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ABSTRACT

AUTOMATION AND VERIFICATION OF ANKARA WIND
TUNNEL

Katirci, Argiin
M.Sc., Department of Aerospace Engineering
Supervisor: Prof. Dr. Nafiz ALEMDAROGLU

September 2006, 185 pages

All the operational and measurement systems of Ankara Wind Tunnel was
modified to operate automatically under the control of a central computer system

programmed using the Lab View programming language.

A cruciform air-to-air missile with triangular canard control and a trapezoidal wing
model was tested by a 35mm diameter internal balance at Mach 0.2 and data was
compared with the test data of the same model’s test that was performed at NASA

Langley Research Center.
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ANKARA RUZGAR TUNELININ OTOMASYONU VE
DOGRULAMA TESTLERI

Katirci, Argiin
Yiiksek Lisans, Havacilik ve Uzay Miihendisligi Bolimii
Tez Yoéneticisi: Prof. Dr. Nafiz ALEMDAROGLU

Eyliil 2006, 185 sayfa

Ses alti hizlarda calisan Ankara Riizgar Tiinelinin tiim sistemleri Lab View
programi kullanilarak tam otomatik olarak merkezi bir bilgisayar kontroliinde
yonetilmis, deneyler sirasinda tiim sistemelerin ¢alismasi ve Olglimler otomatik

olarak gerceklestirilmistir.
0.2 Mach sayisinda havadan havaya bir flize modeli ile 35 mm’lik i¢ balans
kullanilarak testler yapilmis ve bu modelin NASA Langley Research Center’da

yapilan test sonuglari ile elde edilen sonuglar karsilagtirilmigtir.

Anahtar kelimeler: Veri Toplama Sistemi, I¢ Balans, Riizgar Tiineli, Sidewinder
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CHAPTER 1

INTRODUCTION

Wind tunnels are essential tools for experimental aerodynamic studies where real
flow effects are observed under the controlled environments. For having productive
tests in these experimental facilities, various measurement and control systems
must be integrated to the wind tunnels. The raw data obtained from these
measurement systems must be acquired, analyzed and stored automatically with the
minimum human intervention. In addition, to reduce the number of “the men in the
loop” it is desired to have a central computerized data acquisition system that can

do the measurement and the control of these systems automatically.

The main subject of this thesis is to establish such a data acquisition system to
Ankara Wind Tunnel (AWT) and to write a program that can perform experiments

by using this system automatically under the control of a central computer.

AWT is a low subsonic closed circuit wind tunnel whose test section dimensions
are 3.05 m in width, 2.44 m in height and 6.10 m in length. The maximum flow
velocity is 90 m/s, with approximately a Mach number of 0.3. The drive motor of
AWT is a 1000 HP motor (750 kW power). The general layout of AWT is shown

in Figure 1, and its technical and geometrical properties are listed below:

Test room: 3.05mx 244 mx 6.10 m
Diffuser and Safety Screen with 5 degree expansion angle

First Turning Vanes Group

A

Propeller and Stator



Figure 1 Sketch of AWT

Figure 2 Test Room

5. Pressure Room

6. Second Turning Vanes Group




7. Turbulent Screens

8. Contraction cone with 7.5 contraction ratio (in terms of area)

Figure 3 Propeller and Stators

AWT was built between 1946 and 1950 in order to support the Turkish aircraft
industry and to have an educational, research and development facility.
Unfortunately after construction of AWT, it has never been used untill 1993 when a
series of modernization projects were started at TUBITAK-SAGE. After
completion of its modernization, modification and calibration of the balance system
of AWT in 1999 [1], the calibration and instrumentation was performed in 2000.
[2]. AWT is operated under TUBITAK-SAGE administration since 2000.

The aim of this thesis is to install a data acquisition system that can perform the
experiments automatically under the control of a central computer with a program
that is written in LabVIEW programming language. Under the scope of this thesis,

following actions are taken:



After the installations of new Data Acquisition Cards, which are the product of
National Instruments, the measurement and control systems (Figure 4) integration
with this new Data Acquisition System (DAS) was performed and are detailed in

Chapter 2
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Figure 4 Measurement and Control Points of AWT

In Chapter 3, implementation of the data acquisition unit to the measurement
systems is given. After integrating all of old systems of AWT (such as pressure
measurement systems and external balance system) to the new DAS and rewritting
the data acquisition code which was previously written in “Test Point”
programming language [2] with the new LabVIEW programming language, the
new systems (such as internal balance system, servo/step motor controller,
thermocouple, multi channel pressure measurement system) are integrated to the
DAS and the necessary subroutines are all written in LabVIEW programming

language. Finally the automatic control of fan driver system is performed and the



final version of Ankara Wind Tunnel — Automated Measurement System program

1S written.

Chapter 4 is devoted to the test case results. The result of AWT-AMS is compared
with measurements performed in NASA Langley Research Center. The base
pressure correction, which is a must for the applications with sting type balances, is
given and the results of AWT-AMS are represented and compared with the

measurements performed in NASA Langley Research Center.

In Chapter 5, the global evaluation of the total study is done, concluding remarks

are made and recommendations on the future work are presented.



CHAPTER 2

MEASUREMENT SYSTEMS and MODEL SUPPORT
SYSTEM (MSS) of AWT

The pressure and temperature has to be measured in a wind tunnel in order to get
the flow parameters like velocity, viscosity, Re number, Mach number, etc. To
estimate the aerodynamic loads and moments of the wind tunnel model there must
be a measurement system, balance system, that can measure loads and moments by
using load cells or strain gages. In addition, there must be a control and a
positioning mechanism to give the required angle of attack to the model under the

test.

In order to measure these parameters and to give the angle of attack to the model,

AWT has:

e 3 Pressure Transducers (1 Absolute, 2 Differential)

e 1 64-Channel Pressure Scanner System

e 4 K-type Thermocouples

e 7 Dynamometer External Balance

e 2 Internal Balance Systems (one with 22 mm and the other with 35 mm
internal diameter)

e 3 Servomotors

e 1 Step motor

as the measurement and control devices.



Unfortunately these devices are not enough for having a productive system. The

analog outputs of these devices have to be converted into digital data in order to be

processed and stored in data files. These can be done with various Analog to

Digital (A/D) Converter cards, or the Data Acquisition Cards (DAC).

The DACs of AWT and their usage can be seen in Table 1:

Table 1 DACs and their usage

Main Terminal | Total Used
DAC DAC Block | Channel #| Channel # Aplication / Measurements
1140 1301 8 3 Pressure Transducer
DC Engine RPM
1121 1321 4 2 measurements
1121 1321 4 - -
1520 1314 8 7 External Balance
6052E 6 Internal Balance
1520 1314 8 1 Pressure Scanner Output
2 DC Engine RPM command
1163R 1326 32 6 Pressure Scanner Command
1162HV| 1326 32 - -
1112 8 4 Thermocouple
6024E SCB68 32 - -
7344 UMI-7764 4 4 Servo/Step motor

In this chapter short descriptions and technical specifications of these devices and

DACs will be presented as the subsystems of AWT.



2.1 PRESSURE MEASUREMENT

Pressure values are the most essential input to get the flow parameters with
temperature values. For this reason the atmospheric and dynamic pressure must be
measured. In addition there is a multiple pressure measurement system in order to

get the surface pressure distribution of the models.
2.1.1 ABSOLUTE PRESSURE MEASUREMENT

To measure the atmospheric pressure in AWT a 0-20 psi SETRA® absolute

pressure transducer (Appendix-A) is installed in the control room.

1
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Figure 5 Pressure Transducer and Manometer

2.1.2 DIFFENTIAL PRESSURE MEASUREMENT

The dynamic pressure is estimated by processing both the test section’s dynamic
pressure and the wall static pressure difference values (Figure 6). To measure these
two pressures two SETRA® pressure transducers with a range of +0.5 psi

(Appendix-A) are installed in the control room.
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Figure 6 Pressure and Temperature Measurement Locations in AWT

2.1.3 MULTI-CHANNEL PRESSURE MEASUREMENT SYSTEM
(PRESSURE SCANNER)

During wind tunnel testing, it is generally desired to measure the pressure
distribution along the surface of the aerodynamic model to be tested. When this is
the case, a large number of pressures are measured at the same time (or
successively). For this purpose there is a 64-Channel Electronic Pressure

Transducer [3] at AWT. (Figure 7)

Figure 7 64-Channel Pressure Transducer
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2.1.4 DATA ACQUISITION CARD for PRESSURE MEASUREMENTS

Before mentioning about DAC a short description of the Data Acquisition System
(DAS) of AWT is given to understand the DAS as a whole. AWT DAS has 3 main
PCI cards: PCI-6052E, PCI-7344, and PCI-6024E; 8 Data Acquisition Cards:
SCXI-1140, SCXI-1121, SCXI-1520, SCXI-1163R, SCXI-1162HV, SCXI-1112
and 9 Screw Terminals: SCXI-1301, SCXI-1321, SCXI-1314, SCXI-1326, UMI-
7764 and SCB-68 which are all the product of National Instruments".

HSCXI-1112 |
HSCXI-1162HVIH SCXI-1326 |
SCXI-1326

S - SCX1-1314
Yo o =M SCXIF1520
o 5 = L
= 2 @ se{SCXI-1121_H SCXI-1321
o 2 S50 - CXI-1321
S 5 £ [PCEE0SZEl—  HSCXETTAU SCXETSOT ]
8<O PCI-7344 UMI7764
—PCI-6024E | [scB-68 |

Figure 8 Data Acquisition System

PCI-6052E which is the heart of DAS is a 333 kS/s, 16-Bit, 16-Analog-Input
Multifunction DAQ. A 12-slot chassis SCXI-1001 is connected to this PCI card
which means that 12 DAC can be installed into this chassis in order to collect data.
As seen from Figure 8, 8 DAC with their own terminal blocks are installed to the
SCXI-1001 which means that all the data acquisition process is done with PCI-
6052E. [4]

10



PCI-7344 is 4-Axis Stepper/Servo Motor Controller for PCI connection and is used
to control the Servo and Step motors in AWT which are used for giving angle of

attack to the model or displacement to the transverse mechanisms. [5]

PCI-6024E is a low cost DAQ which is a 200 kS/s, 12-Bit, 16-Analog-Input
Multifunction DAQ. 6024E is a backup for 6052E in case of any malfunction of the
PCI-6052E. [6]

With some exception there is mostly one DAC with its terminal block for
connecting the output cables of measurement devices or command cables of control
devices to the DAC. For example, the pressure transducer measurements are
performed by using SCXI-1140 with connection terminal block SCXI-1301 and for
measurements of pressure scanner SCXI-1520 is used with its terminal block
SCXI-1314 as seen from Table 1. (The detailed connection diagram can be seen at

Appendix B)

2.1.4.1 SCXI-1140

The SCXI-1140 is a 8-Channel Simultaneous-Sampling Differential Amplifier

Module whose technical specifications are given as follows: [7]

e 8 simultaneously sampled input channels

e NI-DAQmx Measurement Services software to simplify configuration and
measurements

e 130 V maximum overvoltage protection, powered on

e Connections for external sample-and-hold timing signal

2.1.4.2 SCXI-1301

The SCXI-1301 is the terminal block for SCXI-1140 whose technical specifications

are as follows: [8]
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e 20 screw terminals for signal connections

e Shielded for quick, convenient signal connections

e Mounts to front of SCXI module

e Recommended for use with the SCXI-1140/1181/1181K

2.1.4.3 SCXI-1163R

The SCXI-1163R is a 32-Channel Solid State Relay (SSR) module whose technical

specifications are as follows:

e 32-Channel Optically Isolated Solid-State Relays
o Eight banks of 4x1(1-wire) multiplexers

e Operating speed of 750 cycles/s

o Fully software programmable

e Switching capacity of 200 mA at 240 VDC/Vrms

2.1.4.4 SCXI-1326

The SCXI-1326 is a High Voltage Screw Terminal Block whose technical

specifications are as follows:

48-screw terminals for signal connections

e For high-voltage digital input or digital output applications
o Shielded for quick, convenient signal connections

e Mounts to front of SCXI module

o For use with the SCXI-1162/1162HV/1163/1163R

12



2.2 TEMPERATURE MEASUREMENT

For temperature measurements, 2 K-type thermocouples are installed at the test
section of AWT (Figure 6) one at the beginning of the test section and the other at
the end of the test section. These two temperature measurements are averaged to

get the mean temperature value of the test section.

2.2.1 K-TYPE THERMOCOUPLE

Thermocouples are commonly used temperature sensors because of their low cost,
versatility and ruggedness. Thermocouples consist of two different metals joined
together, making a continuous circuit. When one junction has a different
temperature from the other an electromotive force (voltage) occurs. There are
several types of thermocouples, constructed from different metals and with
differing temperature ranges and accuracies. K-type thermocouple is a Chromel-

Alumel thermocouple with a temperature range of -200 to 1200 °C.

Figure 9 K-Type Thermocouple and PT-100

2.2.2 Resistor Thermometers

Before using thermocouples in AWT a resistance thermometer system, called PT-

100 sensors, are used for measuring the temperature. But after performing some

13



measurements both with thermocouples and the resistor thermometer (PT-100)

some oscillations were observed in the resistor thermometer measurements. (Figure

10)

If one examines these measurement results, it will be observed that the standard
deviation of the measurements done with PT-100s is larger than that of the
thermocouple measurements. In addition the difference of maximum and minimum
values of each PT-100 is about 0.4 °C while this difference is only 0.03 °C for
thermocouple measurements. Also forward and backward temperature
measurements realized in the AWT test section with PT-100 do not correspond to
each other, while the temperatures measured with the thermocouples are in close

agreement. (Table 2)

Test Section Temperature Measurement

32.8

\
¥4 Thermocouple Front
H Pt-100 Front
I Thermocouple Back
¥ Pt-100 Back

32.6

32.4 1

Temperature (°C)
w
w N
N N

31.8 1

1 2 3 4 5 6 7 8 9 10 11

Measurement Number

Figure 10 PT-100 Measurements vs. Thermocouple Measurements

Therefore thermocouple measurements are considered to be more reliable and are

installed in the test section to measure the temperature of the free stream flow.
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Table 2 PT-100 Measurements vs. Thermocouple Measurements

Thermocouple Pt-100
Measurement # Front Back Front Back
1 32.13 32.087 32.452595 31.976373
2 32.128 32.093 32.596705 32.11861
3 32.132 32.065 32.596705 31.834136
4 32.125 32.093 32.308513 31.834136
5 32.1 32.085 32.16443 32.11861
6 32.124 32.101 32.308513 31.976373
7 32.137 32.087 32.308513 32.11861
8 32.129 32.085 32.596705 31.976373
9 32.137 32.1 32.16443 31.691872
10 32.116 32.065 32.308513 31.976373
11 32.115 32.096 32.308513 31.976373
Standard
Deviation 0.010925367 | 0.012222929 | 0.162558183 | 0.134260093
Mean 32.12481818 32.087 32.37401227 | 31.96343991
Max 32.137 32.101 32.596705 32.11861
Min 32.1 32.065 32.16443 31.691872
Difference 0.037 0.036 0.432275 0.426738

2.2.3 DATA ACQUISITION CARD for TEMPERATURE
MEASUREMENTS

2.2.3.1 SCXI-1112

SCXI-1112 is an 8-Channel Thermocouple Input Module with technical

specifications are as follows: [11]

15



e Cold-junction compensation per channel
e Onboard calibration reference
e Instrumentation amplifier per channel

e Open thermocouple detection LEDs

2.3 FORCE MEASUREMENT SYSTEMS of AWT

There are two force and moment measurement systems at AWT. These are the
external balance (which the balance system is outside of the model) and internal

balance (which has two sting type internal balance) systems.

2.3.1 EXTERNAL BALANCE SYSTEM

Designed originally as a purely mechanical system, this system is modified and
converted to be an electro-mechanical system with 7 dynamometers installed to the
original design. After the completion of the modernization, modification and
calibration of the balance system of AWT by Cap. Z. Tolga Yildiz [1], AWT has
an operational external balance with 7 dynamometers (Figure 11) each with a load
limit of 600 kg. The external balance is located above the test section (at the roof of
the test section) (Figure 12) and the model is mounted to the external balance

upside down (belly facing upwards) with two struts. [2]

Figure 11 AWT External Balance and Dynamometer # 2
16
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Figure 12 Dynamometers Locations of AWT Balance System

2.3.2 INTERNAL BALANCE SYSTEM

AWT is now equipped with two new internal balances which are 35 mm (Figure

13) and 22 mm in diameter and whose load limits are given in the Table 3.

Figure 13 35 mm Internal Balance
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Table 3 Internal Balance Load Limits

Component | 35 mm | 22 mm

Drag 375N 80N

Side Force I000N | 225N

Lift 1000N | 225N

Roll Moment | 150 Nm | 10 Nm

Pitch Moment | 150 Nm | 15 Nm

Yaw Moment | 100 Nm | 15 Nm

2.3.3 DATA ACQUISITION CARD for FORCE MEASUREMENTS

2.3.3.1 SCXI-1520

SCXI-1520 is a pressure, force, load, and torque sensor measurement module with

technical specifications as follows: [12]

e §-channel simultaneous sampling (SSH)

e (-10 V programmable voltage excitation per channel

e Programmable lowpass filters per channel

e Programmable offset nulling and shunt calibration per channel

e Remote sense feature that ensures accurate voltage excitation to sensor

18



2.3.3.2 SCXI-1314

The SCXI-1314 is the terminal block for SCXI-1520 whose technical specifications

are as follows: [13]

e For use with SCXI-1520 Universal Strain Gauge module

e Socketed resistors (120, 350 Ohm) for quarter-bridge completion
e Socketed shunt calibration resistors (100 kOhm)

e Shielded for quick, convenient signal connections

e Mounts to front of SCXI module

2.4 MODEL SUPPORT SYSTEM

Model Support System (MSS) has two purposes. (Figure 14) One is to mount the

model inside the test room and the other is to give the model an angle of attack.

,]\ Pitch Up

| Internal Balance 7
é - \_| E 7 O
Flow \L ) N ]
Pitch Down
Test Section
Servomotor

Pitch Down ||
} o
Pitch Up

Figure 14 Sketch of MSS
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The model is installed inside the test section by means of model arm. The internal
balance system is mounted to the front of this model arm whose end is connected to
the motion arm which is connected to a screw mechanism which is driven by a
servo motor for angle of attack positioning. The main pedestal is connected to the
nearly half of the model arm which caries most of the loads. As the servomotor
(Figure 15) drives the screw, the motion arm is moving upwards or downwards and

the model pitches up or down respectively.

Figure 15 Servomotor and Driver

Figure 16 MSS (Side and Isometric View Respectively)
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2.4.1 DATA ACQUISITION CARD at MSS

2.4.1.1 PCI-7344

PCI-7344 is 4-Axis Stepper/Servo Motor Controller for PCI connection card,
whose technical specifications are given as follows: [14]

¢ Blended motion profiles

e FElectronic gearing and 2D/3D interpolation

e 4-axis controller, each axis configurable for stepper or DC motor control

e 62 us PID loop update rate

¢ Quadrature encoder or analog feedback

e Includes NI-Motion software for Windows 2000/NT/XP/Me/9x

2.4.1.2 UMI-7764

UMI-7764 is the terminal block for PCI-7344 whose technical specifications are

given as follows: [15]

e Connects NI 7334/7344 controllers to third-party power drives
e 1 or 20 MHz quadrature encoder rates

e Built-in inhibit logic

e Host bus +5 VDC monitor with built-in driver inhibit control

e Per-axis motion signal breakout

21



CHAPTER 3

AUTOMATION of MEASUREMENT and CONTROL
SYSTEMS

Separate measurement systems are not functional unless having a program that
converts all the raw output signals into physically meaningful quantities like
pressure, force or temperature. In addition, some functions of AWT like giving
angle of attack to the model, rpm command to the fan drive, has to be done
automatically under the control of a program to reduce the test time and the man

hours in the control room.

For this reason a program, Ankara Wind Tunnel - Automated Measurement System
(AWT-AMS), was written in LabVIEW® programming language and all the
systems were modified to operate automatically under the control of a central

computer system.

3.1 AUTOMATED FLOW PARAMETERS’ MEASUREMENTS

The atmospheric pressure, dynamic pressures and temperature are measured
automatically by AWT-AMS to get the flow parameters (velocity, Re number,

Mach number, viscosity, density, etc,).

22
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Figure 17 Input and Outputs of Flow Parameters Tool of AWT-AMS

After getting temperature and pressure measurements, various parameters about

flow can be calculated automatically as seen in Figure 18. [2]

Where:
T: Freestream temperature
Paim: Atmospheric pressure

Ppitot-tube:  Test section dynamic pressure

Pyan: Wall static pressure
a: Speed of sound
Mach: Mach Number

V: Velocity

Re: Reynolds Number
[Th Viscosity

p: Density
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3.2 AUTOMATED FORCE MEASUREMENTS

As mentioned before, to estimate the aerodynamic loads on a model AWT has two

balance systems; one is the External Balance System and the other is the Internal

Balance System. The output signals of each of these balances are converted to

aerodynamic coefficients by using the respective calibration matrices automatically

at AWT-AMS. (Figure 19)

| EXTERNAL BALANCE INTERNAL BALANCE |
SYSTEM SYSTEM
—
QUTPUT QUTPUT
EXCITATION VOLTAGE VOLTAGE EXCITATION
« D1
4‘ SCXI-1520 . D2 . :; SCXI-1520 |
« D3 * _
L« D4 signal : :i signals_____ 7
* DS . 15
« D6 . 16
« DT
AWT-AMS

©OOOOEC

Figure 19 Input and Outputs of Forces and Moments Tool of AWT-AMS
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With some differences both External and Internal Balance data acquisition and
calculation algorithm are the same. The mean of raw data is taken from balances
and after creating a signal matrix, the forces and moments are calculated by
multiplying the signal matrix with the calibration matrix. Then the results are

displayed and stored as output of the test results.

3.2.1 AUTOMATED EXTERNAL BALANCE MEASUREMENTS

The External Balance [1], [2] has 7 dynamometers whose output signals’ (D1, D2,
D3, D4, D5, D6, and D7) and their combinations give the 3 forces’ and the 3

moments’ signal as follows:

R,=-D5
R,=-D6

Ri=-(D1 + D2 + D3 + D4)
R4=-DI1 - D2 + D3 + D4)
Rs=-D1 + D2 + D3 - D4)
R¢=-D6 + D7

R, is the output signal for the relevant component.

where n =1 to 6:

1= Drag Force

2= Side Force

3= Lift Force

4= Rolling Moment

5= Pitching Moment
6= Yawing Moment
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3.2.1.1 CALIBRATION of EXTERNAL BALANCE

In order to get physical meaning of output signals of External Balance; the output
signals must be linked with real loads. For this reason, the known loadings are
applied to the calibration model (Figure 20 and Figure 21) and the output signals
are measured and stored automatically by AWT-AMS. The loadings and their

physical meanings are as follows: [2]

Fx=C-(X1+X2) Drag Force
Fy=Y1-Y2 Side Force
F,=71+72+73+74 Lift Force
Mx =(Z3 - Z4) Ay Roll Moment
My =(Z1-72) Ax Pitch Moment
Mz = (X1 — X4) Ay Yaw Moment

Where as seen from Figure 20:

Z: the loading basket at Z direction

Y: the loading basket at Y direction

X: the loading basket at X direction
CENTER: the loading basket at the center line
Ay: moment arm at y direction

AX: moment arm at x direction
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i1

CENTER 5 \ 4_ FLOW

Figure 20 Locations of Loading Baskets at Calibration Model

Figure 21 Axis of Calibration Model
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Table 4 External Balance Calibration Combination

Pure Lift Pitch / Yaw
Pure Pitch Lift/ Yaw
Pure Roll Lift / Drag
Pure Drag Roll / Drag
Pure Yaw Pitch / Drag
Pure Side Side / Yaw
Lift / Roll Side / Drag
Lift / Pitch Side / Lift
Pitch / Roll Side / Lift
Drag / Yaw Side / Roll
Roll / Yaw

3.2.1.2 MATHEMATICAL INTERPRETATION of CALIBRATION
COEFFICIENTS

After loading the known loadings with different combinations given in Table 4 and
storing the corresponding output signals, the relation between the loadings and
signals namely “Calibration Matrix” is obtained by using CalibMat program which

is written in Matlab® programming language. [16]
Finally after getting the output signals from the dynamometers of the external

balance, the aerodynamic loads on the model can be calculated by using the

following relations automatically by AWT-AMS. (Appendix C)

[L]lxé = [R]lxN '[X]Nxé

Where N is the coefficient number:

29




o N=27
e N=33
e N=84
e N=96

First order with 6 coefficients
Second order with 27 coefficients
Third order with 33 coefficients
Second order with 84 coefficients

Third order with 96 coefficients

L is the Loading hence 3 Forces and 3 Moments.

[L]lx():[FX F, F, My M, MZ]T

R is the Output Signal Matrix.

X is the Calibration Matrix.

Note that:

1. N gives the calibration matrix coefficient number. The bigger N means that

the order of the calibration matrix is bigger.

2. When there is an interaction between the system components, the order of

the calibration matrix is getting bigger to compensate for these interactions.

3.2.1.3 VERIFICATION RESULTS

To verify the calibration matrix (which is a 3™ order with 96 coefficients) a few
loading are applied and the measured forces and moments are compared with the

applied loadings. The verification loadings are applied as pure loads and 3-

combinations loads or 6-component loads.

Pure loading results are given in Figure 22 to Figure 27. When the results are
investigated (Table 5-Table 13) it is seen that Lift Force is the most accurate one
(Error is about %1) while the yaw moment results are the worst (%20 error) but

note that the applied loads are very low when compare with the limits (600 kg) of
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each dynamometer. In addition to the Lift Force the Roll Moments values are as

accurate as Lift Forces (Error is about %1). The Drag Force and Pitch Moment

errors are in the range of % 5 while the Error of the Side Force is about % 10.

Drag Force (kg)

Drag Force Verification Loadings

Loading Number

Fl Applied Loading
E] Measured Loading

Figure 22 Drag Force Verification Results (Pure Loading)

Table 5 Drag Force Verification Results with Errors

Loading
1 2 3 4 5
Number
Applied 25 35 45 55 65
Measured | 23.79 | 33.75 | 43.98 | 54.11 | 64.41
Error % 485 | 356 | 2.27 | 1.63 | 091
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Side Force (kg)

40

-40

Side Force Verification Loadings

F1 Applied Loading
Measured Loading

Loading Number

Figure 23 Side Force Verification Results (Pure Loading)

Table 6 Side Force Verification Results with Errors

Loading
1 2 3 4 5 6
Number
Applied 15 25 35 -15 -25 -35
Measured | 13.60 | 23.94 | 34.69 | -13.71 | -23.76 | -33.56
Error % 9.34 | 425 | 0.89 | -8.61 -4.96 -4.12
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Lift Force (kg)

250

-100 +
-150 +
-200

-250

Lift Force Verification Loadings

[ Applied Loading
£ Measured Loading

1 2 3 4 5 6 7
Loading Number

Figure 24 Lift Force Verification Results (Pure Loading)

Table 7 Lift Force Verification Results with Errors

Loading Number 1 2 3 4
Applied 20 70 120 220
Measured 19.62 | 69.61 11936 | 219.13
Error % 1.90 0.55 0.53 0.39
Loading Number 5 6 7 8
Applied -20 -70 -120 -220
Measured -20.06 | -70.21 | -120.12 | -220.41
Error % -0.31 -0.30 -0.10 -0.18
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Roll Moment Verification Loadings

Roll Moment (kgm)

td Applied Loading
£ Measured Loading

1 2 3 4 5
Loading Number

Figure 25 Roll Moment Verification Results (Pure Loading)

Table 8 Roll Moment Verification Results with Errors

Loading Number 1 2 3 4
Applied 7.208 | 5.406 | 3.604 1.802
Measured 7.201 5.381 3.590 1.799
Error % 0.091 0.460 | 0.392 | 0.154

Loading Number 5 6 7 8
Applied -1.802 | -3.604 | -5.406 | -7.208
Measured -1.774 | -3.584 | -5.414 | -7.228
Error % -1.577 | -0.544 | -0.141 | -0.274
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Pitch Moment (kgm)

50

Pitch Moment Verification Loadings

Fl Applied Loading
£ Measurd Loading

4 5 6

Loading Number

Figure 26 Pitch Moment Verification Results (Pure Loading)

Table 9 Pitch Moment Verification Results with Errors

Loading Number 1 2 3 4
Applied 36.2 27.2 18.1 9.06
Measured 36.704 | 27.509 18.431 9.293
Error % 1.393 1.135 1.831 2.570
Loading Number 5 6 7 8
Applied -9.06 -18.1 -27.2 -36.2
Measured -8.682 | -17.548 | -26.578 | -35.546
Error % -4.175 -3.050 -2.287 -1.805
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Yaw Moment Verification Loadings

td Applied Loading
£ Measured Loading

Yaw Moment (kgm)

2 3 4 5 6

Loading Number

Figure 27 Yaw Moment Verification Results (Pure Loading)

Table 10 Yaw Moment Verification Results with Errors

Loading
1 2 3 4 5 6
Number
Applied 4.57 2.74 | 091 -0.91 -2.74 -4.57
Measured | 3.788 | 2.432 | 0945 | -0.734 -2.441 | -4.287
Error % 17.105 | 11.242 | 3.826 | -19.307 | -10.923 | -6.186
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3-Component Combination Verification Loadings

250

200 -

150

[ Applied Loading

100 :
£l Measured Loading

[
o

Forces (kg) and Moments (kgm)
o

-50
Drag Force Side Force  Lift Force Roll Moment Pitch Yaw Moment
Moment
Loading Component
Figure 28 3-Component Loadings Verification Result
Table 11 3-Component Verification Results with Errors
Drag Side Lift Roll Pitch Yaw
Comp.
Force Force Force Moment | Moment | Moment
Applied 40 0 200 0 13.5825 0
Measured | 37.822 -0.255 199.409 1.457 13.725 0.800
Error % 5.445 - 0.296 - 1.051 -

37




3-Component Combination Verification Loadings

100
T 50
2
PR
c
£ 50
o
= [d Applied Loading
e 00 £l Measured Loading
S 150 |
<
% -200 -
S
G -250 -
L

-300

Drag Force Side Force Lift Force Roll Moment Pitch Yaw
Moment Moment
Loading Component
Figure 29 3-Component Loadings Verification Result
Table 12 3-Component Verification Results with Errors
Drag Side Lift Roll Pitch Yaw
Comp.
Force Force Force Moment | Moment | Moment
Applied 40 0 -250 0 -13.5825 0
Measured | 40.174 -0.327 -249.450 0.027 -13.371 0.433
Error % 0.435 - -0.220 - -1.558 -
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6-Component Combination Verification Loadings

200

150 -

100

50

Forces (kg) and Moments (kgm)

-50

[ Applied Loading
£l Measured Loading

Drag Force Side Force

Loading Component

Lift Force  Roll Moment

Pitch Yaw Moment

Moment

Figure 30 6-Component Loadings Verification Result

Table 13 6-Component Verification Results with Errors

Drag Side Lift Roll Pitch Yaw
Comp.
Force Force Force Moment | Moment | Moment
Applied 30 30 160 5.406 -27.2 4.57
Measured | 29.114 29916 163.231 5.519 -27.195 4.907
Error % 2.955 0.281 2.019 2.096 -0.018 7.385

3.2.2 AUTOMATED INTERNAL BALANCE MEASUREMENTS

Both 22 mm (Figure 95) and 35 mm (Figure 96) internal balances have 6

Wheatstone Strain-gage pairs whose output signals’ (11, 12, I3, 14, I5, and 16) give

the 3 forces’ and the 3 moments’ signals as follows:

39




R1=Il

R, =12
R;=13
Rsy=14
Rs=15
Re=16
Ry is the output signal for the relevant component.

where n =1 to 6:

1 = Axial Force

2 = Side Force

3 = Normal Force

4 = Rolling Moment
5 = Pitching Moment
6

= Yawing Moment

Note that while the External Balance system gives Drag Force and Lift Force, the
Internal Balance system gives Axial and Normal Force as shown in Figure 92. This

is one of the main differences between the two balance systems.

3.2.2.1 MATHEMATICAL INTERPRETATION of CALIBRATION
COEFFICIENTS

The calibration matrix for internal balance system is a second order with 27
coefficients matrix while the external balance system uses third order with 96
coefficients. Because the interaction for internal balance is lower than that of the
external balance system, a lower order with fewer coefficients is enough for

calculating the forces and the moments on the internal balance system.
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Ln)=R X, +RX,+R X +RX, , +RX +RX,  +
Rlanll + R22Xn22 + R33Xn33 + R44Xn44 + RSSXnSS + R66Xn66 +
Ry X, o +R3X 3+ RUuX iy + R X s + Rig X 16
R23Xn23 + R24X;124 + RZSXnZS + R26Xn26 (3'1)
R34Xn34 + RSSXn35 + R36Xn36
R45Xn45 + R46Xn46
R56Xn56

where n =1 to 6:

1= Axial Force

2= Side Force

3= Normal Force

4= Rolling Moment

5= Pitching Moment
6= Yawing Moment

L(n): is the calculated aerodynamic load, kg or kgm.
Ry: is the output signal for the relevant component.
Xam: 18 a calibration coefficient within the overall equation.

M: specifies the axis or axes from which the coefficient was derived.

The full calibration matrix for a 6 component balance consists of 6 columns and 27
rows and is shown on Equation 3.2. The 27 coefficients in each column are those

which are required for the full determination of one aerodynamic load.

Table 14 shows an example calibration matrix for a 6 component balance. This
matrix consists of 6 columns and 27 rows, but some of these terms in the overall
matrix may be determined as zero or insignificant. The first column beginning with
308.47, -1.9464, etc, contains all the coefficients to determine the Drag in kg.

Similarly, the second column contains all the coefficients for Side Force, the third
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column for Lift, the fourth for Roll Moment, fifth for Pitch Moment and sixth for

Yaw Moment.

To the left hand side of the table is a column of one or two digit number. These

refer to signal output channel. The signal channels are numbered 1 to 6. (1 = Drag,

2 =Side, 3

Lift, 4 = Roll, 5 = Pitch, 6 = Yaw)
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Table 14 Calibration Matrix Example

— ™ 3 < e N
1 308.47 | 0.1314 | 1.1547 | -0.5738 | -0.0182 | -0.2350

2 -1.9464 | 25.1754 | -1.7114 | 0.0484 | -0.0755 | -0.1770 | _ %
3 0.5399 | -0.003 | 104.597 | -0.0317 | 0.0342 | 0.0058 % =
4 -3.2453 | 0.0187 | 0.1605 | 147.76 | -0.164 | 0.0617 5 %
5 -0.1077 | -0.2918 | -1.1421 | 0.6351 | 13.465 | -0.0230 Z é
6 1.9420 | -0.3228 | -0.6459 | -1.5732 | 0.0195 | 10.7415 A
11 0.0500 | -0.0006 | 0.0433 | 0.0147 | -0.0011 | -0.0038 A
22 0.0456 0 -0.0228 | 0.0031 | -0.0020 | -0.0059 o 5
33 0.0050 | -0.0011 | -0.0008 | -0.0189 | -0.0002 | -0.0008 5 E
44 -0.0074 | -0.0004 | 0.0134 | -0.0155 | 0.0007 | -0.0023 5 E
55 0.0076 | -0.0013 | 0.0034 | -0.0270 | 0.0015 | -0.0039 Z é
66 0.0319 | -0.0007 | -0.0331 | -0.0229 | -0.0002 | 0.0013 g
12 -0.0193 | -0.0046 | -0.0876 | 0.0180 | -0.0014 | -0.0030

13 -0.0076 | -0.0010 | 0.0592 | -0.0002 | 0.0002 | -0.0001

14 -0.0004 | -0.0002 | -0.0003 | 0.0038 | -0.0009 | -0.0086

15 0.0330 | 0.0004 | 0.0030 | -0.0064 0 -0.0097

16 0.0124 | 0.0002 | 0.0025 | -0.0982 | -0.0026 | -0.0019 (ﬁ
23 0.0192 | 0.0006 | 0.0002 0 0 -0.0003 %
24 0.0349 | 0.0015 | 0.0004 | -0.0279 | 0.0005 | -0.0121 ‘Z" %
25 0.0618 | 0.0023 | -0.0002 | -0.0209 | -0.0006 | -0.0087 E B
26 -0.0009 | -0.0010 | 0.0019 | -0.0528 | -0.0046 | -0.0050 é %
34 -0.0036 | -0.0001 | -0.0015 | -0.0045 | -0.0009 0 A
35 -0.0031 | -0.0004 | -0.0011 | 0.0234 | 0.0007 0 %
36 0.0001 | 0.0001 | 0.0001 | 0.0034 | 0.0001 | -0.0004
45 -0.0155 | -0.0003 | -0.0368 | -0.0417 | -0.0003 | -0.0056
46 0.0393 | 0.0014 -0.64 | -0.0046 | 0.0001 | -0.0007
56 0.032 | 0.0006 | -0.0510 | -.0071 | -0.0002 | 0.0003
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Note that;

1. The primary calibration coefficients for each component are shown as the

largest value coefficient in each column in section 1 (i.e. the “leading

diagonal”)

2. Section 1 interactions are significantly smaller than the primary

coefficients.

3. Squared and Cross Product terms look very small, however they are

multiplied by larger output signal values (i.e. Lift’, Lift * Pitch or Side

Force * Drag outputs, etc)

3.2.2.2 ELECTRICAL INTERFACE

Internal balances require a nominal 10V excitation supply voltage to each bridge
which can be monitored permanently using the installed sense wires. This allows

normalized outputs to be used prior to application of the calibration matrix. The

resistance of each bridge is nominally 1000€2.

The sting balances are fitted with standard leadwire cables that have 36 cores, each

being 7/0.1mm, and include overall screen and protective sleeve. Nominal external

diameter 1s 7.2mm.

The balances are identically wired and the cable identification and functions are

shown in Table 15.

Table 15 Cable Identification and Functions

Component Cable Function

Color Coding

Fx Drag + Signal

Red

44




Component Cable Function Color Coding
Fx Drag - Signal Blue
Fx Drag + Excitation Red / Black
Fx Drag - Excitation White / Brown
Fx Drag + Sense Red / Brown
Fx Drag - Sense Brown / Black
Fy Side Force + Signal Orange
Fy Side Force - Signal Brown
Fy Side Force + Excitation Yellow / Blue
Fy Side Force - Excitation Grey / Green
Fy Side Force + Sense White / Blue
Fy Side Force - Sense Yellow / Brown
Fz Lift + Signal Green
Fz Lift - Signal Yellow
Fz Lift + Excitation Red / Blue
Fz Lift - Excitation Violet / Black
Fz Lift + Sense Green / Red
Fz Lift - Sense White / Violet
Mx Roll Moment + Signal Pink
Mx Roll Moment - Signal Turquoise
Mx Roll Moment + Excitation Yellow / Green
Mx Roll Moment - Excitation Orange / Green
Mx Roll Moment + Sense White / Green
Mx Roll Moment - Sense Green / Blue
My Pitch Moment + Signal White
My Pitch Moment - Signal Black
My Pitch Moment + Excitation Yellow / Red
My Pitch Moment - Excitation Grey / Brown
My Pitch Moment + Sense White / Red
My Pitch Moment - Sense Yellow / Violet
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Component Cable Function Color Coding
Mz Yaw Moment + Signal Violet
Mz Yaw Moment - Signal Grey
Mz Yaw Moment + Excitation Blue / Black
Mz Yaw Moment - Excitation Grey / Blue
Mz Yaw Moment + Sense Orange / Blue
Mz Yaw Moment - Sense Green / Black

Not Connected Screen Braid

3.2.2.3 CALIBRATION SLEEVE and RIG

The Sting Balances are calibrated using the Aerotech Calibration Rig and standard
in-house practice for load application. Figure 94 shows the sketch of calibration rig

that is used for the calibration of the two Sting Balances.

The assembled Calibration Body has precision-machined flats along its length at
each quadrant. The sleeve has three toleranced loading holes on each flat, one
positioned in line with the Balance centre line for applying Lift and Side Forces

loads and two outboard holes for loading of Pitch and Yaw Moments.
The Roll Loading Arm fits around the Calibration Body and is positioned onto the

Lift / Side Force loading points. Two outboard toleranced loading holes exist for

applying the Roll Moment.
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Figure 31 Calibration Sleeve and Rig with Calibration Apparatus

170mm 170mm
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Figure 32 Calibration Rig with Some Loading Configuration
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3.2.2.4 RESOLUTION RESULTS

To estimate the resolution of the DAC for internal balance application, the applied
loads are measured with two different resolutions. One is a low resolution +500
mV/V for both forces and moments, the other is a high resolution with £1 mV/V
for forces and £2 mV/V for moments. The measurements were performed at zero
loads thus the internal balance readings must be close to zero for all forces and

moments.

When the results were analyzed (Figure 33 - Figure 38) it is seen that the high
resolution values are very close to zero and to each other at repeated readings than

the low resolution values as expected.

Axial Force Measurement without an Aplied Force & Moment

0.16000

0.14000
N
0.12000 S
_ 0.10000 *
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© 0.08000 o -
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NENER
< 0.04000 NN Q
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0.00000 e b\ﬁ . %ﬁ . %ﬁ—\ . b”‘ﬂ . \'“'1 B B b . M
-0.02000
1 2 3 4 5 6 7 8 9 10
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Figure 33 Axial Force Measurements at No Loading Condition
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Side Force (kg)
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Figure 34 Side Force Measurements at No Loading Condition
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Figure 35 Normal Force Measurements at No Loading Condition
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Roll Moment (kgm)

Roll Moment Measurement without an Aplied Force & Moment
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Figure 36 Roll Moment Measurements at No Loading Condition
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Figure 37 Pitch Moment Measurements at No Loading Condition
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Yaw Moment Measurement without an Aplied Force & Moment
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Figure 38 Yaw Moment Measurements at No Loading Condition

Table 16 Nominal Sensitivities for Internal Balances

Component | 35 mm Balance | 22 mm Balance
Fx 0.5 mV/V 0.7 mV/V
Fy 0.6 mV/V 0.9 mV/V
Fz 0.6 mV/V 0.9 mV/V
Mx 1.1 mV/V 0.5 mV/V
My 1.6 mV/V 1.2 mV/V
Mz 1.0 mV/V 1.2 mV/V

As seen from Table 17 and Table 18 the standard deviation, the difference between
maximum and minimum values of high resolution readings are smaller than low

resolution results and the mean of high resolution readings are much closer to the
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theoretical value “zero” than low resolution readings. In addition the maximum
outputs of the internal balances are £0.9 mV/V for forces and + 1.6 mV/V for
moments as seen from Table 16. For these reasons the resolution of DAC for

internal balances are arranged =1 mV/V for forces and +2 mV/V for moments.

Table 17 Low Resolution Results

=500 mV

Axial Side Normal Roll Pitch Yaw
Loading Force Force Force | Moment | Moment | Moment

Number (kg) (kg) (kg) (kgm) | (kgm) [ (kgm)
1 0.03548 | 0.00679 | 0.02257 | 0.00310 | -0.00540 | -0.00152
2 -0.00228 | 0.27913 | 0.14126 | 0.01393 | -0.00058 | -0.00680
3 0.04299 | 0.11244 | 0.13279 | 0.01719 | -0.00305 | 0.00952
4 0.05924 | 0.13564 | 0.12616 | 0.01198 | -0.01017 | -0.00065
5 0.10133 | 0.24896 | 0.42461 | 0.01698 | 0.00608 | 0.00513
6 0.14067 | 0.34395 | 0.32603 | 0.02448 | 0.00754 | 0.01429
7 0.04105 | 0.18250 | 0.15796 | 0.02480 | 0.00550 | 0.01598
8 0.02550 | 0.03454 | 0.08752 | 0.00341 | -0.00503 | 0.00798
9 0.03207 | 0.14301 | 0.05621 | 0.00491 | -0.00614 | 0.00725
10 0.08348 | 0.24747 | 0.25457 | 0.01386 | 0.00997 | 0.00487
Mean 0.05595 | 0.17344 | 0.17297 | 0.01346 | -0.00013 | 0.00561
Standard D. | 0.04177 | 0.10783 | 0.12561 | 0.00789 | 0.00690 | 0.00708
Maximum | 0.14067 | 0.34395 | 0.42461 | 0.02480 | 0.00997 | 0.01598
Minimum | -0.00228 [ 0.00679 | 0.02257 | 0.00310 | -0.01017 | -0.00680
Difference | 0.14294 | 0.33716 | 0.40205 | 0.02169 | 0.02014 | 0.02278
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Table 18 High Resolution Results

+1or2mV

Axial Side Normal Roll Pitch Yaw
Loading Force Force Force | Moment | Moment | Moment

Number (kg) (kg) (kg) (kgm) | (kgm) | (kgm)
1 0.00241 | -0.00222 | 0.00682 | 0.00043 | 0.00021 | 0.00060
2 0.00301 | 0.00368 | 0.00719 | 0.00049 | 0.00046 | 0.00076
3 0.00291 | 0.00590 | 0.00597 | 0.00073 | 0.00032 | 0.00069
4 0.00374 | 0.00686 | 0.00532 | 0.00078 | 0.00034 | 0.00065
5 0.00245 | 0.00244 | 0.00695 | 0.00087 | 0.00031 | 0.00064
6 0.00342 | 0.00394 | 0.00601 | 0.00087 | 0.00044 | 0.00054
7 0.00399 | 0.00670 | 0.01014 | 0.00101 | 0.00038 | 0.00093
8 0.00353 | 0.00654 | 0.00948 | 0.00087 | 0.00052 | 0.00087
9 0.00521 | 0.00879 | 0.01219 | 0.00094 | 0.00070 | 0.00111
10 0.00277 | 0.01017 | 0.00992 | 0.00123 | 0.00056 | 0.00110
Mean 0.00334 | 0.00528 | 0.00800 | 0.00082 | 0.00042 | 0.00079
Standard D. | 0.00084 | 0.00352 | 0.00227 | 0.00024 | 0.00014 | 0.00020
Maximum | 0.00521 | 0.01017 | 0.01219 | 0.00123 | 0.00070 | 0.00111
Minimum | 0.00241 | -0.00222 | 0.00532 | 0.00043 | 0.00021 | 0.00054
Difference | 0.00280 | 0.01238 | 0.00686 | 0.00081 | 0.00049 | 0.00057

3.2.2.5 WIND-OFF LOADING RESULTS

Because the internal balance system is a new system, verification loadings, or

wind-off loadings, are performed to understand the behavior and the usage of
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internal balance and to verify the calibration matrix. The verification loadings are

applied as pure loads, 2-combinations loads and 3-combination loads.

To apply the loads to internal balance in the direction of Normal Force, Side Force,
Pitch Moment and Yaw Moment the calibration rig and the body are used as shown
in Figure 39. For example if the top of the calibration rig is upwards one can load
positive normal force by loading Pin 1 or Pin 2 and 3 with equal loads or Pin 1 with
Pin 2 and Pin 3 with equal loads. While the top of the calibration rig is looking
upwards one can load positive pitch moment if the loads at pin 2 are higher than
Pin 3 or visa versa for negative pitching moment. By turning the top of calibration
rig 90° with respect to symmetry axes one can have combination for positive side
force and yaw moment combinations. And if it is turned 90° again negative normal
force and pitch moment and 90° again negative side force and yaw moment can be

applied to internal balance.
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3>2:(+) YAW MOMENT 2>3:(+) YAW MOMENT

Figure 39 Normal / Side Force, Pitch / Yaw Moment Loading Configuration

Roll moment loadings are applied by using roll moment arm as shown Figure 40.
The roll moment moment arm has 170 mm length (like yaw and pitch moment
moment arm) for 35 mm internal balance which means that if there is a 1 kg of
loading difference between Pins 1 and 2 loads, the applied roll moment is 0.17

kg.m with positive sign.
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TOP OF
CALIBRATION RIG

170mm | 170mm
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Figure 40 Roll Moment Loading Configuration

Loads in axial directions are applied with a frame and a pulley system as shown in
Figure 41. Unfortunately this application has losses because of the strain in the
cables and the friction generated at the pulleys. But in order to apply 2-combination
or 3-combination loads a pulley system must be built. Only pure loading at axial
forces direction can be applied by turning the calibration rig 90° w.r.t
perpendicular to symmetry axes. The calibration rig does not have any degree of

freedom in any direction.
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Figure 41 Axial Force Loading Configuration

After installing the calibration rig to calibration apparatus, the internal balance is
installed to the calibration rig. Then the calibration body is mounted to internal
balance as seen at Figure 43. To apply loads to internal balance at a point exactly a
male and female conical pins are manufactured with their frames which can be
named as loading basket. (Figure 42) These pins and the loading basket are
installed at the location on the calibration rig finally. (Figure 31) Then the loading

can be applied for wind-off loadings.
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Figure 42 Loading Pins and Loading Basket

Figure 43 Installation Calibration Rig to Calibration Apparatus

For wind-off loadings the following loading combinations are applied and the
results are given at APPENDIX F and the summary of the errors are given in Table

19.

e Pure Axial Force
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Pure Side Force

Pure Normal Force

Pure Roll Moment (compulsory with Normal Force)

Pure Pitch Moment (compulsory with Normal Force)

Pure Yaw Moment (compulsory with Side Force)

2-D combination Normal Force with Axial Force

2-D combination Side Force with Axial Force

3-D combination Pitch Moment - Normal Force - Axial Force
3-D combination Roll Moment - Normal Force - Axial Force
3-D combination Roll Moment - Side Force - Axial Force

3-D combination Yaw Moment - Side Force - Axial Force

THE THEROTICAL
LOADING CONFIGURATION EXTRA COMPONENT in the

SIDE FORCE DIRECTION due to
MISALIGNMNET

Figure 44 Misalignment at Roll Moment Loadings
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Table 19 Wind-Off Loading Errors

ERROR
COMBINATION | COMPONENT o
(1]
Axial ~2
Side <1
Normal <1
PURE
Roll <2
Pitch <1
Yaw <1
2D (Normal and Normal <1
Axial) Axial <2
2D (Side and Side <1
Axial) Axial <2
Pitch ~2
3D (Pitch-
Normal ~1
Normal-Axial)
Axial ~2
Roll ~2.5
3D (Roll-Normal-
Normal ~1
Axial)
Axial ~6
Roll ~1.5
3D (Roll-Side-
Side ~1.5
Axial)
Axial ~6
Yaw ~2
3D (Yaw-Side-
Side ~1
Axial)
Axial ~2

As seen from the table the pure loadings results are more accurate when compared
to combination loads. The accuracy of two component loadings for, Axial Force

and Roll Moment, is of the order of %2 while the others are of the order of %1. The
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axial force loadings are applied with the help of pulley and cables as mentioned
before, for this reason the %2 error is considered to be reasonable for axial force.
To apply roll moment to the internal balance the roll arm is used and the loading is
applied to this arm. When roll moment is applied to the system unfortunately there
was a misalignment of the internal balance with respect to the normal direction and
swathe errors are increased due to this defect, as indicated in Figure 44. The error
in the roll moment loading can be up to 1 kg of side force while it should be 0 kg.

(Figure 45)
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Figure 45 Measured Side Force due to Roll Moment Application
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These errors are getting larger for 3-D combinations as can be seen from the table.
But the worst case scenario is created during the combined application of the roll
moment and axial force due to the misalignment problem and the friction losses at

pulley and cables.

3.2.2.6 MISALINGMENT PROBLEM

As mentioned in the previous section when roll moment loading is applied due to
the misalignment of the calibration rig and the body there occurs an additional side
force and the errors are increased when compared to other loading cases.
Unfortunately the calibration rig has no degrees of freedom which mean that the

calibration rig can not be moved or can not be given any angles in any directions.

To understand this misalignment problem a pitching moment loading was applied
with a mechanism which has single degree of freedom whose angle of attack could
be changed. And the axial force component is measured both with alpha correction
and without alpha correction. As seen from the results the measured axial force is
smaller at the loadings with alpha correction than without alpha correction

loadings.
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Axial Force at Pitching Moment Loadings (N)
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N
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=
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S

N

o

05
U0

Pitching Moment Loading (Nm)

Figure 46 Measured Axial Force for Pitching Moment Loading

For this reason loadings has to be carried out using a leveled calibration process to
simulate a model support system that will be used in conjunction with balances. At
each loading point the Balance attitude was adjusted such that the Calibration
Loading Sleeve was level, to correct for the Balance deflection that occurred. The
calibration rig must have at least 2-degrees of freedom one at angle of attack for
pitch and yaw moments loadings and one at x-direction for roll moment loadings
for future applications at AWT like re-calibration or verification of internal

balances.
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2nd Degree of Freedom
for Pitch and Yaw Moments

1st Degree of Freedom
for Pitch and Yaw Moments

Figure 47 Future Application for Calibration Rig

3.3 AUTOMATED ANGLE OF ATTACK CONTROL

To give the desired angle of attack to the test model, a servo motor or a stepper
motor is in conjunction with the Internal and External Balance Systems. Both the
servo and the stepper motors are controlled automatically by AWT-AMS as shown
in Figure 48. There is a closed loop between the AWT-AMS with Servo or Step

Motor Driver which commands and encoders value are connected with PCI-7344.

The command to the stepper or servo motor driver is step or count value
respectively instead of giving the command as an angle directly. This is because of
the nonlinearity of the system which means that the same step or count value is not
equal to the same angle of attack value at every angle of attack range. The angle of
attack value is taken directly from an inclinometer which is located inside the

model or on the model arm.
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AWT-AMS gives the commands and takes the encoder value to / from servo or
step motor drivers not to / from servo or step motor directly. The drivers of the
motors communicate with the motors again in a closed loop control system. Hence
there are 2 closed loops in the system one with AWT-AMS and the driver and the

other is with the driver and the motor.

As shown in Figure 49 servo motor driver is connected with X3 and X5
connections to AWT-AMS with UMI-7764 and with X2 and X9 connection to
servo motor. As shown in Table 20 the X3 connection is the connection for
commands to driver from UMI-7764 and X5 is used for the encoder connection to
UMI-7764. X9 is the connection to servo motor and X2 is the encoder connection
to servomotor. As mentioned before there are 2 closed loops at the system. This is
why there are 2 encoder connections and 2 command connections for servomotor

driver. (APENDIX-B)

Step motor connection is the same as the servomotor connections with the
difference such that there is no encoder connection between the step motor driver

and the AWT-AMS.
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INCLONOMETER

AWT-AMS HECK the ANGLE
FORCE and MOMENT |- YES ATTACK. IS IT THE
ToOL DESIRED VALUE?
DESIRED Step /
LIMIT SWITCH Count VALUE

¥

+ Reqguired Step / Count Value
PCI-T344 —s  Aciual Step / Count Value  — AWT-AMS
& STOP {if Limit Switch active)

Encoder Qutput
CLOSED
{only for Servo Motor) LOOP
‘ PCI-T344
STEP / SERVO ; + Direction ‘
MOTOR DRIVER + Step/ Count Value
STEP / SERVO
MOTOR

Figure 48 Inputs and Output of Angle of Attack Control Tool of AWT-AMS
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= [ oaq ] AWT-
UMI-7764 NI-7344 DAS
SERVO
X3 MOTOR
DRIVER

2nd Switch ||

[ | 1st Switch ’—‘XOA X9 ]
24VDC
POWER
SUPPLY
MAIN
FUSE SERVO
’7 MOTOR
(220750 [a-Phase]

Figure 49 Servomotor Connections

Table 20 Servomotor Connector Name and Their Application

Connection Connection Name
XOA Main Power Supply (3-Phase)
X9 Motor Connection
X2 Resolver Connection
X4 24VDC Auxiliary Supply
X3 Control and Monitoring Connection
X5 Encoder Simulation
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3.4 AUTOMATED FAN DRIVER CONTROL

The flow velocity inside the wind tunnel is controlled by adjusting the rpm of the
fan motor. In the old system this control was done by hand with a technician or
with an engineer and this increased the operation and the adjusting time. This old
system is integrated to the new DAS and the desired program is implemented to

AWT-AMS as RPM Controller Panel. (Figure 51)

In the new system RPM control is done with manually or automatically with AWT-
AMS RPM Controller Panel. For the manual control the operator can increase or
decrease the RPM value manually. The only difference of this technique with the

old one is that the rpm command is given with DAS to the drive motor.

The second technique is the automatic adjustment of the rpm with AWT-AMS. The
operator enters only the desired RPM value to AWT-AMS and the rpm commands
are given to the system automatically with a 100 rpm/minute increase and decrease
rate. In other words, the motor reaches 400 rpm in approximately 4 minutes and

stops from 400 rpm in approximately 4 minutes.

Figure 50 Old Fan Driver RPM Controller
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DESIRED RPM

VALUE

AWT-AMS

RPM CONTROLLER
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Increase RPM
Decrease EPM

-

SCXI-1163R

+ Required RPM
SCXI-121 - CairPm
CLOSED
LOOP
FAN DRIVER
CONTROLLER

Figure 51 AWT-AMS RPM Controller Panel Closed Loop

3.5 AUTOMATED MULTI-CHANNEL PRESSURE SYSTEM

MEASUREMENT

AWT-AMS can control the Multi-Channel Pressure Measurement System
automatically. The operator only enters the value of the total number of pressure
points that will be measured at the test. The control loop of the AWT-AMS Multi-

Channel Pressure Measurement System Tool is repeated as many times as the

number input to the program. (Figure 52)

69




PRESSURE

WALUE

—  SCXI-1520 . AWT-AMS
OUTPUT of
EACH CHANNEL N*-TIMES LOOP
("WHERE N IS THE SCXI-1163R
CHANNEL NUMBER)

DIGITAL ADRESSING
COMMANDS

MULTI-CHANNEL

PRESSURE SYSTEM DC /| DC CONVERTER

Figure 52 AWT-AMS Multi-Channel Pressure System Control Loop

3.6 AWT-AMS

AWT-AMS is written in LabVIEW programming language which is a high level

iconic programming tool for creating custom test, measurement, and data
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acquisition applications. LabVIEW is a user-friendly program and, is used by
means of pushbuttons. The user interface part of the measurement code is written in
Turkish, since it is used practically in AWT. The operator can see the data from
both figures and from indicators so a meaningless jump of the data can be easily
observed and the measurement can be repeated again. The screen shots for the

AWT-AMS programme can be seen in Appendix F.

3.6.1 AWT-AMS CODE ALGORITM

The algorithm of AWT-AMS is given in this section as follows:
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Figure 53 AWT-AMS Flowchart (Measurement and Storing of Offset

Parameters)
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Figure 54 AWT-AMS Flowchart (Getting Test Conditions)
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CHAPTER 4

VALIDATION and VERIFICATION of AUTOMATED
MEASUREMENT SYSTEM (AMS)

For validation and verification of AWT-AMS a model of an air-to-air missile
(Sidewinder) with cruciform fins and triangular canard controls having trapezoidal
wings is chosen since experimental data are available for this model. This model
was previously tested in NASA Langley Research Center Wind Tunnel in 1974.
[21] The model was tested for various Mach numbers ranging from 0.2 to 4.63 with

two canard and wings in + configuration (as seen from forward ¢ = 0°) and as well
as in X configuration of the wing (as seen from forward ¢ =45°). The results of +

and X wing configurations for 0.2 Mach number is taken from the graphs and the

results of AWT-AMS is compared with this available data.

")

§¢:4__

étb:o \

5

Figure 56 Wing and Canard Position with respect to Body (+ Wing and X

Wing Respectively)

75



4.1 SIDEWINDER

The drawing and the picture of the model are given in Figure 57-Figure 60. The
model fuselage has a fineness ratio (1/d) about 22 and incorporates a hemispherical
nose. The model has a canard and tail fins which detailed dimensions are given in
Figure 59. Two mounting hangers (launch straps) are located on the body between
the canards and tail fins. Unfortunately the details of these hangers are not given in
the NASA report but fortunately for comparison the basic and launch straps off

models was tested and the results are represented for both cases. [21]
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Figure 57 Model Drawing
l
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Figure 58 Model Drawing (all dimensions are in centimeters)
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Figure 59 Details of the Fin and Canard Geometries (all dimensions are in

centimeters)

Figure 60 Presented Model of Sidewinder Missile Manufactured in SAGE

4.2 NASA RESULTS

NASA tests are performed in 8-Foot Wind Tunnel of Langley Research Center at a
Reynolds number of 6.56 10° per meter and a Mach number of 0.2. During the
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tests, boundary-layer transition strips were placed 3.05 cm aft the model nose and
1.02 cm aft, streamwise, on all lifting surfaces. Sand, sparsely sprinkled, in 0.16-
cm-wide strips was used where the sand particles were individually placed three

diameters apart. [21]

Aerodynamic forces and moments were measured by means of a six-component
electrical strain-gage balance located within the model and, in turn, rigidly fastened
to a sting-support system. Pressures in the model balance camber were measured by

means of a single static orifice.

The basic and launch straps off model results is given in figures between Figure 61
to Figure 66. The launch straps have an effect on axial force measurement as is
expected. The effects of the launch straps on the other longitudinal characteristics,
namely pitch moment and normal force are quite small. The launch straps off

model results are taken to compare the AWT results.

—o-Basic & Launch Straps off\
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Figure 61 NASA Results, Pitch Moment (M=0.2, ¢ =0° )
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—-Basic = Launch Straps off
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Figure 62 NASA Results, Axial Force (M=0.2, ¢ =0°)
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Figure 63 NASA Results, Normal Force (M=0.2, ¢ =0°)
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—- Basic = Launch Straps off
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Figure 64 NASA Results, Pitch Moment (M=0.2, ¢ =45° )
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Figure 65 NASA Results, Axial Force (M=0.2, ¢ =45°)
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—- Basic = Launch Straps off
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Figure 66 NASA Results, Normal Force (M=0.2, ¢ =45° )
4.3 AWT RESULTS

Because AWT is an atmospheric wind tunnel it is not possible to make the tests at
the same Reynolds number that was attained in the Langley Research Center Wind
Tunnel. For this reason, only the Mach number similarity is considered to be
satisfied and the present tests were performed at the same Mach number of 0.2
(with the tolerances -0 , +0.001) and approximately at 1.97 10° Reynolds Number

per meter.

During these tests to satisfy the similarity of the velocity field and the growth of the
boundary layer, the boundary layer is tripped using strips of sand papers of grid
sizes 90 at the nose and on all of the lifting surfaces (canards and wings). For body
the strips are located at 3.05 cm aft of the nose, which is the same value as for the
NASA tests, and at the leading edges of all lifting surfaces, which is 1.05 cm for
NASA tests. (Figure 67 and Figure 68)
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Figure 67 Nose and Canard Strips Respectively

Figure 68 Wing with and without Strips Respectively
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After the completion of the model preparation and its installation to the MSS in the
test section of AWT (Figure 69 and Figure 70), the tests are performed and the
results are given in Figure 71-Figure 77 for ¢ = 0° configuration and in Figure 78-
Figure 80 for ¢ =45° configuration. For checking the repeatability of AWT-AMS

results for both of the cases two sets of tests are performed for each configuration

and the results are given as AWT Run 1 and AWT Run 2.

Figure 69 Model at the Test Section (Side View)

Figure 70 Model at the Test Section, X-Wing Configuration, Isometric View
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The pitching moment coefficients, which are found by NASA and AWT-AMS, for
¢ =0° is given in Figure 71. As seen from the graph AWT results are in good

agreement with NASA results at low angles of attack. For high angles of attack

they are still in good agreement but with a small difference.

-=-NASA - AWT Run1 4 AWT Run 2

-8 -4 0 4 8 12 16 20
Angle of Attack

Figure 71 Comparison of AWT / NASA Results, Pitch Moment (¢ =0°)

After investigation of the Axial Force results (Figure 72) it is seen that the results
are to much bigger than the NASA results. After a literature survey it is seen that a
correction, base pressure correction, is applied at the test which sting type balance

is used.
A large part of wind-tunnel testing involves the use of rear sting-supported models.

Experimental data for sting-support effects on model characteristics are needed in

order to estimate more exactly free-flight conditions. [18] One of the major reasons
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for this is that base pressure is influenced to a large extent by the existence of the

sting extending from the model base which supports the model in the tunnel. [19]

= NASA - AWT Run1 4 AWT Run 2

1.2

0.8 —eee8e—g o | A

—

Ca

0.4

-8 -4 0 4 8 12 16 20
Angle of Attack

Figure 72 Comparison of AWT / NASA Results, Axial Force (¢ =0°)

As seen from Figure 73, because of the sting support at the base, the pressure
distribution in free-flight conditions does not occur and the axial force is measured
bigger than the free-flight condition. In addition, in the test case report, [21], it is
stated that the test results are corrected for base pressure effects, which means
therefore, that the present results must also be corrected if we want to compare the
two results. For correction the base pressure must be measured at the base of the
model. In these experiments the base pressure was measured from 4 points as seen
from Figure 74 by means of Multi Channel Pressure System whose output gives the
pressure difference with respect to a reference pressure which is the atmospheric
pressure. Fortunately this value is what will be used for base pressure correction as

well.
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Figure 74 Base Pressure Measurement Points

Fi=Fu=S,(p—py)

where Fac = Corrected (actual) axial force
Fam = Measured axial force with sting
Sy = Base Area
p = Reference Pressure (Atmospheric Pressure)

p» = Base Pressure which is measured at the base of the model

Fuu S,(p—p,)

/pVS_/pVS /pVS

in this case S = S}, so:

AM / 5
pV
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where Cuc = Corrected (actual) axial force

Cam = Measured axial force with sting

Cap = Axial Base Coefficient

So the final equation becomes:

As seen from Figure 75, NASA results and the AWT results are in good agreement
for low angles of attack (<6°) the difference between two results gets bigger at high

angle of attack. The error, which the definition is given in equation 4.5,.0f AWT

(p—py)

Yo

CAC = CAM - CAB

results are at the order of %15 for high angle of attack. (Table 21)

Y%error =100 x

|CAB AWT CAB NASA |

AB NASA

Table 21 Base Axial Force Results with Error

NASA AWT Error %
o Cas o Cas

-4.258 0.104 -4.258 0.107 2.261
-2.186 0.105 -2.186 0.101 3.130
-1.208 0.104 -1.208 0.102 1.391
-0.200 0.104 -0.200 0.103 0.136
0.778 0.103 0.778 0.105 1.537
1.814 0.104 1.814 0.107 2.919
3.829 0.106 3.829 0.111 4,587
5.874 0.112 5.874 0.115 2.666
10.021 0.125 10.021 0.138 11.100
14.138 0.130 14.138 0.152 16.987
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Figure 75 Base Axial Force with respect to Angle of Attack

After the correction it is seen that the Axial Force coefficient which is found by
AWT-AMS comes closer to the coefficient that is found by NASA. For this reason

the base pressure correction is applied to the all results.

The axial force coefficient are given in Figure 76. AWT V1 results are more or less
the same with the NASA results but AWT V2 results are not as “perfect” as AWT
V1 results. It can easily be said that they are in good agreement with NASA results.
For the Normal Force coefficient (Figure 77) both results of AWT, V1 and V2,
coincide with each other and with NASA results as well with a small shift at low

angles of attack. This shift gets smaller for high angles of attack.
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Figure 77 Comparison of AWT / NASA Results, Normal Force (¢ =0°)
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Beside these small shifts in normal force and pitch moment and the shift in axial
force coefficients between AWT V1 and AWT V2, the results of AWT-AMS are in
quite good agreement with the NASA results for ¢ = 0° configuration.

When comparing the results of pitching moment of ¢ =45° case, it can be seen

that AWT-AMS results are in good agreement with NASA results with a small
shift. (Figure 78) For axial force component the results of AWT-AMS are very
close to NASA results for low angles of attack. But unfortunately for high angles of
attack the results are not close to of NASA results. (Figure 79)

The normal force results of AWT-AMS (Figure 80) are in good agreement, but not
identical with the NASA results. In addition the slope of the normal force
coefficient with respect to the angle of attack for the AWT-AMS result is different
from that of the NASA results’.

= NASA ©-AWT Run1 4 AWT Run 2

|/

-8 -4 0 4 8 1
Angle of Attack

6 20

Figure 78 Comparison of AWT / NASA Results, Pitch Moment (¢ =45° )
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92




AWT-AMS results for ¢ =45° configuration are in good agreement with NASA

results except the shift in axial force coefficients. In addition the repeatability of the

test results is very good for this case. But the results of ¢ = 0° case are even closer

to the NASA results than ¢ =45° case.

4.4 VERIFICATION and VALIDATION

When comparing the results of AWT-AMS with NASA results, it must be kept in
mind that the two models are not identical. It must be considered that the model is
the most important factor for wind tunnel testing. Any small misalignment of the
model affects all of the aerodynamic measurements. The manufacturing tolerances,
some possible misalignment of parts at the installation of model can significantly

affect the results.

Another parameter, that affects the results, is the Reynolds number. The two
Reynolds numbers are significantly different from each other. The Reynolds
number for Langley Research Center was 6.56 10° per meter, whereas the one for
AWT was 1.97 10° per meter for AWT. The Reynolds number difference leads
different transition locations hence different aerodynamic behaviors, especially for
Axial Force coefficients, on the model. The location of the transition point can be

controlled by strips but the strips used for two wind tunnels were also different.

As a result even though, there are lots of discrepancies in terms of experimental
facilities, one can still say that the results obtained in AWT-AMS are in good
agreement with NASA results. There are some slight shifts in some coefficients but
the behavior of the coefficients are very similar. The model, Reynolds number and

transition strips effects can cause these shifts in the coefficients.
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CHAPTER 5

CONCLUSION

In this study, a data acquisition system is designed, built and implemented to the
Ankara Wind Tunnel to perform the tests automatically with minimum human
intervention under the command of a central computer and a program, Ankara
Wind Tunnel — Automated Measurement System, which is written in LabVIEW
programming language. With in the scope of this thesis, following actions were

performed:

The old data acquisition system is replaced with the new data acquisition cards,
which are the products of National Instruments, and the integration of the existing
measurement system (Pressure Transducer, Resistance Thermometers, and External
Balance System) with this new DAS was performed. After the installation of the
new cards to this measurement system, the software which is written in Test Point
programming language is re-written in LabVIEW programming language. In the
new system the temperature measurements are performed with Thermocouples

instead of resistance thermometers used in the old system.

After getting the temperature and pressure values, the flow parameters are
calculated with the new program. The external balance calibration was performed

with the new program AWT-AMS.

New measurement systems such as Internal Balance System, Multi-Channel
Pressure Measurement System, Servo and Step motor controller systems are also

integrated to the AWT’s new data acquisition system. A new Model Support
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System (MSS) is designed ,manufactured and installed in the test section of AWT

for use with Internal Balance System.

Before using the Internal Balance System for the tests, to understand the working
principles of the internal balance and to find out the accuracy of the system a
calibration rig is designed and manufactured to perform some wind-off loading. For
wind-off loadings, the known loads are applied to the system and the results are

compared with the applied values.

To give the MSS the desired angle of attack during the tests automatically, a
servomotor drive system is installed to the DAS and the tests are conducted with
this new mechanism. In addition, a stepper motor is installed to the DAS to

automate the angle of attack mechanism of the existing external balance system.

The RPM control mechanism of the AWT Driver is installed to the new DAS and
the RPM control is done by AWT-AMS automatically.

To test the accuracy and the reliability of the new system, a test case is
experimented in the AWT. This is the test for Sidewinder missile model. The
model was previously tested in the NASA Langley Research Center and some
aerodynamic data are available in the literature. A similar model of Sidewinder is
manufactured with the given drawings in the model report and the test with this
model are conducted at Mach 0.2 at AWT. The results are then compared with
those obtained in NASA and the capacity of DAS and AWT-AMS are evaluated.

Base pressure correction which is a must for sting type internal balance
applications are performed for the AWT results by measuring the pressure at the

base of the model with multi-channel pressure system.

This thesis forms a major step to have internal balance test at AWT. Through the
work presented in this thesis, it has become possible to have automated controlled

tests with minimum human interference under the command of a central computer.
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Although the system can work properly, some improvements are still needed for

AWT. These improvements can be summarized as follows:

At the verification test, it is observed that the MSS load limits are not as high as
internal balances. In addition the designed MSS have only one degree of freedom-
angle of attack-; MSS must be turned manually to have a side slip test. For these
reasons a new MSS must be designed for having larger load limits and it must have
2 degrees of freedom that the angle of attack and the side slip angles can be given

with servo motors automatically.

Although wind-off loadings can be applied with the recent calibration rig,
misalignment problem results in extra loadings. A new calibration rig that has two
degrees of freedom must be designed and at each loading point the balances must

be leveled accurately.

AWT-AMS can be improved with installation of new DAC to DAS and a fully
automatic program can be written in LabVIEW. The program can work with an
input file, batch file, and the corresponding measurement, model attitude control

can be done fully automatically with this program.
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APPENDIX A

PRESSURE TRANSDUCER and MANOMETER

A.1 PRESSURE TRANSDUCER

Applications
Fuel Cells
Energy Management Systems
Pump Speed Control

Filter Condition Monitoring

Process Control

Refrigeration Equipment

HVAC
Electrical 0to5 VDCO0to 10 VDC
Output Voltage
Electrical 4 to 20 mA
Output Current
Accuracy +0.25% Full Scale
(RSS Method)

Type of Pressure Differential (can be wet both sides)
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Pressure Ranges Unidirectional:
0to1,2,5,10, 25,50, 100 psid
Bi-directional:

0 to +£0.5, +1, £2.5, +£5, £10, £25, £50 psid

Thermal Effects Thermal Compensation °F (°C):
30 to 150 (-1 to 65)
%FS/100°F(100°C)max.zero:
+2.0 (£3.6)
%FS/100°F(100°C)max.span:
+2.0 (£3.6)

Media Gases or liquids compatible with 300 series and 17-4PH stainless
steel, and Viton®™ "O" ring. (Hydrogen not recommended for use

with 17-4 PH stainless steel.)

*Viton® is a registered trademark of DuPont Dow Elastomers

A.2 PRESSURE MANOMETER

Features
l Dual Channel
g User Adjustable Hi/Lo Alarms

Easy Front Panel Setup

Pressure Displayed in Desired Engineering Units

' Tabletop or Panel Mount

12 VDC & 24 VDC Power Supply (UL Approved)
1/8 DIN Package (Meter)

1/4 DIN Package (Manometer)

Internal Reference Voltage for Easy Calibration
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Datum 2000™ Specifications

Display Type:
Light emitting diode
Color:
Red
Height of Digits:
0.56 inch
Maximum Readout:
-9999 to +31999
Reading Rate:
2 to 3 times per second depending on input voltage
Overload Signal (over range reading):
OVEr
Underload Signal (under range reading):
UndEr
Polarity Signal:
Negative only
Brightness:
Constant
Accuracy At 73°F (23°C):
(Readout Only)  +0.01%R +1 digit
At 60°F to 95°F (16°C to 35°C):
+0.04%R +1 digit
Environmental =~ Operating Temperature:
+32°F to +130°F (0°C to 55°C)
Storage Temperature:
-40°F to +185°F (-40°C to +85°C)
Electrical Data ~ Power:
Domestic:
24 VDC (115 VAC 60 Hz, 12 watt adapter provided w/ -1

models)
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European:

24 VDC (220 VAC 50 Hz, 14 watt adapter provided w/-2 models)
Adapter has European 2 prong plug with turret

Power Cord Length:

6 feet (approx.)

Physical Width:
3.61 inches (92mm)
Height:
Meter: 1.74 inches (44mm)
Manometer: 3.50 inches (§9mm)
Depth (including connector):
7 inches: (178 mm)

(Allow at least 1/2" more for wires attached to terminal strip)

Cutout Cutout Dimensions:

Dimensions Meter: 1/8 DIN: 3.67 in. x 1.80 in. (46 mm x 93 mm)
Manometer: 1/4 DIN: 3.67 in. x 3.56 in. (90 mm x 93 mm)
Front Panel:
Meter: 3.82 in x 1.97 in. (98 mm x 50 mm)

Manometer: 3.82 in x 3.74 in. (98 mm x 95 mm)

Analog Output  Transducer:
Same as transducer output voltage
Transmitters:

No analog output. The DATUM 2000™ terminates the current

loop.
Adjustment Voltage Inputs:
Capabilities +11 to -11 volts
(accessible Current Inputs:

through the user 0to 20 mA
set-up menus) Maximum Reading:
+31999

Minimum Reading:
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Input

Specifications

-9999

Transmitter Inputs Signal:

4-20 mA

Transmitter Inputs Impedance:
150 ohm

Transmitter Inputs Voltage Drop:
3 VDC (max.)

Transducer Inputs Signal:

+11 VDC to -11 VDC
Transducer Inputs Impedance:

45k ohm
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APPENDIX B

CONNECTION DIAGRAMS

B.1 PRESSURE TRANSDUCER CONNECTION

The pressure transducers are connected to SCXI-1301 hence SCXI-1140 to read the

output voltages to get the three pressure values:

Patmospreric: The output of 0-20 psi absolute pressure transducer which gives the
atmospheric pressure value. It is connected to Channel 5 of SCXI-1140 with screw
terminal SCXI-1301 differentially.

Pwarr: The output of +£0.5 psi differential pressure transducer which gives the wall
static pressure difference. It is connected to Channel 4 of SCXI-1140 with screw
terminal SCXI-1301 differentially.

Ppiro-ruse: The output of +0.5 psi differential pressure transducer which gives the
dynamic pressure at the test section. It is connected to Channel 0 of SCXI-1140

with screw terminal SCXI-1301 differentially.

The connection diagram of pressure transducer with SCXI-1301 hence SCXI-1140

is shown at the figure.
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Figure 81 Pressure Transducer Connection Diagram
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B.2 THERMOCOUPLE CONNECTION

The thermocouples are connected directly to SCXI-1121 without any screw

terminal. There are 4 measurements points at wind tunnel:

T1:  Climatic Room Temperature 1
T2:  Climatic Room Temperature 2
T3:  Test Room Temperature 1

T4:  Test Room Temperature 2

T1 gl & L
T2 F—

=)
I+

T3

T4

b #Bb b MO o OO
0+

Figure 82 Thermocouple Connection Diagram
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For getting reed of the temperature effects of External Balance System, it was built
a Climatic Room around of the External Balance System. And to measure this
room temperature two thermocouples are installed and the temperature is measured

with these two thermocouples. These two values are averaged to get the final value.

Two thermocouples are installed to the test room (forward and backwards of the
test room) to get the temperature value. The averaged value of these two device is

taken into account for the calculations.

B.3 EXTERNAL BALANCE CONNECTION

The dynamometers on the External Balance System and the Strain Gauges of
Internal Balance System are connected to SCXI-1314 screw terminal block and
hence to SCXI-1520. As mentioned before SCXI-1520 is a special DAC for this
type of applications.

The SCXI-1520 provides DC voltage for exciting a Wheatstone bridge. For half-
bridge and full-bridge applications, the excitation voltage is available at terminal
block connections P+ and P—. For quarter-bridge applications, connection is made
to terminals P+ and QTR; the latter terminal allows connection to the quarter-

bridge completion resistor.

Excitation voltage originates from two output buffers dedicated to each channel.
Because each channel is controlled independently, a short circuit across the
excitation terminals of one channel has no effect on the excitation of another
channel. The output buffers have negative feedback connections at the terminal
block remote-sense terminals, RS+ and RS—. You can run separate wires from the
bridge to these terminals so that the amplifiers obtain feedback directly from the

bridge, thereby forcing bridge voltage to equal the desired setting.

The analog input signal from the strain-gauge bridge is connected to S+ and S— of

the terminal block. The connections can be seen from Table 22 and Figure §3.
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Table 22 SCXI-1314 Signal Names

Sighal Name Condition
SCB (2 terminals) | Shunt calibration B signal
SCA (2 terminals) | Shunt calibration A signal
P - Negative excitation signal

P+ Positive excitation signal

QTR Quarter-Bridge completion resistor connection

S+ Positive input signal

S- Positive input signal

RS + Positive remote sense signal

RS - Positive remote sense signal
C scx-s20 | scxi1314 |
{ i
| - 4 5+!!
i {: | vsig i 5 . ‘
a ~ M /
| | | /
! T HS+ I’_ Ilr.
| ! i /
! f Pt !
! J >4 M /R R4
. : | i é %
! Foedback ff + \: I ! /
T
. p_i /| Re Ra
I 1 T’ ."l
| . msl ¥
. S ]

Figure 83 SCXI-1314 and SCXI-1520 Connections

The seven dynamometers connections are the same with each other and given at
Table 23. the 1 dynamometer is connected to the lsr channel while the 2™

dynamometer to 2" channel and so on for all seven dynamometer.
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Table 23 External Balance Connections

Channel Number Channel n
SCB (2 terminals)
SCA (2 terminals)
P - Yellow
P+ Green
QTR
S+ Red
S- Blue
RS + Black
RS - White
Related Component | Dynamometer n

Wherenisl1lto7

B.4 INTERNAL BALANCE CONNECTION

The Internal Balance System connections are done with SCXI-1314 and SCXI-
1520 like the External Balance System which the idea is exactly the same. 10 VDC
excitation value is given with P- and P+ with remote sense connections RS- and
RS+. The output of the internal balance is taken with S- and S+ connections. The

connections are given at Table 24 for internal balance.
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Figure 84 SCXI-1314 Screw Terminal Signal Connections
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Table 24 Internal Balance Connections

Channel Number Channel 1 Channel 2 Channel 3
SCB (2 terminals)
SCA (2 terminals)
P - White / Brown | Grey / Green Violet / Black
P+ Red / Black Yellow / Blue Red / Blue
QTR
S+ Red Orange Green
S- Blue Brown Yellow
RS + Red / Brown White / Blue Green / Red
Brown / Black Yellow / White / Violet
RS - Brown
Related
Component Axial Force Side Force Normal Force
Channel Number Channel 4 Channel 5 Channel 6
SCB (2 terminals)
SCA (2 terminals)
P- Orange / Green | Grey / Brown Grey / Blue
P+ Yellow / Green | Yellow / Red Blue / Black
QTR
S+ Pink White Violet
S- Turquoise Black Grey
RS + White / Green White / Red Orange / Blue
RS - Green/Blue | Yellow/ Violet | Green / Black
Related
Component Roll Moment Pitch Moment Yaw Moment
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B.S SERVO MOTOR CONNECTION

Forward Limit
Home Input
Reverse Limit
Inhibit Input
Digital Ground
Analog Output
Analog Cutput Ground
Inhibit Qutput
Step (CW)

Dir (CCW)

+5V (Output)
Digital Ground
Encoder Phase A
Encoder Phase A
Encoder Phase B
Encoder Phase B
Encoder Index
Encoder Index

—
I (D Limit Switch
_® Terminals
o 8 X3 CONNECTION
%, ] I "BLUE |
@ TR { BrROWN |
— 0 j]’erminals
— 9
ImS
Distributed
= FAY
& : BLACK |
o = [vELLow | |
D { _GRAY |
S >_r = [BLUE |
Q Tarmaingl I : RED |
{__PINK__ |
é J : WHITE |

X5 CONNECTION

Figure 85 Servomotor UMI-7764 connection diagram
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Figure 86 Servomotor X5 connection

112




24D
POWER
SUPPLY

1st SWITCH

AGMD

BTE/RTO

BTE/RTO

{__BLUE

SWYWYSTEP1+

BROWN

SWYSTEPT-

SWYISTEPZ2+

SWWSTERZ-

MONITOR

MOMITORZ

AGMD

DIGITAL-IMT

DIGITAL- N2

PSTOP

NETOP

IENABLE
I DIGITAL-OUTI

DIGITAL-OUT2

2nd SWITCH

DGHD

3

24y

24y

HGND

HGND

w4

Figure 87 Servomotor Driver X3 and X4 connection diagram

B.6 STEPMOTOR CONNECTION

Forward Limit ——— /) N
Home Input —— (D |\_ Limit Switch
Reverse Limit —— &) ¢ Terminals
Inhibit Input ——— &)
Digital Ground ——— & |/
Analog Qutput ——— () Yy
Analog Outp.ut. Ground 2: ! EmpTerDriver
Inhibit Output D > Terminals
Step (CW) & }
Dir (CCW) S = YELLOW]
+5 'V (Output) ] "\ Distributed _
Digital Ground ) ___/ Power
Encoder Phase A @11
Encoder Phase A QD ‘
Encoder Phase B ® \ Encoder
Encoder Phase B & ¢ Terminals
Encoder Index &
Encoder Index ) J/

Figure 88 Step motor UMI-7764 Connection
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B.7 MULTI-CHANNEL PRESSURE SYSTEM CONNECTION

Multi-Channel Pressure System is controlled with SCXI-1163R DAC and the
output of the system is collected with SCXI-1520 as seen from Figure 89. The

connections can be grouped into three:

1. Power Supply Connections: Connection for DC / DC converter supply 30 V
DC.

2. Digital Address / Command Connections: Commands are given from this
connection. (SCXI-1163R)

3. Output Connections: The output of the system is taken from this

connection. (SCXI-1520)

DC/nc MULTI-CHANNEL
CONVERTER PRESSURE SYS

1316

GREEN WHITE
GRAY PINK

BLACKE PINK ‘
GRAY BROWN Az =
BLACE A

RED WHITE A¥
A5

GlD- - -+
'
1
At .
i

Al

-4
N
o

I3

g

= | CHAN(A )| T

tpi | ChiBNCT| e]

J— chantey N | ©

ChancTal =
Fo [ano | TAIMEGES

| -I R__U'[SE BROWN | —— POWER SUPLY+30V

| RED BROWN —— POWER SUPLY GIND
|l— — sionAL+ ] oS
GREEN BROWN ——— SIGNAL - — CH3 5-

1314

MODT SCXI-1163R

il

MOD4 SCXI-1520

Figure 89 Multi-Channel Pressure System Connection
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The commands are given to the Pressure System through 6 connections: A0, Al,
A2, A3, A4 and AS5. But how can it command up to 64 channels? The digital

address is key word at this application.

When there is a 12 V difference between these 6 connections with GND these
connections are addressed or in other words became active. And with a simple
calculation in the base 2 the desired channel can be addressed or activated and the

outputs of the system gives that channel’s output. A sample addressing is like this:

Table 25 Addressing Sample

A5 A4 A3 A2 Al A0

Voltage difference 12 0 12 0 0 12
Multiplier 2° 2° 2 2’ 2! 20

32 0 8 0 0 1

TOTAL:32+0+8+0+0+1=41 - Digital Address Channel Number
42 - Real Channel Number

And hence channel 41 is activated. Note that in the digital media all the channel
numbers start with 0. But in reality the channel 41 is channel 42. It must be kept in
mind. This addressing is continued till all the channels are scanned and the outputs

are converted to the pressures and stored to the files.
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Figure 90 Motor Rpm / SCXI-1121 Connections
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APPENDIX C

EXTERNAL BALANCE CALIBRATION MATRIX

C.1 FIRST ORDER WITH 6 COEFFICIENTS

L(n) = RX, +R, X, + R Xy + R X, +R X s+ R X,

C.2 SECOND ORDER WITH 27 COEFFICIENTS

L(n)=RX, +R,X,+RX +RX, ,+RX  +RX, +
Rlanll +R22X7122 +R33Xn33 +R44Xn44 +R55Xn55 +R66Xn66 +
Rlzanz + R13an3 + R14Xn14 + RISanS + RlﬁXnIG
R23an3 + R24Xn24 + RZSXnZS + R26Xn26
R34Xn34 + R35Xn35 + R36Xn36
R45Xn45 + R46Xn46
R56Xn56

C.3 THIRD ORDER WITH 33 COEFFICIENTS
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Ln)=R X, +R,X,,+R X +R X, , +RX +RX, +
Rlanll + R22Xn22 + R33Xn33 + R44Xn44 + RSSXnSS + R66Xn66 +
R,y X, o +R3X 3 + RUuX s + R X s + Rig X 16
Ry X,y + Ry X 0y + Rys X hs + Ry X 56
R34Xn34 + RSSXn35 + R36Xn36
R45Xn45 + R46Xn46
R56Xr156

Rllanlll + R222Xn222 + R333Xn333 + R444Xn444 + RSSSXnSSS + R666Xn666

Where

Ry =[R|

Ry =R, x|Ry|
Ryg =|R|x|R]

R, =R xR xR,
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C.4 SECOND ORDER WITH 84 COEFFICIENTS

L(n)=RX
R

+R X, +RX +R X, ,+R X, s +RX, o+
+RyX, ytRyX +R, X +R Xn‘s‘ +R
Rlanll + R22Xn22 + R33Xn33 + R44Xn44 + RSSXnSS + R66Xn66 +

Ry Xy + Ry Koy + Ry Xy + Ry Xy + Ry Xgis) + Ry Xgle +
RyX, T RX 3+ R X,y + R X, s R X 6

R23Xn23 + R24Xn24 + RZSXnZS + R26Xn26

R34Xn34 + R35Xn35 + R36Xn36

R45Xn45 + R46Xn46

R56Xn56

Ry X g + Ry Xy + Ry Xoprag + Ryys Xy + Ry X g

Ry X s + Ry Xy + Ry X sy + Ry Xy g

Ry X opsag + Riss Xajss) + Rag Xopag

R\45\Xn\4s\ + R\%\Xn\%\
R X

[56]“™ n|56|

nl

X X .+
[ 1| 2% nl2] |3]%% uf3] |4] % n|4] Is| |6] ™ n||

Ry X ooy Ry X gy Ry Xy + Rys X + Ryg X
Ropy X oy + Ry X agy + Ry Xogs) + Ry Xz
Ry X + Ry X zjs + Rojg X

Ry Xas) + Rajg X

R, X

5l6] X ns]s|

nl|6|

Ry X + Ryps Xy + Ry Xopga + Rys Xopys + Ryo Xy
Raps Xopofs  Roa Xopoga + Riojs X jojs + Rioge X

Riga X apya + Ryjs X ppys + Rgge X
R Xojys + RgeX

R‘S‘GX

1|36
n|4|6

)1‘5‘6
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C.5 THIRD ORDER WITH 96 COEFFICIENTS

L(n) = RX, +R X, +RX s +R, X, +R X s +RX ¢+

Ry Xy + Ry Xy + Ry Xy + Ry Xy + Ry Xy + Rg Xy +

Rl anll + R22X1122 + R33 Xn33 + R44Xn44 + R55Xn55 + R66Xn66 +

Ry Xy + Ry X + Ry Xy + Ry Xy + Ry X + Ry X +
RIZXVIIZ + R13Xn13 + R14Xn14 + RISanS + R16Xn16

R23Xn23 + R24Xn24 + RZSXnZS + R26Xn26

R34Xn34 + R35Xn35 + R36Xn36

R45Xn45 + R46Xn46

R56Xn56

Ry X i) + Ry Xy + Ry Xy + By Xypis) + Ry X g

Ry Xy + Ry Xyoa + Riog X sy + Ring X g

Ry Xosa + Riss Xopss) + Risg X s

Ry X s + Riag X jag

R\ss\ Xn\se\

Rl\z\an\z\ + Rl\s\an\s\ + R1\4\Xn1\4\ + Rl\s\an\s\ + Rl\é\an\ﬁ\

sz\ anb\ + R2\4\ Xn2\4\ + Rz\s\an\s\ + Rz\s\an\é\

Ryy Xy + Ry Xoys) + Ryg X g

Ry X s + Ryyg X

Rs\()\ an\()\

Ryn X e + R X s + Ra Xy + Rips Xopys + Ry X oo

R\2\3Xn\2\3 + R\2\4Xn\2\4 + R\z\an\z\s + R\z\ﬁXn\z\é

R\3\4Xn\3\4 + R\s\anb\s + R\s\ﬁan\ﬁ

RigsXojas + Ry Xoje

Rig6X 516

Rllanlll + R222Xn222 + R333Xn333 + R444Xn444 + RSSSXHSSS + R666Xn666
R\m\Xn\m\ + R\zzz\Xn\zzz\ + R\333\ Xn\333\ + R\444\ Xn\444\ + R\sss\Xn\sss\ + R\éﬁs\ Xn\eﬁe\
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APPENDIX D

INTERNAL BALANCE SKETCHES
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APPENDIX G

WIND-OFF LOADING RESULTS

F.1. PURE NORMAL FORCE LOADING RESULTS

Normal Force Measurement
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Figure 108 Positive Normal Force Loadings and Readings
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Normal Force Measurement Error
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Figure 109 Positive Normal Force Readings Error

Normal Force Measurement
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Figure 110 Negative Normal Force Loadings and Readings
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Normal Force Measurement Error
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Figure 111 Negative Normal Force Readings Error

F.2. PURE SIDE FORCE LOADING RESULTS

Side Force Measurement

&l Measured Value
™ Applied Value

FFFFTFTTFTFTFFTFTTFTFTFTFTS

FFTFFFIFFTFFIIFrrFrrryrrey

e i e e e e e i e i e

bk b k.
FFrrrrry
rYrr¥r Ty
i i .

FTITTITTITTITTITTTITTTT T

e e e e e e e e e e .

TITERIISIISIIRLIILY
ESFESFESFISIEIIEIAE]

o
(=]

o
©

, , ,
o o o o o o
~ © n < i3l N

(6x) 82104 apIS

10 4
0

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Measurement Number

Figure 112 Positive Side Force Loadings and Readings
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Side Force Measurement Error
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Figure 113 Positive Side Force Readings Error
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Figure 114 Negative Side Force Loadings and Readings
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Side Force Measurement Error
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Figure 115 Negative Side Force Readings Error

F.3. PURE AXIAL FORCE LOADING RESULTS
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Figure 116 Axial Force Loadings and Readings
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Axial Force Measurement Error
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Figure 117 Axial Force Readings Error

F.4. RESULTS of ROLL M. LOADING with NORMAL F.
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Figure 118 Roll Moment Loadings and Readings
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B Error

144

Measurement Number

Roll Moment Measurement Error

Figure 120 Normal Force Loadings and Readings
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Normal Force Measurement Error
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Measurement Number

Figure 122 Yaw Moment Loadings and Readings
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Yaw Moment Measurement Error
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Figure 123 Yaw Moment Readings Error
Side Force Measurement
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Figure 124 Side Force Loadings and Readings
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Side Force Measurement Error
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Measurement Number

Figure 126 Yaw Moment Loadings and Readings
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Yaw Moment Measurement Error
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Figure 127 Roll Moment Readings Error

Side Force Measurement
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Figure 128 Side Force Loadings and Readings
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F.8. RESULTS of SIDE FORCE LOADING with DRAG FORCE

Side Force Measurement

LIMeasured Value
U Applied Value

90

o o o
o] < ™

(B) @2104 apIS

80
70
60 -

o
139

o
—

-10

<>
o
D3

>

Measurement Number

Figure 146 Side Force Loadings and Readings

157



Side Force Measurement Error

& Measured Value
™ Applied Value

FIFFFFTFFFFFFFIFIFTFFIFFFFIF

de Force Readings Error

Measurement Number

Axial Force Measurement

147 Si

Figure

F ol e i B i i i S e A S i S i i e ]

123 456 7 8 9 10111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

158

Measurement Number

Figure 148 Axial Force Loadings and Readings

0.9
0.8
0.7 A

6
5
4
.3
0.2
0.1

0% 10413 (6%) 80404 eixy

-25




Axial Force Measurement Error

(FFFFFFFFFFF

FFFFFFFFFFF

FFFFFFFrrrrr,

Frrr
FrrFy
FrFrr]

!

FFFFFFFFFF

FFFFFFFFFF

[

FFFFFFFFrrrry

(FFFFFFFFFFIFFFIFIFFIFIFFFIFIFFIFFIF

oo

FiFFFFFFFFFFFTFS

LFF
Fr
Ly

o

@
-

T
©
-

T
<
-

T
N
-

]

0% 10113

@
<)

0.6

0.4

0.2 9

123 456 7 8 9 10111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Measurement Number

Figure 149 Axial Force Readings Error

Side Force Measurement

& Measured Value
™ Applied Value

FPFFFrryrrrrrrrrrrrrrrrrry

¥ o s

o

T rrry

o

10

o
—

o
o

70 4
80 -

o o o o
® 3§ B ©
(6x) 22104 8pIS

-90

oA

Measurement Number

Figure 150 Side Force Loadings and Readings

159



Side Force Measurement Error

[FF

Frr

FFFFFFrr

FFF

FFF

FFFFFFTFFTFFFFFFF

FFFFFFFFFFFFIFTFFT

FFFFFFF

FFF

0.7

0.6

0.5

< @
<] <)

0% 10113

0.2

0.1

123 456 7 8 9 101112 1314151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Measurement Number

151Side Force Readings Error

Figure

Axial Force Measurement

& Measured Value
™ Applied Value

¥ i e )

(6x) 92104 [eixy

-20 -

-25

Measurement Number

Figure 152 Axial Force Loadings and Readings

160



Axial Force Measurement Error

1.8

1.6

1.4 4

1.2 4

Error %
i

0.8

0.6

0.4

0.2

FFFFFFFFFFTFFFFTFFFTFFFFFFFrrrr

)

123 456 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Measurement Number

Figure 153 Axial Force Readings Error

F.9 RESULTS of 3-COMBINATION LOADING (P-N-A)
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F.10 RESULTS of 3-COMBINATION LOADING (R-N-A)

Roll Moment Measurement

Measured Value

Mﬂj ¥ Applied Value

10

(whx) 1uswon 104

Measurement Number

Figure 165 Roll Moment Loadings and Readings

167



Error %

Roll Moment Measurement Error

YO0 Ol PR PR R DR HD DD R RS

Measurement Number

Figure 166 Roll Moment Readings Error

Normal Force Measurement

60

50 1

40 N A e

30 A

& Measured Value
1 Applied Value

Normal Force (kg)

10 RN Ly Ly N

0 T

-10

7
7
BS

‘o

%

‘%

B2

o

%

&

%

SIS N O
Measurement Number

Figure 167 Normal Force Loadings and Readings

168



Normal Force Measurement Error

™ Error

FFFFTFF

e

o

o

FFFFTT

FFFFFF

T

FFFFTFF

0.8

0.7

0.6

9% Jo1i3

0.2

0.1

RN

Measurement Number

Figure 168 Normal Force Loadings and Readings

Axial Force Measurement

& Measured Value
1 Applied Value

5
-10 1

(6) 82104

[e1xy

-20

-25

Measurement Number

Figure 169 Axial Force Loadings and Readings

169



Error %

Axial Force Measurement Error

7
mEN
6
NN
NN
NN
5
NN
NN
NN
44 NN
NN
R
3 NEN
NN
NN
NN
24 NEN
NN
NN
- NN
14 \ NEN
\ NN
\ NN
\ NN

R A RN N T S R I I I A I S SO ST AT S g N BN N N

Measurement Number

Figure 170 Axial Force Readings Error

Roll Moment (kgm)

Roll Moment Measurement

. YA kel SVeasured Ve

HuuwHHHHH“““““ME \ ~Ew B Applied Value

AT SR I R T - T T R

Measurement Number

Figure 171 Roll Moment Loadings and Readings

170




Roll Moment Measurement Error

Error

r

FFF I FF I FFFEFrrrr

FFFFIFF

FFFFFFFFFFTFFFFFFFTF

For o

i

»m

25

1) -
“

9% Jo413

0.5 1
0

RN

Measurement Number

Figure 172 Roll Moment Readings Error

Normal Force Measurement

& Measured Value
1 Applied Value

)R 08,

-10

, ,
o o o
« @ I

-50
-60

(6) 82404 ewioN

Measurement Number

Figure 173 Normal Force Loadings and Readings

171



Normal Force Measurement Error

N

[ s o s -

FFFFFFFFFFFFFFFFFFFFFFTF

0.7

, ,

© 0 < ] N bl

o o o o o o
9% 10413

RN

Measurement Number

Figure 174 Normal Force Readings Error

Axial Force Measurement

& Measured Value
1 Applied Value

T
1s) o )
hn -

(B) 82104 e1xy

-20

-25

Measurement Number

Figure 175 Axial Force Loadings and Readings

172



Axial Force Measurement Error
6
NNN
5
NN N
NN N
NN N
NN N
4 NN
NN N
NN N
S NN
S NN
s AR
w MMM
NN N
NN N
2 NN
NN N
NN N
NN N
MW N
! NN
NN N
NN N Y K
é@gﬁﬁﬁﬁgﬁ NN N :
0 LA
AL BN SRR R S A SO SR A S N AR
Measurement Number

Figure 176 Axial Force Readings Error

F.11 RESULTS of 3-COMBINATION LOADING (R-S-A)

Roll Moment Measurement
10
N
8 i
N
6 k!
!
N N
~ 4 R
€ Ll
o N i
S N
= N i l;
S 0 N L, \ & Measured Value
g HEE il iﬁmm & Applied Value
= v A
Z 2 oy
3 - \
14 \l !
-4 N H
N W
-6 L
-8 LA
-10
AL SR I I TN S S S R R
Measurement Number

Figure 177 Roll Moment Loadings and Readings

173



Roll Moment Measurement Error

=
(=}
=
=
L

i o
e e e
o P S P e |
e e e
S Py ey
e e e )

[ e e

e

P ———

CF T Frrr

r o

T

e

P o

-

==

e

FFFFTFF

FFFFTFF

1.6

1.4

12

@©
o
9% Jo413

©
(=)

<
[S)

0.2

RN

Measurement Number

Figure 178 Roll Moment Readings Error

Side Force Measurement

3 Measured Value
H Applied Value

60

o o
™ 39

50 A
40 4

(6x) 82104 apis

10

0

-10

Measurement Number

Figure 179 Side Force Loadings and Readings

174



Side Force Measurement Error

=
(=}
=
=
L

[Far o s
[ ar o s

[rar

rEFFTrrEs
i i
FFrFrFrFrrrrr

s

T L
i i niniidite il
FFFFFF I T FTF T LT T

FFFFrrsFFrFrrFrrrsFrrrFrrrrrrr

[ rrrrrrrrrr s rr s

s s rrs s

I 1 1 I
r\,\\\ e ,\\\,\\\ ,\\\

(T T T FTTT T T TFTTETTT
e B S L S
[ ————

e
e

P

=y

ey

[or o o o
-
FFFFFFFFFTFTFF
FFFFFFFFFFTFF

FFFFFFFFT

1.6

1.4

12

I «©

<
[S)

0.2

> ©
o o
9% 10413

RN

Measurement Number

Figure 180 Side Force Readings Error

Axial Force Measurement

& Measured Value
1 Applied Value

T
1s) o
hn

(6) 82104

-15

[e1xy

-20

-25

Measurement Number

Figure 181 Axial Force Loadings and Readings

175



Axial Force Measurement Error

7
6
5
R 4
5
o g
5
| %%@ EEE
0 “““HHHHE
R A I NN I LI I A I SO S S AT S I o S
Measurement Number
Figure 182 Axial Force Readings Error
Roll Moment Measurement
10
8 1
6 -
~ 47
€
g 24
% o ﬁﬁm mmm & Measured Value
g ‘HHHH‘H‘HHHHHHHM.HH"H.H‘W.‘,E‘HHHH " Avplied Value
§ AR o
5 i
M
€ ] : h
i 3
. pi
o
-8 :
-10
MR AL D e 2 D PR D R e R

Measurement Number

Figure 183 Roll Moment Loadings and Readings

176




Error %

1.4

Roll Moment Measurement Error

1.2

r )

0.8

0.6

0.4 4

0.2 1

0

]
I F I rEry
FFF I FF I F I FFFrErr

F I FFFFFFIFIrry

anfl

YOO Ol PR PR R DR HD DD O R RS

Measurement Number

Figure 184 Roll Moment Readings Error

Side Force (kg)

-50 1

-60

Side Force Measurement

10

-10

i
i
T
T
i
i

i

-20 1

-30 7

-40

i
I
i
T
i
T

T

i
i
i
T
i
"

T

EE T T I T T T E T T T T T E T &

B2
o
%
&
k)

SIS N O

‘o
%
‘%

Measurement Number

& Measured Value
1 Applied Value

Figure 185 Side Force Loadings and Readings

177




Error %

1.4

Side Force Measurement Error

1.2

0.8

0.6

0.4 4

Ol: NHEEH mﬁmE E

()

o

'\,“b‘c’\%,\/’\/,\’/’) N

IR - A S SO I SR I NI A R

Measurement Number

Figure 186 Side Force Readings Error

-10 1

Axial Force (kg)

-15 A

-25

Axial Force Measurement

5

0 T : TR TR o : e
R PRI M NN A
R PRI M NN A
NN PRI MM NN A

5 IHESEI Ryl Ryl IR IHESE il I
NN IR L : LD \
! aae N h ML \ ! \ N
! aae N h ML \ ! \ N
X : 0 N h N : \ N : N 3 Measured Value
y N N N M .
\ : : \ : \ : : \ : \ ¥ Applied Value
! A N ! N
NN MR L : LD \
! \ N y ML ! \ N
NN MR L : LD \
! aae N y ML ! \ N
LD MR LRI LD \
VD MR L : LD \

-20 NN NIRTR A il NN N il 0.8
\
R ST\ TN N . I S G A S R

Measurement Number

Figure 187 Axial Force Loadings and Readings
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Axial Force Measurement Error
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Figure 188 Axial Force Readings Error

F.12 RESULTS of 3-COMBINATION LOADING (Y-S-A)
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Figure 189 Yaw Moment Loadings and Readings
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Yaw Moment Measurement Error
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Figure 190 Yaw Moment Readings Error
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Figure 191 Side Force Loadings and Readings
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Side Force Measurement Error
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Figure 192 Side Force Readings Error
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Figure 193 Axial Force Loadings and Readings
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Figure 194 Axial Force Readings Error
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Figure 195 Yaw Moment Loadings and Readings
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Yaw Moment Measurement Error
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Figure 196 Yaw Moment Loadings and Readings
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Figure 197 Side Force Loadings and Readings
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Side Force Measurement Error
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Figure 198 Side Force Readings Error
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Figure 199 Axial Force Loadings and Readings
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Axial Force Measurement Error

=
(=}
=
=
L

25

Fas s,
e
s
rrrrrrrrssrssss.}
]
e e e
B L
P S e e
L L
e e S
e e I
e e e
rrrrrrrrrrrrrrrrrrirrrrr
L e
L e
e e
e e
e e e
FFEFFTFFETET
[For o s
Ty
ey
==
L o o
sy
T
T
Frrrd
Frr -]
e
e P
e
T T

o~ 0 — 0 s}

— o

9% Jo413

RN

Measurement Number

Figure 200 Axial Force Readings Error
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