determine, n
û , n

Θ̂  and n
b̂  at the later stages. To 

overcome this problem, it is necessary to apply a starting 

scheme for the first step. In this study, first order forward 

Euler is implemented. Manipulation of equations from (2.28) 

to (2.32) towards implementing Forward Euler results in a 

change in 0
ĝ  and 0

f̂  as: 
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Due to the way that the nonlinear terms are treated in 

(2.88) and (2.89), de-aliasing is required at each time step. 

Multiplication of flow variables generates coefficients at high 

wave numbers; this creates a wholly unphysical transfer of 

energy from high wave numbers to low called aliasing. Parts 

of arrays are set to zero for wave numbers; 3m xN>  and 

3n yN>  towards eliminating aliasing in [19]. In this study, 

loop over mode pairs ( )nm,  is performed only on surviving 

modes to save time instead of working on non-zero modes 

and subsequently filtering them out.  
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CHAPTER 3 

 

 

WEAK FORMULATION OF EQUATIONS 

 
 
 

Equations from (2.80) to (2.87) are discretized by following 

a variational method, Galerkin procedure. While Legendre 

polynomials (2.51) are chosen as test functions for the 

continuity equation (2.80), variational forms of the 

momentum conservation, heat transport and hydromagnetic 

equations are obtained by the inner product of rescaled 

Lagrange-Legendre interpolants (2.62) with the equations 

(2.81) to (2.87). Due to the homogeneous Dirichlet 

boundary conditions at 1m=z  for velocity, temperature 

variables and the z  component of the induced magnetic 

field, the test functions are selected to satisfy Dirichlet 

boundary conditions automatically which amounts to 

excluding those interpolants with indices corresponding to 

the boundary nodes. On the other hand, the unknown values 

of x  and y  components of the induced magnetic field at the 

z  boundaries for which Neumann conditions are specified, 

are included in the computations by selecting the whole 

range of the Lagrange interpolants as test functions: 
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where zNi <<0  and zNl ≤≤0 . 

 

Integration by parts reduces second order z  derivatives and 

subsequently, the system of partial differential equations for 

the momentum conservation (3.2)-(3.4), the heat transport 

(3.5) and the hydromagnetic (3.6)-(3.8) equations are 

rewritten in to the form of: 
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Here, prime denotes derivative with respect to z . Boundary 

terms in the equations (3.9)-(3.15) vanish due to the 

homogeneous boundary conditions (2.91) and: 

 

( ) 01 =±ih    for   zNi <<0 .                                           (3.16) 

 

The derivative of rescaled Legendre–Lagrange interpolants is 

found in literature to be:  
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After the substitution of the expansion in terms of rescaled 

Legendre Lagrange interpolants (2.63) and Legendre 

polynomials (2.64), the equations (3.9) to (3.15) are 

rewritten in the form: 
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for  zNi <<0  , zNj <<0  and zNl ≤≤0  , zNp ≤≤0 . 

 

It should be noticed that xb̂ and yb̂ ; 
ZNxx bb ˆˆ

0  , and 
ZNyy bb ˆˆ

0
 , are 

non-zero values therefore Lorentz forcing terms in xĝ  and yĝ  

are evaluated on 1+zN  nodes. Using Gauss-Lobatto 

quadrature, the integrals in z  are computed: 
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Here, the range of the indices i  and j  include the boundary 

points in (3.23) and (3.24). Coefficient matrices A , B , C  

and D  in (3.26) to (3.29) represent the discrete form of the 

differential operators. As an advantage of using the rescaled 

Lagrange Legendre interpolants, B  turns out to be an 

identity matrix, I  which creates a simplification in the 

computations (3.27). 

 

Substitution of (3.26)-(3.29) into (3.18)-(3.25) result in: 
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[ ] n

x

n

xIkA qb =+−  2 ,                                                    (3.35) 

 [ ] n

y

n

yIkA qb =+−  2 ,                                                    (3.36)       

[ ] n

z

n

zIkA qb =+−  2 .                                                    (3.37) 

 

The solution strategy follows from earlier studies on the 

numerical solution of Navier Stokes equations as in the 

Uzawa technique [25] and in Guessous’ work [19].   In this 
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strategy, the momentum equations (3.31)-(3.33) are solved 

for the velocity in each direction and for each ( )
yx kk ,  pair:  
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( )n

y

n

y

n

y Cik gu U +Π=
+−+ 111  H ,                                              (3.39) 
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+−+ 111 H                                                  (3.40) 

and similarly (3.34) for the temperature field: 
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1
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and (3.35)-(3.37) for the induced magnetic field: 
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z qb B  H 1−
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Here, UH , ΘH  and BH  in (3.44) are ( ) ( )11 −×− zz NN discrete 

Helmholtz operators. (3.42) and (3.43) are solved for the 

boundary values of xb  and yb  therefore BH  is a 

( ) ( )11 +×+ zz NN  matrix for these equations:  
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[ ]IkA
2

+−=BH .                                                         (3.47) 

Substitution of the matrix equations (3.38)-(3.40) into the 

continuity equation (3.30) provides the discrete equation to 

solve for the pressure at time level 1+n : 

nn
S GΠ

1 =+ ,                                                              (3.48)    

where S  is the pressure operator, nG  is the right hand side 

vector at time level n : 

( )DDCCkS
TT 112 −−

+−= UU HH ,                                            (3.49) 
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DCikCik ggg UUU  H  H   H 111G −−−= .                    (3.50) 

After solving (3.48) for the pressure, updated values for the 

velocity field are obtained by inserting the pressure in to 

equations from (3.38) to (3.40). Temperature field involves 

the third component of the velocity field, therefore, new 

values for temperature field are obtained by substituting into 

(3.41).  

 

3.1 Inverse of Helmholtz Operators 

 

Here, for inverting the Helmholtz operators (3.45), (3.46) 

and (3.47), an efficient technique, namely, collocation 

diagonalization method [26] is performed. The key in the 

performance of this technique is the use of the rescaled 

Lagrangian interpolant expansion functions and subsequently 

having the mass matrix B  as identity. This way the cost of 

the inversion is reduced from ( )3

zNO  to ( )2

zNO  arithmetic 

operations in the overall numerical scheme. First, the 

symmetric second order derivative matrix A  is factorized by 

using similarity transformations, such that: 

1−
= EGEA   .                                                              (3.51) 

Here, G  is the diagonal matrix in which the diagonal 

elements are the eigenvalues of A  and E  contains the 

corresponding eigenvectors as its columns.  

 

Substitution of (3.51) into (3.45) gives: 
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And finally, manipulating the equation gives the inverse in a 

simpler form, such that: 
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For each 2
k , only a diagonal matrix is to be inverted. 

Similarly, the other operators can also be inverted in this 

way: 

1
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 [ ] 1121 −−− +−= EIkGE   H B .                                                (3.58)   

 

3.2 Solution for the Pressure 

 

Unlike the sparse systems of equations produced by finite 

differences or finite elements, spectral element technique 

which uses a global approximation for each node leads full 

matrices. To solve the pressure equation (3.48), pressure 

operator, S  (3.49) should be inverted for each wave number 

pair which is numerically costly. Here, solution of the 

pressure equation is obtained by Minimum Residual 

Richardson (MRR) algorithm which is also applied in the pure 

convection case in Guessous’ work [19]. This algorithm 

presents a preconditioned iterative scheme which costs only 
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( )2
NO  flops as opposed to ( )3

NO  flops in using the inverse of 

a diagonal pre-conditioner matrix. More details of the 

algorithm can be found in [23].  

 

Pressure equation (3.48) at step 1+n  is written symbolically 

for the sake of simplicity and multiplied by a preconditioning 

matrix: 

G
11

Π
−− Λ=Λ S ,                                                           (3.59)  

where  

n
GG = ,                                                                   (3.60) 

1
ΠΠ

+
=

n  is the pressure vector at time step 1+n  for a wave 

number 2
k  and; 

ijijij Sδ=Λ .                                                                (3.61) 

Here, Λ  is the preconditioning matrix that has the diagonal 

elements of pseudo-spectral differential operator of the 

pressure equation (3.49), S . 

 

Iteration starts at time step n , executes over a number of 

sub-time levels and terminates until a convergence criteria is 

satisfied. Therefore, this equation is subsequently discretized 

within the time interval [ ]1, +nn
tt  by Richardson iterative 

scheme: 

G
11

1

Π
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mm

S
τ

                                           (3.62) 

or 

( ) G  
111

ΠΠ
−−+ Λ+Λ−= mmmm

SI ττ .                                     (3.63) 

where mτ  is an optimized real parameter varying with the 

subsequent index m . Associated with (3.48), residual at an 

subsequent level m , m
r  is: 
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mm Sr Π−= G                                                              (3.64) 

and similarly, an expression for 1+m
r  is derived by 

substituting (3.63) for the pressure at 1+m : 

( ) G -GG 1111
ΠΠ

−−++
Λ−Λ−=−= SSISSr

mmmmm ττ                 (3.65) 

or, substitution of (3.64) gives a recursive relation on m
r : 

mmmm
rSrr

11 −+
Λ+= τ .                                                    (3.66) 

The real parameter mτ  is obtained by mean square 

minimization using the inner product of residual with its 

complex conjugate:  

( ) ( ) ( ) ( )
( ) ( ),                                                  mmm

mmmmmmmmmm

rSrS

rSrrSrrrrr

112

1111

,

,,,,

−−

−−++

ΛΛ+

Λ+Λ+=

τ

ττ
(3.67) 

where overbar designates complex conjugate and 1−
ΛS  is a 

symmetric operator. Thus (3.67) is rewritten as: 

( ) ( ) ( ) ( ) ( )mmmmmmmmmm
rSrSrSrrrrr

112111 ,,2,, −−−++
ΛΛ+Λ+= ττ .     (3.68) 

 

In order to minimize (3.68) derivative with respect to mτ  is 

set to 0 to yield: 

( ) ( ) ( ) ( ) 0,2,2
, 111

11

=ΛΛ+Λ=
∂

∂ −−−
++

mmmmm

m

mm

rSrSrSr
rr

 τ
τ

             (3.69) 

or 

( )
( )mm

mm
m

rSrS

rSr

11

1

,

,
−−

−

ΛΛ

Λ
=τ  .                                                 (3.70) 

Initial values of pressure are taken from the previous time 

step as in Guessous work [19] and (3.63) is repeated for 

each subsequent level 1+m  until residual norm (3.66) falls 

below a desired value (selected as 1310−  in this work). 
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3.3 Special Cautions for Constant Term Mode 

 

A special attention is necessary for the pressure equation 

(3.48) due to the singular behaviour of pressure which 

appears in its gradient form in the model equations and has 

no associated boundary conditions that is the motivation 

behind the expansion in terms of two order less Legendre 

polynomials over z . This singular behaviour due to the lack 

of sufficient number of constraints is reflected in pressure 

operator, S  which is singular for 0== yx kk . Therefore, 

following the work of Schumack [18] and Guessous [19], as 

an additional constraint the constant pressure mode is set to 

zero, without loss of generality, by modifying the matrix 

equation (3.48) for 0== yx kk , such that: 













=

ij

ij

S

S
1

0

0

      if  

00

0

0

0

≠≠

==

=≠

=≠

ji

ji

ij

ji

 and 

                   0>tfor        (3.71)      

and 





=
i

i
G

G
0
       if       

 

 

0

0

≠

=

i

i
                          0>tfor .      (3.72) 

With this treatment, the first component of the unknown 

pressure array for the modes ( )0== yx kk  is set to zero:  

( ) 0t,1,0,0 =Π                                          0>tfor .        (3.73) 

 

Similar singular behaviour is also observed in the yx  and   

components of the induced magnetic field (3.42) and (3.43) 

for 0== yx kk . The horizontal components of the induced 

magnetic field is subjected to Neumann boundary conditions. 
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BH  for the horizontal components is a singular matrix for 

02
=k : 

A−=BH .                                                                  (3.74) 

Therefore, without loss of generality, hydromagnetic 

equation is modified preserving symmetry for 0== yx kk , 

such that: 

  H  













−

=

ij

ij

A

1

0

0

B       if  

22

2

2

2

zz

z

z

z

NjNi

Nji

Nij

Nji

≠≠

==

=≠

=≠

 and 

 

 

 

       0>tfor       (3.75)      

and 





=
i

i
q

q
0
           if          

2

2

z

z

Ni

Ni

≠

=
                0>tfor .      (3.76) 

This corresponds to setting the value of the horizontal 

components of the induced magnetic field at the node 0=z  

to zero for ( )0== yx kk :  

( ) 0,,0,0 22 ==
ZZ NxNx tz bb                               0>tfor ,     (3.77) 

( ) 0,,0,0
22 ==

ZZ NyNy tz bb                               0>tfor .     (3.78) 

 

3.4 Test Studies 

 

In this section, numerical tests are performed for the 

consistency and the accuracy of numerical scheme. Apriori 

selected functions are imposed as velocity, temperature and 

induced magnetic solution fields by adding suitable forcing 

terms to the model equations. These functions satisfy the 

periodicity in the x  and y  directions, Dirichlet boundary 

conditions for the velocity field and the z  component of the 

induced magnetic field and Neumann boundary conditions for 
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the horizontal components of the induced magnetic field 

(2.37). They also satisfy the divergence free condition of the 

velocity (2.28) and the induced magnetic fields (2.31): 

( ) ( )212,,, zzyCosxCostSintzyxx -        e
−=u ,                           (3.79) 

( ) ( )212,,, zzySinxSintSintzyxy -        e
=u ,                              (3.80) 

( ) ( )221,,, zyCosSin xtSintzyxz -     e
=u ,                                (3.81) 

( ) ( )21,,, zyCosSin xtSintzyx -     e
=Θ ,                                 (3.82) 

( )













++

−

+
=

−

−

1
2

3

2

3
2,,, 2

22

22

z
ee

ee
yCosxCostSintzyx

zz

x -       e
b ,    (3.83) 

( )













++

−

+
−=

−

−

1
2

3

2

3
2,,, 2

22

22

z
ee

ee
ySinSin xtSintzyx

zz

y -      e
b ,    (3.84) 

( )













−−

−

−
−=

−

−

zz
ee

ee
yCosSin xtSintzyx

zz

z 426,,, 3

22

22

      e
b .        (3.85) 

Tests are performed at the parameter values given below: 

1== PrRa* , 3=
*Q , π2== yx LL , 16== yx NN , 8=zN ,  005.0=∆t .  

 

Magnetic field is applied diagonally within the convective 

box, therefore Lorentz forcing terms and right hand side of 

the hydro-magnetic equation is modified for this case. Uf̂ , Θf̂  

and bf̂  are the forcing terms due to test functions (3.79) to 

(3.85) and are produced in appendix A. Therefore (2.88), 

(2.89) and (2.90) are changed to: 

{ }

{ }

{ } ,Pr      

   
1

PrQPrRa       

  
1

PrQPrRa

**

**

nn

n

yxz

n

yxz

n

t
k

z

z
ikik

z
ikik

u

fbeωu

fbeωug

U

U

ˆ
2ˆ

ˆˆ
3

ˆ

ˆˆ
3

ˆ3ˆ

2

2

2

1












∆
+








−

∂

∂
−Π∇ℑ+









+






∂

∂
+++Θ+×ℑ+









+






∂

∂
+++Θ+×ℑ−=

−

(3.86)
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( ){ } ( ){ }

,                                       

f

n

n

z

n

z

n

t
k

z
Θ








∆
+−

∂

∂
−









+Θ∇⋅ℑ−+








+Θ∇⋅ℑ−−=

−

ΘΘ

ˆ2

ˆ
2

ˆˆ
2

ˆ
3ˆ

2

2

2

1

fu
u

efu
u

e

       (3.87) 

nn

yx

n

z
ikik bfuq ˆˆ

3

1
ˆ +






∂

∂
++−=   .                                     (3.88)   

Horizontal dimensions of the layer provide the periods for 

the trigonometric test functions ensuring periodicity for all 

the variables. 

 

The computational results are plotted at a particularly 

chosen point 4π=x  and 4π=y  for all z  at 5=t . Numerical 

results are shown by markers at the grid points 

superimposed over the exact profile shown by the solid line.  

 

Absolute error in infinite norm for each variable is plotted 

with respect to time. Oscillatory behaviour is caused by the 

periodicity in time. To calculate the infinite norm each 

variable is reshaped into a vector form and norm is then 

calculated. Absolute error values show that solution for the 

weak formulation yields excellent results.  
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Figure 3.1 xu vs. z  at 544 === tyx  , , ππ   
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Figure 3.2 yu vs. z  at 544 === tyx  , , ππ  
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Figure 3.3 zu vs. z  at 544 === tyx  , , ππ  
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Figure 3.4 Θ vs. z  at 544 === tyx  , , ππ  
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Figure 3.5 xb vs. z  at 544 === tyx  , , ππ  
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Figure 3.6 yb vs. z  at 544 === tyx  , , ππ  
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Figure 3.7 zb vs. z  at 544 === tyx  , , ππ  
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Figure 3.8 Infinite norm of error in tx  vs. u   
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Figure 3.9 Infinite norm of error in ty  vs. u   
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Figure 3.10 Infinite norm of error in tz  vs. u   
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Figure 3.11 Infinite norm of error in t vs. Θ   
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Figure 3.12 Infinite norm of error in tx  vs. b   
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Figure 3.13 Infinite norm of error in ty  vs. b   
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Figure 3.14 Infinite norm of error in tz  vs. b   
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CHAPTER 4 

 

 

STRONG FORMULATION OF HYDRO-MAGNETIC 

EQUATION 

 

 

 
In this chapter, an alternative technique is tried on the same 

problem. The continuity equation (2.80), the system of 

momentum equations (2.81)-(2.83) and the heat transport 

equation (2.84) are discretized using the earlier weak 

formulation, while the system of hydromagnetic equations 

(2.85)-(2.87) are discretized using a strong formulation. This 

is motivated by the fact that the induced magnetic field is in 

a quasi-steady relationship with the velocity field, in other 

words, magnetic field, in the present work, is completely 

linked to the velocity field in time. In fact, this relation is 

utilized implicitly in imposing the solenoid character of the 

velocity field on the induced magnetic field. Therefore, it is 

very convenient to compute the induced magnetic field node 

by node in the strong form, rather than handling it with 

Galerkin projection. The equations (2.85)-(2.87) are then 

treated in a point-wise manner at each time level and 

introduced into (2.81)-(2.83), explicitly. Even though the 

earlier weak formulation of the hydromagnetic relation 

generates positive definite, symmetric coefficient matrices, 

which are convenient to solve, as in the momentum and heat 

transport equations, in this chapter, the effects of using the 

strong form on the imposition of the solenoid character are 

investigated and analyzed. 
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The equations (2.85)-(2.87) are discretized for each wave 

number pair ( )yx kk ,  using the expansions in terms of 

Hermite Legendre interpolants, ( )zh j

~
 (see Section 4.1), and 

Lagrange Legendre interpolants, ( )zh j  (2.61). The resulting 

system of algebraic equations in terms of these expansions 

with summation over l  and j  is: 

( ) ( )[ ] ( )
l

n

xil

n

lxilil zhzhkzh qb ˆˆ~~ 2       =−′′ ,                                      (4.1) 

( ) ( )[ ] ( ) n

lyil

n

lyilil zhzhkzh        qb ˆˆ~~ 2
=−′′ ,                                     (4.2) 

( ) ( )[ ] ( )
j

n

zij

n

jzijij zhzhkzh qb ˆˆ2       =−′′                                      (4.3) 

together with the boundary conditions (2.91): 

( ) ( ) ( ) 0ˆ1ˆ1
~ˆ1

~
=±=±′=±′ n

jzj

n

lxl

n

lxl  hh  h     bbb                                 (4.4)  

where 

( ) ( )zhzhtnz l

ly

lx

ll

y

x

n

y

n

x ~
ˆ

ˆ~
,n,m,

ˆ

ˆ

ˆ

ˆ
⋅












=⋅∆












=












 ) ( 

b

b

b

b

b

b
                         (4.5) 

for the horizontal components and  

( ) ( ) ( )zhb̂zht n,zn,m,b̂b̂ jjzjjz
n
z ⋅=⋅∆=                                   (4.6) 

for the vertical component of the induced magnetic field 

while the velocity field has the usual Lagrange Legendre 

expansion  

( ) ( )zhzhtnz l

ly

lx

ll

y

x

n

y

n

x ⋅







=⋅∆








=












 ) ( 

q

q

q

q

q

q

ˆ

ˆ
,n,m,

ˆ

ˆ

ˆ

ˆ
                         (4.7) 

and 

( ) ( ) ( )zhzhtnz jjzjjz

n

z ⋅=⋅∆= qqq ˆ,n,m,ˆˆ  .                                (4.8) 

Equations from (4.1) to (4.3) can be rewritten in a more 

compact matrix form by the help of pseudo-spectral 

differentiation operators based on Hermite and Lagrange 

expansions: 
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( ) ( )[ ] ( )
l

n

xlpl

n

xlplp HHkH qb ˆ
~ˆ~~ 0022

=− ,                                          (4.9) 

( ) ( )[ ] ( )

l

n

ylpl

n

ylplp HHkH qb ˆ
~ˆ~~ 0022

=− ,                                        (4.10) 

( ) ( )[ ] ( )
j

n

zjij

n

zjiji HHkH qb ˆˆ 0022
=−                                         (4.11)   

for  zNi <<0  , zNj <<0  and zNl ≤≤0  , zNp ≤≤0 . 

 

4.1 Construction of Hermite Cardinal Functions 

 

Here, Neumann boundary conditions for the horizontal 

components of the induced magnetic field are embedded into 

the Hermite interpolants rather than adding them as 

additional constraints. The pseudo-spectral differentiation 

operators, constructed based on these Hermite interpolants 

enforce the boundary conditions automatically. In order to 

construct Hermite interpolants, (4.5) is rewritten by 

separating the terms corresponding to the boundary nodes 

and the interior nodes and adding terms corresponding to 

the specified derivative boundary conditions: 

 

( ) ( ) ( )

( ) ( ) , )(                    

)( )(  )()(

zhz
z

zhz
z

zhzzhzzhzz

ZZ

ZZ

Z

NN
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
+⋅












=










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∑

−

=

)(ˆ

ˆ

ˆ

ˆ

~
ˆ

ˆ~
ˆ

ˆ~
ˆ

ˆ

ˆ

ˆ

00

1

1
00

b

b

b

b

b

b

b

b

b

b

b

b

(4.12) 

 

such that 

 

 ( ) ( )     , ⇒==
0000

ˆˆˆˆ
yyxx zz bbbb                     

( ) ( ) ( ) ( ) ( ) 0
~~

1
~

0000000 ===== zhzhzhzhzh
ZZ NNj

((
 ,  ,                   (4.13) 
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 ( ) ( )     , ⇒==
jyjyjxjx zz bbbb ˆˆˆˆ                             

( ) ( ) ( ) ( ) ( ) 0
~~

1
~

00 ===== jNjjNjjj zhzhzhzhzh
ZZ

((
 ,  ,                    (4.14) 

 

 ( ) ( )     , ⇒==
ZZZZ NyNyNxNx zz bbbb ˆˆˆˆ  

( ) ( ) ( ) ( ) ( ) 0
~~

1
~

00 =====
ZZZZZZZ NNNNjNNN zhzhzhzhzh

((
 ,  ,              (4.15) 

 

 ( ) ( ) ⇒=′=
∂

∂
=′=

∂

∂
   , 0ˆˆ0ˆˆ

0000 yyxx z
z

z
z

bbbb                              

( ) ( ) ( ) ( ) ( ) 0
~~~

1 0000000 =′=′=′=′=′ zhzhzhzhzh
ZZ NNj

((
 ,  ,                   (4.16) 

 

 ( ) ( ) ⇒=′=
∂

∂
=′=

∂

∂
   , 0ˆˆ0ˆˆ

ZZZZ NyNyNxNx z
z

z
z

bbbb                     

( ) ( ) ( ) ( ) ( ) 0
~~~

1 00 =′=′=′=′=′
ZZZZZZZ NNNNjNNN zhzhzhzhzh

((
 ,  ,            (4.17) 

 

Here, j  refers to interior grids and zNj <<0 . Construction of 

polynomial functions, ( )zh0

~
, ( )zh j

~
, ( )zh

ZN

~
 is as follows: 

 

( )zh j

~
 is to be a unique polynomial with a double zero at 0z  

and at 
ZNz  with ( ) 1

~
=jj zh : 

( )
( ) ( )

( ) ( )
( )( )

( )( )
( )zh

zzzz

zzzz

zzzz

zzzz
zh j

Njj
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Njj
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                (4.18) 

or 

( ) ( )
( )

( )zh
z

z
zh j

j

j

1

1~
2

2

−

−
=                                                     (4.19) 

and  

( )
( )

( ) ( )
( )

( )zh
z

z
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z

z
zh j

j

j

j

j
′

−

−
+

−
=′

1
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2
,                                (4.20) 
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( )
( )
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22
 .             (4.21) 

 

( )zh0

~
 is to be a unique polynomial with a single zero at jz  

and a double zero at 
ZNz  with ( ) 1

~
00 =zh  and ( ) 0

~
00 =′ zh : 

( ) ( )
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( )( )
( )
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( )
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zz
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zzzz
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czczh

Z
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0

0
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+=  , (4.22) 

( ) 01200 11
~

zcczh −=⇒=  ,                                               (4.23) 

( ) ( )00

0

100

1
0

~
zh

zz
czh
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−

−=⇒=′  ,                                 (4.24) 
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or 
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z

hzzh 000
2

1
11

2

1
1

~ −








+







−′−+=                              (4.26) 

and 
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( )zh
ZN

~
 is to be a unique polynomial with a single zero at jz  

and a double zero at 0z  with ( ) 1
~

=
ZZ NN zh  and ( ) 0

~
=′

ZZ NN zh : 

( ) ( )
( )( )
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( )zh0

(
 and ( )zh

ZN

(
 have vanishing coefficients in (4.12) so that 

there is no need to derive them. Pseudo-spectral  

differentiation matrices are constructed by using the 

derivatives of the polynomials derived above. 

 

The Lagrange interpolation condition yields the zeroth order 

operator such that: 

( )
lpplpl zhH δ==

~~ )0(
.                                                      (4.37) 

First order spectral operator is constructed using the 

equations (4.20), (4.27) and (4.35): 
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( )
plpl zhH  ′=

~~ )1(
.                                                           (4.38) 

And the second order spectral operator is defined by using 

the equations (4.21), (4.28) and (4.36): 

( )
plpl zhH  ′′=

~~ )2(
                                                            (4.39) 

for  zNl ≤≤0  and zNp ≤≤0 . 

 

Differentiation operators (4.37) and (4.39) are substituted 

into (4.9) and (4.10). 

 

By using rescaled versions of Legendre-Lagrange 

interpolants (2.52) and their first derivatives with respect to 

z  (3.17), the usual Legendre-Lagrange interpolants: 

( ) ( ) iii wzhzh  =                                                           (4.40) 

and their first derivatives: 

( ) ( ) iii wzhzh   ′=′                                                           (4.41) 

can be obtained by multiplying the rescaled functions with 

square root of the weights. 

By using (4.40) and (4.41), the pseudo-spectral 

differentiation operators can be defined on quadrature nodes 

in a discretized form:  

( )
jiji zhH =

)0(
 ,                                                            (4.42) 

( )
jiji zhH ′=

)1(
                                                              (4.43) 

and, second order pseudo-spectral differentiation operator 

can be computed by matrix multiplication: 

)1()1()2(
HHH =                                                             (4.44)            

for zNi <<0  and zNj <<0   

 

Discretized equations (4.9), (4.10) and (4.11) are rewritten 

as:  
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( )[ ] n

x

n

xIkH qb ˆˆ~ 22
=− ,                                                     (4.45) 

( )[ ] n

y

n

yIkH qb ˆˆ~ 22
=− ,                                                     (4.46) 

( )[ ] n

z

n

zIkH qb ˆˆ22
=−                                                       (4.47)   

in the light of the derivations above.   

 

4.2 Inverse of Differentiation Operators 

 

Before substituting into the momentum equations, the 

discretized equations (4.45), (4.46) and (4.47) are solved 

for the induced magnetic field values at time level n .  

nn qb B
ˆˆ 1−

= H ,                                                               (4.48) 

where                     

( )

( )




−

−
=

IkH

IkH
22

22~

BH                for  solving   if       
. 

, or  

z

yx

b

bb

ˆ

ˆˆ
  (4.49) 

The inverses can be computed using the technique of 

collocation diagonalization, as explained in the previous 

chapter: 

( ) 12 ~~~~ −= E G EH ,                                                          (4.50)     

( ) 12 −= EG  EH .                                                           (4.51) 

Here, G
~
 and G  are matrices whose diagonal elements are 

the eigenvalues of ( )2~
H  and ( )2

H , E
~
 and E  contain the 

corresponding eigenvectors as their columns.  

 

Substitution of (4.50) and (4.51) into (4.49) will give: 







−

−
=

−

−

Ik

Ik
21

21~~~

EG  E

E G E
BH             for  solving   if       

. 

, or  

z

yx

b

bb

ˆ

ˆˆ
(4.52) 

Similar to the derivation in section 3.1, the inverses of the 

differentiation operators are written in the form: 
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[ ]
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 HB       for  solving   if       
. 
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yx

b

bb

ˆ
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 (4.53)     

           

Before the numerical integration in time starts, ( )2~
H , ( )2

H  and 

their eigen components G
~
, G , E

~
 and E  are evaluated. By 

using the technique of collocation diagonalization, 1−
BH  is 

obtained by simply inverting a diagonal matrix, [ ]Ik
2~

− G  or 

[ ]Ik
2− G  as follows: 

( )
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−
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HB    for  solving   if     

. 

, or  

z

yx

b

bb

ˆ

ˆˆ

(4.54) 

Similar to the indeterminacy at 0== yx kk  mode in the 

solution for the horizontal components of hydromagnetic 

equation in the weak formulation (3.35) and (3.36), there 

stands a singularity for ( )2~
H  (4.50) at zero mode, infact G

~
 

has a zero eigenvalue. Therefore at 0== yx kk , the inverse 

(4.54) does not exist.  

 

Similar to the row and column modifications in the weak 

case, hydromagnetic equation is modified for 0== yx kk , such 

that: 

( )

  H  













=

2~
1

0

0

ij

ij

H

B       if  

22

2

2

2

zz

z

z

z

NjNi

Nji

Nij

Nji

≠≠

==

=≠

=≠

 and 

       0>tfor        (4.55)      

and 

            
if                        

if                          





≠

=
=

2ˆ

20
ˆ

zix

z

ix
N  i

N  i

q
q           0>tfor ,    (4.56) 
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if                        

if                          





≠

=
=

2ˆ

20
ˆ

ziy

z

iy N  i

N  i

q
q           0>tfor .    (4.57) 

 

There is no substantial difference between the solution 

algorithm of the strong formulation and that of the weak 

formulation except for the pseudo-spectral differential 

operators for the system of hydromagnetic equations. A flow 

chart is given including both solution paths in Figure 4.1. 
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Figure 4.1 Code Flowchart 
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4.3 Test Studies 

 

The apriori selected functions in section 3.4 are used here 

again as velocity, temperature and induced magnetic 

solution fields by adding suitable forcing terms to the model 

equations at the same parameter values: 

 

1== PrRa* , 3=
*Q , π2== yx LL , 16== yx NN , 8=zN ,  005.0=∆t .  

 

Similar to the weak case, right hand side of the momentum 

and the hydromagnetic equations are rewritten for an 

external magnetic field applied diagonally within the 

convective box. Lorentz term in (3.86) and right hand side of 

hydromagnetic equation (3.87) do not change. 

 

Table 4.1 gives the infinite norm of absolute errors for the 

velocity, the temperature, and the induced magnetic fields. 

Furthermore,  divergence of the velocity and the induced 

magnetic fields as well as derivative values of the horizontal 

components of the induced magnetic field at the boundaries 

in the cases of the weak formulation, as explained in Chapter 

3, and the strong formulation are compared. In using 

Hermite interpolants in the strong formulation, no significant 

improvement over the weak formulation in the accuracy of 

the results is observed.   

 

In the figures below, absolute values of Fourier coefficients 

of variables are shown at 677.03 −≅z  and 5=t . As expected, 

the only non-trivial mode is at the wave index pair 1nm == . 
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Finally, the plots of errors versus time stepping in 

logarithmic scale show that the error increases 

approximately in ( )2
tO ∆  as a result of the second order time 

integrators. 
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Table 4.1 Maximum values of error for the test cases. 

 

 WEAK HERMITE 

∞
−

e

xx uu  0.8729E-05 0.8731E-05 

∞
−

e

yy uu  0.8729E-05 0.8731E-05 

∞
−

e

zz uu  0.1195E-04 0.1195E-04 

∞
Θ−Θ

e  0.1312E-04 0.1312E-04 

∞
−

e

xx bb  0.3433E-05 0.3433E-05 

∞
−

e

yy bb  0.3433E-05 0.3433E-05 

∞
−

e

zz bb  0.2673E-05 0.2673E-05 

∞
⋅∇ u  

0.1630E-05 0.1633E-05 

∞
⋅∇ b  

0.1512E-04 0.1514E-04 

( )
∞−=

∂∂
1zx z   b  0.4552E-05 0.3653E-05 

( )
∞−=

∂∂
1z

y z   b  0.4552E-05 0.3653E-05 

( )
∞+=

∂∂
1zx z   b  0.4552E-05 0.3653E-05 

( )
∞+=

∂∂
1zy z   b  0.4552E-05 0.3653E-05 
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Figure 4.2 xu  at 5677.03 =−= tz  ,  
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Figure 4.3 yu  at 5677.03 =−= tz  ,  
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Figure 4.4 zu  at 5677.03 =−= tz  ,  
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Figure 4.5 Θ  at 5677.03 =−= tz  ,  
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Figure 4.6 xb  at 5677.03 =−= tz  ,  
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Figure 4.7 yb  at 5677.03 =−= tz  ,  
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Figure 4.8 zb  at 5677.03 =−= tz  ,  
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Figure 4.9 Maximum value of txx ∆−
∞

 vs.  e
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Figure 4.10 Maximum value of tyy ∆−
∞

 vs.  e
uu  
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Figure 4.11 Maximum value of tzz ∆−
∞

 vs.  e
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Figure 4.12 Maximum value of txx ∆Θ−Θ
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 vs.  e  
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Figure 4.13 Maximum value of txx ∆−
∞

 vs.  e
bb  
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Figure 4.14 Maximum value of tyy ∆−
∞

 vs.  e
bb  
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Figure 4.15 Maximum value of tzz ∆−
∞

 vs.  e
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CHAPTER 5 

 

NUMERICAL CODE VALIDATION IN REAL CASES 

 
 
 

In this session, a number of simulations are performed in 

supercritical regime. In the first section, the delay of onset 

of time independent instability is focused on by taking the 

interaction of convection with the magnetic field in the 

vertical direction z . In the second section, the interaction 

with an oblique magnetic field in the yz  plane, that is, one 

having a horizontal component in the y  direction, is 

investigated. The resulting oscillations and the flow patterns 

are discussed while comparing them with similar simulations 

and experiment results.  

 

Average kinetic energy in all directions and average Nusselt 

number are monitored during time integration; average 

kinetic energy is computed by integration of inner product of 

the average velocity along z , that is: 

dz
21

18

1
∫

+

−
= uE    .                                                           (5.1) 

Nusselt number indicates the increased efficiency of the 

average heat transfer between top and bottom plates due to 

convection in comparison to pure conduction: 

wallz









∂

Θ∂
+=

 

 
  Nu 21  .                                                    (5.2) 

Random perturbations over the conduction temperature 

profile are taken as initial conditions for temperature while 
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all the other variables are set to zero. The numerical 

integration in time is continued until a statistically steady 

regime is reached at which point data collection starts. In 

order to locate data collection point, for example, for a 

steady 2-D roll motion regime, convergence is interpreted to 

be reached at a level of kinetic energy in the direction of no-

motion, where here it is the y  direction with a level 

satisfying 810−
≤yE . Each run uses the end of the previous 

run as initial condition. 

 

16=== zyx NNN  grid is used for simulations. Steady roll, 

periodic and even doubly periodic motions can be well 

resolved by 16  nodes in the horizontal directions. Moreover, 

in these simulations, models have small aspect ratios so that 

the spatial resolution by 16  nodes is well enough as 

indicated by Nu values for a number of horizontal grids in 

Table 5.1. Results in this table are generated at 50000=Ra  

and 900=Q  with an aspect ratio 3:3Γ = . Nu  for 12  and 16  

nodes in the vertical differs about %  10  but for 16  and 20  

nodes there is hardly any change in Nu value.  

 

In the first section, size of the convective box in the y  

direction is half of that is used in this test ( 5.1:3Γ = ), while in 

the second section the analysis are performed in a box with 

an aspect ratio 90.1:95.1Γ =  where the wavelengths of steady 

rolls are longer than those resulted in this mesh refinement 

test. Therefore mesh resolution in horizontal direction is 

satisfactory. Even at the regime with roll pattern in which 

four rolls exists in one direction of the box and with high Ra , 
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i.e. 50000=Ra , using at least 16  nodes in horizontal 

directions provides a quite fine spatial resolution. 

 

 Table 2 Grid refinement, 05.0,50000 == Pr Ra  and 900=Q . 

 12== yx NN  16== yx NN  20== yx NN  

Nu  2.7135 2.4321 2.4321 

 

16=zN  implies that there are 17  nodes in the z  direction 

including boundaries. Interpolation by Legendre polynomials 

provides denser nodal configuration near the z  boundaries, 

thus help resolving boundary layers. 16=zN  is observed to 

be good enough to investigate the cases where 7.2≤Nu . 

Infact, there should be at least three nodes in the thermal 

layer, Θδ  for the stability; where Θδ  is defined by a relation 

based on heat transfer rate as given in [27]: 

Nu 2

1
=Θδ .                                                                  (5.3) 

At least 16  nodes in the z  direction place three nodes in the 

thermal layer for 7.2≤Nu .  

 

Typical dimensionless time step is selected in the range of 

34 105105 −−
⋅≤∆≤⋅ t . In any case, 3105 −

⋅=∆t  is tried first and if 

this minimum time stepping is not enough for the temporal 

stability, then time step is halved. This procedure is repeated 

until temporal stability is reached. In the first section, steady 

rolls for each ( )QRa,  parameter pairs are computed with 

3105 −
⋅=∆t  but in the time dependent regime studied in the 

second section, time step is decreased until the temporal 

stability is reached. Here, total average kinetic energy is 
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used in place of the velocity parameter in the CFL number 

described in [28] in which the stability restrictions are for 

use in pure Rayleigh Benard convection. Based on our 

observations in this study, when total average kinetic energy 

gets greater than 30 , especially in the oscillatory regime, the 

size of time stepping is to be selected carefully. 

 

As a preliminary test, the code is used for a non-magnetic 

case. In this case 2000=Ra , 71.0=Pr , and critical wave 

number 117.3=ς  are taken as the parameter values where 

the latter corresponds to an aspect ratio of 02.2:02.2Γ =  or 

the box dimensions of 117.3/4π== yx LL . As a result of this 

run, 211.1=Nu  is found using a 8x16x16  grid and this 

compares satisfactorily with 212.1  in Clever and Busse [29].  

 

5.1 Two Dimensional Stationary Flows 

 
In this subsection, a convective fluid (liquid metal) with a 

low Pr number 05.0=Pr  is chosen in a layer with aspect 

ratio 5.1:3Γ = , and subjected to a vertical magnetic field. An 

analysis is performed to investigate the effects of a vertical 

magnetic field by studying the evolution of the convective 

flow under the magnetic field whose strength is gradually 

increased by increasing the non-dimensional Chandrasekhar 

number Q. Critical Chandrasekhar number, cQ  is defined as 

the value at which convective motions and in turn convective 

heat transfer starts with 1>Nu . 

 

The first spatial pattern above cQ  is found to be a stationary 

system of two dimensional parallel rolls (Figure 5.1). Similar 
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to this velocity pattern, induced magnetic field extends in 

the y direction in a roll like manner (Figure 5.2). As stated in 

[12] and [15] that a vertical magnetic field acts towards 

suppression of the instabilities in this regime. In Figure 5.3, 

it is clear that increasing Q  diminishes the energy of the 

motion, so Nu  drops. 

 

Sudden changes in flow pattern are observed for the cases 

 Ra 30000=  at 1600=Q  and  Ra 50000=  at  Q 2750=  in the 

form of reorganization of flow caused by increase in number 

of rolls or decrease in wavelength, ς  where it changes from 

5.1=ς  to 1=ς . Figure 5.4 shows the initial stage for 1100=Q  

at 0=t . By using this initial condition, if the magnetic field is 

increased to 1700=Q , the kinetic energy of flows drops until 

around 35=t  (Figure 5.5), at which the rolls are reorganized 

until 45=t  (Figure 5.6 and Figure 5.7). The reorganization of 

the flow towards smaller horizontal scales is explained in 

[15] as an act towards minimizing Joule dissipation by 

reducing horizontal motions while increasing vertical motions 

since the zones of vertical motion lack Joule dissipation 

under vertical magnetic field. Indeed, this fact points out to 

the increased efficiency for heat transfer in the stationary 

regime while ς  drops, Nu  slightly increases.  

 
In Table 5.2, cQ  corresponding to each Ra  value is shown, 

computed by quadratic extrapolation of the available data 

just above 1=Nu . They are in good agreement with the 

critical values which are obtained by interpolation on Table 

XV in [1]. cς  corresponding to each cQ  value is also available 

in this table. Extrapolated cQ  values are shown to differ 
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somewhat in Table 5.2 in comparison to the computed 

values. This may be caused by the discrepancy in the critical 

wavelength cς  due to the restrictions in the computation 

imposed by the fixed aspect ratio of the convective box.  

 

 

Table 5.2- cQ  ( 1=Nu ) for ,10000=Ra 30000=Ra 50000=Ra  and . 

 

Ra Present work Chandrasekhar [1] 

 cQ  ς  cQ  cς  

10000 464 1.5 493 2.44 

30000 1987 1.0 1990 1.92 

50000 3551 1.0 3612 1.71 

 
 

To demonstrate further confirmation, some test results are 

compared with the study of R. Möβner [20] in which aspect 

ratio is chosen as 3:6=Γ , which is two times larger in 

yx  and . Some Nu  values from Figure 5.3 and the 

corresponding ς  are shown in Table 5.3. ς  is slightly larger 

in this work due to sidewall boundaries present in [20] in the 

horizontal  directions which locally prevent roll action by 

friction or viscous damping. Additionally, in Mößner’s study, 

the upper and lower plates are electrically insulated so that 

electric currents can not pass through boundaries and form a 

loop inside the region. Consequently, short circuit of electric 

currents near these surfaces, called Hartmann layers, ends 

up with a huge Lorentz resistance and by means of that 

intensity of heat transfer drops. This fact can be seen from 

Nu  values in Table 5.3, Nu  has a greater value for each case 
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except for 50000=Ra  and 2500=Q .  Infact, this case is 

special, because, in this study, dimensionless length in x  

direction being only half of that used in [20], is not 

sufficient, to include one more wave, therefore ς  comes out 

to be slightly larger for 50000=Ra  and 2500=Q . In other 

words, there exists three waves when 2500<Q  and the 

number of waves increases to five after the flow is 

reorganised when 2500=Q  in [20]. On the other hand, in the 

present work, there are two waves until 2750=Q  and due to 

the space restrictions only one additional wave develops 

when 2750=Q . 

 

 

Table 5.3: Nuand ς . 05.0=Pr . Present work with 5.1:3Γ =  

and 3:6Γ =  at [20] 

Present work R.Möβner [17] 

Ra  Q  Nu  ς  Nu  ς  

10000 50 2.39 1.5 - - 

 200 1.81 1.5   

 400 1.18 1.5 - - 

30000 400 2.56 1.5 2.19 2.0 

 900 1.86 1.5 1.57 2.0 

 1400 1.52 1.0 - - 

 1900 1.07 1.0 - - 

50000 900 2.43 1.5 2.25 2.0 

 2000 1.60 1.5 - - 

 2500 1.27 1.5 1.33 1.2 

 2750 1.42 1.0 - - 

 3000 1.28 1.0 - - 
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Results of our study are also compared with the correlation 

given in [21], an experimental research by Aurnou and 

Olson. In this study, a low Prandtl number fluid ( 00230.=Pr ), 

liquid gallium is used in a large convection tank ( 8:8=Γ ). A 

correlation signifying basic balance between buoyancy and 

Lorentz force is established by combining it with the heat 

transfer due to convective motions: 

 

602523.0
03.05.0

<<







=

±

Q

Ra
for      

Q

Ra
 Nu

    

 .                          (5.4) 

 

This correlation is only valid in a specific range of Q  Ra .  As 

shown in Figure 5.8, the best fit to the data in this specific 

range selected from Figure 5.3 have approximately a slope 

of 5.0  as suggested by (5.4).  

 
Absence of parallel side walls and absence of Hartmann 

breaking on top and bottom rigid boundaries leads to an 

increase in Nu  in the present work. Insulated or not ideally 

conducting boundaries in this experimental study cause 

inhibitation of motion by means of Hartmann layers in which 

there exist currents parallel to the walls.  

 
As Ra  decreases, strength of the magnetic field,  Q  required 

for the onset of a steady motion, also drops. Power-law fit 

(5.4) to the RaNu−  results in [21] is obtained for a constant 

value 670=Q . This law is shown to hold in the present study 

within the range of (Ra, Q) values specified in [21]. 
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5.2 Time Dependent Flows 

 
In the previous section, inhibition of convection rolls at given 

value of Ra  is investigated under the varying strength of a 

vertical magnetic field. This time, the strength of the 

magnetic field is kept constant at a particular value, while 

Ra  across the fluid layer is increased and the direction angle 

χ  of the external magnetic field is changed in the yz  plane 

measured from the horizontal. The aspect ratio 90.1:95.1=Γ , 

1.0=Pr  and 100=Q  are chosen in order to be able to compare 

with the results of Clever and Busse [13] for the 

case °= 90χ . In Figure 5.9, RaNu−  relation for pure 

convection ( 0=Q ) and for various direction angles of 

external field are illustrated.    

 
Critical values are given in Table 5.4 computed by 

extrapolation of values in the steady regime. It is clear that 

they are all slightly greater than those given in [13], 

because a larger aspect ratio is used in the present work 

which translates into a wavelength of 2.395.1/2 == πς . This 

value is smaller than that is used in the work of Busse and 

Clever [13] except for the case of pure convection. Results 

from present work approach to the critical Ra  values in [13] 

when critical value of wavelength, cς  is closer to 2.3=ς . 

 
The critical value of Ra, cRa , for the onset of the convective 

motion increases with increasing χ  for a given Q , that is 

with decreasing the horizontal component of the inclined 

magnetic field (Figure 5.9). It means that onset of 

convection is delayed by the vertical component of the 

inclined magnetic field. Chandrasekhar [1], Busse [13] and 
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Burr [16] state that the horizontal component of magnetic 

field along roll direction has no effect on the steady 

convection rolls unless the roll solution is close to loosing its 

stability. This fact is also seen in this study. Stationary 
system of parallel rolls occurs at slightly above cRa  as usual. 

Since oscillatory instability  of rolls is much more effectively 

inhibited by the magnetic field and by the orientation angle 

in comparison to the onset of convection leading to the roll 

motion, the stability range of roll motion is enlarged by the 

effect of these parameters. A rapid drop in the slope of the 

Nu-versus-Ra curve seems to occur immediately as the 

steady region gives way to the oscillatory regime. These rolls 

appear to oscillate with travelling waves at 12000=Ra  

for °= 90χ  but infact, these waves are formed in 

1200010000 <<Ra  range.  

 

Figures 5.10 and 5.11 show the steady parallel rolls in the 

yx  plane. Flow moves in opposite directions between half 

layers, in which 0=z  is the mid-plane. In the second figure, 

it is shown that velocity vectors depart from the hot region 

to cold region. 

  

In the study of Clever and Busse [13], oscillations are stated 

to begin at 11090=Ra  which is in agreement with the present 

work. In gathering Nu values from [13], the added 

restriction of vanishing average pressure is taken into 

consideration. In general, except for slight differences in 

oscillatory regime, results are seemed to be compatible with 

the semi-analytical treatment in [13].  When the results of 

inclined magnetic field imposed are analyzed, it seems that 
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horizontal components of external field delay oscillatory 

instability more efficiently than the vertical. In fact, Busse et 

al. [13] states that the horizontal field has a more inhibiting 

effect on the oscillatory instability than the vertical field. The 

regime on which inclined magnetic field is applied is stable in 

a larger range of Ra  when compared with the flow influenced 

by purely vertical magnetic field. In the steady regime, 

horizontal component does not play an essential role, in 

other words, as horizontal magnetic field strength grows, 

change in Nu  becomes insignificant until Ra  is 2800  however  

heat transfer efficiency and stability come into prominence in 

the regime of the oscillatory instability. It appears that 

travelling wave motion is the dominant feature at the onset 

of the unsteady regime of the usual Rayleigh Benard 

convection ( 0=Q ) and the magneto-convection ( 100=Q ) 

with all angles except for the case,  °= 30χ . 

 

The amplitude of oscillations rises when 12000>Ra  for °= 60χ , 

14000>Ra  for °= 45χ , 18000>Ra  for °= 30χ . Periodic motion is 

observed in the case of °= 60χ , where the velocity in the x  

direction shows the major harmonic behaviour. Figures 5.12 

and 5.13 show the variation of the x  component of the 

velocity field at a point  ,4875.0=x  475.0=y  and 9109.0−=z  in 

the oscillatory regime. Here, the frequency of these waves is 

approximately 9.0 . The flow sequence is depicted in the 

interval from 10=t  to 45.10=t , and at 45.10=t  a half-period 

duration of this motion is nearly completed (from Figures 

5.14 to 5.17). In fact, the period computed using the 

frequency diagram (Figure 5.18) for the time variation in xu  

at the given point is 005.1 . 
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By extending these studies towards the greater Ra values 

for °= 60χ , there seems to be some other periodic modes 

contributing to the flow. In the time variation of xu , yu , zu  

and Θ , additional waves with smaller periods mount onto 

the major wave (Figures 5.20 and 5.21). Oscillations in the 

form of travelling waves appear along the temperature 

contours in the horizontal plane from 10=t  to 45.10=t  in 

Figures 5.22 to 5.25. In these figures, nearly half of the 

travelling wave motion is shown. Complexity in the flow 

increases with waves having larger frequencies. On the other 

hand, the period of travelling waves gets smaller, decreasing 

from 1.005 to 0.870 (Figure 5.26). This fact can be seen 

clearly in the frequency spectrum plots; here the most 

energetic peak is shifted. In this frequency diagram, besides 

the peaks representing the main periodic behaviour in the 

flow, there exist peaks at various frequency values.   

 

Table 5.4- Extrapolated values of cRa ( 1=Nu ) from Figure 5.9 

for 0=Q  and 100=Q  at °= 30χ , °= 45χ , °= 60χ and °= 90χ . 

 

 
0=Q  

100=Q  
°= 30χ   

100=Q  
°= 45χ  

100=Q  
°= 60χ  

100=Q  
°= 90χ  

c
ς   

B.C. [1990] 
3.12 3.45 3.68 3.86 4.01 

 
c

Ra  ( )2.3=ς  

P.W.  
1746 2327 2846 3434 3998 

c
Ra  ( )

c
ςς =  

B.C. [1990] 
1708 2281 2800 3291 3757 

 
 

Transition to the oscillatory regime follows two dimensional 

steady parallel roll motion for  χ  at °45  , °60  and °90 . 
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However at  30 °=χ , some other instability pattern seems to 

occur following the steady roll motion, differing from 

oscillations with travelling waves. Two new types of 

instability are presented in [13] which can be observed when 

the external magnetic field is applied in the horizontal 

direction, namely, monotonic wrinkle and oscillatory tilt. 

Monotonic wrinkle exhibits itself as closed contours located 

inside a roll pattern. In the present work, only the monotonic 

wrinkle is observed during the steady regime only at   °= 30χ  

driving the flow into a three dimensional steady state. Time-

independent 3D rolls keep their steadiness until Ra  is 15000 . 

The closed contours inside the monotonic wrinkle region 

start expanding and shrinking periodically after as Ra  is 

increased from 15000  to 20000  (Figures 5.28 to 5.30). In 

these figures, time sequence from 75 == tt  to  is shown for 

the case 18000=Ra  at which the period is exactly 2 . 

Frequency spectrum of the temperature variation at the 

point  ,4875.0=x  475.0=y  and 9109.0−=z  shows the peak 

exactly at this single period. 

 

The other type of instability, which is observed specifically in 

the case of the inclined magnetic field imposed, is the 

oscillatory tilt. In this case, the dimensions in the horizontal 

directions are reduced by half and the aspect ratio is taken 

as 95.0:975.0=Γ . Flow pattern in the xy  plane with the 

temperature contours shows asymmetric waves but this 

pattern eventually shifts to the left as demonstrated by the 

time sequences from 68.51.5 == tt  to  in Figures 5.33 to 5.41. 

Exact value of the period of the motion of the oscillatory tilt 

is 5330. . In the frequency spectrum (Figure 5.42), oscillatory 
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tilt action is shown by the peak with the greatest amplitude 

and the other peak may be associated with the asymmetric 

wave motion in the flow.  

 
The relationship between kinetic and magnetic energy versus 

the orientation angle in Figure 5.43 implies that by the help 

of these unusual pattern formations, i.e. the monotonic 

wrinkle, the onset of oscillatory regime is still delayed even 

though the flow motion gains much more kinetic energy. 

Kinetic energy of motion increases as the direction of the 

external magnetic field approaches horizontal. On the 

contrary, strength of the induced magnetic field in all 

directions decreases to negligible levels. This observation 

shows that flow under the effect of a horizontal magnetic 

field emerges as more energetic due to less Joule dissipation 

and stable. 
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Figure 5.10 Velocity field and Θ  contours on xy  plane at 

,9109.0−=z ,10000=Ra  ,1.0=Pr  100=Q  and °= 90χ . ( )90.1:95.1Γ =  
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Figure 5.11 Velocity field and Θ  contours on xy  plane at 

,9109.0=z ,10000=Ra  ,1.0=Pr  100=Q  and °= 90χ . ( )90.1:95.1Γ =  
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Figure 5.14 Velocity field and Θ  contours on xy  plane at 

0=z  and 10=t . ,14000=Ra  ,1.0=Pr  100=Q  

and °= 60χ . ( )90.1:95.1Γ =  
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Figure 5.15 Velocity field and Θ  contours on xy  plane at 

0=z  and 15.10=t . ,14000=Ra  ,1.0=Pr  100=Q  

and °= 60χ . ( )90.1:95.1Γ =  
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Figure 5.16 Velocity field and Θ  contours on xy  plane at 

0=z  and 30.10=t . ,14000=Ra  ,1.0=Pr  100=Q  

and °= 60χ . ( )90.1:95.1Γ =  
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Figure 5.17 Velocity field and Θ  contours on xy  plane at 

0=z  and 45.10=t . ,14000=Ra  ,1.0=Pr  100=Q  

and °= 60χ . ( )90.1:95.1Γ =  
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Figure 5.18 Frequency spectrum of xu  at  ,4875.0=x  

 475.0=y and 9109.0−=z for ,14000=Ra  ,1.0=Pr  100=Q  

and °= 60χ . ( )90.1:95.1Γ =  
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Figure 5.22 Velocity field and Θ  contours on xy  plane at 

0=z  and 10=t . ,20000=Ra  ,1.0=Pr  100=Q  

and °= 60χ . ( )90.1:95.1Γ =  
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Figure 5.23 Velocity field and Θ  contours on xy  plane at 

0=z  and 15.10=t . ,20000=Ra  ,1.0=Pr  100=Q  

and °= 60χ . ( )90.1:95.1Γ =  
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Figure 5.24 Velocity field and Θ  contours on xy  plane at 

0=z  and 30.10=t . ,20000=Ra  ,1.0=Pr  100=Q  

and °= 60χ . ( )90.1:95.1Γ =  
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Figure 5.25 Velocity field and Θ  contours on xy  plane at 

0=z  and 45.10=t . ,20000=Ra  ,1.0=Pr  100=Q  

and °= 60χ . ( )90.1:95.1Γ =  
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Figure 5.26 Frequency spectrum of xu  at  ,4875.0=x  

 475.0=y and 9109.0−=z for ,20000=Ra  ,1.0=Pr  100=Q  

and °= 60χ . ( )90.1:95.1Γ =  
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Figure 5.28 Velocity field and Θ  contours on xy  plane at 

0=z  and 5=t . ,18000=Ra  ,1.0=Pr  100=Q  

and °= 30χ . ( )90.1:95.1Γ =  
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Figure 5.29 Velocity field and Θ  contours on xy  plane at 

0=z  and 6=t . ,18000=Ra  ,1.0=Pr  100=Q  

and °= 30χ . ( )90.1:95.1Γ =  
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Figure 5.30 Velocity field and Θ  contours on xy  plane at 

0=z  and 7=t . ,18000=Ra  ,1.0=Pr  100=Q  

and °= 30χ . ( )90.1:95.1Γ =  
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Figure 5.31 Frequency spectrum of Θ  at  ,4875.0=x  

 475.0=y and 9109.0−=z for ,18000=Ra  ,1.0=Pr  100=Q  

and °= 30χ . ( )90.1:95.1Γ =  
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Figure 5.33 Velocity field and Θ  contours on xy  plane at 

0=z  and 1.5=t . ,18000=Ra  ,1.0=Pr  100=Q   

and °= 30χ . ( )95.0:975.0Γ =  
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Figure 5.34 Velocity field and Θ  contours on xy  plane at 

0=z  and 1725.5=t . ,18000=Ra  ,1.0=Pr  100=Q   

and °= 30χ . ( )95.0:975.0Γ =   
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Figure 5.35 Velocity field and Θ  contours on xy  plane at 

0=z  and 245.5=t . ,18000=Ra  ,1.0=Pr  100=Q   

and °= 30χ . ( )95.0:975.0Γ =   
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Figure 5.36 Velocity field and Θ  contours on xy  plane at 

0=z  and 3175.5=t . ,18000=Ra  ,1.0=Pr  100=Q   

and °= 30χ . ( )95.0:975.0Γ =   
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Figure 5.37 Velocity field and Θ  contours on xy  plane at 

0=z  and 39.5=t . ,18000=Ra  ,1.0=Pr  100=Q   

and °= 30χ . ( )95.0:975.0Γ =   
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Figure 5.38 Velocity field and Θ  contours on xy  plane at 

0=z  and 4625.5=t . ,18000=Ra  ,1.0=Pr  100=Q   

and °= 30χ . ( )95.0:975.0Γ =   
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Figure 5.39 Velocity field and Θ  contours on xy  plane at 

0=z  and 535.5=t . ,18000=Ra  ,1.0=Pr  100=Q   

and °= 30χ . ( )95.0:975.0Γ =   
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Figure 5.40 Velocity field and Θ  contours on xy  plane at 

0=z  and 6075.5=t . ,18000=Ra  ,1.0=Pr  100=Q   

and °= 30χ . ( )95.0:975.0Γ =   
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Figure 5.41 Velocity field and Θ  contours on xy  plane at 

0=z  and 68.5=t . ,18000=Ra  ,1.0=Pr  100=Q   

and °= 30χ . ( )95.0:975.0Γ =   
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Figure 5.42 Frequency spectrum of Θ  at  ,24375.0=x  

 2375.0=y and 9109.0−=z for ,18000=Ra  ,1.0=Pr  100=Q  

and °= 30χ . ( )95.0:975.0Γ =  
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CHAPTER 6 

 

 

A LOW DIMENSIONAL APPROXIMATION SCHEME TO 

MAGNETO-CONVECTION 
 
 
 

In this part of the study, a low dimensional model is 

formulated for magneto-convection flow by adapting the 

pure Rayleigh-Benard convection to the case of magneto-

convection. This approach permits a fast algorithm by 

constructing a basis for the pure convection flow then 

projecting it in to the magneto-convection flow. 

 

Rayleigh-Benard convection is governed by dimensionless 

Boussinesq equations: 

0=⋅∇ u                                                                      (6.1)                                     

ueωu
u 2

∇+Θ+Π∇−×=
∂

∂
PrRaPr 

 

 *

z
t

                                  (6.2)  

( ) Θ∇+=Θ∇⋅+
∂

Θ∂ 2

2

u
eu z

t 

 
                                               (6.3)  

 

All quantities have been made dimensionless by the 

normalization given in Chapter 2. The flow takes place in a 

periodic square box with an aspect ratio ( )2:2 ss=Γ . The 

boundary conditions are imposed as the no-slip flow 

conditions:  

 10 m==Θ=   z at               u                                             (6.4) 

in the vertical and periodic in the horizontal yx  and   

directions. 
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The assumption of periodicity in the horizontal directions 

allows the use of Fourier series expansions of the dependent 

flow variables, similar to the (2.42) but this time for the 

case of pure convection: 

 ( )[ ]yxiexptztzyx ii ⋅+⋅⋅

















Π

Θ=

















Π

Θ ∑∑ ηζ nm,n,m,
ˆ

ˆ
ˆ

,,,
m n

)( )( 

uu

         (6.5) 

In the vertical direction, the velocity and temperature 

variables are expanded in terms of scaled Legendre-

Lagrange interpolants as before: 

 ( ) ( )iiiij

N

j

ji zhtzzhtztz
Z

⋅








Θ
=⋅









Θ
=









Θ
∑

=

)()()( ,n,m,,n,m,,n,m,ˆ
ˆ

0

uuu
    (6.6) 

while the pressure is expanded in terms of Legendre 

polynomials 

( ) ( ) ( )∑
−

=
−⋅Π=Π

1

1
1,n,m,,n,m,ˆ

ZN

j

iji zLtjtz                                  (6.7) 

 

6.1 Karhunen-Loeve Decomposition 

 

KL procedure is used to generate an orthogonal basis from 

an ensemble of snapshots of realizations [30-32]. The 

elements of the basis set are the eigen functions of the 

integral equation, 

 

( ) ( ) ( )xxxxx, q

q

q
dR Ψ=′′Ψ′∫∫∫

Ω

λ                                          (6.8) 

the kernel of which is the two-point correlation tensor 

( ) ( ) ( )tvtvR jiij ,xx,xx, ′=′                                                 (6.9) 
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Here, v  generically represent a physically relevant variable, 

such as temperature and/or velocity in the context of 

thermal convection. Generally, three indices are required to 

specify a basis set in three spatial dimensions. q  represents 

these indices (see below). 

 

The angle bracket denotes ensemble average. If the process 

is statistically stationary, ergodicity permits replacement of 

the ensemble average by an average over time. The 

existence of a countably infinite number of orthogonal 

eigenfunctions spanning the space follows from Hilbert-

Schmidt theory. An element of the space can be expressed 

in the form of a modal decomposition 

),( xx ()() ∑ Ψ=
q

q

q tatv                                                   (6.10) 

and the expansion coefficients are statistically orthogonal 

qpqpq tata δλ=)()( * .                                                    (6.11) 

For   v representing the flow, each eigenvalue, qλ , represents 

the mean energy of the flow projected on the direction qΨ  in 

the function space. 

 
Translational invariance of the flow in the horizontal 

directions implies that the eigenfunctions are in the form  

( )( )
yx

q

jj

q

j sysxiz nm2exp)();kn,(m,)( +Φ=Ψ≡Ψ πxx           (6.12) 

where k)n,(m,=q  and k  is the vertical quantum number. The 

integral equation (6.8) to be solved is now reduces to 

)n,(m,n)(m,)n,(m,),n,(m,ˆ
1

1

zzzzRzdss ijijyx Φ=′Φ′′∫
−

λ              (6.13) 
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which is to be solved for )n,(m, ziΦ  for each 2m xN<  and 

2yNn < . Further invariance of the system from (6.1) to 

(6.4) under rotational, when the convective box has square 

planform, yx ss = , and reflectional symmetries in the 

horizontal and reflectional symmetry in the vertical mid 

plane ( 0=z ) render the eigen solutions maximum 8-fold 

degenerate [33], i.e.:  

 

Table 6.1 Symmetry group elements 

 
 Symmetry Group 

Element 
Action 

 

Identity I { }zyxzyx ,,,,,, Θuuu  

Rotation by °90  R { }zxyzxy ,,,,,, −Θ− uuu  

Rotation by °180  R2 { }zyxzyx ,,,,,, −−Θ−− uuu  

Rotation by °270  R3 { }zxyzxy ,,,,,, −Θ− uuu  

Reflection in x
 F { }zyxzyx ,,,,,, −Θ− uuu  

Diagonal Flip FR { }zxyzxy ,,,,,, Θuuu  

Reflection in y
 

FR2 { }zyxzyx ,,,,,, −Θ− uuu  

Diagonal Flip FR3 { }zxyzxy ,,,,,, −−Θ−− uuu  

Vertical Flip Z { }zyxzyx −Θ−− ,,,,,, uuu  

 

Eigen-values of (6.13) would have symmetries:  

( ) ( ) ( ) ( )kn,m,kn,m,kn,m,kn,m, mm ±±±±±± === λλλλ                                 (6.14) 

and either odd or even in 0=z . In fact, the action of the 

symmetry group is; 

{ } { }Z,IFR,FR,FR,F,R,R,R,I 3232 ×                            (6.15) 
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with 16 elements expands the existing database 16-fold and 

lead to a sharper and representative set of KL modes. 

 

This set of KL modes may be paired in such a way to provide 

a convenient parametric representation of the flow database 

in the terms of real and physical flowlets, qv , 

∑∑ Ψ+Ψ==
q

q

q

q

q

q

q
tatatv )}()()()({v),( xxx

*

*                     (6.16) 

where the summation index q  runs through the conjugate 

pairs of the K-L modes },{ *
qq  defined by 

k)n,m,(k)n,(m, −−== *and qq                                    (6.17) 

where  

( ) *
*

**
and qq

qq
aa =Ψ=Ψ                                           (6.18) 

with  

( ) ( ) xxxx dtvva
q

i

i

i

q

q

*
)(),(, Ψ=Ψ= ∫∑                                   (6.19) 

Here, *)(  represents complex conjugation. 

 

6.2 Adaptation on Magneto-convection Model 

 
Consider a database generated by numerically solving the 

governing equations from (6.1) to (6.4), using the numerical 

scheme described earlier for a particular set of the 

parameter values, say, { }2:2,, 00
sssss yx =Γ==  and  PrRa , so 

selected to result in a database with sufficiently rich 

dynamical content. The resulting flow database 

[ ]( )tv zyx ,,, xuuu= and [ ]( )tv ,xΘ=  can then separately be 
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used to construct mechanical );kn,(m, zjU , 3,2,1=j  and 

thermal );kn,θ(m, z  KL basis which are in turn used to 

parameterise the database and to study the underlying 

dynamics of the flow. 

( ) ( ) ( ) ( )( )
yx

q

j

q

qj sysxiztat nm2expu +=∑ πUx, ,                  (6.20) 

( ) ( ) ( ) ( )( )yx

q

q

q sysxiztct nm2expθ +=Θ ∑ π,x ,                   (6.21) 

where mechanical and thermal KL basis are defined with 

Fourier coefficients as: 

( ) ( ) ( )( )
yx

q

j

q
sysxizyxz nm2exp,; += πUU                          (6.22) 

( ) ( ) ( )( )yx

q

j

q
sysxizyxz nm2expθ,;θ += π                           (6.23) 

These computed KL modes, as they satisfy spatial 

constraints and carry independent features of the flow, form 

a convenient basis for reducing governing equations to a 

relatively low dimensional dynamical system via Galerkin 

projection. Further, their divergence-free nature causes the 

pressure gradient term to drop during projection.  

 

In particular, a low dimensional approximation to thermal 

convection in the presence of a magnetic field under quasi-

steady approximation is of interest. The dimensionless form 

of the governing equations for magneto-convection is given 

from (2.28) to (2.32).    

 

Beside with boundary conditions for velocity ( )
zyx uuuu ,,=  

and temperature fields Θ  given by (6.4), perfectly 
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conducting boundary conditions are assumed for induced 

magnetic field, ( )
zyx bbbb ,,= , such that (2.37) is valid for this 

case. 

 

The quasi-steady link (2.32) between the velocity field and 

the induced magnetic field facilitates the use of KL basis, 

(6.22) and (6.23), in order to construct a relatively low 

dimensional KL based dynamical model of the governing 

equations from (2.28) to (2.32). First, an approximation of 

the flow  

∑ ∈
=≈

SS ),;()(
q

q

q yxzta Uuu ,                                      (6.24) 

∑ ∈
=Θ≈Θ

SS ),;()(
q

q

q yxztc Θ ,                                      (6.25) 

in terms of a set of KL modes selected based on their 

physical importance is to be obtained. Here, S  denotes index 

set of the selected KL modes. This approximation is, in turn, 

forced to satisfy the governing momentum (6.2), and heat 

(6.3) equations using Galerkin projection; 

( ) ( )( ) 0,,,; SS =Θ
xu uU Ryxz

q  ,                                           (6.26) 

( ) ( )( ) 0,,,;θ =ΘΘ x
u SS

q
Ryxz  ,                                           (6.27) 

resulting in a dynamical system 

 ),( jiqq caFUa
dt

d
= ,                                                     (6.28) 

 ),( jiqq caFTc
dt

d
= ,                                                      (6.29) 

for S,, ∈jiq , where 

 
, (PrQ                                              

PrPrRa

*

*

i

jiiiq

aiqMU

aajiqNUaiqDUciqPUFU

);

),;();();(

+

++≡
         (6.30) 

jiiiq cajiqNTciqDTaiqPTFT ),;();();( ++≡ .                       (6.31) 
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Using the index vector representations )k,,( 21 qqqq = , 

)k,,( 21 iiii =  and )k,,( 21 jjjj = , the coefficients are  

 ( )
x

eU z

iq
yxzyxziqPU ),;(,),;();( Θ= ,                                (6.32) 

 ( )
x

U ),;(,),;();( 32
1 yxzyxziqPT

iqΘ=  ,                                (6.33) 

 ( )
x

UU ),;(,),;();( 2
yxzyxziqDU

iq ∇=  ,                               (6.34) 

 ( )
x

),;(,),;();( 2
yxzyxziqDT

qq ΘΘ ∇=  ,                               (6.35) 

( )[ ]( )
x

eeU ),;(,),;();( yxzSinCosyxziqMU zy

q i    B∇⋅+= χχ        (6.36) 

for 11 iq = , 22 iq = , 

 ( )( )
x

UUU
jiq

jiqNU ×∇×= ,),;(  ,                                     (6.37) 

 ( )( )
x

U jiq
jiqNT ΘΘ ∇⋅−= ,),;(                                         (6.38) 

for 111 jiq += , 222 jiq += . In the computation of the 

coefficients ),;( jiqNU  the satisfaction of the triad relation 

0),;(),;(),;( =++ -qi-jNUj-q-iNUjiqNU ,                           (6.39) 

where )k,,( 21 qqqq --- = , is verified. 

 

Computation of the Lorentz forcing term in (6.36) 

( )[ ]( )
x

eeU ),;(),,;( yxzSinCosyxz
i

zy

i
B    ∇⋅+ χχ  requires special 

attention. The substitution of the KL expansion (6.24) into 

the quasi-steady approximation (2.32) yields the differential 

equation 

( ) ( ) ( )z
dz

d
SinCosγiz

dz

d qq
U








+−=








+−   χχγ nnm 222

2

2

B           (6.40) 

to be solved for each ( )kn,m,=q  subject to 

10 m==== z
zd

d

zd

d q

z

q

y
q

x atB
BB

.                                    (6.41) 
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Note that ( ) ( ) ( )( )sysxizyxz
qq nm2exp,; += πBB  and sπγ 2= . 

The apparent non-uniqueness in ( )zxB  and ( )zyB  for 0nm ==  

can be removed by adding an artificial and convenient 

additional constraint.    

 

 
6.3 KL Description  of Motion 

 

In this section, an application of low dimensional model is 

tested by creating a database for the steady roll motion in 

the case of pure Rayleigh Benard convection. Data is 

generated with the parameters 30000=Ra , 1.0=Pr  and 

4105 −⋅=∆t  in a square box planform for which the aspect 

ratio is selected as 2:2=Γ  by using a 24x24x24  grid. In this 

case, flow motion is in such a complicated form that all 

physical variables have highly considerable fluctuations over 

time. Therefore, a number of data samples are taken from 

dataset for the modal decomposition with KL to provide 

characteristic modes of physical variables. Two-point 

correlation tensor (6.9) is obtained at a time, t  and the 

eigenfunctions, ( )z
q

jU  and ( )z
q

jΘ  is calculated for a set of 

( )kn,m,=q  by (6.13). By the help of the quasi steady link 

between velocity and induced magnetic field (6.40), the 

characteristic vectors for the induced magnetic field ( )z
q

jB  

are computed subjected with the boundary conditions (6.41) 

for the set ( )kn,m,=q . A couple of eigenfunctions for the 

velocity and temperature fields and of the corresponding 

induced magnetic field is shown in Figures 6.1 to 6.6. It 

should be noted that the eigenfunctions follow certain 
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symmetries such as oddness and evenness around the mid-

plane 0=z  as well as the quantum number k  increases, in 

general, zero crossings increase indicating that more 

structures are embedded in the eigenfunctions for higher k .  

  

 

Table 6.2 Mechanical KL modes for the first five. 

 

Index q  Degeneracy % 

1 ( )1,0,1  4 7.9 

2 ( )1,1,1  4 3.4 

3 ( )2,0,1  4 2.7 

4 ( )3,0,1  4 2.0 

5 ( )2,1,1  4 1.0 

 

 

Table 6.3 Thermal KL modes for the first five. 

 

Index q  Degeneracy % 

1 ( )1,0,0  1 53 

2 ( )1,0,1  4 7.2 

3 ( )1,1,1  4 2.2 

4 ( )1,0,2  4 0.24 

5 ( )1,1,2  8 0.16 

 

 

The most energetic five mechanical modes involve only 17 

percent of energy in summation (Table 6.2). Thermal modes 

are different in order and first five of them cover 62 percent 

(Table 6.3). The eigenvectors are arranged according to how 
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much they contribute into the motion which is basically 

related with corresponding eigenvalues. The ratio of an 

eigenvalue to the summation of them gives the information 

on energy.  

 

Summation values of energy percentages for first five modes 

show some other modes should also be covered to resemble 

a good approximation to the dynamical picture of the motion 

for the parameter 300000
=Ra . Figures 6.1 to 6.6 give an idea 

for vertical variation of eigenvectors. Here, degeneracy 

implies the number of the elements in a symmetry group, 

for example, eigenvalues and the eigenvectors of the 

symmetrical modes ( ) ( ) ( )1,0,1,1,1,0,1,0,1 −  ( )1,1,0 −  and  all belong to 

the same family. 

 

In order to construct the low dimensional dynamical system 

(6.30)-(6.31), modes are selected first based on the 

following criteria; 

{ }4k13nmk)n,(m,S 22
≤≤≤+= and .                      (6.42) 

 

The idea is to include minimal number of modes in as 

complete symmetry representation as possible as well as to 

exploit the homogeneity in the horizontal direction. The 

energy criteria can not be directly used in selecting the 

modes to be included in S , since the optimality of the KL 

decomposition is only valid at the parameter values that the 

modes are generated. 

 

The resulting dynamical system is integrated in time to test 

the effect of the vertical magnetic field in qualitative 
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manner. The results are shown in Figures 6.7 to 6.10. The 

numbering of the modes in the KL spectrum is based on the 

Table 6.4. These preliminary results show that the dynamical 

system constructed using KL basis simulates the behaviour 

observed in the full simulation to a qualitative extent. This is 

encouraging to pursue further tests and improvements on 

the construction of this system. 

 

 

Table 6.4 The indexing of the KL modes as it appears in the 

KL spectrum plots in Figures 6.7 to 6.8. 

 

Index q  Index q  

1 ( )1,0,1  11 ( )2,1,1  

2 ( )1,1,0  12 ( )2,1,1 −  

3 ( )2,0,1  13 ( )3,1,1  

4 ( )2,1,0  14 ( )3,1,1 −  

5 ( )3,0,1  15 ( )4,1,1  

6 ( )3,1,0  16 ( )4,1,1 −  

7 ( )4,1,0  17 ( )1,0,0  

8 ( )4,0,1  18 ( )2,0,0  

9 ( )1,1,1  19 ( )3,0,0  

10 ( )1,1,1 −  20 ( )4,0,0  
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Figure 6.1 The vertical profiles of KL modes  ( )k,0n,1m     ==  

with real (solid) and imaginary (dash) parts.
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Figure 6.2 The vertical profiles of KL modes ( )k,1n,1m     ==  

with real (solid) and imaginary (dash) parts.
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Figure 6.3 The vertical profiles of KL modes ( )k,0n,0m     ==  

with real (solid) and imaginary (dash) parts. 
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Figure 6.4 The vertical profiles of the induced magnetic field 

components corresponding to KL modes ( )k,0n,1m     ==  with 

real (solid) and imaginary (dash) parts. 
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Figure 6.5 The vertical profiles of the induced magnetic field 

components corresponding to KL modes ( )k,1n,1m     ==  with 

real (solid) and imaginary (dash) parts. 
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Figure 6.6 The vertical profiles of the induced magnetic field 

components corresponding to KL modes ( )k,0n,0m     ==  with 

real (solid) and imaginary (dash) parts. 
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Figure 6.7 The rolling motion at Ra=10000, Pr=0.1 obtained 

by integrating the dynamical system in time. The KL 

spectrum shows those modes (Table 6.3) excited in this 

steady regime. 
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Figure 6.8 The periodic motion at Ra=14000, Pr=0.1 

obtained by integrating the dynamical system in time. The 

KL spectrum shows that relatively more modes (Table 6.3) 

are excited in this periodic regime. 
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Figure 6.9 The steady roll motion in Figure 6.7 cascades to 

zero as the strength of the vertical magnetic field applied is 

increased. 
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Figure 6.10 The periodic motion in Figure 6.8 is inhibited by 

the application of the vertical magnetic field as shown in the 

time evolution of a particular expansion coefficient. 
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CHAPTER 7 
 

CONCLUSION 

 
 

 
In this work, we have been able to extend a spectral-element 

based numerical scheme to simulate natural thermal 

convection in electrically conducting low Prandtl fluids (i.e. 

liquid metals) in an infinite layer under the influence of an 

externally applied inclined magnetic field and to test 

successfully in comparison to many results in literature with 

the main outcome that an external magnetic field in any 

direction within the plane of the roll axis leads to suppression 

of various instabilities of the convective fluid by means of the 

Lorentz force, especially, in the case of the large magnetic 

diffusion or small Pm, in other words, magnetic field 

stabilizes thermal convection. 

 

As a second point, heat transfer efficiency is increased 

momentarily by the magnetic field. Simulations for a number 

of ( )QRa,  pairs converged to steady rolls in the zx  plane. 

Induced magnetic field in the horizontal y  direction and 

currents in the horizontal plane vanish for the case of the 2D 

stationary roll motion whose roll axis is parallel to the y  

direction. Usual roll motion interacts with the external 

magnetic field in the z  direction via Lorentz forces. These 

forces acts against the motion, reorganize the classical 

Benard cells and get them denser which results in an 

increase in the number of cells. This increased horizontal 
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wave number or increased vertical motion causes rapid or 

efficient heat transport.  

 
The horizontal component of the external magnetic field in 

the y  direction, parallel to roll axis, results in the least 

inhibition of the flow kinetic energy but the most support on 

the flow stability. A delayed onset of convection is caused by 

the vertical component of the external magnetic field 

whereas horizontal component retards the onset of 

oscillations much more effectively. Restrictions such as 

Hartmann breaking or viscous damping due to sidewalls does 

not exist in this study.  

 

On the other hand, dimensions of the horizontal layer should 

be chosen larger to allow more degrees of freedom for the 

convective motions to select appropriate spatial scales 

naturally. Even though the computed results are in 

satisfactory agreement with existing results in literature 

([12],[13],[20] and [21]), we expect much more comparable 

results due to less spatial constraints when a larger aspect 

ratio is selected. Due to inadequate computational resources, 

the analysis of the model in a  range of large Ra  and Q  

values is limited to small aspect ratio. Critical values of Ra  

and Q  at the onset of the  supercritical regime are found to 

be within 4% of the values presented in [13] as shown in 

Table 3. It should be noted that the present computation is 

performed at a fixed value of the aspect ratio corresponding 

to the wave number 2.3=ς . Small aspect ratio as well as the 

quadratic extrapolation used on data in the steady regime 

may be contributing to this end. Correlation analysis in the 

experimental study of Aurnou and Olson [21] gives a 
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relationship between Nu  and ( )QRa,  as QRa Nu /≈ . This 

relationship is also observed to be valid for the results 

computed here in the interval given by the experimental 

study.  

 
As to the spectral element method implemented, the 

accuracy of the spectral element method increases 

exponentially with increasing polynomial degree (resolution) 

used as long as the underlying solutions are smooth. In the 

spectral element method, one can locally increase the 

polynomial degree within the element, called p-refinement or 

the number of elements, called h-refinement in the under-

resolved regions. For a given resolution, spectral element 

method is much more accurate than the conventional finite 

differences or finite element method, and that the accuracy 

increases faster with the increasing resolution. Besides this, 

the spectral element method offers flexibility in the choices 

of the geometry of the computational domain. Hence, this 

work may be carried over to the curvilinear geometries.  

 
In chapter 6, a low dimensional description to magneto-

convection model is attempted using KL modes of pure 

convection model. The results of this preliminary analysis 

show that amplitudes of some KL modes vanish due to the 

suppressive effects of the external magnetic field. A detailed 

analysis is to be performed towards associating the physical 

picture attached to each KL mode and the damping and 

reorganizing effects of the magnetic field. In the unsteady 

regime, the KL modes initiating the low amplitude 

oscillations are to be identified and examined under the 

varying inclination angles.     
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APPENDIX A 

 

 

TEST FUNCTIONS 

 

 

 
The functions chosen in section 3.4 produce the forcing 

terms which are to be added to the right hand side of the 

three components of momentum equation, hydro-magnetic 

equation and to the heat equation for them to be the 

solution fields: 
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