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ABSTRACT

CHAOTIC DEMODULATION UNDER INTERFERENCE

ERDEM, Ozden
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Kerim DEMIRBAS

September 2006, 187 pages

Chaotically modulated signals are used in various engineering areas such as
communication systems, signal processing applications, automatic control systems.
Because chaotically modulated signal sequences are broadband and noise-like
signals, they are used to carry binary signals especially in secure communication

systems.

In this thesis, a target tracking problem under interference at chaotic
communication systems is investigated. Simulating the chaotic communication
system, noise-like signal sequences are generated to carry binary signals. These
signal sequences are affected by Gaussian channel noise and interference while
passing through the communication channel. At the receiver side, target tracking is
performed using Optimum Decoding Based Smoothing Algorithm. The estimation
performances of optimum decoding based smoothing algorithm at one dimensional
chaotic systems and nonlinear chaotic algorithm map are presented and compared

with the performance of the Extended Kalman Filter application.

Keywords: Chaotic Communication Systems, Optimum Decoding Based Smoothing

Algorithm, Trellis Diagram, Estimation.
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BOZUCU ETKISINDE DUZENSIZ DEMODULASYON

ERDEM, Ozden
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Kerim DEMIRBAS

Eyliil 2006, 187 sayfa

Diizensiz (karmagik) kodlanmis igaretler; haberlesme sistemleri, isaret isleme
uygulamalar1 ve otomatik kontrol sistemleri gibi c¢esitli miihendislik alanlarinda
kullanilmaktadir. Ozellikle giivenli haberlesme sistemlerinde genisbantli ve giiriiltii
benzeri olmalar1 nedeniyle diizensiz (karmasik) kodlanmis isaret dizileri, ikili

isaretleri tagimak icin kullanilirlar.

Bu tezde, bozucu etkisinde kalan diizensiz (karmasik) haberlesme
sistemlerinde hedef izleme incelendi. Diizensiz (karmasik) haberlesme sistemleri
benzetimlerinde ikili isaretleri tagimak icin giiriiltii benzeri isaret dizileri olusturuldu.
Haberlesme kanalindan gecen bu isaret dizilerine, Gauss kanal giiriiltiisii ve bozucu
etkisi eklendi. Alici tarafinda hedef belirleme islemi, Optimum Kod Co&ziimiine
Dayali Diizeltme Algoritmasi kullanilarak gergeklestirildi. Bir boyutlu diizensiz
(karmasik) sistemlerde ve dogrusal olmayan diizensiz (karmasik) algoritma haritasi
tizerinde Optimum Kod Co6ziimiine Dayali Diizeltme Algoritmasi’nin kestirim
performans1 incelendi ve Genisletilmis Kalman Siizgeci performans: ile

karsilastirildi.

Anahtar Kelimeler: Diizensiz (Karmasik) Haberlesme Sistemleri, Optimum Kod

Coziimiine Dayali Diizeltme Algoritmasi, Kafes Diyagrami, Kestirim
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CHAPTER 1

INTRODUCTION

The noise-like signals generated by deterministic chaotic systems have been
successfully used in various engineering areas. These signals are typically
broadband and similar to a stochastic process and therefore can be possibly used in
secure communication applications, especially spread spectrum communication

systems. [2]

In a chaotic communication, binary digital signals are modulated using
chaotic waveforms. These modulated signals are transmitted through the Gaussian
noise channel. At the receiver side, there are two estimators having the knowledge of
the structure and possible parameters of chaotic systems. Estimators are employed to
estimate states of chaotic systems. According to estimation error of two estimators,

the decision regarding the transmitted signal can be made. [10]

There are three types of one-dimensional chaotic maps commonly used.
Those are the skew tent map, the tent map and the symmetric tent map. These tent
maps have a parameter a. For different values of the parameter a, binary signals can
be presented over communication channels. Another example of the tent maps is the
nonlinear chaotic algorithm (NCA) map. Unlike one-dimensional tent maps, NCA
has two parameters to present binary signals. Moreover, the complexity and the
sensitivity to initial states of NCA are much more complicated compared to one

dimensional tent maps.

There are various estimation methods proposed for target tracking problem.
One of these estimation methods is optimum decoding based smoothing algorithm

[1] (ODSA) that obtains a trellis diagram for the target motion and estimates the

1



target track both in clear environment and in presence of interference. Another

advantage of ODSA is that it can be used for linear and nonlinear models.

In this thesis, performance of ODSA on the chaotic systems are investigated.
Algorithms are implemented in Matlab environment and some simulations are
performed in order to evaluate the state estimation performance or bit error rate

performance of this method on chaotic communication systems.

In Chapter 2, ODSA using Viterbi decoding algorithm for estimation
problems is explained. The meanings of the parameters used in ODSA are given.

Moreover, the complexity of the algorithm is analyzed.

In Chapter 3, simulation results for optimum decoding based smoothing
algorithm are presented. The effects of the quantization levels and variances of

ODSA parameters are discussed.

In Chapter 4, brief information is given about chaos and chaotic systems.
Three commonly used one-dimensional chaotic maps and nonlinear chaotic
algorithm map are explained. Effects of initial conditions and chaotic parameters on

chaotic systems are shown by figures.

In Chapter 5, an application of ODSA on the symmetric tent map, which is
one of the one-dimensional chaotic systems, is given. Estimation performance and
complexity analysis of ODSA on the symmetric tent map are given in clear
environment and under interference. Moreover, applications of ODSA on nonlinear

chaotic algorithm (NCA) map are discussed considering BER performance.

In Chapter 6, an application of the EKF on the symmetric tent map is given
in order to have a sense about performance of ODSA at chaotic systems. Estimation
performance and complexity analysis of EKF on the symmetric tent map are given

and compared with ODSA’s.
In Chapter 7, the conclusions are given considering simulation results.

In Appendix A, possible values and corresponding probabilities of the
discrete random variable approximating the Gaussian distributed continuous random
variables up to 20 possible values are given. These values are used by ODSA while

obtaining the trellis diagram for the target motion model.



CHAPTER 2

A BRIEF INTRODUCTION TO
OPTIMUM DECODING BASED SMOOTHING ALGORITHM

In this chapter, we deal with a state estimation algorithm for discrete models
with or without interference. This estimation algorithm is “Optimum Decoding
Based Smoothing Algorithm (ODSA)” which is based on Viterbi decoding

algorithm.
2.1. Models and Assumptions [1]

In Optimum Decoding Based Smoothing Algorithm, motion and observation

models can be defined as below:

Motion model, x(k+1) = f(k,x(k),uk),w(k)) 2.1)
Observation model,  z(k) = g(k,x(k),v(k)) ,

in clear environment. In presence of interference, the interference parameter is added

to the observation model as below;

Motion model, x(k+1) = f(k,x(k),u(k), w(k)) (2.2)
Observation model, z(k )= g(k,x(k ), I(k),v(k)) .
Parameters used in Equations (2.1) and (2.2) are defined as follows;

e x(0) is an nx/ initial state Gaussian distributed random vector (which

determines the considered target location at time 0 ),
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e x(k)is an nx/ (target) state vector at time &,
e yu(k)is a gxI input at time k with statistics,

e w(k) is a pxI Gaussian distributed disturbance noise vector at time k

with zero mean and known variance,

e (k) is an [x/ Gaussian distributed observation noise vector at time k

with zero mean and known variance,
e J(k)is an mx/ interference vector with mean and known variance,
® z(k)is an rx/ observation vector at time £,

e Time k is time ) + kT, where ) and T, are the initial time and the

observation interval respectively.

Furthermore, f{k, x(k), u(k), w(k)), g(k, x(k), v(k)) and g(k, x(k), I(k), v(k)) are linear
or nonlinear vectors with appropriate dimensions. The random vectors x(0), w(j),
w(k), v(l), v(m), I(n) and I(p) are assumed to be independent for all j, k, [, m, n, p.
The goal is to estimate the state sequence {x(0), x(1),..., x(L)} by using the

observation sequence {z(1), z(2),..., z(L)} where [ is a chosen integer.

2.2. Quantization of States and Transition Probabilities [1]

Since the main idea for ODSA is to quantize the states of the models to get a

finite set, in this section a type of quantization for states is described.

Also another important factor, transition probabilities, that guides the target
motion between these quantization states is defined and difficulties in calculating

transition probabilities between quantization levels are mentioned.

Let the state x(k) be a random vector whose range is in the space R" (n
dimensional Euclidian space). In the quantization for states, R" is divided into
nonoverlapping subspaces R;" and for each subspace R/ , there is a unique value x,;

assigned where the subscript g refer the quantization.



Definition 2.1: A function x,(.) £ Qfx(.)} is a quantizer for the state x(.) if
the following hold:

1) A function x,(.)= Qfx(.)} = x, whenever x(.) ¢ R/"; and

2)) xgiis unique for each R/".

Definition 2.2: The function x,(.) is the quantized state vector at time (.), and

its possible values are called quantization levels of the state x(. ).

Definition 2.3: Subspace R/ is called gate R/".

Definition 2.4: The value x,; is called the quantization level for the gate R/".

In order to simplify the explanation of quantization, it can be thought that
whenever a random state vector x(.) falls within a given subspace, say R/", the state

x(.) is quantized to the unique value x; .

The target motion between these gates, R;", is based on the transition

probabilities.

Definition 2.5: The transition probability IT;n(k) is the probability that the

state x(k+1) will lie in the gate R,," when the state x(k) is in the gate R/"; i.e.,

IT (k)2 Prob { x(k+1) € Ry I x(k) € R} 2.3)

In Figure 1, gate R" , quantized state value x,; and the transition probability

IT;m(k) can be seen schematically.



Figure 1 Quantization of states and transition probabilities

The transition probability IT;,(k) is a conditional probability and can be

rewritten as
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where p(x(k+1),x(k)) is the joint probability density function of x(k+1/) and x(k);
p(x(k)) is the probability density function of x(k); and p(x(k+1)lx(k)) is the
conditional probability density function of x(k+1) given x(k).

As mentioned 2.1, the initial state vector x(0) and w(k) are Gaussian
distributed and the random vectors x(0), w(k), and w(l) are assumed to be statistically
independent for all k, [. It is seen that x(k+/) and x(k) are linear transformations of
the Gaussian random vectors x(0), w(l), ..., and w(k). Thus, p(x(k)) and

p(x(k+1)lx(k)) are normal density functions. Despite the fact that the motion model
is linear, to evaluate the expression, p{,q_/( k+1)e R, | y(k)e R? }, on (2.5)

analytically is not easy because of the difficulties which arise from the shapes of the
gates R" and R, and the statistics of the disturbance noise vectors w(.) and the
initial state vector x(0). When the motion model is nonlinear, evaluation is more

difficult.

To overcome these difficulties, an approximate state transition model is
given in the next section. This model, called as the finite-state model, is obtained by
approximating the disturbance noise vector w(k) and the initial state vector x(0) by
discrete random vectors (see Appendix A) and by quantizing the state x(k) as

previously described forall k=1, 2, ... .

Using finite-state model, the transition probabilities can be easily calculated.

2.3. A Finite State Model for the Target Model [1]

In the finite state model, there are generalized rectangles, which are called
gates. In the center of these generalized rectangles, R}, zero vector O (origin) is

located.

Let the lengths of the sides of a generalized rectangle, say R,", be g:1, gir ...,
gin - These lengths are said to be the sizes of gate R;". Moreover, the quantization

levels for gates are assumed the center points of the gates, namely,

2,0) 2 ol ()= 2. if y()eR',  (2.6)

where x,; is the center of the generalized rectangle (gate) R/".
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For each k the disturbance noise vector w(k) is approximated by a discrete
random vector wy(k). This random vector can have one of the possible values wy;(k),
War(k), ..., Wam (k) with corresponding probabilities pyi(k), pas(k), ..., Pawm (k).
Similarly, the initial state vector x(0) is approximated by a discrete random vector
x4(0) whose possible values are x4:(0), xa2(0), ..., Xap(0). The quantization
numbers, mi and ny, are so important to approximate w(k) and x(k) satisfactorily to
the discrete random vectors wy(k) and x,4(0). Furthermore, by replacing w(k) and
x(0) with discrete random vectors w,(k) and x4(0) respectively, and then quantizing

the states by (2.6), the target-motion model is reduced to a finite state model

Xo(k+1)=0Q(f(k, x4(k), u(k), wa(k)), 2.7

where Q{.} is the quantizer. x,(k) is the quantized state vector at time k and its
possible values are x,;(k), x42(k),..., X, (k) where ny is the number of possible

quantization levels of the state vector x(k). The quantization levels of x(0) are

assumed to equal the possible values of the discrete random vector x(0).

The transition probability 77;(k), which is defined by the conditional
probability that the quantized state vector x,(k+1) will be equal to the quantization
level x, for gate R/, given that the quantized state vector x,(k) is equal to the

quantization level x,; for gate R/" is determined as below,

IIy(k) £ Prob { xy(k+1)=xg4 | x,(k)=x4 } - (2.8)

Assume that the quantized state vector x,(k) is equal to quantization level x,;
for gate Rj” , (i.e., the target is in the Rj" at time k.) The transitions from this
quantization level to others are determined by the discrete random vector wy(k) and
the function Q(f(k, x,(k)= x4, u(k), wa(k)). As mentioned before, wy(k) can take any
value in the set {wgai(k),war(k),..., Way (k) } with the corresponding probabilities
pa(k), parlk), ..., Dam (k). Therefore the quantized state vector X4(k+1) can take

at most my quantization levels. If the function fik, x,(k)= x,, u(k), wa(k)) maps x;

8



into another gate, say R;" for only one possible value, say wy(k), of the discrete
random vector wy(k), then the transition probability /7;(k) from gate R/" to gate R;" is
the probability that the possible value wy(k) of wu(k) occurs. Besides, if the function
Sk, xy(k)= x4, u(k), wq(k)) maps x,; into another gate, for more than one possible
value, say wqi(k) and waa(k) of wy(k), the transition probability, I1;(k), is the

probability that the discrete random vector wy(k) is equal to either of the possible

values wai(k) or war(k), i.e., (k)= pa(k) = pai(k)+ pa> (k) .

Using the finite state model, the target motion can be represented by a trellis

diagram.

2.4. Representing Target State Model By A Trellis Diagram [1]

Assuming the quantized state vector x,(k) has n; possible values which are
xq1(k), xg2(k),..., Y. (k), the target motion can be represent by a graph. On this

graph there are some conventions, which are the followings;

1. Each possible value of x,(k) is represented on the k™ column by a
point (sometimes called node) with the corresponding quantization
level so that the k™ column contains the possible quantization levels
of x(k) (in other words, the possible gates in which the target can lie

at time (k)) where k=0, 1, 2, ... .

2. The transition from one quantization level to another is represented
by a line having a direction indicating the direction of the state

transition.

Hence, the state transition from time zero to time L can be represented by a
directed graph shown in Figure 2, which is called the trellis diagram for the state

transition from time zero to time L.

Definition 2.6: A path in the trellis diagram any sequence of directed lines

where the final vertex of one is the initial vertex of the next.



time zero time 1 time 2 E time L
{column 1) {column 2) {column L)

anﬂ(o)
[ » ; e
qu(’)\ anL(L)

Initial Quantization \' End (final) Quantization

levels (nodes) levels (nodes)

Figure 2 The trellis diagram for the state transition

2.5. Approximate Observation Models [1]

The target motion model has been reduced to a finite-state model that uses

the quantized state vector x,(.) as described in the previous sections. However, the

observation model in equation (2.1) and (2.2) uses the state vector x(.) . Thus, in the

observation model in equation (2.1) and (2.2), by replacing the state vector x(k) with
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the quantized state vector x,(.) , the following approximate observation models are

obtained:

20 :{ g(k,x,(k),v(k)) } in clear environments, (2.9)

g(k,x,(k),I(k),v(k))| in the presenceof interference.

From now on, the equation in (2.9) is used to refer the observation models.

Considering the trellis diagram in Figure 2, the state estimation process will
be performed from time zero up to and including time L. Therefore, the trellis
diagram is drawn from time zero to time L. Time zero refers to the initial state. The

following symbols that are used for further analyses can be defined as:

n;: Number of quantization levels for the gates in which the target may
lie at time i; in other words, the number of possible values of the

quantized state vector x,(i) wherei=0, 1,2, ..., L.

(@) Set of all the quantization levels for the gates in which the target may
at time i, namely, (i) £ {x4(i), X2(i),--., Xqni(i) wherei=0, 1, 2,

...L.

M: Number of possible paths through the trellis diagram. This number is

equal to or less than

H n;
=0

Hp: The m™ path through the trellis diagram, indicated by a bold line in
Figure 2.
X4 (1) : Quantization level for the gate in which the state vector lies at time k

when it follows path Hy,. In other words, the possible value of the
quantized state vector x,(i) through which the m™ path passes. For

example, in trellis diagram of Figure 2,
X0 =2,0): x5 D=%,D: 27 (2)=2,(2)., ...

o :  Probability that the possible value of the initial state vector x,(0) from

which the mt path starts occurs, namely,

11



o =Prob{ x,(0)=x/(0)}. For example, in trellis diagram of

Figure 2, [1 =Prob{ #,(0) = 7,,(0) }.

[I :  Transition probability from the G-n* gate for the m™ path. In other
words, it is the transition probability that the state vector will be at the
i quantization level (node) of path Hy, at time i when it is at the (i-

H® quantization level (node) of path at time i-1; that is

[T &Prob{ 7, () = ;" ()1 7, (=1 = 2 (=) }.

o™ Maximum of the probabilities that the quantization levels at time zero

occur.

[I™ : Maximum of the transition probabilities from the quantization levels
at time i-1 to the quantization levels at time i (wherei =1, 2, ...,
L).

[I™ : Minimum of the probabilities that the quantization levels at time zero

occur.

[I™» :  Minimum of the transition probabilities from the quantization levels

at time i-1 to the quantization levels at time i (wherei =1, 2, ...,
L).
arefym0), yrd), ..., x"(L)}, Sequence of the quantization levels

(nodes) which the m"™ path passes through; obviously,

Xy @ex@) ,wherei=0,1,2,...,L

zF ={z(1), z(2), ..., z(L)} Observation sequence from time 1 to time L.

I* 2 {1(1), I2), ..., I(L)} Interference sequence from time 1 to time L.

Obviously, the real state transition occurs along one of the possible paths
through the trellis diagram.Hence, the aim is to decide upon a path through the trellis
diagram which is most likely (probably) followed by the real state variable by using

the observation sequence z“. Because of randomness in the models, our approach
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must be statistical, i.e., a statistical optimization problem. Based on the observations,
the path,which was (most likely) followed by the real state variable, will be guessed.
Therefore, a criterion is needed. A suitable criterion may be the minimum error
probability criterion. By using this criterion, the problem is reduced to find the path
that is most likely followed by the real state variable to a multiple- (composite)

hypothesis-testing problem.

2.6. Minimum Error Probability Criterion [1]

In the previous section, M possible paths through the trellis diagram H;, H,,
..., Hp were labeled. These paths are sometimes referred to as hypotheses. Hence,
using the minimum error probability criterion and the observation sequence, which
hypothesis is true will be decided. A decision rule is developed which assigns each
point in the observation space D to one of the hypotheses. The decision rule divides
the whole observation space D into M subspaces Dy, D, ..., Dy, If the observations
fall in the subspace D;, H; is decided as the true path. Subspace D; is called the
decision region for hypothesis H; . The decision regions, therefore, must be chosen

in such a way that the overall probability is minimized.

The overall error probability, sometimes called the Bayes risk R, is defined
by
M
REY
=

1 i

M=

{ [pH )Pz |Hj>dzL} (2.10)

*

~.

where

L . . .
p(zt 1H)) in clear environment

(zL1H;) = gL L[ L ,(2.11
P 2 J;p(ZL |H 1) p(I™)dl in the presence of interference ( )
1

p(Hj) : Probability that the hypothesis H; (path H)) is true,
(- |H;) : Conditional probability of the observation sequence z“ (z(1),

2(2),...,z(L)) given that hypothesis H; is true ,
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p(zt 1 H;,I") : Conditional probability of the observation sequence Z"in the

presence of interference given hypothesis H; and the

interference sequence I-.
p(I") : Joint density function of the interference sequence I".

In order to find the optimal decision rule, the decision regions D1, D2, ..., Dm

are varied so that the risk R is minimized. The optimum decision rule is;

choose H; if p(H,)p'(z*|H;)> p(H,)p'(z*|H ) for all j#i, (2.12)

2.7. Optimum Decision Rule for the Target Paths [1]

Consider the motion model in equation (2.7) and the observation model in
equation (2.9). Since the disturbance noise vector w(k) is assumed to be independent

of w(j) and x(0) for all j#k, a priori probability of hypothesis H; can be rewritten as:

pH)=]]0, (2.13)

k=0

where [T, = prob(x,(k)=x,(k)lx,(k-1)=x,(k-1)), and x,(k-1) and x,(k) are the
quantization levels for the gates in which the target lies at time k-/ and k

respectively when it follows path H,.

Further, using the assumption that interference vector I(k) is independent of

1(j) for all j#k, the joint density function of the interference sequence I" as
L
p14) =[] p) (2.14)
k=1

where p(I(k)) is the probability density function of the interference vector 1(k).

The function p’( Z"IH;) in equation (2.12) can be rewritten as:

x, (k) (2.15)

pEHH) =[] P2tk
k=1

where
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Pk} (k) -

2 (26N Z(ED =\ [ p(z(ic )| gyl )0 % DU DRI e o st
Ifie)

and p(z(k)‘xqi(k)) is the conditional probability of the observation z(k) in clear

environments in Eq.(2.9) given that xq(k):xqi(k) ,and p(z(k)| x4 (k),I(k)) is the

conditional probability of the observation z(k) in the presence of interference in Eq.

(2.9) given that x,(k)=x'(k) and I(k).

Throughout this chapter, the interference vector I(k) is approximated by a
discrete random vector I4(k) whose possible values are Iq;(k), Lip(k), ..., Lik(k), with
corresponding probabilities p(I4;(k)), p(Iaa(k)), ...,p( Lax(k)), then the integral in Eq.

(2.17) is reduced to a summation

Jp(z(k) | g (k), 1(k))x p(I(k))dl (k) (2.17)
1(k)
Tk
zZp(z(k)Uté (k)s L (k)X p(Lu (k)) (2.18)
I=1

where ry is the number of possible values of the approximating discrete vector I4(k).

Observation model in the presence of interference in Eq. (2.9) becomes
z(k) = gk, xq(k), I(k)=Ia(k), v(k))
= g(k, x4(k), Lu(k), v(k)). (2.19)

Substituting equation (2.13) and (2.15) into the optimum decision rule of

equation (2.12), the following is obtained:

Choose H; if

x, (k)

O[] p(z(k)
k=1

x,” (k) (2.20)

> T[4 p(zth)
k=1

for all j#i.
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Since it is more convenient to perform summations than multiplications, and the
natural logarithm function is monotonically increasing, taking the natural logarithms

of both sides of the inequality in equation (2.20), we get the following:
Choose H; if

ln(H(;)+ZL:{ln(Hki)+ln(p'(z(k) xqj(k))) } (2.21)

k=1

x, (k)))}>1n(nof) +i {ln(ij )+1n(p’(z(k)

for all j#i.

There are some definitions, which explain the metrics to be used in this

chapter.

Definition 2.7: An initial node is a quantization level at time zero. The

metric denoted by MN(x,,(0)), of the initial node x,;(0) is defined by

MN(x,(0)) = In [prob(x,(0) = x,4(0)] (2.22)

Consequently, MN(x,"(0)) = In (IIy").

Definition 2.8: The metric, denoted by M(x,j(k-1)—x,(k)), of the branch
which connects the quantization level x,(k-1) to the quantization level x,(k)

is defined by
M(xyi(k-1) = x4(k)) 2 In [prob(x,(k)=x,i(k)x,(k-1)=x,(k-1))] (2.23)

+In p’(z(k)lx,i(k))

Definition 2.9: The metric of a path from time 0 to time i is the summation
of the metric of the initial node from which the path starts and the metrics of

the branches of which the path consists of.
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Definition 2.10: The density function of the observation sequence z" when
the state variable actually followed the path H,, is referred to as the

likelihood function for the path (hypothesis) Hy, .

The optimum decision rule is to choose the path with the largest metric
through the trellis diagram as the decision. This can be handled by using the Viterbi
decoding algorithm, which is the optimum decoding based smoothing algorithm.
The algorithm which obtains a trellis diagram for the target motion model, and
which finds the path most likely followed by the target by using the Viterbi decoding

algorithm is referred as the Optimum Decoding Based Smoothing Algorithm.

2.8. Optimum Decoding Based Smoothing Algorithm [1]

This method, as mentioned in the previous section, finds the most probable
path by comparing the metric values of the quantization values of the states from

time O to time L. This method can be summarized by following steps:

Step 1. The target motion model is reduced to a finite state model and the
trellis diagram is obtained from time O to time L until which the
target will be tracked. The nodes of initial states are obtained from
quantizing the initial state vector x(0) as explained in 2.3 and the
metric of each initial node is assigned. Then, the quantized values
of the disturbance noise w(k) are obtained in the same way as the

initial state vector x(0).

Step 2. For each node at time 1, using the observation z(1), the metrics of
the branches connecting the initial nodes to the node at time 1 are
evaluated.These metrics are added to the metrics of the initial nodes
from which the branches start, and the metrics of the paths merging
at the node at time 1 are found.The path with the largest metric
(which is called the best path for the node at time 1) is labeled and
the other paths are discarded.Finally, the largest metric to the node

at time 1 (which is called the metric of the node at time 1) is
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assigned. For each node, the largest metric is calculated and

assigned its node.

Step 3. For each node at time k, using the observation z(k), the metrics of
the branches connecting the nodes at time k-/ to the node at time k
are calculated. These metrics are added to the metrics of the nodes
at time k-/ from which the branches start and the metrics of the
paths merging at the node at time k are found. The path with the
largest metric (which is called the best path for the node at time k)
is labeled, and then the other paths are discarded. Finally, the
largest metric to the node at time k (which is called the metric of the

node at time k) is assigned.

Step 4. At the end of time L, the node with the largest metric is chosen
among the nodes at time L. The best path for this node is decided as

the most probable path followed by the state transitions.

2.9. An Example of ODSA [1]

Figure 3 shows a target motion from time zero to time 2 . Using ODSA, the
path in the trellis diagram, which was most likely followed by the target from time

zero to time 2, will be found.
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Time zero Time 1 Time 2

MN(x,,(0))
%10

)
MN(x,,(0))
X(0)

x,(2)
MN(x,5(0))
X3(0)

Figure 3 Trellis diagram for the target motion from time zero to time 2

Step 1. To each initial node, assign its metric, i.e., MN(x,(0))=Prob{x,(0
)= x4i(0)}, where i=1, 2, 3. From now on, the metric of the node

x4i(k) 1s represented by MN(x,i(k)).

Step 2. Consider the node x,;(1). The branches x,2(0)x,(1) and x,3(0)x4:1(1)
are the only ones connecting the nodes at time zero to the node
x41(1). Hence calculate the metrics of these branches, then add these

metrics to the metrics of the nodes x,2(0) and x43(0) and obtain the

following:
A1 & M(x2(0) — x41(1)) + MN(x,2(0)), (2.24)
A12 2 M(xg5(0) — (1)) + MN(x45(0)). (2.25)

Further, assuming that A;; > A, the path x,»(0)x,;(1) is chosen as the best
path for the node x,;(7), and A;; is assigned to the node x,;(1) as its metric, i.e.,
MN(x41(1)) = Aj;. The path x,43(0)x4(1) is then discarded. Assuming that the

following are similarly found for the node x,2(1), x4:(0)x42(1) is the best path for
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xg2(1), and MN(x,2(1)) = M(x41(0) — x42(1)) + MN(x4(0)). Hence, at the end of Step

2, Figure 4 is obtained.

Time zero Time 1 Time 2

MN(x, (1))

0
Bl X1 (2)

0
bt %1 *)

MN(x,(1))
%(0)

Figure 4 Trellis diagram for the target motion from time zero to time 2 at the end of

first step

Step 3. Consider the node x,;(2). The branches x,1(1)x4:(2) and x42(1)x41(2)
are those connecting the nodes at time 1 to the node x,;(2).Hence,
calculating the metrics of these branches and adding these metrics
to the metrics of the nodes x,;(I) and x,(I), we obtain the

following:
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Az; 2 M(xgi(1) = x41(2)) + MN(x41(1)), (2.26)

Az & M(xp2(1) = x41(2)) + MN(x,2(1)). (2.27)

Further, assuming that A, > Ay, the path x,;(0)x,2(1)x4:(2) is chosen as the
best path for the node x,,(2), and A»; is assigned to the node x,;(2) as its metric, i.e.,
MN(x41(2)) = Az. The path x,5(0)x,1(1)x4:(2) is then discarded. The following are
similarly found for the node x,(2), then x42(0)x4:(1)x,2(2) is the best path for x,(2),
and MN(x;2(2)) = M(xq1(1) — x42(2)) + MN(x4,(1)). Hence, Figure 5 is obtained at
the end of Step 3. In addition, assuming that MN(x,2(2)) > MN(x,(2)), the path
X42(0)x41(1)x42(2) 1s chosen as the path followed by the target from time zero to time
2.

Time zero Time 1 Time 2
MN(x,,(2))
%1(0) :
X1(2)
(©)
L %) )
MN(x,,(2))
X(0)

Figure 5 Trellis diagram for the target motion from time zero to time 2 at the end of

second step
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2.10.The Metric of A Branch [1]

The calculation of a metric of a branch depends on applications effected by

the arbitrary random interference or not.

Considering a target model with only Gaussian disturbance and observation
noises as described in section 2.1, the motion and observation models can be

rewritten as
Motion model, x(k+1) = f k. x(k),u(k), w(k)) (2.28)

Observation model,  z(k) = g(k,x(k))+v(k)

where x(0) is an n x 1 initial state Gaussian random vector with mean mgy and
covariance Ry; w(k) is a p x 1 Gaussian disturbance noise vector with zero mean and
covariance R, (k); x(k) is an n x 1 state vector at time k; z(k) is an r x 1 observation
vector at time k; f(k, x(k), w(k)) and g(k, x(k)) are linear or nonlinear vectors with
appropriate dimensions; and v(k) is an r x 1 Gaussian observation noise vector with
zero mean and covariance R,(k). Moreover, the random vectors x(0), w(j), w(k), v(1)

and v(m) are assumed to be independent for all j, k, 1, m.

The z(k) in the observation model given in (2.28) is a linear function of the
Gaussian observation noise v(k). Hence given that x(k):xqi(k), the conditional
probability density function of z(k) is a multivariate Gaussian density function.

Thus, we have

pz(k) 1 7, (&) £ p(z(k) | 7 (k) = g; (k) (2.29)

exp_{[mk)—g(k,z; (kD' R W)lzth) - g k. 1) (k))]/Z}

1/2

(27)"*[det R, (k)]

Substituting Eq. (2.29) into Eq. (2.23) yields the metric of the branch between the
nodes xi(k—1) and yi(k);thatis

M( 74k =1) = z4(k))
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In(II}) - 1n[(2;z)”2 laet r, ()] ]
=_ {[z(k) — gk, 72 (kD] Ry () [20) — g (k, i (k) 2} (2.30)

Considering a target model with the interference, Gaussian disturbance and
observation noises as described in section 2.1, the motion and observation models

can be rewritten as
Motion model, x(k+1) = f k. x(k),u(k), w(k)) (2.31)
Observation model,  z(k) = g(k,x(k),I1(k))+ h(k,x(k),1(k))*v(k))

where x(0), x(k), u(k), w(k), z(k) and f(k, x(k), u(k), w(k)) are described in section
2.1. gk, x(k), I(k)) and h(k, x(k), I(k)) are r x 1 and r x /-dimensional (linear or
nonlinear ) matrices, respectively; v(k) is an [/ x 1 Gaussian observation noise vector
with zero mean and covariance R,(k); and I(k) is an m x 1 interference vector with

known statistics. Furthermore, the following assumptions are applied:

1. The random vectors x(0), w(j), w(k), v(J), v(m), I(n), and I(p) are
independent for all j, k, I, m, n, p.

2. [hek, x(k), 1K) x Ry(k) x h"(k, x(k), I(k))]" exists for all k.

The observation z(k) is a linear function of the normal observation vector v(k).
Therefore, the conditional probability density function of z(k), given that x(k):xqi(k)

and I(k), is multivariate normal density function, namely,

p(z(k) | xik), I(k)) £ p(zk)! gk = g:(k),I(k))
=A exp-(B/2) (2.32)

where

AL (2 det[nlie, 2 () ()R, () (k, z; (k) 1)

[2(6) - g (k, i (k). 1k )]
B2 (k, 2 (k). 1(K)R, ()R (k, 2 (k) 1(k))]" (2.33)
xlz() - g (k, i (k). 1(k )]
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From Eq. (2.17) and Eq. (2.18) , p'(z(k)|x,’ (k))

Ifk) using Bg (2.17)

J [ 220 )1 250 10 ) (1K i)
B Jusing By (2.18)

v | (2.34)
{ PR 2y k) 1 (k hx pfIg (k)

i=1

where p(z(k) | g1 (k), 14 (k)2 p(z(k) | xq(k), (k) =1, (k)) which is given
in Eq. (2.32). Substituting Eq.(2.34) into Eq. (2.23) yields the metric of the branch
between the nodes y;(k—1) and y(k); thatis

M(zi(k=1) = gi(k)) = InTT; +1n p'(z(k) | x4 (k) (2.35)

2.11. Complexity Analysis of ODSA

A program that uses ODSA to estimate the best path with the largest metric
is written in MATLAB. In this program, for simplicity the vectors x(k), w(k), z(k),

u(k), v(k) and I(k) are chosen to be one-dimensional vectors.

Runtime of the program written for ODSA is determined by the number of
states and the number of quantization levels of I(k). The number of states is
determined by time L, the gate size and the number of quantization levels of x(0),
u(k) and w(k). If the number of states at time k=0 to k=L is not limited, then the

possible maximum state number for each time step, which is the worst case, will be
ny(ny,n, )k at time k. Including time consumption on I(k), let the maximum time

consumption at each state be ¢,. Then, since the time consumption at each state will

be approximately same, the time consumption at each time k will be maximum

teny(nyn, )k , which is the multiplication of the state number at time k and ¢,. The

total program runtime will be equal to:
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Runtime=

1 2 L
[tsnx +tgn,(nyny, ) +ton,(n,n, ) +... 410, (n,n,) ]= 17,y
where

t; : maximum time consumption at each state,

n, :the number of quantization levels of x(0),

n, :the number of quantization levels of w(k).

n, :the number of quantization levels of u(k).

L+1 >

Since (n,n, ) >], the value given at equation (2.36) can be

LI
n,n
(wu)

approximated as fgn,—————. Rewriting this equation, we obtain
ny,n, —1

LN N, n

sthxtw u(nwnu )L.

nyhy —

This means, the program runtime increases exponentially as time L increases.
Therefore, if the maximum state number is not limited, the program complexity will
increase too much which causes difficulties on the application of this algorithm.
However, due to the gate size, some of the states will fall into the same gate and

some of the states will be discarded as described at section 2.10. So, most of the

time, the state number at time k will be smaller than n,(n,n, )k , and the total state

number actually will be smaller than the value given at equation (2.36). In fact, this

will be the upper bound for computing the program runtime.

If the number of states is limited by some value at each time k, the program
runtime for the worst case will be:

Runtime= tgngL (2.37)

where
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t; : maximum time consumption at each state,
ns : the maximum number of states allowed at time from k=0 to time k=L,

From (2.37) we can say that program runtime increases linearly as time L
increases. Therefore, if the maximum state number is limited, the program

complexity will not increase as k increases.

Some simulations are performed to measure the program runtime for both
limited and not limited state number cases.The simulations are performed for
different values of gate size and quantization numbers of x(0) u(k) and w(k) to obtain

various state numbers.The results are analyzed at subsections 2.11.1 and 2.11.2.

In these subsections, Figure 6 , Figure 7, Figure 8 and Figure 9 are obtained.

In these figures,
e “nx” refers quantization level of the initial state x(0),
e “nu” refers quantization level of the input vector u(k),
e “nw” refers quantization level of the disturbance noise vector w(k),

e “L” refers the number of samples.

2.11.1 Program Runtime When the State Number is not Limited

In this section, the program runtime is analyzed for the case that the state

number is not limited. Motion and observation models are
Motion model : x(k+1) = x(k) + w(k) + u(k),
Observation model z(k) =x(k) + v(k) + I(k).
Parameters used in these simulations are as follows;
e variance of x(0)=1, expected value of x(0)=0,
¢ variance of u(k)=1, expected value of u(k)=0,
e variance of w(k)=1, expected value of w(k)=0,
e variance of I(k)=0.01, expected value of I(k)=0, quantization level of I(k)=3.

The gate size and the quantization levels of parameters are presented in Figure 6 and

Figure 7.
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runtime (s)

1200

1000

—— qgate size=0 5, =3, nu=3, nw=3
—%— gate sze=0.1, nx=5, nu=3, nw=3
—8— gate size=0 05, =5, nu=3, nw=5

—&— gate size=0.03, nx=5, nu=4, mw=5

Figure 6 Program runtime when the state number is not limited
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2500 ; ; ;
—4— gate size=0.5, nx=3, nu=3, nw=3 : : :
—%*— gate size=0.1, nx=5, nu=3, nw=3

—&— gate size=0.05, =5, nu=3, nw=>5
—&— gate size=0.03, me=5, nu=4, nw=>5

number of states

Figure 7. The number of states when the state number is not limited

Analyzing Figure 7, it can be observed that the state number depends on the
quantization level of x(0), u(k), w(k) and the gate size. As the quantization levels of
these parameters increases and the gate size decreases, the state number increases
dramatically. Depending on the state number, the program runtime exponentially
increases as L increases as shown Figure 6, whereas the state number increases

linearly.

2.11.2 Program Runtime When the State Number is Limited

In this section, the program runtime is analyzed for the case that the state

number is limited. Motion and observation models are
Motion model : x(k+1) = x(k) + w(k) + uk) ,
Observation model z(k) =x(k) + v(k) + I(k).
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Parameters used in these simulations are as follows;
¢ variance of x(0)=1, expected value of x(0)=0,
e variance of u(k)=1, expected value of u(k)=0,
e variance of w(k)=1, expected value of w(k)=0,
¢ variance of I(k)=0.01, expected value of I(k)=0, quantization level of I(k)=3,

e maximum number of the states=100.

180

—— gate size=04, nx=3, nu=3, nw=3
—— gate size=0.1, nx=5, nu=3, nw=3
140 ) —8— gate size=005, me=5, nu=3, nw=5---=-------4 ----------------------------- -------------------------- —
—E— gate size=003, nx=5, nu=4, nw=5 I I I

runtime (s)

Figure 8 Program runtime when the state number is limited to 100
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Figure 9 The number of the states when the state number is limited to 100

When Figure 8 is analyzed, it can be observed that the program runtime is
increasing with L. But, type of increase on runtime can be defined as “Linear”
comparing with Figure 6. This is expected, because the state number is limited to
100. When Figure 9 is analyzed, it can be observed that the state number reaches to

the limit faster as the quantization level of the parameters increases.
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CHAPTER 3

SIMULATION RESULTS OF ODSA

Throughout CHAPTER 3, effects of the parameters, which are used in

ODSA, are detaily analyzed. These parameters are;
e The gate size,
¢ The quantization number of initial state vector, x(0)
e The quantization number of disturbance noise vector, w(k)
e The quantization number of input vector, u(k)
¢ The initial state variance,
e The disturbance noise variance,
e The input u(k) variance,
e The observation noise variance,
¢ The quantization number of interference vector, I(k)
e The interference variance,
® The limiting of the maximum state number.

Simulations are performed for one linear and one nonlinear model. First,
analyses are studied for the models in clear environments, which do not include the
interference vector. Then, the interference vector will be added to the models as
simulating the environments in presence of interference. In this way, the variation in

the performance will be studied.
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To check the performance of the algorithm and the effects of the parameters,

actual target path should be simulated. Therefore, observation vector is generated.

Assuming x(0), w(k), u(k), I(k) and v(k) vectors are the Gaussian distributed
random vectors, these vectors are generated using the “randn(.)” command of
MATLAB with appropriate mean and variances. Putting these values to the motion

and observation models, the actual values of x(k) and z(k) values are obtained.

The simulations are obtained after 1000 execution. For each execution, the
state vector x(k) and the observation vector z(k) are regenerated randomly with the
same motion and observation equations using independent random vectors x(0),

w(k), u(k), v(k) and I(k).
From now on in the figures,
e  “Q#x(k)” refers the quantization number of x(k),

o “o?(x(k))” refers the variance value of x(k).
3.1. Effect of the Gate Size

As explained 2.3, the state number and the value of the states at time k are
affected by the gate size indirectly. Due to these effects, the performance of the

algorithm varies. There are two models, which are linear and nonlinear.

Figures for each model show RMS error variation depending on the gate

A
size. This error, z(k)- x4(k), is calculated for each time k at 1000 simulations, then

RMS of errors are obtained.
Linear models used in this simulation are
Motion model : Xx(k+l)=x k) +w k) +uk),
Observation model z(k)=x(k)+v (k).
Parameters are;
number of samples, L = 20,
number of max states = 100,
quantization numbers : x(0) =5, w(k) =3, uk) =3,

32



variances xO0)=1,wk)=1Luk)=1,vk)=1,

expected values :x(0)=0,wk)=0,uk)=0,v(k)=0.

For the linear model, Figure 10 is obtained.

45 T : T T T T
—6— gate size = 0.1 :
—B—gate size =1
—&— gate size =3
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Figure 10 RMS estimation error for the linear model as gate size changing
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Table 1 Average values of RMS Estimation error as gate size changing for the linear

model

Average values of RMS

Gate size Estimation Error

0.1 0.8236
1 0.8366
2 1.0263
5 2.8931

Nonlinear models used in this simulation are
Motion model : x (k+D) =exp (- x k) + w (k) +u (k),
Observation model z (k) =cos(x (k))+v (k).

Parameters are same used in linear models. For the nonlinear model, Figure

11 is obtained

34



___________

...................................

_______________________________________

RMS of Estimation Error

—6— gate size = 0.1
—B—gate size =1
—&— gate size = 3
—&—gate size =3

h S i i |
2 4 § 8 10 12 14 16 18 20

Figure 11 RMS estimation error for the nonlinear model as gate size changing

Table 2 Average values of RMS Estimation error as gate size changing for the

nonlinear model

Gate size Average Va.lues of RMS
Estimation Error
0.1 4.5266
1 43218
2 4.3648
5 4.0279
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Comment:

The effect of the gate size is observed more clearly in the linear model.
Figure 10 shows that the gate size is directly proportional with the estimation error.
Increase on the gate size causes estimation error to become larger. Figure 11 shows
that increase on gate size does not affect estimation error too much in nonlinear

model.

3.2. Effect of the Quantization Number of the Initial State Vector

In this section, effects of the quantization number of the initial state vector

are explained. There are two models, linear and nonlinear models.

Figures show RMS error variation depending on the quantization number of

A
the initial state vector. This error, z(k)- x4(k), is calculated for each k time at 1000

simulation, then RMS of errors are obtained.
Linear models used in this simulation are
Motion model : X (k+tl)=x k) +w k) +uk),
Observation model z(k)=x((k)+v (k) +I k).
Parameters are;
number of samples, L. = 20,
gate size =1,
number of max states = 100,
quantization numbers : w(k) = 3, u(k) =3, I(k) = 3,

variances : x(0) = 1,wk) =l,uk) = 1,v(k) = 1, I(k) =
0.01,

expected values : x(0) =0, wk) =0,uk) =0, v(k) =0, I(k) =
0.2

For the linear model, using these parameters Figure 12 is obtained.
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Figure 12 RMS estimation error for the linear model as quantization level of x(0)

changing

Table 3 Average values of RMS Estimation error as quantization level of x(0)

changing for the linear model

Quantization level | Average values of RMS
of x(0) Estimation Error
3 0.86445
5 0.8617
9 0.86767
11 0.85636
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Nonlinear models used in this simulation are
Motion model : X (k+1) = 1-Ix (K)I+w (k) +u (k),
Observation model z(k)=x((k)+v (k) +I k).

Parameters are same used in linear models. For the nonlinear model, Figure

13 is obtained.
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Figure 13 RMS estimation error for the nonlinear model as quantization level of

x(0) changing
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Table 4 Average values of RMS Estimation error as quantization level of x(0)

changing for the nonlinear model

Quantization level | Average values of RMS
of x(0) Estimation Error
3 0.9366
5 0.9336
9 0.9323
11 0.9335
Comment:

From Figure 12 and Figure 13, it can be observed that the number of the
quantization levels of the initial state vector x(0) slightly affects the performance of

the algorithm for both linear and nonlinear models.
3.3. Effect of the Quantization Number of the Disturbance Noise
In this section, effects of the quantization number of the disturbance noise

vector are explained. There are two models, linear and nonlinear models.

Figures show RMS error variation depending on the quantization number of

A
the disturbance noise vector. This error, z(k)- x4(k), is calculated for each k time at

1000 simulation, then RMS of errors are obtained.
Linear models used in this simulation are
Motion model : X (k+1)=x (k) +w (k) +u (k),
Observation model z (k) =x (k) + v (k) +I (k).

Parameters are;
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0.01,

0.2.

number of samples, L. = 20,

gate size

=0.1,

number of max states = 100,

quantization numbers

variances

expected values

:x(0) = 3, u(k) = 3, I(k) = 3,

- x(0) = 1, wk) =Luk) =1,v(k) = 1, I(k) =

: x(0) =0, wk) =0, uk)=0, v(k) =0, Itk) =

For the linear model, Figure 14 is obtained.

RMS of Estimation Error

08 ‘

10 12 14 16 18 20

Figure 14 RMS estimation error for the linear model as quantization level of w(k)

changing
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Table 5 Average values of RMS Estimation error as quantization level of w(k)

changing for the linear model

Quantization level | Average values of RMS
of w(k) Estimation Error
3 0.8658
5 0.8665
7 0.8604
9 0.8519

Nonlinear models used in this simulation are
Motion model : X (k+1) = 1-Ix (K)I+w (k) +u (k),
Observation model z(k)=x((k)+v (k) +I k).

Parameters are same used in linear models. For the nonlinear model, Figure

15 is obtained.
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RMS of Estimation Error

Figure 15 RMS estimation error for the nonlinear model as quantization level of

w(k) changing

Table 6 Average values of RMS Estimation error as quantization level of w(k)

changing for the nonlinear model

Quantization level | Average values of RMS
of w(k) Estimation Error
3 0.90667
7 0.88445
13 0.87881
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Comment:

It can be observed from the figures that increasing the number of the
quantization levels of the disturbance noise w(k) slightly improves the state

estimation error (Figure 14 and Figure 15) both linear and nonlinear models.
3.4. Effect of the Quantization Number of the Input Vector

In this section, effects of the quantization number of the input vector are
explained. There are two models, linear and nonlinear models. Figures show RMS
error variation depending on the quantization number of the input vector. This error,

A
z(k)- x4(k), is calculated for each k time at 1000 simulation, then RMS of errors are

obtained.

Linear models used in this simulation are
Motion model : X (k+tl)=x k) +w k) +uk),
Observation model z (k) =x (k) + v (k) + I(k).

Parameters are;
number of samples, L =20,
gate size =0.1,
number of max states = 100 ,
quantization numbers : x(0) = 3, w(k) =3, I(k) = 3,
variances :x(0) = 1,w(k) =1, uk)=1,v(k) = 1, I(k) = 0.01,

expected values : x(0) = 0, w(k) =0, uk) =6, v(k) = 0, I(k) =
0.2.

For the linear model, Figure 16 is obtained.
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RMS of Estimation Error

Figure 16 RMS estimation error for the linear model as quantization level of u(k)

changing

Table 7 Average values of RMS Estimation error as quantization level of u(k)

changing for the linear model

Quantization level | Average values of RMS
of u(k) Estimation Error
3 0.8558
5 0.8424
9 0.8299
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Nonlinear models used in this simulation are
Motion model : X (k+1) = 1-Ix (K)I + w (k) +u (k),
Observation model zK)=x& +I&)+vkK).

Parameters are same used in linear models. For the nonlinear model, Figure

17 is obtained.
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Figure 17 RMS estimation error for the nonlinear model as quantization level of

u(k) changing
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Table 8 Average values of RMS Estimation error as quantization level of u(k)

changing for the nonlinear model

Quantization level | Average values of RMS
of u(k) Estimation Error
3 0.8743
5 0.8531
9 0.8449
Comment:

It can be observed from the figures that increasing the number of the
quantization levels of the input vector u(k) slightly improves the state estimation
error (Figure 16 and Figure 17) both linear and nonlinear models. In this
simulations, input vector u(k) behaves like the disturbance vector w(k). Therefore,
the performance of u(k)’s state estimation error has similarities with the state

estimation error performance of w(k).
3.5. Effect of the Initial State Variance

In this section, effects of the initial state variance are explained. There are
two models, linear and nonlinear models. Figures show RMS error variation

A
depending on the initial state variance. This error, z(k)- x4(k), is calculated for each

k time at 1000 simulation, then RMS of errors are obtained.
Linear models used in this simulation are
Motion model : X (k+tl)=x k) +w k) +uk),
Observation model z(k)=xKk)+Ik)+v k).

Parameters are;
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number of samples, . =20,

gate size =0.1,

number of max states = 100,

quantization numbers : x(0) =5, w(k) =3, uw(k) =3, I(k) = 3,
variances :wk)=1,uk) =1, v(k) =1, I(k) = 0.01,
expected values :x(0)=0,wk)=0,v(k)=0,I(k)=0.2.

For the linear model, Figure 18 is obtained.
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Figure 18 RMS estimation error for the linear model as the initial state variance

changing
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Table 9 Average values of RMS Estimation error as variance values of x(0)

changing for the linear model

Variance values of | Average values of RMS
x(0) Estimation Error
0.01 0.79866
0.1 0.79264
1 0.83515
5 0.86382

Nonlinear models used in this simulation are
Motion model : X (k+1) = 1-Ix (K)I + w (k) + u (k),
Observation model z(K)=x®+I&K)+vK).

Parameters are same used in linear models. In the simulations for the

nonlinear model, Figure 19 is obtained.
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Figure 19 RMS estimation error for the nonlinear model as the initial state variance

changing

Table 10 Average values of RMS Estimation error as variance values of x(0)

changing for the nonlinear model

Variance values of | Average values of RMS
x(0) Estimation Error
0.01 0.8444
0.1 0.8549
1 0.8939
5 1.0103
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Comment:

When Figure 18 and Figure 19 are studied, it can be observed that increase
on the variance of the initial state vector slightly affects the performance of the state
error estimation. As shown by figures, the variance of the initial state vector has
important effects on only first samples. The state estimation error begins with large
error value due to the large initial state variance values, and then decreases

significantly to around a value as time k.
3.6. Effect of the Disturbance Noise Variance

In this section, effects of the disturbance noise variance are explained. There
are two models, linear and nonlinear models. Figures show RMS error variation

A
depending on the disturbance noise variance. This error, z(k)- x4(k), is calculated

for each k time at 1000 simulation, then RMS of errors are obtained.
Linear models used in this simulation are
Motion model : X (k+1)=x (k) +w (k) +u (k),
Observation model zK)=xE®+vk)+Ik).
Parameters are;
number of samples, L =20,
gate size =0.1,
number of max states = 100,
quantization numbers : x(0) = 3, w(k) = 3, u(k) = 3, I(k) =3,
variances :x(0)=1,uk)=1, v(k) =1, I(k) =0.01,

expected values : x(0) =0, wk) =0, utk) =0, v(k) =0, I(k) =
0.2

For the linear model, Figure 20 is obtained.
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Figure 20 RMS estimation error for the linear model as disturbance noise variance

changing
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Table 11 Average values of RMS Estimation error as variance values of w(k)

changing for the linear model

Variance values of | Average values of RMS
w(k) Estimation Error
0.01 0.7758
0.1 0.7548
1 0.8569
5 1.0331

Nonlinear models used in this simulation are
Motion model : X (k1) =1-x (K +w (k) +u k),
Observation model zK)=x®+I&k) +v k).

Parameters are same used in linear models. In the simulations for the

nonlinear model, Figure 21 is obtained
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Figure 21 RMS estimation error for the nonlinear model as disturbance noise

variance changing

Table 12 Average values of RMS Estimation error as variance values of w(k)

changing for the nonlinear model

Variance values of | Average values of RMS
w(k) Estimation Error
0.01 0.8517
0.1 0.8306
1 0.9021
5 1.0404
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Comment:

Unlike effects of the initial state variances, little change on the disturbance
noise variance directly affects performances of the state estimation error both linear
and nonlinear models. This effect can be realized during the number of samples, L.
As shown by Figure 20 and Figure 21, increase on the disturbance noise variance

causes the performance of the estimation to worsen.
3.7. Effect of the Input u(k) Variance

In this section, effects of the input vector variance are explained. There are

two models, linear and nonlinear models. Figures show RMS error variation

A
depending on the input vector variance. This error, z(k)- x4(k), is calculated for

each k time at 1000 simulation, then RMS of errors are obtained.

Linear models used in this simulation are
Motion model : X (k+1)=x (k) +w (k) +u (k),
Observation model zK)=x®+vk)+Ik).

Parameters are;
number of samples, L. =20,
gate size =0.1,
number of max states = 100,
quantization numbers : x(0) = 3, w(k) = 3, u(k) =3, I(k) =3,
variances x(0)=1,wk) =1, vk) =1, I(k) =0.01,
expected values :x(0)=0,wk)=0,vk)=0,1(k)=0.2.

For the linear model, Figure 22 is obtained.
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Figure 22 RMS estimation error for the linear model as variance of u(k) changing
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Table 13 Average values of RMS Estimation error as variance values of u(k)

changing for the linear model

Variance values of | Average values of RMS
u(k) Estimation Error
0.01 0.7607
0.1 0.7533
1 0.8400
5 1.0094

Nonlinear models used in this simulation are
Motion model : X (k+1) = 1-Ix (K)I + w (k) + u (k),
Observation model zK)=x®+I&k) +v k).

Parameters are same used in linear models. For the nonlinear model, Figure 23 is

obtained.
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Figure 23 RMS estimation error for the nonlinear model as variance of u(k)

changing

Table 14 Average values of RMS Estimation error as variance values of u(k)

changing for the nonlinear model

Variance values of | Average values of RMS
u(k) Estimation Error
0.01 0.8650
0.1 0.8227
1 0.9135
5 1.0358
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Comment:

Decreasing the input u(k) variance reduces the state estimation error as
expected for both the linear and the nonlinear case. Because the usage of the
parameter input u(k) in the simulations is similar to the disturbance vector w(k), a
little increase on the input u(k) variance causes the state estimation error to get a

large value during the sampling time. Figure 22 and Figure 23 show these effects.
3.8. Effect of the Observation Noise Variance

In this section, effects of the observation noise variance are explained. There

are two models, linear and nonlinear models. Figures show RMS error variation

A
depending on the observation noise variance. This error, z(k)- x4(k), is calculated

for each k time at 1000 simulation, then RMS of errors are obtained.
Linear models used in this simulation are
Motion model : X (k+1)=x (k) +w (k) +u (k),
Observation model zK)=xE®+vk)+Ik).
Parameters are;
number of samples, . =20,
gate size =0.1,
number of max states = 100,
quantization numbers : x(0) = 3, w(k) = 3, u(k) = 3, I(k) =3,
variances :x(0)=1,wk) =1,uk) =1, I(k) =0.01,

expected values :x(0) =0, wk) =0,u(k) =0,v(k) =0,I(k) = 0.2

For the linear model, Figure 24 is obtained.
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Figure 24 RMS estimation error for the linear model as variance of v(k) changing

Table 15 Average values of RMS Estimation error as variance values of v(k)

changing for the linear model

Variance values of | Average values of RMS
v(k) Estimation Error
0.1 0.5005
1 0.8461
10 1.5209
15 1.7118
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Nonlinear models used in this simulation are
Motion model : X (k+1) = 1-Ix (Kl + w (k) + u (k),
Observation model zK)=x& +I&)+vkK).

Parameters are same used in linear models. For the nonlinear model, Figure

25 is obtained.

RMS of Estimation Error

Figure 25 RMS estimation error for the nonlinear model as variance of v(k)

changing
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Table 16 Average values of RMS Estimation error as variance values of v(k)

changing for the nonlinear model

Variance values of | Average values of RMS
v(k) Estimation Error
0.1 0.5291
1 0.9073
10 1.7152
15 1.7983
Comment:

Decreasing the observation noise reduces the state estimation error as
expected for both the linear and the nonlinear case as observed at Figure 24 and

Figure 25.

3.9. Effect of the Quantization Number of the Interference Noise

In this section, effects of the quantization number of the interference vector

are explained. There are two models, linear and nonlinear models. Figures show

A
RMS error variation depending on the gate size. This error, z(k)- x4(k), is calculated

for each k time at 1000 simulation, then RMS of errors are obtained.
Linear models used in this simulation are
Motion model : Xx(k+tl)=x k) +w k) +uk),

Observation model z(k)=x((k)+v (k) +I k).

Parameters are;

number of samples, L =20,
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gate size =0.1,

number of max states = 100,

quantization numbers : x(0) = 3, w(k) =3, u(k) =3,

variances :x(0) = 1,w(k) = 1,u(k) = 0,v(k) = 1,I(k) =0.01,

expected values :x(0) =0, wk) =0,uk) =1,v(k) =0, I(k) = 0.2

For the linear model, Figure 26 is obtained.

RMS of Estimation Error
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Figure 26 RMS estimation error for the linear model as quantization level of

interference changing

62



Table 17 Average values of RMS Estimation error as quantization level of 1(k)

changing for the linear model

Quantization Level | Average values of RMS
of I(k) Estimation Error
3 0.8428
5 0.8496
9 0.8372
13 0.8366

Nonlinear models used in this simulation are
Motion model : X (k+1) = 1-Ix (K)I + w (k) + u (k),
Observation model z (k) =x (k) + I (k) + v (k).

Parameters are same used in linear models. For the nonlinear model, Figure

27 is obtained.
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Figure 27 RMS estimation error for the nonlinear model as quantization level of

interference changing

Table 18 Average values of RMS Estimation error as quantization level of I(k)

changing for the nonlinear model

Quantization Level | Average values of RMS
of I(k) Estimation Error
3 09113
5 0.8998
9 0.9194
13 0.9050
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Comment:

It can be observed from Figure 26 and Figure 27 that the number of the
quantization levels of the interference vector I(k) slightly affects the performance of

the algorithm.
3.10.Effect of the Interference Noise Variance

In this section, effects of the interference noise variance are explained. There
are two models, linear and nonlinear models. Figures show RMS error variation

A
depending on the interference noise variance. This error, z(k)- x4(k), is calculated

for each k time at 1000 simulation, then RMS of errors are obtained.
Linear models used in this simulation are
Motion model : X (k+1)=x (k) +w (k) +u (k),
Observation model z(k)=x(k)+v(k)+l (k).
Parameters are;
number of samples, . =20,
gate size =1,
number of max states = 100,

quantization numbers : x(0) =3, w(k) =3, u(k) =3, I(k) =3,

variances :x(0)=1,wk)=1,uk) =1, v(k) =1,
expected values :x(0) =0, wk) =0, uk) =1, v(k) =0, I(k) =
0.2

For the linear model, Figure 28 is obtained.
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Figure 28 RMS estimation error for the linear model as variance of interference

changing

Table 19 Average values of RMS Estimation error as variance values of I(k)

changing for the linear model

Variance values of | Average values of RMS
I(k) Estimation Error
0.01 0.8625
0.1 0.8591
1 1.0142
10 0.7965
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Nonlinear models used in this simulation are
Motion model : X (k+1) = 1-Ix (Kl + w (k) + u (k),
Observation model zK)=x& +I&)+vkK).

Parameters are same used in linear models. For the nonlinear model, Figure

29 is obtained.
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Figure 29 RMS estimation error for the nonlinear model as variance of interference

changing

67



Table 20 Average values of RMS Estimation error as variance values of I(k)

changing for the nonlinear model

Variance values of | Average values of RMS
I(k) Estimation Error
0.01 0.9034
0.1 0.9198
1 1.1138
10 1.8557
Comment:

Analyzing Figure 28 and Figure 29, it can be seen that the interference noise
variance directly affects the performance of the state estimation error both in linear

and nonlinear models.

3.11.Effect of the Limiting the Maximum State Number

In this section, effects of the limiting the maximum state number are

explained. There are two models, linear and nonlinear models.

Figures show RMS error variation depending on the limitation of the state

A
number. This error, z(k)- x4(k), is calculated for each k time at 1000 simulation,

then RMS of errors are obtained.
Linear models used in this simulation are
Motion model : X (k+l)=x (k) +w (k) +u(k),
Observation model z (k) =x (k) + v (k) + I (k).

Parameters are;
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number of samples, L. = 20,

gate size =0.1,

quantization numbers : x(0) =3, w(k) =3, u(k) =3, I(k) =3,
variances x(0)=1,wk)=1,v(k)=1, I(k) =0.01,
expected values :x(0)=0,wk)=0,v(k)=0,I(k)=0.2.

For the linear model, Figure 30 is obtained.
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Figure 30 RMS estimation error for the linear model when maximum state number

1s not limited
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Table 21 Average values of RMS Estimation error as the number of state limit

values changing for the linear model

# of the state limit Ave“a{ée Va.lues of RMS
Estimation Error
No limit 0.8473
100 0.8547
50 0.8490
10 0.8404

Nonlinear models used in this simulation are
Motion model : X (k+1) = 1-Ix (K)I + w (k) + u (k),
Observation model z(K)=x®+I&K)+vK).

Parameters are same used in linear models. For the nonlinear model, Figure

31 is obtained.
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Figure 31 RMS estimation error for the nonlinear model when maximum state

number is limited

Table 22 Average values of RMS Estimation error as the number of state limit

values changing for the nonlinear model

# of the state limit Ave“a{ée Va.lues of RMS
Estimation Error
No limit 0.9059
100 0.91233
50 0.89977
10 0.90649
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Comment:

It can be observed from the figures that limiting the number of states does
not affect the algorithm performance in linear (Figure 30) and nonlinear (Figure 31)
models too much. In the simulations, the program chooses the paths that have better
metrics when the number of the states exceeds the state limit and cancels others.
Since the program computation time is directly related with the maximum state
number, the computation time can be reduced significantly by decreasing the state

number without any loss in the performance.
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CHAPTER 4

CHAOTIC SYSTEMS

The possibility of using chaotic signals to carry information was first
proposed in 1993 and, since then, chaotic communication have been a very

important topic in both nonlinear science and engineering. [3]

The noise-like signals generated by deterministic chaotic systems have been
successfully used in various engineering areas. These signals are typically
broadband and similar to a stochastic process and can therefore be possibly used in
secure communication applications, especially spread spectrum communication

systems. [3]

In chaotic spread spectrum communication and chaotic modulation
applications that have been developed, binary digital symbols are carried by chaotic
sequences at the transmitter. A natural way to do is to modulate each digital bit by a
chaotic sequence with randomly picked initial condition and different parameters of
the system, which greatly spreads the spectrum of the original binary digital signals,
and make them quite noise like. At the receiver, a parameter estimator is employed
to determine which symbol is represented by the received noise-like and broadband
chaotic sequence. Although this scheme allows the communication system to have
high security and broadband nature, it has low information carrying efficiency

because each sequence can carry only one bit a time. [4]

Throughout this chapter, definitions of chaos and nonlinear dynamics are

given. Then common types of chaotic mapping are given detailly.
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4.1. Chaos and Nonlinearity

The word “chaos” implies some observation of a system which varies
unpredictably. If a measurement does not have regularity or order, it is called
“chaotic”. However, it is not a set of random events. For example, flipping a coin
100 times is not a chaotic event because chaotic dynamics are deterministic
developments with chaotic outcome, i.e., current state of a system depends on the

previous state in a rigidly determined way. [5]
Mathematical requirements of a system to be chaotic are given below:

Let V be an interval. f : V 2V is chaotic on V if the following conditions

hold [ 6, 7 ]
1. f is sensitive to initial conditions
2. f is topologically transitive
3. periodic points are dense in V

Sensitivity to initial conditions means that two points in such a system move
in vastly different paths even if the difference between their initial conditions is
small [6] . Sensitivity to initial conditions is related to the Lyapunov exponents [6,
7]. The Lyapunov exponent of a map is used to obtain sensitive dependence to initial

conditions which is the first necessity for the above characterization of chaotic maps.

If a system is allowed to start from two slightly different initial states, say x

and X + a, after n iterations, their divergence may be characterized as [7]

e(n)~ e (4.1)

where, A is Lyapunov exponent and it gives average rate of divergence. If A is
negative, slightly apart trajectories converge and the evolution is not chaotic. If A is
positive two trajectories diverge and evolution is sensitive to initial conditions. One

dimensional map is given by

Xpe1=f(x,) 4.2)
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where, n is iteration number. The difference between two trajectories after n steps,

whose initial conditions are close to each other, is given as

Y xte)-F(x)~ e (4.3)
or
ln[fn(x-'-gé),_fn(“}zﬂ” (4.4)

where f"(x) is iterated value of initial value x after n steps. For small , this can be

rewritten as

ar"

dx

A= lim iln

n—oo N

4.5)

Finally, if we use chain rule [7] for the derivative of the n'" iteration and take the

limit as n tends to infinity we obtain the Lyapunov exponent as

n—1
A= lim iZm () (4.6)
=1

n—><>onl.

Definition 4.1: A mapping f : [0,1]>[0,1] is transitive if for every pair of
subintervals I and J of [0,1] there is an n such that f"(I)NJ = [6] where

f"( 1) is iteration result of subinterval I after n steps and @ is empty set.

The last characteristic of chaotic systems, denseness of periodic points on V
means that: there are infinitely many points with infinitely different periods. A
periodic point is a point which cycles after a number of iterations. However,
although theoretically there are infinitely many periodic points, practically it is not
possible to find these numbers because of rounding-off errors. Since rounding-off
errors will be amplified because of initial sensitivity property, we will never achieve
an exact periodicity but quasy-periodicity, which means we can save appearance of
periodicity for only limited number of iterations but after that, periodicity becomes

unstable because of sensitivity. [8]
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4.2. One Dimensional Chaotic Systems

In this section, three popular one-dimensional chaotic systems are studied.

These systems are skew tent map, tent map and symmetric tent map.

4.2.1 Skew Tent Map

The skew tent map is defined [9] by

if0<y<a

fltx)= a 4.7)
T—Z ifa<y<l
—da

and represented in Figure 32.
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Figure 32 Skew tent map when a=0.6.
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It is noninvertible transformation of the unit interval onto itself. It depends

on the parameter a which satisfies
05<a<l. 4.8)

The result for 0 < a < 0.5 are completely analogous. For a = 0.5, f becomes the tent
map. Typical trajectory of the skew tent map system is given in Figure 33. In the

simulation, the parameter a is equal to 0.6 and 1000 samples are given.

The Skew Tent Map
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Figure 33 1000 points of typical trajectory of the skew tent map system for a=0.6
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4.2.2 Tent Map

The tent map is defined [10] by

Z(k+]):{a(1—2}((k)—1) ifO< y(k)<1 9)
0 elsewhere

and represented in Figure 34.
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Figure 34 Tent map when a=0.78

When a is between 0.5 and 1, trajectory of this map exhibits chaotic
behavior. Typical trajectory of the tent map system is given in Figure 35. In the

simulation, the parameter a is equal to 0.78 and 1000 samples are given.
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The Tent Map
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Figure 35 1000 points of typical trajectory of the tent map system for a=0.78

4.2.3 Symmetric Tent Map

The symmetric tent map is defined [10] as
Hk+1)=a—1-aly(k) (4.10)

and represented in Figure 36.

79



f(x)

trajectory of the symmetric tent map system is given in Figure 37. In the simulation,

nsa
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0.8

When a is between 1 and 2, the system has chaotic behavior. Typical

The Symmetric Tent Map
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Figure 36 Symmetric tent map when a=1.75.

the parameter a is equal to 1.75 and 1000 samples are given.
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The Symmetric Tent Map
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Figure 37 1000 points of typical trajectory of the symmetric tent map system for
a=1.75

4.2.4 The Sensitivity to Initial States and Parameter a

As explained in section 4.1, chaotic systems are sensitive to initial
conditions. Starting from different initial states causes paths to diverge vastly, even
though difference between initial states is too small. Therefore, performances of
one-dimensional chaotic systems, which are presented in section 4.2, are affected by

the difference between initial states.

Effects of the initial state on the skew tent map are analyzed in Figure 38. In
the simulation, a reference path is generated, namely x1, taking the initial state 0.87
and the parameter a 0.75. Then second path, x2, is generated with the same
parameter a. The initial state of the second path differ by 0.00001 from x1’s. Last
third path, x3, is generated with the same parameter a and its initial state differs by

0.01 from x1’s. In Figure 38, there are two subfigures which shows these paths. In
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the first subfigure, x1 and x2 is shown. Despite the small difference between the
initial states, two paths diverge with time L. In the second subfigure, x1 and x3 is
figured out. Because the difference between initial points becomes larger, i.e., 0.01 ,

these two paths diverge earlier.

The Skew Tent Map
f T - T T T . Tl T
0y
Y
08
i 4
06
4 b
04k i
i
02r
D ‘
0 3

]
oo
06 / .
] 4
06 / y
| g

04 @
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Figure 38 Effect of initial states on skew tent map when a=0.75, a) Initial states

differ 0.00001, b) Initial states differ 0.01
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The effects of the difference between initial states are similar on the tent map
shown by Figure 39. In these simulations, a is taken 0.82 and reference initial state is

0.63.
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Figure 39 The effects of initial states on the tent map for a=0.82, a) Initial states

differ 0.00001, b) Initial states differ 0.01
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The effects of the difference between initial states are similar on the

symmetric tent map shown by Figure 40. In these simulations, a is taken 1.62 and

reference initial state is 0.3.
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Figure 40 The effects of initial states on the symmetric tent map for a=1. 62 a)

Initial states differ 0.00001, b) Initial states differ 0.01
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Another important parameter affecting the chaotic systems is the parameter
a. a guides how the system follows the path. A small difference on a causes system
to follow irrelevant paths. This structure can be analyzed on Figure 41, Figure 42,

and Figure 43 for different one-dimensional chaotic systems.

In Figure 41, the initial state of the skew tent map is taken 0.87. The
parameter a is taken 0.6 for the reference path. Then for the paths, namely x2 and x3,

a is taken 0.61 and 0.8 respectively.

The Skew Tent Map
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Figure 41 The skew tent map paths with the same initial states and different a

values, a) a differs 0.01, b) a differs 0.2
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In Figure 42, the initial state of the tent map is taken 0.63. The parameter a is
taken 0.7 for the reference path. Then for the paths, namely x2 and x3, a is taken

0.71 and 0.8 respectively.
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Figure 42 The tent map paths with the same initial states and different a values, a) a

differs 0.01, b) a differs 0.1
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In Figure 43, the initial state of the symmetric tent map is taken 0.3. The
parameter a is taken 1.7 for the reference path. Then for the paths, namely x2 and x3,

ais taken 1.71 and 1.8 respectively.

The Symmetric Tent Map
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Figure 43 The symmetric tent map paths with the same initial states and different a

values, a) a differs 0.01, b) a differs 0.1
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4.3. The Nonlinear Chaotic Algorithm Map ( NCA )

One-dimensional chaotic system with the advantages of high-level efficiency
and simplicity has been widely used. However, their weakness, such as small key
space and weak security, is disturbing. To overcome these drawbacks, a new chaotic
algorithm is designed. The new algorithm has the advantages of high-level security,

large key space. [11]

The nonlinear chaotic algorithm map uses power function (1-x) Pand tangent

function instead of linear function. The NCA 1is defined as

o =A-1g(ay,)-(1-2.)" 4.11)
where x,, € (0,1 ), n=0,1,2... . [11]

The parameter 4 is defined as

B
o 1
ﬂ—ﬂCl‘g(ﬁj(l‘l‘Ej , ,U>0 4.12)

Finally, parameter u is obtained by experimental analysis; as a result ,u:l—B'4 .

Therefore, the NCA map is defined as follows:

B
Zun =(1-B): crg(ﬁ] : (l + %] 1g(ag,)- (- 2. (4.13)

where x, € (0,1), @ € (0,14], B € [543]orx, € (0,1), @ € (14,1.5], B €
[9,38] or x,€ (0,1), @ € (15,1571, B € [3,15]. The ranges of @ and S are
obtained by iteration experimental analysis. Figure 44 shows the iteration of the

NCA map when xp=0.3, a=1.57, f=3.5. From these statistical data, it is seen that

the new chaotic algorithm spreads the initial region over the entire phase space.
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Figure 44 Iteration property of the NCA map

Like other chaotic schemes, one-dimensional chaotic schemes, the NCA 1is

sensitive to initial states and parameters &, f. A small change of these parameters
will generate a completely different result. In the simulations, that shows these
effects, initial state is 0.3, & is 1.57 and £ is 3.5. Figure 45 shows the effect of the
difference between initial states, which results different paths. Small changes on

parameters & and /[ cause similar effects as figured out at Figure 46 and Figure 47.
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The Nonlinear Chaotic Algorithm Map
T T

& —&—yl
——2
0aF
D6 -
D4+ -
021 -
0 i i = b h = : = JE,([
0 5 10 15 20 5 30 3* 40 45 g0
L
a) initial states differ 0.00001
| s % 5 £ | T T—*%
] i o —&—l
by —%—x3
DB o | g e
|
0
\ - I 0] ip
DB W i
| & . ‘
[ o d ‘
D4+ =
i
[y 0 |
0]
02t l ® -
) 0]
o {1 2 #
0 fofl | = | = | =
0 5 10 15 20 2% 30 40 45 a0
L

b) initial states differ 0.01

Figure 45 Effect of initial states on the NCA map, a) Initial states differ 0.00001, b)

Initial states differ 0.01
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The Nonlinear Chaotic Algorithm Map
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CHAPTER 5

APPLICATION OF ODSA TO CHAOTIC SYSTEMS

As described in Chapter 4, chaotic signals can be used for secure
communication applications. Communication systems with chaotic modulation and
demodulation can be figured out by Figure 48. Binary digital signals are prepared by
chaotic systems with different parameters on the transmitter side. If digital O is send
to the transmitter, a signal source is switched to SYS1 to generate a chaotic sequence
with parameter a,. However, if digital 1 is send to the transmitter, the signal source
is switched to SYS2 which generates a chaotic sequence with parameter a, . X1 and
X2 are two finite-length chaotic sequences generated by the same type of system
with two different parameters, a; and a,. These signals are transmitted through

communication channel and affected by Gaussian channel noise.

At the receiver side, there are two optimum decoding based smoothing
algorithm (ODSA) decoders to extract chaotically transmitted digital signals. These
decoders have the knowledge of the parameters a, and a,. A comparator, which is
at the end of ODSA decoders, compares the outputs of ODSA parts and decides

whether the transmitted signal is O or 1.

To decide the transmitted binary digital signal, the comparator compares
average estimation errors from the two ODSA decoders. Mean Square Errors
(MSE’s) for ODSA is defined as

L 2

1 X
MSEI=—3 (v = Zin) (5.1)
n=1
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L 2
1 .
MSE2 = (v = #2n) (5.2)

n=I
where, y, is the observation sequence for both MSE1 and MSE2. %;, and },, are

estimated state values with ODSA1 which uses chaotic parameter @; and ODSA2
which uses chaotic parameter a, respectively. L is the length of chaotic sequence
for each bit. For each transmitted bit, MSE1 and MSE?2 are calculated. If the mean
square error corresponding to parameter a, (demodulated by ODSAT1) is smaller
than the mean square error corresponding to parameter a, (demodulated by

ODSA2), then comparator decides the transmitted signal as digital 0. Otherwise (
MSE2 < MSEI1 ) digital 1 is decided.

Hoise
Switch Control SYS1 (for signal O X1 0DsAl
_/a Comparator
Sigma —— SY&2 {for siemal ) ODSAL
1,0 x2
1,0

Recerved signal

Figure 48 Communication Scheme with ODSA

5.1. Application of ODSA on One Dimensional Chaotic Systems

There are three types of one-dimensional chaotic systems mostly used in
secure communication. A brief introduction about these chaotic systems is given in

section 4.2. To transmit binary digital signals over the communication channels, one
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dimensional chaotic modulation schemes can be used. To demodulate transmitted

signal, which is affected by channel noise, ODSA could be a solution.

In this section, the symmetric tent map, which is one of the one-dimensional
chaotic systems, is used as the modulator that is figured out as SYS1 or SYS2 in
Figure 48. First, models and assumptions to apply ODSA on the symmetric tent map
are given. Then the performance of ODSA for different observation noise variances
is studied in clear environment. To analyze the performance of ODSA on chaotically
modulated signals in the presence of interference, simulations are run for different
variance values of interference. After that, BER performance of the symmetric tent
map for the application which has the initial states information is analyzed. Last,

complexity analysis of ODSA on one dimensional chaotic tent map is given.

5.1.1 Models and Assumptions

To analyze the application of ODSA on one-dimensional chaotic systems, it
is assumed that signals are modulated using the symmetric tent map scheme. The

symmetric tent map is formulated as
Kk+1)=a—1—day(k) (5.3)

where a is between 1 and 2.

The motion and observation models in Eq. (2.1) are changed as

Motion model : Xk+1)=a—1—-ay(k)

’

Observation model z(K) =x (k) + v (k) 5.4

in clear environment, and

B

Motion model : Xk+1)=a—1—-ay(k)

Observation model z(k) = g (k, x (k), I (k), v (k)) (5.5
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in presence of interference. g (.) function is described in 5.1.2.2.1 and 5.1.2.2.2.

The constant parameter a refers as the input parameter u(k) in (2.1) .

However, parameter a is constant throughout time k unlike u(k).

To analyze the performance of ODSA on chaotic communication systems,
the transmitter and the receiver sides are simulated. In the transmitter side, randomly
generated binary signals with equal probability are used. These binary signals are
modulated using the Eq. (5.5) with the parameter a, for binary signal 0 and a, for
binary signal /. Modulated signals are transmitted over the noisy communication
channel. This channel adds only Gaussian noise, v(k), to the modulated signals in
clear environment whereas in presence of interference I(k) is added to the modulated

signals.

In the receiver side, these signals that are modulated at the transmitter side
and affected by channel noise are used to estimate transmitted states. As shown
Figure 48, there are two ODSA’ s which use a, and a, . Using differences between
the estimated states and observation sequences, comparator decides whether

transmitted signal parameter is a, or a, that refers to O or 1.

As explained in 4.2.4, the receiver side should know the parameter a;, and
a,. In addition, the initial states of the chaotically modulated sequence are
important. In the simulations, it is assumed that the initial states of the transmitted

signals are random.

At the last state, the path which variates minimum from the observation
values is chosen for each ODSA’ s. Then the comparator uses the sum of these

variations to decide whether the transmitted signal is a, or a,.

In the presence of interference, the path that has the maximum metric values
is chosen for each ODSA’s at the last state. Then the comparator uses these metric

values to decide whether the transmitted signal is a, or a,.

In some applications, the receiver side can have the knowledge of the initial
states. Having the information about the initial states, receiver parts estimates

transmitted signals, which are affected by observation noise and interference.
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5.1.2  Performance of ODSA on the Symmetric Tent Map Not Having
the Knowledge of Initial States

In this section, bit error rate (BER) performance of ODSA on the symmetric
tent map is analyzed for the applications which are in clear environment and under

interference.

Simulations are run to get BER performance of ODSA. For each simulation,
1000 binary signals with equal probability are generated randomly. For each bit,
chaotically modulated signal sequence is generated. Initial state of chaotically

modulated signal sequence is assumed uniformly distributed.

In the applications the receiver sides does not have the knowledge of initial

states.

The parameters which are used to refer O and 1 are taken as a,=1.4, a,=1.8.

Also, simulations are run for a,=1.4, a,=1.6.

5.1.2.1 Performance of ODSA on the Symmetric Tent Map in

Clear Environment

In order to determine the effects of the observation noise on the performance
of the system, simulations are run for different variance values of observation noise
which are 0.01, 0.05, 0.1 and 1 . The expected value of the observation noise is taken
as 0. Variance values of observation noise are written on the first column of the BER
performance tables, Table 23, Table 24, and Table 25. To select the enough the

number of samples, simulations are run for 3 different numbers of samples L.

System parameters are;

[a, a:] =[1.4, 1.8] and [1.4, 1.6],
expected value of observation noise =0,

quantization # of initial states =1000,

gate size = 1/5000 .
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Table 23 BER performance of the symmetric tent map in clear environment, the
number of samples L=10

a,=14, a,=1.8 | a,=1.4, a,=1.6
BER BER
6% (vk)=0.01 0.017 0.111
6’ (vk)=0.05 0.188 0.297
6’ (vk)=0.1 0.327 0.412
6’ (vk)=1 0.483 0.468

Table 24 BER performance of the symmetric tent map in clear environment, the
number of samples L=20

a,=14, a,=1.8 | a,=1.4, a,=1.6
BER BER
6’ (vk)=0.01 0.027 0.048
6*(vk)=0.05 0.051 0.179
6’ (vk)=0.1 0.150 0.333
o’ (vk)=1 0.457 0.488
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Table 25 BER performance of the symmetric tent map in clear environment, the
number of samples L=30

a, =14, a,=1.8 | a,=1.4, a,=1.6
BER BER
¢*(vk)=0.01 0.005 0.069
6> (vk)=0.05 0.056 0.109
o> (vk)=0.1 0.073 0.223
o*(vk)=1 0.475 0.474
a=14 a=18
15 T T T T T T T T T T T T T T I T T
I I ‘ ; I I I I I I I I I ‘ I : —_— X estimated
—#— 7 actual
1_""v""q"""p""g .......................................................................................................... _

\ |
i I.
‘"'\||\|u|' '

|i I:‘i'

H hvﬁwn”h i

e

AT 1T

BTy S I -__-

i

+ : i
oo

4 (N TN S R TS N MY TS N SN AN N A ST NN SO R ¢

Actual 011
Estimated 010

o
oo
[ R e ]
=
o
=
o
[ ]
= O

Figure 49 The Symmetric Tent Map with a,=1.4, a,=1.8, o’ (v(k))=0.01, the

number of samples L=30
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Figure 50 The Symmetric Tent Map with a,=1.4, a,=1.6, o’ (v(k))=0.01, the

number of samples L=30

To see the effect of the number of samples, L, Table 23, Table 24, and Table
25 can be summarized by following figures (Figure 51 and Figure 52). From these

figures, it is observed that the number of samples, L can be chosen as 30.
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al=1.4,a2=1.8 |—8—1=10 ——L=20 —e—L=30

Figure 51 BER performance for different numbers of samples, L
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al=14,a2:16 |8 L=10 ——L1=20 ——L-30)

Figure 52 BER performance for different numbers of samples, L

As shown from the above tables, BER performances of ODSA on the symmetric tent
map are affected by observation noise variance directly. When the variance of the
observation noise increases, BER performance of ODSA decreases.In addition, BER
performance depends on parameters @, and a,. While a, and a, is apart from each
other, BER performance increases. However, this situation decreases the security of
the chaotic system because of being easily distinguishable. Moreover, Table 23,
Table 24 and Table 25 shows that, BER performance of ODSA on the symmetric

tent map is better when the number of samples, L is equal to or greater than 20.
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5.1.2.2 Performance of ODSA on the Symmetric Tent Map in

Presence of Interference

In the previous section, the performance of ODSA was given on the
symmetric tent map in clear environments. In this section, the performance of ODSA
on one-dimensional chaotic system under interference is analyzed. Simulations are
run for three different observation models. In the first model, interference parameter
I(k) is directly added to observation noise parameter v(k). Whereas in the second
model, observation noise parameter v(k) is multiplied by interference parameter. In

the last model, both x(k) and v(k) are multiplied by I(k).
5.1.2.2.1 Observation model I

In these simulations, motion and observation models are described as

Motion model : Xk+1)=a—1—-ay(k)

’

Observation model z(k)= x (k) + I (k) + v (k) (5.6)
where the random vectors x(0), v(/), v(m), I(n), and I(p) are independent for all 1, m,
n, p.

As mentioned in 2.10, the observation z(k) is a linear function of the normal
observation vector v(k) and the conditional probability density function of z(k),
given that x(k):xqi(k) and I(k), is multivariate normal density function. Then it can

be rewritten as

P(Z(k)l X%wl(k))z N(Xiq +1y,00 )

plzlk)Ix})= Zp(z(k)l xi, I(k)=1,)*p(La) (5.7)

Using (5.7) for metric calculation, simulations are run. For each simulation,
1000 binary signals with equal probability are generated randomly. Initial states are
generated uniformly in the range of [ 0, 1 ] and maximum number of the states is

not limited.

The parameters which are used to refer O and 1 are taken as a,=1.4, a,=1.8.

Also, simulations are run for a,=1.4, a,=1.6.
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In order to determine effects of the observation noise on the performance of
the system, simulations are run different variance values of observation noise which

are 0.01, 0.05, and 0.1 . The expected value of the observation noise is taken as 0.

Because BER performances of ODSA on chaotic systems is better when
number of samples, L is equal to 20 or 30, simulations are run for these sampling
number values. Variance values of observation noise are written in the first row of
the BER performance tables, Table 26 and Table 27. Variance values of

interferences are given in the first column of the same tables.

System parameters are;

[ a, a] =[1.4, 1.8] and [1.4, 1.6],
expected value of observation noise =0,

expected value of interference =0,

quantization level of interference =5,

quantization # of initial states =1000,

gate size = 1/5000
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Table 26 BER performance of the symmetric tent map under interference, the

number of samples L=20

¢*(vk)=0.01 6*(vk)=0.05 ¢*(vk)=0.1

611:1.4 611:1.4 611:1.4 61121.4 61121.4 61121.4
a2=l.8 612:1.6 a2:1.8 a221.6 a2:1.8 a2:1.6

BER BER BER BER BER BER

no interference 0.027 0.048 0.051 0.179 0.150 0.333

o> (I(k))=0.001 | 0.006 | 0.099 | 0.101 | 0273 | 0232 | 0.389

o> (I(k)=0.01 | 0.043 | 0.160 | 0.133 | 0274 | 0224 | 0393

o’ (I(k))=0.1 0.234 0.387 0.298 0.444 0.369 0.437

Table 26 can be summarized by the following figures (Figure 53 and Figure
54).
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al=1.4,a2=1.8

04 ‘ ‘

Figure 53 BER performance for different interference variance values at model I,

the number of samples L=20
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al=1.4,a2=1.6

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

var(vk)

Figure 54 BER performance for different interference variance values at model I,

the number of samples L=20
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Table 27 BER performance of the symmetric tent map under interference, the

number of samples L=30

o’(vk)=0.01 o°(vk)=0.05 o’(vk)=0.1

a=14 | a,=14 | a.=14 | a.=14 | a.=14 | a,=14

a,=1.8 | a,=1.6 | a,=1.8 | a,=1.6 | a,=1.8 | a,=1.6
BER BER BER BER BER BER
no interference | 0.005 0.069 0.056 0.109 0.073 0.223
o> (I(k))=0.001 | 0.014 | 0.046 | 0.053 | 0.183 | 0.128 | 0.336
o’ (I(k))=0.01 0.019 0.088 0.063 0.215 | 0.163 0.328
o (1(k))=0.1 0.150 | 0333 | 0222 | 0383 | 0310 | 0.427
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Figure 56 a,=1.4, a,=1.6, o (v(k))=0.05, o~ (I(k))=0.01, number of samples L=30

Table 27 can be summarized by the following figures (Figure 57 and Figure
58).
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Figure 57 BER performance for different interference variance values at model I,

the number of samples L=30
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Figure 58 BER performance for different interference variance values at model I,

the number of samples L=30

Basically, BER performance of the system is more successful when L is 30.
Also it can be said that, the interference is more effective on the symmetric tent map

when a’s are close to each other.

5.1.2.2.2 Observation model 11

In these simulations, motion and observation models are described as

B

Motion model : k+1)=a—1—aly(k)

Observation model z(k)= x (k) + (1+I2 k)) v (k) (5.8)

where the random vectors x(0), v(/), v(m), I(n), and I(p) are independent for all 1, m,

n, p.
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As mentioned in 2.10, the observation z(k) is a linear function of the normal
observation vector v(k) and the conditional probability density function of z(k),

given that x(k):xqi(k) and I(k), is multivariate normal density function with mean

x4'(k) and variance value 0%a = (1+12 ) 62 .
Then it can be rewritten as
ple(k)1 x5, 1(k)) = N(xi.0%a)

pla(k)1x) = Zp(z(k)l xi, 1(k)=1,)% p(la) (5.9)

Using (5.9) for metric calculation, simulations are run. For each simulation,
1000 binary signals with equal probability are generated randomly. Initial states are
generated uniformly in the range of [ 0, 1 ] and maximum number of the states is

not limited.

The parameters which are used to refer O and 1 are taken as a,=1.4, a,=1.8.
Also, simulations are run for a,=1.4, a,=1.6.
In order to determine effects of the observation noise on the performance of

the system, simulations are run different variance values of observation noise which

are 0.01, 0.05, and 0.1 . The expected value of the observation noise is taken as 0.

Simulations are run for 30 sample values. Variance values of observation
noise is the first row of the BER performance table, Table 28. Variance values of

interferences are given in the first column of this table.

System parameters are;

[a, a5] =[1.4,1.8]and [1.4, 1.6],
expected value of observation noise =0,

expected value of interference =0,

quantization level of interference =5,

quantization # of initial states =1000,

gate size = 1/5000
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Table 28 BER performance of the symmetric tent map under interference, the
number of samples L=30

6> (vk)=0.01 6’ (vk)=0.05 6’ (vk)=0.1

a1:1.4 a1:1.4 a1:1.4 a; =14 a; =14 a; =14
a2:1.8 a2:1.6 a2:1.8 612:1.6 612:1.8 612:1.6

BER BER BER BER BER BER

no interference | 0.005 0.069 0.056 0.109 0.073 0.223

o> (I(k))=0.001 | 0.009 | 0.047 | 0.063 | 0.189 | 0.141 | 0.332

o’ ((k))=0.01 | 0.010 0.049 0.065 0.206 0.147 0.353

o’ (I(k))=0.1 0.011 0.060 0.073 0.215 0.169 0.339

Table 25can be summarized by following figures ( Figure 59 and Figure 60).
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Figure 59 BER performance for different interference variance values at model 11
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Figure 60 BER performance for different interference variance values at model 11

5.1.2.2.3 Observation model II1

In these simulations, motion and observation models are described as

Motion model : k+1)=a—1—-aly(k)

Observation model zK) =x K IK)+1+F &) v&K) (5.10)
where the random vectors x(0), v(/), v(m), I(n), and I(p) are independent for all 1, m,
n, p.

Because the state vector x(k) is multiplied by interference vector I(k) in the
observation model, then the state vector fades. Because of this, this channel can be

thought as fading channels.
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As mentioned in 2.10, the observation z(k) is a linear function of the normal
observation vector v(k) and the conditional probability density function of z(k),

given that x(k):xqi(k) and I(k), is multivariate normal density function with mean

X4 *Ig and variance value 624 = (1+12) 62 .
Then it can be rewritten as
plek)1xi 1(k)) = N(x *L.0%a)

p(z(k)lxa)z;p(z(k)lxg,l(k)=Idl)*p(ldl) (5.11)

Using (5.11) for metric calculation, simulations are run. For each simulation,
1000 binary signals with equal probability are generated randomly. Initial states are
generated uniformly in the range of [ 0, 1 ] and maximum number of the states is

not limited.

The parameters which are used to refer O and 1 are taken as a,=1.4, a,=1.8.

Also, simulations are run for a,=1.4, a,=1.6.
In order to determine effects of the observation noise on the performance of

the system, simulations are run different variance values of observation noise that

are 0.01, 0.05, and 0.1. The expected value of the observation noise is taken as 0.

Simulations are run for 30 sample values. Variance values of observation
noise is the first row of the BER performance table, Table 29. Variance values of

interferences are given in the first column of this table.

System parameters are;

[a;, a,] =[1.4,1.8]and [1.4, 1.6],
expected value of observation noise =0,

expected value of interference =1,

quantization level of interference =5,

quantization # of initial states =1000,

gate size = 1/5000
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Table 29 BER performance of the symmetric tent map under interference, number
of samples L=30

¢*(vk)=0.01 6*(vk)=0.05 ¢*(vk)=0.1

a1:1.4 a1:1.4 a1:1.4 01:1.4 611:1.4 611:1.4
a2=l.8 a2:I.6 a2=l.8 a2:1.6 a2:1.8 a2:1.6

BER BER BER BER BER BER

no interference | 0.005 0.069 0.056 0.109 0.073 0.223

o> (I(k))=0.001 | 0.031 | 0.105 | 0.243 | 0390 | 0.427 | 0.479

o’ (1(k))=0.01 | 0.050 0.096 0.343 0.436 0.448 0.48

o>(I(k)=0.1 | 0.139 | 0.166 | 0.330 | 0.450 | 0.490 | 0.498

Table 29 can be summarized by following figures (Figure 61 and Figure 62).
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Figure 61 BER performance for different interference variance values at model III
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Figure 62 BER performance for different interference variance values at model III

Analyzing Table 27, Table 28, and Table 29, it is observed that, when
interference is added to the observation models as a multiplier, BER performance of
the system decreases depending on the variance values of interference. Interference

is more effective when it is multiplied by x(k) and v(k).

5.1.3 Performance of ODSA on the Symmetric Tent Map Having the
Knowledge of Initial States

As described in section 5.1.2, chaotic communication is based on the
transmition in which binary signals are transmitted using the chaotic signals. In the
transmitter side, to represent O or 1 a signal block is generated which is transmitted

over the communication channel and reached to the receivers. These receivers do not
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have any information about initial states of the transmitted signals. For this case,
BER performance of ODSA on the symmetric tent map was given in 5.1.2 and

5.1.2.2.

In this section, it is assumed that receiver sides have information about initial
states of the transmitted signal in addition to a, and a, , and simulation are run to

have BER performance of ODSA for this case.

For each simulation, 1000 binary signals with equal probability are generated
randomly. Initial states of chaotically modulated signal sequences are taken constant.

The parameters which are used to refer O and 1 are taken as a,=1.4, a,=1.8. Also,

simulations are run for a,=1.4, a,=1.6.

In order to determine the effects of the observation noise on the performance
of the system, simulations are run for different variance values of observation noise
which are 0.01, 0.05, 0.1 and 1. The expected value of the observation noise is taken
as 0. Variance values of observation noise are written on the BER performance

tables. The number of samples L is taken 30.

In the simulations, the receiver sides have the information about the initial
state value. This information is that the initial state is one of the element of

sequences which is formulated as;

2k -1 ) . .
Xp = 5 , k=123..,n. where n is equal to initial state quantization
‘n

level, 100. In the simulations, chaotically modulated signal sequences are generated

as 0.305 by taking k=31.

System parameters are;

[a,, a5] =[1.4,1.8]and [1.4, 1.6],
expected value of observation noise =0,

quantization # of initial states =100,

gate size = 1/5000

initial state =0.305.
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For the clear environment application, BER performance of ODSA on the
symmetric tent map is given by Table 30 Variance values of observation noise are
written in the first column of the BER performance table, Table 30. Analyzing both
Table 23 and Table 30, there is an improvement on BER performance of ODSA in

clear environment applications in which receiver sides know the initial states.

Table 30 BER performance of the symmetric tent map in clear environment

a, =14, a,=18 | a,=1.4, a,=1.6
BER BER
o (vk)=0.001 0 0
o’ (vk)=0.01 0 0.009
o’ (vk)=0.05 0.032 0.079
o (vk)=0.1 0.070 0.209
o’ (vk)=1 0.467 0.494

In presence of interference for the model I application as formulated in (5.6),
BER performance of ODSA is summarized by Table 31. Variance values of
observation noise is the first row of the BER performance table, Table 31. Variance
values of interferences are given in the first column of this table. When Table 31 is
compared with Table 27, in the applications having the knowledge of initial states

there is significant decrease on BER performance of ODSA.
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Table 31 BER performance of the symmetric tent map under interference, model I

¢>(vk)=0.01 6>(vk)=0.05 6> (vk)=0.1

a1:1.4 a1:1.4 a1:1.4 a1:1.4 a1:1.4 a1:1.4
a2:1.8 a2:1.6 a2:1.8 612:1.6 612:1.8 612:1.6

BER BER BER BER BER BER

no interference 0 0.009 0.032 0.079 0.070 0.209

o> (I(k))=0.001 | 0.001 | 0.007 | 0.041 | 0.092 | 0.095 | 0.202

o> (I(k)=0.01 | 0.006 | 0.028 | 0045 | 009 | 0.104 | 0217

o’ (I(k))=0.1 0.136 0.27 0.151 0.274 0.232 0.349

Table 31 can be summarized by the following figures, Figure 63 and Figure
64.
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Figure 63 BER performance of ODSA knowing the initial states at model I
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Figure 64 BER performance of ODSA knowing the initial states at model I

In presence of interference for the model II application as formulated in
(5.8), BER performance of ODSA is summarized by Table 32. Variance values of
observation noise are written in the first column of the BER performance table,
Table 32.When Table 32 is compared with Table 28, it can be concluded that having

the knowledge of initial states causes a decrease on BER performance of ODSA.
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Table 32 BER performance of the symmetric tent map under interference, model II

6°(vk)=0.01 6’ (vk)=0.05 6’ (vk)=0.1

a1:1.4 a1:1.4 a1:1.4 a =14 a =14 a =14
a2:1.8 a2:1.6 a2:1.8 612:1.6 612:1.8 612:1.6

BER BER BER BER BER BER

no interference 0 0.009 0.032 0.079 0.070 0.209

o> (I(k))=0.001 0 0.004 | 0.031 | 0097 | 0077 | 0.195
o> (1(k))=0.01 0 0.005 | 0.036 | 0.094 | 0.101 | 0.194
o> (I(k))=0.1 0 0.008 | 0.034 | 0.117 | 0.113 | 0226

Table 32 can be summarized by the following figures (Figure 65 and Figure
66).
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Figure 65 BER performance of ODSA knowing the initial states at model II
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Figure 66 BER performance of ODSA knowing the initial states at model II

In presence of interference for the model III application, BER performance
of ODSA is summarized by Table 33. Similar effects of having information about
initial states on BER performance of ODSA are realized when comparing Table 33

and Table 29.
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Table 33 BER performance of the symmetric tent map under interference, model III

6>(vk)=0.01 6’ (vk)=0.05 6’ (vk)=0.1

a =14 a1:1.4 a1:1.4 a =14 a =14 a =14
612:1.8 a2:1.6 a2:1.8 612:1.6 612:1.8 612:1.6

BER BER BER BER BER BER

no interference 0 0.009 0.032 0.079 0.070 0.209

o> (I(k)=0.001 | 0.128 | 0254 | 0468 | 0432 | 0496 | 0.479

o’ (I(k))=0.01 0.144 0.284 0.435 0.465 0.503 0.486

o’ (I(k))=0.1 0.346 0.373 0.385 0.445 0.468 0.493

Table 26 can be summarized by the following figures (Figure 67 and Figure
68).
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Figure 68 BER performance of ODSA knowing the initial states at model I1I

5.1.4 Complexity Analysis of ODSA on One Dimensional Chaotic

Systems

Brief information about one-dimensional chaotic systems is given in 4.2. In
one-dimensional chaotic systems with or without interference, motion models use
x(k) and a as parameters. Only parameter which is quantizated is x(k) at time k=0, 1,
2 ..., L. Other parameters defined in ODSA such as w(k) and u(k) are not used in

one-dimensional chaotic systems. Therefore, complexity of ODSA is decreased.

In addition, observation models use /(k) only in the presence of interference.
In clear environment, there is not any quantizated parameter and complexity of

ODSA is decreased one more time.
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The runtime of the program written for ODSA is determined by the number

of initial states. Let the maximum time consumption at each state be ¢, at time k in

presence of interference. Then, since the time consumption at each state will be

approximately same, the time consumption will be #;n,L. The total program

runtime will be equal to 2 7;n, L because of two ODSA’s.

Moreover, in clear environment, time consumption at each state is smaller

than ¢, , then the total program runtime is less than 2 t;n L .

To have a sense about the program runtime, following simulations are run.

The parameters are kept similar with in the case 2.11.2.

Motion and observation models are

Motion model : Xk+1)=a—1—dy(k)

Observation model z(k) = x (k) + I (k) + v (k).
Parameters used in these simulations are as follows;
e [Initial states are uniform in the range of 0 and 1,
e variance of I(k)=0.01, expected value of I(k)=0, quantization level of I(k)=3,

e quantization level of initial states, Q(x(0)) =100.

As shown in Figure 8 and Figure 69, runtime of simulations in one dimensional
chaotic systems is less than general applications of ODSA which is due to the

number of quantized parameters.
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Figure 69 Program runtime for one bit execution on the symmetric tent map

5.2. Application of ODSA on the NCA Map

Another application of ODSA on chaotic system is the NCA map that is
described in 4.3.

In this section, the nonlinear chaotic algorithm map is used as the motion
model. First, models and assumptions to applicate ODSA on NCA are given. Then

the performance of ODSA for different observation noise variances is studied.

5.2.1 Models and Assumptions

To analyze the application of ODSA to the NCA map, it is assumed that

signals are modulated using parameters in the range of,
xp€ (0,1),
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ae (0,14],
B e [543].

Motion model is

B
zm=(1—ﬂ-4)-crg(+ij-(l+%] 1gloz)-(- 2., (5.12)

and observation model is ;

y (k) =x (k) + v (k) (5.13)
in clear environment. In presence of interference observation model is ;

yk) =g (k, x (k), I (k), v (k)) (5.14)

g (.) function is described in 5.1.2.2.1 and 5.1.2.2.2. In the motion model, there are
two constant parameter o and B .These parameters refer as the input parameter u(k)

in Eq. (2.1) .

To analyze the performance of ODSA on the nonlinear chaotic
communication system, the transmitter and the receiver sides are simulated. In the
transmitter side, randomly generated binary signals with equal probability are used.
Whether being O or 1, these binary signals are modulated using the Eq. (5.12). In Eq.

(5.12) there are two parameters & and £ and binary signals can be modulated one
of these parameters. For example, assuming [ is constant, binary signals are
modulated with the parameters @, or &,. On the other hand, binary signals can be
modulated with the parameters £, or B, where & is constant. Moreover, to increase
the security of the communication different & and S pairs can be used where 0 is

represented by [ @;, B, ]and 1 is represented by [a,, S,].

After modulating binary signals, modulated signals are transmitted over the
noisy communication channel. This channel adds Gaussian noise, v(k), and

interference noise to the modulated signals.

In the receiver side, these noisy signals are used to estimate transmitted

states. As explained in 5.1, on the receiver side there are two ODSA’s. Each ODSA
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uses different parameters, for example, if one of two ODSA’s uses «,, other one
uses @, where [ is constant. Using these parameters, they calculate differences
between the estimated states and observation sequence. Each ODSA sends total
differences to comparator that decides whether transmitted signal parameter is &, or

a, . that refers O or 1.

As explained in 4.3, the receiver side should know the parameters ¢,
a&,.and f. In addition, initial states of the chaotically modulated sequence are
important. In the simulations, the receiver sides have the information about the

initial state value. This information is that the initial state is one of the element of

sequences which is formulated as;

2k -1 . s o
X = o k=123..,n. where n is equal to initial state quantization
‘n

level, 10. In the simulations, chaotically modulated signal sequences are generated

as 0.25 by taking k=3.

5.2.2  Performance of ODSA on the NCA Map in Clear Environment

In this section, to analyze performance of ODSA on the nonlinear chaotic
system, simulation results are given. For each simulation, 1000 binary signals with
equal probability, O and 1, are generated randomly. For each bit, initial state is taken
constant as given 5.2.1 because of the sensitivity to initial states . In addition,
maximum number of the states is not limited and in the observation model,

interference parameter is not added to simulate clear environment.

In order to determine effects of the parameters on BER performance

simulations are run both @ and £.

5.2.2.1 Simulations for constant parameter ¢

These simulations are run for different values of the parameter £ as variance
values of observation noise changing. The parameter « is taken constant. The
parameters values used in the simulations are;

variance of interference noise =0,
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expected value of interference noise

expected value of observation noise

quantization # of initial states

number of samples, L

gate size

a

1nitial state

=1/5000,
=0.9,

=0.25.

BER performance of the system with parameter £ is given Table 34. In the

first column of Table 34, variance values of observation noise are given. Figure 70

and Figure 71 show chaotically modulated signal sequences for first 10 bits of

randomly generated 1000 bits. In these figures, observation signal sequences and

estimated state values are figured out on the same time.

Table 34 BER performance of the system with parameter [

Bi=5 B =15 B,=10 B =10
Br=5.1 B.=25 B>=30 Br=11.5
BER BER BER BER
o’ (v(k))=0.001 0 0 0 0
o’ (v(k))=0.01 0 0 0 0
o’ (v(k))=0.05 0 0.008 0 0
o (v(k))=0.1 0 0.035 0.008 0.007
o2 (v(k))=0.5 0.141 0.264 0.222 0.268
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Figure 70 The NCA Map with parameter §,=15, §,=25
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Figure 71 The NCA Map with parameter §,=10, ,=30

5.2.2.2 Simulations for constant parameter [

These simulations are run for different values of the parameter & as variance

values of observation noise changing. the parameter S is taken constant. The

parameters values used in the simulations are;
variance of interference noise =0,
expected value of interference noise =0,
expected value of observation noise =0,
# of initial states =10,

number of samples, L =30,
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gate size =1/5000,
Jij =10,
initial state =0.55.

In the first column of Table 35, variance values of observation noise are
given. Figure 72 and Figure 73 show chaotically modulated signal sequences for
first 10 bits of randomly generated 1000 bits. In these figures, observation signal

sequences and estimated state values are figured out on the same time.

Table 35 BER performance of the system with parameter &

01:0.4, 02:12 01:0.8, 02:12
BER BER
o’ (v(k))=0.001 0 0
o’ (v(k))=0.01 0 0
o’ (v(k))=0.05 0.001 0.01
o’ (v(k))=0.1 0.030 0.053
o? (v(k))=0.5 0.245 0.290
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Figure 72 The NCA Map with parameter @;,=0.4, a,=1.2
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Figure 73 The NCA Map with parameter ¢;,=0.8, a,=1.2

5.2.3 Performance of ODSA on the NCA Map in Presence of

Interference

In this section, to analyze performance of ODSA on the nonlinear chaotic
system, simulation results are given. In the simulations three observation models are
used. For each simulation, 1000 binary signals with equal probability are generated
randomly. For each bit, initial state is taken constant because of the sensitivity to

initial states.

In the first observation model, interference parameter is added to the

summation of state vector and observation noise vector.
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In the second observation model, observation vector is multiplied by

interference parameter whereas the state vector is not affected by interference.
In last observation model, both observation noise vector and state vector are
multiplied by interference.
5.2.3.1 Observation model I
In these simulations, motion model is described in (5.12). Observation model
is

zk)= x&) +1& +v(k) (5.15)

In order to determine effects of the parameters on BER performance

simulations are run both the parameters a and f.

5.2.3.1.1 Simulations for constant parameter
In this section, effects of the interference noise on the NCA Map are
analyzed. On the NCA map the parameter & is taken as constant whereas £ is used

to refer 0 and 1. Simulations are run for different variances of interference noise.

System parameters used in the simulations are;

expected value of observation noise =0,
quantization # of initial states =10,
number of samples, L =30,
gate size =1/5000,
a =09,
initial state =0.25.

Following simulations are run for different values of the parameters [ £3,, 5, 1.

Variance values of the interference noise are 0.001, 0.01, 0.1 and 1. Expected value

of the interference noise is 0 and its quantization level is 3.
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BER performance of the system with parameter £ is given Table 36. In the

first column of Table 36, variance values of interference are given. In the first row,

variance values of observation noise are given.

Table 36 BER performance of the system with different values of o> (I(k))

o’ (vk)=0.001 o’ (vk)=0.01 o (vk)=0.1

,31=15 ,Bl=10 ,31=15 ,Bl=10 /Bl=15 /Bl=10
,32 =25 ,32 =30 ,32 =25 ,32 =3O 182 =25 132 =30

BER BER BER BER BER BER

no interference 0 0 0 0 0.035 0.008
o ? (I(k))=0.001 0 0 0 0 0.043 0.014
o* (1(k))=0.01 0 0 0 0 0.066 0.027

o (I(k)=0.1 | 0.038 | 0.019 | 0.064 | 0.039 | 0.153 | 0.093

o’ (I(k))=1 0.412 0.396 0.401 0.406 0.412 0.418

Table 36 can be summarized by following figures (Figure 74 and Figure 75).
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Figure 74 NCA BER performance for interference variance values, S, =15, £,

=25
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Figure 75 NCA BER performance for interference variance values,

B,=10, ,=30

5.2.3.1.2 Simulations for constant parameter [

In this section, effects of the interference noise on the NCA Map are
analyzed. On the NCA map the parameter £ is taken as constant whereas & is used

to refer O and 1. Simulations are run for different variances of interference noise.

System parameters used in the simulations are;

expected value of observation noise =0,
quantization # of initial states =10,
number of samples, L =30,
gate size =1/5000,
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B =10,

initial state =0.55 .

Following simulations are run for different values of the parameters [¢, @, ].
Variance values of the interference noise are 0.001, 0.01, 0.1 and 1. Expected value

of the interference noise is 0 and its quantization level is 3.

BER performance of the system with parameter & is given Table 37. In the
first column of Table 37, variance values of interference are given. In the first row,

variance values of observation noise are given.

Table 37 BER performance of the system with different values of o> (I(k))

o’ (vk)=0.001 o’ (vk)=0.01 o’ (vk)=0.1
a,=04, | ,=0.8, | ,=04, | ,=0.8, | o,=0.4, | ,=0.8,
a,=12 | a,=1.2 | a,=12 | a,=1.2 | a,=1.2 | a,=1.2

BER BER BER BER BER BER
no interference 0 0 0 0 0.030 0.053
o’ (I(k))=0.001 0 0 0 0 0.020 0.068
o’ (I(k))=0.01 0 0 0 0 0.048 0.067
o’ (I(k))=0.1 0.038 0.060 0.046 0.100 0.129 0.149
o’ ((k))=1 0.405 0.432 0.386 0.427 0.376 0.448
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Table 37 can be summarized by following figures ( Figure 76 and Figure 77).

alpha1=0.4, alpha2=1.2

0,44 | —8—clear —e—var(K}=0.001 ——var(K)=0.01 —+—var(K=0.1 |
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BER

0.06 |
0.04 &

0.02 -

0B
0.001 0011 0.021 0031 0041 0051 0061 0071 0.081 0.091

var(vk)

Figure 76 NCA BER performance for interference variance values, &;=0.4,,=1.2
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alpha1=0.8, alpha2=1.2
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Figure 77 NCA BER performance for interference variance values, &;=0.8, &,=1.2

5.2.3.2 Observation model I1

In these simulations, motion model is described in (5.12). Observation model
is

zK) = x (K) + (1+2 (k) ) v (k) (5.16)

In order to determine effects of the parameters on BER performance

simulations are run both the parameters & and .
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5.2.3.2.1 Simulations for constant parameter «

In this section, effects of the interference noise on the NCA Map are
analyzed. On the NCA map the parameter ¢ is taken as constant whereas £ is used
to refer O and 1. Simulations are run for different variances of interference noise.

System parameters used in the simulations are;

expected value of observation noise =0,
quantization # of initial states =10,
number of samples, L =30,
gate size =1/5000,
a =09,
initial state =0.25.

Following simulations are run for different values of the parameters [ 5,, 53, 1.

Variance values of the interference noise are 0.001, 0.01, 0.1 and 1. Expected value

of the interference noise is 0 and its quantization level is 3.

BER performance of the system with parameter £ is given Table 38. In the

first column of Table 38, variance values of interference are given. In the first row,

variance values of observation noise are given.
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Table 38 BER performance of the system with different values of o> (I(k))

o’ (vk)=0.001 o’ (vk)=0.01 o’ (vk)=0.1

,51=15 ,51=10 ,51=15 ﬁ1=10 ﬁ1=15 ﬂ1=10
ﬁz =25 ﬁz =30 ﬁz =25 ﬁz =30 IBZ =25 IBZ =30

BER BER BER BER BER BER

no interference 0 0 0 0 0.035 0.008
o’ (I(k))=0.001| 0.001 0 0.002 0 0.07 0.031
o’ (I(k))=0.01 0 0 0.003 0 0.064 0.041
o’ (I(k))=0.1 0 0 0.001 0.001 0.097 0.067
o’ (I(k))=1 0.003 0 0.021 0.004 0.232 0.18

Table 38 can be summarized by following figures ( Figure 78 and Figure 79).
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Figure 78 NCA BER performance for interference variance values, S, =15, £,

=25
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Figure 79 NCA BER performance for interference variance values,

B,=10, ,=30

5.2.3.2.2 Simulations for constant parameter [

In this section, effects of the interference noise on the NCA Map are
analyzed. On the NCA map the parameter £ is taken as constant whereas & is used

to refer O and 1. Simulations are run for different variances of interference noise.

System parameters used in the simulations are;

expected value of observation noise =0,
quantization # of initial states =10,
number of samples, L =30,
gate size =1/5000,
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B =10,
initial state =0.55 .

Following simulations are run for different values of the parameters [, ,; ].
Variance values of the interference noise are 0.001, 0.01, 0.1 and 1. Expected value

of the interference noise is 0 and its quantization level is 3.

BER performance of the system with parameter ¢ is given Table 39. In the
first column of Table 39, variance values of interference are given. In the first row,

variance values of observation noise are given.

Table 39 BER performance of the system with different values of o> (I(k))

o’ (vk)=0.001 o’ (vk)=0.01 o’ (vk)=0.1

051 :0.4, 051 :0.8, 051 :0.4, 051 :0.8, 051 :0.4, 051 :0.8,
0!2=1.2 0!2=1.2 0!2=1.2 0!2=1.2 052=1.2 052=1.2

BER BER BER BER BER BER

no interference 0 0 0 0 0.030 0.053
o’ (I(k))=0.001 0 0 0.004 0.006 0.06 0.082
o’ (I(k))=0.01 0 0 0 0.002 0.066 0.105
o’ (I(k))=0.1 0 0.001 0.002 0.007 0.075 0.139
o’ ((k))=1 0 0.007 0.022 0.031 0.206 0.258

Table 39 can be summarized by following figures (Figure 80 and Figure 81).
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alpha1=0.4, alpha2=1.2
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Figure 80 NCA BER performance for interference variance values, «;=0.4,

0!2=1.2
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alpha1=0.8, alpha2=1.2
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Figure 81 NCA BER performance for interference variance values, «;=0.8, a,=1.2

5.2.3.3 Observation model II1

In these simulations, motion model is described in (5.12). Observation model
is

2(K) = x (k) I(k) + (1+12 (k) ) v (k) (5.17)

In order to determine effects of the parameters on BER performance

simulations are run both the parameters & and .
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5.2.3.3.1 Simulations for constant parameter «

In this section, effects of the interference noise on the NCA Map are
analyzed. On the NCA map the parameter ¢ is taken as constant whereas £ is used
to refer O and 1. Simulations are run for different variances of interference noise.

System parameters used in the simulations are;

expected value of observation noise =0,
quantization # of initial states =10,
number of samples, L =30,
gate size =1/5000,
a =09,
initial state =0.25.

Following simulations are run for different values of the parameters [ 5,, 53, 1.

Variance values of the interference noise are 0.001, 0.01, 0.1 and 1. Expected value

of the interference noise is 0.3 and its quantization level is 3.

BER performance of the system with parameter £ is given Table 40. In the

first column of Table 40, variance values of interference are given. In the first row,

variance values of observation noise are given.
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Table 40 BER performance of the system with different values of o> (I(k))

o’ (vk)=0.001 o’ (vk)=0.01 o’ (vk)=0.1

,51=15 ,51=10 ,51=15 ﬁ1=10 ﬁ1=15 ﬂ1=10
ﬁz =25 ﬁz =30 ﬁz =25 ﬁz =30 IBZ =25 IBZ =30

BER BER BER BER BER BER

no interference 0 0 0 0 0.035 0.008

o’ (I(k))=0.001| 0.004 0 0.139 0.066 0.416 0.402

o2 (I(k)=0.01 | 0.039 | 0012 | 0.145 | 0.103 | 0412 | 0.407

o’ (I(k))=0.1 0.246 0.239 0.301 0.297 0.432 0.408

o2 (I(k))=1 0313 | 0371 | 0376 | 0371 | 0453 | 0.458

Table 40 can be summarized by following figures (Figure 82 and Figure 83).
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Figure 82 NCA BER performance for interference variance values, 3, =15, £,

=25
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beta1=10, beta2=30
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Figure 83 NCA BER performance for interference variance values, 5, =10,

5,=30

5.2.3.3.2 Simulations for constant parameter [

In this section, effects of the interference noise on the NCA Map are
analyzed. On the NCA map the parameter [ is taken as constant whereas o is used
to refer 0 and 1. Simulations are run for different variances of interference noise.

System parameters used in the simulations are;

expected value of observation noise =0,
quantization # of initial states =10,
number of samples, L =30,
gate size =1/5000,
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B =10,

initial state =0.55 .

Following simulations are run for different values of the parameters [, , &, ].
Variance values of the interference noise are 0.001, 0.01, 0.1 and 1. Expected value

of the interference noise is 0.3 and its quantization level is 3.

BER performance of the system with parameter & is given Table 41. In the
first column of Table 41, variance values of interference are given. In the first row,

variance values of observation noise are given.

Table 41 BER performance of the system with different values of o> (I(k))

o’ (vk)=0.001 o’ (vk)=0.01 o’ (vk)=0.1
a,=04, | ,=0.8, | ,=04, | ,=0.8, | o,=0.4, | ,=0.8,
a,=12 | a,=1.2 | a,=12 | a,=1.2 | a,=1.2 | a,=1.2

BER BER BER BER BER BER
no interference 0 0 0 0 0.030 0.053
o’ (I(k))=0.001| 0.002 0.011 0.111 0.121 0.434 0.422
o’ (I(k))=0.01 0.026 0.032 0.135 0.184 0.415 0.428
o’ (I(k))=0.1 0.203 0.203 0.297 0.287 0.431 0.468
o’ ((k))=1 0.314 0.299 0.360 0.359 0.481 0.482
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Table 41 can be summarized by following figures.

alpha1=0.4, alpha2=1.2
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Figure 84 NCA BER performance for interference variance values, «;=0.4,

CZ2=1.2
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alpha1=0.8, alpha2=1.2

—B—clear —e—var(k)=0.001 ——var(k)=0.01 —#—var(k)=0.1 —A—var(k)=1

Figure 85 NCA BER performance for interference variance values, o, =0.8,

a2:1.2
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CHAPTER 6

APPLICATION OF THE EXTENDED KALMAN FILTER
TO CHAOTIC SYTEMS

The Kalman filter is a mathematical power tool that is playing an
increasingly important role in most of engineering areas. The Kalman filter is the
best possible (optimal) estimator for a large class of problems and a very effective

and useful estimator for an even larger class.

A Kalman filter that linearizes about the current mean and covariance is

referred to as an extended Kalman filter or EKF [16].
6.1. The Process to be Estimated [16]

This section describes the filter where the measurements occur and the state

is estimated at discrete points in time.

The Extended Kalman filter addresses the general problem of trying to
estimate the state x € R" of a discrete-time controlled process governed by the non-

linear stochastic difference equation.

Xiew1 = f (X, Wes1, Wi ) 6.1
with a measurement z(k) € R™ that is
% =h(xg, v). (6.2)

The random variables w(k) and v(k) represent the process and measurement
noise (respectively). They are assumed to be independent (of each other), white, and

with normal probability distributions
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p(w) ~ N0, Q) (6.3)
p(v) ~ N(O, R). (6.4)
In practice, the process noise covariance Q and measurement noise

covariance R matrices might change with each time step or measurement, however

here we assume they are constant.

The non-linear function f in the difference equation (6.1) relates the state at
the current time step k to the next time step k+/. It includes as parameters any
driving function u;; and the zero-mean process noise wy. The non-linear function £

in the measurement equation (4.2) relates the state x; to the measurement z; .

Approximated the state and measurement vectors are

Xpent = f()%k s Ukt »0) (6.5)
and
Z. = h(%.,0). (6.6)

where x, is some a posteriori estimate of the state (from a previous time steps k-1).
It is important to note that a fundamental flaw of the EKF is that the distributions of
various random variables are no longer normal after undergoing their respective

nonlinear transformations.

To estimate a process with nonlinear difference and measurement
relationships, new governing equations that linearize an estimate about Eq.(6.5) and

(6.6) are written,
X =X + A(xk—l — X )+ Wwi, (6.7)
Tk zzk +H(xk—55k)+VVk. (68)

where

e x;and z; are the actual state and measurement vectors,
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X and Z, are the approximate state and measurement vectors form equation

(6.5) and (6.6),
e X, is an a posteriori estimate of the state at step k,

e The random variables w; and v; represent the process and measurement

noise.

® A is the Jacobian matrix of partial derivatives of f with respect to x, that is

of:
Ay = Yy (Re1ou,,0) (6.9)
0x]

e W is the Jacobian matrix of partial derivatives of f with respect to w,

i) [«
W[i,j] = ﬂ('xk—lsuk 50) ) (610)
oy

e His the Jacobian matrix of partial derivatives of & with respect to x,

Hjj=—>(%.,0) . 6.11)

Vi =5 -(%.0) . (6.12)

Note that for simplicity in the notation, the time step subscript k is not used
with the Jacobians A, W, H, and V, even though they are in fact different at each time

step.
The prediction error is ,

€y =X — Xy s (6.13)

and the measurement residual is,

€y =%~ % - (6.14)
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Using Eq. (6.13) and (6.14), the governing equations for an error process can

be written as
€y = A(Xpo — X)) + &, (6.15)
e, =~Hey +1, , (6.16)

where ¢, and 77, represent new independent random variables having zero means

and covariance matrices WQWT and VRV’ | with the process noise covariance

matrice Q and measurement noise covariance matrice R .

The random variables of Eq. (6.15) and (6.16) have approximately the
following probability distributions

p@, )~ N(0.E[, 2! ), 6.17)
ple,)~ NO.wOWT), (6.18)
pn, )~ N(O.VR.Q"). (6.19)

The a priori and posteriori estimate error covariances can be defined as

P = E{(xk —Xr )(xk - Xi )T}

P =Efv -2 Y -5 ) | (6.20)
where X; and X, refer for priori and posteriori estimates of x;.

Given these approximations and letting the predicted value of ¢, be zero, the

Kalman filter equation used to estimate ¢, is
ék =K]<gzk . (6.21)

By substituting equation (6.21) back into equation (6.19) and making use of equation

(6.14) it is seen Kalman filter as:
X =X +Ke,
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:.;C'k +Kk(Zk _Zk) .

The complete set of EKF equations are follows:

EKF time update equations:

)%l: = f(),ek—l’uk ’0)7
Po = A P Al +W QW]

EKF measurement update equations.:

K, =P H'(HP-H! +V,RV])",
)’ek = )’e]: +Kk (Zk _h()’ek_vo)) s

Py :(I_Kka)Pk_ .

Figure 86 shows the complete operation of the EKF.
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Measurement Update (*“Correct™)

Time Update (“Predict™)
B e (1) Compute the Kalman gain

- _ p oyl “yr T

(1) Project the state ahead

i,o= (&, Lu,.0)
k f k-1"% (2) Update estimate with measurement 7
[_2) Project the error {;T\'llr‘lll[]{.‘{: ahead . Ek = %R + Kk{:'k _ h{ _*f;t’ 0) )

(3) Update the error covanance

PR, = ; 5]
Initial estimates for 1 _ qand Py _

Figure 86 A complete picture of the operation of the EKF

6.2. Application of EKF on One-Dimensional Chaotic Systems

A brief introduction about three types of one-dimensional chaotic systems
mostly used in secure communication is given in section 4.2. In this section, the
application of the EKF on one-dimensional chaotic tent maps is given. To analyze
BER performance of the EKF, the symmetric tent map is chosen as one-dimensional

tent map.

Remembering the symmetric tent map, motion and observation models in

clear environment can be given as;

Motion model : Xk+1)=a—1—-ay(k)

’

Observation model : z(K) =x (k) + v (k) (6.28)

To use the EKF, Jacobians A, W, H, and V are defined below
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A, the Jacobian matrix of partial derivatives of f with respect to x

il ¢ .
Apj) = aj:i (Reorou0.0) = _a|xk—l| , (6.29)

J

Because there is not any process noise wy in the motion model W, the

Jacobian matrix of partial derivatives of f with respect to w is zero,
i

Wi =—f[] (£-1,1,,0)=0 , (6.30)
ow)

H, the Jacobian matrix of partial derivatives of & with respect to v, is constant

for time k=1,2, ..., L

—2 (%.,0)=1, (6.31)

V, the Jacobian matrix of partial derivatives of & with respect to v, is constant

for time k=1,2, ..., L

ah[,»]
Vi =

j=—"(%.0)=1. (6.32)
v

The EKF time update equations are
& = f(Re,u0), (6.33)
Pk_ = AkPk—lA]Z- . (634)

The measurement equations are

K, :Pk_(Pk_ +Rk)_1’ (6.35)
% = &5 + K (2 —hl(37.,0)) (6.36)
Po=(I-K.H,)P . (6.37)
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The block diagram of the communication system is similar to Figure 48.
However in the receiver side there are two EKF parts instead of ODSA’s. Like
Figure 48, binary messages are modulated by switching the modulator between
SYSI and SY2 when the signal is O and 1 respectively. X1 and X2 are two finite
length chaotic sequences generated by the same type of system with two different
parameters. The comparator is used to compare the estimation errors from the two

EKEFs to decide if the transmitted signal is O or 1 [10].

For each simulation, 1000 binary signals with equal probability, O and 1, are

generated randomly. For each bit, initial state is generated randomly in the range of

[0, 1]. Since initial estimation error covariance P, is normally not known, the filter

is initiated with P, equal to / 0'°. This has the effects of treating the initial errors as

very large and the filter will ignore the few initial estimates.

In order to determine effects of the observation noise on the performance of
the system, simulations are run for different variance values of observation noise.

The expected value of the observation noise is taken as 0.

System parameters are;
expected value of observation noise =0,

number of samples, L =50,

initial estimation error covariance P, =10".

Simulation results using EKF and ODSA are given in Table 42, Table 43,
Table 44, and Table 45.
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Table 42 BER performances of EKF where o} =0.01 in clear environment

al:l.l’ al:l,z, a1:1.3, a, :1.3, a :1.4, a :1.4, a1:1.4, a1:1.5,
a2=1‘8 a2=1‘8 a2=1.8 a2=1.7 a2=1.8 a2=1.7 a2=1.6 a2=1.6

BER BER BER BER BER BER BER BER

ODSA 0 0.003 | 0.002 | 0.002 | 0.005 | 0.016 | 0.069 | 0.310

EKF 0.003 0 0 0.001 0 0.011 | 0.070 | 0.299

Table 43 BER performances of EKF where o =0.05 in clear environment

al:l,l’ al:l,z, a1=1.3, a1=1.3, a1=1.4, a1=1.4, a1=1.4, a1=1.5,
a2=1'8 a2=1'8 612:1.8 a, =1.7 a2:1.8 612:1.7 a2:1.6 a2:1.6

BER BER BER BER BER BER BER BER

ODSA | 0.013 | 0.014 | 0.032 | 0.068 | 0.056 | 0.082 | 0.109 | 0.365

EKF 0.319 | 0.388 | 0.427 | 0.443 | 0.423 | 0.467 | 0.497 | 0.486

Table 44 BER performances of EKF where o =0.1 in clear environment

al:l,l’ al:l,z, a1=1.3, a1=1.3, a1=1.4, a1=1.4, a1=1.4, a1=1.5,
a2=1‘8 a2=1‘8 612:1.8 a2:1.7 a2:1.8 612:1.7 a2:1.6 a2:1.6

BER BER BER BER BER BER BER BER

ODSA | 0.102 | 0.141 0.120 | 0.194 | 0.073 | 0.207 | 0.223 | 0.429

EKF 0.474 | 0.501 0.483 | 0.497 0.493 | 0.491 0.480 | 0.489
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Table 45 BER performances of EKF where o =1 in clear environment

alzl.l, al=l,2, a1:1.3, a :1.3, a :1.4, a :1.4, a1:1.4, a1=1.5,
a2=1‘8 a2=1‘8 a2=1.8 a2=1.7 a2=1.8 a2=1.7 a2=1.6 a2=1.6

BER BER BER BER BER BER BER BER

ODSA | 0417 | 0463 | 0476 | 0464 | 0475 | 0.506 | 0.474 | 0.495

EKF 0.498 | 0.501 | 0.500 | 0.491 | 0.508 | 0.498 | 0.510 | 0.507

Following figures, which are used to show BER performance of EKF vs

ODSA, are given to sum up Table 42, Table 43, Table 44, and Table 45.
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al=1.4, a2=1.8

Figure 87 BER performance of EKF and ODSA for ¢1=1.4, 92=1.8
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al=1.4, a2=1.6

0.41 0.51 0.61 0.71 0.81 0.91

Figure 88 BER performance of EKF and ODSA for 41=1.4, 92=1.6

In Table 42, it is seen that, BER performances of the EKF is better than
ODSA for case that observation noise variance is equal to 0.01. However, there is a
dramatic increase on BER performances of EKF when observation noise variance is
equal to or greater than 0.05. To have more information about EKF BER

performances depending on observation noise variance, Table 46 is given.

In Table 46, it is observed that a small increase on observation noise
variances causes a significant decrease on the performance of the EKF. To improve
the performance of the EKF for the observation noise variance is equal to 0.04,
number of samples, L is increased as 150. Nevertheless, an improvement on the

BER performance could not be obtained.
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Table 46 BER performances of EKF for different observation variances in clear

environment
a; =14, a,=1.8 a, =14, a,=1.6
BER BER
o, =0.01 0 0.070
o; =0.02 0.093 0.302
o, =0.03 0.196 0.369
(L= 50) 0.273 0.393
o, =0.04
(L=150) 0.305 0.491
o, =0.05 0.423 0.497

To sum up the tables above, BER performances of the EKF is better than
ODSA in case small observation noise variances. An increment on observation noise
variances influences BER performances of the EKF too much whereas ODSA

struggles with observation noise variances.

6.3. Application of EKF on the NCA Map

A brief introduction about the NCA map is described in 4.3. In this section,

the application of the EKF on the NCA map is given.

Remembering the NCA map, motion and observation models in clear

environment can be given as;
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Motion model

Ko = (l—ﬂ‘4)‘ctg(ﬁj‘(l+%f 1glag,) (1 2.)

Observation model z(K) =x (k) + v (k) (6.38)

m

where x, € (0,1), @ € (0,14], B € [543]orx, € (0,1), @ € (14,1.5], B
[9,38] orx,e (0,1), & € (1.5,1.57], B € [3,15].

To use the EKF, Jacobians A, W, H, and V are defined below

e A, the Jacobian matrix of partial derivatives of f with respect to x

af [i]

Apij) = _()Ack—l,uk,o): Cexr * d gxr (6.39)
ox{;)
where
o 1 /
=(U=p7)-clg| — || 1+ 6.40
CEkF ( IB )Cg(l+ﬂj( IBJ ( )
and

dpxr = 0!*(1+tg2(0!}?k-1 ))*(1_/%1(—1 )ﬁ _fg(a/?k—l)*ﬂ*(l_f[k—l )ﬁ71~ (6.41)

e Because there is not any process noise w; in the motion model W, the

Jacobian matrix of partial derivatives of f with respect to w is zero,

of:
Wi = i ()Ack—l’uk,o)zo ) (6.42)
o]

e H, the Jacobian matrix of partial derivatives of & with respect to v, is constant

for time k=1,2, ..., L

ohy) (-
Hijy=—0(%,,0)=1, (6.43)
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e V, the Jacobian matrix of partial derivatives of & with respect to v, is constant

for time k=1,2, ..., L

a]’l,- ~
Vi =5 7 (%,,0)=1 . (6.44)

The EKF time update and measurement equations are same as given 6.2.

For each simulation, 1000 binary signals with equal probability, O and 1, are

generated randomly. For each bit, initial state is generated randomly in the range of [

0, 1 ]. Since initial estimation error covariance P, is normally not known, the filter

is initiated with P, equal to / 0'°. This has the effects of treating the initial errors as

very large and the filter will ignore the few initial estimates.

In order to determine effects of the observation noise on the performance of
the system, simulations are run for different variance values of observation noise.

The expected value of the observation noise is taken as 0.

System parameters are;
expected value of observation noise =0,

number of samples, L =50,

.. . . . 10
initial estimation error covariance P, =10".

Simulation results using EKF and ODSA are given in Table 47 and Table
48
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Table 47 BER performance of the system with parameter 3

pi=15, p,=25 Bi=10, B,=30
BERof | BERof | BERof | BER of
ODSA EKF ODSA ODSA
o’ (v(k))=0.001 0 0.468 0 0.489
o’ (v(k))=0.01 0 0.504 0 0.511
o’ (v(k))=0.05 0.008 0.491 0 0.499
o’ (v(k))=0.1 0.035 0.488 0.008 0.514

Table 48 BER performance of the system with parameter &

a,=04, a,=1.2 a,=0.8, a,=1.2
BERof | BERof | BERof | BER of
ODSA EKF ODSA ODSA
o (v(k))=0.001 0 0.490 0 0.485
o’ (v(k))=0.01 0 0.513 0 0.480
o’ (v(k))=0.05 0.001 0.476 0.01 0.499
o’ (v(k))=0.1 0.030 0.502 0.053 0.511
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As observed from Table 47 and Table 48, in the NCA map BER performance
of EKF increases too much. It can be concluded that the EKF application is not an

efficient way on the NCA map.

6.4. Complexity Analysis of the EKF on One-Dimensional Chaotic

Systems

The runtime of the program written for the EKF algorithm is determined by
the value of number of samples, L. The complexity of the program is linear because
at each time step k, the operations, which are performed, does not change. Let the
maximum time consumption at each state be 7, at time k. Then, since the time
consumption at each state will be approximately same, the time consumption will be
maximum L for each bit. Because there is no state quantization on the EKF, the
time consumption of EKF algorithm is too smaller than the time consumption of
ODSA. Even the time consumptions of EKF on each state is equal to ODSA’s,

ODSA needs this time consumption for each quantized state.

In the following figure, runtime of ODSA and EKF is compared. In the

simulations, the motion and observation models are given as follows;

The motion and observation models are

Motion model : ;{(k+]):a—]—a|,1’(k)

Observation model z(k) = x (k) + v (k).

To get approximately same BER performance with ODSA and EKF, the parameters

are used;
for ODSA
e [Initial states are uniform in the range of 0 and 1,
e quantization level of initial states, Q(x(0)) =1000,
e g =14, a,=1.6,
e variance value of observation noise =0.01,

e mean value of observation noise =0,
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e number of bits = 1,

for EKF

¢ initial estimation error covariance P, =10"

a, =14 , Ay =1.6,
e variance value of observation noise =0.01,

e mean value of observation noise =0,

e number of bits = 1.
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Figure 89 Runtime comparison of ODSA and EKF
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CHAPTER 7

CONCLUSION

In this study, optimum decoding based smoothing algorithm [1] and chaotic
communication systems under interference [3] are analyzed. Important parameters of
this estimation algorithm are explained and some simulations are performed to

figure out the performance of ODSA.

ODSA is based on Viterbi decoding algorithm. By reducing the target motion
to a finite state model that uses the quantized state vector, a trellis diagram is
obtained; and then, the state vector is estimated by finding the most probable path in

the trellis diagram.

To be able to use ODSA on chaotically modulated signals, effect of the
parameters of ODSA is analyzed. Therefore, simulations are run and the results can

be summarized as below:

e The gate size affects the estimation performance significantly. As the

gate size becomes smaller,the state estimation performance increases,

e The quantization number of the initial state vector is effective for

only initial times,

¢ Increasing the disturbance noise variance degrades the performance

significantly,

e The quantization number of the disturbance noise vector affects the

estimation performance slightly,

e The initial state variance affects only the performance at initial times,
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¢ Increasing the observation noise variance degrades the estimation

performance,

¢ The maximum number of states can be limited without degrading the

estimation performance.

The gate size, the quantization numbers and the maximum state number are
important factors for determining the computation time of the algorithm. Choosing
these values properly, the computation time can be decreased while getting a good
estimation performance. There is a trade-off between the precision of the simulations

and the computational time.

In addition, ODSA can be easily implemented on linear and nonlinear

observation model functions that include interference parameters.

When performances of ODSA and EKF algorithms on chaotically modulated
systems are compared, EKF algorithm is faster than ODSA. Also, the estimation
performance of EKF algorithm is higher than the performance of ODSA when
observation noise variance has small values. However, EKF is usable only at clear
environment applications and when variance values of observation noise get higher

values, EKF algorithm gets useless.

Under interference, ODSA is easily implemented on applications and it gives
acceptable BER performance. ODSA is also susceptible to high variance values of
the observation noise compared to EKF. Computational complexity is not a problem
since today’s processors have enough computational power. Therefore, ODSA can

be implemented easily when efficiently coded.

As a conclusion, it is seen that ODSA should be the preferred algorithm for
applications which are under interference. Also, in clear environments, if there exists

comparatively high observation noise, ODSA is again preferable.
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APPENDIX

APPROXIMATION OF A CONTINUOUS RANDOM VARIABLE WITH A
DISCRETE RANDOM VARIABLE [1]

In order to find the optimum discrete random variable with n possible values
that approximates an absolutely continuous random variable x with distribution

function F(.), we must find a distribution function F, (.) which minimizes the

objective function J(.):

J(F, ()=min,  J(F,() (A1)
= ming(A) J(g())
Where
JF,()=| [F.(a)- F, (@)} da (A.2)

—o0

The aim is to find a step function gy(.) which minimizes the objective function J(.):

[IF.(~ RFda+ [[F,(~PFda+..
) " (A.3)
[F.(a)- P, Fda+ [[F.(a)~1}da

J(g(W)= [ F(a)da+

Yn
+ '[
Y-

y

1

0, X< Yo
go(x)=1F,, Vio SX< Yo 1=L2,..,n-1 (A.4)
1, X2V,
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If go(x) is a step function which minimizes (A.3), it must satisfy the following set of

equations:

Bo=2F (y);
P+ P, 0=2F(yy,) i=12,...n-2

1+ P, =2F.(y,); (A.5)

Poio=Yi0)= [Fl@da — i=12,..n-1
Yio

The discrete random variables which approximate the normal random
variable with zero mean and unity variance (with up to 8 possible values) are given
by Demirbas [1]. In order to increase the possible values of the discrete random
variables, a Matlab function is written which evaluates the values according to the
equations given in (A.4) and (A.5). The program runs in a recursive manner and
finds the discrete values (y values) and the corresponding probabilities (p values) of
the continuous Gaussian distributed random variable with zero mean and unity
variance. Finally, if the mean (u) and the variance (o) of the random variable are
different than 0 and 1 respectively, it maps the new discrete values according to the

mean and variance of the random variable by using the formula given in (A.6).
y=o0y,+u, Py=P, i=12..n (A.6)

I,

The y and p values of approximated x are given at Table 49.

Table 49 y and p values of discrete random variable with 8 possible values

-1.6990 | -1.0250 | -0.5700 | -0.1840 | 0.1840 | 0.5700 1.0250 1.6990

)4 0.0922 0.1240 0.1394 0.1460 0.1460 | 0.1394 0.1240 0.0922
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Possible values of the discrete _random variable approximating the Gaussian

random variable with zero mean and unity variance (y values):

N y value

1 0

2 -0.675 0.675

3 -1.0052 0 1.0052

4 -1.2177 -0.3546 0.3546 1.2177

5 -1.3767 -0.592 0 0.592 1.3767

6 -1.4992 -0.7678 -0.2419 0.2419 0.7678 1.4992

7 -1.6027 -0.9077 -0.4242 0 0.4242 0.9077 1.6027

8 -1.6897 -1.0226 -0.5694 -0.1839 0.1839 0.5694 1.0226 1.6897

9 -1.7644 -1.1198 -0.6896 -0.3315 0 0.3315 0.6896 1.1198 1.7644

10 -1.8178 -1.1985 -0.7888 -0.4527 -0.1479 0.1479 0.4527 0.7888 1.1985 1.8178

11 -1.8799 -1.2737 -0.8779 -0.5575 -0.2716 0O 0.2716 0.5575 0.8779 1.2737
1.8799

12 -1.9282 -1.3373 -0.9545 -0.6476 -0.377 -0.1239 0.1239 0.377 0.6476 0.9545

1.3373 1.9282

13 -1.9714 -1.3942 -1.0226 -0.727 -0.4688 -0.2301 0 0.2301 0.4688 0.727
1.0226 1.3942 1.9714

14 -2.0218 -1.4507 -1.0868 -0.7997 -0.5511 -0.3235 -0.1067 0.1067 0.3235 0.5511
0.7997 1.0868 1.4507 2.0218

15 -2.0449 -1.4918 -1.1387 -0.8611 -0.622 -0.4047 -0.1996 0 0.1996 0.4047
0.622 0.8611 1.1387 1.4918 2.0449

16 -2.0966 -1.5435 -1.1948 -0.9227 -0.6899 -0.4798 -0.2831 -0.0936 0.0936 0.2831
0.4798 0.6899 0.9227 1.1948 1.5435 2.0966

17 -2.1372 -1.5879 -1.2443 -0.9777 -0.7509 -0.5474 -0.3581 -0.1771 0 0.1771
0.3581 0.5474 0.7509 0.9777 1.2443 1.5879 2.1372

18 -2.1569 -1.6206 -1.2846 -1.0245 -0.804 -0.607 -0.4247 -0.2515 -0.0833 0.0833
0.2515 0.4247 0.607 0.804 1.0245 1.2846 1.6206 2.1569

19 -2.196 -1.6609 -1.3285 -1.0725 -0.8564 -0.6642 -0.4872 -0.3199 -0.1585 0
0.1585 0.3199 0.4872 0.6642 0.8564 1.0725 1.3285 1.6609 2.196

20 -2.2125 -1.6894 -1.3636 -1.113 -0.902 -0.7149 -0.5432 -0.3816 -0.2265 -0.0751
0.0751 0.2265 0.3816 0.5432 0.7149 0902 1.113 1.3636 1.6894 2.2125
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