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Supervisor

Examining Committee Members

Prof. Dr. Ug̃ur HALICI (METU, EEE)

Prof. Dr. Zafer ÜNVER (METU, EEE)
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abstract

image segmentation based on

variational techniques

DURAMAZ, Alper

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Zafer ÜNVER

Co-Supervisor: Prof. Dr. Kemal LEBLEBİCİOG̃LU

September 2006, 88 pages

Recently, solutions to the problem of image segmentation and denoising are

developed based on the Mumford-Shah model. The model provides an energy

functional, called the Mumford-Shah functional, which should be minimized.

Since the minimization of the functional has some difficulties, approximate ap-

proaches are proposed. Two such methods are the gradient flows method and

the Chan-Vese active contour method. The performance evolution in terms of

speed shows that the gradient flows method converges to the boundaries of the

smooth parts faster; but for the hierarchical four-phase segmentation, it is ob-

served that this method sometimes gives unsatisfactory results. In this work, a

fast hierarchical four-phase segmentation method is proposed where the Chan-

Vese active contour method is applied following the gradient flows method. After

the segmentation process, the segmented regions are denoised using diffusion fil-

ters. Additionally, for the low signal-to-noise ratio applications, the prefiltering

scheme using nonlinear diffusion filters is included in the proposed method. Sim-

ulations have shown that the proposed method provides an effective solution to

the image segmentation and denoising problem.
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öz

DEG̃İŞİMSEL TEKNİKLERE DAYALI
GÖRÜNTÜ AYRIŞTIRMA

DURAMAZ, Alper

Yüksek Lisans, Elektrik ve Elektronik Mühendislig̃i Bölümü

Tez Yöneticisi: Prof. Dr. Zafer ÜNVER

Ortak Tez Yöneticisi: Prof. Dr. Kemal LEBLEBİCİOG̃LU

Eylül 2006, 88 sayfa

Son zamanlarda görüntüyü ayrıştırma ve gürültüden temizleme problemi

için Mumford-Shah modelini temel alan çözümler geliştirilmiştir. Bu model

Mumford-Shah fonksiyoneli olarak adlandırılan ve enazlanması gereken bir en-

erji fonksiyonelini sag̃lamaktadır. Bu fonksiyonelin enazlanmasındaki bazı zor-

luklardan ötürü bazı yaklaşık yöntemler önerilmiştir. Bu yöntemlerden ikisi

gradyan akışlar ve Chan-Vese etkin çevre hatları yöntemleridir. Yöntemlerin hız

bakımından başarım deg̃erlendirmesi, gradyan akışlar yönteminin görüntünün

düzgün kısımlarına ait sınırları daha çabuk yakınsadıg̃ını göstermiştir. An-

cak dört evreli hiyerarşik ayrıştırma durumlarında, gradyan akışlar yönteminin

bazen yetersiz sonuçlar verdig̃i gzlenmiştir. Bu çalışmada, gradyan akışlar yöntemi

ardından Chan-Vese etkin çevre hatları yönteminin kullanıldıg̃i hızlı bir dört

evreli hiyerarşik ayrıştırma yöntemi önerilmiştir. Ayrıştırma işleminin ardından,

gürültüden arındırma işlemi ayrıştırılan alanlarda difüzyon süzgeçleri kullanılarak

yapılmıştır. Ek olarak, işaret/gürültü oranının düşük oldug̃u uygulamalarda,

dog̃rusal olmayan difüzyon süzgeçlerinin kullanıldıg̃i ön süzgeçleme işlemi önerilen

yönteme eklenmiştir. Benzetim çalışmaları, önerilen yöntemin görüntüyü ayrıştır-

ma ve gürültüden temizleme problemine etkin bir çözüm getirdig̃ini göstermiştir.
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chapter 1

Introduction

The issue of segmenting and denoising a noisy image is inevitable for the

applications where the details of the image is required, e.g., satellite imaging,

astronomical imaging, medical imaging, video processing, robot vision, oceanog-

raphy and radar applications. It can be applicable for any case in which the

objects in an image has to be identified with distinguishing parameters such as

edges, holes, etc.

In order to solve the problem, variational based image segmentation and

partial differential equation (PDE) based image smoothing approaches have been

developed. The methods for the former include snakes based on the gradient

[9], geodesic active contours [3], curve evolution based on the Mumford-Shah

variational model [22] and active contours without edges [5]. The simple idea

behind these methods is that an initial curve evolves according to image statistics

inside and outside it and stops evolving at the boundaries of objects according

to a stopping criterion, e.g., high magnitude of the gradient vectors. For the

latter, the anisotropic diffusion and the nonlinear diffusion models introduced by

Perona and Malik [14] are popular. These models basically detect the boundaries

among the smooth (homogeneous) regions and filter the regions independently.

Filtering does not take place at the boundaries in order not to loose the boundary

information.

In the late 80s, Mumford and Shah have developed a variational based image

segmentation and denoising scheme [10]. This model became one of the most

widely studied mathematical models that enables simultaneous denoising and

smoothing of a noisy image. The main idea is to minimize the energy functional,

known as the Mumford-Shah functional, in order to obtain the homogeneous

representation of the image and detect the boundaries of the smooth regions.
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The minimization of the Mumford-Shah functional is not an easy task due to the

dependency on its variables. Thus, the approximate minimization approach is

followed where one of the variables is fixed and the energy functional is minimized

with respect to the other variable. Finally, a set of weak Poisson equations for

the smooth representation of the image and the curve evolution equation for

the segmenting closed curves, known as the Mumford-Shah gradient flow, are

obtained.

After Mumford and Shah proposed their model, the minimization of their

functional is considered to be an attractive issue because of its high segmenting

and smoothing capability. It is investigated in both stochastic and deterministic

manners. Schneider and Fieguth have developed a Bayesian interpretation of

the revised Mumford-Shah approach [17]. In their variational model, the piece-

wise smooth output image and the edge strength function which has the same

dimensions with the noisy image are introduced as variables. The edge-strength

function takes the values between 0 and 1. It is approximately 0 in the smooth

regions of the image and very close to 1 at the boundaries. The outcoming

model equations have close relationship with the Kalman filtering equations.

However, majority of the researches have paid attention to the numerical

implementation of minimizing the Mumford-Shah functional from the determin-

istic point of view. First practical implementations are achieved by Richardson

[15] working on the elliptic approximation of the Mumford-Shah functional de-

veloped by Ambrossio and Tortorelli [2]. Recently, Chan and Vese dealt with the

problem using the active contours without edges [5], [24]. Meanwhile, Tsai de-

veloped the simultaneous curve evolution based segmenting and the PDE based

smoothing framework [22] using the results obtained in [10]. In his framework,

Tsai has introduced multiresolution segmentation and noticed on some applica-

tions of his approach such as blockiness image magnification and reconstruction

of images with missing data. Gao and Bui have mentioned the disadvantages

of PDE based smoothing schemes such as high computation time and low de-

noising capability [8]. They have used the method of active contours without

edges for the segmentation problem and pointed that the smoothing via any of

the diffusion filtering methods is adequate after the segmentation of the image.
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The efficiency of the Chan-Vese active contour method has been increased by us-

ing the simultaneous and the hierarchical multiphase segmentation approaches

in the sense of getting more details of the objects in [24] and [8], respectively.

Chan and Vese approximated the Mumford-Shah energy functional by its

piecewise constant representation and reformulated it by the level set methods

introduced in [18]. Minimizing the modified form of the energy functional, a

PDE relating to a surface evolution which depends on the image characteristics

is obtained. The zero level of the evolving surface is a moving curve in order to

segment the homogeneous parts in the image. By the help of surface evolution,

the segmentation process is speeded up significantly and also the interior con-

tours of the objects are detected. Similarly, Tsai embedded a level set function

to the Mumford-Shah gradient flow.

In this work, the segmentation and denoising problem is handled with a

similar step order proposed by Gao and Bui. In order to select which type of

segmentation algorithm is to be used, the Chan-Vese active contour method

and the piecewise constant approximation of the Mumford-Shah gradient flow

method in [22] are investigated. Since the resulting minimizer of the Mumford-

Shah gradient flow uses the whole image plane for the surface evolution rather

than using a part of it, it results in a faster convergence to the object boundaries.

Unfortunately, in some simulations for the hierarchical multiphase segmentation,

it is observed that the method yields unsatisfactory results such as detecting the

small variations inside the smooth regions. Depending on these observations, the

approximated hierarchical four-phase segmentation approach proposed in this

work is formed by activating the Chan-Vese active contour method after the

approximated Mumford-Shah gradient flow method in case the latter does not

satisfy the expectations in the first step of the segmentation process. Once, the

segmentation finishes, anisotropic diffusion filtering is applied in the segmented

regions independently. This segmentation and denoising methodology is not

working properly for the applications where the signal level is low as compared

to the noise. In order to overcome this problem, a prefiltering scheme is added

to the algorithm. Nonlinear diffusion filtering is selected as the type of prefilter,

because it does not smooth the edges while smoothing the interior regions.

3



The work is organized as follows. In Chapter 2, some preliminary knowl-

edge on level set methods, gradient flows and diffusion filters are presented. In

Chapter 3, the Mumford-Shah functional is analyzed and the results obtained by

minimizing the functional are given. The Chan-Vese active contour method and

the level set formulation of the approximated Mumford-Shah gradient flow are

explained and comparisons, in the sense of speed of convergence and relevancy

of the segmentation results, are made. Then, the steps to be followed in the

segmenting and denoising algorithm are elucidated. In Chapter 4, the algorithm

is attempted on medical imagery, thermal imaging and SAR imagery. Finally,

in Chapter 5 the conclusions are provided.
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chapter 2

Preliminaries

In this chapter, the level set methods, the gradient flows and the diffusion

filters are explained in order to make an explicit investigation of the previously

proposed algorithms in the subsequent chapters.

2.1 Level Set Methods

Classical snakes based algorithms or active contours can be used in order to

segment objects automatically. The central idea of these algorithms is the evolu-

tion of a curve due to the speed function depending on the image and the curve

itself until the curve detects the boundary of the objects. The curve evolution

stops according to a stopping criterion such as the high magnitude of the image

gradient. Since the speed and the stopping functions highly depend on the im-

age data around the evolving curve in each evolution step, the whole image data

can not effect the evolution, i.e., the evolution is not globally effected. There-

fore, the interior boundaries of the objects such as a ring can not be detected by

these algorithms when the initial curve is outside the outermost boundary of the

object. Another disadvantage of these algorithms is that the stopping function

which depend on the image topology should be defined properly in order not to

miss the object boundary.

An approach to overcome these difficulties was first introduced by Sethian

and Osher [11], namely the level set methods. In these methods, the evolving

curve is modeled as the zero level of a higher dimensional evolving surface, and

it can be considered as the intersection of the surface with the image data plane,

(see Figure 2.1).
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Figure 2.1: The intersection of the higher dimensional evolving surface with the

image data plane defines the evolving curve on the image plane.

Let Ω be a bounded open subset of R
2, with ∂Ω as its boundary. Then,

a two dimensional image g can be defined as a mapping from Ω into R, i.e.,

g : Ω → R.
−→
C (t) is an evolving curve in Ω, which is the boundary of a bounded

open subset ω, i.e., ω ⊆ Ω, and
−→
C (t) = ∂ω. The Lipschitz continuous level set

function φ(x, y, t) is defined as a mapping from ΩxT into R where T is the time

domain, i.e., φ(x, y, t) : ΩxT → R. By Lipschitz continuity, the smoothness of

the level set function φ(x, y, t) is well guaranteed.

As explained before, the evolving curve is modeled as the zero level of

φ(x, y, t). The function is defined such that it is positive (negative) if the point

(x,y) is inside (outside) the subset ω, i.e.,

φ(x, y, t) > 0 for (x, y) inside ω,

φ(x, y, t) < 0 for (x, y) outside ω, (2.1)

φ(x, y, t) = 0 for (x, y) on ∂ω =
−→
C (t).
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The aim is to find an equation for the evolution of the zero level of φ(x, y, t)

in order to make the zero level converge to the object boundary. The basic

evolution equation is given by

∂φ

∂t
+ υ · ∇φ = 0 (2.2)

where φ(x, y, 0) = φo(x, y) is the initial level set function and υ is the velocity

field, or informally the directional speed function of the evolving surface. Since

the normal component of υ is

υN = υ · ∇φ

|∇φ| , (2.3)

the resulting curve evolution level set equation becomes

∂φ

∂t
+ υN · |∇φ| = 0. (2.4)

The velocity field can take several forms. It can be considered as the globally

effective counterpart of both the speed and the stopping functions of the curve

evolution in the snake based algorithms. Taking υN ≡ 1, the equation (2.4)

becomes unit evolution in gradient direction, and the zero level set
−→
C (t > 0)

and the starting zero level set
−→
C (t = 0) have a positive distance of magnitude

t in between assuming they are on the same plane (see Figure 2.2). Another

fundamental curve evolution equation defined by a level set function is

∂φ

∂t
= |∇φ|div

(
∇φ

|∇φ|

)
− |∇φ| (2.5)

where the first part on the right is the mean curvature motion minimizing the

length of
−→
C , and the second part on the right is the constant speed motion

minimizing the area inside
−→
C .

Level set methods are advantageous since they solve the problems encoun-

tered in classical snake based algorithms. Another advantage of level set methods

is that the geometric properties of the evolving curve are easily determined from

a particular level set of φ(x, y, t).
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Figure 2.2: Unit curve evolution in the gradient direction via level set method.

Left: Zero levels of the level set function φ(x, y, t). Right: φ(x, y, 0) and

φ(x, y, 1).
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2.2 Gradient Flows

2.2.1 Gradient Flow Minimizing the Arc-Length of a Closed

Curve

This method is also known as the Euclidean curve shortening flow in litera-

ture. Let
−→
C (p, t) be a smooth closed curve where 0 ≤ p ≤ 1 and t indicates that

−→
C is time varying. Since the curve is closed and smooth,

−→
C (0, t) =

−→
C (1, t) and

∂
−→
C

∂t
(p, t)

∣∣
p=0

= ∂
−→
C

∂t
(p, t)

∣∣
p=1

. The curve length is calculated by

L(t) =

∫ 1

0

∥∥∥∥∂
−→
C

∂p

∥∥∥∥dp. (2.6)

Taking the first variation of (2.6) and integrating by parts

L′(t) =

∫ 1

0

〈∂
−→
C

∂p
, ∂2−→C

∂p∂t
〉

‖∂
−→
C

∂p
‖

dp (2.7)

=

〈 ∂
−→
C

∂p

‖∂
−→
C

∂p
‖
,
∂2−→C
∂p∂t

〉∣∣∣∣
1

0

−
∫ 1

0

〈
∂
−→
C

∂t
,

1

‖∂
−→
C

∂p
‖

∂

∂p

[ ∂
−→
C

∂p

‖∂
−→
C

∂p
‖

]∥∥∥∥∂
−→
C

∂p

∥∥∥∥
〉

dp

is obtained. The first term in (2.7) diminishes according to the equality in the

first derivative of the curve at the starting and ending points. Parameterizing

of the second part of (2.7) with the arc-length

ds =

∥∥∥∥∂
−→
C

∂p

∥∥∥∥dp (2.8)

and using the curvature definition obtained in Appendix B, (2.7) takes its final

form

L′(t) = −
∫ L(t)

0

〈
∂
−→
C

∂t
, κ

−→
N

〉
ds (2.9)

where
−→
N is the inward normal vector and κ is the curvature of

−→
C . Thus, the

length of curve
−→
C (p, t) decreases most rapidly when

∂
−→
C

∂t
= κ

−→
N . (2.10)
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Conversely, it increases most rapidly in the direction of the outward normal

vector. Equation (2.10) is the same with the starting equation used to define

the curvature of a curve given in Appendix B.

As a result, the closed curves evolve according to the turning speed vector of

their tangential vectors in order to minimize the arc-length. Unless these curves

come across with a stopping criterion, they merge to a circle. This result is

applied in many active contour methods.

2.2.2 Gradient Flow Minimizing Region Integrals

The purpose of this method is to find the curve evolution which minimizes a

double integral K whose integrand is a continuous scalar field H : R
2 → R. The

region of computation Ω of the double integral is inside the evolving curve
−→
C .

K =

∫∫
Ω(

−→
C )

HdA (2.11)

The preliminary conditions on
−→
C stated in the previous section are also valid

for this gradient flow.

In order to determine the first variation of K over the space of closed curves,

the scalar field H can be written as the divergence of a vector field
−→
F ,

∇ · −→F = H. (2.12)

By the substitution of (2.12), (2.11) is rewritten as

K =

∫∫
Ω(

−→
C )

∇ · −→F dA. (2.13)

Using the divergence theorem, the double integral changes to a line integral. In

addition to that, K varies with t as the curve
−→
C (p, t) evolves. Then the new

form of (2.13) is obtained as

K(t) =

∮
−→
C

〈−→F ,
−→
N 〉ds (2.14)

where
−→
N is the inward normal vector. This equation represents the total inward

flux through a region enclosed by the curve
−→
C . Thus, the problem to find
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the rate of change of a curve maximizing the double integral in (2.13) is restated

as to find the rate of change of a curve minimizing the total inward flux through

it. Performing all the necessary computation steps given in Appendix C, [23],

[21], the resulting curve equation ends up with

−→
C t = (∇ · −→F )

−→
N

= H−→
N . (2.15)

From (2.15), it is concluded that the the result of the double integrals whose

region of computation depends on an evolving curve is minimized when the

curve evolves in its inward normal direction with the magnitude of the scalar

field inside it (see Figure 2.3).

2.3 Diffusion Filtering Techniques

Diffusion filtering techniques are PDE-based filtering schemes, and they are

widely used for edge preserved smoothing and denoising applications. The al-

gorithms are developed in an iterative manner where the previous output of

the filter is the initial condition for the next iteration. If the output of each

filtering level is considered as the scale, the smoothness is improving going from

the coarser scale to the finer scale. Each scale is defined by the value which is

obtained from time varying image function g(x, y, t) at a specific time t. The

initial condition for the algorithms is g(x, y, t = 0) = g0(x, y) where g0(x, y) is

the noisy input image.

The general formulation for the diffusion filters is

∂g

∂t
= div(D∇g) (2.16)

where D is a scalar function known as the diffusivity term. All diffusion filters

are varied according to the different diffusivities.

For the linear isotropic diffusion filtering, the diffusivity is taken as a con-

stant. As a result, (2.16) simplifies to

∂g

∂t
= D∇2g. (2.17)
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Figure 2.3: (a) A closed curve is placed in a 2D vector field. (b) The curve

evolves in order to increase the total inward flux through it. The total inward

flux is maximum when the normal vectors of the curve are aligned with the

direction of vector field.

Linear isotropic diffusion filters not only smooth the noisy image but also blur

the edges, unfortunately.

In order to overcome the edge-blurring defect, the edge-preserving nonlinear

isotropic diffusion filtering is developed. The diffusivity function f depends on

the increase in the gradient of the filtered g(x, y, t), i.e.,

D = f
(
|∇gσ|

)
(2.18)

where

gσ ≡ Kσ ∗ g. (2.19)

The condition on f is that it is a monotonically decreasing function where

f(0) = 1 and f(s) = 0 for s → ∞. Kσ is the gaussian filter smoothing the pre-

vious scale in order to enable the edge detector, |∇gσ|, distinguish the edge

locations from noise spikes. When the edge detector value is very large, the

diffusion does not hold. As a conclusion, the nonlinear isotropic diffusion filter

smooths the image, but it is not capable of removing the noise at the edges.

Among all the diffusion filters, the anisotropic diffusion filters result in the

highest performance in terms of the preservation of the edges and the denoising
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in the regions. It is a special type of nonlinear isotropic diffusion filters and first

introduced in [14]; the further developments are given in [1] and [4].

The diffusivity of this type of diffusion filter is formed by taking into account

not only the magnitude of the gradient of the gaussian filtered image |∇gσ| but

also the direction of the gradient vector. The construction of the diffusivity is

varying according to the type of application where the anisotropic diffusion is

needed. In [25], [26] and [27], Weickert introduced two different anisotropic diffu-

sion filters, namely the edge-enhancing and the coherence-enhancing anisotropic

diffusion filters.

The main advantage of anisotropic diffusion to general nonlinear diffusion is

that the smoothing takes place in the regions and on the boundaries but not

across the boundaries.
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chapter 3

The Proposed Image

Segmentation and Denoising

Method

The purpose of the segmentation and denoising problem is to find a piecewise

smooth representation of a noisy image. The Mumford-Shah variational model

is highly used in various image segmentation applications. It includes all the

requirements for proper segmentation, i.e., the boundary detection of piecewise

smooth regions and denoising. In this chapter, the Mumford-Shah modeling will

be explained in detail. Then, the approximate Mumford-Shah gradient flow and

the Chan-Vese active contour methods used for segmentation are elucidated.

After the profound explanation, the comparisons of these methods are made in

the sense of their computation times, and the hierarchical four-phase segmen-

tation approaches based on these methods are given. Finally, the usage of the

noise compensating diffusion filters in the images are demystified, and an image

segmentation and denoising method is proposed. Then, the method is compared

with the normalized cuts method.

3.1 The Mumford-Shah Model

The Mumford-Shah model relates the segmentation and denoising problem to

a variational problem of minimizing an energy functional, namely the Mumford-

Shah functional. In this section, the direct solution of minimization of the energy

functional which is obtained in [10] is discussed explicitly.
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Firstly, the image is interpreted as a function g(x, y) defined in the image

domain that is denoted by Ω. The domain Ω can be composed of various open

subsets, i.e.,

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωn (3.1)

where Ωi is an open subset of Ω. A simple image whose image domain is formed

by the two open subsets is shown in Figure 3.1.

The segmentation of image g is achieved when

• the image function g(x, y) is homogeneous and/or varies smoothly within

each Ωi,

• the image g(x, y) is discontinuous across most of the boundary between

different Ωis.

The segmentation problem can be restated as the approximation of the image

function g(x, y) by a piece-wise smooth function f(x, y). This function can be

considered as the combination of subfunctions fi(x, y) which are differentiable

in Ωi.

Using the Mumford-Shah functional the requirements of the segmentation

problem is put into formulation. The energy functional E is constructed as,

E(f,
−→
C ) = λ

∫∫
Ω

(f − g)2dxdy + η

∫∫
Ω−−→

C

|∇f |2dxdy + µ

∮
−→
C

ds (3.2)

where λ, η, µ are positive real constants and f is a differentiable function in

the open subsets of Ω, which can be discontinuous across the boundary curves
−→
C . The last term of the functional above stands for the total length of the arcs

making up
−→
C .

In the functional,

• the first term asks that f approximates g,

• the second term asks that f does not vary very much in each Ωi,

• the third term asks that the arcs making up
−→
C satisfying the previous

statements are as short as possible.

15



Wout

Win

W

Figure 3.1: A simple image composed of two various open subsets.

As a result, the smaller the energy functional E is, the better the combination

of f and
−→
C segments the image g. The fundamental problem is to find the

variables f and
−→
C minimizing the functional E simultaneously, which is not an

easy task due to the complex structure of the energy functional. Thus, two step

minimization scheme is applied. In the first step,
−→
C is fixed and E is minimized

with respect to f . Similarly, f is fixed and E is minimized with respect to
−→
C in

the second one. The constants used for scaling purposes, they are fixed during

the minimization steps.

The standard calculus of variations method is applied for the first step. δf is

the same type of function as f and represents a small change in f . The difference

equation relating the small variations in f is written as

E(f + tδf,
−→
C ) − E(f,

−→
C ) = t

[
2λ

∫∫
Ω

δf(f − g)dxdy

+2η

∫∫
Ω−−→

C

(∇(δf) · ∇f)dxdy
]

(3.3)

+t2
[
λ

∫∫
Ω

(δf)2dxdy + η

∫∫
Ω−−→

C

|∇(δf)|2dxdy.
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Then,

δE

δf
(f,

−→
C ) = lim

t→0

E(f + tδf,
−→
C ) − E(f,

−→
C )

t
(3.4)

= 2
[
λ

∫∫
Ω

δf(f − g)dxdy + η

∫∫
Ω−−→

C

(∇(δf) · ∇f)dxdy
]

is obtained. Integrating by parts and using the Green’s theorem, (3.4) is modified

1

2

δE

δf
(f,

−→
C ) = λ

∫∫
Ω−−→

C

δf(f − g)dxdy + η

∫∫
Ω−−→

C

δf∇2fdxdy + η

∮
−→
C

δf
∂f

∂
−→
N

ds

=

∫∫
Ω−−→

C

δf(λ(f − g) − η∇2f)dxdy + η

∮
−→
C

δf
∂f

∂
−→
N

ds. (3.5)

where
−→
N is the outward normal vector of curve

−→
C .

Since δf is nonzero in Ω −−→
C and zero elsewhere, f satisfies the damped

Poisson equation with Neumann boundary condition as shown below.

∇2f =
λ

η
(f − g) in Ω −−→

C (3.6)

∂f

∂
−→
N

= 0 on
−→
C (3.7)

For the simple image which is composed of two homogeneous image regions and

the curve separating these homogeneous regions as shown in Figure 3.1, the

resulting equations can be written as

∇2fin =
λin

ηin

(fin − g) inside
−→
C ,

∂fin

∂
−→
N

= 0 on
−→
C (3.8)

∇2fout =
λout

ηout

(fout − g) outside
−→
C ,

∂fout

∂
−→
N

= 0 on
−→
C (3.9)

where fin denotes the function f inside the curve
−→
C and fout denotes the function

f outside the curve
−→
C . λin, ηin and λout, ηout are the scaling parameters which

enable the smoothing in different orders inside and outside
−→
C , respectively.

Normally, these constants are chosen as λin = λout and ηin = ηout.

For the second minimization step, f is fixed and the curve
−→
C separating the

smooth regions is tried to be determined. Considering the simple image case as
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shown in Figure 3.1, (3.2) can be reconstructed as

E(
−→
C ) = λin

∫∫
in

−→
C

(fin − g)2dxdy + λout

∫∫
out

−→
C

(fout − g)2dxdy (3.10)

+ηin

∫∫
in

−→
C

|∇f 2
in|dxdy + ηout

∫∫
out

−→
C

|∇f 2
out|dxdy + µ

∮
−→
C

ds.

A curve evolution process can be derived that minimizes (3.10) according to

the variation of
−→
C with respect to time t, i.e., ∂

−→
C

∂t
. Since (3.10) is composed of

four region integrals and the arc-length calculating the line integral, the curve

evolution is determined by the combination of results of the gradient flow meth-

ods which are explained in Section 2.2. It is noted that inward normal vectors for

the conjugate integral regions, i.e., inside and outside of curve
−→
C , are collinear

but in the opposite direction. When the direction of the normal vectors are

taken into account, the curve evolution equation, namely the Mumford-Shah

gradient flow, is attained as

∂
−→
C

∂t
=

(
λin(fin − g)2 − λout(fout − g)2

)−→
N (3.11)

+
(
ηin|∇f 2

in| − ηout|∇f 2
out|

)−→
N + µκ

−→
N

where
−→
N is the inward normal vector corresponding to the region inside the

curve
−→
C .

A proper segmentation algorithm based on the smoothing and curve evolu-

tion results works in an iterative manner. During an iteration step, the resulting

regional smooth approximations of image function g, i.e., fin and fout, are the

inputs for determining the evolving curve
−→
C and vice versa. The results of direct

solution to the Mumford-Shah functional on real and synthetic images can be

found in [22].

3.2 Fundamentals of the Proposed Method

The direct solution of Mumford-Shah model for segmentation requires PDE

solutions for the noise removal process as indicated in the previous section.

However, denoising via PDEs has some disadvantages [8] such as low denoising

capability and high computation time.
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Detection of the boundaries between the homogeneous regions addresses the

placement of these regions in the image domain. Therefore, once the closed

curves separating the regions have been found, the regions inside and outside

the curves can be denoised with a proper type of filter. This filter can be one of

the diffusion filters because of their high denoising capability.

As a result, the curve evolution prior to the denoising method is chosen as

the effective segmentation and denoising method due to its low computation

time and high denoising capability. According to the experimental results, it

is found that the curve evolution methods, namely the approximate Mumford-

Shah gradient flow method and the Chan-Vese active contour method, satisfy

the needs for proper segmentation.

In the following sections, the Chan-Vese active contour method and the im-

plementation of the approximate Mumford-Shah gradient flow method via level

set methods are explained. A hierarchical segmentation approach which is the

combination of the investigated curve evolution methods is proposed. Finally,

the effects of the nonlinear isotropic diffusion filters and the anisotropic diffu-

sion on an image as the prefiltering and denoising after segmentation schemes

are discussed.

The simulations on these topics are performed on a PC with AMD 2500+

CPU and 512 MB of RAM by running codes in the MATLAB environment.

3.2.1 Active Contours without Edges

An approximated form of the Mumford-Shah model in order to detect the

edges in an image is introduced by Chan-Vese [5]. A simplification on the previ-

ously explained piecewise smooth function f is made by setting average intensity

values in the image domains, i.e., Ωi. In their framework, it is aimed to find the

boundaries of the objects via an evolving implicit surface that is the result of

energy minimization of their model.

It is explicit to develop the model for a simple image g which is composed of

two piecewise smooth regions gin, gout and
−→
Co, the curve separating the smooth

regions, i.e.,
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g = gin ∪ gout ∪
−→
C o. (3.12)

The simple segmenting functional is

F (
−→
C ) = F1(

−→
C )+F2(

−→
C ) = λin

∫∫
in

−→
C

(g−cin)2dxdy+λout

∫∫
out

−→
C

(g−cout)
2dxdy

(3.13)

where
−→
C is a variable curve that tracks

−→
C o; cin and cout are the average values

of the image inside and outside the curve
−→
C ; and λin and λout are the positive

real constants scaling the inside and outside energy terms F1(
−→
C ) and F2(

−→
C ),

respectively. The minimizer of (3.13) is obviously

inf−→
C

{F (
−→
C )} = inf−→

C

{F1(
−→
C ) + F2(

−→
C )} ≈ 0 ≈ F1(

−→
C o) + F2(

−→
C o). (3.14)

Inspecting (3.13), the conditions on F1(
−→
C ) and F2(

−→
C ) are found as

• F1(
−→
C ) > 0 and F2(

−→
C ) ≈ 0 if

−→
C is outside

−→
C o,

• F1(
−→
C ) ≈ 0 and F2(

−→
C ) > 0 if

−→
C is inside

−→
C o,

• F1(
−→
C ) > 0 and F2(

−→
C ) > 0 if

−→
C is inside and outside

−→
C o,

• F1(
−→
C ) ≈ 0 and F2(

−→
C ) ≈ 0 if

−→
C is on

−→
C o.

The content of the energy functional in (3.13) does not satisfy the proper seg-

mentation of an image. In order to make the energy functional suit with the

requirements of segmentation, some regularization terms which are the length

of
−→
C and the area inside

−→
C have been added. Since the values of cin and cout

are varying depending on the position of evolving curve
−→
C , they are included in

the variable list of the functional F which becomes

F (
−→
C , cin, cout) = λin

∫∫
in

−→
C

(g − cin)2dxdy + λout

∫∫
out

−→
C

(g − cout)
2dxdy

+µ

∮
−→
C

ds + ν

∫∫
in

−→
C

dxdy (3.15)

where λin, λout, µ and ν are the fixed scaling parameters. In the numerical

calculations of this work, ν = 0 and λin = λout = λ. The effects of the parameters

λin, λout and µ are mentioned in the subsequent sections.
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The main difference between (3.2) and (3.15) is that the variables cin and cout

which represent the mean values of image parts inside and outside
−→
C , respec-

tively, are used in the latter model instead of the piecewise smooth representation

of g inside and outside
−→
C , i.e., fin and fout, respectively. This approximation

results in a significant computational performance increase during the segmen-

tation process, since the solutions of the PDEs (3.8) and (3.9) are not required

for the curve evolution any more [8].

Another difference is the last term in (3.15) which is the requirement for the

minimal area in
−→
C . As indicated in [5], this term generally is not required in

the segmentation process.

The minimization of the Chan-Vese energy functional can be achieved using

the level set methods. According to these methods, the interfacing curve
−→
C

among the piecewise smooth regions is replaced by the Lipschitz continuous

level set function φ(x, y) such that

−→
C = {(x, y)εΩ : φ(x, y) = 0}. (3.16)

Under this modification, (3.15) changes to

F (φ, cin, cout) = λin

∫∫
φ>0

(g − cin)2dxdy + λout

∫∫
φ<0

(g − cout)
2dxdy

+µ

∮
φ=0

ds + ν

∫∫
φ>0

dxdy. (3.17)

In order to define the double integrating terms in one common boundary term, a

Heaviside function H(φ) and its one-dimensional Dirac measure δ0 concentrated

at zero are defined by

H(φ) =

{
1, if φ ≥ 0,

0, if φ < 0
(3.18)

δ(φ) =
d

dφ
H(φ). (3.19)

The terms corresponding to length and area in (3.15) are expressed in [6] in

terms of H(φ) as

Length(Γ) =

∫∫
Ω

|∇H(φ)|dxdy, (3.20)

Area(Γ) =

∫∫
Ω

H(φ)dxdy. (3.21)
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Then, the terms of regularized energy functional F in (3.17) are expressed as∫∫
φ>0

(g − cin)2dxdy =

∫∫
Ω

(g − cin)2H(φ(x, y))dxdy (3.22)∫∫
φ<0

(g − cout)
2dxdy =

∫∫
Ω

(g − cout)
2[1 − H(φ(x, y))]dxdy (3.23)∮

φ=0

ds =

∫∫
Ω

|∇H(φ(x, y))|dxdy

=

∫∫
Ω

δ0(φ(x, y))|∇φ(x, y)|dxdy (3.24)∫∫
φ>0

dxdy =

∫∫
Ω

H(φ(x, y))dxdy. (3.25)

Additionally, the mean values of the separated regions for the fixed φ are

cin(φ) =

∫∫
Ω

g(x, y)H(φ(x, y))dxdy∫∫
Ω

H(φ(x, y))dxdy
(3.26)

cout(φ) =

∫∫
Ω

g(x, y)(1 − H(φ(x, y)))dxdy∫∫
Ω
(1 − H(φ(x, y)))dxdy

. (3.27)

After the updates mentioned above, the energy functional takes its final form as

F (φ, cin, cout) = λin

∫∫
Ω

(g − cin)2H(φ(x, y))dxdy

+λout

∫∫
Ω

(g − cout)
2[1 − H(φ(x, y))]dxdy (3.28)

+µ

∫∫
Ω

δ0(φ(x, y))|∇φ(x, y)|dxdy + ν

∫∫
Ω

H(φ(x, y))dxdy

Parameterizing φ with artificial time t ≥ 0 and minimizing the variational energy

function with respect to φ using calculus of variations, the associated Euler-

Lagrange equation (see Appendix A) is obtained as

∂φ

∂t
= δ0(φ)

[
µ(∇ · ∇φ

|∇φ|)− ν −λin(g− cin)2 + λout(g− cout)
2

]
= 0 in (0,∞) x Ω.

(3.29)

The initial and boundary conditions are

φ(x, y, 0) = φ0(x, y) in Ω and
δ0(φ)

|∇φ|
∂φ

∂
−→
N

= 0 on ∂Ω (3.30)

where
−→
N is the exterior normal to the boundary ∂Ω.
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Since φ is a surface in three dimensions, (3.29) shows the change of the

surface with respect to time t, and it states that the change takes place only at

the locations where φ(x, y, t) = 0, i.e., the contour on the image domain. This

result is obtained from the existing delta Dirac function. However, updating only

at these points is not proper from the practical point of view. The numerical

explanations will make this indication more explicit.

As a result of the Chan-Vese active contour method, an image is segmented

into two parts with respect to the two mean values. Each part can be composed

of homogeneous regions whose mean values are close to that of the image part

they are belonging to. These regions are separated by the zero level of the level

set function φ as shown in Figure 3.2.

In order to implement the Chan-Vese active contour model, some numerical

approximations have to be made. The finite difference method is used in order

to discretize (3.29). The useful notations for the discretization are given as

follows: h is the space step to define the grid points, i.e., (xi, yj) = (ih, jh)

where (i,j) forms the pixel index on an image. Taking ∆t as the time step, the

time approximation of φ(xi, yj, t) is denoted by φn
i,j = φ(n∆t, xi, yj) with n ≥ 0

and φ0 is the initial φ. The finite differences are

∆x
−φi,j = φi,j − φi−1,j

∆y
−φi,j = φi,j − φi,j−1 (3.31)

∆x
+φi,j = φi+1,j − φi,j

∆y
+φi,j = φi,j+1 − φi,j.

The former two differences are known as the backward differences, and the latter

two differences are the forward differences. Finally, embedding the discretiza-

tion of the divergence operator from [16], and computing the average values

c1(φ
n) and c2(φ

n) according to (3.26), the numerical model for (3.29) is ob-

tained as
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Figure 3.2: The separated homogeneous regions and the corresponding φ values

in these regions.

φn+1
i,j − φn

i,j

∆t
= δh(φ

n
i,j)

[
µ

h2
∆x

− ·
(

∆x
+φn+1

i,j√
(∆x

+φn
i,j)

2/(h2) + (φn
i,j+1 − φn

i,j−1)
2/(2h)2

)

+
µ

h2
∆y

− ·
(

∆y
+φn+1

i,j√
(∆y

+φn
i,j)

2/(h2) + (φn
i+1,j − φn

i−1,j)
2/(2h)2

)

−ν − λ1(gi,j − c1(φ
n))2 + λ2(gi,j − c2(φ

n))2

]
. (3.32)

In the experiments, the parameters h and ∆t are chosen as h = 1 and ∆t = 0.1.

Consequently, the order of the steps of the Chan-Vese active contour com-

putation algorithm is formed as

• initialize the level set function φ, i.e., φ0,

• calculate the mean values inside and outside the zero level of φ, i.e., c1(φ
n)

and c2(φ
n), respectively,
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• find the Heaviside and delta Dirac functions, i.e., Hh(φ
n) and δh(φ

n), re-

spectively,

• calculate the energy change which is the right-hand side of (3.32) and

obtain φn+1,

• enter the loop from the second step until the solution is stable. For the

next iteration, φn+1 is the initial condition, i.e., φn ⇐ φn+1.

Figure 3.3 shows the evolution of φ and its corresponding zero level curve

with respect to time. The identification of most of the edge points occurs at the

starting iterations of evolution; because at these iterations the mean values cin

and cout are far from their final values, and the value of the right hand-side of

(3.29) for each pixel is high enough to change the state of φ on the relevant grid

points, i.e., φn(xi, yj) < 0 and φn+1(xi, yj) > 0 or vice versa. As the iteration

count increases, the number of state changing pixels decreases.

Secondly, approximations of the Heaviside function H and so does the delta

Dirac function δ0 are proposed for the numerical calculation of update term for

φ according to time steps in (3.29). Possible approximations of H are given in

[30] as

H1,ε(φ) =




1, if φ > ε

0, if φ < −ε

1
2

[
1 + φ

ε
+ 1

π
sin(πφ

ε
)

]
, if |φ| ≤ ε

(3.33)

and in [5] as

H2,ε(φ) =
1

2

(
1 +

2

π
arctan

(φ

ε

))
. (3.34)

where ε denotes the infinitesimal change around zero.

Taking the derivatives of (3.33) and (3.34), the relevant delta Dirac functions

are found as

δ1,ε(φ) =




0, if |φ| > ε

1
2ε

[
1 + cos

(
πφ
ε

)]
, if |φ| ≤ ε

(3.35)

δ2,ε(φ) =
1

π

ε

ε2 + φ2
(3.36)
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Figure 3.3: The evolution of the curve on the synthetic image (left column) and

the corresponding evolution of the level set function for the Chan-Vese active

contour method (right column).
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Figure 3.3: continued

which are also shown in Figure 3.4. As ε → 0, the approximate Heaviside func-

tions H1,ε and H2,ε converge to the ideal case in (3.18), so does the delta Dirac

functions δ1,ε and δ2,ε. δ1,ε is nonzero in the interval [−ε, ε], whereas δ2,ε is nonzero

in the image domain. Consequently, using H1,ε and δ1,ε for updating of φ takes

place on a few level curves above and below the zero level. The zero level of φ

evolves as if it were a snake and can not detect the interior contours. However,

change in φ takes place at all levels when (3.29) is implemented via H2,ε and δ2,ε.

This property enables the zero level of φ appear not only surrounding the exte-

rior boundary of a smooth region but also the interior boundary. This statement

will be made clear later. In this work, H2,ε and δ2,ε are taken as the numerical

approximations to the Heaviside function H and the delta Dirac function around

zero δ0 in (3.29), and ε is set to 1.

The selection of the initial φ can be achieved in various ways. In Figure 3.5,

in order to investigate the effect of the initial φ selection on the performance of

the mentioned method, five different initial conditions on φ are given. For the

first run, the initial φ is chosen such that it does not result in a contour curve

on the image plane. For the remaining four runs, the initial conditions on φ are

given such that its zero level is outside the object boundary, crossing
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Figure 3.4: Two different approximations of (a) the Heaviside function and (b)

the delta Dirac function.
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Figure 3.5: Segmentation results of the Chan-Vese active contour method with

respect to different initial conditions. The first and the second columns show

the initial curves on the 100 x 100 synthetic image and the corresponding level

set function φ0. The third column is the final level set function φ and (p) is the

segmentation result of the different initial conditions. µ = 0.01 x 2552, λ = 10.
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Figure 3.5: continued
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the object boundary, inside the object boundary and composed of more than one

curve on the image plane, respectively. Independent of the selection of initial φ,

the final zero level of φ converges to the object boundary. However, the time

it takes for the algorithm to converge to the object boundary is highly affected

by the selection of initial φ. The CPU temporal performances according to

the mentioned five different initial conditions are 907.3 s, 98.9 s, 25.5 s, 136.2

s, 0.2 s, respectively. Among the first four initial conditions, the one with zero

level crosses the boundary of the object gives the best time of convergence to the

object boundary. Unfortunately, it is not always possible to know the placement

of the object boundary in different applications. Thus, the selection of the initial

φ whose zero level is composed of closed curves regularly distributed on the whole

image increases the chance of the zero level crossing the object boundaries at two

or more points. This selection is resulted in a much better CPU performance.

Another advantage of the Chan-Vese active contour method over the classical

snake methods can be seen for the case when there are more than one object

boundary inside one another, as in Figure 3.6. This is the direct result of using

the approximated delta Dirac function explained previously. Using this function,

the effect of minimizer in (3.29) can be seen at all levels of the function φ. As

the zero level of φ detects the outer boundary of the object, it does not stop

changing due to the mean value changes in the interior of the object boundary.

The zero level of φ keeps on changing until it also detects the interior boundary.

According to [5] and [8], the choice of the parameters µ, λin and λout has an

effect on the speed of convergence of the numerical results and the sizes of the

detected objects in the image. When the value of µ decreases, the algorithm

speeds down and the small objects in the image are detected. This is due to the

fact that for small µ the terms with λin and λout are more effective in (3.29).

However, in noisy images spikes can be seen in the smooth regions. In order not

to detect these spikes, µ has to be large enough. The relation between µ and

the variance of the noisy image, σ2, is indicated in [8] as

µ = βσ2 (3.37)

where β is a constant between 0 and 1.5. In this work, for the segmentation of
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Figure 3.6: The detection of the interior boundary of the objects when the initial

zero level of φ is outside the outer boundary.
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(g) (h)

Figure 3.6: continued

noisy images, β is taken as 0.5 or 2. Additionally, λin and λout are effective

in the subregions Ωin and Ωout, respectively, considering the simple image case

in Figure 3.1. Thus, the larger the parameters λin and λout, the most proba-

ble that the variations in the subregions appear in the zero level of φ. After

mentioning all of these details, some real image applications are given in Figure

3.7.

In some images, smooth regions having comparable mean values may be

located one inside the other. In these cases, the evolving zero level of φ is at the

outermost boundary. In order to handle this problem, another level set function

have to be implemented. This issue will be clarified in Section 3.2.3.

3.2.2 Approximated Mumford-Shah Flow

Another curve evolution method that can be used for the segmentation prob-

lems is the so called Mumford-Shah optical gradient flow method [10]. This

method is found from the structure of the energy functional (3.2), where the

smoothing function f is fixed. Since minimization of (3.10) includes minimizing

the arc-lengths of closed curves and minimizing the region integrals which define

33
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(c) (d)

Figure 3.7: Segmentation of noisy images by the Chan-Vese active contours

method. (a) 120 x 201 synthetic image with zero mean Gaussian white noise

(SNR = 20dB). (b) Segmented synthetic image. µ = 2σ2 = 3994, λ = 6. Compu-

tation time is 83 s. (c) 300 x 196 burning candle image with zero mean Gaussian

white noise (SNR = 10dB). (d) Segmented burning candle image. µ = 2σ2 =

3798, λ = 6. Computation time is 547.4 s.
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the error and smoothness terms, the flows described in Section 2.2 suit with the

needs. Since the terms related with the gradient flow for region integrals in-

clude the piecewise smooth function f , the mean values of the regions inside

and outside
−→
C can be used instead of f similar to the case in the previous curve

evolution algorithm. This results in a useful computational simplification. Ad-

ditionally, the outer normal vectors for the conjugate regions are in the opposite

directions, meaning that the net movement at the boundary points can be found

by subtracting the integrands of the region integrals. By combining these flows,

the curve evolution equation can be found as

∂
−→
C

∂t
= µκ

−→
N +

[
λin(g − cin)2 − λout(g − cout)

2
]−→
N (3.38)

where µ, λin and λout are the coefficients mentioned previously.

For the implementation, the level set method is used in order to make robust

boundary localization. Embedding curve evolution equation (3.38) to a Lipschitz

continuous level set function φ is different than the previous one. The evolving

zero level of φ, i.e.,
−→
C (t), is defined as

−→
C (t) ∈ R2 : φ(

−→
C , t) = 0. (3.39)

Differentiating (3.39) with respect to t

∇φ(
−→
C , t) · ∂

−→
C

∂t
+

∂φ(
−→
C , t)

∂t
= 0 (3.40)

is obtained. For the zero level of φ, the inner normal vector can be found as

∇φ

|∇φ| = −−→
N . (3.41)

Combination of equations (3.38), (3.40) and (3.41) resulted in the desired level

set function φ, i.e.,

∂φ

∂t
= |∇φ|

[
µ∇ ·

(
∇φ

|∇φ|

)
+

[
λin(g − cin)2 − λout(g − cout)

2
]]

(3.42)

The only difference of this flow from the Chan-Vese active contour method is

that it is more effective in the whole image because of the multiplier of the

update term in (3.42), i.e., |∇φ|.
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The evolutions of φ and its corresponding zero level with respect to time are

shown in Figure 3.8. All the numerical approximations and predefined algorithm

steps are valid also for this method. The initialization of φ has no importance for

this method, either. The five different initialization schemes for φ are given with

the relevant results in Figure 3.9; the pertinent temporal CPU performances

according to these initializations are the same, i.e., 1.6 s. Since the level set

method is used for the implementation of this method, the interior boundaries

of the objects are also detected, which is similar to the Chan-Vese active contour

method.

Resulting equations of the given two curve evolution schemes in Sections

3.2.1 and 3.2.2 are nearly the same. These φ updating equations are composed

of multiplicative term and the difference term which is formed by adding the

curvature term and the error terms in the mean square sense. In (3.42), the

difference term between the two consecutive iterations of φ is multiplied with

|φ|. According to this statement, all the points on the surface φ are affected

from the updates. Thus, its zero level moves fast and detects the boundary

locations of piecewise smooth regions quickly. However, in (3.29), the points on

the zero level and around the zero level of φ changes at most. As a result, its zero

level evolves in a limited region in each iteration, which means a slower motion

as compared to the Mumford-Shah gradient flow method. The segmentation

durations for the two methods can be compared according to the results given

in Figures 3.7 and 3.10.

3.2.3 Four-Phase Hierarchical Image Segmentation

Using one level set function, one can observe that the image is segmented into

more than two piecewise smooth regions depending on the application. How-

ever, from the computational point of view such an image classified into two

parts. This result can be obtained from (3.29), where the energy minimization

is achieved via using two mean values. This type of segmentation is named as

two-phase segmentation.
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Figure 3.8: The evolution of the curve on the hand image (left column) and the

corresponding evolution of the level set function for the approximate Mumford-

Shah gradient flow method (right column).
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Figure 3.8: continued

When two or more smooth regions whose average intensities are close to each

other as compared to the rest of the image are adjoining or one inside the other,

then these regions are regarded as one smooth region in two-phase segmentation.

This is the case for regions III and IV in Figure 3.11. In order to segment these

regions, more than one level set function has to be used. Therefore, the image

is classified into four parts; this is called the four-phase segmentation. The

relation between the number of phases, Nphase, and the number of required level

set functions, Nφ, is given by

Nφ = log2 Nphase. (3.43)

The partitioning of the image domain with respect to two and three level set

functions are given in Figure 3.12.

Observations show that the image segmentation with two level set functions

satisfies the needs for most of the applications. In [24], the four-phase segmen-

tation is accomplished via the energy functional
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Figure 3.9: Segmentation results of the approximate Mumford-Shah gradient

flow with respect to different initial conditions. The first and the second columns

show the initial curves on the 100 x 100 hand image and the corresponding level

set function φ0. The third column is the final level set function φ and (p) is the

segmentation result of the different initial conditions. µ = 0.0001 x 2552, λ =1)
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Figure 3.9: continued
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(a) (b)

(c) (d)

Figure 3.10: Segmentation of noisy images by the approximate Mumford-Shah

gradient flow method. µ = 0.0001 x 2552, λ = 1. (a) 120 x 201 synthetic image

with zero mean Gaussian white noise (SNR = 20dB). (b) Segmented synthetic

image. Computation time is 3.2 s. (c) 300 x 196 burning candle image with

zero mean Gaussian white noise (SNR = 10dB). (d) Segmented burning candle

image. Computation time is 4.3 s.
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Figure 3.11: An image where two smooth regions with comparable mean values

are one inside the other.

F (Φ, c) = λ11

∫∫
Ω

(g − c11)
2H(φ1)H(φ2)dxdy

+λ10

∫∫
Ω

(g − c10)
2H(φ1)[1 − H(φ2)]dxdy

+λ01

∫∫
Ω

(g − c01)
2[1 − H(φ1)]H(φ2)dxdy

+λ00

∫∫
Ω

(g − c00)
2[1 − H(φ1)][1 − H(φ2)]dxdy

+µ1

∫∫
Ω

δ0(φ1)|∇φ1|dxdy + µ2

∫∫
Ω

δ0(φ2)|∇φ2|dxdy

+ν1

∫∫
Ω

H(φ1)dxdy + ν2

∫∫
Ω

H(φ2)dxdy (3.44)

where Φ = (φ1, φ2) and c = (c11, c10, c01, c00) are the level set function and the

constant vectors, respectively. Here

c11 = mean(g) when φ1(x, y, t) > 0 and φ2(x, y, t) > 0,

c10 = mean(g) when φ1(x, y, t) > 0 and φ2(x, y, t) < 0,

c01 = mean(g) when φ1(x, y, t) < 0 and φ2(x, y, t) > 0,

c00 = mean(g) when φ1(x, y, t) < 0 and φ2(x, y, t) < 0.
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Figure 3.12: (a) Two level set functions, φ1 and φ2, partition the image domain

into four regions. (b) Three level set functions, φ1, φ2 and φ3, partition the

image domain into eight regions.
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Finally, the Euler-Lagrange equations for level set functions φ1 and φ2 can

be found similar to the ones in Section 3.2.1 as

∂φ1

∂t
= δ0(φ1)

[
µ1(∇ · ∇φ1

|∇φ1|
) − ν1 −

[
λ11(g − c11)

2 − λ01(g − c01)
2
]
H(φ2)

+
[
λ10(g − c10)

2 − λ00(g − c00)
2
][

1 − H(φ2)
]]

= 0, (3.45)

∂φ2

∂t
= δ0(φ2)

[
µ2(∇ · ∇φ2

|∇φ2|
) − ν2 −

[
λ11(g − c11)

2 − λ01(g − c01)
2
]
H(φ1)

+
[
λ10(g − c10)

2 − λ00(g − c00)
2
][

1 − H(φ1)
]]

= 0. (3.46)

In this four-phase segmentation, the level set functions evolve simultaneously.

The results of the simultaneous four-phase segmentation based on the Chan-Vese

active contour method can be found in [24]. One handicap of the simultaneous

four-phase image segmentation is that the decision of segmenting the image with

one or two level sets has to be given at the start of processing after inspecting

the image. If the starting decision is to use one level set function, and the result

is not satisfactory, the implementation has to be restarted for the simultaneous

level set evolution.

This obstacle can be handled via using decoupled level set functions. This

algorithm is composed of two steps. In the first step of decoupled multiphase

image segmentation, only one level set function evolves. If the segmentation

does not satisfy the expectations according to the results of the first step, then

the second level set function is activated. More steps can be added in order

to segment more regions. The relevant Euler-Lagrange equations for the first

and second steps of decoupled segmentation, i.e., the hierarchical four-phase

segmentation based on the Chan-Vese active contour method, are

∂φ1

∂t
= δ0(φ1)

[
µ1(∇ · ∇φ1

|∇φ1|
) − ν1 − λ1(g − c1)

2 + λ0(g − c0)
2

]
= 0 (3.47)

∂φ2

∂t
= δ0(φ2)

[
µ2(∇ · ∇φ2

|∇φ2|
) − ν2 −

[
λ11(g − c11)

2 − λ01(g − c01)
2
]
H(φ1)

+
[
λ10(g − c10)

2 − λ00(g − c00)
2
][

1 − H(φ1)
]]

= 0. (3.48)
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Similarly, the PDEs for the hierarchical four-phase segmentation based on

the approximate Mumford-Shah gradient flow method are given as

∂φ1

∂t
= |∇φ1|(φ1)

[
µ1(∇ · ∇φ1

|∇φ1|
) − ν1 − λ1(g − c1)

2 + λ0(g − c0)
2

]
= 0, (3.49)

∂φ2

∂t
= |∇φ2|(φ2)

[
µ2(∇ · ∇φ2

|∇φ2|
) − ν2 −

[
λ11(g − c11)

2 − λ01(g − c01)
2
]
H(φ1)

+
[
λ10(g − c10)

2 − λ00(g − c00)
2
][

1 − H(φ1)
]]

= 0. (3.50)

In the numerical calculations for the hierarchical four-phase segmentation in this

work; ν1 = ν2 = 0, λ0 = λ1 and λ00 = λ01 = λ10 = λ11 = λ2.

The results of the two hierarchical four-phase segmentation approaches on

the synthetic images are given in Figures 3.13 and 3.14. In the first rows,

it is seen that the segmentation of the smooth regions is achieved using one

level set function. In the second rows, the insufficiency of using one level set

function in order to segment the adjoining homogeneous regions with comparable

mean values is shown. The last rows contain the segmentation results of using

decoupled level set functions.

According to the observations, the hierarchical four-phase segmentation ap-

proach based on the approximate Mumford-Shah gradient flow method gives

undesired results on some images due to the selected value of λ2. If it is set to a

small value, the second level set function becomes positive at all points after a

number of iterations, i.e., its zero level is not on the image plane. Conversely, if

λ is large, not only the boundaries of the undetected regions in the first segmen-

tation step but also the small variations in the previously segmented regions are

detected. These unsatisfactory results are illustrated in Figures 3.15 and 3.16.

Comparing the two hierarchical four-phase segmentation approaches, the one

based on the approximate Mumford-Shah gradient flow method converges faster

to the boundary locations. However, in some cases it can not detect the bound-

aries properly. Hence, a fast hierarchical four-phase segmentation approach is

formed via the combination of the two segmentation methods. At the first step,

the approximate Mumford-Shah gradient flow method is used as the fast seg-

mentation method. Second step is formed by the Chan-Vese active contour

method.
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(a) (b)

(c) (d)

Figure 3.13: The hierarchical four-phase segmentation based on the Chan-Vese

active contour method. Image size: 120 x 201, µ1 = µ2 = 0.0001 x 2552, λ1 = λ2

= 1. (a) The synthetic image composed of three regions with two different mean

values and the initial curves. (b) Segmentation result of (a). Computation time

is 6.8 s. (c) The synthetic image composed of three regions with three different

mean values and the initial curves belonging to the first step. (d) Segmentation

result of the first step. Computation time is 14.4 s. (e) The initial curves

belonging to the second step. (f) Segmentation result of the second step. Total

computation time is 684.2 s.

46



(e) (f)

Figure 3.13: continued

Thus, the Euler-Lagrange equations for the proposed hierarchical four-phase

segmentation approach are given as

∂φ1

∂t
= δ0(φ1)

[
µ1(∇ · ∇φ1

|∇φ1|
) − ν1 − λ1(g − c1)

2 + λ0(g − c0)
2

]
= 0 (3.51)

∂φ2

∂t
= |∇φ2|

[
µ2(∇ · ∇φ2

|∇φ2|
) − ν2 −

[
λ11(g − c11)

2 − λ01(g − c01)
2
]
H(φ1)

+
[
λ10(g − c10)

2 − λ00(g − c00)
2
][

1 − H(φ1)
]]

= 0. (3.52)

The comparison of the proposed hierarchical four-phase segmentation approach

and the one whose segmentation steps are based on the Chan-Vese active contour

method are given in Figure 3.17. Additionally, segmentation of the well-known

house image by the proposed method results in suitable segments, (see Figure

3.18).

Unfortunately, the proposed method detects the small variations in the smooth

regions if the target image is composed of only a few smooth regions. This defect,

known as over-segmentation, is illustrated in Figure 3.19.
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(a) (b)

(c) (d)

Figure 3.14: The hierarchical four-phase segmentation based on the approximate

Mumford-Shah gradient flow method. Image size: 64 x 64, µ1 = µ2 = 0.0001

x 2552, λ1 = λ2 = 1. (a) The synthetic image composed of three regions with

two different mean values and the initial curves. (b) Segmentation result of (a).

Computation time is 0.8 s. (c) The synthetic image composed of three regions

with three different mean values and the initial curves belonging to the first

step. (d) Segmentation result of the first step. Computation time is 0.6 s. (e)

The initial curves belonging to the second step. (f) Segmentation result of the

second step. Total computation time is 1.1 s.
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(e) (f)

Figure 3.14: continued

3.2.4 Denoising After Segmentation

After getting the correct boundary localization, the denoising becomes a

simple issue. In order not to lose the edge information, each denoising process

is applied to inside and outside the zero level of evolving level set function φ

but not across the zero level. This denoising process can be achieved with any

of the diffusion filters given in Section 2.3 because of their high noise smoothing

capability. For the segmentation using one level set function, the denoising

takes place in two steps, i.e., one step for the regions φ > 0 and the other step for

φ < 0. If two or more level set functions are used for the proper segmentation, 2n

smoothing steps are required, where n indicates the number of active level sets.

The effects of the denoising by an anisotropic diffusion filter on the previously

segmented images and the output SNR values are seen in Figure 3.20. The

output SNRs are calculated using

SNR = 10 log10

(
‖u‖2

‖u0 − u‖2

)
(3.53)

where u0 and u are the original unnoisy image and the filtered image, respec-

tively.
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(a) (b)

(c) (d)

Figure 3.15: The hierarchical four-phase segmentation based on the approxi-

mate Mumford-Shah gradient flow method without the detection of the object

boundary. Image size: 120 x 201, µ1 = µ2 = 0.0001 x 2552, λ1 = λ2 = 1.
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(a) (b)

(c) (d)

Figure 3.16: The hierarchical four-phase segmentation based on the approximate

Mumford-Shah gradient flow method with the detection of the small variations

in the homogeneous regions. Image size: 120 x 201, µ1 = µ2 = 0.0001 x 2552,

λ1 = λ2 = 100000.
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(a)

(b) (c)

Figure 3.17: The hierarchical four-phase segmentations based on the Chan-Vese

active contour method (left column) and the proposed method (right column).

(a) 64 x 64 synthetic image with zero mean Gaussian white noise (SNR = 25dB)

and the initial curves for the first step (b), (c) The results of the first steps. (b)

µ1 = 0.5σ2 = 1484, λ1 = 6, (c) µ1 = 0.0001 x 2552, λ1 = 1. Computation times

are (b) 27.8 s, (c) 0.8 s. (d), (e) The initial curves for the second steps. (f), (g)

The results of the second steps. µ2 = 0.5σ2 = 1484, λ2 = 6. Total computation

times are (f) 43.7 s, (g) 12.5 s.
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(d) (e)

(f) (g)

Figure 3.17: continued
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(a)

(b) (c)

Figure 3.18: Segmentation of the well-known house image using the proposed

hierarchical four-phase segmentation approach. (a) The original 256 x 256 test

image. (b) The segmented image after the first segmentation step. µ1 = 0.0001

x 2552, λ1 = 1. Computation time is 4.7 s. (c) The segmented image after the

second segmentation step. µ2 = 0.5σ2 = 1059, λ2 = 6. Total computation time

is 667.9 s.
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(a)

(b) (c)

Figure 3.19: Over-segmentation of an image. (a) The original 126 x 87 test

image. (b) The segmented image after the first segmentation step. µ1 = 0.0001

x 2552, λ1 = 1. Computation time is 0.8 s. (c) The segmented image after the

second segmentation step. µ2 = 0.5σ2 = 502.2, λ2 = 6. Total computation time

is 53.3 s.
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(a) (b)

(c) (d)

Figure 3.20: The effect of the anisotropic diffusion filtering on the previously

segmented images. Left: The segmented noisy images. (a) Natural noise. The

input SNRs are (c) 10 dB, (e) 25 dB. Right: Filtered images. The output SNRs

are (d) 17.45 dB, (f) 35.55 dB.
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(e) (f)

Figure 3.20: continued

3.2.5 Effects of Prefiltering

In the segmentation and denoising algorithm, the segmentation process which

is sensitive to discontinuities in the images is run firstly. Unfortunately, in

applications with low signal-to-noise ratio, the noisy spikes are regarded as the

objects to be detected. In order to handle this problem, it is a good choice to

implement a prefiltering scheme prior to segmentation. This prefiltering scheme

has to smooth the noise in piecewise smooth regions of interest. On the contrary,

its smoothing action must not take place across the edges. One of the proper

filtering schemes satisfying these preliminaries is the nonlinear isotropic diffusion

filter as explained previously. However, in the simulations, the blurring effect of

nonlinear diffusion filtering is seen at some boundaries. Although the boundaries

of the smooth parts are blurred, the desired boundary locations are found due to

the efficiency of the segmentation algorithm. The suitability of the prefiltering

issue can be observed in Figure 3.21.
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(a) (b)

(c) (d)

Figure 3.21: The effect of the prefiltering scheme for the segmentation and

denosing of the very noisy images. The First Row: The original images with

white Gaussian noise. The input SNRs are (a) 3 dB, (b) 13 dB. The Second

Row: The unsatisfactory segmentations. The Third Row: The smoothed images

after prefiltering. The Last Row: The filtered images after segmentation and

denoising. The output SNRs are (g) 11.46 dB, (h) 23.1 dB.
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(e) (f)

(g) (h)

Figure 3.21: continued
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3.3 Proposed Method

Combining the topics above, the steps for a fast and proper segmentation

and denoising method is developed as:

• A nonlinear diffusion filter is applied if necessary on the noisy image.

• The approximated Mumford-Shah gradient flow is applied to the image

with automatic level set initialization. It is a good idea to select an initial

φ whose zero level is composed of closed curves distributed on the image.

• Check whether the two-phase segmentation satisfies the expectations. If

not, apply the second step of hierarchical segmentation by using the Chan-

Vese active contour method.

• Finally, apply the anisotropic diffusion filtering in the segmented piecewise

smooth regions independently in order not to cause blurring at the detected

boundaries.

3.4 Comparison of the Proposed Method with

the Normalized Cuts Method

The normalized cuts method is a widely used segmentation method proposed

by Shi and Malik [19], [20]. In this method, the segmentation problem is taken

as a graph partitioning problem, and a global criterion, called the normalized

cut, is proposed for segmenting the graph. It groups the nodes forming the

image according to a cost function which is a measure of the similarity among

the nodes. The similarity is inversely proportional to the difference in color and

position.

While using the normalized cuts method, the number of segments, e.g., the

number of the observed smooth regions in the image, has to be set at the be-

ginning. However, in some simulations this value might be insufficient for the

proper segmentation. In this case, it has to be set to a larger value which can be
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found by trial and error. In the following simulations, it is set to the minimum

value which enables the boundaries of the observed smooth regions to be de-

tected. In Figure 3.22, the segmentation results according to the proposed and

normalized cuts methods are given in the left and right columns, respectively.

The image on the first row is properly segmented by the two methods, where the

proposed method is faster. The processed image in the second and the third rows

is composed of two smooth regions. In the second row, the number of segments

for the normalized cuts method is set to two, and it is observed that the method

can not segment the image properly. In the third row, this number is increased

to three. This time the normalized cuts method segments the image, detects

the boundaries but includes an unexpected line in one of the smooth regions. In

the forth row, similar problems are encountered for the normalized cuts method

while processing the image composed of four smooth regions. The number of

segments for the normalized cuts method is set to six and unexpected lines are

still observed on the processed image. Additionally, the detected boundaries for

the normalized cuts method in the third and the forth rows are not the exact

ones surrounding the smooth regions while the proposed method detects them

properly. For the segmentation results given in the fifth row, the second segmen-

tation step of the proposed method is not activated. In this case, it segments the

image faster than the normalized cuts method where the number of segments

is set to five. However, the proposed method detects less boundaries than the

normalized cuts method. For the segmentation results given in the last row, the

second step of the proposed method is activated; and for the normalized cuts

method the number of segments is set to twenty. In this case, the proposed

method ends up with more boundary detection but slower segmentation than

the normalized cuts method. According to these results, it can be concluded

that the proposed method results in better image segmentation in the sense of

boundary localization. Additionally, there is no need to set a parameter for the

proper segmentation, and its computation time is less than that of the normal-

ized cuts method for the cases where the first step of the proposed method is

adequate for the proper segmentation.
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(a) (b)

(c) (d)

Figure 3.22: The segmentation results due to the proposed method (left column)

and the normalized cuts method (right column). The corresponding computa-

tion times are (a) 2 s, (b) 28.3 s, (c) 0.4 s, (d) 10.8 s, (e) 0.4 s (f) 12.9 s, (g)

12.5 s, (h) 2.7s, (i) 0.4 s, (j) 15.7 s, (k) 401 s, (l) 77 s. The number of segments

set at the beginning in the normalized cuts method are (b) 4, (d) 2, (f) 3, (h)

6, (j) 5 and (l) 20.
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(e) (f)

(g) (h)

(i) (j)

Figure 3.22: continued
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(k) (l)

Figure 3.22: continued
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chapter 4

Simulations on Some

Applications

In the previous chapter, a fast and suitable segmentation and denoising

method is introduced. However, the method have been generally applied on

the synthetic images. In this chapter, the method is examined on some specific

application areas, namely, medical imagery, thermal imaging and SAR imagery.

4.1 Simulations on Medical Imagery

The segmentation and denoising is a key issue in medical imagery in order

to get the details from the medical images. By this way, some illnesses are

diagnosed. As an illustration, the osteoarthritis can be diagnosed by observing

the volumetric change in the cartilage in the knee. For the precise calculation of

the area and the volume of the cartilage, a proper segmentation method has to

be used. Due to these facts, active contours are widely used in medical imagery.

The segmentation and denoising method proposed in this work is applica-

ble for various kinds of medical imagery including magnetic resonance imaging

(MRI), computed tomography (CT), X-ray imaging and ultrasound. It elimi-

nates the internal noise in the images and blurring defects. In Figure 4.1, the

results of the proposed method on some MRI images are given.
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(a)

(b) (c)

Figure 4.1: The segmentation and denoising of MRI images with the proposed

method. Prefiltering scheme is not applied. (a), (d), (g) Original MRI images.

(a) Image size: 256 x 192. (d) Image size: 182 x 182. (g) Image size: 182 x

182. (b), (e), (h) The segmented parts in the images. Computation times are

(b) 212.7 s, (e) 217.2 s and (h) 103.9 s. (c), (f), (i) Filtered MRI images.
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(d)

(e) (f)

(g)

Figure 4.1: continued
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(h) (i)

Figure 4.1: continued

4.2 Simulations on Thermal Imaging

Thermal imaging makes it possible to see the objects in daylight or night by

detecting the infrared emission from the objects based on their temperature. The

amount of radiation emitted by an object increases with temperature, therefore

thermal imaging allows one to see variations in temperature.

The heat flow according to the temperature of the objects also warms or

cools their environment; therefore, the objects are blurred in the infrared im-

ages. Additionally, some defects in the infrared images due to the improper

normalization of the infrared sensor responses can be seen. These problems are

dealt with the proposed method in this work. Some illustrations to thermal

imaging applications of the proposed method are given in Figure 4.2. Accord-

ing to these results, it is observed that the edges of the smooth regions become

sharper and the details of the objects are more visible.
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(a) (b)

(c) (d)

Figure 4.2: The segmentation and denoising of infrared images with the proposed

method. Prefiltering scheme is not applied. (a), (b) Original infrared images.

(a) Image size: 80 x 166. (b) Image size: 89 x 120. (c), (d) The segmented parts

in the images. (c) Only one level set function is applied. Computation times

are (c) 1.6 s and (d) 14.1 s. (e), (f) Filtered infrared images.

69



(e) (f)

Figure 4.2: continued

4.3 Simulations on SAR Imagery

Synthetic Aperture Radar (SAR) is a microwave instrument that produces

high-resolution imagery of the Earth’s surface in all weather conditions. It differs

from normal cameras in that it provides its own illuminating light at radio wave-

lengths, and each pixel takes the value according to the energy of the backscatter

of the transmitted signal. The darker part in the SAR image represents the low

backscatter, and the brighter parts represent the high backscatter. The level of

backscatter for a target area depends on some factors such as the smoothness of

the target area, polarization of the pulses, moisture in the target area, etc. The

detailed information on SAR imagery is given in [7].

The radar images are composed of many dots due to the non-smooth radar

backscatter representing each pixel value. Since, multiplicative speckle noise

is observed in SAR images due to the scattering phenomena, a preprocessing

scheme which involves logarithmic transform in order to convert the multiplica-

tive noise to additive noise is required. In this work, SAR images are processed
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by the proposed method after the logarithmic preprocessing scheme. However,

the signal-to-noise ratio still remains low after it. Therefore, the prefiltering

scheme with a nonlinear diffusion filter is activated in the simulations. The re-

sults of SAR image processing by the proposed method is given in Figure 4.3.
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(a) (b)

(c) (d)

Figure 4.3: The segmentation and denoising of SAR images with the proposed

method. (a), (b) Original SAR images. Image size: 128 x 128 (c), (d) The

denoised images after prefiltering. (e), (f) The segmented parts in the images.

Computation times are (e) 34.2 s and (f) 30.1 s. (g), (h) Filtered SAR images.
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(e) (f)

(g) (h)

Figure 4.3: continued
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chapter 5

Conclusion

In this thesis, the variational methods on image segmentation and denoising

problem have been examined. These methods are the approximate solutions

to the variational problem of minimizing the functional presented in Mumford-

Shah model. Using the results of these methods, a fast and robust image seg-

mentation and denoising algorithm has been proposed. The algorithm differs

from the one developed by Gao and Bui in that the hierarchical segmentation

part is composed of two different segmentation methods, namely the approxi-

mate Mumford-Shah gradient flow method and the Chan-Vese active contour

method, and a prefiltering process has been added in order to deal with very

noisy images.

While constructing the algorithm, some comparisons have been made on the

segmentation methods which have been implemented via the level set meth-

ods. The results of the two methods have been found the same. However, it

has been observed that the approximate Mumford-Shah gradient flow method

results in faster convergence of the evolving curve to the boundaries of the

piecewise smooth regions. In order to decrease the convergence time for the

Chan-Vese active contour method, the initialization process has been made au-

tomatic, which embeds an initial level set function whose zero level is composed

of the closed curves crossing the image plane regularly. In spite of this modi-

fication, the Chan-Vese active contour method has remained much slower than

the other one. The reason is that the approximate Mumford-Shah gradient flow

has a more globally effective minimizer due to its multiplicative term, i.e., the

gradient of the evolving level set function.

During the experimental work, it has been seen that the two-phase seg-

mentation has not satisfied the expectations even in simple synthetic images.
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Depending on the approaches presented in [24] and [8], the hierarchical segmen-

tation approach where the second segmentation step uses the results of the first

one has been chosen in order to segment the bulk of the homogeneous parts in

the image. When the hierarchical approach has been formed by running the

approximate Mumford-Shah flow in two consecutive steps, the unsatisfactory

segmentation of small variations in the homogeneous parts has been observed.

When the Chan-Vese active contour method was used in a similar way, the hi-

erarchical segmentation process has been found to be long-running due to the

first segmentation step. Based on these facts, a fast hierarchical segmentation

algorithm has been proposed by running the Chan-Vese active contour method

just after the approximate Mumford-Shah gradient flow method.

After the boundaries of the noisy regions were detected, a diffusion filter has

been applied to the each segmented region independently. By this way, the edges

of the homogeneous regions have been preserved, and the signal-to-noise ratio

of the image has been increased.

The segmentation and denoising algorithm works fine for low noisy images.

Unfortunately, the noise particles in the smooth regions are also detected in very

noisy applications. This problem has been handled by modifying the scaling

parameters in the update term of the level set function up to a point. In order

to obtain a generalized solution, a prefiltering process which uses the nonlinear

diffusion filter as the edge-preserved denoising filter has been added.

The experimental work has shown the effectiveness of the proposed segmen-

tation method. Compared with the normalized cuts method, it has resulted in

better boundary localization. However, the proposed method could not process

the texture images, because the similarities and dissimilarities among the re-

gions are not considered in the segmentation steps. The proposed method has

been tested for the applications such as medical imagery, thermal imaging and

SAR imagery, and satisfactory results have been obtained. The edges of the

smooth regions in the images have been detected and the blurring effects have

been eliminated.

During the simulations, it has been observed that the selection of the appro-

priate scaling parameters has affected the convergence time of the segmentation
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methods and the sizes of the segmented regions. It is a good idea to make the

selection of them automatically depending on the image. In addition to that,

unexpected results in the four-phase hierarchical segmentation approach based

on the approximated Mumford-Shah gradient flow method have been detected.

If the reasons of this problem are found and they are eliminated, then a faster

segmentation approach can be obtained. These topics will be the subject for the

future work.
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appendix A

First Variation and

Euler-Lagrange Equation

Minimization paradigm is an inevitable process in order to find solutions to

the mathematical models of systems in daily life. One of the basic mathemat-

ical analysis of nonlinear minimization process on infinite dimensional function

spaces is known as the calculus of variations. It can be used to find an unknown

function that minimizes or maximizes a functional which is a mapping of the

functions in a function space to another one.

The simplest functional to be minimized is the one which depends upon at

most the first derivative of a continuous and scalar function. y = u(x) ∈ C1[a, b]

is the suitable function to be determined which minimizes the functional

J [u] =

∫ b

a

L(x, u, u′)dx (A.1)

where the integrand is known as the Lagrangian for the variational problem and

u′ is the first derivative of u. The gradient of the functional of minimizer u

vanishes, i.e., ∇J [u] = 0, and it is defined by the directional derivative formula

〈∇J [u], δu〉 =
d

dt
J [u + tδu]

∣∣∣∣
t=0

(A.2)

where δu is the function which indicates the direction of the computed derivative.

δu and the gradient operator on functionals are known as the variation in the

function u and the variational derivative, respectively. In (A.2), the standard

inner product defined in L2 space,

〈f, g〉 =

∫ b

a

f(x)g(x)dx, (A.3)
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is used. Substituting (A.2) to (A.1), and by the chain rule,

d

dt
J [u + tv] =

∫ b

a

d

dt
L(x, u + tv, u′ + tv′)dx (A.4)

=

∫ b

a

[
v
∂L

∂u
(x, u + tv, p + tv′) + v′∂L

∂p
(x, u + tv, p + tv′) + v′

]
dx

is obtained where p is the first derivative of u(x), i.e., u′ and v = δu. Setting

t = 0, (A.4) is simplified to

〈∇J [u], v〉 =

∫ b

a

[
v
∂L

∂u
(x, u, p) + v′∂L

∂p
(x, u, p)

]
dx. (A.5)

In literature, the integral part in (A.5) is known as the first variation of the

functional J [u].

Defining a new function

r(x) =
∂L

∂p
(x, u(x), p(x)), (A.6)

the second term on the right-hand side of (A.5) can be found by integrating by

parts as ∫ b

a

r(x)v′(x)dx = [r(b)v(b) − r(a)v(a)] −
∫ b

a

r′(x)v(x)dx (A.7)

where

r′(x) =
d

dx

(
∂L

∂p
(x, u, p)

)
=

∂2L

∂x∂p
(x, u, p) + p

∂2L

∂u∂p
(x, u, p) + p′

∂2L

∂p2
(x, u, p).

(A.8)

The boundary conditions on the minimizer function u(x) and u(x) + tυ(x) are

the same. Thus, υ(x) satisfies the homogeneous boundary conditions

υ(a) = 0 and υ(b) = 0. (A.9)

Finally,

〈∇J [u], v〉 =

∫ b

a

∇J [u]vdx =

∫ b

a

v

[
∂L

∂u
(x, u, p) − d

dx

(
∂L

∂p
(x, u, p

)]
dx (A.10)

is obtained since the boundary terms in (A.7) vanish. Inspecting (A.10), it is

concluded that the minimizer u(x) should satisfy

∇J [u] =
∂L

∂u
(x, u, p) − d

dx

∂L

∂p
(x, u, p) = 0. (A.11)
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Using (A.8), a second order differential equation,

E(x, u, p, p′) =
∂L

∂u
(x, u, p)− ∂2L

∂x∂p
(x, u, p)−u′ ∂2L

∂u∂p
(x, u, p)−p′

∂2L

∂p2
(x, u, p) = 0,

(A.12)

for the minimizer is obtained. This equation is the Euler-Lagrange equation

associated with (A.1).
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appendix B

Curvature

Curvature is a frequently used notion in applications requiring curve evolu-

tion and it simply associates the rate of turning of the tangential vector in terms

of the normal vector on the moving curve. It is defined for parameterized curves

and curves as an isolevel of a function. Curvature of a curve is given in

Figure B.1.

B.1 Curvature of the Parameterized Curves

Let −→r (p) be a parameterized curve, −→r (p) = (r1(p), r2(p)), in R
2 where 0 ≤ p ≤ 1.

Then the unit tangential vector
−→
T (p) at −→r (p) and the unit normal vector

−→
N (p)

at −→r (p) can be written as

−→
T (p) =

−→r ′(p)

|−→r ′(p)| = (
r′1(p)√

(r′1(p))2 + (r′2(p))2
,

r′2(p)√
(r′1(p))2 + (r′2(p))2

), (B.1)

−→
N (p) = (− r′2(p)√

(r′1(p))2 + (r′2(p))2
,

r′1(p)√
(r′1(p))2 + (r′2(p))2

) (B.2)

where −→r ′(p) is the first derivative of −→r (p) with respect to p. The arc-length

parametrization of curve
−→
C is given as −→r (s) where

s(p) =

∫ p

0

√
(r′1(τ))2 + (r′2(τ))2dτ. (B.3)

It can be shown that the rate of turning of tangential vector is collinear to the

normal vector,i.e.,

1

|−→r ′(s)|
∂

∂s

( −→r ′(s)
|−→r ′(s)|

)
= κ(s)

−→
N (s). (B.4)

The linearizing term κ(s) is named as the curvature of
−→
C at point r(s) and

80



K<0
K>0

K>0

N

NN

K<0

Figure B.1: Curvature of a curve.

calculated as

κ(s) =
r′1(s)r

′′
2(s) − r′′1(s)r

′
1(s)

((r′1(s))2 + (r′2(s))2)
3
2

. (B.5)

B.2 Curvature of the Curves as Isolevels of a

Function

Let −→r (s) be the k-level of a function φ : R
2 → R, i.e.,

−→r (s) = {(r1(s), r2(s)); φ(r1(s), r2(s)) = k}. (B.6)

Differentiating the conditional equality for −→r (s) with respect to s,

r′1(s)φr1 + r′2(s)φr2 = 0 (B.7)

is obtained. There exists a constant λ such that

r′1(s) = −λφr2 , (B.8)

r′2(s) = λφr1 ,
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is satisfied. Differentiating (B.7) with respect to s and using the relationship

given in (B.8),

λ2((φr1)
2φr2

2
+ (φr2)

2φr2
1
− 2φr1φr2φr1r2) +

1

λ
(r′′1r

′
2 − r′′2r

′
1) = 0 (B.9)

is obtained. Since −→r ′(s) = (r′1(s), r
′
2(s)) is the unit tangential vector, the relation

between λ and φ is found as

λ2 =
1

|∇φ|2 . (B.10)

Substituting (B.5) and (B.10) in (B.9), the curvature of the curve −→r (s) which

is an isolevel of φ is emerged as

κ =
(φr1)

2φr2
2
+ (φr2)

2φr2
1
− 2φr1φr2φr1r2

((φr1)
2 + (φr2)

2)3/2
. (B.11)

The simplified version is obtained as

κ = div

(
∇φ

|∇φ|

)
. (B.12)
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appendix C

Flux Maximizing Flow

Total inward flux of a vector field
−→
F through a closed curve

−→
C is formulated

as

K =

∮
−→
C

〈−→F ,
−→
N 〉ds (C.1)

where
−→
N is the unit inward normal vector of

−→
C . Let

−→
C =

−→
C (p, t) be a family

of closed curves where t parameterizes the family and p parameterizes the curve

where 0 ≤ p ≤ 1. Since the curve is closed and smooth,
−→
C (0, t) =

−→
C (1, t) and

∂
−→
C

∂t
(p, t)

∣∣
p=0

= ∂
−→
C

∂t
(p, t)

∣∣
p=1

.

The relation between the infitesimal arc-length term ds in (C.1) and its

parameterized version dp is given by

ds = ‖−→C p‖dp. (C.2)

Embedding this result with the variable t to (C.1), the time dependent param-

eterized form of (C.1) is written as

K(t) =

∫ 1

0

〈−→F ,
−→
N ‖−→C p‖〉dp. (C.3)

−→
N ‖−→C p‖ and

−→
C p have the same magnitude and they are perpendicular to each

other. The transformation
−→
N ‖−→C p‖ = T −→

C p (C.4)

relates them and simplifies the further calculations. The transformation matrix

T is the 90 degree rotation matrix defined by

T =

[
0 1

−1 0

]
. (C.5)

The next step is differentiating the time varying total flux calculating equation

(C.3) with respect to t, integrating by parts, which establishes (C.6). It has to
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be noted that a simplification is made based on the fact that the derivative of

the closed curves at the boundaries are equal to each other in order to obtain

(C.6).

∂K(t)

∂t
=

∫ 1

0

(
〈−→F t, T

−→
C p〉 + 〈−→F , T −→

C pt〉
)
dp (C.6)

=

∫ 1

0

(
〈−→F t, T

−→
C p〉 − 〈−→F p, T

−→
C t〉

)
dp.

By chain rule,
−→
F t and

−→
F p is derived as

−→
F t =

[
∂F1

∂x
∂x
∂t

+ ∂F1

∂y
∂y
∂t

∂F2

∂x
∂x
∂t

+ ∂F2

∂y
∂y
∂t

]

= (D−→
F )

−→
C t, (C.7)

−→
F p =

[
∂F1

∂x
∂x
∂p

+ ∂F1

∂y
∂y
∂p

∂F2

∂x
∂x
∂p

+ ∂F2

∂y
∂y
∂p

]

= (D−→
F )

−→
C p. (C.8)

where D is the 2x2 Jacobian matrix. Combining the equations (C.6), (C.7)

and (C.8) together and doing some manipulations such as rearrangements and

simplifications on the combined structure,

∂K(t)

∂t
=

∫ 1

0

〈
(D−→

F )
−→
C t, T

−→
C p

〉
−

〈
(D−→

F )
−→
C p, T

−→
C t

〉
dp

=

∫ 1

0

〈−→
C t,

[
(T T (D−→

F ))T − (T T (D−→
F ))

]−→
C p

〉
dp

=

∫ 1

0

〈−→
C t,

([−∂F2

∂x
∂F1

∂x

−∂F2

∂y
∂F1

∂y

]
−

[−∂F2

∂x
−∂F2

∂y
∂F1

∂x
∂F1

∂y

])−→
C p

〉
dp

=

∫ 1

0

〈−→
C t,

((
∂F1

∂x
+

∂F2

∂y

)[
0 1

−1 0

])−→
C p

〉
dp

=

∫ 1

0

〈−→
C t,

(
∇ · −→F

)
T −→

C p

〉
dp (C.9)

is attained. Using the predefined relation (C.2), (C.9) is reorganized as

∂K(t)

∂t
=

∫ 1

0

〈−→
C t,

(
∇ · −→F

)−→
N

〉
‖−→C p‖dp

=

∮
−→
C

〈−→
C t,

(
∇ · −→F

)−→
N

〉
ds. (C.10)
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As a result, the total inward flux through a closed curve increases most rapidly

by moving the each point of the curve in the inward normal vector direction

with a magnitude of divergence of the vector field,

−→
C t = (∇ · −→F )

−→
N . (C.11)
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