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ABSTRACT 

 
OPTIMIZATION OF BACKHOE-LOADER MECHANISMS 

 

 

İpek, Levent 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Eres Söylemez 

 

August 2006, 71 pages 

 

This study aims to develop a computer program to optimize the performance of 

loader mechanisms in backhoe-loaders. The complexity and the constraints imposed 

on the loader mechanism does not permit the use of classical optimization techniques 

used in the synthesis of mechanisms. Genetic algorithm is used to determine the 

values of the design parameters of the mechanism while satisfying the constraints 

and trying to maximize breakout forces that the machine can generate. 

 

 

 

Keywords: Genetic Algorithm, Mechanism Optimization, Backhoe-Loader 

Mechanism 
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ÖZ 

 
KAZICI-YÜKLEYİCİ MEKANİZMALARININ OPTİMİZASYONU 

 

 

İpek, Levent 

Yüksek lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Eres Söylemez 

 

Ağustos 2006, 71 sayfa 

 

Bu çalışmanın amacı kazıcı-yükleyici mekanizmalarının yükleyici performansını 

optimize etmek üzere bir bilgisayar programı geliştirmektir. Yükleyici mekanizması 

karmaşık olduğundan ve mekanizmanın uzuv boyutları ile yerleştirilmesinde çeşitli 

sınırlamalar olduğundan mekanizmaların sentezinde kullanılan optimizasyon 

yöntemlerini uygulamak zordur. Mekanizma tasarım parametrelerinin değerlerini 

belirlemek için Genetik Algoritma kullanılmıştır. Mekanizma üzerinde bazı 

sınırlamalar sağlanmaya çalışılırken aynı zamanda makinanın kol ve kova koparma 

kuvvetleri artırılmaya çalışılmıştır. 

 

 

 

Anahtar Kelimeler: Genetik Algoritma, Mekanizma Optimizasyonu, Kazıcı-

Yükleyici Mekanizması 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 
Backhoe-Loader is an earth-moving machine equipped with mechanisms to guide its 

working attachments. It has a backhoe at the rear and a loader mechanism in the front, 

which guides the bucket for loading materials. It is desired to guide this bucket so 

that it can dig by a certain amount into the ground, lift above ground level to dump 

on a truck. It also has to reach forward by a certain amount so that it can dump clear 

of the truck. Besides these kinematical challenges, it also has to have as much lifting 

and breakout force as possible to work easily on heavy loads. 

 

 

 

 
 

Figure 1.1 – Backhoe-Loader Machine 
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Loader mechanism is a complex mechanism with 11 linkages and two degrees of 

freedom. Moreover, there are constraints on the mechanism to be satisfied. They can 

be listed as: 

 

- Dump height 

- Digging depth 

- Location and interference of joints 

 

Dump height is the maximum height that the bucket can reach and digging depth is 

the maximum depth that the bucket can level below ground as shown in Figure 1.2. 

A minimum value of dump height and digging depth must be achieved. Also, joints 

must not be too close to each other and linkages should be able to move clear of each 

other. There are three joints that mount the mechanism to machine chassis and these 

joints have to be placed at the front pole of the chassis. 

 

 

 

 
 

Figure 1.2 – Dump height and digging depth 
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While maintaining these constraints, bucket and arm breakout forces and lifting 

capacity of the mechanism are to be maximized. 

 

Bucket and arm breakout forces and lift capacity are defined by SAE (Society of 

Automotive Engineers) in the SAE J732 standard along with other specification 

definitions for loaders [23]. 

 

Arm breakout force in newtons, as defined in SAE J732, is the maximum sustained 

vertical upward force exerted 100 mm behind the tip of the bucket and is achieved by 

applying maximum available pump pressure to arm hydraulic cylinder (lift cylinder) 

while not exceeding the allowable system pressure in any other circuits of the 

hydraulic system. Positioning of the loader shall be such that cutting edge of the 

bucket will be parallel to the ground line and its height with respect to ground level 

will be in the range ± 20 mm as shown in Figure 1.3. 

 

 

 

 
 

Figure 1.3 – Description of arm breakout force 
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Bucket breakout force in newtons is the maximum sustained vertical upward force 

exerted 100 mm behind the tip of the bucket and is achieved by applying maximum 

available pump pressure to bucket hydraulic cylinder. Positioning of the loader is 

same as the arm breakout case except arm shall be supported at the joint where 

bucket is attached. So there isn’t any pressure developing in the arm cylinder. 

 

 

 

 
 

Figure 1.4 – Description of bucket breakout force 

 

 

 

Lift capacity is defined as the maximum load in newtons that can be lifted to 

maximum height as shown in Figure 1.5. Lifting is achieved with arm hydraulic 

cylinder and pressure at any other circuit shall not exceed system pressure setting. 

During lifting, bucket hydraulic cylinder shall be at its minimum length. 
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Figure 1.5 – Lift capacity 

 

 

 

The aim of this study is to implement a computer program and then increase said 

breakout forces and lift capacity by altering mechanism design parameter values 

using the computer program implemented. 

 

With too many parameters of the mechanism and constraints, analytical methods are 

not practical to implement on this problem. However, using heuristic methods such 

as Genetic Algorithm it is possible to improve a preliminary design. Advantage of 

Genetic Algorithm lies in that it does not need to have insight about the problem 

itself, it only has to know whether the solution found is better or worse than a 
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previously available solution. So only requirement is to build a fitness function, 

which will assign fitness values to the mechanisms generated by Genetic Algorithm. 

Fitness function will calculate all required outputs of the mechanism and combine 

them into a single fitness value with some weighting factors. Therefore, its necessary 

to conduct position and force analyses on the mechanism. 

 

In this study a Genetic Algorithm is developed and is implemented in Microsoft 

Excel ® 1. Analysis of the mechanism is conducted in Excel sheets and its results are  

processed by Genetic Algorithm, which is coded in VBA (Visual Basic for 

Applications) as Excel macros. 

 

Next chapter of this thesis will investigate optimization methods for mechanisms in 

general and further it will lay examples of works on heuristics methods and Genetic 

Algorithms used in mechanism optimization. Third chapter describes the working 

mechanisms of the Genetic Algorithm used in this work and describes its 

implementation. Forth chapter explains the analysis of the mechanism. Position and 

force analyses are conducted and necessary outputs are calculated for fitness function. 

In the fifth chapter a case study is given. Starting off with an initial solution, a better 

mechanism is tried to be found. Results and findings of this work are discussed in the 

last chapter. 

 

 

 

 

 

 

 

 

 

 
1 Excel is a trademark of Microsoft Corporation 

 6



 

CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 
Mechanism optimization can be achieved by various approaches. Each method has 

its own advantages and drawbacks. While analytical methods are more precise in 

some cases, they may be hard to implement on complex problems. Heuristic methods 

are more preferable on complex problems because of their easy implementation and 

robustness. 

 

A general formulation for optimization problem can be stated as finding a vector of 

parameters such as [22]: 

 

  )

)

,...,,( 21 nxxxx =

 

to minimize or maximize an objective function 

 

  ,...,,()( 21 nxxxfxf =

 

subject to equality constraints 

 

 0),...,,()( 21 =≡ njj xxxhxh  j=1 to p 
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and inequality constraints 

 

 0),...,,()( 21 ≤= nii xxxgxg  i=1 to m 

 

Different mechanism optimization methods are presented with the following sections. 

 

 

2.1 GRAPHICAL AND ANALYTICAL METHODS 

 

Analytical methods are among the first methods used in mechanism synthesis. 

Solution procedure usually involves preparation of an analytical formulation of the 

problem and then it is solved to yield proportions of the linkages. Though they give 

accurate results for the selected precision points, one cannot control precision of 

other points. To overcome this problem, there are methods for selecting precision 

points to give better overall precision, but still one cannot solve complex mechanism 

synthesis problems with analytical methods. To achieve optimization, other 

constraints are implemented to the solution formulation. This will reduce the number 

of free parameters. Hence, it will reduce the number of alternatives. For complex 

problems adding constraints will complicate the problem even more. 

 

Graphical methods are also one of the first techniques used in synthesis of 

mechanisms. They are similar to analytical methods considering precision. Only 

limited number of precision points may be selected. Also they have the same 

drawbacks with analytical methods considering complex problems. In complex 

problems there may be many design parameters and their effects on the outputs 

depend on the values of other parameters. Analytical methods get very complicated 

considering this kind of non-linear complex design problems [5]. 
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2.2 CASE-BASED DESIGN 

 
It is possible to store solutions for predefined problems and use them later to solve 

other problems that show similarity to the original stored problem. Later 

modifications and adaptations to the result may be applied if necessary. This method 

is known as Case-based Design. 

 

Ashim Bose, Maria Gini and Donald Riley worked on a Case-based design method 

to design four-bar linkages [7]. They developed a method to store solutions to four-

bar linkages and design four-bar linkages using these stored cases with incomplete 

specifications. Matched case is later adapted to give a better result for the problem. 

They have listed a few problems with this method such as inability to match to a case 

when the desired coupler curve is not smooth. Possible solution offered for this 

problem is smoothing the desired curve before matching process. Although they have 

reached satisfactory results with four-bar linkages, with increasing number of 

linkages, matching will be more problematic and will require a greater database of 

cases and may render this method impractical. 

 

 

2.3 STATISTICAL APPROACH 

 

Kunjur and Krishnamurty worked on an optimization method that employs ANOVA 

(Analysis Of Variance between groups) to investigate effect of design parameters 

relative to each other [8]. They developed a robust multi-criteria optimization 

method based on ANOVA results. They used Taguchi’s method as a starting point. 

Taguchi’s method is based on keeping solutions that improve at least one of the 

design criteria while not degrading others. Main problem of this method is expressed 

as difficulty in finding all these “non-inferior” sets. They developed Taguchi’s 

method to overcome this problem and applied it to two case problems one of which 

is a four-bar mechanism’s coupler path optimization problem. 
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2.4 GRADIENT SEARCH METHODS 

 

Gradient-based search methods utilize gradient information to drive a solution to a 

better point in the search space. They start from an initial point in the search space, 

and then by making small movements and collecting gradient data at the same time, 

they try to move towards a higher point in the search space. So, gradient information 

is needed which somewhat complicates the problem. One has to calculate 

sensitivities of different parameters and how they affect the outputs. Moreover, since 

the search of a better result depends on gradient information, it is quite possible to 

end up at a local optimum point, and since there is no information about the global 

optimum one cannot determine how much the solution found is close to global 

optimum [5]. There are other different applications of the method that try to avoid 

local optimum and seek for the global optimum. 

 

In a recent study, Sancibrian, García, Viadero and Fernández proposed a general 

procedure relying on gradient search method [1]. Method is based on local 

optimization. They have used exact gradients instead of numerically calculated 

gradients to get a more accurate “search direction”. The proposed method is capable 

of solving various synthesis problems and it allows calculation of gradients for any 

arrangement of linkages. Using exact gradients in search has its pros and cons. While 

they require differentiable expressions, at the end they give more precise results. 

 

 

2.5 HEURISTIC METHODS 

 

Tabu Search (TS), Simulated Annealing (SA) and Genetic Algorithm (GA) are 

among the most popular heuristic algorithms. 
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2.5.1 Tabu Search 

 

Tabu search algorithm makes movements in the search space to find optimum points. 

First few moves are made in the local proximity of the current position and then it 

decides on a move that will drive the current location near to an optimum point. Tabu 

search keeps a list of recent moves and do not allow these to avoid repeating recent 

moves so it can search beyond local optimums [4]. 

 

 

2.5.2 Simulated Annealing 

 

Simulated annealing algorithm seeks optimum solution analogous to annealing of 

metals. A temperature parameter controls direction of search. At the beginning of 

iterations, temperature is high and any search direction is acceptable. So at the 

beginning phase of the algorithm search is near to a random search. With increasing 

number of iterations temperature decreases and random movements in the search 

space are restricted. Only good moves are allowed at low temperatures [4]. Since the 

search gradually changes from a random search to a more structured search, 

simulated annealing method is able to avoid local optimum points. 

 

 

2.5.3 Differential Evolution 

 

Differential evolution is another evolutionary algorithm in which difference of two 

population vectors are subtracted and then added with a third population vector. 

Depending on the outcome of this operation, each individual is decided weather or 

not to survive to the next generation [6]. Main difference from genetic algorithm is 

that selection procedure is not a separate procedure. 

 

Shiakolas, Koladiya and Kebrle has worked on a differential evolution algorithm 

which used “Geometric Centroid of Precision Positions Technique” to set the initial 
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boundaries for design parameters [6]. They tested the algorithm by applying it to a 

six-bar mechanism synthesis for dwell problem. The problem is handled in three test 

cases. For the first case, six-link mechanism is divided in to two loops, and at first 

the four-bar mechanism is synthesized then it is extended to a six-link mechanism. 

18 precision points are used for this first case. For the second case, synthesis of the 

six-bar mechanism is made at one stage. Again 18 precision points are used. For the 

last case, number of precision points is reduced to 10 and single stage synthesis is 

made. For all three cases an accuracy level of 0.005 units is attained, however, first 

case needs the least number of iterations, while second case requires the most 

number of iterations. Their reasoning for this result is that, dividing the synthesis 

process into two stages reduces the total number of design variables for each stage so 

it is possible to reach the desired accuracy level with less iterations. Reducing the 

number of precision points to 10 also reduces the required number of iterations for 

the same accuracy, however it is not as efficient as the first case where two-stage 

synthesis is applied. 

 
 

2.5.4 Genetic Algorithm 

 

Genetic algorithm is an evolutionary search method that is influenced by natural 

genetics. It processes a population of solutions to a problem by its genetic operators 

and assigns a fitness value to each individual. By combining better solutions with 

each other it is able to drive the individuals of the population to a better point in the 

search space. 

 

 

2.5.4.1 Terminology 

 

Genetic algorithms have a terminology adopted from natural genetics. Following 

paragraphs will list these terms and their explanations [21]. 
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String: A string is simply a possible solution to the given problem. It may be 

composed of binary numbers or it may be composed of real numbers according to the 

type of genetic algorithm. Parameters of the design are listed in a string. Strings can 

be thought of as individuals in a population. 

 

Population: A population is a collection of strings that form a solution set to the 

problem. They are individuals spread over the search space. It may also be called 

“Generation”. 

 

Gene: Each number in a string is called a Gene. Genes can have real or binary 

numbers. 

 

Fitness: Fitness is a measure of goodness of a string in the population. Strings with 

higher fitness values satisfy the required output(s) from the system more accurately. 

 

 

2.5.4.2 Basic Genetic Algorithm 

 

Genetic algorithm uses an evaluation function to evaluate a set of possible solutions 

to a problem and assigns a fitness value to each of the possible solutions. Genetic 

Algorithms rely on survival of the fittest principle [5]. Individuals are selected 

according to their fitness values to reproduce next generation of individuals. Since 

individuals with higher fitness are assigned a greater chance to be selected for 

reproduction, they tend to move towards a better position in the search space. 

Reproduction operators are inspired from natural genetics. Evaluation and selection 

procedures are also inspired from the survival of the fittest theorem of nature. GA’s 

work on a set of solutions and they require an initial set of solutions to start the 

process. They also require an evaluation function to evaluate the solutions. They do 

not, however, require any other information about the problem and this makes GA’s 

very simple to implement. 

 

 13



Basic Genetic Algorithm is composed of 4 program subroutines, which are 

evaluation, selection, crossover and mutation. 

 

 

Evaluation 

 

At this stage each String in the Population is evaluated by the fitness function and 

assigned a fitness value. Normally, this stage is the only stage that Genetic Algorithm 

uses information about the problem itself. It has to be able to analyze the system and 

decide whether it is a good design or not based on its fitness value. 

 

 

 

 
Evaluation 

Selection 

Crossover 

Mutation

notermination 
condition 
satisfied?

yes

Final (Solution) Population 

Initial Population
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 – Flow chart of a basic Genetic Algorithm 
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Selection 

 

At this stage some of the strings in the population are selected according to their 

fitness values for crossover. As inspired from nature, the strings that have a higher 

fitness have more chance to be selected. There are different methods to apply while 

selecting individuals for reproduction. One of them is roulette wheel selection 

method [21]. A biased roulette wheel is used. Each string has a slot in the roulette 

wheel whose size is proportional to its fitness. Then the roulette wheel is rotated 

arbitrarily and one of the strings in the population is selected. This process is 

repeated to form an intermediate population with the selected strings. Clearly, the 

strings with higher fitness will have more chance to be selected; even they may be 

selected more than once. This intermediate population is used for crossover. 

 

 

Crossover 

 

The intermediate population formed in selection process is used to create a new 

population that will form the next generation. First the strings in the intermediate 

population are coupled with each other randomly and then each couple (parents) is 

crossed over to form two new strings (children). Crossover operation depends on the 

selected representation method of strings. If binary representation is used, it is done 

by swapping the genes between the couples from a randomly selected position along 

the string. If real number representation is used, a biased mean of the corresponding 

genes of the coupled strings are calculated according to a random number for each 

child. 

 

 

Mutation 

 

In order to keep the diversity in the population and to avoid convergence to a local 

optimum point some randomly selected strings undergo mutation. There are many 
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different possibilities to apply at this stage. Usually a few trials are needed to 

determine the best strategy and ratio for mutation. 

 

 

2.5.4.3 Applications and Other Works on Genetic Algorithms 

 

Genetic Algorithm has found many different application areas since its appearance. 

Its successful application to many different problems is an indication of its robust 

optimization power, which does not require problem specific insight. As it can be 

seen in [12-19], it has been successfully applied to problems of optimization, design, 

planning, scheduling, control, pattern matching, artificial learning and others. 

 

Some work has been done to make a comparison among these algorithms. According 

to one of such studies by Habib Youssef, Sadiq M. Sait and Hakim Adiche [4], 

performance of an iterative algorithm depends highly on the type of problem so one 

has to find the suitable algorithm for the case in hand. They have found that 

Simulated Annealing algorithm performed better than Genetic Algorithm and Tabu 

Search for the problem of floor planning of very large-scale integrated circuits. 

 

Arun Kunjur and Sundar Krishnamurty (KK) proposed a Genetic Algorithm with 

modified crossover and selection procedures to aid a better search of solution space 

[20]. They have pointed out a problem in assigning fitness values for mechanism 

optimization problems. They state that, since the objective of mechanism design 

problem is minimization, objective function will not reflect the fitness of individuals. 

A simple transform function could be used to overcome this, but it may cause a 

single solution to dominate the population. So they preferred to use a different fitness 

assignment procedure that sorts the individuals according to their objective function 

value and assign a fitness value based on their rank. They have used real number 

representation and crossover is made by real numbers. Crossover is made by 

calculating a weighted average value depending on the parent’s fitness values. As 

they state this introduces a problem of premature convergence, however it may be 
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overcome by increasing the probability of mutation. They have observed that Genetic 

Algorithm converges to a near optimal solution at the first few steps. They have 

compared their results with a Genetic Algorithm that uses binary representation and 

with other optimization methods like exact and central difference gradient-based 

methods. It is observed that real number representation gives better results than 

binary representation while consuming less computation time. According to their 

results, after exact gradient-based method, Genetic Algorithm performs second best 

among the other algorithms. 

 

 

 

 
 

Figure 2.2 - Comparison of KK algorithm using binary representation (BinRep) and 

real number representation (RealRep) with Finite Difference (FDM) and Exact 

Gradient (EGM) methods. [20] 

 

 

 

As Cabrera, Simon and Prado showed in their work [2], application of genetic 

algorithms give accurate solutions to mechanism synthesis problems. They have used 
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a differential evolution scheme for selection process where best individual is 

combined with two randomly selected individuals as shown below. 

 

  )( 21 rrbest XXFXV −+=

 

where X ’s are the vectors representing individuals and F is called disturbance used 

to control how much the best individual will be altered. 

 

They have defined the problem as minimizing the squared differences of each 

precision point while also satisfying the Grashof condition and keeping the design 

variables in range, as shown. 
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where  is the desired x coordinate of the precision point and  is the achieved 

value. 
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Proposed algorithm is applied to two case problems, both of which are four-bar path 

synthesizing problems with prescribed timing. One of them has 5 precision points 

while the other has 18 precision points. For their case, initial mechanisms were 

randomly created, however the resulting solutions were similar to each other, thus 

they conclude that genetic algorithm converges to global optimum if enough 

iterations are made. They compared results of their algorithm with other methods that 

include a central difference method, an exact gradient method and another genetic 

algorithm by Kunjur and Krishnamurty. Accuracy of the solution was found to be 

better than other methods for small domains, for bigger domains it was close to exact 

gradient and central difference methods and better than the genetic algorithm 

proposed by Kunjur and Krishnamurty (KK).  
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Figure 2.3 - Results for 18-point synthesis.       : exact gradient,           :KK, 

      : central difference,        : Cabrera et al.,     : target points. [2] 

 

 

 

Another example of genetic algorithm in mechanism synthesis is by Laribi, Mlika, 

Romdhane and Zeghloul [3]. Their algorithm differs from a regular genetic algorithm 

that it is coupled with a fuzzy logic controller. Fuzzy logic controller gathers data 

about the design variables at the first run of the algorithm and then changes initial 

“bounding intervals”. Following equation is used to obtain refined bounding values. 

 

  )

)

(2/ minmax
*
min xxcxx xave −−=

  (2/ minmax
*
max xxcxx xave −+=

 

xave, xmax and xmin are obtained during the first run of the algorithm where xmax and 

xmin  are initial bounding values of the first run and xave is the average value at the 

last generation of the first run. Coefficient  is calculated as a function of the error 

generated after the first run of the algorithm and variation of each parameter during 

the last 30 generations. 

xc
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By this approach, this algorithm is able to find the global optimum avoiding local 

optimum points and it is claimed to have a better accuracy than classic genetic 

algorithms, which are not so accurate for large search spaces. Since this algorithm 

has to run twice to gather data at the first run, number of function evaluations is 

twice of the number of evaluations in a classic genetic algorithm. However, Laribi, 

Mlika, Romdhane and Zeghloul have shown that with their genetic algorithm, only 

half of the iterations are enough to reach an accuracy level of a classic genetic 

algorithm so their method is as fast as a classic genetic algorithm for the same 

accuracy level. Authors present two example runs one of which is the problem 

proposed by Kunjur and Krishnamurty and was also used by Cabrera et al. so it is 

possible to compare these 3 proposed methods. 

 

 

 

 
 

Figure 2.4 - Results for 18 point synthesis by Laribi et. al. [3] 

 

 

 

Error reported for this GA-FL algorithm (Laribi et al.)  is 0.2 whereas the errors for 

KK is 0.62 and for Cabrera’s 0.29. To reach these error levels, Laribi’s GA-FL 
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algorithm needed 1.32 seconds on an 1800 MHz processor, Cabrera’s method needed 

3.25 seconds on an 800 MHz processor and KK needed 37.03 seconds on a 33 MHz 

processor for this simple four-bar synthesis problem. Although the different CPU’s 

used make it difficult to compare the algorithms in regard to computation cost, they 

all seem reasonably low. 

 

Another work by Fernández-Bustos, J. Aguirrebeitia, R. Avilés, and C. Angulo, 

utilizes Genetic Algorithm to optimize an error function in a finite elements method 

that is used for synthesizing mechanisms [9]. 

 

In finite elements method, synthesis of the mechanism is done considering all the 

links as flexible links. So a starting mechanism is chosen and (for the path 

synthesizing problem) for each of the precision points, mechanism is forced to have 

its coupler point on the path. Resulting deformations at the linkages are added to 

calculate the deformation energy required to attain that position. It is suggested that 

when all required deformation energies for each precision points are added together, 

an estimation of the error of the mechanism can be gathered. The idea of this method 

is that, if total deformation energy can be minimized, relatively close to zero, by 

changing mechanism’s parameters, then the resulting mechanism will be able to 

track the path precisely. Deformation energy is also called as “error function” as it 

also represents the error in the resulting path if we think of the links as rigid links. 

 

The main concern of this work ([9]) is, as the authors suggested, developing a new 

error function that can be optimized with a Genetic Algorithm. Authors have used 

the following expression for strain energy: 
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1
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=

φ  

 

where index i  denotes the link number, b is the total number of linkages, li is the 

deformed and Li is the non-deformed length. ki’s represent the corresponding 
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stiffness values. If the strain energy })({xφ  can be minimized by changing vector x, 

a solution can be found. 

 

However, since some configurations may have low stiffness with respect to others, 

they may have a lower deformation energy value although they are not better 

considering the resulting path. So, deformation energy as an indication of path error 

is just an estimation and not always so precise. This creates a problem such that, even 

the deformation energy of a mechanism turns out to be low, it may not precisely 

track the path closely. So authors have developed a new method for calculating error 

function. They based the error on the distance from the desired path rather than 

deformations. However, they still used the deformation energy concept to find the 

closest configuration of a mechanism to each of the precision points. Once the 

closest position to the path is found, the square of the distance in between is used as 

an indication of the error. Error function is formed by sum of all these distances. 

There are also some other suggested solutions regarding some special configurations 

of mechanisms. Authors also executed two sample runs and got two different 

mechanisms with the same inputs (initial conditions). For example, one of the 

mechanisms was synthesized in a time of 1 hour, with a population size of 20000 and 

total number iterations of 250 with a 2 GHz CPU. 

 

A. Kanarachos, D. Koulocheris and H. Vrazopoulos proposed a combination of two 

different search algorithms [10]. One of them is Evolutionary Algorithm (EA) and 

the other is BFGS (Broyden, Fletcher, Goldfarb and Shanno) method. With this 

approach they replace the stochastic mutation operator of the EA with a deterministic 

one derived from BFGS method, so that they will be able to combine the better parts 

of two methods. For the EA part of the algorithm they used “panmictic” 

recombination, which allows more that two individuals to combine to form an 

offspring. Also, recombination is of type “intermediate” instead of “discrete” to 

obtain versatility among the population. Normally, in Evolutionary Search, mutation 

is applied to all of the population with a coefficient of probability of mutation. It is 

claimed that this approach causes loss of some useful information as individuals 
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undergo mutation. So, the deterministic mutation operator proposed in this work is 

applied to only a number of worst individuals of the population. While this process 

increases computation time because of the additional sorting procedure applied 

before mutation, it provides better convergence and may decrease the number of 

required number of iterations for a given accuracy level. 

 

Authors have tested their method with the Fletcher and Powell test function and a 

four-bar path generation problem. In both of these porblems they got better results 

than the classical Genetic Algorithm and other conventional evolutionary methods. 

 

H. Zhoua and Edmund H.M. Cheung used a modified Genetic Algorithm to optimize 

a hybrid five-bar mechanism in order to minimize the required maximum driving 

torque [11]. Hybrid five-bar mechanism is a chain of linkages and driven by two 

different kind of motors one of which is RTNA (real-time non-adjustable) type and 

drives the crank of the mechanism. The other motor is of type RTA (real-time 

adjustable) and it controls the position of the last link in the chain to control the path 

created by the coupler point. So, it is possible to get different paths with this hybrid 

mechanism by adjusting the position of the last linkage. Modified Genetic Algorithm 

is applied to a case problem where it is required to get a set of eliptic curves and the 

mechanism is effectively optimized to minimize the driving torque. 
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CHAPTER 3 

 

 

APPLICATION OF GENETIC ALGORITHM 

 

 
Genetic Algorithm used in this thesis is a general purpose Genetic Algorithm that is 

further altered to suit the needs of the mechanism synthesis problem. Flow chart of 

the algorithm is shown in Figure 3.1. First an initial population is created and then 

fitness test is applied. According to results of fitness test elimination, mutation and 

crossover are applied. And this loop continues until termination condition is satisfied. 

Termination condition is met if either one of the individual reaches a fitness value 

predefined by user input. 

 

 

3.1 Problem Description 

 

The problem can be described as finding a vector of parameter values that will 

increase the value of an objective function with regard to a starting solution. 

Parameter vector is as written below and it can be seen on Figure 4.2 as well. 
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By changing the values of these parameters it is desired to increase the value of the 

objective function, which is: 
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where, , , ,  and  are the bucket breakout 

force, arm breakout force, lift capacity, angle of bucket at lowest rack-back position 

and angle of bucket at highest rack-back position respectively and , , , 

 and  are the weighting factors for each. It is also desired to meet the 

constraints defined by: 

)(xFBB )(xFAB )(xFLC )(xDBAH )(xDBAL

BBw ABw LCw

BAHw BALw

 

 0)( DDxDD <  

  0)( DHxDH >

 

where,  is the digging depth and  is the dump height.  and  

are the limits on digging depth and dump height and they are taken as –100 mm for 

digging depth and 3300 mm for dump height. 

)(xDD )(xDH 0DD 0DH

 

 

3.2 Data Structure 

 

Data structure of the program is made up of nested arrays. One of the arrays is the 

population array that holds all the information about the current generation. The 

elements of the population array consists of arrays of real and integer numbers. 

Examples to real and integer number parameters can be counted as  crossover ratio, 

mutation ratio, population size, gnome length, fitness limit and generation index. 

These population parameters are defined during the initialization subroutine via user 

input. Arrays nested in the population array are individual array and parents array. 

These two arrays are identical to each other. Both have the same real number 

parameters and a gnome array that holds mechanism parameters. During crossover, 

individual data are written over to parents array and after crossover resulting 

individuals are written back on individual array. Data belonging to previous 

generations are erased as new generations are formed. 
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Figure 3.1 - Flow Chart of Genetic Algorithm 
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Figure 3.2 - Data Structure of Genetic Algorithm 
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3.3 Initialization 

 

At the initialization stage of the algorithm initial parameter values for the first 

generation are selected randomly between selected lower and higher limits. There are 

25 parameters and for each, initial values are determined by a previously synthesized 

mechanism that is close to the shape of the expected resultant mechanism. After 

finding the initial values, a range is determined for each parameter then minimum 

and maximum values for each parameter are calculated. Ranges are defined 

regarding the physical constraints on the mechanism size, and constraints on 

positions of the pivot points. So, some of the constraints are implied by these ranges. 

 

 

3.4 Fitness Test 

 

After a new generation of individuals is created, a fitness test is applied on each 

individual to assign a fitness value. Fitness value is calculated via various outputs of 

the mechanism, which are breakout and lifting forces calculated according to SAE 

J732, bucket angle at highest and lowest rack-back position, digging depth and dump 

height. Formula used to incorporate the different design evaluations into fitness value 

is as below: 
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i

BAL
iBAL

BAH
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AB
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iBBi FitFitwFitwFitwFitwFitwF ⋅++++=  (3.1) 

  

iF  is the fitness value of the ith individual. , , ,  and  are the 

corresponding weight factors of bucket breakout force, arm breakout force, lift 

capacity, bucket angle at highest and lowest rack-back positions respectively. They 

add up to 1 and determined according to the importance of each output. For this case 

they are set equal to each other.  is for digging depth and dump height 

constraints and take a value of either 1.0 or 0.25 depending on the satisfaction of the 

constraints. If the constraints are both satisfied, it becomes 1.0, else 0.25. , 

BBw ABw LCw BAHw BALw

C
iFit

BB
iFit
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AB
iFit , ,  and  are respective fitness values for bucket breakout 

force, arm breakout force, lift capacity, bucket angle at highest and lowest rack-back 

positions. They are calculated by taking the ratio of the current output to the desired 

output and the result is formulated to be always between 0 and 1 as shown below. 

LC
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iFit BAL
iFit
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   BALBAHLCABBBk ,,,,=

 
k
currenti,ϕ  values are the output of the generated mechanisms and  values are the 

desired values. For bucket angles, desired value is input by user. For breakout forces 

and lift capacity, since the aim is to maximize those outputs, a high value is set as the 

desired value so that the relevant output may never reach that desired value, which 

are 75000 N for breakout forces and 35000 N for lift capacity. 

k
desiredi,ϕ

 

Also, if a mechanism cannot satisfy closure requirements or its force analysis cannot 

be done because it is at a singular position, it is assigned a low fitness value so that it 

has much lower chance to be selected for crossover but still exist so that the chance it 

may result in a better individual when crossed is not eliminated. Its fitness value is 

multiplied by 0.25. 

 

 

3.5 Selection 

 

Selection of individuals for crossover involves both random selection and elitist 

selection together. After the elimination process, some of the individuals are deleted 

from the population array. Empty places in the population array are filled up with 

crossover, so number of individual pairs to be selected is equal to the number of 
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individuals that are deleted at the previous elimination subroutine. Half of the parents 

are selected by random number generation, the other half is sorted according to their 

fitness values and higher fitness ones are selected. Also the highest fitness individual 

is always selected for crossover by the algorithm. 

 

 

3.6 Crossover 

 

Real number representation is used in this algorithm. Crossover is also made by real 

numbers. Real number representation was found to yield more accurate results and it 

decreases the computation time with respect to binary representation according to the 

works of Kunjur and Krishnamurty [20]. Selected parents are crossed by calculating 

a biased mean of the corresponding parameters of each individual as shown in Figure 

3.2. Random number Ri is different for each couple of parents and it can either be set 

to be same for each parameter of an individual or remain same for all parameters 

through user interface. 
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Figure 3.3 – Crossover operation 
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3.7 Mutation 

 

Mutation is done by altering randomly selected parameters of some randomly 

selected individuals. Mutation probability is controlled by user input. If the 

population has more low fitness individuals then these low fitness individuals are 

mutated, otherwise one of the high fitness individual is mutated. Also according to 

the number of died individuals either half of the population is mutated or all of them 

are mutated. If the number of died individuals are less than 7% of the population, 

only half of the population undergoes mutation procedure. Less number of died 

individual means most of the population can achieve imposed constraints, so 

mutation is applied only to half of the population in order not to cause more 

individuals to be spoiled by mutation. Otherwise if number of died individuals is 

high, most of them already cannot satisfy constraints so there is not much loss by 

mutation of all of them. 

 

 

3.8 Elimination 

 

Individuals that have a fitness value below the mean of the current generation are 

deleted. After this process, population size is restored to its original value by 

reproduction. 

 

 

3.9 Implementation and user interface 

 

This genetic algorithm is implemented in Microsoft Excel® using built in Visual 

Basic for Applications editor (VBA). User input and output operations are managed 

via Excel interface. Figure 3.4 below shows a screenshot of parameter input and 

main controls page. Population output is positioned below these as seen in Figure 3.5. 
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Figure 3.4 – Parameter input and controls page 

 

 

 

 
 

Figure 3.5 – Population output with fitness values 
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Within the same Excel file there is also mechanism position and force analysis that 

computes breakout forces and necessary angles. They are explained in the next 

chapter. 
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CHAPTER 4 

 

 

ANALYSIS OF THE LOADER MECHANISM 

 

 
Analysis of the mechanism is the part of the genetic algorithm where fitness test is 

conducted. Kinematic and force analyses are made to obtain outputs of the 

mechanism such as bucket angles at certain positions, arm and bucket breakout 

forces and lift capacities. 

 

Analyses are formulated in an Excel sheet and as soon as Genetic Algorithm part of 

the Excel file inputs calculated mechanism parameters for fitness test, outputs are 

calculated in their respective cells. Then these outputs are read by genetic algorithm 

and evaluation of the mechanism is done. 

 

 

4.1 Loader Mechanism 

 

Loader is a two-degree of freedom mechanism with two slider inputs, which are 

formed by links 5, 6 and links 7, 8 in Figure 4.1. There are 11 linkages, 12 revolute 

joints and 2 prismatic joints as seen in Figure 4.1, which, according to General 

Degree-of-freedom equation [24], yields to: 
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 214)11411(3 =+−−⋅=F  degrees of freedom. 

 

 

 

 
 

Figure 4.1 – Loader mechanism topology 

 

 

 

4.1.1 Position Analysis 

 

Mechanism parameters are marked on Figure 4.2. Inputs are the lengths  and . 

Required outputs are the bucket angle and angles of each other linkages for force 

analysis. 

1s 2s

 

In order to ease position analysis, some pre-defined functions are used. First one is 

),,( θbaMagCos  which finds the length of the edge opposite to angle θ . Other is 
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),,( cbaAngCos  that calculates the positive angle opposite to edge c.  

calculates angle of a line with respect to x-axis given its x and y coordinates. And 

lastly 

),( yxAngle

),,,,,( θCldcbaFrBar , calculates the output angle of the four-bar whose link 

lengths are a, b, c, d, with closure condition Cl, and input angle θ . Each function is 

defined below. 

 

 

 

 
 

Figure 4.2 – Parameters of the loader mechanism 

 

 

 

FrBar function calculates the output angle of the specified four-bar using the 

previously defined functions MagCos and AngCos. Formulation according to Figure 

4.4 is as follows. 
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 θsin⋅= az y  
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 ( )yx zzAngle ,=φ  
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 ψφθ ⋅−= ClCldcbaFrBar ),,,,,(  

 

where Cl defines the closure of the four-bar and is either 1 or –1 and AngCos is 

defined as  
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a, b and c are side lengths of an triangle and θ  is the angle opposite to length c as 

shown in Figure 4.3. 

 

 

 

 
 

Figure 4.3 – Finding angle θ  by cosine theorem 
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Figure 4.4 – Solution to four-bar 

 

 

 

 
 

Figure 4.5 – Inverted slider-crank formed by  and the four-bar formed by 

 

141 ,, skm

1121 ,,, tlmk
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Given the input , it is possible to find 1s 1aθ  by cosine theorem. 
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and by using parameters 
2mα  and 

1kα , input angle, 
2aθ , of the four-bar formed by 

 can be found as 1121 ,,, tlmk

 

 
1212 kmaa ααθθ +−=  

Output angle of four-bar  is 1121 ,,, tlmk

 

 ),1,,,,(
23 1112 aa ktlmFrBar θθ =  

 

Input angle of the next four-bar,  can be calculated using the output angle 

of the first four-bar and the other parameters as follows. 

1222 ,,, dstk

 

 
2131 ktab ααθπθ −−−=  

 

Output angle of the four-bar  is then calculated using the FrBar function 

defined before. 

1222 ,,, dstk

 

 ),1,,,,(
12 2122 bb kdstFrBar θθ =  
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Figure 4.6 – Second four-bar on the arm of the loader formed by  1222 ,,, dstk

 

 

 

Input angle of the last four-bar, , 1223 ,,, bldk
1cθ  is calculated as follows. 

 

 
3121 kdbc απαθθ −+−=  
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Figure 4.7 – Last four-bar on the loader arm formed by  1223 ,,, bldk

 

 

 

Finally output angle of the last four-bar, 
2cθ , is calculated as follows. 

 

 ),1,,,,(
12 3122 cc kbldFrBar θθ =  

 

In order to calculate the bucket angle with respect to x-axis and to calculate each 

linkage’s angle with respect to x-axis, to aid force analysis, additional calculations 

are to be made. They are given below. 
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2 41111
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Figure 4.8 – Orientation angles of each linkage with respect to x-axis for use in force 

analysis 
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2132 1322 cckl bkMagCosldAngCos θπθββ −++=  

 
231 ckb θββ +=  

 
112 bbb αββ −=  

 

where 
2bβ  is one of the output parameters that is tried be made to match the user 

input values for defined positions of the mechanism. Remaining β  angles are 

required for force analysis. 

 

 

4.1.2 Force Analysis 

 

In order to calculate bucket breakout, arm breakout forces and lift capacity, force 

analysis is to be conducted on the mechanism. Method of free body diagrams is used 

for force analysis. To keep number of equations low thus keep the matrix size 

smaller, weights of two-link members are distributed among the joints. Resulting 

matrix equation is solved in Excel and linkage forces are obtained. Breakout forces 

are then calculated according to SAE J732 standard. Free body diagrams for each 

member and equations are given below. 
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Figure 4.9 – Free body diagram of the loader arm 
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Figure 4.10 – Free body diagram of the bucket 
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Figure 4.11 – Free body diagram of the linkage “t” 

 

 

 

  0)cos()cos(0
22101
=++−⇒=∑ sSlE

x
A

x FFFF ββ

 
22

)sin()sin(0 12

22101

LS
sSlE

y
A

y WW
FFFF +=++−⇒=∑ ββ  

 
)cos(

2
)cos(

))(sin())(sin(0

1

1

112

11221101

12

21

t
l

ttS

ttsStlEA

t
W

tW

tFtFM

βαπβ

απββπββ

−−+=

−+−++−⇒=∑
 

 

  0)cos()cos(0
22213

=++−+−⇒=∑ πβπβ sSlD
x

A
x FFFF

  0)sin()sin(0
22213

=++−+−⇒=∑ πβπβ sSlD
y

A
y FFFF

 
)cos(

2
)cos(

2

)sin())(sin(0

1

2

11

2

12211213

12

12

d
S

dd
L

dsSddlDA

d
W

d
W

dFdFM

βαβ

βπβαβπβ

+−=

−++−−−⇒=∑
 

 46



 
 

Figure 4.12 – Free body diagram of the linkage “d” 

 

 

 

 
 

Figure 4.13 – Free body diagram of the two-force member “l1” 
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Figure 4.14 – Free body diagram of the two-force member ”l2” 

 

 

 

 
 

Figure 4.15 – Free body diagram of the hydraulic cylinder  1s
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Figure 4.16 – Free body diagram of the hydraulic cylinder  2s

 

 

 

 
 

Figure 4.17 – An example shot of the coefficient matrix [ ]A , in Excel sheet 
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Above equations can be written in matrix form. 

 

 [ ] [ ] [ ]CxA =⋅  
 

where  is the coefficient matrix. [ ]A [ ]C  is the load matrix, which is composed of 

the terms at the right hand side of the force equilibrium equations, and [  is the 

array of unknown forces. Solution to this matrix equation can be found by 

multiplying each side with [ ] . 

]x

1−A

 
 [ ] [ ] [ ] [ ] [ ]CAxAA ⋅=⋅⋅ −− 11  

   [ ] [ ] [ ]CAx 1−=

 

Therefore unknown forces array can be found, which gives the following joint 

forces. 

 

  [ ] [ ]TSSDE
y

A
x

A
y

A
x

A
y

A
x

A
y

A
x

A FFFFFFFFFFFFx
211044331100

=

 

 

 

 
 

Figure 4.18 – An example shot of the Excel sheet where bucket, arm breakout 

forces and maximum lifting capacity values are calculated. 
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Using forces  and , which are forces acting on hydraulic cylinders, pressures 

in the cylinders can be calculated. Then, arm breakout and bucket breakout forces 

are calculated according to SAE J732 [23]. 

1SF
2SF

 

In some cases calculation of breakout forces may not be possible if the mechanism 

is in a singular position. If the mechanism is in a singular position, determinant of 

matrix A will be equal to zero, thus the matrix equation cannot be solved. Or, in 

some cases even position analysis may not be possible if linkage lengths do not 

allow assembly of the mechanism. In those cases, Excel sheet outputs an error 

message to the relevant output cell, and their fitness values are lowered by a 

coefficient as explained in Chapter III. 
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CHAPTER 5 

 

 

CASE STUDY 

 

 
In this chapter, results of four sample runs will be presented. First two of them start 

with the same initial parameter values whereas the third one starts with a different set 

of initial parameter values. Fourth one is a special case where the value of parameter 

 is set equal to the value of  and value of 2d 1d
1dα  is set to zero. Therefore, the two 

joints on linkage “d” merge to form one single joint and a different type of 

mechanism is formed as shown in Figure 5.1. 

 

Results will be compared with the initial set regarding arm breakout force, bucket 

breakout force and lifting capacity then they will be checked for linkage interference. 

Results of the initial mechanism are given in Table 5.1. 

 

 

 

Table 5.1 – Results for the initial mechanism 

 

Arm Breakout Force 58664 N 
Bucket Breakout Force 68964 N 

Lifting Capacity 28792 N 
Bucket angle at ground level 41.3 degree 

Bucket angle at full height 58.7 degree 
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Figure 5.1 – Reduction of number of joints for case #4 

 

 

 

For all runs of the program a maximum fitness value of 98 is aimed. Population size 

is set to 30. Crossover and mutation probabilities are 1 and 0.35 respectively. Desired 

bucket angle at ground level and full height are 44 and 59 degrees respectively for 

the first two runs, 41 and 59 for the last two runs. 
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Results are presented in Table 5.2. 

 

 

 

Table 5.2 – Results for the sample runs 

 

 #1 #2 #3 #4 
Arm Breakout Force 66324 N 63956 N 61388 N 66678 N 

Bucket Breakout Force 73244 N 70654 N 68459 N 73628 N 
Lifting Capacity 29685 N 29137 N 29668 N 29573 N 

Bucket angle at ground level 44.0 degree 44.3 degree 42.1 degree 42.0 degree
Bucket angle at full height 59.4 degree 59.0 degree 58.9 degree 60.1 degree

 

 

 

Percent improvements with respect to the initial mechanism are given in Table 5.3. 

 

 

 

Table 5.3 – Percent improvements in breakout forces and lift capacity 

 

 #1 #2 #3 #4 
Arm Breakout Force 13.1 % 9.0 % 4.6 % 13.7 % 

Bucket Breakout Force 6.2 % 2.5 % -1.0 % 6.8 % 
Lifting Capacity 3.1 % 1.2 % 3.0 % 2.7 % 
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Figure 5.2 – Mechanism #1 at its lowered position. 
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Figure 5.3 – Mechanism #1 at dumping position. 
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Figure 5.4 – Mechanism #2 at lowered position. 

 

 

 

As seen in figures 5.2 to 5.9, generated mechanisms do not have any interfering 

linkages. They all satisfy dumping height requirements and digging depth 

requirements. Comparisons of the found solutions with the initial solution are 

presented in Figures 5.10 to 5.13. 

 

A single iteration of a population with 30 individuals approximately takes 3 seconds 

on a P4 2.4GHz CPU and iterations to reach a fitness value of 98 were approximately 

510 for the fist, 950 for the second, 800 for the third and 1350 for the last case as 

seen on Figures 5.10, 5.11 and 5.12. These indicate a total run time of 25.5 minutes 

for the first case, 47.5 minutes for the second case, 40 minutes for the third case and 

67.5 minutes for the fourth case. 
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Figure 5.5 – Mechanism #2 at dumping position. 
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Figure 5.6 - Mechanism #3 at lowered position. 
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Figure 5.7 - Mechanism #3 at dumping position 
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Figure 5.8 - Mechanism #4 at lowered position 
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Figure 5.9 - Mechanism #4 at dumping position 
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Figure 5.10 – Comparison of initial mechanism with #1 

 

 

 

 
 

Figure 5.11 – Comparison of initial mechanism with #2 
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Figure 5.12 – Comparison of initial mechanism with #3 

 

 

 

 
 

Figure 5.13 – Comparison of initial mechanism with #4 
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Figure 5.14 – Best fitness vs. generation number plot for #1 
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Figure 5.15 – Best fitness vs. generation number plot for #2 
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Figure 5.16 – Best fitness vs. generation number plot for #3 
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Figure 5.17 – Best fitness vs. generation number plot for #4 
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CHAPTER 6 

 

 

DISCUSSION AND CONCLUSIONS 

 

 
In this study a Genetic Algorithm in an Excel workbook by means of Excel macros is 

implemented to improve loader mechanisms. 

 

Loader mechanism is an 11 link complex mechanism and it is desired to improve 

more than one output while also satisfying constraints. So, classical methods of 

synthesis cannot be applied. Genetic Algorithm is selected because it is suitable for 

multi-criteria optimization problems with constraints. 

 

In order to calculate fitness values of mechanisms generated by the Genetic 

Algorithm an Excel worksheet is prepared. Given the values of the mechanism 

parameters, this worksheet calculates all necessary output values for the mechanism 

such as arm breakout force, bucket breakout force, lifting capacity, digging depth and 

loading height. Genetic Algorithm interacts with this Excel worksheet to input 

generated mechanism parameter values and thereafter read the calculated outputs in 

order to calculate fitness values for each mechanism generated. 

 

Some of the constraints on the mechanism are implemented by adjusting the range of 

the random numbers generated for the parameter values of the first population; others 

are implemented in the fitness function by assigning a low fitness value to those 

mechanisms which violate one or more of the constraints. By this approach 

mechanisms that violate the constraints are not deleted immediately and still have a 
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low chance to be selected for crossover, so they may still yield a high fitness 

mechanism after a crossover operation. 

A case study has been conducted to test the program and sample runs are made. 

Initial parameter values used for these runs are read from the current backhoe-loader 

machine of Hidromek Ltd. Even though this mechanism was well studied and 

improvements were made in time, it was still possible to improve it with the Genetic 

Algorithm of this work. 

 

Among the results of the sample runs four mechanisms are selected that were able to 

move without linkage interference. The best one of the four runs has achieved 13.7 

% increase in arm breakout force, 6.8 % increase in bucket breakout force and 2.7 % 

increase in lifting capacity while still achieving the required digging depth and 

dumping height constraints. 
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