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ABSTRACT 

 

ANALYSIS OF CIRCULAR WAVEGUIDES  

COUPLED BY AXIALLY UNIFORM SLOTS 

 

ÖZTÜRK, Mensur 

M.S., Department of Electrical and Electronics Engineering 

Supervisor : Prof. Dr. Fatih CANATAN 

 

September 2006, 121 pages 

 

 

 

The characteristics of slotted circular waveguides with different dimensions, 

including cutoff frequencies of TE and TM modes, impedance and modal field 

distributions will be analyzed using the generalized spectral domain approach. The 

Method of Moment will be applied, basis functions that include the edge 

conditions will be used and a computer program will be developed. Obtained 

results will be presented for different number, depth and thickness of coupling 

slots, and compared with available data to demonstrate the accuracy and the 

efficiency of the approach. Plots of the electric and magnetic field lines 

corresponding to the dominant as well as a number of higher order modes will be 

presented for quadruple ridge case. 

 

 

Key words:  Slotted circular waveguide, cutoff frequency, Method of Moments. 
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ÖZ 

 

EKSENSEL OLARAK EŞ OYUKLARLA KUPLE EDİLMİS  

DAİRESEL DALGA KILAVUZLARININ ANALİZİ 

 

ÖZTÜRK, Mensur 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Fatih CANATAN 

 

Eylül 2006, 121 Sayfa 

 

 

 

Oyuklu dairesel dalga kılavuzlarının özellikleri, TE ve TM modlarının kesim 

frekansları, empedansları ve alan dağılımlarını içerecek şekilde genelleştirilmiş 

tayf alanı yaklaşımı kullanılarak analiz edilecektir. Moment metodu uygulanacak, 

kenar şartlarını içeren temel fonksiyonlar kullanılacak ve bir bilgisayar programı 

geliştirilecektir. Farklı sayıda, genişlikte ve derinlikteki kuplaj oyukları için elde 

edilen sonuçlar sunulacak ve yaklaşımın doğruluğunu ve etkinliğini gösterecek 

şekilde mevcut verilerle karşılaştırılacaktır. Dört oyuklu durum için, baskın 

modların ve bir miktar daha yüksek dereceli modların elektrik ve manyetik alan 

çizimleri sunulacaktır. 

 

Anahtar Kelimeler: Oyuklu dairesel dalga kılavuzu, kesim frekansı, Momentler 

Yöntemi. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Scope of the Study 

 

Ridges in waveguides increase the operating frequency bandwidth through 

lowering the cutoff frequencies of certain modes. Because of this advantage of 

ridge waveguides, they are useful in wide band applications. They have been used 

as transmission lines in systems, where a wide frequency range must be covered 

and only the fundamental mode can be tolerated. Ridged waveguides are important 

components in modern microwave filters, septum polarizers and matching 

networks. 

 

Ridged waveguides are also called as slotted waveguides in the literature. So many 

numerical techniques have been employed in the analysis of different types of 

ridged waveguide structures. In this study, the circular waveguides with axially 

uniform slots (ridges) are analyzed. The analysis is done by the same method 

presented in [1].  

 

The scope of the study can be summarized as follows: 

 

• Derivation of the details of the formulation presented in [1] 

• Demonstration of the validity and the efficiency of the method 

• Applications of the solution to the structures with different dimensions 

• Development of a computer program using MATLAB with a graphical 

user interface (GUI) 

• Determination of the operating modes and their behaviours while changing 

dimensions. 



  2

• Calculation of the power handling capacities of triple and quadruple ridged 

waveguides for the fundamental mode 

 

1.2 Previous Studies and Motivation of the Study 

 

The first analysis of the ridge in circular waveguides was done by Dally [2] for 

double ridge case. His work showed that the ridged waveguide has the advantages 

of reduced cutoff frequency and impedance, and increased bandwidth over the 

ordinary circular waveguide. He used finite element method in his analysis, but the 

results of his work are not of satisfactory precision due to the mesh size chosen. 

Another study done on the ridged circular waveguides is that of Canatan [3]. He 

analyzed both double and quadruple ridged circular waveguides using Ritz-

Galerkin method. His results and computational approach used for the quadruple 

ridged waveguides were new. He showed that the quadruple ridged circular 

waveguides possess low cutoff and wide bandwidth properties similar to those 

found for double ridged circular waveguides [4] [5]. This work was restricted to 

the symmetrical TE modes. 

 

The analysis done on the ridged waveguide showed that the introduction of ridges 

inside the guide could greatly increase the bandwidth of the dominant mode. 

Further improvements can be achieved by dielectric loading or adding more ridges 

in the guide. 

 

The ridged waveguides have been used successfully as matching or transition 

elements. The cavity structure with the cross section shown in Figure-1.1 is 

introduced as a solution to overcome the mode competition problem for the 

gyrotron applications [6] [7]. It is stated in [6] that a gradually changing slotted 

waveguide has a perfect function of converting the TE0n mode to TE0,n+p mode. 
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In [6] and [7], it has shown that how a mode competition can be reduced by the 

way of mode converter. 

 

 

Figure 1.1 TE0,n-TE0,n+p Mode Converter. 

 

 

In [6], a conventional field matching method has been applied to analyze the 

composite waveguide in Figure 1.1. But this method is not suitable for this 

structure because the expansion functions do not fulfil the edge conditions at the 

slot edges. This leads to oversized matrices, slow convergence and inaccurate field 

distributions [8]. In addition to this, since TM wave is not taken into account from 

the beginning of the analysis, it is impossible to calculate TE-TM coupling. 

 

The triple and quadruple ridged waveguides are analyzed in [9] by radial mode 

matching technique. The characteristics of square, circular and diagonal quadruple 

waveguides are analyzed in [10] systematically by using surface magnetic field 

integral equation and found that the fundamental modes are primarily dependent 

on the ridge gap and thickness, not on the type of waveguide cross section. 

 

Various numerical techniques have been employed in the analysis of these 

structures. The cutoff wavelengths of the first two modes of a septum polarizer 
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were determined by the finite element method (FEM). The mode matching 

technique (MMT) was used to investigate the eigenvalue problem of single and 

multiple symmetric ridge waveguides. The method of lines (MoL) was also 

applied to the eigenmode problem of a partially loaded ridge waveguide [11]. 

 

The Method of Moments (MoM) has been used extensively to solve 

electromagnetic problems. However, due to its dense matrix, especially for large 

structures, the MoM suffers from long matrix solution time and large storage 

requirement. In this thesis it is shown that use of edge conditioned basis functions 

result in a MoM matrix that is smaller and more rapidly convergent size. 

 

1.3 Thesis Organisation and Contributions of the Study 

 

The work can be outlined as follows: In chapter 2, the waveguide structure is 

analyzed and the basic formulations to find the cutoff wavenumbers of TE and TM 

modes and to determine the corresponding field distributions in the composite 

waveguides are introduced. In this chapter, the edge condition is discussed and the 

convenience of edge conditioned basis functions is proved. The infinite sums over 

the eigenmodes, which appears as a result of the application of the generalized 

spectral domain method to the analysis of waveguides, are given in Appendix A.  

 

In chapter 3, the computer programs developed in MATLAB for the numerical 

evaluation of the problem are described and the simulation results carried on 

MATLAB are presented. The convergence behaviour of cutoff wavenumbers 

according to the different numbers of field and current expansion functions are 

investigated for triple ridge waveguide. The cutoff wavenumbers and field plots 

are provided for triple and quadruple ridged waveguides. The breakdown 

conditions and power handling capacities are investigated for the dominant mode 

as a contribution. Graphical user interface of computer programs is described in 

Appendix B. Finally, the conclusion part is provided in the last chapter. 
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CHAPTER 2 

 

 

BASIC THEORY AND FORMULATION 

 

2.1 Introduction 

 

To analyze waveguides, dielectric and magnetic inhomogeneities are replaced by 

polarization and magnetization currents, respectively, while metal inserts and slots 

are replaced by electric and magnetic surface currents, respectively, so that the 

structure can be treated as empty and completely shielded. The method here is 

based on short circuiting the coupling slots, replacing the non vanishing slot 

tangential electric field at the short circuited boundary by two surface magnetic 

currents at the two sides of the short circuit and analyzing the structure 

decomposed into circular and sector waveguides separately. 

 

 

 

Figure 2.1 Transverse cross section of waveguide and dimensional parameters. 
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The electromagnetic fields in the individual waveguides, which are isolated from 

each other, are analyzed using the equivalent surface magnetic currents which 

guarantee the continuity of the tangential electric field across the slot. 

 

The expectation of the study is to calculate the cutoff wavenumbers of the 

waveguide structure with the cross section given in Figure 2.1, and to develop a 

method, which is efficient, accurate and without any simplification assumptions. 

 

In the following sections, the waveguide structure is described and the problem is 

stated first. The formulation begins with the determination of field expansion 

functions and the relation between the expansion coefficients. Then, the 

expressions are transformed to a matrix formulation. Finally, the integral equations 

and infinite sums are derived to make the matrix entries analytic fully. 

 

2.2 Description of the Waveguide Structure 

 

The structure of the slotted waveguide is characterized by the slot number ‘N’, the 

angle of the slot ‘Ө’ and the radii ‘a’ and ‘b’. 

 

The first point to be decided is the coordinate system in which the problem is to be 

treated. It is convenient to work in a coordinate system that is related to the 

symmetry of the system under consideration. Since the problem is to treat a 

metallic waveguide of circular cross section containing conically shaped uniform 

slot surfaces aligned with cylindrical coordinate planes, the obvious coordinates to 

choose are the cylindrical coordinates, with r, θ and z.  

 

The structure is considered as a simple homogeneous waveguide consisting of a 

metal tube containing air. As in the elementary theory, the metal is taken to be a 

perfect conductor and air is taken as free space. 
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2.3 Decomposing the Structure 

 

Decomposing the structure reduces the problem into smaller and better-

conditioned sub problems that can be efficiently optimized. It is possible to 

separate the structure under consideration to sub problems with appropriate 

portions and calculate them independently. 

 

The slotted circular waveguide given in Figure 2.1 can be decomposed into one 

hollow circular waveguide with radius ‘a’ and ‘N’ sector waveguides with 

minimum and maximum radii ‘a’ and ‘b’, and an angular width ‘Ө’. 

 

It is known from uniqueness concepts, that the tangential components of only E or 

H fields are needed to determine the complete fields. It will be used that equivalent 

problems can be found in terms of only magnetic currents (tangential E). Placing a 

perfect conductor over the surface between hollow circular waveguide and N 

sector waveguides sets up the equivalent problem and the tangential electric field 

at the slot aperture can be replaced by two equivalent surface magnetic currents at 

both side of the short circuit.[13]. 

 

 

 

Figure 2.2 Decomposition of the structure into subregions 
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These two surface magnetic currents that can be considered as the sources of 

individual waveguides are equal in magnitude and opposite in direction, which 

guarantee the continuity of the tangential electric field across the slot. 

 

At the interface between two waveguide sections, the relation between magnetic 

surface currents and electric field intensity is defined as: 

 

ˆ
cM E n= − ×

� �
        (2.1) 

 

where n̂  is the unit vector normal to the surface of the slot Ci. The surface 

magnetic current M is determined to satisfy the continuity of the tangential electric 

field across the slot surface S. 

 

The following relations are obtained by separating the surface magnetic current 

into its transverse and longitudinal components: 

 

ˆ ˆ( )

ˆ ˆ

t z c z

z z t c

M E a n

M a E n

= − ×

= − ×

�

�
       (2.2) 

 

where ˆ
za  is the unit vector in the longitudinal direction. 

 

2.4 Field Definitions and Coupling Expressions 

 

The aim of this section is to specify the coupling conditions of field amplitudes 

that are used to expand the field components by using the orthogonality relation 

between the eigenwaves. 
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Maxwell’s equations are a summary of the laws of electromagnetism and can be 

taken as the starting point for the solution of any problem in electromagnetic 

theory. It is desirable to use the approach from Maxwell’s equations since a 

complete set of solutions can be obtained in this way [12]. 

 

A technique often used in solving problems is to decompose the problem and its 

solution into two separate ones: TE (transverse electric) and TM (transverse 

magnetic). It can be shown that an arbitrary field in a homogeneous source free 

region can be expressed as the sum of a TE field and a TM field [14]. 

 

In a source free region, a solution can be expressed in terms of the Lorentz scalar 

potentials that satisfy the following homogeneous Helmholtz equations, subject to 

the boundary and radiation conditions: 

 

2 2( ) 0t n nTE nk∇ Ψ + Ψ =        (2.3.1) 

 

2 2( ) 0
t n nTM n

k∇ Φ + Φ =        (2.3.2) 

 

where t∇  is the transverse component of del operator and nΨ  and nΦ  are the 

complete sets of longitudinal electric and magnetic fields which characterize TE 

and TM modes respectively and are real functions of transverse coordinates, which 

correspond to the cutoff wavenumbers knTE and knTM, respectively.  

 

Because of preferential role played by the guiding direction z, it provides 

convenience to decompose Maxwell’s equations into components that are 

longitudinal (along z direction) and components that are transverse (along the r 

and θ directions). The fields at any waveguide cross-section can be defined as 

follows: 

 

( ) ( )

ˆ( ( ) ( )) j z

t n t n n t n z

n n

E A B a e β−= ∇ Φ + ∇ Ψ × ⋅∑ ∑
�

    (2.4.1) 
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( ) ( )

ˆ( ( ) ( )) j z

t n t n n z t n

n n

H C D a e β−= ∇ Ψ + ×∇ Φ ⋅∑ ∑
�

    (2.4.2) 

 

( )

( ) j z

z nTM n n

n

E k F e β−= Φ ⋅∑       (2.4.3) 

 

( )

( ) j z

z nTE n n

n

H k G e β−= Ψ ⋅∑       (2.4.4) 

 

where a z-dependence e-jβz assumed and An, Bn, Cn, Dn, Fn, Gn are series expansion 

coefficients. The set t n∇ Φ  is complete with respect to the curl free transverse 

electric fields, while the set ˆ
t n za∇ Ψ ×  is complete with respect to the divergence 

free transverse electric fields. The two sets t n∇ Ψ  and ˆ
z t na ×∇ Φ  have the same 

properties with respect to transverse magnetic fields. 

 

The field expansions are not only complementary but also orthogonal and satisfy 

the following orthogonality relations [15]: 

 

2

2

1
( , )

( )

1
( , )

( )

n m nm

nTM

n m nm

nTE

k

k

δ

δ

Φ Φ =

Ψ Ψ =

       (2.5) 

 

( , )

( , )

ˆ( , ) 0

t n t m nm

t n t m nm

t n t n z
a

δ

δ

∇ Φ ∇ Φ =

∇ Ψ ∇ Ψ =

∇ Φ ∇ Ψ × =

       (2.6) 

 

Here; 

 

( , ) :
S

f g f g dS
∗= ⋅∫        (2.7) 
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describes the inner product of two functions. S is the area of the waveguide cross-

section and (*) means conjugation. 

 

Replacing z∂ by -jβ and t∂  by jω because of the assumed z-dependence and time 

dependence and introducing these decompositions into the source free Maxwell’ 

equations: 

 

0

0

ˆ

ˆ

t t z z

t t z z

E j H a

H j E a

ωµ

ωε

∇ × = −

∇ × =

�

�        (2.8) 

 

0

0

ˆ( )

ˆ( )

t z t t z

t z t z t

E j E j H a

H j H j a E

β ωµ

β ωε

∇ + = ×

∇ + = ×

� �

� �       (2.9) 

 

Expanding the transverse and longitudinal components of the electromagnetic field 

with respect to TM and TE normal modes of the corresponding empty waveguide, 

substituting these expansions into Maxwell’s equations and making use of the 

orthogonality relation, one obtains the interrelations between the different 

expansion coefficients as well as their relations to the defined surface magnetic 

currents M [16]. 

 

0

20
,

0

2
0

,

0

0

0

1
ˆ( , ) ( , ) ( , )

1 1
ˆ ˆ( ) ( ) ( , )

( )
ˆ( ) ( , )

t t n z t t n t z t n

t t n z z t n z t n

c

nTE

t t n z z n

j z j znTE

n n

j z

n

j
H a E H

j j

k
E a H ndl H

Z j j

k k
E a H

Z j

k k
B e G e

Z j

C e

β β

β

ωε

β β

β β β

β β

β β

∗

− −

−

∇ Ψ = × ∇ Ψ − ∇ ∇ Ψ

= ∇ Ψ × − ∇ Ψ ⋅ + ∇ Ψ

= ∇ Ψ × − Ψ

= −

=

∫

� �

�

�

�

 (2.10) 

where  
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0
0

0

Z
µ

ε
=         (2.11) 

 

is the free space wave impedance and 

 

0 0 0k ω µ ε=         (2.12) 

 

is the free space wavenumber.  

 

In the same way, the following equalities are obtained: 

 

0

20 0
,

2
0 0

,

0 0

1
ˆ( , ) ( , ) ( , )

1 1
ˆ ˆ( ) ( ) ( , )

( )1
ˆ ˆ( ) ( ) ( , )

1
ˆ( )

t t n t z t n t z t n

t z t n z t n z t n

c

nTM
t z t n t z t n z n

c

j z

n t z t n

c

j
E H a E

j j

Z k
H a E ndl E

j j

k Z k
H a M a dl E

j j

k Z
D e M a dl

j

β

ωµ

β β

β β β

β β β

β β

∗

−

∇ Φ = × ∇ Φ − ∇ ∇ Φ

= ×∇ Φ − ∇ Φ ⋅ + ∇ Φ

= ×∇ Φ + ⋅ ×∇ Φ ⋅ − Φ

= + ⋅ ×∇ Φ ⋅ −

∫

∫

∫

� �

�

� �

�

�

�

�
j znTM

n

j z

n

k
F e

j

A e

β

β

β
−

−=

 (2.13) 

 

0

0

0

0

0

1
ˆ ˆ( , ) ( , ) ( , )

1 1
ˆ ˆ ˆ( , ) ( ) ( , ( ))

t z t n t t n t z z t n

t t n z z t n z t z t n

c

j z

n

j z

n

j
H a E H a

j j

k
E H a ndl H a

Z j j

k
A e

Z

D e

β

β

ωε

β β

β β β

β

∗

−

−

×∇ Φ = ∇ Φ − ∇ ×∇ Φ

= ∇ Φ − ×∇ Φ ⋅ + ∇ ⋅ ×∇ Φ

=

=

∫

� �

�

�  (2.14) 
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0

0 0

0 0

1
ˆ ˆ( , ) ( , ) ( , )

1
ˆ ˆ( , ) ( )

1
( )

t t n z t t n t z t n z

t t n z t n z

c

j z

n t t n

c

j z

n

j
E a H E a

j j

Z k
H E a ndl

j

k Z
C e M dl

j

B e

β

β

ωµ

β β

β β

β β

∗

−

−

∇ Ψ × = ∇ Ψ − ∇ ∇ Φ ×

= ∇ Ψ − ∇ Ψ × ⋅

= + ⋅ ∇ Ψ ⋅

=

∫

∫

� �

�

�

�

�

   (2.15) 

 

0

0 0 0 0

0 0 0 0

1
ˆ( , ) ( , )

1 1
ˆ ˆ ˆ( ) ( , )

1 1

1

z n t t n z

t n z t n z t

c

j z

z n n

c

j z

n

nTE

H E a
j

E a ndl a E
jk Z jk Z

M dl B e
jk Z jk Z

G e
k

β

β

ωµ

∗

∗ −

−

Ψ = − ∇ × Ψ

= − × Ψ ⋅ − ∇ Ψ ×

= − Ψ −

=

∫

∫

�

� �

�

�

   (2.16) 

 

0

0 0

0 0

0

0

1
ˆ( , ) ( , )

ˆ ˆ ˆ( ) ( , )

1

z n t t n z

t n z z t n t

c

j z

n

j z

n

nTM

E H a
j

Z Z
H a ndl a H

jk jk

Z
D e

jk

F e
k

β

β

ωε

∗

−

−

Φ = − ∇ × Φ

= − × Φ ⋅ − ×∇ Φ

= −

=

∫

�

� �

�
    (2.17) 

 

It is convenient to use some abbreviations for the closed loop coupling integrals 

obtained as a result of the calculations given above for further analysis. So, these 

integrals can be expressed by: 

 

1
( )

1
ˆ( )

n t t n

nTE c

n t z t n

nTM c

n z n

c

u M dl
jk

v M a dl
jk

w M dl

∗

∗

∗

= ⋅ ∇ Ψ ⋅

= ⋅ ×∇ Φ ⋅

= Ψ

∫

∫

∫

�

�

�

�

�

      (2.18) 
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It is possible to obtain two linear and non-homogeneous equality systems by using 

the equalities given in (2.10) and (2.13)-(2.17). The equalities given by (2.10), 

(2.15) and (2.16) are related to TE waves and the equalities given by (2.13), (2.14) 

and (2.17) are related to TM waves. 

 

 

TE Matrix: 

 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

1 1

0

1 1

0

0 01

0

0
1 1

0

0

TE TE

j z

TE TE

TE

Ck k k u

k k k I B e
Z Z

wI k k
jG

β

β

β

− −

− −

−

  −    
   − ⋅ = −    
        

  (2.19) 

 

 

TM Matrix: 

 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

1 1

0

1 1

0 0

1

0

0 0

00

TM TM

j z

TM TM

TM

k k k A

k k k I Z D v e

jFI k k

β

β

β

− −

− −

−

 −          − ⋅ = −              

   (2.20) 

 

 

Here, [ I ] is the elementary matrix, [ 0 ] is the zero (null) matrix; [kTE] and [kTM] 

are diagonal matrices with elements knTE and knTM; A , B , C , D , F  and G  are 

the column vectors including field amplitudes An, Bn, Cn, Dn, Fn and Gn. Similarly, 

the column vectors u , v  and w  have the closed loop coupling integrals un, vn and 

wn as elements. 
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TE and TM matrices have the same structure. If the equality systems given in 

(2.19) and (2.20) are solved with respect to the coefficients of field expansion 

series; 

 

TE Coefficients: 

 

2 2 2
0

0 0
2 2 2

0 0

( )
1

( )

nTE
nTE n nTE n

j z

n

nTE

k
k k u k w

k k
C e

Z k k

β

β

β

− −

=
− −

     (2.21.1) 

 

2 2 2
0

( )

( )
j znTE n nTE n

n

nTE

k u k w
B e

k k

ββ

β

−
=

− −
       (2.21.2) 

 

2 2 2
0

0 0
2 2 2

0 0

( )
1

( )

nTE
nTE n n

j z

n

nTE

k
k u k w

k k
jG e

Z k k

β

β
β

β

− −

=
− −

     (2.21.3) 

 

TM Coefficients: 

 

2 2 2
0( )

j znTM n

n

nTM

k v
A e

k k

ββ

β
=

− −
       (2.22.1) 

 

0
2 2 2

0 0

1

( )
j znTM n

n

nTM

k k v
D e

Z k k

β

β
=

− −
       (2.22.2) 

 

2

2 2 2
0( )

j znTM n
n

nTM

k v
jF e

k k

β

β

−
=

− −
       (2.22.3) 

 

are obtained. 
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2.5 Usage of Rotational Symmetry 

 

As a general result of Fourier Transform, a periodic signal transforms to a discrete 

signal. In our case, the complete structure repeats itself in an interval 2π/N, N is 

the number of slots. So, it is expected that the spectrum to be spread out by a factor 

N with respect to an empty circular waveguide. 

 

The field functions of hollow circular waveguide do not have any boundary 

conditions to satisfy along the azimuthal (θ) direction. Therefore, it is possible to 

define the angular dependence for the eigenwaves, which rotates to left (p<0) or 

right (p>0), as e
jpθ. Since the boundary conditions are applicable for sector 

waveguides (for example at ±Ө/2 of the first interval), here, sine and cosine terms 

must be used to specify the angular dependence. Assuming the azimuthal 

coordinate at the first interval was given as θ(1) then, the azimuthal relation 

between first and the ith interval can be expressed as: 

 

( ) (1)2
( 1)i
i

N

π
θ θ= − +        (2.23) 

 

It can be seen from the symmetry property of the system that there is a constant 

phase difference e-j∆ between adjacent slots. If the system has rotated by 2π/N, the 

solution and the field intensity change by a phase factor. (N+1)th interval must 

show the same property as the first interval so, it can be written for the phase 

factor that: 

 
2

( ) 1j N
e q

N

π− ∆ = ⇒ ∆ =        (2.24) 
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Therefore, N linear and independent slot modes are available (q=0, 1,…, N-1). The 

surface magnetic currents at the slots can be represented by: 

 
2

( 1)
( ) (1)

jq i
i NM M e

π
− −

=
� �

       (2.25) 

 

1≤ i ≤ N : number of related slot 

0≤ q ≤ N-1 : slot mode (phase difference factor) 

N  : number of slots  

 

While the excitation of hollow circular waveguide is seen over the N apertures, 

only the related sector waveguide is affected. 

 

 

 

 
Figure 2.3 Excitation of ith sector waveguide 

 

 

For the ith sector waveguide, the following expression can be written: 
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1

( ) ( ) ( )

( ) ( )

2
( 1)

(1) (1)

1
( )

1
( ) ( )

1
( ( ) )

i

i

i i i

n t t n

nTE c

i i

t t n

nTE L

jq i
N

t t n

nTE L

u M dl
jk

M dl
jk

e M dl
jk

π

∗

∗

− −
∗

= ⋅ ∇ Ψ

= ⋅ ∇ Ψ −

= − ⋅ ∇ Ψ

∫

∫

∫

�

�

�

�

    (2.26) 

where Li is the length of the ith slot. Similarly, vn and wn can be defined for the ith 

sector: 

 

1

2
( 1)

( ) (1) (1)1
( ( ) )

jq i
i N

n t t n

nTE L

u e M dl
jk

π
− −

∗= − ⋅ ∇ Ψ∫
�

    (2.27.1) 

 

1

2
( 1)

( ) (1) (1)1
ˆ( ( ) )

jq i
i N

n t z t n

nTM L

v e M a dl
jk

π
− −

∗= − ⋅ ×∇ Φ∫
�

   (2.27.2) 

 

1

2
( 1)

( ) (1) (1)( ( ) )
jq i

i N
n n

L

w e M dl

π
− −

∗= − ⋅ Ψ∫
�

     (2.27.3) 

 

The sign (~) is used to distinguish the expressions for the hollow circular 

waveguide from the expressions for sector waveguide. 

 

The following relations are used to take out the angular dependence of the field 

expansion functions of the hollow circular waveguide: 

 
ˆ:

ˆ:

n

n

jp

n n

jp

n n

e

e

θ

θ

Ψ = Ψ ⋅

Φ = Φ ⋅

�

�

        (2.28) 
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Figure 2.4 Excitation of hollow circular waveguide. 

 

As a result; 

 

0

1

1

( )

1

2
( ( 1) )

( )

1

2
( )( 1) )

(1)

1

1 ˆ( )

1 ˆ( )

1 ˆ( )

1 ˆ( ( )

n

n

i

n

n
n

jp

n t t n

nTE C

N
jpi

t t n

i nTE L

N jp i
i N

t t n

i nTE L

N j p q i
jpN

t t n

i nTE L

u M e dl
jk

M e dl
jk

M e dl
jk

e M e dl
jk

θ

θ

π
θ

π
θ

−∗

−∗

=

− + −
∗

=

− + −
−∗

=

= ⋅ ∇ Ψ

= ⋅ ∇ Ψ

= ⋅ ∇ Ψ

= ⋅ ∇ Ψ

∫

∑ ∫

∑ ∫

∑ ∫

�
�

�

�

�

�

   (2.29) 

 

Substituting the following equality, 

 
2

( )( 1) )

1

; ,
(

0

n
N j p q i

n n n nN

i

N for p r N q r p I
e

otherwise

π
− + −

=

= − ∈ 
=  
 

∑    (2.30) 
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into the equation (2.29), the expressions for nu�  and similarly for nv�  and nw�  can be 

obtained as follows: 

 

1

(1)1 ˆ( )

0

njp

t t n n n

nTE Ln

N M e dl for p r N q
jku

otherwise

θ−∗ 
⋅ ∇ Ψ = − 

=  
 
 

∫
�

�   (2.31.1) 

 

1

(1)1 ˆˆ( )

0

njp

t z t n n n

nTM Ln

N M a e dl for p r N q
jkv

otherwise

θ−∗ 
⋅ ×∇ Φ = − 

=  
 
 

∫
�

�   (2.31.2) 

 

1

(1) ˆ

0

njp

z n n n

L
n

N M e dl for p r N q

w

otherwise

θ−∗ ⋅Ψ = −
 

=  
  

∫
�

�   (2.31.3) 

 

where rn and pn are integer numbers. 

 

So it is obvious that the hollow circular waveguide is excited only at the integer 

order of N and this is related to the order p and the selected number of the slot 

mode q (phase difference between slots). 

 

2.6 Expansion Functions of Surface Magnetic Currents 

 

Up to now, the field expansion functions, which are complete and orthogonal, are 

determined for the field components. It is necessary to determine also the 

expansion functions of the surface magnetic currents for the numerical analysis of 

the structure. But, it is not necessary them to be complete and orthogonal. Which is 

important here, they have to have a good convergence property as far as possible. 
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In any case, it must be considered to choose functions including the electric and 

magnetic boundary condition at θ=0. 

 

It can be seen from the equality systems (2.19) and (2.20) that Et and Ez similarly 

Mz and Mt have a phase shift by π/2. Therefore, the currents at the first slot can be 

determined as follows: 

 

( ) ( )

( ) ( )

ˆ( ) [ ( ) ( )].

( ) [ ( ) ( )].

m m m m

m m m m

c s j z

t

m

c s j z

z z z z z

m

M j a M b M e a

M a M b M e

β
θ θ θ θ θ

β

θ θ θ

θ θ θ

−

−

= +

= +

∑

∑

�

    (2.32) 

 

Current terms marked with (c) and (s) contain cosine (represent magnetic wall 

symmetry) and sine functions (represent electric wall symmetry), respectively (at 

θ=0). 

 

When the definitions of the closed loop coupling integrals in (2.18) are applied to 

the current expansions, the integration and summation expressions can be 

exchanged and the following equations are obtained: 

 

(1) ( ) ( )

(1) ( ) ( )

(1) ( ) ( )

( )

( )

( )

m m

m m

m m

j z c s

n nm nm

m m

j z c s

n nm nm

m m

j z c s

n z nm z nm

m m

u e a R b R

v e a S b S

w e a T b T

β
θ θ

β
θ θ

β

⋅ = − +

⋅ = − +

⋅ = − +

∑ ∑

∑ ∑

∑ ∑

     (2.33) 

 

And for the hollow circular waveguide: 

 

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

m m

m m

m m

j z c s

n nm nm

m m

j z c s

n nm nm

m m

j z c s

n z nm z nm

m m

u e N a R b R

v e N a S b S

w e N a T b T

β
θ θ

β
θ θ

β

⋅ = +

⋅ = +

⋅ = +

∑ ∑

∑ ∑

∑ ∑

� ��

� ��

� ��

     (2.34) 
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For determining the coefficients Rnm, Snm and Tnm in the equations (2.33) and 

(2.34), the integral is taken only along the first slot (so it is marked with (1)). The 

closed loop integrals in (2.18), can be converted to the series expressions given in 

(2.33) and (2.34) by applying the identities given in (2.27) and (2.31). 

 

The following abbreviations are used in (2.33): 

 

1

1

( ) ( )

( ) ( )

1
( )

1
( )

m

m

c c

nm t n

nTE L

s s

nm t n

nTE L

R M dl
k

R M dl
k

θ θ

θ θ

∗

∗

= ∇ Ψ

= ∇ Ψ

∫

∫
      (2.35.1) 

 

1

1

( ) ( )

( ) ( )

1
ˆ( )

1
ˆ( )

m

m

c c

nm z t n

nTM L

s s

nm z t n

nTM L

S M a dl
k

S M a dl
k

θ θ

θ θ

∗

∗

= ×∇ Φ

= ×∇ Φ

∫

∫
     (2.35.2) 

 

1

1

( ) ( )

( ) ( )

1

1

m

m

c c

nm z n

nTE L

s s

nm z n

nTE L

T M dl
k

T M dl
k

∗

∗

= Ψ

= Ψ

∫

∫

       (2.35.3) 

 

When the sign (~) is added to each related terms in the expressions in eqn. (2.35), 

they can be used also for the hollow circular waveguide. 

 

2.7 Preparation of Characteristic Matrix 

 

The surface magnetic current amplitudes , , ,
m m m mz za b a bθ θ  must be calculated 

together with the related wavenumbers to determine an eigenwave. For this 

purpose, the continuity of tangential fields at the slots is used. It is enough to 
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satisfy the continuity of tangential components because the normal fields are 

related to the tangential fields by Maxwell’s equations. So, the continuity of 

normal components will be satisfied automatically. 

 

The continuity of the tangential electric fields was already proved at the previous 

arrangements. Therefore, only the continuity of the tangential magnetic fields 

remains to satisfy. 

 

It will be enough to satisfy the continuity of the tangential magnetic fields at the 

first slot; because the magnetic fields at the other slots are directly related to the 

magnetic field at the first slot. Hence, the continuity of Hz and Hθ at first slot will 

be determined. 

 

The problem will be decomposed into TE and TM problems and solved separately. 

The solutions in terms of TE and TM modes are formulated by equating the related 

component of tangential magnetic field. 

 

TE Waves: 

 

TE waves do not have Ez. So, Mt cannot be seen at slots. The current coefficients 

aθ, bθ (2.32) and the expressions un, vn disappear related to Mt (2.33 and 2.34). That 

means TM amplitudes A, D and F disappear by the same way (2.20). 

 

Here, the field components that result a power flow in the normal direction to the 

slot surface are considered. Since Ez is zero for TE mode, it is not possible to have 

any power flow at the radial direction related to Hθ. However, Eθ and Hz create a 

power flow at the radial direction, which is normal to the slot surface. 

 

The boundary condition at the first slot will be focused on. To extend it to the 

other slot boundaries is straightforward. The continuity relation for Hz can be 

written using the expression in (2.4.4) as: 
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1 1

1 1
( ) ( )

z zL L

nTE n n nTE n n

n q n qL L

H H

k G k G

=

Ψ = Ψ∑ ∑

�

� � �

      (2.36) 

 

The direct MoM is the method defined by [13], by outlining a basic principle to 

implement weighted measures to give precise definitions to the eqn (2.36), which 

is not properly defined. The method consists of choosing M weighting (testing) 

functions and then taking an inner (scalar) product on (2.36) with each of the 

weighting functions, resulting in M precisely defined linear equations, which are 

then numerically solved by matrix methods for the M unknowns. 

 

The surface magnetic current expansion functions will be used as testing functions 

(Galerkin’s Method). In the case of suitably chosen surface magnetic current 

expansion functions; they converge rapidly to the exact fields at the slots. 

 

In generalized MoM, the inner product is usually defined as in eqn (2.7). After 

testing the equality given in (2.36) with ( )

m

c

zM  and ( )

m

s

zM  (Galerkin’s Method) 

 

1 1
( )

m mnTE n n z nTE n n z

n n qL L

k G M dl k G M dl m
∗ ∗Ψ = Ψ ∀∑ ∑∫ ∫� � �    (2.37) 

 

is obtained. Here 
mzM  is used in place of ( )

m

c

zM  and ( )

m

s

zM . 

 

In the case of changing the above integrals with the definitions given in eqns 

(2.35), the equality becomes: 

 

( )
n nTE nm n nTE nm

n n q

G k T G k T
∗ ∗=∑ ∑ �� �       (2.38) 

 



  25 

Here 
nmT  is used in place of ( )c

nmT  and ( )s

nmT . 

 

Applying eqn (2.21), nu  disappears and; 

 

2 2

2 2 2 2 2 2
( )0 0( ) ( )

nTE nTE
n nm n nm

n n qnTE nTE

k k
w T w T

k k k kβ β
∗ ∗=

− − − −
∑ ∑

�
��

�
   (2.39) 

 

is obtained. 

 

Finally, instead of nw , the series form defined in eqns (2.33) and (2.34) is 

substituted, and the linear homogeneous equality below is obtained: 

 

( ) 0zTE

z

a
C

b

 
  =  

 
        (2.40) 

 

The element of the matrix here is: 

 

2 2
( )

2 2 2 2 2 2
( )0 0( ) ( )

TE iTE iTE
nm im in im in

i i qiTE iTE

k k
C T T N T T

k k k kβ β
∗ ∗= +

− − − −
∑ ∑

�
� �

�
   (2.41) 

 

When M cosine and M sine terms are substituted instead of Mz, then the matrix 

( )TE
C    becomes a square matrix with dimension 2Mx2M. The dimension of the 

column vectors za  and zb  is M. The Tim terms in the matrix ( )TE
C    are marked 

with (c) at the left M columns and with (s) at the right M columns. 

 

TM Waves: 

 

Since Hz is equal to zero for TM waves, Gn is also equal to zero in (2.4.4). 
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2 2
0

2 2
0

0 ( )

0 ( )

n nTE n n

n nTE n n

G k u k w

G k u k w

β β

β β

= ⇒ = −

= ⇒ = −�� � �

     (2.42) 

 

So, it is possible to eliminate one of TE coefficients nu  or nw . When the equality 

(2.42) is substituted in (2.21), for example for Cn, then: 

 

0
0 2 2

0

0
0 2 2

0

( )

( )

j znTE
n n

j znTE
n n

k k
Z C u e

k

k k
Z C u e

k

β

β

β

β

= −
−

= −
−

�
� �

      (2.43) 

 

For TM case, Hθ and Ez will create a power flow at the radial direction. So, by 

setting up the equality for Hθ according to (2.8): 

 

1 1

1 1
( ) ( )

ˆ ˆ ˆ ˆ[ ( ) ( )] [ ( ) ( )]

L L

n t n n z t n n t n n z t n

n n n q n qL L

H H

C D a a C D a a

θ θ

θ θ

=

∇ Ψ + ×∇ Φ ⋅ = ∇ Ψ + ×∇ Φ ⋅∑ ∑ ∑ ∑

�

� � � �

 

          (2.44) 

 

In this case, 
m

Mθ  will be used as testing functions and with the aid of the equality 

specified in (2.35) and the inner product (2.7), the expression 

 

( ) ( )
n nTE nm n nTM nm n nTE nm n nTM nm

n n n q n q

C k R D k S C k R D k S
∗ ∗ ∗ ∗+ = +∑ ∑ ∑ ∑� �� �� �    (2.45) 

 

is obtained. 

 

By substituting the equality given in eqn (2.43) in place of Cn and the equality 

given in eqn (2.22) in place of Dn, it can be reached that: 
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2 2

2 2 2 2 2
0 0

2 2

2 2 2 2 2
( ) ( )0 0

( ) ( )

( ) ( )

nTE nTM
n nm n nm

n n nTM

nTE nTM
n nm n nm

n q n q nTM

k k
u R v S

k k k

k k
u R v S

k k k

β β

β β

∗ ∗

∗ ∗

− + − =
− − −

= − + −
− − −

∑ ∑

∑ ∑
� �

��� �
�

   (2.46) 

 

Finally, substituting the series expansions in eqns (2.33) and (2.34), the 

characteristic matrix for TM waves is obtained as: 

 

( ) 0TM
a

C
b

θ

θ

 
  =  

 
       (2.47) 

 

with the matrix elements: 

 

2 2
( )

2 2 2 2
( )0 0

2 2

2 2 2 2 2 2
( )0 0

( ) ( )

( ) ( )

TM iTE iTE
nm im in im in

i i q

iTM iTM
im in im in

i i qiTM iTM

k k
C R R N R R

k k

k k
S S N S S

k k k k

β β

β β

∗ ∗

∗ ∗

= − − − +
− −

+ +
− − − −

∑ ∑

∑ ∑

�
� �

�
� �

�

 (2.48) 

 

The same relations are valid for the characteristic matrix dimension and the 

indexing of the terms Sim and Rim as TE waves section. 

 

2.8 Properties of Characteristic Matrix 

 

The elements of the characteristic matrices of TE and TM waves have the products 

of similar types of coefficients such as ( )c

imR  and ( )s

inR . The field and current 

expansion functions determine these coefficients. The surface magnetic current 

expansion functions can have magnetic (cosine) and electric (sine) wall symmetry 
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with respect to the point θ=0. Depending on the symmetry of the coefficient, the 

elements of the characteristic matrices can be real or imaginary or they can vanish.  

 

The structure of the characteristic matrices is as below: 

 

[ ] [ ]

[ ] [ ]
( / )TE TM

T

A j D
C

j D B

 
  =   

−  
     (2.49) 

 

The eqn (2.49) can be rewritten as a real valued eigenvalue equation: 

 

[ ] [ ]

[ ] [ ]
( / ) 0TE TM

T

A Da a
C

jb jbD B

    
  = =     

     

     (2.50) 

 

The relation between the free space wavenumber k0, the cutoff wavenumber kc 

(which is the vertical component of the wavenumber vector) and the propagation 

constant β (which is the longitudinal component of the wavenumber vector) is 

given by: 

 

2 2 2
0ck k β= −         (2.51) 

 

The eigenvalues of 2
ck  are real and positive numbers since the characteristic 

matrices are Hermitian. The eigenvectors, a  and jb , which give the current 

amplitudes, are also real. 

 

In general, the modes that belong to the slot mode order q and N-q have the same 

2
ck  eigenvalues. However, the modes q and N-q are independent from each other. 

The θ-dependence of q mode in hollow circular waveguide is determined 

according the equality given in (2.30) by the orders given below: 
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…-q-2N, -q-N, -q, -q+N, -q+2N…= {p},  

 

and they take the form for N-q mode as: 

 

…-(N-q)-2N, -(N-q)-N, -(N-q), -(N-q)+N, -(N-q)+2N, ...=..., q-2N, q-N, q, q+N, 

q+2N,… = {-p} 
 

The current-field relations for the orders {p} and {-p} are as follows: 

 

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

n p m n p m

n p m n p m

n p m n p m

R R

S S

T T

∗

−

∗

−

∗

−

=

=

=

� �

� �

� �

       (2.52) 

 

The characteristic matrices of q and N-q modes are transpose conjugate and their 

eigenvectors are conjugate. 

 

As special cases, when q=0 (zero phase difference between adjacent slots) or 

q=N/2 (adjacent slots are excited by inverse phase). In these cases, the transverse 

blocks of the characteristic matrices ([ ]D ) vanish, since the components with the 

orders p and –p cancel each other according to the equality (2.52). The current 

coefficients that are related to the magnetic wall symmetry ( za  for TE case and aθ  

for TM case) and the electric wall symmetry ( zb  for TE case and bθ  for TM case), 

are decoupled. Thus, the dimension of the eigenvalue problem decreases to the 

half of the original one. For these cases, the modes with cosine (vertical) 

polarization (belonging to the magnetic wall symmetry of the current expansions) 

and with sine (horizontal) polarization (belonging to the electric wall symmetry of 

the current expansions) have different cutoff wavenumbers. 
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For the general case (excluding the same and the inverse phase cases), the addition 

of q and N-q modes forms standing waves with cosine and sine polarization. These 

two polarizations are independent of each other.  

 

2.9 Determination of Field Expansion Functions  

 

The elementary wave functions nΨ  and nΦ  for a homogeneous source free region 

must satisfy the Helmholtz equation and the necessary boundary conditions. 

 

The tangential component of electric field and the normal component of magnetic 

field vanish at the surface of a perfect conductor. 

 

ˆ ˆ 0
c c

n E n H× = ⋅ =        (2.53) 

 

For this reason, it is necessary to formulate two different eigenvalue problems for 

TE and TM waves. 

 

TE Eigenvalue problem (Neumann Problem): 

 

 

2 2( ) 0

: 0

t TE

C

k

at the boundry
n

∇ Ψ + Ψ =

∂Ψ
=

∂

     (2.54) 

 

 

TM Eigenvalue problem (Dirichlet Problem): 

 

 

2 2( ) 0

: 0

t TM

C

k

at the boundry

∇ Φ + Φ =

Φ =
     (2.55) 
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TE field expansion functions for the hollow circular waveguide: 

 

As a result of the method of separation of variables, the solution of Helmholtz 

equation can be written as: 

 

( ) n

n n

jp

n TE p nTEC J k r e
θΨ = ���        (2.56) 

 

nTEC�  is the normalization constant and will be determined later. The boundary 

condition given below must be satisfied: 

 

( ) 0
np nTE r a

J k r =
′ =�        (2.57) 

 

The gradient of elementary wave function for TE waves in cylindrical coordinate 

system is: 

 

ˆ ˆ( ( ) ( ) )

ˆ ˆ ˆ( ( ) ( ) )

n

n n n

n

n n n

jpn
t n TE nTE p nTE r p nTE

jpn
t n z TE p nTE r nTE p nTE

jp
C k J k r a J k r a e

r

jp
a C J k r a k J k r a e

r

θ
θ

θ
θ

′∇ Ψ = +

′∇ Ψ × = −

� � ���

� � ���

  (2.58) 

 

TM field expansion functions for the hollow circular waveguide: 

 

Similarly, the solution of Helmholtz equation can be written as; 

 

( ) n

n n

jp

n TM p nTMC J k r e
θΦ = ���        (2.59) 

nTMC�  is the normalization constant and will be determined later. The boundary 

condition given below must be satisfied; 
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( ) 0
np nTM r aJ k r = =�        (2.60) 

 

The gradient of elementary wave function for TM waves in cylindrical coordinate 

system is; 

 

ˆ ˆ( ( ) ( ) )

ˆ ˆ ˆ( ( ) ( ) )

n

n n n

n

n n n

jpn
t n TM nTM p nTM r p nTM

jpn
z t n TM p nTM r nTM p nTM

jp
C k J k r a J k r a e

r

jp
a C J k r a k J k r a e

r

θ
θ

θ
θ

′∇ Φ = +

′×∇ Φ = − +

� � ���

� � ���

   (2.61) 

 

TE field expansion functions for the first sector waveguide: 

 

The following relation is used for the radial dependence of elementary wave 

function; 

 

( ) ( ) ( ) ( ) ( ) ( )TE
F kr Y kb J kr J kb Y krµ ν ν ν ν

′ ′= −      (2.62) 

 

k is any wavenumber and r is any radial distance between the inner radius ‘a’ and 

the outer radius ‘b’. 

 

TE modes at the first sector waveguide which satisfy the necessary boundary 

condition are specified by the wave functions 

 

(1) ( ) ( ) cos( ( ))
n n

TE

n TE nTE n nC F k rµ ν θ θΨ = −      (2.63) 

 

where 
nTEC is the normalization constant and will be determined later. 

 

The values of nTEk , nν , nθ  can be extracted using the boundary conditions 

(Neumann Problem). For the first sector waveguide; 
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(1) (1)

2 2

(1) (1)

0

0
2

n n

n n
r a r b

a r b

r r

θ θθ θ

θ

Θ Θ
=− =

= =

∂Ψ ∂Ψ
= = ∀ ≤ ≤

∂ ∂

∂Ψ ∂Ψ Θ
= = ∀ ≤

∂ ∂

     (2.64) 

 

Using the conditions above; 

 

 

( ) ( ) 0TE

nTE r aF k rµ =

′ =        (2.65) 

 

and 

 

0;

2

n n n

n n n

π
ν µ µ

π
ν θ µ

= ∈ Ν
Θ

=

       (2.66) 

 

can be written. 

 

The gradient of elementary wave function for TE waves in cylindrical coordinate 

system is; 

 

(1) ( ) ( )

(1) ( ) ( )

ˆ ˆ[ ( ) cos( ( )) ( )sin( ( )) ]

ˆ ˆ ˆ[ ( )sin( ( )) ( ) cos( ( )) ]

n n n

n n n

TE TEn
t n TE nTE nTE n n r nTE n n

TE TEn
t n z TE nTE n n r nTE nTE n n

C k F k r a F k r a
r

a C F k r a k F k r a
r

µ µ θ

µ µ θ

ν
ν θ θ ν θ θ

ν
ν θ θ ν θ θ

′∇ Ψ = − − −

′∇ Ψ × = − − − −

          (2.67) 
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TM field expansion functions for the first sector waveguide: 

 

The following relation is used for the radial dependence of elementary wave 

function; 

 

( ) ( ) ( ) ( ) ( ) ( )TM
F kr Y kb J kr J kb Y krµ ν ν ν ν= −      (2.68) 

 

TM modes at the first sector waveguide which satisfy the necessary boundary 

condition are specified by the wave functions 

 

(1) ( ) ( )sin( ( ))
n n

TM

n TM nTM n n
C F k rµ ν θ θΦ = −      (2.69) 

 

where 
nTMC is the normalization constant and will be determined later. 

 

The values of nTEk , nν , nθ  can be extracted using the boundary conditions 

(Dirichlet Problem). For the first sector waveguide; 

 

(1) (1)

2 2

(1) (1)

0

0
2

n n

n r a n r b

a r b
θ θ

θ

Θ Θ
=− =

= =

Φ = Φ = ∀ ≤ ≤

Θ
Φ = Φ = ∀ ≤

    (2.70) 

 

the boundary conditions result in; 

 

( ) ( ) 0TM

nTM r aF k rµ = =        (2.71) 

 

and the expressions for nν , nθ  are the same as given in (2.66). 
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The gradient of elementary wave function for TM waves in cylindrical coordinate 

system is; 

 

(1) ( ) ( )

(1) ( )

( )

ˆ ˆ( ( )sin( ( )) ( ) cos( ( )) )

ˆ ˆ( ( ) cos( ( ))

ˆ( )sin( ( )) )

n n n

n n

n

TM TMn
t n TM nTM nTM n n r nTM n n

TMn
z t n TM nTM n n r

TM

nTM nTM n n

C k F k r a F k r a
r

a C F k r a
r

k F k r a

µ µ θ

µ

µ θ

ν
ν θ θ ν θ θ

ν
ν θ θ

ν θ θ

′∇ Φ = − + −

×∇ Φ = − − +

′+ −

 

          (2.72) 

 

Normalizations: 

 

The field expansion functions contain arbitrary amplitude factors and they are 

normalized using the orthogonality properties. The relations given in (2.5) and 

(2.6) can be derived with appropriate normalizations: 

 

0

0

1

1

(*)

2

*

2

(1) 2

2

(1) 2

2

1

( )

1

( )

1
( )

( )

1
( )

( )

n n

nTES

n n

nTMS

n

nTMS

n

nTES

dS
k

dS
k

dS
k

dS
k

Ψ Ψ =

Φ Φ =

Ψ =

Φ =

∫

∫

∫

∫

� �
�

� �
�

       (2.73) 

 

These integrals can be solved analytically and the following field normalization 

constants are obtained [1]: 

 

2

1 1 1

( )
1 ( ) ( )

n

n

TE

nTE n
p nTE

nTE

C
k a p

J k a
k

π
=

−

�
�

�
�

     (2.74.1) 



  36 

 

1 1 1

( ) ( )n

n

TM

nTM p nTM

C
k a J k aπ

=
′

�
� �

      (2.74.2) 

 

0

2 2 2 ( ) 2

2 2

2 1 1
2

( ) 4
( ) (1 ( ) ) (1 ( ) )( ( ))

( ) ( ) ( )

n

n

n

TE

TEnTE n n
nTE

nTE nTE nTE

C
k a b

F k a
a k b k b k a

µ

µ

δ

ν ν

π

−
=

Θ
− − −

 

0

( ) 2
2 2

2 1 1
2

( ) 4
( ( ))

( )

n

n

n TM

TM

TM

TMnTM

n

n

C
k a

F k a
k a

µ

µ

δ

π

−
=

Θ ′−

   (2.74.4) 

 

δ  is the Kronecker delta. 

 

2.10 Edge Condition 

 

In the structure under consideration, there is more than one inner edge. The edge 

condition is a constraint that is needed for a unique and effective solution 

whenever a geometric singularity, such as a sharp edge, exists.  

 

The edge condition states that the energy density in the vicinity of an edge, or any 

geometrical singularity, must be integrable; that is,  

 

0 0( )
V

E E H H dVε µ∗ ∗⋅ + ⋅ < ∞∫∫∫      (2.75) 

 

where V is any volume region containing the corner. The edge condition dictates 

that the edge shall not radiate any energy because it is not a source.  
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Figure 2.5 Perfectly conducting wedge. 

 

The two-dimensional perfectly-conducting wedge shown in Fig. 2.5 can represent 

many edge problems. To satisfy the boundary conditions, the transverse 

components of either E or H fields, denoted by Et and Ht, respectively, may be 

singular near the edge along the z-axis, while the rest of the field components are 

regular.  

 

The fields at the perfectly conducting wedge can be expanded by cylindrical 

functions. To satisfy the boundary conditions (Dirichlet for Ez and Neumann for 

Hz) Ez and Hz can be expressed by; 

 

( )sin( ( ))

( ) cos( ( ))

z

z

E J kr

H J kr const

ν

ν

ν θ α

ν θ α

∝ −

∝ − +

     (2.76) 

 

and 

 

;
2

n
n

π
ν

π α
= ∈ Ν

−
      (2.77) 

 

θ 
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For the wedge problem in Fig. 2.5, the edge condition stated in eqn. (2.75) takes 

the following simple and useful form: as r approaches zero, the field components 

near the edge cannot be more singular than the following expressions:  

 

1 1

1 1

z z

r r

E r H r const

E r H r

E r H r

ν ν

ν ν
θ θ

ν ν

− −

− −

∝ ∝ +

∝ ∝

∝ ∝

     (2.78) 

 

And at the edge, the minimum allowed value of ν is: 

 

2

π
ν

π α
=

−
        (2.79) 

 

For waveguides and periodic structures having edges, the edge condition is used to 

truncate the number of modes and, in particular, to achieve relative convergence, 

which is essential to numerical accuracy.  

 

2.11 Selection of Current Expansion Functions 

 
In the structure in Fig.2.1, the inner edges with the angle of 90o are appeared at the 

boundary between hollow circular and sector waveguide parts. According to eqn 

(2.79), the characteristic exponent ν gives the result of ν =2/3 for the edge 

condition. This means that the transverse field components become singular at the 

edges, and that the longitudinal components remain regular. If r is taken as 

distance from the associated edge, according to eqn (2.78), near the edges Ez and 

Eθ become: 

 

2/ 3

1/ 3

zE r

E rθ
−

∝

∝
        (2.80) 

 

To guarantee numerical efficiency, the basis functions should include the singular 

nature of the transverse electric field at the sharp metallic edges of the 
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discontinuity. In the present situation, the component of the electric field 

perpendicular to the metallic edge becomes infinite since it is related to r-1/3 where 

r is the radial distance from the edge where as the component parallel to the edge 

vanishes as r goes to zero since it is related to r2/3. 

 

According to eqns (2.1), Ez and Eθ are proportional to the surface magnetic current 

components Mt and Mz, respectively, at the slots. To optimize the convergence of 

the current expansion functions, it is required to specify the current expansion 

functions to satisfy the edge condition by taking into account the field behaviour at 

the slot edges. The dimensions of characteristic matrices relatively become smaller 

and the current expansions converge well with the edge conditioned basis 

functions. So, the calculation process becomes easier. 

 

The possible complete series for current expansions can be specified by the 

modified cosine half-waves (cos-symmetry regarding the edges at ±Ө/2) and 

modified sine half-waves (sin-symmetry regarding the edges). Cosine and Sine 

functions constitute a complete set. The basis functions are modified by 

appropriate edge condition.  

 

The modification function is chosen as: 

 

2 23

1/3

2

( ) ( )
2

lim ( ( )) ( )
2

m

m
θ

θ θ

θ θ −

Θ
→±

Θ
= −

Θ
∝ −

      (2.81) 

 

Therefore, the following series expansions fulfil the boundary and edge conditions 

at the slot interfaces [1]: 
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( ) ( )

2 2 1/3 2 2 1/ 30,2,4... 1,3,5,...

( ) ( )

2 2 1/ 3 2 2 1/31,3,5,... 2,4,6,...

cos( ) sin( )

(( ) ) (( ) )
2 2

cos( ) sin( )
( )

(( ) ) (( ) )
2 2

m m m m

m m m m

c s

z z z z z

m m

c s

m m

m m

M a k b k

m m

M j a k b kθ θ θ θ θ

π π
θ θ

θ θ

π π
θ θ

θ θ

= =

= =

Θ Θ= +
Θ Θ

− −

Θ Θ= +
Θ Θ

− −

∑ ∑

∑ ∑

 (2.82) 

 

It is obvious that the current expansion functions corresponding to Mz (or Eθ) tend 

to infinity at the slot edges, whereas the ones corresponding to Mθ (Ez) vanish at 

θ=±Ө/2.  

 

Current Normalizations: 

 

The current expansion functions are required to be normalized to the same vector 

length to improve the behaviour of the characteristic matrices and to obtain equal 

current amplitudes. 

 

The expressions below will be used as the normalization condition: 

 

1

1

1

1

( ) 2

( ) 2

( ) 2

( ) 2

1
( )

1
( )

1
( )

1
( )

m

m

m

m

c

z

L

s

z

L

c

L

s

L

M dl m
a

M dl m
a

M dl m
a

M dl m
a

θ

θ

= ∀
Θ

= ∀
Θ

= ∀
Θ

= ∀
Θ

∫

∫

∫

∫

      (2.83) 
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aΘ  is the integration length (slot length). 

 

These integrals can be solved analytically. Using the following definition: 

 

1
2 1/ 2

1

( )
2( ) (1 ) cos( )

1
( )

2

n

n

n

x

J x t xt dt

nπ

−

−

= −

Γ +
∫      (2.84) 

 

and substituting n=-1/6, the following current normalizations are obtained [17]: 

 

 

1
1 6

( ) 3 1/ 6

1
( ) 3

1

6
1/ 6

1
( ) 3

1

6
1

1
2,4,6,...5

5( )1 1 ( )( ) ( )6( ) 6 212 ( ) 13 0
2

5
( )

1 16( ) 1,3,5,..
12 5( ) 1 ( )( ) ( )3 6 2

5
( )1 16( )

12 5( ) 1 ( )( )3 6 2

m

m

m

c

z

s

z

c

for m
m

J m
k

a

for m

k for m
a m

J m

k
a m

J

θ

π
π

π

ππ π

ππ

−
−

−

−

−

−

 
= 

Γ  Θ  + Γ
=  

 Γ
 =
  

Γ
Θ

= =

Γ − Γ

Γ
Θ

=

Γ + Γ / 6

1
( ) 3

1

6
1/ 6

1,3,5,..

( )

5
( )

1 16( ) 2,4,6,..
12 5( ) 1 ( )( ) ( )3 6 2

m

s

for m

m

k for m
a m

J m

θ

π

ππ π

−

−

=

Γ
Θ

= =

Γ − Γ

 

          (2.85) 

where ( )xΓ  is the gamma function. 
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2.12 Determination of Current-Field Coupling 

 

It is necessary to solve the line integrals specified in (2.35). The integrands are the 

products of the current and field expansion functions and the integration length is 

one slot length (Өa). It will be done along the first slot.  

 

The Euler Identity gives a relationship between real sinusoidal functions and the 

complex exponential functions. 

 

cos( ) sin( )je jθ θ θ= +        (2.86) 

 

By using this relationship, it is possible to express the θ-dependency of the field 

expansion functions by sine and cosine functions. Also, it is known that the          

θ-dependent terms of the current expansion functions are composed of modified 

cosine and modified sine functions. Considering the orthogonality relation 

between sinusoidal functions, it can be seen that the integral of the product of sine 

and cosine functions along θ will vanish [17]. So, the current functions are related 

only to the field functions, which have the same wall symmetry. Through the 

equation (2.84), the integrals of θ-dependent terms are as follows [17]: 
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2

2 23
2

1/ 6 1/ 6

6 6

1 1/ 6
3

6

cos( )cos( )( , )

( , )
( )

2

( ) ( )
2 2

4 4

( )2 1 2( ) ( ) 0
72 2 3 ( )
6 4

2
0

7
( )
6

c

c

z
mI m

d
I m

J m J m
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          (2.87) 
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∫

 

          (2.88) 
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          (2.89) 
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          (2.90) 
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The field expansion functions defined in Section 2.8 are inserted instead of 

current-field relations specified in equation (2.35) and then, it is found out that: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

( ) ( , ) sin( )
( ) 2

( ) ( , ) cos( )
( ) 2

( ) ( , )
( )

( )

n m n c

n m n s

n m n c

n m

c c TEn
nm TE nTE n n

nTE

s s TEn
nm TE nTE n n

nTE

c cn
nm TE p nTE n

nTE

s n
nm TE

nTE

R C k aF k a I m
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R C k aF k a I m
k a

p
R j C k aJ k a I p m

k a

p
R C k

k a

θ µ θ

θ µ θ

θ θ

θ

ν π
µ µ

ν π
µ µ
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= −

= −

= −

��� �
�

��
�

( ) ( ) ( , )
n s

s

p nTE n
aJ k a I p mθ

� �

   (2.91) 
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π
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π
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    (2.92) 
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( ) ( ) ( )
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( ) ( )
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µ

µ

π
µ µ

π
µ µ

=
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=

= −

��� �

��� �

    (2.93) 

 

 

2.13 Field Coefficients and Polarizations 

 

In this section, the relation between the expansion coefficients of the transverse 

fields for both TE and TM waves will be shown. 
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Substituting the expressions given in (2.42) into the equality (2.21) eliminates the 

terms ‘wn’ at the field amplitudes and the following equalities are obtained: 

 

 

 

TM waves: 

 

0
2 2 2 2 2 2

0 0 0

0
2 2 2 2
0 0 0

2

2 2 2
0

1

( ) ( )

1

( ) ( )

0
( )

j z j znTM n nTM n
n n

nTM nTM

j z j znTE n nTE n

n n
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n n
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k v k k v
A e D e

k k Z k k

k u k k u
B e C e

k Z k

k v
jF e jG

k k

β β

β β

β

β

β β

β

β β

β

= =
− − − −

= − = −
− −

−
= =

− −

 (2.94) 

 

 

 

 

TE waves: 

 

2

2
0

2 2 2 2 2 2
0 0 0

2 2
0

0
2 2 2

0 0

0 0

1

( ) ( )

( )
1

0
( )

n n

nTE n

j z j znTE n
n n

nTE nTE

nTE
n

j z

n n

nTE

A D

k w
k w k

B e C e
k k Z k k

k
k w

k
jF jG e

Z k k

β β

β

β

β β

β

β

= =

= − = −
− − − −

−

= =
− −

  

          (2.95) 
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The relation between transverse field amplitudes of a TM wave can be expressed 

as: 

 

0

0

0

0

n n TM n

n n TM n

B Z C Z C
k

A Z D Z D
k

β

β

= =

= =

       (2.96) 

 

The transverse fields are related to each other in the same way as in the case of 

uniform plane waves propagating in the z- direction, that is, they are perpendicular 

to each other and their cross product points in the z-direction and they satisfy: 

 

( ) ( ) ˆ( )TM TM

t TM t zE Z H a= ⋅ ×        (2.97) 

 

where TMZ  is the transverse wave impedance and equal to 

 

0

0

TMZ Z
k

β
=          (2.98) 

 

Similarly, the relation between the transverse field amplitudes of TE waves can be 

expressed as: 

 

0 0

0

n n TE n

n n

C B Y B
k Z

A D

β
= =

= =

        (2.99) 

 

And the relation between the transverse field components of TE waves is: 

 

( ) ( )ˆ( )TE TE

t TE z tH Y a E= ⋅ ×        (2.100) 
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where TEY  is the transverse wave admittance and can be expressed as: 

 

0 0

1
TEY

k Z

β
=          (2.101) 

 

The field components will be examined in the following sections. As it is shown in 

section (2.7), the modes related to the phase factor q are complex conjugates of the 

modes related to the phase factor (N-q) at the slots. The field components related 

to q and N-q modes can be explained as the waves moving forward and backward 

at the azimuthal direction. When they are added to each other, a real valued 

standing wave is obtained and when they are subtracted, at this time, a fully 

imaginary standing wave is coming up. In this manner, two different types of 

polarizations (cosine and sine) that a hollow cylindrical waveguide can have are 

obtained. 

 

So, it can be concluded that the field components with cosine polarization are the 

real parts of a q mode and the field components with sine polarization are the 

imaginary part of a q mode. Only for the same and inverse phase cases, field 

components become fully real ( 0b =
�

; 0a ≠
�

) or imaginary ( 0a =
�

; 0b ≠
�

). That 

means in these special cases, a single polarization is available for the related 

modes of the slotted waveguide. 
 

2.14 Determination of the Elements of the Characteristic Matrices  

 

The elements of the characteristic matrices for TE and TM modes can be 

expressed by substituting the equations (2.91), (2.92) and (2.93) into the equations 

(2.41) and (2.48) as follows: 
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TE Waves: 

 

The summation term for hollow circular waveguide is: 

 

2

2 2

( ) ( )2
2 2

2 2 ( ) ( )

( ) ( )

( ) ( )

( , ) ( , )
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m c n c
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          (2.102) 

 

And for sector waveguide: 
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          (2.103) 
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TM waves: 

 

The summation term for hollow circular waveguide is: 

 

2 2
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          (2.104) 

 

And for sector waveguide: 

 



  51 

2 2

2 2 2

( ) ( )
2 2

2 2
( ) ( )

( , ) sin( ) ( , ) sin( )
2 2 .

( )
( , ) cos( ) ( , )cos( )

2 2

.( )

m c n c

m s n s

i

iTE iTM
im in im in

i ic iTM c

c c

i i i i
iTE i

i s sc iTE
i i i i

TE

k k
R R S S

k k k

k aI m k aI n
k

k k a
k aI m k aI n

C

θ θ θ θ

θ θ θ θ

π π
µ µ µ µ

ν

π π
µ µ µ µ

− + =
−

  
    

= −   
  
    

∑ ∑

∑

2 ( ) 2

( ) ( )
2

2 2
( ) ( )

2 ( ) 2

( )

( ( ))

( , ) sin( ) ( , ) sin( )
2 2 .

( , ) cos( ) ( , )cos( )
2 2

.( ) ( ( ))

i

m c n c

m s n s

i i

m

TE

iTE

c c

i i i i

iTM

i s siTM c
i i i i

TM

TM iTM

c

F k a

k aI m k aI n
k

k k
k aI m k aI n

C F k a

k a

k

µ

θ θ θ θ

θ θ θ θ

µ

θ

θ

π π
µ µ µ µ

π π
µ µ µ µ

  
    

+   
−   

    
′

=

∑

( )

( ) ( )

22
2 2 2 ( )

2 2 2

( , )sin( ) ( , )sin( )
2 2

( , )cos( ) ( , ) cos( )
2 2

[ ( ) ( ( )) ( ) ( (
( )

c c
n

m n

s s

i i

c

s s

i

TE TMiTM
TE iTE TM iT

c iTM c

I m I nk a

a k a
I m I n

k
C F k a C F k

k a k k

θ θ
θ

µθ
θ θ

µ µ

π π
µ µ µ µ

π π
µ µ µ µ

ν

  
          
     
       

    

′⋅ − +
−

∑

2

( )

)) ]M

i

a
µ
∑

  

         (2.105) 

 

When the elements of characteristic matrices for TE and TM modes derived in the 

equations (2.41) and (2.48) respectively are examined, it can be seen that infinite 

number of solutions exist for every µ and p values.  

 

For TE as well as for TM modes, each element of the characteristic matrix 

contains a doubly infinite sum, which has to be summed with respect to the 

azimuthal and the radial indices corresponding to the modes of the circular and the 

sector waveguides. It has been found that the summations over the index 

corresponding to the direction normal to the surface current have closed-form 

expressions [8] [19] [20]. The detailed analysis can be found in Appendix-A. 
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This increases the numerical efficiency of the technique significantly. Furthermore 

the cutoff wavenumbers nTMk  and nTEk  of the modes corresponding to the 

individual waveguides need not to be determined after substituting the infinite 

sums by closed-form expressions given in Appendix A.  

 

Substituting the closed form expressions into the equations (2.102)-(2.105) by 

replacing (2)
nTMk  and (2)

nTEk  with the cutoff wavenumber kc (
( )TE

ck  and ( )TM

ck ) leads to: 

 

For hollow circular waveguide; 
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   (2.106) 
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  (2.107) 

 

For sector waveguide; 
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2.15 Determination of Magnetic and Electric Field Components 

 

The following expressions for each field components of TE and TM waves can be 

obtained as a result of substituting the field expansion functions given in section 

2.9 into the equations (2.4), setting the field amplitudes derived in section 2.13 

separately for TE and TM waves and using the series forms of un, vn and wn given 

in the equations (2.33) and (2.34) by replacing the terms Rnm, Snm and Tnm with the 

expressions derived in the equations (2.91), (2.92) and (2.93): 

 

TE waves in ith sector waveguide; 
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TM waves in ith sector waveguide; 
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TE waves in hollow circular waveguide; 
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TM waves in hollow circular waveguide; 
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Since the phase factor nθ  is related to the index µ, it will be more convenient to 

use the term µθ  for the phase factor and to avoid the radial summations belonging 

to the orders other than µ. 

 

After setting for the wavenumbers in the relations given in Appendix A2 that: 
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The field components can be expressed by substituting the relations derived in 

Appendix A2 as: 

 

TE waves in ith sector waveguide; 
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TM waves in ith sector waveguide; 
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TE waves in hollow circular waveguide; 
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TM waves in hollow circular waveguide; 
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The transverse components ( )TE

tH  and ( )TM

tE  of the field expressions can easily be 

obtained from the equations (2.97) and (2.100). Finally, the field distributions at 

all over the waveguide can be seen by taking the real and the imaginary parts 

(cosine and sine polarized fields) as it is explained also in section 2.12. 

 

2.16 Power 

 

The total power carried by the fields along the guide direction is calculated by 

integrating the z-component of the Poynting vector over the cross sectional area of 

the guide; 
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Transverse components of electric and magnetic fields that are required to find the 

Poynting vector can be derived as follows: 

 

TE Waves in ith sector waveguide; 

 

Substituting the equation (2.119) into equation (2.100) gives 
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TE Waves in hollow circular waveguide; 

 

Inserting the equation (2.123) into equation (2.100) yields 
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TM Waves in ith sector waveguide; 

 

Substituting the equation (2.121) into equation (2.97) leads to 
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TM Waves in hollow circular waveguide; 

 

Inserting the equation (2.125) into equation (2.97) yields 
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So, the analytical derivations are completed for numerical evaluation. 
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CHAPTER 3 

 

 

SIMULATION RESULTS AND DISCUSSIONS 

 
 

3.1 Introduction 

 

The formulation of the matrix eigenvalue problem is done in the previous chapter. 

In this chapter, the numerical approach to the eigenvalues of the system of 

homogeneous equations and the results of computer program are explained and 

presented. 

 

The convergence study is realized for the triple ridged waveguide and the 

behaviours of the cutoff eigenvalues and corresponding eigenvectors are analyzed 

with recpect to the numbers of field and surface magnetic current expansion 

functions. 

 

Power handling capacities and modal field distributions for quadruple ridged 

waveguides are presented with different ridge penetration depth and angular width 

at the end of the chapter. 

 

3.2 Solution of the Matrix Eigenvalue Problem 

 

A graphical user Interface is developed to make it simple to manage and a brief 

description about GUI is given in Appendix B. The program is written in 

MATLAB. The parameters that have to be defined before starting to the analysis 

are as follows: 

 

N : Number of slots 
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a : Inner radius of waveguide 

b : Outer radius of waveguide 

Ө : Angular width of a slot 

M : Number of surface magnetic current expansion functions (specifies 

also the dimension of the characteristic matrix)  

Ns : Number of field expansion functions in sector waveguide 

Nc : Number of field expansion functions in hollow circular waveguide 

q : Phase difference factor between adjacent slots (defines different 

class of modes) 

 

The eigenvalues of the matrix eigenvalue problem derived in equations (2.40) and 

(2.47) with the matrix element given through the equations (2.106) and (2.109) are 

calculated by the program. The truncated summations in each element of the 

characteristic matrix are computed by separate sub routines. 

 

The analysis is started first to find the cutoff wavenumbers within the specified 

interval if there is any. The multiplication of inner radius of waveguide and the 

cutoff wavenumber (kca) is used as the output parameter of the cutoff analysis. The 

program computes the determinant of the matrix by back substituting the cutoff 

wavenumber. The eigenvalue is determined by noting a change of sign between 

successive determinant values by using bisection method [21]. With the use of this 

method, it is easy to find very accurate results when the axis of frequency is 

sampled sufficiently. 

 

If there is one or more cutoff within the specified search interval, they are listed in 

the ‘Select kca’ box of GUI and the determinant versus kca graph is displayed. 

Using this graph, it is easy to recognize zero crossings and asymptotes. 

 

Finally, it is possible to find and plot the field components Ez (for TM mode) or 

Hz (for TE mode) within the activated ‘Field Evaluation Panel’ for any selected 

kca. 
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The Bessel Functions of the first and second kind available in MATLAB are used 

for the orders smaller than 100. For the orders greater than 100, the following 

approximation defined in [22] is used and a sub function is written for the high 

orders of Bessel functions. 
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J z
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πν ν
−−

∼
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       (3.1) 

 

3.3 Convergence of Eigenvalues and Eigenvectors 

 

Cutoff wavenumber is a characteristic quantity for an eigenmode. For this reason, 

it can be used for making a decision about the convergence property of a method. 

 

The amplitudes of current expansion functions are the eigenvectors of the 

characteristic equation system. Especially at low cutoff wavenumbers, it is 

expected that the large part of the fields will be constituted by the small indexed 

current terms. Since the amplitudes of current expansion functions normalized to 

the same length, the current spectrum must converge rapidly. To make a decision 

about the convergence behaviour of the solution, it is important to test that the 

higher order components of eigenvectors are damped while the orders of the 

current and the field expansion functions increase. 

 

3.4 Convergence Behaviour with Increasing Field Expansion Order 

 

The highest degree of the current expansion functions will be kept constant and the 

convergence behaviour of the eigenvalues and eigenvectors will be examined by 

increasing the degree of the field expansion functions. 
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The field expansion functions at the highest degree must be approximately the 

same for whether the hollow circular or the sector waveguide parts so that the 

fields could converge with the same ratio at both sides. So, it can be written for the 

degree of the field expansion functions that: 

 

 

( )
max( ) max( )

p
p

µ
ν=         (3.2) 

 

 

If the highest degree of the current expansion functions is chosen too large (or the 

highest degree of the field expansion functions is chosen too small), the equivalent 

surface magnetic currents cannot be formed again correctly because the degree of 

eigenfunctions remains too small. Thus, the higher degree current terms remain 

indefinite. By this reason, the highest degree of the field expansion functions must 

be chosen larger than the highest degree of the current expansion functions. 

Satisfying this condition, it is possible to define the ratio below as a parameter: 

 

 

max max

max

1
2m M

µ µ
η = = ≥        (3.3) 

 

 

Here, M is the number of sine and cosine terms composing the surface magnetic 

current. 

 

The variation of kca eigenvalues and the convergence behaviour of eigenvectors of 

TE and TM waves for the case of the smallest cosine polarized waves (TE01 and 

TM01) with the same phase over the slots are presented in the two tables below, 
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Table 3-1 TM Eigen Vector for TM01 Mode (N=3, b/a=2, Ө=60) 
 
M/Ns/Nc 10/20/60 10/50/150 10/100/300 10/150/450 10/300/900 

kca 2.14012 2.14113 2.14122 2.14125 2.14125 
V1(aθ1) 1.00000 1.00000 1.00000 1.00000 1.00000 
V2(aθ3) -0.03332 -0.03229 -0.03220 -0.03217 -0.03215 
V3(aθ5) 0.00904 0.00822 0.00815 0.00813 0.00811 
V4(aθ7) -0.00426 -0.00354 -0.00347 -0.00345 -0.00344 
V5(aθ9) 0.00268 0.00200 0.00193 0.00191 0.00190 
V6(aθ11) -0.00203 -0.00135 -0.00128 -0.00126 -0.00125 
V7(aθ13) 0.00179 0.00104 0.00097 0.00095 0.00094 
V8(aθ15) -0.00182 -0.00090 -0.00083 -0.00081 -0.00080 
V9(aθ17) 0.00226 0.00089 0.00081 0.00079 0.00077 
V10(aθ19) -0.00490 -0.00111 -0.00100 -0.00097 -0.00094 

 

 

 

 

Table 3-2 TE Eigen Vector for TE01 Mode (N=3, b/a=2, Ө=60) 
 
M/Ns/Nc 10/20/60 10/50/150 10/100/300 10/150/450 10/300/900 

kca 1.58361 1.58297 1.58292 1.58290 1.58287 
V1(az0) 1.00000 1.00000 1.00000 1.00000 1.00000 
V2(az2) 0.08256 0.08002 0.07987 0.07983 0.07978 
V3(az4) -0.02756 -0.02639 -0.02638 -0.02637 -0.02636 
V4(az6) 0.01347 0.01332 0.01340 0.01342 0.01344 
V5(az8) -0.00684 -0.00769 -0.00786 -0.00790 -0.00794 
V6(az10) 0.00245 0.00449 0.00475 0.00483 0.00489 
V7(az12) 0.00139 -0.00227 -0.00264 -0.00275 -0.00283 
V8(az14) -0.00586 0.00041 0.00093 0.00107 0.00119 
V9(az16) 0.01311 0.00152 0.00079 0.00060 0.00044 
V10(az18) -0.03359 -0.00462 -0.00341 -0.00310 -0.00283 

 

The facts below can be concluded when the results on both tables (3.1) and (3.2) 

examined: 

 

• The cutoff wavenumbers (kca) converge too rapid, especially for TM case. 

Even if small numbers of high order field expansion functions (η=1) are 

used, it can be reached the correct value. 
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• The coefficients of higher order components show a rising behaviour in the 

case of small number of field expansion order (especially for η=1). 

 

• The coefficients of low and medium order components are quite accurate 

even for the η values that are not so large (i.e. η=5). 

 

Therefore, it can be seen that it is not necessary to use very high order current 

components at the beginning since the higher order current expansion coefficients 

can be calculated correctly only with a huge amount of field expansion order. 

 

3.5 Convergence Behaviour with Increasing Current Expansion Order 

 

The convergence behaviour for the increasing current expansion order will be 

examined. The numbers of field expansion functions for individual waveguides 

must be chosen as constant and sufficiently large values so that they will not effect 

the convergence behaviour (i.e. Ns=150, Nc=450). The obtained results are listed 

at the following tables: 

 

 

 

Table 3-3 TM Eigen Vector for TM01 Mode (N=3, b/a=2, Ө=60) 
 

M/Ns/Nc 1/150/450 3/150/450 5/150/450 8/150/450 
kca 2.14269 2.14135 2.14127 2.14125 

V1 1.00000 1.00000 1.00000 1.00000 
V2   -0.03292 -0.03232 -0.03219 
V3   0.00997 0.00836 0.00816 
V4    -0.00384 -0.00350 
V5    0.00278 0.00198 
V6     -0.00137 
V7     0.00113 
V8     -0.00123 
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Table 3-4 TE eigenvector for TE01 mode (N=3, b/a=2, Ө=60) 
 

M/Ns/Nc 1/150/450 3/150/450 5/150/450 8/150/450 
kca 1.58021 1.58285 1.58290 1.58290 

V1 1.00000 1.00000 1.00000 1.00000 
V2  0.08281 0.08008 0.07973 
V3  -0.03312 -0.02674 -0.02626 
V4   0.01408 0.01329 
V5   -0.00967 -0.00774 
V6    0.00460 
V7    -0.00238 
V8    0.00027 

 

The coefficients of current components show a decreasing tendency. The 

amplitudes of the first current components decrease while the values of M 

increase; since the higher harmonics also affect the spectrum. 

 

Since the dimension of calculation is proportional to the number of maximum 

current degree (matrix dimension), the maximum current expansion degree has to 

be chosen not too large (i.e. M=3) taking into account that the maximum number 

of field expansion functions specifies only the number of summation terms. 

 

3.6 Comparison of the Results for Triple Ridged Waveguide 

 

Table 3-5 Comparison of the first ten cutoff wavenumber, kca, (N=3, Ө=60, b/a=2, 
M=4, Ns=30, Nc=90) 

 

 Type q Polarization kca in [1] kca 
1 TE 1 Cos 0.794 0.7965 
2 TE 1 Sin 0.794 0.7965 
3 TE 0 Cos 1.583 1.5831 
4 TE 1 Cos 2.076 2.0542 
5 TE 1 Sin 2.076 2.0542 
6 TE 0 Sin 2.128 2.0887 
7 TM 0 Cos 2.142 2.1410 
8 TE 1 Cos 2.373 2.4052 
9 TE 1 Sin 2.373 2.4052 

10 TM 1 Sin 2.933 2.9322 
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The comparison with the eigenvalues of the first ten modes published in [1] is 

tabulated in Table 3.5. The agreement between results is good. 

 

3.7 Field Distributions of Triple Ridged Waveguide 

 

Some field plots for the first TE and TM modes found according to the phase 

difference between adjacent slots are presented at the following figures with 

parameters b/a=2 and Ө=60o. The accuracy of the plots can be controlled by the 

continuity property of the fields across the slots and also compared with results 

given in [1]. 

 

 

Figure 3.1 Electric Field Lines for the first TE Mode with N=3, q=1, cos pol. 
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Figure 3.2 Electric Field Lines for the first TE Mode with N=3, q=1, sin pol. 

 

 

Figure 3.3 Electric Field Lines for the first TE Mode with N=3, q=0, cos pol. 
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Figure 3.4 Electric Field Lines for the first TE Mode with N=3, q=0, sin pol. 

 

 

Figure 3.5 Magnetic Field Lines for the first TM Mode with N=3, q=0, cos pol. 
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Figure 3.6 Magnetic Field Lines for the first TM Mode with N=3, q=1, cos pol. 

 

 

Figure 3.7 Magnetic Field Lines for the first TM Mode with N=3, q=1, sin pol. 
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Figure 3.8 Magnetic Field Lines for the first TM Mode with N=3, q=0, sin pol. 

 

 

 

 

 

 

3.8 Cutoff Characteristics of Quadruple Ridged Waveguide 

 

Cutoff characteristics of quadruple ridged waveguide are investigated by changing 

slot angle and ridge penetration depth separately and the results for TE and TM 

modes are listed at the Tables 3-8 through 3-11. The corresponding plots showing 

the cutoff behaviours are illustrated in Figures 3.20 through 3.24 to see the 

bandwidth characteristics more clearly. 
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Table 3-6 Cutoff characteristics of quadruple ridged waveguide for TE modes with 
varying slot angle (b=1 cm, b/a=2, M=3, Ns=8, Nc=24) 

 

Slot 
Angle cos pol q=0 cos/sin pol q=1 cos pol q=2 sin pol q=0 sin pol q=2 

Ө kca kca kca kca  kca  

10o 1.34876709 1.05465820 1.12086914 5.39972656 3.08384766 

20o 1.41712646 0.94187622 1.02612305 5.35353125 3.15716797 

30o 1.50032959 0.87686157 0.97281738 3.74732422 3.25144043 

40o 1.58582764 0.83380737 0.93950684 2.92791016 2.90685547 

50o 1.67005615 0.80547485 0.92083496 2.43001953 2.40802734 

60o 1.74969727 0.78747559 0.91292114 2.09740234 2.06585693 

70o 1.82030029 0.77788696 0.9147644 1.86368164 1.81622314 

80o 1.87725830 0.77872925 0.92981567 1.69891602 1.62496338 

85o 1.89954834 0.78499146 0.94491577 1.63958008 1.54476318 

 

Table 3-7 Cutoff characteristics of quadruple ridged waveguide for TM modes 
with varying slot angle (b=1 cm, b/a=2, M=3, Ns=8, Nc=24) 

 

Slot 
Angle cos pol q=0 cos/sin pol q=1 cos pol q=2 sin pol q=0 sin pol q=2 

Ө kca  kca  kca  kca  kca  

10o 2.39615479 3.81716797 5.09584961 7.58768750 5.13555000 

20o 2.37154541 3.77396484 4.97094727 7.58031250 5.13425000 

30o 2.32884521 3.68493652 4.61765137 7.54527344 5.12855469 

40o 2.26419678 3.49318848 3.90407715 6.66832031 5.11238281 

50o 2.17393799 3.18513184 3.39650879 5.63847656 5.06941406 

60o 2.06279297 2.89490234 3.06060547 4.93785156 4.84933594 

70o 1.93870850 2.66882324 2.83020020 4.43137207 4.37893066 

80o 1.80645752 2.49499512 2.67165527 4.05192871 3.98808594 

85o 1.73712158 2.42156982 2.61291504 3.89768066 3.82106934 

 

 

Table 3-8 Cutoff Frequencies of Quadruple Ridged Waveguide for TE Modes with 
Ridge Depth (b=1 cm, Ө=60o, M=3, Ns=8, Nc=24) 

 

 cos pol q=0 cos/sin pol q=1 cos pol q=2 sin pol q=0 sin pol q=2 

(b-a)/b fc (TE01) fc (TE11) fc (TE21L) fc fc (TE21U) 

0.01 18.34607 8.859233 14.5187 25.06768 14.84615 

0.10 18.68129 9.144062 13.77127 22.53372 16.38547 

0.20 18.52333 9.087117 12.57327 20.99313 17.58277 

0.30 17.89518 8.742911 11.22422 20.31963 18.55489 

0.50 16.70166 7.516812 8.714247 20.02066 19.71938 

0.60 16.56064 6.801777 7.633698 20.03112 19.9456 

0.80 17.37536 5.320991 5.69922 20.05046 20.04907 
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Table 3-9 Cutoff Frequencies of Quadruple Ridged Waveguide for TM Modes 
with Ridge Depth (b=1 cm, Ө=60o, M=3, Ns=8, Nc=24) 

 

 cos pol q=0 cos/sin pol q=1 cos pol q=2 sin pol q=0 sin pol q=2 

(b-a)/b fc (TM01) fc fc (TM21L) fc fc (TM21U) 

0.01 11.52004 18.35944 24.52915 36.43153 24.71443 

0.10 12.07556 19.20745 24.84838 38.67548 26.85937 

0.20 13.07268 20.58483 25.56509 41.6819 29.98359 

0.30 14.54495 22.46788 26.64282 44.56183 34.09966 

0.50 19.6903 27.63316 29.21487 47.13404 46.28912 

0.60 24.21064 29.62423 30.03392 47.38097 47.36885 

0.80 45.49961 46.43551 46.4961 64.85726 64.85726 

 

 

 

 

 

Figure 3.9 Cutoff Frequencies of TE modes versus the ridge depth, b=1cm and 

Ө=60o. 

 

 

 

TE21U 

TE21L 

TE11 
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Figure 3.10 Cutoff Frequencies of TM modes versus the ridge depth, b=1cm and 

Ө=60o. 

 

 

 

 

Figure 3.11 Cutoff frequencies of TE modes versus the slot angle, b/a=2 and 

b=1cm. 

 

TM21U 
TM21L 

TE11 
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Figure 3.12 Cutoff frequencies of TM modes versus the slot angle, b/a=2 and 

b=1cm. 

 

 

The usage of the same nomenclature of TE and TM modes of the empty circular 

waveguide means only that the new perturbed modes for ridged (distorted) 

waveguide can be traced back to the original ones. 

 

In quadruple ridged waveguide, the ridge loading lowers the cutoff frequency of 

TE11 mode and raises the cutoff frequency of TM01. In the cutoff curves of the 

quadruple ridged waveguide in the Figures 3.9 and 3.10, it can be seen that at the 

small ridge depth, the bandwidth is determined by TE11 and TM01 modes, but 

increasing the ridge load the bandwith is determined by TE11 and TE21 modes. 

 

It is clear to find out that the dominant mode (TE11) has a cutoff frequency very 

close to that of the second lowest mode (TE21). As a result of this behaviour, the 

single mode operation bandwidth is very small especially with the increasing ridge 

penetration depth. A wide bandwidth characteristic can be achieved only when the 

second lowest mode (TE21) is suppressed or not excited. 

TM01 
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Although the single mode operation bandwidth is not affected so much by the 

variation of the ridge angular width, it must be considered to determine the 

maximum bandwith. 

 

The splitting of TE21 and TM21 modes as a result of ridge loading can also be 

observed from the Figures 3.9 and 3.10. Mode-splitting behaviour comes out as a 

result of symmetry of the structure and transverse mode of the waveguides. 

 

3.9 Field Distributions of Quadruple Ridged Waveguide 

 

The transverse field distributions of quadruple ridged waveguide belonging to the 

first TE and TM modes for different q factors and polarization are obtained. 

Firstly, the plots of each mode are presented at the following figures for various 

ridge penetration depths. The parameters b and Ө are fixed to 1 cm and 60o 

respectively and (b-a)/b ratio is varied to 0.01, 0.3, 0.5 and 0.8.  

 

 

 

  



  78 

  
Figure 3.13 Electric field lines for the first TE mode with N=4, q=1, cos pol. 

 

 

  

  
Figure 3.14 Electric field lines for the first TE mode with N=4, q=0, cos pol. 
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Figure 3.15 Electric field lines for the first TE mode with N=4, q=2, cos pol. 
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Figure 3.16 Electric field lines for the first TE mode with N=4, q=0, sin pol. 

 

 

  

  
Figure 3.17 Electric field lines for the first TE mode with N=4, q=2, sin pol. 
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Figure 3.18 Magnetic field lines for the first TM mode with N=4, q=0, cos pol. 
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Figure 3.19 Magnetic field lines for the first TM mode with N=4, q=1, cos pol. 

 

 

  

  
Figure 3.20 Magnetic field lines for the first TM mode with N=4, q=2, cos pol. 
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Figure 3.21 Magnetic field lines for the first TM mode with N=4, q=0, sin pol. 
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Figure 3.22 Magnetic field lines for the first TM mode with N=4, q=2, sin pol. 

 

As seen from the Figure 3.21, it is curious to notice that the first mode found for 

the circular waveguide happens to be TM41 mode. This is the first circular mode 

which has sine polarized and zero phased quadruple symmetry enforced. 

 

Finally, the plots of TE and TM modes are presented at the following figures for 

various angular widths of slots. The parameters b and b/a ratio are fixed to 1 cm 

and 2 respectively and Ө is varied to 20, 40, 70 and 85 degrees.  
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Figure 3.23 Electric field lines for the first TE mode with N=4, q=0, cos pol. 

 

 

  

  
Figure 3.24 Electric field lines for the first TE mode with N=4, q=1, cos pol. 
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Figure 3.25 Electric field lines for the first TE mode with N=4, q=2, cos pol. 
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Figure 3.26 Electric field lines for the first TE mode with N=4, q=0, sin pol. 

 

 

  

  
Figure 3.27 Electric field lines for the first TE mode with N=4, q=2, sin pol. 
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3.10 Variation of Power Handling Capacity with Dimensions 

 

The maximum power that may pass through a waveguide will depend on the 

maximum electric field strength that can exist without breakdown. Experimental 

data on allowable field strengths at ultra high frequencies indicates a value of      

30 000 V/cm applicable for air filled waveguides under standard sea level 

pressure, temperature and humidity conditions.  

 

Supposing that the maximum electric field strength is Emax then the upper limit of 

the transmitted power Pmax in the waveguide can be computed through the 

following relation: 

 

2
max

max

2

max

30000 1
( ) [ Re ( ) ]

2

30000
( )

r rt t t t

S

P E H E H dS
E

P
E

θ θ

∗ ∗= ⋅ −

= ⋅

∫∫
    (3.4) 

 

With this maximum allowable field strength specified, the variation of power 

handling capacities of the slotted waveguides for N=3 and N=4 with changing 

azimuthal and radial dimensions are computed and the results are presented at the 

following tables.  

 

Table 3-10 Power handling capacity of dominant mode (TE11) for triple ridge 
waveguide (b=1 cm, Ө=60o, M=3, Ns=8, Nc=24 and f0=10 GHz) 

 

 
(b-a)/b 

 

 
kca(TE11) 

 

 
Cutoff Frequency 

(GHz) 

 
Maximum Power 

(watt) 

 
Waveguide Surface 

(cm2) 

0.01 1.83840820 8.86641674 813,507.393 3.110 

0.10 1.73668213 9.21338485 547,697.314 2.843 

0.20 1.54390869 9.21452624 369,670.193 2.576 

0.30 1.30252686 8.88443950 227,969.091 2.340 

0.50 0.79769897 7.61746405 186,234.443 1.963 

0.60 0.57622375 6.87816436 160,722.575 1.822 

0.80 0.22450867 5.35974969 84,825.281 1.634 
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Table 3-11 Power handling capacity of dominant mode (TE11) for quadruple ridge 
waveguide (b=1 cm, Ө=60o, M=3, Ns=8, Nc=24 and f0=10 GHz) 

 

 
(b-a)/b 

 

 
kca(TE11) 

 

 
Cutoff Frequency 

(GHz) 

 
Maximum Power 

(watt) 

 
Waveguide Surface 

(cm2) 

0.01 1.83784180 8.86368506 814,753.267 3.121 

0.10 1.72432617 9.14783445 648,330.257 2.943 

0.20 1.52315674 9.09067216 420,708.501 2.765 

0.30 1.28231201 8.74655550 322,325.515 2.608 

0.50 0.78748169 7.51989621 255,031.679 2.356 

0.60 0.57004700 6.80443484 220,449.573 2.262 

0.80 0.22297668 5.32317612 112,115.869 2.136 

 

As seen from the Tables 3.12 and 3.13, the power handling capacities are 

decreasing since the ridges are closer to each other and also the surface of the 

waveguides are decreasing. 

 

The quadruple ridge waveguide has better power handling capability than triple 

ridge waveguide. But its bandwidth characteristic is poor because of mode 

splitting. The power handling at infinite frequency and dominant mode wavelength 

characteristics of the triple and quadruple ridged waveguides are shown in Figure 

3.28 by rearranging the results given in Table 3.10 and 3.11. A good agreement 

with the results of [23] is observed. 

 

  
 

Figure 3.28 Dominant mode cutoff wavelength and Power handling for N=4 and 

N=3 (dashed line). 
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CHAPTER 4 

 

 

CONCLUSION 

 

The aim of the study was to derive the details of the application of generalized 

spectral domain approach to the analysis of slot-coupled waveguides and to check 

the validity. 

 

The method has been presented and applied to the slotted circular waveguides. It is 

shown that the method is very effective to calculate the eigenwaves of a slotted 

circular waveguide. The results obtained show good agreement with the ones that 

exist in the literature.  

 

The method used here is based on decomposing the structure into two separate 

waveguides by short-circuiting the coupling slots to make it more familiar: a 

hollow circular waveguide and N sector waveguides. Two surface magnetic 

currents at both sides of the slot replace the non-vanishing slot tangential electric 

field. These two surface magnetic currents are equal in magnitude and opposite in 

direction; so the continuity of the tangential electric field is satisfied. Both of them 

behave as sources over the related waveguide regions. The field components for 

each individual region were expanded according to their eigenfunctions. In 

addition, the surface magnetic currents at the slots are expanded in terms of 

suitable basis functions, which satisfy the edge condition at the 90o slot edges. 

 

The elements of the characteristic matrix for each individual waveguide contain 

doubly infinite sums over radial and azimuthal indices of the related eigenmodes. 

It has been found that the summations over the index corresponding to the 

direction normal to the surface current can be solved analytically and have closed 
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form expressions. This increases the numerical efficiency of the method 

significantly.  

 

The inclusion of the edge condition in the basis functions makes the numerical 

approach very efficient as shown by the convergence study. This allows keeping 

the number of basis functions, which determines the characteristic matrix 

dimension, lower. 

 

The electric and magnetic field lines corresponding to the dominant as well as a 

number of higher order modes in the transverse plane are graphed for triple and 

quadruple ridged waveguides. Computer output plots of electric and magnetic field 

lines that satisfy the boundary conditions prove the results to be perfectly true. 

 

It is found that the quadruple ridged waveguide has a second lowest cutoff 

frequency very close to the dominant mode. Thus the single mode operating 

bandwidth is very small. A large bandwidth can be achieved if and only if the 

second lowest mode is sufficiently suppressed or not excited. 

 

The technique is easily applicable to situations where more ridges are present. The 

presented method is very efficient and can calculate all kinds of existing field 

behaviours over the structure in an acceptable time. 

 

 

 

 

 

 

 

 



  92 

 

REFERENCES 

 
 

[1] A.S. Omar, “Application of the GSD Technique to The Analysis of Slot-

Coupled Waveguides”, IEEE Trans. Microwave Theory and Tech, vol.-

42,no.11, pp.2139-2148, 1994 

 
[2] P.Dally, “Polar Geometry Waveguides by Finite-Element Methods”, 

IEEE Trans. Microwave Theory and Tech, vol.MTT-22, pp.202-209, 1974. 

 
[3] F.Canatan, “Cutoff Wavenumbers of Ridged Circular Waveguides via 

Ritz-Galerkin Approach”, Electronic Lett., vol.25, pp.1036-614, 1989. 

 

[4] S.Aygün, “Ritz-Galerkin Study of Circular Waveguides with Double T-

Septa”, M.Sc. Thesis in Electrical and Electronics Engineering, METU, 

1990. 

 

[5] T.Koçak, “Ritz-Galerkin Analysis of a Circular Waveguide with a Thin 

Metallic Septum”, M.Sc. Thesis in Electrical and Electronics Engineering, 

METU, 1993. 

 

[6] H.GUO, “Special Complex Open-Cavity and Low-Magnetic Field High 

Power Gyrotron”, IEEE Trans. Plasma Sci., Vol.PS-18, pp.326-333, 1990. 

 

[7] Spira-Hakkarainen, S.Kreischer and K. Temkin, “Slotted –resonator 

gyrotron experiments”, IEEE Trans. Electron Devices, Vol. ED-38, 

pp.1544-1552, 1991. 

 

[8] A.Jöstingmeier, “Closed-Form Expressions for a Number of Fourier-

Bessel Series Encountered in the GSD Method”, IEEE Trans. Microwave 

and Guided wave lett., vol.-2, no.10, pp.391,1992 



  93 

 
[9] U.Balaji, “Radial Mode Matching Analysis of Ridged Circular 

Waveguides”, IEEE Trans. Microwave Theory and Tech, vol.44, pp.1183-

1186, 1996. 

 
[10] W.Sun, “Analysis and Design of Quadruple-Ridged Waveguides”, IEEE 

Trans. Microwave Theory and Tech, vol.42, pp.2201-2207, 1994. 

 

[11] S.Amari, “A Comparative Study of Two Integral Equation Formulations 

of TE Modes in Circular Ridged Waveguide”, J.of Electromagnetic Waves 

and App, Vol.11, pp.1057-1072, 1997 

 

[12] R.A. Waldron, The Theory of Waveguides and Cavities, New York: 

Gordon and Breach Science Publishers, 1967. 

 

[13] R. Harrington, Time-Harmonic Electromagnetic Fields, New York: 

McGraw-Hill, 1966. 

 

[14] Johnson J.H. Wang, “Generalized Moment Methods in 

Electromagnetics”, New York: John Wiley & Sons Inc, 1991. 

 

[15] R.E. Collin, Field Theory of Guided Waves, New York: McGraw-Hill, 

1960. 

 

[16] A.S.Omar, “Scattering By Material and Conducting Bodies Inside 

Waveguides, Part I: Theoretical Formulations”, IEEE Trans. Microwave 

Theory and Tech, vol. MTT-34, no.2, pp.266-272, 1986. 

 

[17] I.S.Gradshteyn, Table of Integrals, Series and Products, New York: 

Dover 1972. 

 



  94 

[18] R.A. Waldron, Theory of Guided Electromagnetic Waves, London: Van 

Nostrand Reinhold Company, 1969. 

 

[19] A.S.Omar, “Application of the generalized spectral domain technique to 

the analysis of rectangular waveguides with rectangular and circular metal 

inserts”, IEEE Trans. Microwave Theory and Tech, vol.-39, pp.944-952, 

1991. 

 

[20] J.A. Cochran, “Unusual identities for special functions from waveguide 

propagation analysis”, IEEE Trans. Microwave Theory and Tech, 

vol.MTT-36, pp.611-614, 1988. 

 

[21] S.Chapra, Numerical Methods for Engineers, New York: McGraw-Hill, 

1988. 

 

[22] M.Abramowitz and Stegun, Handbook of mathematical Functions, New 

York: Dover 1972. 

 
[23] Y.Rong, “Chareacteristics of Generalized Rectangular and Circular Ridge 

Waveguide”, IEEE Trans. Microwave Theory and Tech, vol.48, No.2, 

pp.258-265, 2000. 



  95 

 

APPENDIX-A 

 

 

ANALYTICAL SUMMATIONS OF INFINITE SERIES OVER THE 

RADIAL INDEX 

 

A1 Closed-Form Expressions for Characteristic Matrices  

 

The eigenmodes of one waveguide can be expanded with respect to the 

eigenmodes of another waveguide in a similar manner with the analysis presented 

in [8] and [20]. Use of the orthogonality property of the eigenmodes is made in 

order to yield some identities. The closed-form expressions of the infinite sums 

under consideration can consequently be obtained by suitable linear combinations 

of these identities. 

 

Considering two waveguides of cross section S1 and S2, with S1 ⊂  S2, which are 

joined in the plane z=constant (i.e. =0), where z denotes the longitudinal 

coordinate. 

 

 

 

Figure A1 Transition of Waveguide Cross Sections 
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The fields for separate waveguides (i=1, 2) can be obtained according to (2.4). The 

field expansion functions of the first waveguide are shown with index (1), and the 

field expansion functions of the second waveguide as (2). The transverse and 

longitudinal components of the eigenmodes corresponding to the waveguide (2) 

can be expanded with respect to the eigenmodes of waveguide (1) on the common 

cross section S1. 

 

(2) (1) (1) ˆ( )t q pq t p pq t p

p p

c a k∇ Φ = ∇ Φ + ∇ Ψ ×∑ ∑     (A1.1.1) 
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p p

k d b k∇ Ψ × = ∇ Φ + ∇ Ψ ×∑ ∑    (A1.1.2) 

(2) (1) 2 (1)( )q pq pTM p

p

f kΦ = Φ∑       (A1.1.3) 

 

Making use of the orthogonality relations (2.5) and (2.6) results in:    
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∫

     (A1.2) 

 

Testing the expansions (A1.1) with respect to the expansion functions of the 

waveguide (2), the following equalities are obtained: 

 

2 1
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p p S S
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−
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2 1
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ˆ( ) ( )pq pq pq pq t q t p

p p S S

c d a b k dS
∗ ∗ ∗

−

+ = ∇ Φ ⋅ ∇ Ψ ×∑ ∑ ∫   (A1.3.2) 
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2 1
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2 1
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( ) ( ) ( )pTM pq pq q p

p S S

k f f dS
∗ ∗

−

= Φ ⋅ Φ∑ ∫     (A1.3.4) 

 

Applying the Stoke’s theorem, the coefficients apq, bpq, cpq, dpq and fpq can be 

written as: 
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d
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∗

∗
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=
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∫

∫

∫      (A1.4) 

 

The formulation above is used for the transition of two hollow circular 

waveguides. 

 

All identities here will be shown with tilda (~) prefixed to distinguish from the 

others. Assuming the radius of the first hollow circular waveguide as ‘a’ and the 

radius of the second waveguide as ‘b’>’a’, and using the expressions (2.56) and 

(2.59) as field expansion functions; the surface integrals in (A1.4) will be simple 

integrals with Bessel functions that can be calculated analytically. Considering that 

the first waveguide satisfies the boundary conditions specified in (2.57) and (2.60),  
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    (A1.5) 

 

The relations between different orders vanish because of the orthogonality 

property of the complex exponential functions, and only the expressions with the 

common radial orders p are considered (pn=pm=p). 
 

The expression given in (A1.3.1) can be written after some manipulations as: 
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  (A1.6) 

 

In the same way the equality given in (A1.3.4) can be written as: 
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     (A1.7) 

 

The linear combination of (A1.6) and (2) 2( )nTMk a− �  times (A1.7) results in: 
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 (A1.8) 

 

From the relation given in (A1.3.2),  
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      (A1.9) 

 

The expressions given in (A1.1)-(A1.4) can be used also for the waveguide 

transition of two sector waveguides. 

 

Let the outer radius of both of sector waveguides be ‘b’ and the angular width be 

Ө. Assume the inner radius of the first sector waveguide ‘a’ (a<b) and the inner 

radius of the second sector waveguide ‘c’ (c<b). Substituting the field expansion 

functions described in (2.63) and (2.69) into (A1.4), the surface integrals will be 

simple integrals that can be calculated analytically. Considering that both sectors 

satisfy the boundary conditions specified in (2.65) and (2.71), the coefficients amn, 

bmn, cmn can be written as: 
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 (A1.10) 

where 0µδ  is the Kronecker delta. 
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Since the sine and cosine functions are orthogonal functions, the function indices 

can be written as µn=µm=µ. 

 

The expression given in (A1.3.1) can be written after some manipulations as: 
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          (A1.11) 

 

The equality given in (A1.3.4) can be written in the same way as: 
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The linear combination of (A1.11) and (A1.12) results in: 
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and the relation given in (A1.3.2) leads to,  
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A2 Closed-Form Expressions for Magnetic and Electric Fields 

 

The closed-form expressions for the infinite summations over the radial index to 

simplify the magnetic and electric field components can be found by the same way 

given in Appendix A1. Similarly, the cross section of two waveguides will be used 

to determine the closed-form expressions. 

 

The transition between two hollow circular waveguides with radius ‘a’ and ‘b’, 

where a<b will be examined. 

 

Substituting the coefficients given in the equations (A1.5) into equation (A1.1.1), 

the following two relations can be obtained: 
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and the relation given in (A1.1.3) leads to; 
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These two equations can be used to determine TM waves of the hollow circular 

waveguide (the equations (2.116) and (2.117)). 

 

By the same way, the following two identities can be found and they can be used 

to express TE waves of the hollow circular waveguide (the equations (2.114) and 

(2.115)) by taking into account the relation given in (A1.1.2). 
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Now, the transition between two sector waveguides will be examined. Similarly, 

substituting the coefficients given in (A1.10) into the equation (A1.1.1) results in: 
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Taking into account the equation (A1.1.3), it can be reached that: 
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Last two equations can be used to determine TM waves for the sector waveguide 

(the equations (2.121) and (2.122)) 

 

The following two identities can be found and they can be used to express TE 

waves of the sector waveguide (the equations (2.119) and (2.120)) by taking into 

account the relation given in (A1.1.2). 
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APPENDIX B 

 

 

DESCRIPTION OF GRAPHICAL USER INTERFACE 

 

In this section, a guideline of the graphical user interface will be introduced. The 

screen given in Figure B.1 appears when the command ‘tezimGUI’ is written on 

the command line of MATLAB. 

 

 

Figure B.1 GUI starting view 

 

At the left hand side, the initialization section has to be set before starting to the 

analysis. This section is divided to three sub categories. In the first part, the 

geometrical settings of the waveguide structure should be done. These are: 

 

Number of Slots  : it can be 2 or more. Initially it is set to 3. 
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Slot Angle (in degree)  : Initially it is set to 60 degree. It can 

be changed in the allowed range related to the number of slots. 

 

Outer radius (in cm)  : Initially it is set to 1 cm. It should be 

chosen according to the desired frequency range. 

 

Outer/inner radius ratio (b/a) : Initially it is set to 2. So, the inner 

radius ‘a’ is 0.5 cm. 

 

When the geometrical settings are changed, the waveguide structure view will be 

automatically displayed at the small figure window at the right side. 

 

In the second part of the initialization section is ‘Select Mode’ part. Here, the 

modal preferences should be set. It is possible to select with the aid of a pull down 

menu, the mode type, TM or TE (it is initially set to TM mode) and the 

polarization type, sine or cosine polarization (it is initially set to cosine 

polarization). The slot phase difference (q) factor defines different class of modes 

and it can be set between 0 and N-1 (N is the number of slots). The q factor is 

initially set to 0. 

 

The convergence test part is the third part of initialization section. Initially this part 

is inactive. When the convergence test check box is chosen, the number of surface 

magnetic current basis functions, the number of field expansion functions in sector 

waveguide and the number of field expansion functions in hollow circular 

waveguide edit boxes are activated and can be set to different values. 

 

After the initialization, it is now the time to set the search interval for cutoff 

wavenumber(s) (kca_Start and kca_Stop) and the sampling rate (kca_Increment). 

The sampling rate is initially set to 0.1, but sometimes when the zero crossings and 
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asymptotes are so close to each other; it is required to adjust the increment value to 

smaller values like 0.01 or 0.001.  

 

The push-button ‘Find Cutoffs’ starts the first stage of the analysis. If any cutoff 

could not be found a warning is displayed. In this case, the interval has to be 

changed or if it is expected to have at least one, the increment value for sampling 

has to be lowered. If there is any zero crossing in the search interval, they are listed 

in the ‘Select kca’ list box and the corresponding determinant curve is displayed in 

the figure window named as ‘CharacteristicMatrixDeterminant’ at the bottom of 

GUI window. Using this determinant graph, it is easy to recognize which values of 

kca are concerned to an asymptote and which one is a real zero crossing. 

 

 

Figure B.2 GUI view at the end of cutoff analysis 

 

When at least one cutoff wavenumber kca is found in the specified interval, the 

field evaluation panel at the right hand side will be activated. The related cutoff 
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frequency for selected cutoff wavenumber is displayed automatically in GHz. 

Here, the operation frequency has to be set for field and power analysis. 

 

 

Figure B.3 GUI view at the end of field evaluation. 

 
The push-button ‘Find Ez/Hz’ starts the field analysis for the selected cutoff 

wavenumber (kca). When the calculations for field evaluation is terminated the 

figure window and plot button of the field evaluation panel are activated as given 

in figure B.3. 

 

Contour and surf plot options are available. When the plot button is pushed the 

field lines is displayed as given in Figure B.4. 
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Figure B.4 GUI view at the end of plot process. 

 

The power calculation over the waveguide structure can be also done for the 

related cutoff wavenumber and specified operation frequency. The distribution of 

power vector can be displayed by ‘plot’ button with the same way of plotting the 

field distributions. The amount of breakdown power for selected frequency and 

dimensions can be seen on the ‘Breakdown Power’ box at the right side of GUI 

screen. 

 

The version of MATLAB used in this analysis is Version 7.0.1.24704 (R14) 

Service Pack 1, September13, 2004. A program bug is encountered for the surf 

plots of the fields. A reset button is added to overcome this bug for the application 

in this version. When the version 7.2.0.232 (R2006a), January 27, 2006 is used, no 

problem is encountered. 

 

 

 


