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ABSTRACT 

 

COMPARISON OF DECODING ALGORITHMS 

FOR LOW-DENSITY PARITY-CHECK CODES 
 

 

 

KOLAYLI, Mert 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor : Assoc. Prof. Dr. Melek D. YÜCEL 

September 2006, 53 pages 

 

 

 

          Low-density parity-check (LDPC) codes are a subclass of linear block codes. 

These codes have parity-check matrices in which the ratio of the non-zero elements to 

all elements is low. This property is exploited in defining low complexity decoding 

algorithms. Low-density parity-check codes have good distance properties and error 

correction capability near Shannon limits.  

          In this thesis, the sum-product and the bit-flip decoding algorithms for low-

density parity-check codes are implemented on Intel Pentium M 1,86 GHz processor 

using the software called MATLAB. Simulations for the two decoding algorithms are 

made over additive white gaussian noise (AWGN) channel changing the code 

parameters like the information rate, the blocklength of the code and the column 



 v 

weight of the parity-check matrix. Performance comparison of the two decoding 

algorithms are made according to these simulation results.  

           As expected, the sum-product algorithm, which is based on soft-decision 

decoding, outperforms the bit-flip algorithm, which depends on hard-decision 

decoding. Our simulations show that the performance of LDPC codes improves with 

increasing blocklength and number of iterations for both decoding algorithms. Since 

the sum-product algorithm has lower error-floor characteristics, increasing the 

number of iterations is more effective for the sum-product decoder compared to the 

bit-flip decoder. By having better BER performance for lower information rates, the 

bit-flip algorithm performs according to the expectations; however, the performance 

of the sum-product decoder deteriorates for information rates below 0.5 instead of 

improving. By irregular construction of LDPC codes, a performance improvement is 

observed especially for low SNR values.           

 

Keywords: LDPC codes, sum-product algorithm, bit-flip algorithm, iterative 

decoding algorithms 
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ÖZ 

 

DÜ�ÜK YO�UNLUKLU E�L�K DENET�M 

KODLARI �Ç�N KOD ÇÖZME 

ALGOR�TMALARININ KAR�ILA�TIRILMASI  
 

 

 

 

KOLAYLI, Mert 

Yüksek Lisans, Elektrik ve Elektronik Mühendisli�i Bölümü  

Tez Yöneticisi : Doç. Dr. Melek D. YÜCEL 
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           Dü�ük yo�unluklu e�lik denetim (DYED) kodları do�rusal blok kodların bir 

alt sınıfıdır. Bu kodların e�lik denetim matrislerinde sıfırdan farklı olan elemanların 

sayısı tüm elemanların sayısına oranla daha küçüktür. Bu özellik sayesinde dü�ük 

yo�unluklu e�lik denetim kodları için karma�ık olmayan kod çözme algoritmalarının  

kullanılabilmesi mümkün olmaktadır. Dü�ük yo�unluklu e�lik denetim kodları, kod 

kelimeleri arasında istenen uzaklık özeliklerini sa�lamakta ve Shannon limitine 

yakla�an hata düzeltme yetene�i göstermektedirler. Bu tezde dü�ük yo�unluklu e�lik 

denetim kodları için topla-çarp ve ikil-de�i�tir kod çözme algoritmaları, MATLAB 

yazılımı kullanılarak Pentium M 1,86 GHz i�lemcili bir bilgisayarda gerçeklenmi�tir. 



 vii 

�ki kod çözme algoritmasının ba�arımları bilgi oranı, blok uzunlu�u ve e�lik denetim 

matrisinin kolon a�ırlı�ı gibi parametrelerin de�i�mesi durumlarında toplamsal beyaz 

gürültülü kanal üzerinde kar�ıla�tırılmı�tır.  

          Beklendi�i gibi gelen bilgiyi daha etkin kullanan topla-çarp algoritması, 

benzetimlerde ikil-de�i�tir algoritmasına göre daha iyi sonuç vermi�tir. Blok 

uzunlu�unun ve kullanılan kod çözme algoritmalarının yineleme sayılarının artması 

DYED kodlarının ba�arımını arttırmaktadır. Ancak topla-çarp algoritması daha dü�ük 

bir hata alt sınırına sahip oldu�undan, yineleme sayısının artması ikil-de�i�tir 

algoritmasına göre daha etkili olmaktadır. Kontrol ikillerinin bilgi ikillerine oranı 

arttıkça, ikil-de�i�tir algoritmasının ba�arımı beklendi�i gibi artmasına ra�men, topla-

çarp algoritması için aynı durum gözlenememi�tir. Düzenli olmayan e�lik denetim 

matrislerine sahip olan DYED kodları, dü�ük sinyal-gürültü oranları için, düzenli 

olanlara göre daha ba�arılı sonuç vermi�tir.      

 

Anahtar sözcükler: DYED kodları, topla-çarp algoritması, ikil-de�i�tir algoritması, 

yinelemeli kod çözme algoritmaları 
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CHAPTER  1 

 

INTRODUCTION                
               

              Error correcting codes are the most important tools for reliable 

communication in  any noisy communication channel. Noisy Channel Coding 

Theorem [Shannon1948] proves that, probability of decoding error can be made to 

approach zero exponentially with the code length, if properly coded information is 

transmitted at a rate below the channel capacity. This theorem proves that there are 

capacity-approaching codes but gives no explicit scheme to construct these codes. 

Although long code lengths are needed to achieve low probability of error, using long 

blocks results in longer computation time and higher equipment cost.  

              There are two main challenges for communicating reliably at rates close to 

the channel capacity. First we have to properly design distinct codewords and second 

find reliable methods for estimating transmitted messages at the output of a noise 

contaminated channel without excessive complexity. A great amount of research has 

been made and is still being made for finding efficient coding and decoding 

algorithms which can utilize long blocklengths, without needing excessive 

computation time or equipment cost. 

              The use of parity-check codes makes coding relatively simple to implement, 

however decoding of parity-check codes is not simple. With ordinary parity-check 

matrices, decoding complexity of parity-check codes grows quadratically with the 

blocklength. Therefore decoding algorithms with reasonable decoding complexity are 

needed for the parity-check codes of  large blocklengths.  

               In 1962, Gallager [Gallager1962] proposed a special class of linear block 

codes with sparse parity-check matrices, which are called low-density parity-check 

(LDPC) codes. He also proposed two decoding algorithms for decoding these codes, 
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which are the sum-product and the bit-flip algorithms. When sparse parity-check 

matrices are used, it is observed that the decoding complexity grows linearly with the 

blocklength rather than quadratically. Low complexity allows efficient decoding 

algorithms to operate.  

              Low-density parity-check (LDPC) codes are not optimum in the sense of 

minimizing probability of error for a given blocklength. Maximum rate at which 

these codes can be used, is bounded  below the channel capacity [Gallager1960]. 

Although these codes are not optimum from the point of probability of error, simple 

and efficient decoding algorithms compensate for the situation. These codes also have 

good distance properties, which is one of the main challenges in code design.   

              In [Gallager1962], it was also proved that probability of error for these codes 

decreases exponentially with the blocklength and the exponent is the same as the 

optimum code with slightly higher rate. Gallager in his paper [Gallager1962] claimed 

that at those rates, no other known coding and decoding scheme could correct errors 

as many as his codes could do. Unfortunately, the idea behind his codes could not be 

understood at that time. Due to the computational incapabilities at his time, he could 

not  prove the  performance of his codes to the community and precious work of 

Gallager was  forgotten for more than thirty years. 

               MacKay rediscovered low-density parity-check codes [MacKay1999] and 

showed that they perform almost as close to capacity limits as turbo codes. Luby 

[Luby2001] extended MacKay’s work and showed that irregular LDPC codes are 

capable of outperforming regular LDPC codes. He also introduced tools for designing 

irregular code ensembles for which the maximum allowed crossover probability of 

the binary symmetric channel is optimized. Then Richardson and Urbanke extended 

Luby’s work to any binary input memoryless channel and to soft decision message 

passing decoding [Richardson2001]. They determined the capacity of message 

passing decoders applied to LDPC code ensembles by a method called density 

evolution. Chung [Chung2001] have demonstrated that, with carefully choosing an 

irregular LDPC code from an optimized ensemble, performance of LDPC codes can 

approach the Shannon limit.             
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             Today because of its significant bit-error-rate performance, LDPC codes are 

gaining increased attention in communication standards and literature. The high 

definition television (HDTV) satellite standard, known as Digital Video Broadcasting 

(DVB-S2) transmission system standard includes irregular LDPC codes. In DVB-S2 

standard an inner irregular LDPC code is concatenated with an outer BCH code . 

              In the content of this thesis, two decoding algorithms, the bit-flip and the 

sum-product decoding algorithms are implemented and simulated over an Additive 

White Gaussian Noise (AWGN) channel for different code parameters. In order to 

examine the performance of the two algorithms blocklength, column weight and 

information rate of the code is changed. Some simulation results are also given to 

show the effects of changing the number of iterations on the performance of the two 

algorithms. The sum-product algorithm is a relatively complex algorithm compared 

to the bit-flip algorithm. So the steps of the sum-product algorithm is re-explained 

thoroughly by supplying the necessary proofs and facts. Some derivations are given 

whenever it is needed. Similarly for the bit-flip algorithm some examples are 

provided along with the schematic illustrations. Regular and irregular parity-check 

matrices are constructed according to the construction schemes given by 

[MacKay1999]. Performance comparison between the regular and irregular LDPC 

codes is given in simulation results.                

          The thesis is organized as follows. In Chapter 2, after a brief description of 

LDPC codes, factor graphs used for decoding LDPC codes are explained. Then two 

decoding algorithms, the bit-flip and the sum-product algorithms are described in 

detail along with some examples. We describe the construction schemes of the parity-

check matrices for LDPC codes in Chapter 3. There are simulation results for 

comparison of the performances of the two decoding algorithms in Chapter 4 and 

lastly Chapter 5 is composed of our conclusions and comments on the simulation 

results.     
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CHAPTER 2 
  
 
  

LOW-DENSITY PARITY-CHECK CODES 
 
 
               In this chapter, after a brief description of low-density parity-check codes, 

decoding algorithms for these codes and factor graphs, which are used as tools of 

decoding are summarized using the references [Gallager1962], [Loeliger2001] and 

[Johnson2002]. Examples 2.3, 2.4 and the details between the equations from (2.3) to 

(2.5), (2.15) to (2.16) and (2.17) to (2.18) are original to this thesis.  

 
2.1  Low-Density Parity-Check (LDPC) Codes   
               
             Low-density parity-check codes are special examples of linear block codes. 

The codewords of a parity-check code are formed by combining a block of binary 

information digits with a block of check digits. Each check digit is the modulo 2 sum 

of a prespecified set of information digits. These formation rules for the check digits 

can be represented by a parity-check matrix, as in Figure 2.1. This matrix represents a 

set of linear homogeneous modulo 2 equations, which are called parity-check 

equations, and the set of codewords is the set of all solutions of these equations. We 

call the set of digits contained in a parity-check equation a parity-check  set. 

 

                           
�� ��� �� INFO

xxxx 4321

����� CHECK

xxx 765  

                      

1001101
0101011
0010111

     ⇔     

4317

4216

3215

xxxx

xxxx

xxxx

⊕⊕=
⊕⊕=
⊕⊕=

          

Figure 2.1: Example of a parity-check matrix. (First 4 digits, which are denoted by “INFO”, 

are the information digits, check digits are placed at the end of each parity-check set.)    
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              Low-density parity-check codes are the codes specified by a matrix 

containing mostly 0’s and only a small number of 1’s. In particular (n, wc , wr) low-

density code is a code of blocklength n with a parity-check matrix, where each 

column contains a small number, wc of 1’s and each row contains a small number wr 

of 1’s. Note that this type of matrix does not have the check digits appearing in 

diagonal form as in Figure 2.1. For coding purposes, the equations represented by 

these matrices can always be solved to give the check digits as explicit sums of 

information digits. 

              These codes are not optimum in the sense of minimizing probability of 

decoding error for a given blocklength. Maximum rate at which these codes can be 

used is bounded below the channel capacity. However, simple decoding schemes 

exist for low-density codes and this compensates for their lack of optimality.       

            The analysis of a low-density code of long blocklength is difficult because of 

the immense number of codewords involved. It is simpler to analyze a whole 

ensemble of such codes because the statistics of an ensemble lets us average over 

quantities that are not tractable in individual codes. From the ensemble behavior, one 

can make statistical statements about the properties of the member codes.   

  

          

11110000000000000000
00001111000000000000
00000000111100000000
00000000000011110000
00000000000000001111

 

           

10001000100010000000
01000100010000001000
00100010000001000100
00010000001000100010
00000001000100010001

 

           

10000100001000010000
00010010000100001000
01000001000010000100
00001000010001000010
00100000100000100001

 

            Figure 2.2. Parity-check matrix of a (20, 3, 4) LDPC code given by Gallager. 
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          In order to define an ensemble of (n, wc , wr) low-density codes, consider the 

matrix given in Figure 2.2 defined by Gallager in his paper [Gallager1962].  The 

matrix can be divided into wc submatrices, each containing a single 1 in each column. 

The first of these submatrices contains all its l’s in descending order; i.e., the i’th row 

contains l’s in columns (i − 1)wr + 1 to iwr. The other submatrices are merely column 

permutations of the first. We define an ensemble of (n, wc , wr ) codes as the ensemble 

resulting from random permutation of the columns of each of the bottom  wc − 1 

submatrices of a matrix such as Figure 2.2, with equal probability assigned to each 

permutation.  

           There are two interesting results that can be proven using this ensemble, the 

first concerning the minimum distance of the member codes, and the second 

concerning the probability of decoding error. 
           If we note the ratio of the minimum distance to blocklength byδ , for large n 

all codes in the ensemble of low-density (n, wc , wr) codes have a minimum distance 

of at least n�cr , where �cr is a constant determined by wc and wr [Gallager1960]. In 

Table 2.1 comparison of this ratio of typical minimum distance to blocklength for an 

LDPC code is compared to that for a parity-check code chosen at random, i.e. with a 

matrix filled in with equiprobable independent binary digits. The “rate” mentioned in 

Table 2.1 is the code rate,  R = k / n , where k is the number of information bits. In 

terms of wc and wr  the code rate can be defined as 
r

c
w

wR −= 1 . 

  Table 2.1. [Gallager1962]Comparison of �cr ,the ratio of typical minimum distance to 

blocklength for an (n, wc , wr) LDPC code, to �, the same ratio for an ordinary parity-check 

code of the same rate.     

wc wr  Rate   �cr    � 

5 6 0.167 0.255 0.263 

4 5 0.2 0.210 0.241 

3 4 0.25 0.122 0.214 

4 6 0.333 0.129 0.173 

3 5 0.4 0.044 0.145 

3 6 0.5 0.023 0.11 
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            For a binary symmetric channel it was shown that [Gallager1960] over a 

reasonable range of channel transition probabilties, the low-density parity-check code 

has a probability of decoding error that decreases exponentially with the blocklength 

and the exponent is the same as that for the optimum code of slightly higher 

rate.Table 2.2 compares the rate values of LDPC codes and equivalent optimum 

codes.                       

Table 2.2. [Gallager1962] Loss of rate associated with LDPC codes. 

wc wr Rate for  

   LDPC 

Rate for Equivalent 

 Optimum Code 

3 6    0.5          0.555 

3 5    0.4           0.43 

4 6   0.333          0.343 

3 4   0.25          0.266 

                            

 
2.2  Factor Graphs 
       

               Calculation of marginal probability density function of a random variable 

from a given complicated global function is an important problem in many different 

branches of science and technology. Algorithms that must deal with complicated 

functions of many variables, often make use of the manner in which the given 

functions factor as a product of local functions. Each local function depends on a 

subset of the random variables. Such a factorization can be visualized with a bipartite 

graph which is called a factor graph. These graphs are widely used for all message 

passing algorithms. Detailed information about factor graphs can be obtained from 

[Loeliger2001].         

               Suppose that ( )nxxg ,...,1  is a function which factors into a product of 

several local functions, each having some subset of { }nxx ,...,1  as arguments; i.e., 

suppose that 
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                                         ∏
∈

=
Jj

jjn Xfxxg )(),...,( 1                                          (2.1)   

where J is a discrete index set, Xj is a subset of {x1, . . . , xn}, and f j (Xj) is a function 

having the elements of Xj as arguments.     

                Definition 2.1 : A factor graph is a bipartite graph that expresses the 

structure of the factorization given by (2.1). A factor graph has a variable node for 

each variable xi, a factor node for each local function fj, and an edge which connects 

variable node xi to factor node fj if and only if xi is an argument of fj .  

 

                 Example 2.1 (A Simple Factor Graph) : Let ( )54321 ,,,, xxxxxg  be a 

function of five variables, and suppose that g can be expressed as a product 

              

             ( )54321 ,,,, xxxxxg = ( ) ( ) ( ) ( ) ( )534332121 ,,,, xxfxxfxxxfxfxf EDCBA          (2.2) 

     

of five factors, so that J = {A, B, C, D, E}, XA  = { x1 }, XB  = { }2x , XC  = { }321 ,, xxx ,  

XD  = { }43 , xx  and XE  = { }53 , xx . The factor graph that corresponds to (2.2) is shown 

in Figure 2.3.   

 

Figure.2.3.A factor graph for the product ( ) ( ) ( ) ( ) ( )534332121 ,,,, xxfxxfxxxfxfxf EDCBA .          
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               It should be obvious that a factor graph for any (n, k) linear block code may 

be obtained from a parity-check matrix H for the code. Such a parity-check matrix 

has n columns and at least (n−k) rows. Variable nodes correspond to the columns of 

H and factor nodes (or checks) to the rows of H, with an edge connecting factor node 

i to variable node j if and only if hij ≠  0, where H = {hij}.    

              Example 2.2 (Factor Graph of a Linear Code): Let us consider a (6,3) 

linear code  C defined by the parity-check matrix  

                                             H =  
�
�
�

�

�

�
�
�

�

�

001101
100110

010011
 

then C is the set of all binary 6-tuples x = ( )621 ,...,, xxx  that satisfy three 

simultaneous equations expressed in matrix form as H xT = 0. 

              Membership in C is completely determined by checking whether each of the 

three equations is satisfied. Therefore, 

XC ( )621 ,...,, xxx = ( )[ ]Cxxx ∈621 ,...,,  

                              = [ ]0521 ≡⊕⊕ xxx ∧ [ ]0632 ≡⊕⊕ xxx ∧ [ ]0431 ≡⊕⊕ xxx  

 where ⊕  denotes the sum in GF(2). The corresponding factor graph is shown in                        

Figure 2.2.      

 
Figure 2.4. Factor graph for the binary linear linear code of Example 2.2.(Variable nodes are 

represented with circles and factor nodes are represented with squares.) 
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         A cycle in the factor graph is a sequence of  connected nodes which start 

and end at the same node in the graph, and which contain other nodes no more than 

once. The length of a cycle is the number of edges it contains, and the girth of a graph 

is the size of the smallest cycle. A linear code with a cycle in its factor graph is shown 

in Example 2.3.     

              Tanner introduced [Tanner1981] bipartite graphs, which are called “Tanner 

graphs”, to describe low-density parity-check codes. In Tanner’s original formulation, 

all variables are codeword symbols. From factor graph perspective, a Tanner graph 

for a code represents a particular factorization of the characteristic function of the 

code.  

               

              Example 2.3 (A Factor Graph with Cycle): Consider a (6,2) linear code C 

defined by the parity-check matrix      

 

                                        H  =           

�
�
�
�

�

�

�
�
�
�

�

�

101100
110100
010011
001011

. 

               
 The factor graph corresponding to C is given in Figure 2.3. 
 

 
Figure 2.5. Factor graph representation of the parity-check matrix in Example 2.3. (A cycle 
of length 4 is shown in bold.)  
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2.3       Encoding of LDPC Codes 
             

LDPC codes are a subclass of linear block codes so their encoding schemes 

are the same. Encoding scheme of linear block codes is summarized from 

[Blahut1984]. A linear block code can be represented by a k by n matrix G, which is 

called the generator matrix of the code. The rows of the generator matrix are linearly 

independent and any codeword is the linear combination of the rows. There are qk 

codewords, and the qk distinct k-tuples over GF(q) can be mapped onto the set of 

codewords. 

            The following procedure is used for one-to-one pairing of k-tuples and 

codewords: 

                                                            c = i G, 

where i, the information word, is a k-tuple of information symbols to be encoded and 

c is the codeword n-tuple. Encoding procedure can be understood with the following 

example. 

             Example 2.4 [Blahut1984] : A binary linear code with the generator matrix 

G is given below. 

                                                  G 
�
�
�

�

�

�
�
�

�

�

=
11100
10010

01001

   
 

The information vector i = [0 1 1] is encoded into the codeword 
 

                                  
=c [ ]110

�
�
�

�

�

�
�
�

�

�

11100
10010

01001

[ ]01110=
 

 
 
                                                     
2.4      Decoding Algorithms

  
               Two decoding algorithms were considered by Gallager [Gallager1962]. First 

one is  called the bit-flip algorithm and it is based on hard decision decoding. Second 
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one is the sum-product (belief propagation) algorithm which is based on soft decision 

decoding. Both algorithms are members of a general class of decoding algorithms 

called message passing algorithms. Message passing algorithms are iterative 

algorithms. At each iteration of the algorithm, messages are sent from variable nodes 

to factor nodes and from factor nodes back to variable nodes on the factor graph.. 

            

 2.4.1   Bit-Flip Algorithm (Hard Decision Decoding) 

              

                Since algorithm operates on hard decisions (0 or 1), an initial hard decision 

is made for each received bit. Decoder computes all the parity-checks and then flips 

any digit that is contained in more than some predetermined number of unsatisfied 

parity-check equations. Using these new values parity-checks are recomputed and this 

process is repeated until all parity-checks are satisfied.  

                 As we stated above, algorithms operate on factor graphs and messages are 

sent between variable nodes and factor nodes iteratively. For the bit-flip algorithm, 

these messages are simple: a variable node sends a message to each of the factor 

nodes to which it is connected declaring if it is a 1 or a 0, and each factor node sends 

a message to each of the variable nodes to which it is connected, declaring whether 

the parity check is satisfied or not. 

                The bit-flip algorithm is as follows: 

�     Step 1 Initialization: Each variable node is assigned the bit value received from 

the channel, and sends messages to the factor nodes to which it is connected 

indicating this value. 

�     Step 2 Parity Update: Using the messages from the variable nodes, each factor 

node calculates whether or not its parity-check equation is satisfied. If all parity-

check equations are satisfied the algorithm terminates, otherwise each factor node 

sends messages to variable nodes to which it is connected indicating whether or not 

the parity-check equation is satisfied. 

�    Step 3 Bit Update: If the majority of the messages received by each variable node 

are “not satisfied”, the variable node flips its current value, otherwise the value is 

retained. If  the maximum number of allowed iterations is reached, the algorithm 
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terminates and a failure to converge is reported; otherwise each variable node sends 

new messages to the factor nodes to which it is connected, indicating its value and the 

algorithm returns to Step 2.               

                Since this algorithm works on sparse parity-check matrices, each check 

equation will contain either one transmission error or no transmission errors. If the 

number of  parity-check equations is small then this procedure is reasonable. When 

most of the parity-check equations containing a bit are unsatisfied, this strongly 

indicates that bit is in error.  

                Example 2.5 (Operation of the Bit-Flip Algorithm): Consider the code 

defined by the parity-check matrix H given below. Assume the codeword c = 

[001011] is sent, and the word r = [101011] is received.  

 

                                        H          = 

�
�
�
�

�

�

�
�
�
�

�

�

101100
110001
010110
001011

 

 

                                     r.HT         =     [ ]0101  

                          

                The vector r.HT indicates that the first and third check equations are not 

satisfied for the received word r. The bit which appears on both unsatisfied parity-

check equations is the first bit of the received word r. We flip the first bit of the 

received word r and call the resulting word r’. Word r’ is multiplied with the 

transpose of the parity-check matrix H. All elements of resulting vector r’HT are 0. 

This shows that all parity-check equations are satisfied. This is one of the stopping 

conditions of the algorithm. The decided word is r’ and it is equal to the codeword 

sent from the transmitter, for this example.    

                Steps of the algorithm are explained on the factor graph given in Figure 2.6 

for Example 2.5 .  
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�   �Step1: Initial values of the variable nodes are sent from variable nodes to factor nodes. 

�    Step 2: Each factor node calculates whether or not its parity-check equation is satisfied, 

using the messages from variable nodes.  

   
�    Step 3: If all parity-check equations are satisfied, that is, all factor nodes send message 

0 to variable nodes, algorithm stops . 

 
Figure 2.6. Operation of the bit-flip algorithm. 
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Only variable nodes of the factor graph are shown in step 3. As “1” represents ‘not 

satisfied’ first bit of the received word will flip its value. Both of the two messages it 

received are ‘not satisfied’. These new variable node values are sent to factor nodes 

and step 2 will be repeated until all parity-checks are satisfied or predetermined 

number of iterations is reached .          

 

    2.4.1.1 Effect of a Cycle on the Bit-Flip Algorithm  

             The existence of cycles in the factor graph of a code reduces the effectiveness 

of the iterative decoding process. To illustrate the detrimental effect of a cycle of 

length 4, consider the code given in Example 2.3.(see Figure 2.5)  

 

                                        H  =           

�
�
�
�

�

�

�
�
�
�

�

�

101100
110100
010011
001011

. 

 
A valid codeword for this code is [001001] but again we assume that the first bit is 

corrupted, so that r = [101001] is received from the channel. In Step 1 initial bit 

values are 1,0,1,0,0 and 1 respectively, and messages are sent to factor nodes 

indicating these values. Step 2 reveals that the first and second parity-check equations 

are not satisfied. In Step 3 both first and second bits have the majority of their 

messages indicating “not satisfied” and so both flip their values. When step 2 is 

repeated, we see that the first and second parity-check equations are again not 

satisfied. Further iterations at this point simply cause the first two bits to flip their 

values in such a way that one of them is always incorrect so algorithm fails to 

converge. As a result of the cycle of length 4, each of  the first two codeword bits are 

involved in the same two parity-check equations, and so when neither of these parity-

check equations are satisfied, it is not possible to determine which bit is causing the 

error.         

            Although the bit-flip algorithm is relatively simple, major drawback of this 

algorithm is that it operates on hard decisions made by the decoder at the channel 
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output. This throws away valuable information coming from the channel especially 

when we are dealing with continuous-output channels.    

            Soft decision decoding algorithms have better BER performance. On the other 

hand, hard decision decoding algorithms are simple, fast and their hardware 

implementations are easy. One important fact is that when we have only hard 

decisions at the channel output, hard decision decoding is the only way to decode 

low-density parity-check codes. Next generation of optical communication systems 

are operating at 40 Gb/s. The current circuit technology does not allow soft decision 

decoding algorithms to operate at these data rates. There are  some research on 

improving hard decision decoding algorithms [FossorierMiladinovic2005] to get 

better performance. 

 

2.4.2  Sum-Product Algorithm 
 

            Sum-product is a general name for  a class of maximum likelihood decoding 

algorithms. Wiberg in his Ph.D. thesis [Wiberg1996] proved that famous BCJR 

[BahlCocke1974], Turbo [Berrou1993] and Gallager’s  algorithm [Gallager1962] are 

all maximum likelihood decoding algorithms. The algorithm uses the channel 

information and the values coming from the channel. It forms a probabilistic value for 

each received bit and iteratively refreshes this value to find an estimate for that bit. 

We introduce Gallager’s algorithm as it was given in his original paper 

[Gallager1962]. 

            Consider the tree structure given in Figure 2.7. Digit d is represented by the 

node at the base of the tree, and each line rising from this node represents one of the 

check sets containing the digit d. The other digits in these parity-check sets are 

represented by the nodes on the first tier of the tree. The lines rising from tier-1 to 

tier-2 represent the other digits in those parity-check sets. 

             Assume both digit d and some of the digits in the first tier are transmission 

errors. Then on the first decoding attempt, the error-free digits in the second tier and 

their parity-check constraints will allow correction of digit d on the second decoding 

attempt. Thus digits and parity-check equations can be used in decoding a digit which 



 

 17 

seems unconnected to them. Gallager’s probabilistic decoding algorithm makes use of 

these extra digits and parity-check constraints systematically.   

 
Figure 2.7. Parity-check set tree.   

  

              Assume that the codewords from an (n, wc , wr) code are used with equal 

probability on an arbitrary binary-input channel. For any digit d, using the notation in 

Figure 2.7, an iteration process will be derived that on the m’th iteration computes the 

probability that the transmitted digit in position d is a 1, conditional on the received 

symbols out to and including the m’th tier. For the first iteration, consider digit d and 

the digits in the first tier to form a subcode. All sets of these digits are satisfying wc 

parity-check equations and these sets have equal probability of transmission. 

Consider the  ensemble of events, in which transmitted digits in position d and the 

digits in the first tier are independent equiprobable binary digits where  their 

probabilities are determined by channel transition probabilities Px(y).  

                   Let P(xd = 1) and P(xd = 0) be probabilities that digit in position d is 1 and 

0 respectively. We want to find an expression for the ratio of these probabilities 

conditional on the set of received symbols {y} and S = {transmitted digits satisfy wc 

parity-check equations}. Using  the definition of conditional probabilities for the 

three events A, B and C:      
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If A’ is the complement of A, using (2.3) one finds  
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Let us define the events A,B and C by  A ={xd =1}, B = {y} and C = S, so A’={xd = 

0}. Then using (2.4) we get 
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Calling }){|1( yxP d = = Pd  and }){|0( yxP d = =1 − Pd, (2.5) can be written as              
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We now try to calculate }){,0|( yxSP d =  term in (2.6), using the following lemma. 

              Lemma 2.1: Consider a sequence of m independent binary digits, in which 

the  l’th digit is 1 with probability Pl. The probability of even number of digits are 1 

in this sequence is 
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             Proof : Consider the function  
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Observe that if this is expanded into a polynomial in t, the coefficient of ti is the 

probability of i 1’s. The function ∏
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)1(  is identical except that all the odd 

powers of t are negative. Adding these two functions, all the even powers of t are 

doubled, and the odd terms cancel out. Finally, letting t=1 and dividing by 2, the 

result is the probability of an even number of ones. So 
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 thus proving the lemma.     

               Corollary 2.1: Consider a sequence of m independent binary digits. If the 

l’th digit is 1 with probability Pl , then the probability of odd number of digits are 1 in 

this sequence is                                                                                                                          
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               Given that xd = 0, a parity-check on the digit d is satisfied if the other (wr�1) 

positions in the parity-check set contain an even number of 1’s. Using Lemma 2.1, 

the probability that i’th parity-check is satisfied when d’th bit is known to be 0 is 
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                Bi represents the set of column locations of the bits in the i’th parity-check 

equation. Similarly, Ad  is the set of row locations of the parity check equations which 

check on the d’th bit of the code. Since all digits in the ensemble are independent, the 

probability that all wc parity-checks are satisfied is the product of the probabilities  of 

the individual checks being satisfied. That is 
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Similarly using Corollary 2.1 
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Substituting (2.11) and (2.12) into (2.6) we get 
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We can take the logarithm of both sides of (2.13) as it was given in [Johnson2002]. 

One benefit of the logarithm is that whereas probabilities need to be  multiplied, log-

likelihood ratios need only to be added, reducing implementation complexity. Taking  
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the logarithm of both sides of (2.13) we have                                                                                                
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Proof of (2.15): 
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Then we can substitute (2.15) into (2.14) to obtain the log-likelihood ratio of the 

estimated a posteriori probability of the d’th bit as  
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             The sum-product algorithm is described as follows [Johnson2002]: 

�           Step 1  Initialization: The initial message sent from variable node d to the 

factor node i is the log-likelihood ratio of the (soft) received signal yd given 

knowledge of the channel properties. If we represent the log-likelihood ratio of the 

d’th bit in the i’th parity-check with Ld,i . Ld,i for an AWGN channel with signal-to-

noise ratio Eb /N0  is: 

                                                 Ld,i = Rd  = 4yd  

0N
Eb  .                                            (2.17) 

We use BPSK modulation, where −1 is transmitted for 1 and +1 is transmitted for 0. 

For AWGN channel, probability density function of y given the received digit is 0, is 
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For the same channel, probability density function of y given the received digit is 1, is 
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Then likelihood ratio is given by 
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For an AWGN channel  
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If we take the logarithm to get the log-likelihood ratio we reach 
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So for an AWGN channel with signal-to-noise ratio 
0N

Eb , the log-likelihood ratio 

of the d’th bit is given as 

                                                            4yd  

0N
Eb

. 

�       Step 2  Factor-to-variable: The extrinsic message from factor node i to variable 

node d is the probability that parity-check i is satisfied if bit d is assumed to be a 1 

expressed as a log-likelihood ratio denoted by Ed,i . Then Ed,i is 

For So 
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�       Step 3 Codeword test: The combined log-likelihood ratio for d’th digit,which is 

denoted by Ld ,  is the sum of the extrinsic messages and the original log-likelihood 

ratio calculated in Step 1: 
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For each bit a hard decision is made: 
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If  z = [ z1,...,zn] is a valid codeword (HzT = 0), or if the maximum number of allowed 

iterations have been completed, the algorithm terminates. 

�               Step 4   Variable- to-factor: The message sent by each variable node to 

factor nodes to which it is connected is similar to (2.19), except that variable d sends 

to factor node i a log-likelihood ratio calculated without using the information from 

factor node i: 
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Return to Step 2.      

             The extrinsic information passed from a factor node to a variable node is 

independent of the probability value for that bit. The extrinsic information from the 

check nodes is then used as a priori information for the variable nodes in the 

subsequent iterations.  

            The existence of an exact termination rule for the sum-product decoding 

algorithm has two important benefits; the first is that failure to converge is always 
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detected, and the second is that additional iterations once a solution has been found 

are avoided.   

             There are variations to the sum-product algorithm presented here. The min-

sum algorithm, for example, simplifies the calculation of (2.18) by recognizing that 

the term corresponding to the smallest Ld’i dominates the product term and so the 

product can be approximated by a minimum; the resulting algorithm thus requires 

calculation of only minimums and additions. Example 2.4, which shows the operation 

of the sum-product algorithm  is taken from [Johnson2002].     

              Example 2.5 (Operation of the Sum-Product Algorithm)[Johnson2002]: 

Suppose codeword [0 0 1 0 1 1] is sent with BPSK modulation, where 0 is mapped to 

1 and 1 is mapped into –1, using AWGN channel with Eb/N0 = 1.25. Received signal 

is y = −0.1  0.5  −0.8  1.0 −0.7  0.5. Two bits ( bits 1 and 6) are in error if hard 

decision is considered. For these values the algorithm operates as follows. 

  

Iteration 1 
 
R             =         [ ]5000.25000.30000.50000.45000.25000.0 −−−    
  
                       
                           [ ]010101     as a hard decision 
 
 
 

E            =           

�
�
�
�

�

�

�
�
�
�

�

�

−−
−−
−−

−−

6869.3.3001.24217.2..
4696.0.4217.0...1892.2

.3001.2.1892.20265.3.

..4217.0.4930.04217.2

 

 
 
L            =           [ ]7173.02217.62783.27676.30334.52676.0 −−−−                    
 
z             =           [ ]110101  
 
HzT         =           [ ]T0101  �   Continue 
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L             =           

�
�
�
�

�

�

�
�
�
�

�

�

−
−−

−−
−

9696.2.5783.41892.6..
1869.18001.5...9217.1
.9217.3.5783.10070.2.
..6999.2.5265.56892.2

 

 
Iteration   2 
 
 

E            =            

�
�
�
�

�

�

�
�
�
�

�

�

−−−
−−

−−
−−

3963.4.9305.27877.2..
9016.18388.0...1779.1
.1041.1.8721.14907.1.
..6326.2.0060.26426.2

 

 
 
L             =            [ ]7979.34429.55603.00845.39848.13206.3 −−−−  
 
 
z             =          [ ]111100  
 
 
HzT         =           [ ]T1001  �   Continue 
 
 
 

L             =           

�
�
�
�

�

�

�
�
�
�

�

�

−
−−

−−

5984.0.3674.28721.5..
1863.16041.4...1426.2
.3388.4.2123.14940.0.
..0695.2.9907.36779.0

 

 
Iteration   3 
 

E            =            

�
�
�
�

�

�

�
�
�
�

�

�

−−
−−

−−
−

3381.2.5948.04912.0..
0620.23362.1...1832.1
.2637.0.4808.01733.1.
..6515.0.5180.09352.1

 

 
 
L             =            [ ]9001.10999.50567.59896.31912.42684.3 −−−  
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z             =          [ ]110100  
 
 
HzT         =           [ ]T0000  �   Terminate 
 
Low-density parity-check codes are sparse graph codes, that means each constraint 

involves only small number of variables in the factor graph of LDPC codes. There are 

other sparse garph codes like turbo codes, repeat accumulate codes and digital 

fountain codes. All these codes can be decoded by  the sum-product algorithm. 

           For various implementations of the sum-product algorithm, instead of log-

likelihood ratio of soft received signal, likelihood difference and signed log-

likelihood difference could be used as message content (see [Loeliger2001]). 

          The bit-flip algorithm is relatively simple compared to the sum-product 

algorithm, but it throws away the valuable information especially when we are 

dealing with continuous-output channels. The sum-product is more complex than the 

bit-flip algorithm. It makes use of the soft received signal, which is vital when 

continuous-output channels are used. It is important to understand these two decoding 

algorithms for LDPC codes to compare their BER performances. In Chapter 4 we 

change code parameters like rate, blocklength and number of iterations in our 

simulations to see the performance difference between the two algorithms.   
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CHAPTER 3 
 

 PARITY-CHECK MATRICES  

OF LDPC CODES 
        
 
 
3.1. Previous Work 
 

Low-density parity-check codes are a class of linear block codes with the 

requirement that vast majority of the entries in their parity-check matrices are zero. 

Each column of the parity-check matrix corresponds to a codeword bit, and each row 

of the parity-check matrix defines a parity-check set. A parity-check matrix is regular 

if each code bit is contained in a fixed number, wc , of parity checks and each parity-

check equation contains a fixed number, wr , of code bits. wr is called the row weight 

and wc is called the column weight of the code.  If a low-density parity-check code is 

described by a regular parity-check matrix, it is called a regular low-density parity-

check code; otherwise it is called an irregular low-density parity-check code. 

The matrix proposed by Gallager in his paper [Gallager1962] is a regular 

matrix with a column weight of 3 and a row weight of 4. This matrix is also cycle-

free to make decoding algorithms operate properly. MacKay increased the number of 

columns of the parity-check matrix proposed by Gallager from 504 bits to 16000 bits 

[MacKay1999]. He performed simulations with LDPC codes based on these matrices 

and showed that they can perform close to the capacity of turbo codes. MacKay also 

used higher fields to define parity-check matrices for LDPC codes [MacKay1998]. 

He acquired better performance by using higher order fields. Then Luby [Luby22001] 
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introduced irregular matrices for LDPC codes. Simulations with these irregular 

parity-check matrices show that LDPC codes with irregular parity-check matrices for 

blocklengths greater than 105 bits can outperform turbo codes.      

3.2 Properties of a  Regular Parity-Check Matrix 
  A regular parity check matrix is given below, with wr = 3 and wc = 2. 

 

                                H = 

�
�
�
�

�

�

�
�
�
�

�

�

101100
110001
010110
001011

 

 

Consider the factor graph of this code. Assume m represents the number of 

rows and n represents the number of columns in the parity-check matrix. In a factor 

graph  the number of edges leaving the variable nodes must equal the number of 

edges leaving the factor nodes, thus for a regular code, 

  

                                             m. wr  =   n. wc . 

               

k representing the information bits, there are n−k check bits in each codeword. A 

linear block code can be represented by a parity-check matrix of n−k rows and n 

columns. The code rate of a block code is defined as the ratio of the number of 

information bits to the total number of bits. 

                                                               R  = 
n
k

 

The code rate of a linear block code can be determined by using the number of 

columns and the number of rows of the parity-check matrix. Also the knowledge of 

the column weight and the row weight can be used to determine the rate as follows: 

                                                  =
n
m

 R
n
k

w
w

n
kn

r

c −=−==−
11 . 

Then it can be written that                
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                                                            R
w
w

r

c =−1 . 

          

   3.3 Construction Schemes 
    

    There are several construction schemes for constructing sparse parity check 

matrices. These construction schemes are named construction 1A, 2A, 1B and 2B in 

[MacKay1999]. Construction 1A and 1B defines regular parity-check matrices where 

Construction 2A and 2B defines irregular parity-check matrices. We describe these 

construction schemes as they are given in [MacKay1999]. 

 
Construction 1A 
 

A matrix with m rows and n columns created randomly with column weight wc and 

row weight is uniform as possible. The matrix contains no cycles. The matrix 

proposed by Gallager in his paper [Gallager1962] is created according to construction 

1A. It has  a column weight of 3 and a row weight of 4.  

  

Construction 2A 

 

Up to m/2 columns have weight 2 and overlap between any two of these weight 2 

columns is zero. Remaining columns are made random with weight 3 and rows have 

weights as uniform as possible. Contains no cycles. 

 

Construction 1B 

 

Because matrices are created randomly, in some cases we can not get rid of cycles. In 

these cases columns, which cause cycles are deleted from the matrix.  After 

constructing a matrix  according to construction 1A, some of the columns are deleted 

from the matrix in order to prevent short cycles. This method is called construction 

1B. 
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Construction 2B 

After constructing a matrix according to the construction 2A, some columns of the 

matrix is deleted in order to prevent  cycles. 

 

 
Figure 3.1 [MacKay1999] Schematic illustrations of  construction methods for parity-check 

matrices.((a) Construction 1A for an LDPC code with wc = 3, wr = 6 and R = 1/2 ,(b) 

Construction 2A for an LDPC code with rate 1/3, (c)(d) two constructions similar to 

Construction 1A) 

 

Notation in the figure: an integer represents a number of permutation matrices 

superposed on the surrounding square. A diagonal line represents an identity matrix. 

A rotating ellipse imposed on a block within the matrix represents random 

permutation of all the columns in that block. 

            To see the performance difference between the regular and irregular LDPC 

codes, check Figure 3.2, where BER performances of Turbo codes, convolutional 

codes, regular and irregular LDPC codes are reproduced from [Johnson2002]. The 

best performance, close to the Shannon limit shown in Figure 3.2, is obtained by 

irregular construction of LDPC codes with very large blocklengths like 107 bits. 
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Figure 3.2 [Johnson2002] BER performance of rate-1/2 error correction codes on AWGN 
channel. (From right to left, soft Viterbi decoding of a constraint lenght 7 convolutional 
codes; sum-product decoding of regular LDPC code with blocklength 65389; a turbo code 
with 2+32 states, 16384 bit interleaver and 18 iterations, sum-product decoding of a 
blocklength 107 irregular code, shanon limit at rate 1/2.)  
                                                                            

Even with sparse parity-check matrices encoding complexity of LDPC codes is 

quadratic in the blocklength. The H matrix should be put into a form of [PT I] and 

then using P, the generator matrix G = [I P] should be constructed. Bringing H into 

the desired form requires n3 operations of preprocessing. Then the actual encoding 

requires n2 operations since, after the preprocessing the matrix H is no longer sparse. 

To overcome this problem several solutions are offered. One of them [Lubys22001] 

is using cascaded graphs rather than bipartite graphs. By determining the number of 

stages carefully one can construct codes which are decodable and encodable in linear 

time. This method comes with a performance loss compared to the standard LDPC 

code [Luby22001]. Another solution [MacKay1998] is to force the parity-check 
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matrix in having lower triangular form. This restriction guarantees a linear time 

encoding complexity, but it also results in some loss of performance.   

 
In Figure 3.3  a parity-check matrix which is put into a lower triangular form can be 

seen. After some column and row permutations a sparse parity-check matrix can 

changed into this form and encoding can be performed efficiently [Richardson22001].  

 
Figure 3.3. [Richardson22001]The parity-check matrix in approximate lower triangular 

form. 

 
The grey area shown in Figure 3.3 are full of binary elements. Since column and row 

permutations are used on a sparse parity-check matrix to obtain the form depicted in 

Figure 3.3. Matrices A, B, C, D, T and E are also sparse matrices. 
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CHAPTER  4 
 

 
SIMULATION RESULTS 

      
 
 
               In this chapter, we investigate the bit-error-rate performances of LDPC 

codes over AWGN channels using either the sum-product or the bit-flip decoding 

algorithms. We examine the effects of changing the code parameters like blocklength, 

column weight and information rate on the performance of LDPC decoding 

algorithms. We give our simulation for the performance comparison of regular and 

irregular LDPC codes in Section 4.5. The last section is a literature review 

[Davey1998] to give an idea about the use of LDPC codes over higher order finite 

fields. 

4.1 Dependence on the Blocklength 

Shannon’s noisy channel coding theorem states that, when properly coded 

information is sent through a noise contaminated channel, using long blocklengths, at 

rates below the channel capacity, error probability can be made to approach zero. 

Depending on this theorem we can say that the blocklength of the code has to be large 

to achieve  low error probability when information rate is below the channel capacity. 

For LDPC codes it was shown [Gallager1960] that for wc > 3 and below the channel 
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capacity, probability of error decreases at least exponentially with the root of the 

blocklength, using the sum-product decoder on binary symmetric channel.  

             In Figure 4.1 and Figure 4.2 we see the BER performances of the sum-

product and the bit-flip decoding algorithms respectively on rate 1/ 2 regular LDPC 

code with blocklengths of 100, 250, 500 and 1000 on AWGN channel.   

 

       Figure 4.1.  BER performance comparison of LDPC codes on blocklengths 100, 250, 
500 and 1000 using the sum-product decoding algorithm. (Maximum iteration number is set 
to 10). 
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Figure 4.2. BER performance comparison of LDPC codes on blocklengths 100, 250, 500 and 
1000 using the bit-flip decoding algorithm. 
         

              As it can be seen from  Figure 4.1 and Figure 4.2, increasing blocklength of 

the code resulted in a performance improvement for both algorithms. This is the 

result we expect, depending on Shannon’s theorem. For better comparison between 

two algorithms Figure 4.1 and Figure 4.2 are plotted on the same figure, Figure 4.3. It 

is clear in Figure 4.3 that for equal blocklengths the sum-product algorithm 

outperforms the bit-flip algorithm. 
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Figure 4.3 BER performance comparison of LDPC codes for the two decoding algorithms on 
different blocklengths. (Dashed lines show the performance of the bit-flip algorithm where 
solid lines are for the sum-product algorithm.) 
 

4.2 Dependence on the Column Weight 

           Given an optimal decoder, best peformance would be obtained for the codes 

closest to random codes [MacKay2004]. The codes which are closest to random 

codes have largest column weight, wc. However, the sum-product decoder makes 

poor progress in dense graphs [MacKay2004], so the best performance is obtained for 

a small value of wc. This result gave the motivation to construct some columns of the 

parity-check matrix with weight 2. New parity-check matrices were proposed by 

Luby [Luby2001] with varying column weights and irregular LDPC codes were 

introduced.  
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Figure 4.4 Dependence on column weight wc for codes of blocklength 250 with rate  1 / 2 
using the sum-product decoding algorithm . (Maximum number of iterations is set to 10).  
 
As it can be seen from Figure 4.4 increasing column weight, wc , results in a BER 

performance loss. This result is consistent with [MacKay2004] where it is stated that 

the sum-product algorithm can not operate on dense graphs. 

            Let us investigate the BER performance of the bit-flip algorithm for 

increasing column weights by examining Figure 4.5. It can be seen from Figure 4.5 

that higher column weights result a deterioration in BER performance of LDPC 

codes. Increasing the column weight of the parity-check matrix increases the 

probability of having short cycles in the factor graph. We explained the effects of 

short cycles on the bit-flip decoding algorithm in section 2.4.1.1. So our simulation 

results are consistent with the theory.      
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Figure 4.5 Dependence on column weight wc for codes of blocklength 250 rate 1 / 2 using 
the bit- flip algorithm. (Maximum number of iterations is 10) 
            

4.3 Dependence on the Number of Iterations 

        
             Since both the sum-product and the bit-flip algorithms are iterative decoding 

algorithms we expect to see better BER performance for both decoding algorithms 

when we increase the number of iterations. In Figures 4.6 and 4.7 we can see the 

effect of changing the number of iterations for the sum-product decoder and the bit-

flip decoder respectively. The number of iterations is changed between 5 and 25 for 

both of the algorithms. 
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Figure 4.6 Dependence on the number of iterations for blocklength 250 rate 1/2 regular 
LDPC code for the sum-product decoder. (Number of iterations is changed from 5  to 25. 
Column weight, wc = 3.)  
 

 Increasing  the number of iterations results in an improvement in the BER 

performance of the sum-product decoder as we expect. The more we increase the 

number of iterations, the lower BER we achieve until reaching the error floor. But in 

some applications where decoding time is limited like video broadcasting we have to 

find the optimum number of iterations, since excessive decoding times are not 

allowed. 

Figure 4.7 shows the BER performance of LDPC codes using the bit-flip algorithm. 

Note that for equal number of iterations the sum-product algorithm outperforms the 

bit-flip algorithm. After 15 iterations performance of the bit-flip decoder does not 

improve for this blocklength and rate. 
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Figure 4.7 Dependence on number of iterations for blocklength 250 rate 1/2 regular LDPC 

code using the bit-flip decoding algorithm. (Number of iterations is changed from 5 to 25. 

Column weight of H is constant and 3.) 

 

4.4 Dependence on the Information Rate 

           Construction of parity-check matrices is described in Chapter 3. We can 

specify the rate of an LDPC code by using the number of rows and columns. Define 

m as the number of rows and n as the number of columns (blocklength of the code) of 

the parity check matrix. The information rate, R , of the code can be calculated by 

using m and n as 

                                         
n
m

RR
n

kn
n
m −=→−=−= 11  
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where k is the number of information bits. So we can change the information rate of 

the code by constructing a parity-check matrix, having suitable number of rows and 

columns. In our simulations we changed the information rate with this method.  

 

Figure 4.8 Dependence on information rate with sum-product decoding. (Blocklength 250. 
Maximum number of iterations is set to 20.) 
 

In Figure 4.8 we can see the BER performance of LDPC codes at rates 1/2, 1/5 and 

4/5 with the sum-product decoding algorithm. Rate 1/2 LDPC code has better BER 

performance than rate 4/5 code. But rate 1/5 LDPC code can not perform better than 

the rate 1/2 LDPC code. Although we increase the number of check bits in our code 

we can not achieve better BER performance for rate 1/5. In Figure 4.9 and 4.10 which 

are taken from [Luby22001], we see BER performances of regular and irregular 

LDPC codes and turbo codes for rates 1/2 and 1/4.    
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Figure 4.9 [Luby22001] Rate 1/2, blocklength 16000 regular and irregular LDPC codes and 
turbo codes. 

 

Figure 4.10 [Luby22001] Rate 1/4, blocklength 16000 regular and irregular LDPC codes and 
turbo codes. 
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Figure 4.9 and 4.10 verify our results given in Figure 4.8. Note that rate 1/2 regular 

LDPC code outperforms rate 1/4 regular LDPC code for a blocklength of 16000. This 

means that reducing the information rate of the regular LDPC code below 1/2  we can 

not get better BER performance.  

         Although we find similar results in literature this situation is quite unusual. 

There is no explanation in [Luby22001] to justify why rate 1/2 code outperforms rate 

1/4 code. We increase the number of check bits which results a high redundancy but 

the BER performance of the code does not improve. This situation needs further 

investigation to fully understand the reason causing this behaviour. 

 

0 0.5 1 1.5 2 2.5 3
10-2

10-1

100 Bit Error Rate

B
E

R

Eb/No (dB)

Rate = 4/5

Rate=1/2

Rate = 1/5

 
Figure 4.11 Dependence on the information rate with bit-flip decoding(Blocklength 
250.Maximum iteration number is set to 20)  
 

 In Figure 4.11 we can see that the rate 1/5 LDPC code has the best BER performance 

whereas the LDPC code with rate 4/5 has the worst one. Performance of rate 1/2 

LDPC code is between them. By reducing the information rate we actually increase 
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the number of check bits in our code so we expect to have better BER performance as 

the rate decreases. This is the case for the bit-flip algorithm. 

4.5 Performance Comparison of Regular and Irregular LDPC Codes  

             Luby showed that [Luby2001] irregular construction of parity-check 

matrices, improves performance of LDPC codes for the AWGN channel. Instead of 

giving equal degree, wc , to every variable node, we can have some variable nodes 

with degree 2, some 3, some 4 and a few with degree 20. Check nodes can also have 

unequal degrees but it is shown that for AWGN channel the best graphs have regular 

check connectivity [Luby2001].   

           In Figure 4.12 we compare BER performance of a regular LDPC code at rate 

1/2  with blocklength 1000 with an irregular LDPC code at the same rate and the 

blocklength. We construct the parity-check matrix for the irregular code according to 

construction 2A, and use construction 1A is for constructing the regular code.    

 
Figure 4.12 BER performances of  rate-1/2 regular and irregular LDPC codes of blocklength 
1000. 
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Luby stated that because the irregular LDPC codes have higher error floor 

characateristics, irregular LDPC codes have worse BER performance than those of 

regular ones  at high SNR values [Luby2001].  

In Figure 4.12 one can see that for low SNR values irregular LDPC code outperforms 

the regular LDPC code but after an SNR value of 1.7 dB, regular code outperforms 

the irregular code.  

 
4.6 Performance of LDPC Codes Over GF(q) 
 
            MacKay and Davey investigated the performance of LDPC codes over 

higher order fields [Davey1998]. They proposed a method, in which the variable 

nodes in the factor graphs of LDPC codes are grouped together into metavariables 

and check nodes are similarly grouped into metachecks. The edge locations between 

metavariables and metachecks are determined with using a finite field GF(q) like 

GF(4) or GF(8). With this method parity-check matrices of LDPC codes are defined 

over GF(q) and  binary messages are translated into GF(q) using a mapping. 

Mappings can be defined as in tables 4.1 and 4.2.  

                                            
            Table 4.1 [MacKay2004] Translation between binary and GF(4) for message 
symbols. 
 

                                                       

113

102
011
000

)4(

⇔
⇔
⇔
⇔
⇔ BinaryGF

 

 
 
When messages are passed in the factor graph of the code during decoding, those 

messages are likelihoods of many binary variables. For example if three binary 

variables are grouped together, likelihoods will describe eight alternative states of the 

corresponding bits.   
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Table 4.2 [MacKay2004]  Translation between binary and GF(4) for matrix entries. (An 
m×n parity-check matrix over GF(4) can be translated into a 2m×2n binary parity-check 
matrix in this way.) 
 

                                                        

11
10

3

01
11

2

10
01

1

00
00

0

)4(

⇔

⇔

⇔

⇔

⇔ BinaryGF

                                              

 

 

              In Figure 4.14 performance comparison of LDPC codes over GF(2), GF(4), 

GF(8) and GF(16) is given. Performance of turbo codes at rates of 1/3 and 1/4 can 

also be seen. As it can be seen from the figure an LDPC code defined over GF(16) 

can perform nearly one decibel better than a binary LDPC code.    
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Figure 4.13 [Davey1998] Performance comparison of LDPC codes over a binary Gaussian 

channel over GF(2), GF(4) and GF(8). (From left to right: JPL Turbo code, rate 1/4, 
blocklength 65536; LDPC code with rate 0.26, average column weight 2.3, blocklength 6000 
over GF(16); JPL Turbo code, rate 1/3, blocklength 49152; LDPC codes with rate 1/3, 
average column weight 2.5, blocklengths of 6000, 9000 and 18000, over GF(8), GF(4) and 
GF(2) respectively.  
 
 

There is not always a monotonic improvement with increased field order. Column 

weight 3, rate 1/2 LDPC codes over GF(4) can outperform GF(8) codes [Davey1998]. 

It is a hot topic for research to understand the effects of changing the code parameters 

on performance. We can conclude that defining LDPC codes over higher order fields 

results in a significant amount of performance improvement.  
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CHAPTER 5 

 
CONCLUSION 

 
 
             In this thesis we study LDPC codes, their construction schemes and 

algorithms that are used for decoding these codes. We  provide simulation results to 

compare the  BER performance of these codes under the sum-product and the bit-flip  

decoding algorithms for code parameters like blocklength, information rate, column 

weight and iteration number. 

            The bit-flip decoding algorithm operates on hard decisions. It is 

computationally simple compared to the sum-product algorithm. When we are 

dealing with continuous-output channels this algorithm is inferior to the sum-product 

algorithm because it throws away valuable information coming from the channel. The 

sum-product is a more complex algorithm than the bit-flip algorithm. It makes use of 

the soft received signal, which is vital when continuous-output channels are used. In 

our simulations we see that the sum-product algorithm has better BER performance 

compared to the bit-flip algorithm. 

            We observe that for both decoding algorithms, the BER performance of 

LDPC codes increase with increasing the blocklength of the code. But for the same 

blocklength, performance of the sum-product decoder is better than the performance 

of the bit-flip decoder. Increasing the column weight of the parity-check matrix of 

LDPC code resulted a performance deterioration for the bit-flip and the sum-product 

decoding algorithms. Main reason for this situation is the short cycles in the parity-

check matrix. We can not get rid of short cycles for high column weights.  Number of 

iterations is another important parameter for the two decoding algorithms. We 

observed that both the sum-product and the bit-flip algorithms are performing better 

with increasing number of iterations, where the sum-product decoder performs better 



 

 50 

than the bit-flip decoder for the same number of iterations. Some simulations are 

performed in order to see the effects of changing the information rate for both 

decoding algorithms. For the bit-flip algorithm we see a better performance when we 

reduce the information rate of the code. Sum-product decoder performed 

unexpectedly when we reduce the information rate below 1/2. Instead of having better 

BER performance the performance of sum-product decoder deteriorated. We came 

across similar results in other papers, which supports our experimental results. This 

situation should be investigated further in future work. There are two methods in 

literature for increasing the performance of LDPC codes. One of them is constructing 

irregular matrices. We performed simulations for observing the difference between 

the regular and irregular LDPC codes in Section 4.5. For low SNR values irregular 

LDPC code performed better than the regular one. For increasing SNR values regular 

LDPC code outperformed the irregular one because of the high error floor 

characteristics of the irregular LDPC codes. The other method for better BER 

performance is defining LDPC codes over higher order fields. We summarized this 

method using the reference [MacKay2004] with some simulation results taken from 

the same reference. 

           The sum-product decoder performs better than the bit-flip decoder. The price 

we have to pay is the high complexity of the decoder along with the decoding delay. 

In applications where decoding time is not important but error correction capability is 

the first priority, like deep space communication, the sum-product decoder should be 

employed. The bit-flip is a relatively simple algorithm but can not perform as good as 

the sum-product algorithm. When decoding time is limited and high error correction 

capability is not needed, decoders with short decoding delay, like the bit-flip decoder, 

should be employed. The selection between the two algorithms should be done by 

carefully determining the needs of the communication system.                  

           Today a serious amount of research is being made on sparse graph codes like 

digital fountain codes, repeat-accumulate codes, tornado codes and LDPC codes. For 

LDPC codes two main research topics are popular. First, computationally efficient 

algorithms should be developed to overcome the encoding complexity for LDPC 

codes. Second, because factor graphs with cycles deteriorate the performance of the 
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sum-product algorithm, efficient algorithms should be introduced for the codes 

containing cycles in their factor graphs.  
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