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ABSTRACT 
 

 

CHAOTIC DEMODULATION UNDER INTERFERENCE 

 

 

 

ERDEM, Özden 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Kerim DEMİRBAŞ 

 
 

September 2006, 187 pages 
 
 

Chaotically modulated signals are used in various engineering areas such as 

communication systems, signal processing applications, automatic control systems. 

Because chaotically modulated signal sequences are broadband and noise-like 

signals, they are used to carry binary signals especially in secure communication 

systems. 

In this thesis, a target tracking problem under interference at chaotic 

communication systems is investigated. Simulating the chaotic communication 

system, noise-like signal sequences are generated to carry binary signals. These 

signal sequences are affected by Gaussian channel noise and interference while 

passing through the communication channel. At the receiver side, target tracking is 

performed using Optimum Decoding Based Smoothing Algorithm. The estimation 

performances of optimum decoding based smoothing algorithm at one dimensional 

chaotic systems and nonlinear chaotic algorithm map are presented and compared 

with the performance of the Extended Kalman Filter application.  

Keywords: Chaotic Communication Systems, Optimum Decoding Based Smoothing 

Algorithm, Trellis Diagram, Estimation. 
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ÖZ 
 

 

BOZUCU ETKİSİNDE DÜZENSİZ DEMODÜLASYON  

 

 

 

ERDEM, Özden 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Kerim DEMİRBAŞ 

 
 

Eylül 2006, 187 sayfa 
 
 

Düzensiz (karmaşık) kodlanmış işaretler; haberleşme sistemleri, işaret işleme 

uygulamaları ve otomatik kontrol sistemleri gibi çeşitli mühendislik alanlarında 

kullanılmaktadır. Özellikle güvenli haberleşme sistemlerinde genişbantlı ve gürültü 

benzeri olmaları nedeniyle düzensiz (karmaşık) kodlanmış işaret dizileri, ikili 

işaretleri taşımak için kullanılırlar. 

Bu tezde, bozucu etkisinde kalan düzensiz (karmaşık) haberleşme 

sistemlerinde hedef izleme incelendi. Düzensiz (karmaşık) haberleşme sistemleri 

benzetimlerinde ikili işaretleri taşımak için gürültü benzeri işaret dizileri oluşturuldu. 

Haberleşme kanalından geçen bu işaret dizilerine, Gauss kanal gürültüsü ve bozucu 

etkisi eklendi. Alıcı tarafında hedef belirleme işlemi, Optimum Kod Çözümüne 

Dayalı Düzeltme Algoritması kullanılarak gerçekleştirildi. Bir boyutlu düzensiz 

(karmaşık) sistemlerde ve doğrusal olmayan düzensiz (karmaşık) algoritma haritası 

üzerinde Optimum Kod Çözümüne Dayalı Düzeltme Algoritması’nın kestirim 

performansı incelendi ve Genişletilmiş Kalman Süzgeci performansı ile 

karşılaştırıldı.  

Anahtar Kelimeler: Düzensiz (Karmaşık) Haberleşme Sistemleri, Optimum Kod 

Çözümüne Dayalı Düzeltme Algoritması, Kafes Diyagramı, Kestirim
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CHAPTER 1 

  

 

INTRODUCTION 

 

 

 

The noise-like signals generated by deterministic chaotic systems have been 

successfully used in various engineering areas. These signals are typically 

broadband and similar to a stochastic process and therefore can be possibly used in 

secure communication applications, especially spread spectrum communication 

systems. [2] 

In a chaotic communication, binary digital signals are modulated using 

chaotic waveforms. These modulated signals are transmitted through the Gaussian 

noise channel. At the receiver side, there are two estimators having the knowledge of 

the structure and possible parameters of chaotic systems. Estimators are employed to 

estimate states of chaotic systems. According to estimation error of two estimators, 

the decision regarding the transmitted signal can be made. [10]  

There are three types of one-dimensional chaotic maps commonly used. 

Those are the skew tent map, the tent map and the symmetric tent map. These tent 

maps have a parameter a. For different values of the parameter a, binary signals can 

be presented over communication channels. Another example of the tent maps is the 

nonlinear chaotic algorithm (NCA) map. Unlike one-dimensional tent maps, NCA 

has two parameters to present binary signals. Moreover, the complexity and the 

sensitivity to initial states of NCA are much more complicated compared to one 

dimensional tent maps.  

There are various estimation methods proposed for target tracking problem. 

One of these estimation methods is optimum decoding based smoothing algorithm 

[1] (ODSA) that obtains a trellis diagram for the target motion and estimates the 
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target track both in clear environment and in presence of interference. Another 

advantage of ODSA is that it can be used for linear and nonlinear models. 

In this thesis, performance of ODSA on the chaotic systems are investigated. 

Algorithms are implemented in Matlab environment and some simulations are 

performed in order to evaluate the state estimation performance or bit error rate 

performance of this method on chaotic communication systems.  

In Chapter 2, ODSA using Viterbi decoding algorithm for estimation 

problems is explained. The meanings of the parameters used in ODSA are given. 

Moreover, the complexity of the algorithm is analyzed. 

In Chapter 3, simulation results for optimum decoding based smoothing 

algorithm are presented. The effects of the quantization levels and variances of 

ODSA parameters are discussed.  

In Chapter 4, brief information is given about chaos and chaotic systems. 

Three commonly used one-dimensional chaotic maps and nonlinear chaotic 

algorithm map are explained. Effects of initial conditions and chaotic parameters on 

chaotic systems are shown by figures. 

In Chapter 5, an application of ODSA on the symmetric tent map, which is 

one of the one-dimensional chaotic systems, is given. Estimation performance and 

complexity analysis of ODSA on the symmetric tent map are given in clear 

environment and under interference. Moreover, applications of ODSA on nonlinear 

chaotic algorithm (NCA) map are discussed considering BER performance. 

In Chapter 6, an application of the EKF on the symmetric tent map is given 

in order to have a sense about performance of ODSA at chaotic systems. Estimation 

performance and complexity analysis of EKF on the symmetric tent map are given 

and compared with ODSA’s.  

In Chapter 7, the conclusions are given considering simulation results.  

In Appendix A, possible values and corresponding probabilities of the 

discrete random variable approximating the Gaussian distributed continuous random 

variables up to 20 possible values are given. These values are used by ODSA while 

obtaining the trellis diagram for the target motion model. 
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CHAPTER 2 

  

 

A BRIEF INTRODUCTION TO 

OPTIMUM DECODING BASED SMOOTHING ALGORITHM 

 

 

 

In this chapter, we deal with a state estimation algorithm for discrete models 

with or without interference. This estimation algorithm is “Optimum Decoding 

Based Smoothing Algorithm (ODSA)” which is based on Viterbi decoding 

algorithm. 

2.1. Models and Assumptions [1] 

In Optimum Decoding Based Smoothing Algorithm, motion and observation 

models can be defined as below:  

 

 Motion model, ))(),(),(,()1( kwkukxkfkx =+  (2.1) 

 Observation model, ))(),(,()( kvkxkgkz =  , 

in clear environment. In presence of interference, the interference parameter is added 

to the observation model as below; 

 

 Motion model, ))(),(),(,()1( kwkukxkfkx =+  (2.2) 

 Observation model, ))k(v),k(I),k(x,k(g)k(z =  . 

Parameters used in Equations (2.1) and (2.2) are defined as follows; 

• x(0) is an nx1 initial state Gaussian distributed random vector (which 

determines the considered target location at time 0 ), 
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•  x(k) is an nx1 (target) state vector at time k, 

•  u(k) is a qx1 input at time k with statistics, 

•  w(k) is a px1 Gaussian distributed disturbance noise vector at time k 

with zero mean and known variance, 

•  v(k) is an lx1 Gaussian distributed observation noise vector at time k 

with zero mean and known variance, 

• I(k) is an mx1 interference vector with mean and known variance, 

•  z(k) is an rx1 observation vector at time k, 

• Time k is time t0 + kT0 where t0 and T0 are the initial time and the 

observation interval respectively. 

Furthermore, f(k, x(k), u(k), w(k)), g(k, x(k), v(k)) and g(k, x(k), I(k), v(k)) are linear 

or nonlinear vectors with appropriate dimensions. The random vectors x(0), w(j), 

w(k), v(l), v(m), I(n) and I(p) are assumed to be independent for all j, k, l, m, n, p. 

The goal is to estimate the state sequence {x(0), x(1),…, x(L)} by using the 

observation sequence {z(1), z(2),…, z(L)} where l is a chosen integer. 

 

2.2. Quantization of States and Transition Probabilities [1] 

Since the main idea for ODSA is to quantize the states of the models to get a 

finite set, in this section a type of quantization for states is described.  

Also another important factor, transition probabilities, that guides the target 

motion between these quantization states is defined and difficulties in calculating 

transition probabilities between quantization levels are mentioned.   

Let the state x(k) be a random vector whose range is in the space R
n (n 

dimensional Euclidian space). In the quantization for states, R
n is divided into 

nonoverlapping subspaces Ri
n and for each subspace Ri

n , there is a unique value xqi 

assigned where the subscript q refer the quantization. 
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Definition 2.1: A function xq(.)  Q{x(.)} is a quantizer for the state x(.) if 

the following hold: 

1 ) A function xq(.)  Q{x(.)} = xqi whenever x(.) є Ri
n; and 

2 ) xqi is unique for each Ri
n
. 

 

Definition 2.2: The function xq(.) is the quantized state vector at time (.), and 

its possible values are called quantization levels of the state x(.). 

 

Definition 2.3: Subspace Ri
n is called gate Ri

n. 

 

Definition 2.4: The value xqi is called the quantization level for the gate Ri
n. 

 

In order to simplify the explanation of quantization, it can be thought that 

whenever a random state vector x(.) falls within a given subspace, say Ri
n, the state 

x(.) is quantized to the unique value xqi . 

The target motion between these gates, Ri
n
, is based on the transition 

probabilities. 

  

Definition 2.5: The transition probability Π jm(k) is the probability that the 

state x(k+1) will lie in the gate Rm
n when the state x(k) is in the gate Rj

n; i.e., 

 Π jm(k)  Prob { x(k+1) ∈  Rm
n | x(k) ∈  Rj

n } (2.3) 

 

In Figure 1, gate Ri
n , quantized state value xqi and the transition probability 

Π jm(k) can be seen schematically. 
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Figure 1 Quantization of states and transition probabilities 

 

 

 

 

The transition probability Π jm(k) is a conditional probability and can be 

rewritten as  
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where p(x(k+1),x(k)) is the joint probability density function of x(k+1) and x(k); 

p(x(k)) is the probability density function of x(k); and p(x(k+1)|x(k)) is the 

conditional probability density function of x(k+1) given x(k).  

As mentioned 2.1, the initial state vector x(0) and w(k) are Gaussian 

distributed and the random vectors x(0), w(k), and w(l) are assumed to be statistically 

independent for all k, l. It is seen that x(k+1) and x(k) are linear transformations of 

the Gaussian random vectors x(0), w(1), …, and w(k). Thus, p(x(k)) and 

p(x(k+1)|x(k)) are normal density functions. Despite the fact that the motion model 

is linear, to evaluate the expression, { }n
j

n
m R)k(|R)1k(p ∈∈+ χχ , on (2.5) 

analytically is not easy because of the difficulties which  arise from the shapes of the 

gates Rj
n  and Rm

n and the statistics of the disturbance noise vectors w(.) and the 

initial state vector x(0). When the motion model is nonlinear, evaluation is more 

difficult. 

To overcome these difficulties, an approximate state transition model is 

given in the next section. This model, called as the finite-state model, is obtained by 

approximating the disturbance noise vector w(k) and the initial state vector x(0) by 

discrete random vectors (see Appendix A) and by quantizing the state x(k) as 

previously described for all k = 1, 2, … . 

Using finite-state model, the transition probabilities can be easily calculated. 

 

2.3. A Finite State Model for the Target Model [1] 

In the finite state model, there are generalized rectangles, which are called 

gates. In the center of these generalized rectangles, nR0 , zero vector 0 (origin) is 

located. 

Let the lengths of the sides of a generalized rectangle, say Ri
n, be 1ig , 2ig …, 

ing . These lengths are said to be the sizes of gate Ri
n. Moreover, the quantization 

levels for gates are assumed the center points of the gates, namely, 

 ( ).qχ   ( ){ } qiQ χχ =.    if  n
iR(.)∈χ ,       (2.6) 

 where xqi is the center of the generalized rectangle (gate) Ri
n. 
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For each k the disturbance noise vector w(k) is approximated by a discrete 

random vector wd(k). This random vector can have one of the possible values wd1(k), 

wd2(k), …, )(kw kdm  with corresponding probabilities ( )kpd1 , ( )kpd 2 , …, ( )kp kdm . 

Similarly, the initial state vector x(0) is approximated by a discrete random vector 

xd(0) whose possible values are xd1(0), xd2(0), …, )0(0dnχ .  The quantization 

numbers, mk and n0, are so important to approximate w(k) and x(k) satisfactorily to 

the discrete random vectors wd(k) and xd(0).  Furthermore, by replacing w(k) and 

x(0) with discrete random vectors wd(k) and xd(0) respectively, and then quantizing 

the states by  (2.6), the target-motion model is reduced to a finite state model 

 

 Xq(k+1)=Q(f(k, xq(k), u(k), wd(k)), (2.7) 

 

where Q{.} is the quantizer. xq(k) is the quantized state vector at time k and its 

possible values are xq1(k), xq2(k),…, )(kkqnχ  where nk is the number of possible 

quantization levels of the state vector x(k). The quantization levels of x(0) are 

assumed to equal the possible values of the discrete random vector x(0).  

The transition probability Πjl(k), which is defined by the conditional 

probability that the quantized state vector xq(k+1) will be equal to the quantization 

level xql for gate Rl
n, given that the quantized state vector xq(k) is equal to the 

quantization level xqj for gate Rj
n is determined as below, 

 

 Πjl(k)  Prob { xq(k+1)=xql | xq(k)=xqj } . (2.8) 

 

Assume that the quantized state vector xq(k) is equal to quantization level xqj 

for gate Rj
n , (i.e., the target is in the Rj

n at time k.) The transitions from this 

quantization level to others are determined by the discrete random vector wd(k) and 

the function Q(f(k, xq(k)= xqj, u(k), wd(k)). As mentioned before, wd(k) can take any 

value in the set {wd1(k),wd2(k),…, )(kw kdm } with the corresponding probabilities 

( )kpd1 , ( )kpd 2 , …, ( )kp kdm . Therefore the quantized state vector xq(k+1) can take 

at most mk quantization levels. If the function f(k, xq(k)= xqj, u(k), wd(k)) maps xqj 
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into another gate, say Ri
n for only one possible value, say wdi(k), of the discrete 

random vector wd(k), then the transition probability Πji(k) from gate Rj
n to gate Ri

n is 

the probability that the possible value wdi(k) of wd(k) occurs. Besides, if the function 

f(k, xq(k)= xqj, u(k), wd(k)) maps xqj into another gate, for more than one possible 

value, say  wd1(k) and wd2(k) of wd(k), the transition probability, Πjl(k), is the 

probability that the discrete random vector wd(k) is equal to either of the possible 

values wd1(k) or  wd2(k), i.e., Πjl(k) )()()( 21 kpkpkp dd
n

dn +==∑ . 

Using the finite state model, the target motion can be represented by a trellis 

diagram. 

 

2.4. Representing Target State Model By A Trellis Diagram [1] 

Assuming the quantized state vector xq(k) has nk possible values which are 

xq1(k), xq2(k),…, )(kkqnχ , the target motion can be represent by a graph. On this 

graph there are some conventions, which are the followings; 

1. Each possible value of xq(k) is represented on the kth column by a 

point (sometimes called node) with the corresponding quantization 

level so that the kth column contains the possible quantization levels 

of x(k) (in other words, the possible gates in which the target can lie 

at time (k)) where k=0, 1, 2, … . 

2. The transition from one quantization level to another is represented 

by a line having a direction indicating the direction of the state 

transition. 

Hence, the state transition from time zero to time L can be represented by a 

directed graph shown in Figure 2, which is called the trellis diagram for the state 

transition from time zero to time L.  

Definition 2.6: A path in the trellis diagram any sequence of directed lines 

where the final vertex of one is the initial vertex of the next. 
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Figure 2 The trellis diagram for the state transition 

 

 

 

2.5. Approximate Observation Models [1] 

The target motion model has been reduced to a finite-state model that uses 

the quantized state vector xq(.) as described in the previous sections. However, the 

observation model in equation (2.1) and (2.2) uses the state vector x(.) . Thus, in the 

observation model in equation (2.1) and (2.2), by replacing the state vector x(k) with 
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the quantized state vector xq(.) , the following approximate observation models are 

obtained: 

 
.

,

))(),(),(,(

))(),(,(
)(

terferenceinofpresencethein

tsenvironmenclearin

kvkIkxkg

kvkxkg
kz

q

q









=  (2.9) 

From now on, the equation in (2.9) is used to refer the observation models. 

Considering the trellis diagram in Figure 2, the state estimation process will 

be performed from time zero up to and including time L. Therefore, the trellis 

diagram is drawn from time zero to time L. Time zero refers to the initial state. The 

following symbols that are used for further analyses can be defined as: 

ni : Number of quantization levels for the gates in which the target may 

lie at time i; in other words, the number of possible values of the 

quantized state vector xq(i) where i = 0, 1, 2, …, L. 

)(
~

iχ : Set of all the quantization levels for the gates in which the target may 

at time i, namely,  )(
~

iχ   {xq1(i), xq2(i),…, )(iqniχ  where i = 0, 1, 2, 

…, L . 

M : Number of possible paths through the trellis diagram. This number is 

equal to or less than 

j
j

n
0=

∏  

Hm : The mth path through the trellis diagram, indicated by a bold line in 

Figure 2. 

)(im
qχ  : Quantization level for the gate in which the state vector lies at time k 

when it follows path Hm. In other words, the possible value of the 

quantized state vector xq(i) through which the mth path passes. For 

example, in trellis diagram of Figure 2, 

)0()0( 2q
m
q χχ = ; )1()1( 2q

m
q χχ = ; )2()2( 2q

m
q χχ = , … 

m
0∏  : Probability that the possible value of the initial state vector xd(0) from 

which the mth path starts occurs, namely, 
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m
0∏ =Prob{ )0()0( m

qd χχ = }. For example, in trellis diagram of  

Figure 2, m
0∏ =Prob{ )0()0( 2qq χχ = }. 

m
i∏  : Transition probability from the (i-1)th gate for the mth path. In other 

words, it is the transition probability that the state vector will be at the 

ith quantization level (node) of path Hm at time i when it is at the (i-

1)th quantization level (node) of path at time i-1; that is 

m
i∏ Prob{ )1()1(|)()( −=−= iiii m

qq
m
qq χχχχ }. 

max
0∏  : Maximum of the probabilities that the quantization levels at time zero 

occur. 

max
i∏  : Maximum of  the transition probabilities from the quantization levels 

at time i-1 to the quantization levels at time i   (where i  = 1, 2, …,  

L). 

min
0∏  : Minimum of the probabilities that the quantization levels at time zero 

occur. 

min
i∏  : Minimum of the transition probabilities from the quantization levels 

at  time i-1 to the quantization levels  at  time i (where i  = 1, 2, …, 

L). 

~

m
Lχ   { )0(m

qχ , )1(m
qχ , …,  )(Lm

qχ } , Sequence of the quantization levels 

(nodes) which the mth path passes through; obviously,      

)()(
~

iim
q χχ ∈  , where i =0, 1, 2, …, L 

Lz  = {z(1), z(2), …,  z(L)} Observation sequence from time 1 to time L.  

LI   {I(1), I(2), …,  I(L)} Interference sequence from time 1 to time L. 

 

Obviously, the real state transition occurs along one of the possible paths 

through the trellis diagram.Hence, the aim is to decide upon a path through the trellis 

diagram which is most likely (probably) followed by the real state variable by using 

the observation sequence Lz . Because of randomness in the models, our approach 
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must be statistical, i.e., a statistical optimization problem. Based on the observations, 

the path,which was (most likely) followed by the real state variable, will be guessed. 

Therefore, a criterion is needed. A suitable criterion may be the minimum error 

probability criterion. By using this criterion, the problem is reduced to find the path 

that is most likely followed by the real state variable to a multiple- (composite) 

hypothesis-testing problem. 

 

2.6. Minimum Error Probability Criterion [1] 

In the previous section, M possible paths through the trellis diagram H1, H2, 

…, Hm were labeled. These paths are sometimes referred to as hypotheses. Hence, 

using the minimum error probability criterion and the observation sequence, which 

hypothesis is true will be decided. A decision rule is developed which assigns each 

point in the observation space D to one of the hypotheses. The decision rule divides 

the whole observation space D into M subspaces D1, D2, …, Dm. If the observations 

fall in the subspace Di, Hi is decided as the true path. Subspace Di is called the 

decision region for hypothesis Hi . The decision regions, therefore, must be chosen 

in such a way that the overall probability is minimized. 

The overall error probability, sometimes called the Bayes risk R, is defined 

by 

 R ∑∑ ∫
=

≠
= ∈ 









M

j

M

ji
i iDLz

L
j

L
j dzHzpHp

1 1

' )|()(       (2.10) 
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erferencetinofpresencethein

tenvironmenclearin
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= ∫ )(),|(

)|(
)|(' , (2.11) 

 p(Hj)  : Probability that the hypothesis Hj (path Hj) is true, 

  p(z
L
|Hj)  : Conditional probability of the observation sequence zL (z(1), 

      z(2),…,z(L)) given that hypothesis Hj is true , 
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),|( L
j

L IHzp  : Conditional probability of the observation sequence zL in the 

presence of interference given hypothesis Hj and the 

interference sequence IL. 

p(I
L
)   : Joint density function of the interference sequence IL. 

In order to find the optimal decision rule, the decision regions D1, D2, …, DM 

are varied so that the risk R is minimized. The optimum decision rule is; 

 choose Hi if )(')()(')( j
L

ji
L

i HzpHpHzpHp >  for all j≠i, (2.12) 

 

2.7. Optimum Decision Rule for the Target Paths [1] 

Consider the motion model in equation (2.7) and the observation model in 

equation (2.9). Since the disturbance noise vector w(k) is assumed to be independent 

of w(j) and x(0) for all j≠k, a priori probability of hypothesis Hi can be rewritten as:  

 ∏
=

Π=
L

k

i

kiHp
0

)(  (2.13) 

 

where Πk
i 

= prob(xq(k)=xq
i
(k)|xq(k-1)=xq

i
(k-1)), and xq

i
(k-1) and xq

i
(k) are the 

quantization levels for the gates in which the target lies at time k-1 and k 

respectively when it follows path Hi. 

Further, using the assumption that interference vector I(k) is independent of 

I(j) for all j≠k, the joint density function of the interference sequence IL as 

∏
=

=
L

k

L kIpIp
1

))(()(            (2.14) 

where p(I(k)) is the probability density function of the interference vector I(k).  

The function p’(z
L
|Hi) in equation (2.12) can be rewritten as: 

 ∏
=

=
L

k

i

qi
L kxkzpHzp

1

))()((')('                                                       (2.15) 

 

where  
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and ))()(( kxkzp
i

q  is the conditional probability of the observation z(k) in clear 

environments in Eq.(2.9) given that xq(k)=xq
i(k) , and ))(),(|)(( i

q kIkkzp χ  is the 

conditional probability of the observation z(k) in the presence of interference in Eq. 

(2.9) given that  xq(k)=xq
i(k) and I(k). 

Throughout this chapter, the interference vector I(k) is approximated by a 

discrete random vector Id(k) whose possible values are Id1(k), Id2(k), …, Idrk(k), with 

corresponding probabilities p(Id1(k)), p(Id2(k)), …,p( Idrk(k)), then the integral in Eq. 

(2.17) is reduced to a summation 

∫ ×
)(

i
q )())(())(),(|)((

kI

kdIkIpkIkkzp χ          (2.17) 

∑
=

×≈
kr

l

dldl kIpkIkkzp
1

i
q ))(())(),(|)(( χ ,         (2.18) 

where rk is the number of possible values of the approximating discrete vector Id(k). 

Observation model in the presence of interference in Eq. (2.9) becomes 

z(k) = g(k, xq(k), I(k)=Id(k), v(k)) 

        g(k, xq(k), Id(k), v(k)).            (2.19) 

Substituting equation (2.13) and (2.15) into the optimum decision rule of 

equation (2.12), the following is obtained: 

Choose Hi if 

))()((
1

0 kxkzp
i

q

L

k

i

k

i ′ΠΠ ∏
=

 

))()((
1

0 kxkzp
j

q

L

k

j

k

j ′ΠΠ> ∏
=

               (2.20) 

for all j≠i. 
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Since it is more convenient to perform summations than multiplications, and the 

natural logarithm function is monotonically increasing, taking the natural logarithms 

of both sides of the inequality in equation (2.20), we get the following: 

Choose Hi if  

 

( ){ } ( ){ }∑∑
==

′+Π+Π>′+Π+Π
L

k

j

q

j

k

j
L

k

i

q

i

k

i
kxkzpkxkzp

1

0

1

0 ))()((ln)ln()ln())()((ln)ln()ln(  (2.21) 

for all j≠i. 

 

There are some definitions, which explain the metrics to be used in this 

chapter. 

Definition 2.7: An initial node is a quantization level at time zero. The 

metric denoted by MN(xqi(0)), of the initial node xqi(0) is defined by 

 MN(xqi(0)) = ln [prob(xq(0) = xqi(0)]               (2.22) 

 

Consequently, MN(xq
m
(0)) = ln (Π0

m
). 

 

Definition 2.8: The metric, denoted by M(xqj(k-1)→xqi(k)), of the branch 

which connects the quantization level xqj(k-1) to the quantization level xqi(k) 

is defined by 

 M(xqj(k-1) → xqi(k))  ln [prob(xq(k)=xqi(k)|xq(k-1)=xqj(k-1))] (2.23) 

 +ln p’(z(k)|xqi(k)) 

 

Definition 2.9: The metric of a path from time 0 to time i is the summation 

of the metric of the initial node from which the path starts and the metrics of 

the branches of which the path consists of. 
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Definition 2.10: The density function of the observation sequence zL when 

the state variable actually followed the path Hm is referred to as the 

likelihood function for the path (hypothesis) Hm . 

 

The optimum decision rule is to choose the path with the largest metric 

through the trellis diagram as the decision. This can be handled by using the Viterbi 

decoding algorithm, which is the optimum decoding based smoothing algorithm. 

The algorithm which obtains a trellis diagram for the target motion model, and 

which finds the path most likely followed by the target by using the Viterbi decoding 

algorithm is referred as the Optimum Decoding Based Smoothing Algorithm. 

 

2.8. Optimum Decoding Based Smoothing Algorithm [1] 

This method, as mentioned in the previous section, finds the most probable 

path by comparing the metric values of the quantization values of the states from 

time 0 to time L. This method can be summarized by following steps:  

Step 1. The target motion model is reduced to a finite state model and the 

trellis diagram is obtained from time 0 to time L until which the 

target will be tracked. The nodes of initial states are obtained from 

quantizing the initial state vector x(0) as explained in 2.3  and the 

metric of each initial node is assigned. Then, the quantized values 

of the disturbance noise w(k) are obtained in the same way as the 

initial state vector x(0). 

Step 2. For each node at time 1, using the observation z(1), the metrics of 

the branches connecting the initial nodes to the node at time 1 are 

evaluated.These metrics are added to the metrics of the initial nodes 

from which the branches start, and the metrics of the paths merging 

at the node at time 1 are found.The path with the largest metric 

(which is called the best path for the node at time 1) is labeled and 

the other paths are discarded.Finally, the largest metric to the node 

at time 1 (which is called the metric of the node at time 1) is 
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assigned. For each node, the largest metric is calculated and 

assigned its node. 

Step 3. For each node at time k, using the observation z(k), the metrics of 

the branches connecting the nodes at time k-1 to the node at time k 

are calculated. These metrics are added to the metrics of the nodes 

at time k-1 from which the branches start and the metrics of the 

paths merging at the node at time k are found. The path with the 

largest metric (which is called the best path for the node at time k) 

is labeled, and then the other paths are discarded. Finally, the 

largest metric to the node at time k (which is called the metric of the 

node at time k) is assigned. 

Step 4. At the end of time L, the node with the largest metric is chosen 

among the nodes at time L. The best path for this node is decided as 

the most probable path followed by the state transitions. 

 

2.9. An Example of ODSA [1] 

Figure 3 shows a target motion from time zero to time 2 . Using ODSA, the 

path in the trellis diagram, which was most likely followed by the target from time 

zero to time 2, will be found. 
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Figure 3 Trellis diagram for the target motion from time zero to time 2 

 

 

 

Step 1. To each initial node, assign its metric, i.e., MN(xqi(0))=Prob{xq(0 

)= xqi(0)}, where i=1, 2, 3. From now on, the metric of the node 

xqi(k) is represented by MN(xqi(k)). 

Step 2. Consider the node xq1(1). The branches xq2(0)xq1(1) and xq3(0)xq1(1) 

are the only ones connecting the nodes at time zero to the node 

xq1(1). Hence calculate the metrics of these branches, then add these 

metrics to the metrics of the nodes xq2(0) and xq3(0) and obtain the 

following: 

 

A11  M(xq2(0) → xq1(1)) + MN(xq2(0)), (2.24) 

A12  M(xq3(0) → xq1(1)) + MN(xq3(0)). (2.25) 

 

Further, assuming that A11 ≥ A12, the path xq2(0)xq1(1) is chosen as the best 

path for the node xq1(1), and A11 is assigned to the node xq1(1) as its metric, i.e., 

MN(xq1(1)) = A11. The path xq3(0)xq1(1) is then discarded. Assuming that the 

following are similarly found for the node xq2(1), xq1(0)xq2(1) is the best path for 
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xq2(1), and MN(xq2(1)) = M(xq1(0) → xq2(1)) + MN(xq1(0)). Hence, at the end of Step 

2, Figure 4 is obtained.   

 

 

 

 

 

 
Figure 4 Trellis diagram for the target motion from time zero to time 2 at the end of 

first step 

 

 

 

Step 3. Consider the node xq1(2).The branches xq1(1)xq1(2) and xq2(1)xq1(2) 

are those connecting the nodes at time 1 to the node xq1(2).Hence, 

calculating the metrics of these branches and adding these metrics 

to the metrics of the nodes xq1(1) and xq2(1), we obtain the 

following: 
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A21  M(xq1(1) → xq1(2)) + MN(xq1(1)), (2.26) 

A22  M(xq2(1) → xq1(2)) + MN(xq2(1)). (2.27) 

 

Further, assuming that A22 ≥ A21, the path xq1(0)xq2(1)xq1(2) is chosen as the 

best path for the node xq1(2), and A22 is assigned to the node xq1(2) as its metric, i.e., 

MN(xq1(2)) = A22. The path xq2(0)xq1(1)xq1(2) is then discarded. The following are 

similarly found for the node xq2(2), then  xq2(0)xq1(1)xq2(2) is the best path for xq2(2), 

and MN(xq2(2)) = M(xq1(1) → xq2(2)) + MN(xq1(1)). Hence, Figure 5 is obtained at 

the end of Step 3. In addition, assuming that MN(xq2(2)) ≥ MN(xq1(2)), the path 

xq2(0)xq1(1)xq2(2) is chosen as the path followed by the target from time zero to time 

2. 

 

 

 

 

 
Figure 5 Trellis diagram for the target motion from time zero to time 2 at the end of 

second step 
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2.10. The Metric of A Branch [1] 

The calculation of a metric of a branch depends on applications effected by 

the arbitrary random interference or not. 

Considering a target model with only Gaussian disturbance and observation 

noises as described in section 2.1, the motion and observation models can be 

rewritten as 

 Motion model, ))(),(),(,()1( kwkukxkfkx =+  (2.28) 

 Observation model, )())(,()( kvkxkgkz +=   

 

where x(0) is an n x 1 initial state Gaussian random vector with mean m0 and 

covariance R0; w(k) is a p x 1 Gaussian disturbance noise vector with zero mean and 

covariance Rw(k); x(k) is an n x 1 state vector at time k; z(k) is an r x 1 observation 

vector at time k; f(k, x(k), w(k)) and g(k, x(k)) are linear or nonlinear vectors with 

appropriate dimensions; and v(k) is an r x 1 Gaussian observation noise vector with 

zero mean and covariance Rv(k). Moreover, the random vectors x(0), w(j), w(k), v(l) 

and v(m) are assumed to be independent for all j, k, l, m.  

The z(k) in the observation model given in (2.28) is a linear function of the 

Gaussian observation noise v(k). Hence given that x(k)=xq
i(k), the conditional 

probability density function of z(k) is a multivariate Gaussian density function. 

Thus, we have  

 
)(k)|)(( i

qkzp χ ))((k)|)(( kkzp ı
qχχ =      (2.29) 

 

=

( )[ ] ( )[ ]

( ) ( )[ ] 2/12/
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Substituting Eq. (2.29) into Eq. (2.23) yields the metric of the branch between the 

nodes )1(i
q −kχ   and )(i

q kχ ; that is 

 M( )1(i
q −kχ → )(i

q kχ ) 
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Considering a target model with the interference, Gaussian disturbance and 

observation noises as described in section 2.1, the motion and observation models 

can be rewritten as 

 Motion model, ))(),(),(,()1( kwkukxkfkx =+  (2.31) 

 Observation model, ))(*))(),(,())(),(,()( kvkIkxkhkIkxkgkz +=   

where x(0), x(k), u(k), w(k), z(k) and f(k, x(k), u(k), w(k)) are described in section 

2.1. g(k, x(k), I(k)) and h(k, x(k), I(k)) are r x 1 and r x l-dimensional (linear or 

nonlinear ) matrices, respectively; v(k) is an l x 1 Gaussian observation noise vector 

with zero mean and covariance Rv(k); and I(k) is an m x 1 interference vector with 

known statistics. Furthermore, the following assumptions are applied: 

1. The random vectors x(0), w(j), w(k), v(l), v(m), I(n), and I(p) are 

independent for all j, k, l, m, n, p. 

2. [h(k, x(k), I(k)) x Rv(k) x hT(k, x(k), I(k))]-1 exists for all k. 

The observation z(k) is a linear function of the normal observation vector v(k). 

Therefore, the conditional probability density function of z(k), given that x(k)=xq
i(k) 

and I(k), is multivariate normal density function, namely,  

 

))((k),|)(( kkzp i
q Ιχ ))(),((k)|)(( kkkzp ı

q Ι= χχ  

    =A exp-(B/2)     (2.32) 
 
where  
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From Eq. (2.17) and Eq. (2.18) , ))()(( kxkzp
i

q′  

=  (2.34) 

 

where ))(),(|)(( i
q kIkkzp dlχ ))()(),(|)(( i

q kIkIkkzp dl=χ  which is given 

in Eq. (2.32). Substituting Eq.(2.34) into Eq. (2.23) yields the metric of the branch 

between the nodes )1(i
q −kχ   and )(i

q kχ ; that is 

 M( )1(i
q −kχ → )(i

q kχ ) = ln ))(|)((ln kkzp i
q

i
k χ′+Π   (2.35) 

 

2.11.  Complexity Analysis of ODSA  

A program that uses ODSA to estimate the best path with the largest metric 

is written in MATLAB. In this program, for simplicity the vectors x(k), w(k), z(k), 

u(k), v(k) and I(k) are chosen to be one-dimensional vectors. 

Runtime of the program written for ODSA is determined by the number of 

states and the number of quantization levels of I(k). The number of states is 

determined by time L, the gate size and the number of quantization levels of x(0), 

u(k) and w(k). If the number of states at time k=0 to k=L is not limited, then the 

possible maximum state number for each time step, which is the worst case, will be 

k
uwx )nn(n  at time k. Including time consumption on I(k), let the maximum time 

consumption at each state be st . Then, since the time consumption at each state will 

be approximately same, the time consumption at each time k will be maximum 

k
uwxs )nn(nt , which is the multiplication of the state number at time k and st . The 

total program runtime will be equal to:  
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 Runtime= 

( ) ( ) ( )[ ] ( )
( ) 1nn

1nn
ntnnnt...nnntnnntnt

uw

1L
uw

xs
L

uwxs
2

uwxs
1

uwxsxs
−

−
=++++

+

(2.36) 

 
  

where  

 ts : maximum time consumption at each state,  

 nx : the number of quantization levels of x(0), 

 nw : the number of quantization levels of w(k). 

 nu : the number of quantization levels of u(k). 

 

Since 1)nn(
1L

uw >>+ , the value given at equation (2.36) can be 

approximated as 
1nn

)nn(
nt

uw

1L
uw

xs
−

+

. Rewriting this equation, we obtain 

L
uw

uw

uwxs )nn(
1nn

nnnt

−
.  

This means, the program runtime increases exponentially as time L increases. 

Therefore, if the maximum state number is not limited, the program complexity will 

increase too much which causes difficulties on the application of this algorithm. 

However, due to the gate size, some of the states will fall into the same gate and 

some of the states will be discarded as described at section 2.10. So, most of the 

time, the state number at time k will be smaller than k
uwx )nn(n , and the total state 

number actually will be smaller than the value given at equation (2.36). In fact, this 

will be the upper bound for computing the program runtime.  

If the number of states is limited by some value at each time k, the program 

runtime for the worst case will be: 

 

Runtime= Lnt ss  (2.37) 

 

where 
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 ts : maximum time consumption at each state,  

 ns : the maximum number of states allowed at time from k=0 to time k=L, 

 From (2.37) we can say that program runtime increases linearly as time L 

increases. Therefore, if the maximum state number is limited, the program 

complexity will not increase as k increases. 

Some simulations are performed to measure the program runtime for both 

limited and not limited state number cases.The simulations are performed for 

different values of gate size and quantization numbers of x(0) u(k) and w(k) to obtain 

various state numbers.The results are analyzed at subsections 2.11.1 and 2.11.2. 

In these subsections, Figure 6 , Figure 7, Figure 8 and Figure 9 are obtained. 

In these figures, 

• “nx” refers quantization level of the initial state x(0), 

• “nu” refers quantization level of the input vector u(k), 

• “nw” refers quantization level of the disturbance noise vector w(k), 

• “L” refers the number of samples. 

2.11.1 Program Runtime When the State Number is not Limited 

In this section, the program runtime is analyzed for the case that the state 

number is not limited. Motion and observation models are  

Motion model  :  x(k+1)  = x(k) + w(k) + u(k), 

Observation model :  z(k)  = x(k) + v(k) + I(k). 

Parameters used in these simulations are as follows; 

• variance of x(0)=1, expected value of x(0)=0, 

• variance of u(k)=1, expected value of u(k)=0, 

• variance of w(k)=1, expected value of w(k)=0, 

• variance of I(k)=0.01, expected value of I(k)=0, quantization level of I(k)=3. 

The gate size and the quantization levels of parameters are presented in Figure 6 and 

Figure 7.  
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Figure 6 Program runtime when the state number is not limited 
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Figure 7. The number of states when the state number is not limited 

 

 

 

Analyzing Figure 7, it can be observed that the state number depends on the 

quantization level of x(0), u(k), w(k) and the gate size. As the quantization levels of 

these parameters increases and the gate size decreases, the state number increases 

dramatically. Depending on the state number, the program runtime exponentially 

increases as L increases as shown Figure 6, whereas the state number increases 

linearly. 

2.11.2 Program Runtime When the State Number is Limited 

In this section, the program runtime is analyzed for the case that the state 

number is limited. Motion and observation models are  

Motion model  :  x(k+1) = x(k) + w(k) + u(k) , 

Observation model :  z(k) = x(k) + v(k) + I(k). 
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Parameters used in these simulations are as follows; 

• variance of x(0)=1, expected value of x(0)=0, 

• variance of u(k)=1, expected value of u(k)=0, 

• variance of w(k)=1, expected value of w(k)=0, 

• variance of I(k)=0.01, expected value of I(k)=0, quantization level of I(k)=3, 

• maximum number of the states=100. 

 
 
 

 

 

Figure 8 Program runtime when the state number is limited to 100 
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Figure 9 The number of the states when the state number is limited to 100 

 

 

 

When Figure 8 is analyzed, it can be observed that the program runtime is 

increasing with L. But, type of increase on runtime can be defined as “Linear” 

comparing with Figure 6. This is expected, because the state number is limited to 

100. When Figure 9 is analyzed, it can be observed that the state number reaches to 

the limit faster as the quantization level of the parameters increases. 
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CHAPTER 3 

  

 

SIMULATION RESULTS OF ODSA  

 

 

 

Throughout CHAPTER 3, effects of the parameters, which are used in 

ODSA, are detaily analyzed. These parameters are; 

• The gate size, 

• The quantization number of initial state vector, x(0) 

• The quantization number of disturbance noise vector, w(k) 

• The quantization number of input vector, u(k) 

• The initial state variance, 

• The disturbance noise variance, 

• The input u(k) variance, 

• The observation noise variance, 

• The quantization number of interference vector, I(k) 

• The interference variance, 

• The limiting of the maximum state number. 

Simulations are performed for one linear and one nonlinear model. First, 

analyses are studied for the models in clear environments, which do not include the 

interference vector. Then, the interference vector will be added to the models as 

simulating the environments in presence of interference. In this way, the variation in 

the performance will be studied.  



 32 

To check the performance of the algorithm and the effects of the parameters, 

actual target path should be simulated. Therefore, observation vector is generated. 

Assuming x(0), w(k), u(k), I(k) and v(k) vectors are the Gaussian distributed 

random vectors, these vectors are generated using the “randn(.)” command of 

MATLAB with appropriate mean and variances. Putting these values to the motion 

and observation models, the actual values of x(k) and z(k) values are obtained.  

The simulations are obtained after 1000 execution. For each execution, the 

state vector x(k) and the observation vector z(k) are regenerated randomly with the 

same motion and observation equations using independent random vectors x(0), 

w(k), u(k), v(k) and I(k). 

From now on in the figures,  

• “Q # x(k)” refers the quantization number of x(k), 

• “ 2σ (x(k))” refers the variance value of x(k). 

3.1. Effect of the Gate Size 

As explained 2.3, the state number and the value of the states at time k are 

affected by the gate size indirectly. Due to these effects, the performance of the 

algorithm varies. There are two models, which are linear and nonlinear.  

Figures for each model show RMS error variation depending on the gate 

size. This error, z(k)- (k)xq

∧
, is calculated for each time k at 1000 simulations, then 

RMS of errors are obtained. 

Linear models used in this simulation are 

 Motion model  : x (k+1) = x (k) + w (k) + u (k) , 

 Observation model : z (k) = x (k) + v (k) . 

Parameters are; 

 number of samples, L = 20, 

 number of max states = 100, 

 quantization numbers  : x(0) = 5, w(k) = 3, u(k) = 3 , 
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 variances   : x(0) = 1, w(k) = 1, u(k) = 1, v(k) = 1 , 

 expected values  : x(0) = 0, w(k) = 0, u(k) = 0 ,v(k) = 0 . 

For the linear model, Figure 10 is obtained. 

 

 

 

 
 

Figure 10 RMS estimation error for the linear model as gate size changing 
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Table 1 Average values of RMS Estimation error as gate size changing for the linear 

model  

 

Gate size 
Average values of RMS 

Estimation Error 

0.1 0.8236 

1 0.8366 

2 1.0263 

5 2.8931 

 

 

 

Nonlinear models used in this simulation are 

 Motion model  : x (k+1) = exp (- x (k)) + w (k) + u (k) , 

 Observation model : z (k) = cos( x (k) ) + v (k) . 

Parameters are same used in linear models. For the nonlinear model, Figure 

11 is obtained 
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Figure 11 RMS estimation error for the nonlinear model as gate size changing 

 

 

 

Table 2 Average values of RMS Estimation error as gate size changing for the 

nonlinear model 

 

Gate size 
Average values of RMS 

Estimation Error 

0.1 4.5266 

1 4.3218 

2 4.3648 

5 4.0279 
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Comment:  

The effect of the gate size is observed more clearly in the linear model. 

Figure 10 shows that the gate size is directly proportional with the estimation error. 

Increase on the gate size causes estimation error to become larger. Figure 11 shows 

that increase on gate size does not affect estimation error too much in nonlinear 

model.  

3.2. Effect of the Quantization Number of the Initial State Vector 

In this section, effects of the quantization number of the initial state vector 

are explained. There are two models, linear and nonlinear models.  

Figures show RMS error variation depending on the quantization number of 

the initial state vector. This error, z(k)- (k)xq

∧
, is calculated for each k time at 1000 

simulation, then RMS of errors are obtained. 

Linear models used in this simulation are 

 Motion model  : x (k+1) = x (k) + w (k) + u (k) , 

 Observation model : z (k) = x (k) + v (k) +I (k) . 

Parameters are; 

 number of samples, L = 20 , 

 gate size   = 1, 

 number of max states  = 100 , 

 quantization numbers  : w(k) = 3, u(k) = 3 , I(k) = 3, 

 variances   : x(0) = 1,w(k) =1,u(k) = 1,v(k) = 1, I(k) = 

0.01, 

  expected values  : x(0) = 0, w(k) = 0,u(k) = 0, v(k) = 0, I(k) = 

0.2  

For the linear model, using these parameters Figure 12 is obtained. 
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Figure 12 RMS estimation error for the linear model as quantization level of x(0) 

changing 

 

 

 

Table 3 Average values of RMS Estimation error as quantization level of x(0) 

changing for the linear model 

 

Quantization level 
of x(0) 

Average values of RMS 
Estimation Error 

3 0.86445 

5 0.8617 

9 0.86767 

11 0.85636 
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Nonlinear models used in this simulation are 

 Motion model  : x (k+1) =  1-|x (k)| + w (k) + u (k) , 

 Observation model : z (k) = x (k) + v (k) +I (k) . 

Parameters are same used in linear models. For the nonlinear model, Figure 

13 is obtained. 

 

 

 

 
 

Figure 13 RMS estimation error for the nonlinear model as quantization level of 

x(0) changing 
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Table 4 Average values of RMS Estimation error as quantization level of x(0) 

changing for the nonlinear model 

 

Quantization level 
of x(0) 

Average values of RMS 
Estimation Error 

3 0.9366 

5 0.9336 

9 0.9323 

11 0.9335 

 

 

 

Comment:  

From Figure 12 and Figure 13, it can be observed that the number of the 

quantization levels of the initial state vector x(0) slightly affects the performance of 

the algorithm for both linear and nonlinear models.  

3.3. Effect of the Quantization Number of the Disturbance Noise 

In this section, effects of the quantization number of the disturbance noise 

vector are explained. There are two models, linear and nonlinear models.  

Figures show RMS error variation depending on the quantization number of 

the disturbance noise vector. This error, z(k)- (k)xq

∧
, is calculated for each k time at 

1000 simulation, then RMS of errors are obtained. 

Linear models used in this simulation are 

 Motion model  : x (k+1) = x (k) + w (k) + u (k) , 

 Observation model : z (k) = x (k) + v (k) +I (k). 

Parameters are; 
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 number of samples, L = 20 , 

 gate size   = 0.1 , 

 number of max states  = 100 , 

 quantization numbers  : x(0) = 3, u(k) = 3 , I(k) = 3, 

 variances   : x(0) = 1, w(k) =1,u(k) =1,v(k) = 1, I(k) = 

0.01, 

  expected values  : x(0) = 0, w(k) = 0, u(k)=0, v(k) = 0, I(k) = 

0.2. 

 For the linear model, Figure 14 is obtained. 

 

 

 

 
 

Figure 14 RMS estimation error for the linear model as quantization level of w(k) 

changing 
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Table 5 Average values of RMS Estimation error as quantization level of w(k) 

changing for the linear model 

 

Quantization level 
of w(k) 

Average values of RMS 
Estimation Error 

3 0.8658 

5 0.8665 

7 0.8604 

9 0.8519 

 

 

 

Nonlinear models used in this simulation are 

 Motion model  : x (k+1) =  1-|x (k)| + w (k) + u (k) , 

 Observation model : z (k) = x (k) + v (k) +I (k) . 

Parameters are same used in linear models. For the nonlinear model, Figure 

15 is obtained. 
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Figure 15 RMS estimation error for the nonlinear model as quantization level of 

w(k) changing 

 

 

 

Table 6 Average values of RMS Estimation error as quantization level of w(k) 

changing for the nonlinear model 

 

Quantization level 
of w(k) 

Average values of RMS 
Estimation Error 

3 0.90667 

7 0.88445 

13 0.87881 
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Comment: 

It can be observed from the figures that increasing the number of the 

quantization levels of the disturbance noise w(k) slightly improves the state 

estimation error (Figure 14 and Figure 15) both linear and nonlinear models. 

3.4. Effect of the Quantization Number of the Input Vector 

In this section, effects of the quantization number of the input vector are 

explained. There are two models, linear and nonlinear models. Figures show RMS 

error variation depending on the quantization number of the input vector. This error, 

z(k)- (k)xq

∧
, is calculated for each k time at 1000 simulation, then RMS of errors are 

obtained. 

Linear models used in this simulation are 

 Motion model  : x (k+1) = x (k) + w (k) + u (k) , 

 Observation model : z (k) = x (k) + v (k) + I(k). 

Parameters are; 

 number of samples, L  = 20 , 

 gate size   = 0.1 , 

 number of max states  = 100 , 

 quantization numbers  : x(0) = 3, w(k) = 3, I(k) = 3, 

 variances   : x(0) = 1,w(k) =1, u(k)=1,v(k) = 1, I(k) = 0.01, 

  expected values  : x(0) = 0, w(k) =0, u(k) =6, v(k) = 0, I(k) = 

0.2. 

For the linear model, Figure 16 is obtained. 
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Figure 16 RMS estimation error for the linear model as quantization level of u(k) 

changing 

 

 

 

Table 7 Average values of RMS Estimation error as quantization level of u(k) 

changing for the linear model 

 

Quantization level 
of u(k) 

Average values of RMS 
Estimation Error 

3 0.8558 

5 0.8424 

9 0.8299 
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Nonlinear models used in this simulation are 

 Motion model  : x (k+1) =  1-|x (k)| + w (k) + u (k), 

 Observation model : z (k) = x (k) + I (k) + v (k) . 

Parameters are same used in linear models. For the nonlinear model, Figure 

17 is obtained. 

 

 

 

 
 

Figure 17 RMS estimation error for the nonlinear model as quantization level of 

u(k) changing 
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Table 8 Average values of RMS Estimation error as quantization level of u(k) 

changing for the nonlinear model 

 

Quantization level 
of u(k) 

Average values of RMS 
Estimation Error 

3 0.8743 

5 0.8531 

9 0.8449 

 

 

 

Comment: 

It can be observed from the figures that increasing the number of the 

quantization levels of the input vector u(k) slightly improves the state estimation 

error (Figure 16 and Figure 17) both linear and nonlinear models. In this 

simulations, input vector u(k) behaves like the disturbance vector w(k). Therefore, 

the performance of u(k)’s state estimation error has similarities with the state 

estimation error performance of w(k). 

3.5. Effect of the Initial State Variance 

In this section, effects of the initial state variance are explained. There are 

two models, linear and nonlinear models. Figures show RMS error variation 

depending on the initial state variance. This error, z(k)- (k)xq

∧
, is calculated for each 

k time at 1000 simulation, then RMS of errors are obtained. 

Linear models used in this simulation are 

 Motion model  : x (k+1) = x (k) + w (k) + u (k) , 

 Observation model : z (k) = x (k) + I(k) + v (k) . 

Parameters are; 
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 number of samples, L  = 20 , 

 gate size   = 0.1 , 

 number of max states  = 100 , 

 quantization numbers  : x(0) = 5, w(k) = 3, u(k) = 3 , I(k) = 3, 

 variances   : w(k) = 1, u(k) = 1, v(k) = 1, I(k) = 0.01, 

  expected values  : x(0) = 0, w(k) = 0, v(k) = 0, I(k) = 0.2 . 

For the linear model, Figure 18 is obtained. 

 

 

 

 
 

Figure 18 RMS estimation error for the linear model as the initial state variance 

changing 
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Table 9 Average values of RMS Estimation error as variance values of x(0) 

changing for the linear model 

 

Variance values of 
x(0) 

Average values of RMS 
Estimation Error 

0.01 0.79866 

0.1 0.79264 

1 0.83515 

5 0.86382 

 

 

 

Nonlinear models used in this simulation are 

 Motion model  : x (k+1) = 1-|x (k)| + w (k) + u (k), 

 Observation model : z (k) = x (k)+ I (k) + v (k) . 

Parameters are same used in linear models. In the simulations for the 

nonlinear model, Figure 19 is obtained. 
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Figure 19 RMS estimation error for the nonlinear model as the initial state variance 

changing 

 

 

 

Table 10 Average values of RMS Estimation error as variance values of x(0) 

changing for the nonlinear model 

 

Variance values of 
x(0) 

Average values of RMS 
Estimation Error 

0.01 0.8444 

0.1 0.8549 

1 0.8939 

5 1.0103 
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Comment: 

When Figure 18 and Figure 19 are studied, it can be observed that increase 

on the variance of the initial state vector slightly affects the performance of the state 

error estimation. As shown by figures, the variance of the initial state vector has 

important effects on only first samples. The state estimation error begins with large 

error value due to the large initial state variance values, and then decreases 

significantly to around a value as time k. 

3.6. Effect of the Disturbance Noise Variance 

In this section, effects of the disturbance noise variance are explained. There 

are two models, linear and nonlinear models. Figures show RMS error variation 

depending on the disturbance noise variance. This error, z(k)- (k)xq

∧
, is calculated 

for each k time at 1000 simulation, then RMS of errors are obtained. 

Linear models used in this simulation are 

 Motion model  : x (k+1) = x (k) + w (k) + u (k) , 

 Observation model : z (k) = x (k) + v (k) + I (k) . 

Parameters are; 

 number of samples, L  = 20 , 

 gate size   = 0.1 , 

 number of max states  = 100 , 

 quantization numbers  : x(0) = 3, w(k) = 3, u(k) = 3, I(k) = 3 , 

 variances   : x(0) = 1, u(k) = 1, v(k) = 1, I(k) = 0.01 , 

  expected values  : x(0) = 0, w(k) = 0, u(k) =0, v(k) = 0, I(k) = 

0.2  

For the linear model, Figure 20 is obtained. 

 

 

 



 51 

 
 

Figure 20 RMS estimation error for the linear model as disturbance noise variance 

changing 
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Table 11 Average values of RMS Estimation error as variance values of w(k) 

changing for the linear model 

 

Variance values of 
w(k) 

Average values of RMS 
Estimation Error 

0.01 0.7758 

0.1 0.7548 

1 0.8569 

5 1.0331 

 

 

 

Nonlinear models used in this simulation are 

 Motion model  : x (k+1) = 1-|x (k)| + w (k) + u (k) , 

 Observation model : z (k) = x (k) + I (k) + v (k) . 

Parameters are same used in linear models. In the simulations for the 

nonlinear model, Figure 21 is obtained 
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Figure 21 RMS estimation error for the nonlinear model as disturbance noise 

variance changing 

 

 

Table 12 Average values of RMS Estimation error as variance values of w(k) 

changing for the nonlinear model 

 

Variance values of 
w(k) 

Average values of RMS 
Estimation Error 

0.01 0.8517 

0.1 0.8306 

1 0.9021 

5 1.0404 
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Comment: 

Unlike effects of the initial state variances, little change on the disturbance 

noise variance directly affects performances of the state estimation error both linear 

and nonlinear models. This effect can be realized during the number of samples, L. 

As shown by Figure 20 and Figure 21, increase on the disturbance noise variance 

causes the performance of the estimation to worsen.     

3.7. Effect of the Input u(k) Variance 

In this section, effects of the input vector variance are explained. There are 

two models, linear and nonlinear models. Figures show RMS error variation 

depending on the input vector variance. This error, z(k)- (k)xq

∧
, is calculated for 

each k time at 1000 simulation, then RMS of errors are obtained. 

Linear models used in this simulation are 

 Motion model  : x (k+1) = x (k) + w (k) + u (k) , 

 Observation model : z (k) = x (k) + v (k) + I (k) . 

Parameters are; 

 number of samples, L  = 20 , 

 gate size   = 0.1 , 

 number of max states  = 100 , 

 quantization numbers  : x(0) = 3, w(k) = 3, u(k) = 3, I(k) = 3 , 

 variances   : x(0) = 1, w(k) = 1 , v(k) = 1,  I(k) = 0.01, 

  expected values  : x(0) = 0, w(k) = 0, v(k) = 0, I(k) = 0.2 . 

For the linear model, Figure 22 is obtained. 
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Figure 22 RMS estimation error for the linear model as variance of u(k) changing 
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Table 13 Average values of RMS Estimation error as variance values of u(k) 

changing for the linear model 

 

Variance values of 
u(k) 

Average values of RMS 
Estimation Error 

0.01 0.7607 

0.1 0.7533 

1 0.8400 

5 1.0094 

 

 

 

Nonlinear models used in this simulation are 

 Motion model  : x (k+1) = 1-|x (k)| + w (k) + u (k), 

 Observation model : z (k) = x (k) + I (k) + v (k) . 

Parameters are same used in linear models. For the nonlinear model, Figure 23 is 

obtained. 
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Figure 23 RMS estimation error for the nonlinear model as variance of u(k) 

changing 

 

 

 

Table 14 Average values of RMS Estimation error as variance values of u(k) 

changing for the nonlinear model 

 

Variance values of 
u(k) 

Average values of RMS 
Estimation Error 

0.01 0.8650 

0.1 0.8227 

1 0.9135 

5 1.0358 
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Comment: 

Decreasing the input u(k) variance reduces the state estimation error as 

expected for both the linear and the nonlinear case. Because the usage of the 

parameter input u(k) in the simulations is similar to the disturbance vector w(k),  a 

little increase on the input u(k) variance causes the state estimation error to get a 

large value during the sampling time. Figure 22 and Figure 23 show these effects. 

3.8. Effect of the Observation Noise Variance 

In this section, effects of the observation noise variance are explained. There 

are two models, linear and nonlinear models. Figures show RMS error variation 

depending on the observation noise variance. This error, z(k)- (k)xq

∧
, is calculated 

for each k time at 1000 simulation, then RMS of errors are obtained. 

Linear models used in this simulation are 

 Motion model  : x (k+1) = x (k) + w (k) + u (k) , 

 Observation model : z (k) = x (k) + v (k) + I (k) . 

Parameters are; 

 number of samples, L  = 20 , 

 gate size   = 0.1 , 

 number of max states  = 100 , 

 quantization numbers  : x(0) = 3, w(k) = 3, u(k) = 3, I(k) = 3 , 

 variances   : x(0) = 1, w(k) = 1, u(k) = 1, I(k) = 0.01, 

  expected values  : x(0) = 0, w(k) = 0,u(k) = 0,v(k) = 0,I(k) = 0.2 

. 

For the linear model, Figure 24 is obtained. 
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Figure 24 RMS estimation error for the linear model as variance of v(k) changing 

 

 

 

Table 15 Average values of RMS Estimation error as variance values of v(k) 

changing for the linear model 

 

Variance values of 
v(k) 

Average values of RMS 
Estimation Error 

0.1 0.5005 

1 0.8461 

10 1.5209 

15 1.7118 
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Nonlinear models used in this simulation are 

 Motion model  : x (k+1) = 1-|x (k)| + w (k) + u (k), 

 Observation model : z (k) = x (k) + I (k) + v (k) . 

Parameters are same used in linear models. For the nonlinear model, Figure 

25 is obtained. 

 

 

 

 
 

Figure 25 RMS estimation error for the nonlinear model as variance of v(k) 

changing 
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Table 16 Average values of RMS Estimation error as variance values of v(k) 

changing for the nonlinear model 

 

Variance values of 
v(k) 

Average values of RMS 
Estimation Error 

0.1 0.5291 

1 0.9073 

10 1.7152 

15 1.7983 

 

 

 

Comment: 

Decreasing the observation noise reduces the state estimation error as 

expected for both the linear and the nonlinear case as observed at Figure 24 and 

Figure 25.  

3.9. Effect of the Quantization Number of the Interference Noise  

In this section, effects of the quantization number of the interference vector 

are explained. There are two models, linear and nonlinear models. Figures show 

RMS error variation depending on the gate size. This error, z(k)- (k)xq

∧
, is calculated 

for each k time at 1000 simulation, then RMS of errors are obtained. 

Linear models used in this simulation are 

 Motion model  : x (k+1) = x (k) + w (k) + u (k) , 

 Observation model : z (k) = x (k) + v (k) +I (k) . 

 

Parameters are; 

 number of samples, L  = 20 , 
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 gate size   = 0.1 , 

 number of max states  = 100 , 

 quantization numbers  : x(0) = 3, w(k) = 3, u(k) = 3 , 

 variances   : x(0) = 1,w(k) = 1,u(k) = 0,v(k) = 1,I(k) =0.01, 

 expected values  : x(0) = 0, w(k) = 0,u(k) = 1,v(k) = 0, I(k) = 0.2  

For the linear model, Figure 26 is obtained. 

 

 

 

 
 

Figure 26 RMS estimation error for the linear model as quantization level of 

interference changing 
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Table 17 Average values of RMS Estimation error as quantization level of I(k) 

changing for the linear model 

 

Quantization Level 
of I(k) 

Average values of RMS 
Estimation Error 

3 0.8428 

5 0.8496 

9 0.8372 

13 0.8366 

 

 

 

Nonlinear models used in this simulation are 

 Motion model  : x (k+1) = 1-|x (k)| + w (k) + u (k), 

 Observation model : z (k) = x (k) + I (k) + v (k). 

Parameters are same used in linear models. For the nonlinear model, Figure 

27 is obtained. 
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Figure 27 RMS estimation error for the nonlinear model as quantization level of 

interference changing 

 

 

 

Table 18 Average values of RMS Estimation error as quantization level of I(k) 

changing for the nonlinear model 

Quantization Level 
of I(k) 

Average values of RMS 
Estimation Error 

3 0.9113 

5 0.8998 

9 0.9194 

13 0.9050 
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Comment: 

It can be observed from Figure 26 and Figure 27 that the number of the 

quantization levels of the interference vector I(k) slightly affects the performance of 

the algorithm. 

3.10. Effect of the Interference Noise Variance  

In this section, effects of the interference noise variance are explained. There 

are two models, linear and nonlinear models. Figures show RMS error variation 

depending on the interference noise variance. This error, z(k)- (k)xq

∧
, is calculated 

for each k time at 1000 simulation, then RMS of errors are obtained. 

Linear models used in this simulation are 

 Motion model  : x (k+1) = x (k) + w (k) + u (k) , 

 Observation model : z (k) = x (k) + v (k) +I (k) . 

Parameters are; 

 number of samples, L  = 20 , 

 gate size   = 1 , 

 number of max states  = 100 , 

 quantization numbers  : x(0) = 3, w(k) = 3, u(k) = 3 , I(k) = 3 , 

 variances   : x(0) = 1, w(k) = 1, u(k) = 1, v(k) = 1,  

  expected values  : x(0) = 0, w(k) = 0, u(k) =1, v(k) = 0, I(k) = 

0.2  

For the linear model, Figure 28 is obtained. 

 

 

 



 66 

 
 

Figure 28 RMS estimation error for the linear model as variance of interference 

changing 

 

 

 

Table 19 Average values of RMS Estimation error as variance values of I(k) 

changing for the linear model 

 

Variance values of 
I(k) 

Average values of RMS 
Estimation Error 

0.01 0.8625 

0.1 0.8591 

1 1.0142 

10 0.7965 
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Nonlinear models used in this simulation are 

 Motion model  : x (k+1) = 1-|x (k)| + w (k) + u (k), 

 Observation model : z (k) = x (k) + I (k) + v (k) . 

Parameters are same used in linear models. For the nonlinear model, Figure 

29 is obtained. 

 

 

 

 
 

Figure 29 RMS estimation error for the nonlinear model as variance of interference 

changing 
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Table 20 Average values of RMS Estimation error as variance values of I(k) 

changing for the nonlinear model 

 

Variance values of 
I(k) 

Average values of RMS 
Estimation Error 

0.01 0.9034 

0.1 0.9198 

1 1.1138 

10 1.8557 

 

 

 

Comment: 

Analyzing Figure 28 and Figure 29, it can be seen that the interference noise 

variance directly affects the performance of the state estimation error both in linear 

and nonlinear models.  

3.11. Effect of the Limiting the Maximum State Number 

In this section, effects of the limiting the maximum state number are 

explained. There are two models, linear and nonlinear models.  

Figures show RMS error variation depending on the limitation of the state 

number. This error, z(k)- (k)xq

∧
, is calculated for each k time at 1000 simulation, 

then RMS of errors are obtained. 

Linear models used in this simulation are 

 Motion model  : x (k+1) = x (k) + w (k) + u (k) , 

 Observation model : z (k) = x (k) + v (k) + I (k). 

Parameters are; 
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 number of samples, L = 20 , 

 gate size   = 0.1 , 

 quantization numbers  : x(0) = 3, w(k) = 3, u(k) = 3 , I(k) = 3 , 

 variances   : x(0) = 1, w(k) = 1, v(k) = 1,  I(k) = 0.01 , 

  expected values  : x(0) = 0, w(k) = 0, v(k) = 0, I(k) = 0.2 . 

For the linear model, Figure 30 is obtained. 

 

 

 

 
 

Figure 30 RMS estimation error for the linear model when maximum state number 

is not limited 
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Table 21 Average values of RMS Estimation error as the number of state limit 

values changing for the linear model 

 

# of the state limit 
Average values of RMS 

Estimation Error 

No limit 0.8473 

100 0.8547 

50 0.8490 

10 0.8404 

 

 

 

Nonlinear models used in this simulation are 

 Motion model  : x (k+1) = 1-|x (k)| + w (k) + u (k), 

 Observation model : z (k) = x (k)+ I (k) + v (k) . 

Parameters are same used in linear models. For the nonlinear model, Figure 

31 is obtained. 
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Figure 31 RMS estimation error for the nonlinear model when maximum state 

number is limited 

 

 

 

Table 22 Average values of RMS Estimation error as the number of state limit 

values changing for the nonlinear model 

 

# of the state limit 
Average values of RMS 

Estimation Error 

No limit 0.9059 

100 0.91233 

50 0.89977 

10 0.90649 
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Comment: 

It can be observed from the figures that limiting the number of states does 

not affect the algorithm performance in linear (Figure 30) and nonlinear (Figure 31) 

models too much. In the simulations, the program chooses the paths that have better 

metrics when the number of the states exceeds the state limit and cancels others. 

Since the program computation time is directly related with the maximum state 

number, the computation time can be reduced significantly by decreasing the state 

number without any loss in the performance.  
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CHAPTER 4 

  

 

CHAOTIC SYSTEMS 

 

 

 

The possibility of using chaotic signals to carry information was first 

proposed in 1993 and, since then, chaotic communication have been a very 

important topic in both nonlinear science and engineering. [3] 

The noise-like signals generated by deterministic chaotic systems have been 

successfully used in various engineering areas. These signals are typically 

broadband and similar to a stochastic process and can therefore be possibly used in 

secure communication applications, especially spread spectrum communication 

systems. [3] 

In chaotic spread spectrum communication and chaotic modulation 

applications that have been developed, binary digital symbols are carried by chaotic 

sequences at the transmitter. A natural way to do is to modulate each digital bit by a 

chaotic sequence with randomly picked initial condition and different parameters of 

the system, which greatly spreads the spectrum of the original binary digital signals, 

and make them quite noise like. At the receiver, a parameter estimator is employed 

to determine which symbol is represented by the received noise-like and broadband 

chaotic sequence. Although this scheme allows the communication system to have 

high security and broadband nature, it has low information carrying efficiency 

because each sequence can carry only one bit a time. [4] 

Throughout this chapter, definitions of chaos and nonlinear dynamics are 

given. Then common types of chaotic mapping are given detailly.  
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4.1. Chaos and Nonlinearity 

The word “chaos” implies some observation of a system which varies 

unpredictably. If a measurement does not have regularity or order, it is called  

“chaotic”. However, it is not a set of random events. For example, flipping a coin 

100 times is not a chaotic event because chaotic dynamics are deterministic 

developments with chaotic outcome, i.e., current state of a system depends on the 

previous state in a rigidly determined way. [5] 

Mathematical requirements of a system to be chaotic are given below: 

Let V be an interval. f : V �V  is chaotic on V if the following conditions 

hold [ 6, 7 ] 

1. f is sensitive to initial conditions 

2. f is topologically transitive 

3. periodic points are dense in V 

Sensitivity to initial conditions means that two points in such a system move 

in vastly different paths even if the difference between their initial conditions is 

small [6] . Sensitivity to initial conditions is related to the Lyapunov exponents [6, 

7]. The Lyapunov exponent of a map is used to obtain sensitive dependence to initial 

conditions which is the first necessity for the above characterization of chaotic maps. 

If a system is allowed to start from two slightly different initial states, say x 

and x + a, after n iterations, their divergence may be characterized as [7] 

n
e)n(

λεε ≈   (4.1) 

 

where, λ  is Lyapunov exponent and it gives average rate of divergence. If λ  is 

negative, slightly apart trajectories converge and the evolution is not chaotic. If λ  is 

positive two trajectories diverge and evolution is sensitive to initial conditions. One 

dimensional map is given by  

)x(fx n1n =+  (4.2) 
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where, n is iteration number. The difference between two trajectories after n steps, 

whose initial conditions are close to each other, is given as 

nnn
e)x(f)x(f

λεε ≈−+  (4.3) 

or 

n
)x(f)x(f

ln
nn

λ
ε

ε
≈













 −+
 (4.4) 

where )x(f
n  is iterated value of initial value x after n steps. For small ε, this can be 

rewritten as 

dx

df
ln

n

1
lim

n

n ∞→
=λ  (4.5) 

Finally, if we use chain rule [7] for the derivative of the nth iteration and take the 

limit as n tends to infinity we obtain the Lyapunov exponent as 

( )∑
−

=
∞→

′=
1n

1i

i
n

fln
n

1
lim χλ  (4.6) 

Definition 4.1: A mapping f : [0,1]�[0,1] is transitive if for every pair of 

subintervals I and J of [0,1] there is an n such that ∅≠∩ J)I(f
n  [6] where 

)I(f
n  is iteration result of subinterval I after n steps and Ø is empty set.  

 

The last characteristic of chaotic systems, denseness of periodic points on V 

means that: there are infinitely many points with infinitely different periods. A 

periodic point is a point which cycles after a number of iterations. However, 

although theoretically there are infinitely many periodic points, practically it is not 

possible to find these numbers because of rounding-off errors. Since rounding-off 

errors will be amplified because of initial sensitivity property, we will never achieve 

an exact periodicity but quasy-periodicity, which means we can save appearance of 

periodicity for only limited number of iterations but after that, periodicity becomes 

unstable because of sensitivity. [8] 
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4.2. One Dimensional Chaotic Systems 

In this section, three popular one-dimensional chaotic systems are studied. 

These systems are skew tent map, tent map and symmetric tent map. 

4.2.1 Skew Tent Map 

The skew tent map is defined [9] by 









≤<
−

−

≤≤
=

1aif
a1

1

a0if
a)(f

χ
χ

χ
χ

χ        (4.7) 

and represented in Figure 32. 

 

 

 

 
 

Figure 32 Skew tent map when a=0.6. 

 



 77 

It is noninvertible transformation of the unit interval onto itself. It depends 

on the parameter a which satisfies  

1a5.0 ≤≤ .        (4.8) 

The result for 0 < a ≤ 0.5 are completely analogous. For a = 0.5,  f  becomes the tent 

map. Typical trajectory of the skew tent map system is given in Figure 33. In the 

simulation, the parameter a is equal to 0.6 and 1000 samples are given. 

 

 

 

 

 

Figure 33 1000 points of typical trajectory of the skew tent map system for a=0.6 
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4.2.2 Tent Map 

The tent map is defined [10] by 



 ≤≤−−

=+
elsewhere0

1)k(0if)1)k(21(a
)1k(

χχ
χ     (4.9) 

and represented in Figure 34. 

 

 

 

 

 

Figure 34 Tent map when a=0.78 

 

 

 

When a is between 0.5 and 1, trajectory of this map exhibits chaotic 

behavior. Typical trajectory of the tent map system is given in Figure 35. In the 

simulation, the parameter a is equal to 0.78 and 1000 samples are given. 
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Figure 35 1000 points of typical trajectory of the tent map system for a=0.78 

 

 

 

4.2.3 Symmetric Tent Map 

The symmetric tent map is defined [10] as 

)k(a1a)1k( χχ −−=+        (4.10) 

and represented in Figure 36. 
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Figure 36 Symmetric tent map when a=1.75. 

 

 

 

When a is between 1 and 2, the system has chaotic behavior. Typical 

trajectory of the symmetric tent map system is given in Figure 37. In the simulation, 

the parameter a is equal to 1.75 and 1000 samples are given. 
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Figure 37 1000 points of typical trajectory of the symmetric tent map system for 

a=1.75 

 

 

 

4.2.4 The Sensitivity to Initial States and Parameter a 

As explained in section 4.1, chaotic systems are sensitive to initial 

conditions. Starting from different initial states causes paths to diverge vastly, even 

though difference between initial states is too small. Therefore, performances of 

one-dimensional chaotic systems, which are presented in section 4.2, are affected by 

the difference between initial states. 

Effects of the initial state on the skew tent map are analyzed in Figure 38. In 

the simulation, a reference path is generated, namely x1, taking the initial state 0.87 

and the parameter a 0.75. Then second path, x2, is generated with the same 

parameter a.  The initial state of the second path differ by 0.00001 from x1’s. Last 

third path, x3, is generated with the same parameter a and its initial state differs by 

0.01 from x1’s. In Figure 38, there are two subfigures which shows these paths. In 
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the first subfigure, x1 and x2 is shown. Despite the small difference between the 

initial states, two paths diverge with time L. In the second subfigure, x1 and x3 is 

figured out. Because the difference between initial points becomes larger, i.e., 0.01 , 

these two paths diverge earlier. 

 

 

 

 
 

Figure 38 Effect of initial states on skew tent map when a=0.75, a) Initial states 

differ 0.00001, b) Initial states differ 0.01 
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The effects of the difference between initial states are similar on the tent map 

shown by Figure 39. In these simulations, a is taken 0.82 and reference initial state is 

0.63.  

 

 

 

 
 

Figure 39  The effects of initial states on the tent map for a=0.82, a) Initial states 

differ 0.00001, b) Initial states differ 0.01 
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The effects of the difference between initial states are similar on the 

symmetric tent map shown by Figure 40. In these simulations, a is taken 1.62 and 

reference initial state is 0.3.  

 

 

 

 
 

Figure 40 The effects of initial states on the symmetric tent map for a=1. 62 a) 

Initial states differ 0.00001, b) Initial states differ 0.01 
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Another important parameter affecting the chaotic systems is the parameter 

a. a guides how the system follows the path. A small difference on a causes system 

to follow irrelevant paths. This structure can be analyzed on Figure 41, Figure 42, 

and Figure 43 for different one-dimensional chaotic systems. 

In Figure 41, the initial state of the skew tent map is taken 0.87. The 

parameter a is taken 0.6 for the reference path. Then for the paths, namely x2 and x3, 

a is taken 0.61 and 0.8 respectively. 

 

 

 

 
 

Figure 41 The skew tent map paths with the same initial states and different a 

values, a) a differs 0.01, b) a differs 0.2 
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In Figure 42, the initial state of the tent map is taken 0.63. The parameter a is 

taken 0.7 for the reference path. Then for the paths, namely x2 and x3, a is taken 

0.71 and 0.8 respectively. 

 

 

 

 
 

Figure 42 The tent map paths with the same initial states and different a values, a) a 

differs 0.01, b) a differs 0.1 

 

 

 



 87 

In Figure 43, the initial state of the symmetric tent map is taken 0.3. The 

parameter a is taken 1.7 for the reference path. Then for the paths, namely x2 and x3, 

a is taken 1.71 and 1.8 respectively. 

 

 

 

 
 

Figure 43 The symmetric tent map paths with the same initial states and different a 

values, a) a differs 0.01, b) a differs 0.1 
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4.3. The Nonlinear Chaotic Algorithm Map ( NCA ) 

One-dimensional chaotic system with the advantages of high-level efficiency 

and simplicity has been widely used. However, their weakness, such as small key 

space and weak security, is disturbing. To overcome these drawbacks, a new chaotic 

algorithm is designed. The new algorithm has the advantages of high-level security, 

large key space. [11] 

The nonlinear chaotic algorithm map uses power function (1-x) β and tangent 

function instead of linear function. The NCA is defined as 

( ) ( )β
χαχλχ nnn tg −⋅⋅=+ 11            (4.11) 

where xn Є ( 0,1 ), n=0,1,2... . [11] 

The parameter λ is defined as 

.0,
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ctg      (4.12) 

 

Finally, parameter µ is obtained by experimental analysis; as a result µ=1-β-4 . 

Therefore, the NCA map is defined as follows: 
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1
1

1 4
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where xn ∈  (0,1), α  ∈  (0,1.4], β  ∈  [5,43] or xn ∈  (0,1), α  ∈  (1.4,1.5], β  ∈  

[9,38] or xn∈  ( 0,1 ), α  ∈  ( 1.5,1.57 ], β  ∈  [3,15]. The ranges of α  and β  are 

obtained by iteration experimental analysis. Figure 44 shows the iteration of the 

NCA map when x0=0.3, α =1.57, β =3.5. From these statistical data, it is seen that 

the new chaotic algorithm spreads the initial region over the entire phase space.  
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Figure 44 Iteration property of the NCA map 

 

 

 

Like other chaotic schemes, one-dimensional chaotic schemes, the NCA is 

sensitive to initial states and parameters α , β . A small change of these parameters 

will generate a completely different result. In the simulations, that shows these 

effects, initial state is 0.3, α  is 1.57 and β  is 3.5. Figure 45 shows the effect of the 

difference between initial states, which results different paths. Small changes on 

parameters α  and β cause similar effects as figured out at Figure 46 and Figure 47. 
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Figure 45 Effect of initial states on the NCA map, a) Initial states differ 0.00001, b) 

Initial states differ 0.01 
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Figure 46 Effect of β  on the NCA map, a) β  differs 0.00001, b) β  differs 0.01 
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Figure 47 Effect of α  on the NCA map, a) α  differs 0.00001, b) α  differs 0.01 
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CHAPTER 5 

  

 

 

APPLICATION OF ODSA TO CHAOTIC SYSTEMS 

 

 

 

As described in Chapter 4, chaotic signals can be used for secure 

communication applications. Communication systems with chaotic modulation and 

demodulation can be figured out by Figure 48. Binary digital signals are prepared by 

chaotic systems with different parameters on the transmitter side. If digital 0 is send 

to the transmitter, a signal source is switched to SYS1 to generate a chaotic sequence 

with parameter 1a . However, if digital 1 is send to the transmitter, the signal source 

is switched to SYS2 which generates a chaotic sequence with parameter 2a  . X1 and 

X2 are two finite-length chaotic sequences generated by the same type of system 

with two different parameters, 1a  and 2a . These signals are transmitted through 

communication channel and affected by Gaussian channel noise.  

At the receiver side, there are two optimum decoding based smoothing 

algorithm (ODSA) decoders to extract chaotically transmitted digital signals. These 

decoders have the knowledge of the parameters 1a  and 2a . A comparator, which is 

at the end of ODSA decoders, compares the outputs of ODSA parts and decides 

whether the transmitted signal is 0 or 1. 

To decide the transmitted binary digital signal, the comparator compares 

average estimation errors from the two ODSA decoders. Mean Square Errors 

(MSE’s) for ODSA is defined as 

( )
2L

1n

n1n ˆy
L

1
1MSE ∑

=

−= χ       (5.1) 
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( )
2L

1n

n2n ˆy
L

1
2MSE ∑

=

−= χ       (5.2) 

where, yn is the observation sequence for both MSE1 and MSE2. n1χ̂  and n2χ̂   are 

estimated state values with ODSA1 which uses chaotic parameter 1a  and ODSA2 

which uses chaotic parameter 2a  respectively. L is the length of chaotic sequence 

for each bit. For each transmitted bit, MSE1 and MSE2 are calculated. If the mean 

square error corresponding to parameter 1a  (demodulated by ODSA1) is smaller 

than the mean square error corresponding to parameter 2a  (demodulated by 

ODSA2), then comparator decides the transmitted signal as digital 0. Otherwise ( 

MSE2 < MSE1 ) digital 1 is decided.  

  

 

 

 

Figure 48 Communication Scheme with ODSA 

 

 

 

5.1. Application of ODSA on One Dimensional Chaotic Systems 

There are three types of one-dimensional chaotic systems mostly used in 

secure communication. A brief introduction about these chaotic systems is given in 

section 4.2. To transmit binary digital signals over the communication channels, one 
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dimensional chaotic modulation schemes can be used. To demodulate transmitted 

signal, which is affected by channel noise, ODSA could be a solution. 

In this section, the symmetric tent map, which is one of the one-dimensional 

chaotic systems, is used as the modulator that is figured out as SYS1 or SYS2 in 

Figure 48. First, models and assumptions to apply ODSA on the symmetric tent map 

are given. Then the performance of ODSA for different observation noise variances 

is studied in clear environment. To analyze the performance of ODSA on chaotically 

modulated signals in the presence of interference, simulations are run for different 

variance values of interference. After that, BER performance of the symmetric tent 

map for the application which has the initial states information is analyzed. Last, 

complexity analysis of ODSA on one dimensional chaotic tent map is given. 

 

5.1.1 Models and Assumptions 

To analyze the application of ODSA on one-dimensional chaotic systems, it 

is assumed that signals are modulated using the symmetric tent map scheme. The 

symmetric tent map is formulated as 

)k(a1a)1k( χχ −−=+       (5.3) 

where a is between 1 and 2.   

The motion and observation models in Eq. (2.1) are changed as  

 

Motion model  : )k(a1a)1k( χχ −−=+  , 

 Observation model : z(k) = x (k) + v (k)      (5.4) 

 

in clear environment, and   

 

Motion model  : )k(a1a)1k( χχ −−=+  , 

 Observation model : z(k) = g (k, x (k), I (k), v (k))     (5.5) 
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in presence of interference. g (.) function is described in 5.1.2.2.1 and 5.1.2.2.2. 

The constant parameter a refers as the input parameter u(k) in (2.1) . 

However, parameter a is constant throughout time k unlike u(k).  

To analyze the performance of ODSA on chaotic communication systems, 

the transmitter and the receiver sides are simulated. In the transmitter side, randomly 

generated binary signals with equal probability are used. These binary signals are 

modulated using the Eq. (5.5) with the parameter  1a  for binary signal 0 and 2a  for 

binary signal 1. Modulated signals are transmitted over the noisy communication 

channel. This channel adds only Gaussian noise, v(k), to the modulated signals in 

clear environment whereas in presence of interference I(k) is added to the modulated 

signals.   

In the receiver side, these signals that are modulated at the transmitter side 

and affected by channel noise are used to estimate transmitted states. As shown 

Figure 48, there are two ODSA’ s which use  1a  and 2a . Using differences between 

the estimated states and observation sequences, comparator decides whether 

transmitted signal parameter is  1a  or 2a  that refers to 0 or 1. 

As explained in 4.2.4, the receiver side should know the parameter  1a  and 

2a . In addition, the initial states of the chaotically modulated sequence are 

important. In the simulations, it is assumed that the initial states of the transmitted 

signals are random. 

At the last state, the path which variates minimum from the observation 

values is chosen for each ODSA’ s. Then the comparator uses the sum of these 

variations to decide whether the transmitted signal is  1a  or 2a .  

In the presence of interference, the path that has the maximum metric values 

is chosen for each ODSA’s at the last state. Then the comparator uses these metric 

values to decide whether the transmitted signal is  1a  or 2a . 

In some applications, the receiver side can have the knowledge of the initial 

states. Having the information about the initial states, receiver parts estimates 

transmitted signals, which are affected by observation noise and interference.   
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5.1.2 Performance of ODSA on the Symmetric Tent Map Not Having 

the Knowledge of Initial States 

In this section, bit error rate (BER) performance of ODSA on the symmetric 

tent map is analyzed for the applications which are in clear environment and under 

interference. 

Simulations are run to get BER performance of ODSA. For each simulation, 

1000 binary signals with equal probability are generated randomly. For each bit, 

chaotically modulated signal sequence is generated. Initial state of chaotically 

modulated signal sequence is assumed uniformly distributed.      

In the applications the receiver sides does not have the knowledge of initial 

states. 

The parameters which are used to refer 0 and 1 are taken as 1a =1.4, 2a =1.8. 

Also, simulations are run for 1a =1.4, 2a =1.6.  

 

5.1.2.1 Performance of ODSA on the Symmetric Tent Map in 

Clear Environment 

In order to determine the effects of the observation noise on the performance 

of the system, simulations are run for different variance values of observation noise 

which are 0.01, 0.05, 0.1 and 1 . The expected value of the observation noise is taken 

as 0. Variance values of observation noise are written on the first column of the BER 

performance tables, Table 23, Table 24, and Table 25. To select the enough the 

number of samples, simulations are run for 3 different numbers of samples L. 

System parameters are; 

[ 1a , 2a ]    = [1.4, 1.8] and [1.4, 1.6], 

 expected value of observation noise  = 0 , 

 quantization # of initial states   = 1000 , 

 gate size      = 1/5000 . 
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Table 23 BER performance of the symmetric tent map in clear environment, the 
number of samples L=10  

 

 1a =1.4, 2a =1.8 1a =1.4, 2a =1.6 

 BER BER 

σ
2(vk)=0.01 0.017 0.111 

σ
2(vk)=0.05 0.188 0.297 

σ
2(vk)=0.1 0.327 0.412 

σ
2(vk)=1 0.483 0.468 

 

 

 

Table 24 BER performance of the symmetric tent map in clear environment, the 
number of samples L=20 

 

 1a =1.4, 2a =1.8 1a =1.4, 2a =1.6 

 BER BER 

σ
2(vk)=0.01 0.027  0.048 

σ
2(vk)=0.05 0.051 0.179 

σ
2(vk)=0.1 0.150 0.333 

σ
2(vk)=1 0.457 0.488 
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Table 25 BER performance of the symmetric tent map in clear environment, the 
number of samples L=30 

 

 1a =1.4, 2a =1.8 1a =1.4, 2a =1.6 

 BER BER 

σ
2(vk)=0.01 0.005                    0.069                   

σ
2(vk)=0.05 0.056                     0.109 

σ
2(vk)=0.1 0.073                     0.223 

σ
2(vk)=1 0.475                     0.474 

 

 

 

 
 

Figure 49 The Symmetric Tent Map with 1a =1.4 , 2a =1.8, 2σ (v(k))=0.01, the 

number of samples L=30 
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Figure 50 The Symmetric Tent Map with 1a =1.4 , 2a =1.6, 2σ (v(k))=0.01, the 

number of samples L=30 

 

 

 

To see the effect of the number of samples, L, Table 23, Table 24, and Table 

25 can be summarized by following figures (Figure 51 and Figure 52). From these 

figures, it is observed that the number of samples, L can be chosen as 30. 
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Figure 51 BER performance for different numbers of samples, L 
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Figure 52 BER performance for different numbers of samples, L 

 

 

 

As shown from the above tables, BER performances of ODSA on the symmetric tent 

map are affected by observation noise variance directly. When the variance of the 

observation noise increases, BER performance of ODSA decreases.In addition, BER 

performance depends on parameters 1a  and 2a . While 1a  and 2a  is apart from each 

other, BER performance increases. However, this situation decreases the security of 

the chaotic system because of being easily distinguishable. Moreover, Table 23, 

Table 24 and Table 25 shows that, BER performance of ODSA on the symmetric 

tent map is better when the number of samples, L is equal to or greater than 20. 
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5.1.2.2 Performance of ODSA on the Symmetric Tent Map in 

Presence of Interference 

In the previous section, the performance of ODSA was given on the 

symmetric tent map in clear environments. In this section, the performance of ODSA 

on one-dimensional chaotic system under interference is analyzed. Simulations are 

run for three different observation models. In the first model, interference parameter 

I(k) is directly added to observation noise parameter v(k). Whereas in the second 

model, observation noise parameter v(k) is multiplied by interference parameter. In 

the last model, both x(k) and v(k) are multiplied by I(k).   

5.1.2.2.1 Observation model I 

In these simulations, motion and observation models are described as 

Motion model  : )k(a1a)1k( χχ −−=+  , 

 Observation model : z(k) =  x (k) + I (k) + v (k)     (5.6) 

where the random vectors x(0), v(l), v(m), I(n), and I(p) are independent for all l, m, 

n, p. 

As mentioned in 2.10, the observation z(k) is a linear function of the normal 

observation vector v(k) and the conditional probability density function of z(k), 

given that x(k)=xq
i(k) and I(k), is multivariate normal density function. Then it can 

be rewritten as  

( ) ( )( ) ( )kvdlINkIkzp σ,x,x| i
q

i
q +≈     

 ( )( ) ( ) ( )( ) ( )∑ =≈
l

dldl IpIkIkzpkzp *,x|x| i
q

i
q    (5.7) 

Using (5.7) for metric calculation, simulations are run. For each simulation, 

1000 binary signals with equal probability are generated randomly. Initial states are 

generated uniformly in the range of [ 0 , 1 ] and maximum number of the states is 

not limited. 

The parameters which are used to refer 0 and 1 are taken as 1a =1.4, 2a =1.8. 

Also, simulations are run for 1a =1.4, 2a =1.6. 
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In order to determine effects of the observation noise on the performance of 

the system, simulations are run different variance values of observation noise which 

are 0.01, 0.05, and 0.1 . The expected value of the observation noise is taken as 0. 

Because BER performances of ODSA on chaotic systems is better when 

number of samples, L is equal to 20 or 30, simulations are run for these sampling 

number values. Variance values of observation noise are written in the first row of 

the BER performance tables, Table 26 and Table 27. Variance values of 

interferences are given in the first column of the same tables. 

System parameters are; 

[ 1a , 2a ]    = [1.4, 1.8] and [1.4, 1.6], 

 expected value of observation noise  = 0 , 

expected value of interference  = 0 , 

quantization level of interference  = 5, 

 quantization # of initial states   = 1000 , 

 gate size      = 1/5000 
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Table 26 BER performance of the symmetric tent map under interference, the 

number of samples L=20 

 

 σ
2(vk)=0.01 σ

2(vk)=0.05 σ
2(vk)=0.1 

 1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 
1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 
1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 

 BER BER BER BER BER BER 

no interference 0.027 0.048 0.051 0.179 0.150 0.333 

2σ (I(k))=0.001 0.006 0.099 0.101 0.273 0.232 0.389 

2σ (I(k))=0.01 0.043 0.160 0.133 0.274 0.224 0.393 

2σ (I(k))=0.1 0.234 0.387 0.298 0.444 0.369 0.437 

 

 

 

Table 26 can be summarized by the following figures (Figure 53 and Figure 

54). 



 106 

a1=1.4, a2=1.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

var(vk)

B
E

R

clear var(I(k))=0.001 var(I(k))=0.01 var(I(k))=0.1

 
 

Figure 53 BER performance for different interference variance values at model I, 

the number of samples L=20 
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Figure 54 BER performance for different interference variance values at model I, 

the number of samples L=20 
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Table 27 BER performance of the symmetric tent map under interference, the 

number of samples L=30 

 σ
2(vk)=0.01 σ

2(vk)=0.05 σ
2(vk)=0.1 

 1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 
1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 
1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 

 BER BER BER BER BER BER 

no interference 0.005 0.069 0.056 0.109 0.073 0.223 

2σ (I(k))=0.001 0.014 0.046 0.053 0.183 0.128 0.336 

2σ (I(k))=0.01 0.019 0.088 0.063 0.215 0.163 0.328 

2σ (I(k))=0.1 0.150 0.333 0.222 0.383 0.310 0.427 
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Figure 55 1a =1.4, 2a =1.8, 2σ (v(k))=0.05, 2σ (I(k))=0.01, number of samples L=30 
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Figure 56 1a =1.4, 2a =1.6, 2σ (v(k))=0.05, 2σ (I(k))=0.01, number of samples L=30 

 

 

 

 

Table 27 can be summarized by the following figures (Figure 57 and Figure 

58).  
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Figure 57 BER performance for different interference variance values at model I, 

the number of samples L=30 
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Figure 58 BER performance for different interference variance values at model I, 

the number of samples L=30 

 

 

 

Basically, BER performance of the system is more successful when L is 30. 

Also it can be said that, the interference is more effective on the symmetric tent map 

when a’s are close to each other. 

 

5.1.2.2.2 Observation model II 

In these simulations, motion and observation models are described as 

Motion model  : )k(a1a)1k( χχ −−=+  , 

 Observation model : z(k) =  x (k) + (1+I2 (k) )  v (k)  (5.8) 

where the random vectors x(0), v(l), v(m), I(n), and I(p) are independent for all l, m, 

n, p. 



 113 

As mentioned in 2.10, the observation z(k) is a linear function of the normal 

observation vector v(k) and the conditional probability density function of z(k), 

given that x(k)=xq
i(k) and I(k), is multivariate normal density function with mean  

xq
i(k)  and variance value ( ) kvdldl I 2222 1 σσ += . 

Then it can be rewritten as  

( ) ( )( ) ( )dlNkIkzp 2i
q

i
q ,x,x| σ≈     

 ( )( ) ( ) ( )( ) ( )∑ =≈
l

dldl IpIkIkzpkzp *,x|x| i
q

i
q    (5.9) 

Using (5.9) for metric calculation, simulations are run. For each simulation, 

1000 binary signals with equal probability are generated randomly. Initial states are 

generated uniformly in the range of [ 0 , 1 ] and maximum number of the states is 

not limited. 

The parameters which are used to refer 0 and 1 are taken as 1a =1.4, 2a =1.8. 

Also, simulations are run for 1a =1.4, 2a =1.6. 

In order to determine effects of the observation noise on the performance of 

the system, simulations are run different variance values of observation noise which 

are 0.01, 0.05, and 0.1 . The expected value of the observation noise is taken as 0. 

Simulations are run for 30 sample values. Variance values of observation 

noise is the first row of the BER performance table, Table 28. Variance values of 

interferences are given in the first column of  this table.  

System parameters are; 

[ 1a , 2a ]    = [1.4, 1.8] and [1.4, 1.6], 

 expected value of observation noise  = 0 , 

expected value of interference  = 0 , 

quantization level of interference  = 5, 

 quantization # of initial states   = 1000 , 

 gate size      = 1/5000 
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Table 28 BER performance of the symmetric tent map under interference, the 
number of samples L=30 

 

 σ
2(vk)=0.01 σ

2(vk)=0.05 σ
2(vk)=0.1 

 1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 
1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 
1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 

 BER BER BER BER BER BER 

no interference 0.005 0.069 0.056 0.109 0.073 0.223 

2σ (I(k))=0.001 0.009                  0.047 0.063                     0.189 0.141 0.332 

2σ (I(k))=0.01 0.010                    0.049 0.065                     0.206 0.147 0.353 

2σ (I(k))=0.1 0.011                      0.060 0.073              0.215 0.169 0.339 

 

 

 

Table 25can be summarized by following figures ( Figure 59 and Figure 60). 
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Figure 59 BER performance for different interference variance values at model II 
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Figure 60 BER performance for different interference variance values at model II 

 

 

 

5.1.2.2.3 Observation model III 

In these simulations, motion and observation models are described as 

Motion model  : )k(a1a)1k( χχ −−=+  , 

 Observation model : z(k) = x (k) I(k) + (1+I2 (k) )  v (k)  (5.10) 

where the random vectors x(0), v(l), v(m), I(n), and I(p) are independent for all l, m, 

n, p.  

Because the state vector x(k) is multiplied by interference vector I(k) in the 

observation model, then the state vector fades. Because of this, this channel can be  

thought as fading channels. 
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As mentioned in 2.10, the observation z(k) is a linear function of the normal 

observation vector v(k) and the conditional probability density function of z(k), 

given that x(k)=xq
i(k) and I(k), is multivariate normal density function with mean  

xq
i*Idl and variance value ( ) kvdldl I 2222 1 σσ += . 

Then it can be rewritten as  

( ) ( )( ) ( )dldlINkIkzp 2i
q

i
q ,*x,x| σ≈     

 ( )( ) ( ) ( )( ) ( )∑ =≈
l

dldl IpIkIkzpkzp *,x|x| i
q

i
q    (5.11) 

Using (5.11) for metric calculation, simulations are run. For each simulation, 

1000 binary signals with equal probability are generated randomly. Initial states are 

generated uniformly in the range of [ 0 , 1 ] and maximum number of the states is 

not limited. 

The parameters which are used to refer 0 and 1 are taken as 1a =1.4, 2a =1.8. 

Also, simulations are run for 1a =1.4, 2a =1.6. 

In order to determine effects of the observation noise on the performance of 

the system, simulations are run different variance values of observation noise that 

are 0.01, 0.05, and 0.1. The expected value of the observation noise is taken as 0. 

Simulations are run for 30 sample values. Variance values of observation 

noise is the first row of the BER performance table, Table 29. Variance values of 

interferences are given in the first column of  this table. 

System parameters are; 

[ 1a , 2a ]    = [1.4, 1.8] and [1.4, 1.6], 

 expected value of observation noise  = 0 , 

expected value of interference  = 1 , 

quantization level of interference  = 5, 

 quantization # of initial states   = 1000 , 

 gate size      = 1/5000 
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Table 29 BER performance of the symmetric tent map under interference, number 
of samples L=30 

 

 σ
2(vk)=0.01 σ

2(vk)=0.05 σ
2(vk)=0.1 

 1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 
1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 
1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 

 BER BER BER BER BER BER 

no interference 0.005 0.069 0.056 0.109 0.073 0.223 

2σ (I(k))=0.001 0.031 0.105 0.243 0.390 0.427                     0.479 

2σ (I(k))=0.01 0.050 0.096 0.343 0.436 0.448                      0.48 

2σ (I(k))=0.1 0.139 0.166 0.330 0.450 0.490 0.498 

 

 

 

Table 29 can be summarized by following figures (Figure 61 and Figure 62). 



 119 

 

a1=1.4, a2=1.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

var(vk)

B
E

R

clear var(Ik)=0.001 var(Ik)=0.01 var(Ik)=0.1

 

Figure 61 BER performance for different interference variance values at model III 
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Figure 62 BER performance for different interference variance values at model III 

 

 

 

Analyzing Table 27, Table 28, and Table 29, it is observed that, when 

interference is added to the observation models as a multiplier, BER performance of 

the system decreases depending on the variance values of interference. Interference 

is more effective when it is multiplied by x(k) and v(k). 

5.1.3 Performance of ODSA on the Symmetric Tent Map Having the 

Knowledge of Initial States 

As described in section 5.1.2, chaotic communication is based on the 

transmition in which binary signals are transmitted using the chaotic signals. In the 

transmitter side, to represent 0 or 1 a signal block is generated which is transmitted 

over the communication channel and reached to the receivers. These receivers do not 
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have any information about initial states of the transmitted signals. For this case, 

BER performance of ODSA on the symmetric tent map was given in 5.1.2 and 

5.1.2.2. 

In this section, it is assumed that receiver sides have information about initial 

states of the transmitted signal in addition to 1a  and 2a  , and simulation are run to 

have BER performance of ODSA for this case. 

For each simulation, 1000 binary signals with equal probability are generated 

randomly. Initial states of chaotically modulated signal sequences are taken constant. 

The parameters which are used to refer 0 and 1 are taken as 1a =1.4, 2a =1.8. Also, 

simulations are run for 1a =1.4, 2a =1.6.  

In order to determine the effects of the observation noise on the performance 

of the system, simulations are run for different variance values of observation noise 

which are 0.01, 0.05, 0.1 and 1. The expected value of the observation noise is taken 

as 0. Variance values of observation noise are written on the BER performance 

tables. The number of samples L is taken 30. 

In the simulations, the receiver sides have the information about the initial 

state value. This information is that the initial state is one of the element of 

sequences which is formulated as; 

....,3,2,1,
2

12
nk

n

k
xk =

⋅

−
=  where n is equal to initial state quantization 

level, 100. In the simulations, chaotically modulated signal sequences are generated  

as 0.305 by taking  k=31.  

System parameters are; 

[ 1a , 2a ]    = [1.4, 1.8] and [1.4, 1.6], 

 expected value of observation noise  = 0 , 

 quantization # of initial states   = 100 , 

 gate size      = 1/5000 

initial state     = 0.305 . 
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For the clear environment application, BER performance of ODSA on the 

symmetric tent map is given by Table 30 Variance values of observation noise are 

written in the first column of the BER performance table, Table 30. Analyzing both 

Table 23 and Table 30, there is an improvement on BER performance of ODSA in 

clear environment applications in which receiver sides know the initial states.  

 

 

 

Table 30 BER performance of the symmetric tent map in clear environment  

 

 1a =1.4, 2a =1.8 1a =1.4, 2a =1.6 

 BER BER 

2σ (vk)=0.001 0 0 

2σ (vk)=0.01 0 0.009 

2σ (vk)=0.05 0.032 0.079 

2σ (vk)=0.1 0.070 0.209 

2σ (vk)=1 0.467 0.494 

 

 

 

In presence of interference for the model I application as formulated in (5.6), 

BER performance of ODSA is summarized by Table 31. Variance values of 

observation noise is the first row of the BER performance table, Table 31. Variance 

values of interferences are given in the first column of this table. When Table 31 is 

compared with Table 27, in the applications having the knowledge of initial states 

there is significant decrease on BER performance of ODSA.  
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Table 31 BER performance of the symmetric tent map under interference, model I 

 σ
2(vk)=0.01 σ

2(vk)=0.05 σ
2(vk)=0.1 

 1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 
1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 
1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 

 BER BER BER BER BER BER 

no interference 0 0.009 0.032 0.079 0.070 0.209 

2σ (I(k))=0.001 0.001 0.007 0.041 0.092 0.095 0.202 

2σ (I(k))=0.01 0.006 0.028 0.045 0.09 0.104 0.217 

2σ (I(k))=0.1 0.136 0.27 0.151 0.274 0.232 0.349 

 

 

 

Table 31 can be summarized by the following figures, Figure 63 and Figure 

64. 
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Figure 63 BER performance of ODSA knowing the initial states at model I 
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Figure 64 BER performance of ODSA knowing the initial states at model I 

 

 

 

In presence of interference for the model II application as formulated in 

(5.8), BER performance of ODSA is summarized by Table 32. Variance values of 

observation noise are written in the first column of the BER performance table, 

Table 32.When Table 32 is compared with Table 28, it can be concluded that having 

the knowledge of initial states causes a decrease on BER performance of ODSA. 
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Table 32 BER performance of the symmetric tent map under interference, model II 

 σ
2(vk)=0.01 σ

2(vk)=0.05 σ
2(vk)=0.1 

 1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 
1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 
1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 

 BER BER BER BER BER BER 

no interference 0 0.009 0.032 0.079 0.070 0.209 

2σ (I(k))=0.001 0 0.004 0.031 0.097 0.077 0.195 

2σ (I(k))=0.01 0 0.005 0.036 0.094 0.101 0.194 

2σ (I(k))=0.1 0 0.008 0.034 0.117 0.113 0.226 

 

 

 

Table 32 can be summarized by the following figures (Figure 65 and Figure 

66). 
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Figure 65 BER performance of ODSA knowing the initial states at model II 
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Figure 66 BER performance of ODSA knowing the initial states at model II 

 

 

 

In presence of interference for the model III application, BER performance 

of ODSA is summarized by Table 33. Similar effects of having information about 

initial states on BER performance of ODSA are realized when comparing Table 33 

and Table 29. 
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Table 33 BER performance of the symmetric tent map under interference, model III 

 σ
2(vk)=0.01 σ

2(vk)=0.05 σ
2(vk)=0.1 

 1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 
1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 
1a =1.4 

2a =1.8 
1a =1.4 

2a =1.6 

 BER BER BER BER BER BER 

no interference 0 0.009 0.032 0.079 0.070 0.209 

2σ (I(k))=0.001 0.128 0.254 0.468 0.432 0.496 0.479 

2σ (I(k))=0.01 0.144 0.284 0.435 0.465 0.503 0.486 

2σ (I(k))=0.1 0.346 0.373 0.385 0.445 0.468 0.493 

 

 

 

 

 

 

Table 26 can be summarized by the following figures (Figure 67 and Figure 

68). 
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Figure 67 BER performance of ODSA knowing the initial states at model III 
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Figure 68 BER performance of ODSA knowing the initial states at model III 

 

 

 

5.1.4 Complexity Analysis of ODSA on One Dimensional Chaotic 

Systems 

Brief information about one-dimensional chaotic systems is given in 4.2. In 

one-dimensional chaotic systems with or without interference, motion models use 

x(k) and a as parameters. Only parameter which is quantizated is x(k) at time k=0, 1, 

2 …, L. Other parameters defined in ODSA such as w(k) and u(k) are not used in 

one-dimensional chaotic systems. Therefore, complexity of ODSA is decreased. 

In addition, observation models use I(k) only in  the presence of interference. 

In clear environment, there is not any quantizated parameter and complexity of 

ODSA is decreased one more time. 
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The runtime of the program written for ODSA is determined by the number 

of initial states. Let the maximum time consumption at each state be st  at time k in 

presence of interference. Then, since the time consumption at each state will be 

approximately same, the time consumption will be Lnt xs . The total program 

runtime will be equal to 2 Lnt xs  because of two ODSA’s. 

Moreover, in clear environment, time consumption at each state is smaller 

than st  , then the total program runtime is less than 2 Lnt xs  . 

 

To have a sense about the program runtime, following simulations are run. 

The parameters are kept similar with in the case 2.11.2. 

Motion and observation models are  

Motion model  : )k(a1a)1k( χχ −−=+  , 

 Observation model : z(k) =  x (k) + I (k) + v (k).   

Parameters used in these simulations are as follows; 

• Initial states are uniform in the range of 0 and 1,  

• variance of I(k)=0.01, expected value of I(k)=0, quantization level of I(k)=3, 

• quantization level of initial states, Q(x(0)) =100. 

 

As shown in Figure 8 and Figure 69, runtime of simulations in one dimensional 

chaotic systems is less than general applications of ODSA which is due to the 

number of  quantized parameters.  
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Figure 69 Program runtime for one bit execution on the symmetric tent map 

 

 

 

5.2. Application of ODSA on the NCA Map 

Another application of ODSA on chaotic system is the NCA map that is 

described in 4.3.  

In this section, the nonlinear chaotic algorithm map is used as the motion 

model. First, models and assumptions to applicate ODSA on NCA are given. Then 

the performance of ODSA for different observation noise variances is studied.  

5.2.1 Models and Assumptions 

To analyze the application of ODSA to the NCA map, it is assumed that 

signals are modulated using parameters in the range of,  

xn ∈  ( 0, 1 ) ,  
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α  ∈   ( 0, 1.4 ] ,  

β  ∈   [ 5, 43 ]. 

Motion model is 

( ) ( ) ( )β

β

χαχ
ββ

α
βχ nnn tgctg −⋅⋅








+⋅









+
⋅−= −

+ 1
1

1
1

1 4
1 ,   (5.12) 

and observation model is ; 

y (k) = x (k) + v (k)      (5.13) 

in clear environment.  In presence of interference observation model is ; 

y(k) = g (k, x (k), I (k), v (k))         (5.14) 

g (.) function is described in 5.1.2.2.1 and 5.1.2.2.2. In the motion model, there are 

two constant parameter α and β .These parameters refer as the input parameter u(k) 

in Eq. (2.1) . 

To analyze the performance of ODSA on the nonlinear chaotic 

communication system, the transmitter and the receiver sides are simulated. In the 

transmitter side, randomly generated binary signals with equal probability are used. 

Whether being 0 or 1, these binary signals are modulated using the Eq. (5.12). In Eq. 

(5.12) there are two parameters α  and β  and binary signals can be modulated one 

of these parameters. For example, assuming β  is constant, binary signals are 

modulated with the parameters 1α  or 2α . On the other hand, binary signals can be 

modulated with the parameters 1β  or 2β  where α  is constant. Moreover, to increase 

the security of the communication different α  and β  pairs can be used where 0 is 

represented by [ 1α , 1β  ] and 1 is represented by [ 2α , 2β ]. 

After modulating binary signals, modulated signals are transmitted over the 

noisy communication channel. This channel adds Gaussian noise, v(k), and 

interference noise to the modulated signals. 

In the receiver side, these noisy signals are used to estimate transmitted 

states. As explained in 5.1, on the receiver side there are two ODSA’s. Each ODSA 
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uses different parameters, for example, if one of two ODSA’s uses 1α , other one 

uses 2α  where β  is constant. Using these parameters, they calculate differences 

between the estimated states and observation sequence. Each ODSA sends total 

differences to comparator that decides whether transmitted signal parameter is 1α  or 

2α . that refers 0 or 1. 

As explained in 4.3, the receiver side should know the parameters 1α , 

2α .and β . In addition, initial states of the chaotically modulated sequence are 

important. In the simulations, the receiver sides have the information about the 

initial state value. This information is that the initial state is one of the element of 

sequences which is formulated as; 

....,3,2,1,
2

12
nk

n

k
xk =

⋅

−
=  where n is equal to initial state quantization 

level, 10. In the simulations, chaotically modulated signal sequences are generated  

as 0.25 by taking k=3. 

 

5.2.2 Performance of ODSA on the NCA Map in Clear Environment 

 In this section, to analyze performance of ODSA on the nonlinear chaotic 

system, simulation results are given. For each simulation, 1000 binary signals with 

equal probability, 0 and 1, are generated randomly. For each bit, initial state is taken 

constant as given 5.2.1 because of the sensitivity to initial states . In addition, 

maximum number of the states is not limited and in the observation model, 

interference parameter is not added to simulate clear environment. 

In order to determine effects of the parameters on BER performance 

simulations are run both α and β .  

5.2.2.1 Simulations for constant parameter α  

These simulations are run for different values of the parameter β  as variance 

values of observation noise changing. The parameter α  is taken constant. The 

parameters values used in the simulations are; 

 variance of interference noise   = 0 , 
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 expected value of interference noise  = 0 , 

expected value of observation noise  = 0 , 

 quantization # of initial states   = 10 , 

 number of samples, L    = 30 , 

 gate size      = 1/5000 , 

α       = 0.9, 

initial state     = 0.25 . 

 

BER performance of the system with parameter β  is given Table 34. In the 

first column of Table 34, variance values of observation noise are given. Figure 70 

and Figure 71 show chaotically modulated signal sequences for first 10 bits of 

randomly generated 1000 bits. In these figures, observation signal sequences and 

estimated state values are figured out on the same time. 

 

 

 

Table 34 BER performance of the system with parameter β  

 

 
1β =5 

2β =5.1 

1β =15 

2β =25 

1β =10 

2β =30 

1β =10 

2β =11.5 

 BER BER BER BER 

2σ (v(k))=0.001 0 0 0 0 

2σ (v(k))=0.01 0 0 0 0 

2σ (v(k))=0.05 0 0.008 0 0 

2σ (v(k))=0.1 0 0.035 0.008 0.007 

2σ (v(k))=0.5 0.141 0.264 0.222 0.268 
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Figure 70 The NCA Map with parameter 1β =15, 2β =25  
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Figure 71 The NCA Map with parameter 1β =10, 2β =30 

 

 

 

5.2.2.2 Simulations for constant parameter β  

These simulations are run for different values of the parameter α  as variance 

values of observation noise changing. the parameter β  is taken constant. The 

parameters values used in the simulations are; 

 variance of interference noise  = 0 , 

 expected value of interference noise = 0 , 

expected value of observation noise = 0 , 

 # of initial states   = 10, 

 number of samples, L   = 30 , 
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 gate size     = 1/5000 , 

β      = 10 , 

initial state    = 0.55 . 

In the first column of Table 35, variance values of observation noise are 

given. Figure 72 and Figure 73 show chaotically modulated signal sequences for 

first 10 bits of randomly generated 1000 bits. In these figures, observation signal 

sequences and estimated state values are figured out on the same time. 

 

 

 

Table 35 BER performance of the system with parameter α  

 

 1α =0.4, 2α =1.2 1α =0.8, 2α =1.2 

 BER BER 

2σ (v(k))=0.001 0 0 

2σ (v(k))=0.01 0 0 

2σ (v(k))=0.05 0.001 0.01 

2σ (v(k))=0.1 0.030 0.053 

2σ (v(k))=0.5 0.245 0.290 
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Figure 72 The NCA Map with parameter 1α =0.4, 2α =1.2 
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Figure 73 The NCA Map with parameter 1α =0.8, 2α =1.2 

 

 

 

5.2.3 Performance of ODSA on the NCA Map in Presence of 

Interference 

In this section, to analyze performance of ODSA on the nonlinear chaotic 

system, simulation results are given.  In the simulations three observation models are 

used. For each simulation, 1000 binary signals with equal probability are generated 

randomly. For each bit, initial state is taken constant because of the sensitivity to 

initial states. 

In the first observation model, interference parameter is added to the 

summation of state vector and observation noise vector. 
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In the second observation model, observation vector is multiplied by 

interference parameter whereas the state vector is not affected by interference. 

In last observation model, both observation noise vector and state vector are 

multiplied by interference. 

5.2.3.1 Observation model I 

In these simulations, motion model is described in (5.12). Observation model 

is 

     z(k) =  x (k) + I (k) + v (k)     (5.15) 

 

In order to determine effects of the parameters on BER performance 

simulations are run both the parameters α and β.   

 

5.2.3.1.1 Simulations for constant parameter α  

In this section, effects of the interference noise on the NCA Map are 

analyzed. On the NCA map the parameter α  is taken as constant whereas β  is used 

to refer 0 and 1. Simulations are run for different variances of interference noise. 

System parameters used in the simulations are; 

 expected value of observation noise  = 0 , 

 quantization # of initial states   = 10, 

 number of samples, L    = 30 , 

 gate size      = 1/5000 , 

α       = 0.9 , 

initial state     = 0.25 . 

 

Following simulations are run for different values of the parameters [ 1β , 2β ]. 

Variance values of the interference noise are 0.001, 0.01, 0.1 and 1. Expected value 

of the interference noise is 0 and its quantization level is 3. 
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BER performance of the system with parameter β  is given Table 36. In the 

first column of Table 36, variance values of interference are given. In the first row, 

variance values of observation noise are given. 

 

 

 

Table 36 BER performance of the system with different values of  2σ (I(k)) 

 

 2σ (vk)=0.001 2σ (vk)=0.01 2σ (vk)=0.1 

 
1β =15 

2β =25 
1β =10 

2β =30 
1β =15 

2β =25 
1β =10 

2β =30 
1β =15 

2β =25 
1β =10 

2β =30 

 BER BER BER BER BER BER 

no interference 0 0 0 0 0.035 0.008 

2σ (I(k))=0.001 0 0 0 0 0.043 0.014 

2σ (I(k))=0.01 0 0 0 0 0.066 0.027 

2σ (I(k))=0.1 0.038 0.019 0.064 0.039 0.153 0.093 

2σ (I(k))=1 0.412 0.396 0.401 0.406 0.412 0.418 

 

 

 

Table 36 can be summarized by following figures (Figure 74 and Figure 75). 
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Figure 74 NCA BER performance for interference variance values,  1β  =15, 2β  

=25 
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Figure 75 NCA BER performance for interference variance values,     

1β =10, 2β =30 

 

 

 

5.2.3.1.2 Simulations for constant parameter β  

In this section, effects of the interference noise on the NCA Map are 

analyzed. On the NCA map the parameter β  is taken as constant whereas α  is used 

to refer 0 and 1. Simulations are run for different variances of interference noise. 

System parameters used in the simulations are; 

 expected value of observation noise  = 0 , 

 quantization # of initial states   = 10, 

 number of samples, L    = 30 , 

 gate size      = 1/5000 , 
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β       = 10 , 

initial state     = 0.55  . 

 

Following simulations are run for different values of the parameters [ 1α  2α ]. 

Variance values of the interference noise are 0.001, 0.01, 0.1 and 1. Expected value 

of the interference noise is 0 and its quantization level is 3. 

BER performance of the system with parameter α  is given Table 37. In the 

first column of Table 37, variance values of interference are given. In the first row, 

variance values of observation noise are given. 

 

 

 

Table 37 BER performance of the system with different values of  2σ (I(k)) 

 

 2σ (vk)=0.001 2σ (vk)=0.01 2σ (vk)=0.1 

 
1α =0.4, 

2α =1.2 

1α =0.8, 

2α =1.2 

1α =0.4, 

2α =1.2 

1α =0.8, 

2α =1.2 

1α =0.4, 

2α =1.2 

1α =0.8, 

2α =1.2 

 BER BER BER BER BER BER 

no interference 0 0 0 0 0.030 0.053 

2σ (I(k))=0.001 0 0 0 0 0.020 0.068 

2σ (I(k))=0.01 0 0 0 0 0.048 0.067 

2σ (I(k))=0.1 0.038 0.060 0.046 0.100 0.129 0.149 

2σ (I(k))=1 0.405 0.432 0.386 0.427 0.376 0.448 
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Table 37 can be summarized by following figures ( Figure 76 and Figure 77). 
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Figure 76 NCA BER performance for interference variance values, 1α =0.4, 2α =1.2 



 148 

 

alpha1=0.8, alpha2=1.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.001 0.011 0.021 0.031 0.041 0.051 0.061 0.071 0.081 0.091

var(vk)

B
E

R

clear var(Ik)=0.001 var(Ik)=0.01 var(Ik)=0.1

 
 

Figure 77 NCA BER performance for interference variance values, 1α =0.8, 2α =1.2 

 

 

 

5.2.3.2 Observation model II 

In these simulations, motion model is described in (5.12). Observation model 

is 

    z(k) =  x (k) + (1+I2 (k) )  v (k)     (5.16) 

 

In order to determine effects of the parameters on BER performance 

simulations are run both the parameters α  and β . 
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5.2.3.2.1 Simulations for constant parameter α  

In this section, effects of the interference noise on the NCA Map are 

analyzed. On the NCA map the parameter α  is taken as constant whereas β  is used 

to refer 0 and 1. Simulations are run for different variances of interference noise. 

System parameters used in the simulations are; 

 expected value of observation noise  = 0 , 

 quantization # of initial states   = 10, 

 number of samples, L    = 30 , 

 gate size      = 1/5000 , 

α       = 0.9 , 

initial state     = 0.25 . 

 

Following simulations are run for different values of the parameters [ 1β , 2β ]. 

Variance values of the interference noise are 0.001, 0.01, 0.1 and 1. Expected value 

of the interference noise is 0 and its quantization level is 3.  

BER performance of the system with parameter β  is given Table 38. In the 

first column of Table 38, variance values of interference are given. In the first row, 

variance values of observation noise are given. 
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Table 38 BER performance of the system with different values of  2σ  (I(k)) 

 

 2σ (vk)=0.001 2σ (vk)=0.01 2σ (vk)=0.1 

 
1β =15 

2β =25 
1β =10 

2β =30 
1β =15 

2β =25 
1β =10 

2β =30 
1β =15 

2β =25 
1β =10 

2β =30 

 BER BER BER BER BER BER 

no interference 0 0 0 0 0.035 0.008 

2σ (I(k))=0.001 0.001 0 0.002 0 0.07 0.031 

2σ (I(k))=0.01 0 0 0.003 0 0.064 0.041 

2σ (I(k))=0.1 0 0 0.001 0.001 0.097 0.067 

2σ (I(k))=1 0.003 0 0.021 0.004 0.232 0.18 

 

 

 

Table 38 can be summarized by following figures ( Figure 78 and Figure 79). 
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Figure 78 NCA BER performance for interference variance values, 1β  =15,  2β  

=25 
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Figure 79 NCA BER performance for interference variance values,     

1β =10, 2β =30 

 

 

 

5.2.3.2.2 Simulations for constant parameter β  

In this section, effects of the interference noise on the NCA Map are 

analyzed. On the NCA map the parameter β  is taken as constant whereas α  is used 

to refer 0 and 1.  Simulations are run for different variances of interference noise. 

System parameters used in the simulations are; 

 expected value of observation noise  = 0 , 

 quantization # of initial states   = 10, 

 number of samples, L    = 30 , 

 gate size      = 1/5000 , 
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β       = 10 , 

initial state     = 0.55  . 

Following simulations are run for different values of the parameters [ 1α , 2α ]. 

Variance values of the interference noise are 0.001, 0.01, 0.1 and 1. Expected value 

of the interference noise is 0 and its quantization level is 3.  

BER performance of the system with parameter α  is given Table 39. In the 

first column of Table 39, variance values of interference are given. In the first row, 

variance values of observation noise are given. 

 

 

 

Table 39 BER performance of the system with different values of  2σ (I(k)) 

 

 2σ (vk)=0.001 2σ (vk)=0.01 2σ (vk)=0.1 

 
1α =0.4, 

2α =1.2 

1α =0.8, 

2α =1.2 

1α =0.4, 

2α =1.2 

1α =0.8, 

2α =1.2 

1α =0.4, 

2α =1.2 

1α =0.8, 

2α =1.2 

 BER BER BER BER BER BER 

no interference 0 0 0 0 0.030 0.053 

2σ (I(k))=0.001 0 0 0.004 0.006 0.06 0.082 

2σ (I(k))=0.01 0 0 0 0.002 0.066 0.105 

2σ (I(k))=0.1 0 0.001 0.002 0.007 0.075 0.139 

2σ (I(k))=1 0 0.007 0.022 0.031 0.206 0.258 

 

 

 

Table 39 can be summarized by following figures (Figure 80 and Figure 81). 
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Figure 80 NCA BER performance for interference variance values, 1α =0.4,  

2α =1.2 
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Figure 81 NCA BER performance for interference variance values, 1α =0.8, 2α =1.2 

 

 

 

5.2.3.3 Observation model III 

In these simulations, motion model is described in (5.12). Observation model 

is 

    z(k) =  x (k) I(k) + (1+I2 (k) )  v (k)     (5.17) 

 

In order to determine effects of the parameters on BER performance 

simulations are run both the parameters α  and β .   
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5.2.3.3.1 Simulations for constant parameter α  

In this section, effects of the interference noise on the NCA Map are 

analyzed. On the NCA map the parameter α  is taken as constant whereas β  is used 

to refer 0 and 1. Simulations are run for different variances of interference noise. 

System parameters used in the simulations are; 

 expected value of observation noise  = 0 , 

 quantization # of initial states   = 10, 

 number of samples, L    = 30 , 

 gate size      = 1/5000 , 

α       = 0.9 , 

initial state     = 0.25 . 

 

Following simulations are run for different values of the parameters [ 1β , 2β ]. 

Variance values of the interference noise are 0.001, 0.01, 0.1 and 1. Expected value 

of the interference noise is 0.3 and its quantization level is 3.  

BER performance of the system with parameter β  is given Table 40. In the 

first column of Table 40, variance values of interference are given. In the first row, 

variance values of observation noise are given. 
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Table 40 BER performance of the system with different values of  2σ (I(k)) 

 

 2σ (vk)=0.001 2σ (vk)=0.01 2σ (vk)=0.1 

 
1β =15 

2β =25 
1β =10 

2β =30 
1β =15 

2β =25 
1β =10 

2β =30 
1β =15 

2β =25 
1β =10 

2β =30 

 BER BER BER BER BER BER 

no interference 0 0 0 0 0.035 0.008 

2σ (I(k))=0.001 0.004 0 0.139 0.066 0.416 0.402 

2σ (I(k))=0.01 0.039 0.012 0.145 0.103 0.412 0.407 

2σ (I(k))=0.1 0.246 0.239 0.301 0.297 0.432 0.408 

2σ (I(k))=1 0.313 0.371 0.376 0.371 0.453 0.458 

 

 

 

Table 40 can be summarized by following figures (Figure 82 and Figure 83). 
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Figure 82 NCA BER performance for interference variance values, 1β  =15, 2β    

=25 
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Figure 83 NCA BER performance for interference variance values, 1β  =10,   

2β =30 

 

 

 

5.2.3.3.2 Simulations for constant parameter β  

In this section, effects of the interference noise on the NCA Map are 

analyzed. On the NCA map the parameter β  is taken as constant whereas α  is used 

to refer 0 and 1.  Simulations are run for different variances of interference noise. 

System parameters used in the simulations are; 

 expected value of observation noise  = 0 , 

 quantization # of initial states   = 10, 

 number of samples, L    = 30 , 

 gate size      = 1/5000 , 
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β       = 10 , 

initial state     = 0.55  . 

 

Following simulations are run for different values of the parameters [ 1α , 2α ]. 

Variance values of the interference noise are 0.001, 0.01, 0.1 and 1. Expected value 

of the interference noise is 0.3 and its quantization level is 3.  

BER performance of the system with parameter α  is given Table 41. In the 

first column of Table 41, variance values of interference are given. In the first row, 

variance values of observation noise are given. 

 

 

 

Table 41 BER performance of the system with different values of  2σ (I(k)) 

 

 2σ (vk)=0.001 2σ (vk)=0.01 2σ (vk)=0.1 

 
1α =0.4, 

2α =1.2 

1α =0.8, 

2α =1.2 

1α =0.4, 

2α =1.2 

1α =0.8, 

2α =1.2 

1α =0.4, 

2α =1.2 

1α =0.8, 

2α =1.2 

 BER BER BER BER BER BER 

no interference 0 0 0 0 0.030 0.053 

2σ (I(k))=0.001 0.002 0.011 0.111 0.121 0.434 0.422 

2σ (I(k))=0.01 0.026 0.032 0.135 0.184 0.415 0.428 

2σ (I(k))=0.1 0.203 0.203 0.297 0.287 0.431 0.468 

2σ (I(k))=1 0.314 0.299 0.360 0.359 0.481 0.482 
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Table 41 can be summarized by following figures. 
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Figure 84 NCA BER performance for interference variance values, 1α =0.4,  

2α =1.2 
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Figure 85 NCA BER performance for interference variance values, 1α =0.8,  

2α =1.2 
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CHAPTER 6 

  

 

 

APPLICATION OF THE EXTENDED KALMAN FILTER 

TO CHAOTIC SYTEMS  

 

 

 

The Kalman filter is a mathematical power tool that is playing an 

increasingly important role in most of engineering areas. The Kalman filter is the 

best possible (optimal) estimator for a large class of problems and a very effective 

and useful estimator for an even larger class. 

A Kalman filter that linearizes about the current mean and covariance is 

referred to as an extended Kalman filter or EKF [16]. 

6.1. The Process to be Estimated [16] 

This section describes the filter where the measurements occur and the state 

is estimated at discrete points in time. 

The Extended Kalman filter addresses the general problem of trying to 

estimate the state x Є Rn of a discrete-time controlled process governed by the non-

linear stochastic difference equation. 

xk+1 = f (xk , uk+1 , wk )       (6.1) 

with a measurement z(k) Є Rm  that is 

zk = h ( xk , vk ).       (6.2) 

 The random variables w(k) and v(k) represent the process and measurement 

noise (respectively). They are assumed to be independent (of each other), white, and 

with normal probability distributions  
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p(w) ~ N(0, Q)        (6.3) 

p(v) ~ N(0, R).        (6.4) 

In practice, the process noise covariance Q and measurement noise 

covariance R matrices might change with each time step or measurement, however 

here we assume they are constant. 

The non-linear function f in the difference equation (6.1) relates the state at 

the current time step k to the next time step k+1. It includes as parameters any 

driving function uk+1 and the zero-mean process noise wk. The non-linear function h 

in the measurement equation (4.2) relates the state xk to the measurement zk . 

Approximated the state and measurement vectors are  

( )0,,ˆ~
11 ++ = kkk uxfx        (6.5) 

and 

( )0,~~
kk xhz = .        (6.6) 

where kx̂  is some a posteriori estimate of the state (from a previous time steps k-1). 

It is important to note that a fundamental flaw of the EKF is that the distributions of 

various random variables are no longer normal after undergoing their respective 

nonlinear transformations.  

To estimate a process with nonlinear difference and measurement 

relationships, new governing equations that linearize an estimate about Eq.(6.5) and 

(6.6) are written, 

( ) 111 ˆ~
−−− +−+≈ kkkkk WwxxAxx ,      (6.7) 

kkkkk VvxxHzz +−+≈ )~(~ .      (6.8) 

where  

 

• xk and zk are the actual state and measurement vectors, 
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• kx~  and kz~  are the approximate state and measurement vectors form equation 

(6.5) and (6.6), 

• kx̂  is an a posteriori estimate of the state at step k, 

• The random variables wk and vk represent the process and measurement 

noise. 

• A is the Jacobian matrix of partial derivatives of f with respect to x¸ that is 

[ ]
[ ]

[ ]
( )0,,ˆ 1, kk

j

i

ji ux
x

f
A −

∂

∂
=  ,      (6.9) 

• W is the Jacobian matrix of partial derivatives of  f with respect to w, 

[ ]
[ ]

[ ]
( )0,,ˆ 1, kk

j

i

ji ux
w

f
W −

∂

∂
=  ,       (6.10) 

• H is the Jacobian matrix of partial derivatives of h with respect to x, 

[ ]
[ ]

[ ]
( )0,~

, k

j

i

ji x
x

h
H

∂

∂
=  .        (6.11) 

• V is the Jacobian matrix of partial derivatives of h with respect to v, 

[ ]
[ ]

[ ]
( )0,~

, k

j

i

ji x
v

h
V

∂

∂
=  .        (6.12) 

Note that for simplicity in the notation, the time step subscript k is not used 

with the Jacobians A, W, H, and V, even though they are in fact different at each time 

step. 

The prediction error is , 

kkkx xxe ~~ −≡  ,        (6.13) 

and the measurement residual is, 

kkkz zze ~~ −≡  .        (6.14) 
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Using Eq. (6.13) and (6.14), the governing equations for an error process can 

be written as 

 kkkkx xxAe ε+−≈ −− )ˆ(~
11  ,       (6.15) 

kkxkz eHe η+≈ ~~  ,        (6.16) 

where kε  and kη  represent new independent random variables having zero means 

and covariance matrices WQW
T and VRV

T , with the process noise covariance 

matrice Q and measurement noise covariance matrice R . 

The random variables of Eq. (6.15) and (6.16) have approximately the 

following probability distributions 

( ) [ ]( )T

kxkxkx eeNep ~~,0~~ Ε ,         (6.17) 

( ) ( )T
kk WWQNp ,0~ε ,         (6.18) 

( ) ( )T
kk QVRNp ,0~η .         (6.19) 

The a priori and posteriori estimate error covariances can be defined as 

( )( ){ }T

kkkkk xxxxP −−− −−Ε= ˆˆ        

( )( ){ }T

kkkkk xxxxP ˆˆ −−Ε=       (6.20) 

where  −
kx̂  and kx̂  refer for priori and posteriori estimates of xk.  

Given these approximations and letting the predicted value of kê  be zero, the 

Kalman filter equation used to estimate kê  is 

kzkk eKe ~ˆ = .           (6.21) 

By substituting equation (6.21) back into equation (6.19) and making use of equation 

(6.14) it is seen Kalman filter as: 

kzkkk eKxx ~~ˆ +=  
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 ( )kkkk zzKx ~~ −+=  .       (6.22) 

The complete set of EKF equations are follows: 

EKF time update equations: 

( )0,,ˆˆ 1 kkk uxfx −
− = ,        (6.23) 

T
kkk

T
kkkk WQWAPAP 11 −−

− +=  .     (6.24) 

EKF measurement update equations: 

( ) 1−−− += T
kkk

T
kkk

T
kkk VRVHPHHPK ,     (6.25) 

( )( )0,ˆˆˆ −− −+= kkkkk xhzKxx  ,      (6.26) 

( ) −−= kkkk PHKIP  .       (6.27) 

 

Figure 86 shows the complete operation of the EKF. 
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Figure 86 A complete picture of the operation of the EKF 

 

 

 

6.2. Application of EKF on One-Dimensional Chaotic Systems 

A brief introduction about three types of one-dimensional chaotic systems 

mostly used in secure communication is given in section 4.2. In this section, the 

application of the EKF on one-dimensional chaotic tent maps is given. To analyze 

BER performance of the EKF, the symmetric tent map is chosen as one-dimensional 

tent map.  

Remembering the symmetric tent map, motion and observation models in 

clear environment can be given as; 

Motion model  : )k(a1a)1k( χχ −−=+  , 

 Observation model : z(k) = x (k) + v (k)      (6.28) 

 

To use the EKF, Jacobians A, W, H, and V are defined below 
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• A, the Jacobian matrix of partial derivatives of f with respect to x 

[ ]
[ ]

[ ]
( ) 11, ˆ0,,ˆ −− −=

∂

∂
= kkk

j

i

ji xaux
x

f
A ,     (6.29) 

• Because there is not any process noise wk in the motion model W, the 

Jacobian matrix of partial derivatives of  f with respect to w is zero, 

[ ]
[ ]

[ ]
( ) 00,,ˆ 1, =

∂

∂
= − kk

j

i

ji ux
w

f
W  ,       (6.30) 

• H, the Jacobian matrix of partial derivatives of h with respect to v, is constant 

for time k=1,2, …, L 

[ ]
[ ]

[ ]
( ) 10,~

, =
∂

∂
= k

j

i

ji x
x

h
H  ,       (6.31) 

• V, the Jacobian matrix of partial derivatives of h with respect to v, is constant 

for time k=1,2, …, L 

[ ]
[ ]

[ ]
( ) 10,~

, =
∂

∂
= k

j

i

ji x
v

h
V  .      (6.32) 

   

The EKF time update equations are  

( )0,,ˆˆ 1 kkk uxfx −
− = ,        (6.33) 

T
kkkk APAP 1−

− =  .       (6.34) 

The measurement equations are 

( ) 1−−− += kkkk RPPK ,        (6.35) 

( )( )0,ˆˆˆ −− −+= kkkkk xhzKxx  ,      (6.36) 

( ) −−= kkkk PHKIP  .       (6.37) 
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The block diagram of the communication system is similar to Figure 48. 

However in the receiver side there are two EKF parts instead of ODSA’s.  Like 

Figure 48,  binary messages are modulated by switching the modulator between 

SYS1 and SY2 when the signal is 0 and 1 respectively. X1 and X2 are two finite 

length chaotic sequences generated by the same type of system with two different 

parameters. The comparator is used to compare the estimation errors from the two 

EKFs to decide if the transmitted signal is 0 or 1 [10]. 

For each simulation, 1000 binary signals with equal probability, 0 and 1, are 

generated randomly. For each bit, initial state is generated randomly in the range of 

[0 , 1 ]. Since initial estimation error covariance 0P  is normally not known, the filter 

is initiated with 0P  equal to 10
10. This has the effects of treating the initial errors as 

very large and the filter will ignore the few initial estimates. 

In order to determine effects of the observation noise on the performance of 

the system, simulations are run for different variance values of observation noise. 

The expected value of the observation noise is taken as 0. 

System parameters are; 

 expected value of observation noise = 0 , 

 number of samples, L   = 50, 

initial estimation error covariance 0P  =1010. 

 

Simulation results using EKF and ODSA are given in Table 42, Table 43, 

Table 44, and Table 45. 
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Table 42 BER performances of EKF where 2
kv

σ =0.01 in clear environment 

 
1a =1.1,

2a =1.8 

1a =1.2, 

2a =1.8 

1a =1.3, 

2a =1.8 
1a =1.3, 

2a =1.7 
1a =1.4, 

2a =1.8 
1a =1.4, 

2a =1.7 
1a =1.4, 

2a =1.6 
1a =1.5, 

2a =1.6 

 BER BER BER BER BER BER BER BER 

ODSA 0 0.003 0.002  0.002 0.005                     0.016                     0.069                      0.310 

EKF 0.003 0 0 0.001 0 0.011 0.070 0.299 

 

 

 

Table 43 BER performances of EKF where 2
kv

σ =0.05 in clear environment 

 
1a =1.1,

2a =1.8 

1a =1.2, 

2a =1.8 

1a =1.3, 

2a =1.8 
1a =1.3, 

2a =1.7 
1a =1.4, 

2a =1.8 
1a =1.4, 

2a =1.7 
1a =1.4, 

2a =1.6 
1a =1.5, 

2a =1.6 

 BER BER BER BER BER BER BER BER 

ODSA 0.013                     0.014                     0.032                     0.068 0.056                     0.082                     0.109 0.365 

EKF 0.319                     0.388                     0.427                     0.443 0.423                     0.467                     0.497                     0.486 

 

 

 

Table 44 BER performances of EKF where 2
kv

σ =0.1 in clear environment 

 
1a =1.1,

2a =1.8 

1a =1.2, 

2a =1.8 

1a =1.3, 

2a =1.8 
1a =1.3, 

2a =1.7 
1a =1.4, 

2a =1.8 
1a =1.4, 

2a =1.7 
1a =1.4, 

2a =1.6 
1a =1.5, 

2a =1.6 

 BER BER BER BER BER BER BER BER 

ODSA 0.102                     0.141                      0.120                   0.194 0.073        0.207                      0.223           0.429 

EKF 0.474                     0.501                     0.483                     0.497   0.493                     0.491                      0.480                     0.489 

 

 

 



 172 

Table 45 BER performances of EKF where 2
kv

σ =1 in clear environment 

 

 
1a =1.1,

2a =1.8 

1a =1.2, 

2a =1.8 

1a =1.3, 

2a =1.8 
1a =1.3, 

2a =1.7 
1a =1.4, 

2a =1.8 
1a =1.4, 

2a =1.7 
1a =1.4, 

2a =1.6 
1a =1.5, 

2a =1.6 

 BER BER BER BER BER BER BER BER 

ODSA 0.417                     0.463                     0.476                     0.464 0.475                     0.506                      0.474 0.495 

EKF 0.498 0.501 0.500 0.491 0.508 0.498 0.510 0.507 

 

 

 

Following figures, which are used to show BER performance of EKF vs 

ODSA, are given to sum up Table 42, Table 43, Table 44, and Table 45.  
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Figure 87 BER performance of EKF and ODSA for 1a =1.4, 2a =1.8  
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Figure 88 BER performance of EKF and ODSA for 1a =1.4, 2a =1.6 

 

 

 

In Table 42, it is seen that, BER performances of the EKF is better than 

ODSA for case that observation noise variance is equal to 0.01. However, there is a 

dramatic increase on BER performances of EKF when observation noise variance is 

equal to or greater than 0.05. To have more information about EKF BER 

performances depending on observation noise variance, Table 46 is given. 

In Table 46, it is observed that a small increase on observation noise 

variances causes a significant decrease on the performance of the EKF. To improve 

the performance of the EKF for the observation noise variance is equal to 0.04, 

number of samples, L is increased as 150. Nevertheless, an improvement on the 

BER performance could not be obtained.  
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Table 46 BER performances of EKF for different observation variances in clear 

environment 

 

 1a =1.4, 2a =1.8 1a =1.4, 2a =1.6 

 BER BER 

2
kv

σ =0.01 0 0.070 

2
kv

σ =0.02 0.093 0.302 

2
kv

σ =0.03 0.196 0.369 

0.273 0.393 (L=  50) 
2
kv

σ =0.04 

 (L=150) 0.305 0.491 

2
kv

σ =0.05 0.423 0.497 

 

 

 

To sum up the tables above, BER performances of the EKF is better than 

ODSA in case small observation noise variances. An increment on observation noise 

variances influences BER performances of the EKF too much whereas ODSA 

struggles with observation noise variances. 

 

6.3. Application of EKF on the NCA Map 

A brief introduction about the NCA map is described in 4.3. In this section, 

the application of the EKF on the NCA map is given.   

Remembering the NCA map, motion and observation models in clear 

environment can be given as; 
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Motion model  :

 ( ) ( ) ( )β

β

χαχ
ββ

α
βχ nnn tgctg −⋅⋅








+⋅









+
⋅−= −

+ 1
1

1
1

1 4
1

 

 Observation model : z(k) = x (k) + v (k)      (6.38) 

 

where xn ∈  (0,1), α  ∈  (0,1.4], β  ∈ [5,43] or xn ∈  (0,1), α  ∈ (1.4,1.5], β  ∈ 

[9,38] or xn∈ ( 0,1 ), α  ∈ ( 1.5,1.57 ], β  ∈  [3,15]. 

 

To use the EKF, Jacobians A, W, H, and V are defined below 

• A, the Jacobian matrix of partial derivatives of f with respect to x 
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and 
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1111
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ββ
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• Because there is not any process noise wk in the motion model W, the 

Jacobian matrix of partial derivatives of  f with respect to w is zero, 

[ ]
[ ]

[ ]
( ) 00,,ˆ 1, =

∂

∂
= − kk

j

i

ji ux
w

f
W  ,       (6.42) 

• H, the Jacobian matrix of partial derivatives of h with respect to v, is constant 

for time k=1,2, …, L 

[ ]
[ ]

[ ]
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• V, the Jacobian matrix of partial derivatives of h with respect to v, is constant 

for time k=1,2, …, L 

[ ]
[ ]

[ ]
( ) 10,~

, =
∂

∂
= k

j

i

ji x
v

h
V  .      (6.44) 

  The EKF time update and measurement equations are same as given 6.2.  

For each simulation, 1000 binary signals with equal probability, 0 and 1, are 

generated randomly. For each bit, initial state is generated randomly in the range of [ 

0 , 1 ]. Since initial estimation error covariance 0P  is normally not known, the filter 

is initiated with 0P  equal to 10
10. This has the effects of treating the initial errors as 

very large and the filter will ignore the few initial estimates. 

In order to determine effects of the observation noise on the performance of 

the system, simulations are run for different variance values of observation noise. 

The expected value of the observation noise is taken as 0. 

System parameters are; 

 expected value of observation noise = 0 , 

 number of samples, L   = 50, 

initial estimation error covariance 0P  =1010. 

Simulation results using EKF and ODSA are given in Table 47 and   Table 

48 
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Table 47 BER performance of the system with parameter β  

 

 1β =15 , 2β =25 
1β =10 , 2β =30 

 
BER of 
ODSA 

BER of 
EKF 

BER of 
ODSA 

BER of 
ODSA 

2σ (v(k))=0.001 0 0.468                     0 0.489 

2σ (v(k))=0.01 0 0.504                     0 0.511 

2σ (v(k))=0.05 0.008 0.491                     0 0.499 

2σ (v(k))=0.1 0.035 0.488                     0.008 0.514 

 

 

 

Table 48 BER performance of the system with parameter α  

 

 1α =0.4, 2α =1.2 1α =0.8, 2α =1.2 

 
BER of 
ODSA 

BER of 
EKF 

BER of 
ODSA 

BER of 
ODSA 

2σ (v(k))=0.001 0 0.490                     0 0.485 

2σ (v(k))=0.01 0 0.513                     0 0.480 

2σ (v(k))=0.05 0.001 0.476                     0.01 0.499 

2σ (v(k))=0.1 0.030 0.502                     0.053 0.511 

 

 

 

 



 179 

As observed from Table 47 and Table 48, in the NCA map BER performance 

of EKF increases too much. It can be concluded that the EKF application is not an 

efficient way on the NCA map. 

6.4. Complexity Analysis of the EKF on One-Dimensional Chaotic 

Systems 

The runtime of the program written for the EKF algorithm is determined by 

the value of number of samples, L. The complexity of the program is linear because 

at each time step k, the operations, which are performed, does not change. Let the 

maximum time consumption at each state be st  at time k. Then, since the time 

consumption at each state will be approximately same, the time consumption will be 

maximum tsL for each bit. Because there is no state quantization on the EKF, the 

time consumption of EKF algorithm is too smaller than the time consumption of 

ODSA. Even the time consumptions of EKF on each state is equal to ODSA’s, 

ODSA needs this time consumption for each quantized state.   

In the following figure, runtime of ODSA and EKF is compared. In the 

simulations,  the motion and observation models are given as follows; 

The motion and observation models are  

Motion model  : )k(a1a)1k( χχ −−=+  , 

 Observation model : z(k) =  x (k) + v (k).   

To get approximately same BER performance with ODSA and EKF, the parameters 

are used; 

for ODSA 

• Initial states are uniform in the range of 0 and 1,  

• quantization level of initial states, Q(x(0)) =1000, 

• 1a  =1.4 , 2a =1.6, 

• variance value of observation noise =0.01, 

• mean value of observation noise =0, 
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• number of bits = 1, 

for EKF 

• initial estimation error covariance 0P  =1010 

• 1a  =1.4 , 2a  =1.6, 

• variance value of observation noise =0.01, 

• mean value of observation noise =0, 

• number of bits = 1. 

 

 

 

 

 

Figure 89 Runtime comparison of ODSA and EKF  
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CHAPTER 7 

  

 

 

CONCLUSION 

 

 

 

In this study, optimum decoding based smoothing algorithm [1] and chaotic 

communication systems under interference [3] are analyzed. Important parameters of 

this estimation algorithm are explained and some simulations are performed to 

figure out the performance of ODSA.    

ODSA is based on Viterbi decoding algorithm. By reducing the target motion 

to a finite state model that uses the quantized state vector, a trellis diagram is 

obtained; and then, the state vector is estimated by finding the most probable path in 

the trellis diagram.   

To be able to use ODSA on chaotically modulated signals, effect of the 

parameters of ODSA is analyzed. Therefore, simulations are run and the results can 

be summarized as below: 

• The gate size affects the estimation performance significantly. As the 

gate size becomes smaller,the state estimation performance increases, 

• The quantization number of the initial state vector is effective for 

only initial times, 

• Increasing the disturbance noise variance degrades the performance 

significantly, 

• The quantization number of the disturbance noise vector affects the 

estimation performance slightly,  

• The initial state variance affects only the performance at initial times, 
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• Increasing the observation noise variance degrades the estimation 

performance,  

• The maximum number of states can be limited without degrading the 

estimation performance. 

The gate size, the quantization numbers and the maximum state number are 

important factors for determining the computation time of the algorithm. Choosing 

these values properly, the computation time can be decreased while getting a good 

estimation performance. There is a trade-off between the precision of the simulations 

and the computational time.  

In addition, ODSA can be easily implemented on linear and nonlinear 

observation model functions that include interference parameters.    

When performances of ODSA and EKF algorithms on chaotically modulated 

systems are compared, EKF algorithm is faster than ODSA. Also, the estimation 

performance of EKF algorithm is higher than the performance of ODSA when 

observation noise variance has small values. However, EKF is usable only at clear 

environment applications and when variance values of observation noise get higher 

values, EKF algorithm gets useless. 

Under interference, ODSA is easily implemented on applications and it gives 

acceptable BER performance. ODSA is also susceptible to high variance values of 

the observation noise compared to EKF. Computational complexity is not a problem 

since today’s processors have enough computational power. Therefore, ODSA can 

be implemented easily when efficiently coded. 

As a conclusion, it is seen that ODSA should be the preferred algorithm for 

applications which are under interference. Also, in clear environments, if there exists 

comparatively high observation noise, ODSA is again preferable. 

 

 



 183 

REFERENCES 
 

[1]  K. Demirbaş, “Information Theoretic Smoothing Algorithms for Dynamic 

Systems with or without Interference: Advances in Control and Dynamic 

Systems”, Vol. XXI, Academic Press, pp. 175-295, 1984. 

[2] F. J. Escribano, L. Lopez, M. A. F. Sanjuan, “Evaluation of channel coding 

and decoding algorithms using discrete chaotic maps,” 2006 American 

Instıtude of Physics, Chaos 16 013103, pp. 1-12, 2006. 

[3] H. Ruan, T. Zhai, E. E. Yaz, “A chaotic Secure communication scheme with 

extended kalman filter based parameter estimation”, Proceeding of IEEE 

International Conference on Control Applications, Istanbul, Turkey pp. 404-

408, 2003. 

[4] H. Ruan, T. Zhai, E. E. Yaz, Y.I. Yaz,  “A generalization of tent map and its 

use in EKF based chaotic parameter modulation/demodulation”, 43rd IEEE 

Conference on Decision and Control, Atlantis, Bahamas  pp. 2071-2075, 

December 2004.  

[5] S. N. Rasband, “chaotic dynamics of Nonlinear Systems”, a Willey-

Interscience Publication, 1989. 

[6] J. Banks, V. Dragan, A. Jones, “Chaos: A Mathematical introduction”, 

Australian Mathematical Society Lecture Series 18, Cambridge University 

Press, pp 157-164, 2003 

[7] G. L. Baker, J. P. Gollup, “Chaotic Dynamics: an Introduction”, Cambridge 

University Press, pp 84-86, 1996 

[8] N. H. Gregersen, U. Gorman, H. Meisinger “A Critical Evaluation of the Use 

of Chaos in Theology”, Studies in Science & Theology 8. Yearbook of the  

Europan Society for the Study of Science and Theology 2001-2002. Aarhus, 

Denmark: University of Aarhus, pp. 277-294, 2002  



 184 

[9] M. Hasler and Y. Maistrenko, “An Introduction to the Synchronization of 

Chaotic Systems :Coupled Skew Tent Maps”, IEEE Trans. Circuits and Sys., 

vol44, pp.856-866, Oct.1997  

[10] H. Ruan, T. Zhai, E. E. Yaz, “ A Demodulation Scheme Based On State 

Estimation For Chaotic Digital Communication”, Proceedings of American 

Control Conference Denver, Colorado, pp. 1614-1618, June 4-6, 2003. 

[11] H. Gao, Y. Zhang, S. Liang, D. Li,  “ A New Chaotic Algorithm For Image 

Encryption”, Chaos, Solutions and Fractals vol. 29, pp. 393-399,. August 2005 

[12] H. L. Van Trees, “Detection estimation and modulation,” Part 1, Wiley, New 

York, 1968.  

[13] A. J. Viterbi and J. K. Omura, “Principles of Digital Communication and 

Coding,” McGraw-Hill, New York, 1979 

[14] I. B. Rhodes, “A tutorial introduction to estimation and filtering,” IEEE 

Transactions on Automatic Control, AC-16, Dec. 1971. 

[15] H. Ruan, T. Zhai, E. E. Yaz, Y. I. Yaz,  “ Performance Evaluation of Extended 

Kalman Filter Based State Estimation for First Order Nonlinear Dynamic 

Systems”, Proceedings of the 42nd IEEE Conference on Decision and Control 

Hawaii, USA  pp. 1386-1391, December 2003. 

[16] G. Welch, G. Bishop, “An Introduction to the Kalman Filter”, SIGGRAPH 

2001 Course 8, ACM Inc, USA, 2001. 

 

 

 

 



 185 

 

APPENDIX 

 

 

APPROXIMATION OF A CONTINUOUS RANDOM VARIABLE WITH A 

DISCRETE RANDOM VARIABLE [1] 

 

 

 

In order to find the optimum discrete random variable with n possible values 

that approximates an absolutely continuous random variable x with distribution 

function Fx(.), we must find a distribution function (.)
0yF  which minimizes the 

objective function J(.): 

 

 (.))(min(.))( (.)0 yFy FJFJ
y

=  (A.1) 
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The aim is to find a step function g0(.) which minimizes the objective function J(.): 
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If g0(x) is a step function which minimizes (A.3), it must satisfy the following set of 

equations: 
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 (A.5) 

The discrete random variables which approximate the normal random 

variable with zero mean and unity variance (with up to 8 possible values) are given 

by Demirbaş [1]. In order to increase the possible values of the discrete random 

variables, a Matlab function is written which evaluates the values according to the 

equations given in (A.4) and (A.5). The program runs in a recursive manner and 

finds the discrete values (y values) and the corresponding probabilities (p values) of 

the continuous Gaussian distributed random variable with zero mean and unity 

variance. Finally, if the mean (µ) and the variance (σ) of the random variable are 

different than 0 and 1 respectively, it maps the new discrete values according to the 

mean and variance of the random variable by using the formula given in (A.6).  

 niPPyy iii ,...,2,1, 0,0,0, ==′+=′ µσ  (A.6) 

The y and p values of approximated x are given at Table 49. 

 

 

 

Table 49 y and p values of discrete random variable with 8 possible values 

 
 1 2 3 4 5 6 7 8 

y -1.6990 -1.0250 -0.5700 -0.1840 0.1840 0.5700 1.0250 1.6990 

p 0.0922 0.1240 0.1394 0.1460 0.1460 0.1394 0.1240 0.0922 
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Possible values of the discrete random variable approximating the Gaussian 

random variable with zero mean and unity variance (y values): 

N y value 
 
1 0 
 
2 -0.675 0.675          
 
3 -1.0052 0 1.0052         
 
4 -1.2177 -0.3546 0.3546 1.2177        
 
5 -1.3767 -0.592 0 0.592 1.3767       
 
6 -1.4992 -0.7678 -0.2419 0.2419 0.7678 1.4992      
 
7 -1.6027 -0.9077 -0.4242 0 0.4242 0.9077 1.6027     
 
8 -1.6897 -1.0226 -0.5694 -0.1839 0.1839 0.5694 1.0226 1.6897    
 
9 -1.7644 -1.1198 -0.6896 -0.3315 0 0.3315 0.6896 1.1198 1.7644   
 
10 -1.8178 -1.1985 -0.7888 -0.4527 -0.1479 0.1479 0.4527 0.7888 1.1985 1.8178  
 
11 -1.8799 -1.2737 -0.8779 -0.5575 -0.2716 0 0.2716 0.5575 0.8779 1.2737
 1.8799 
 
12 -1.9282 -1.3373 -0.9545 -0.6476 -0.377 -0.1239 0.1239 0.377 0.6476 0.9545
 1.3373 1.9282          
 
13 -1.9714 -1.3942 -1.0226 -0.727 -0.4688 -0.2301 0 0.2301 0.4688 0.727
 1.0226 1.3942 1.9714         
 
14 -2.0218 -1.4507 -1.0868 -0.7997 -0.5511 -0.3235 -0.1067 0.1067 0.3235 0.5511
 0.7997 1.0868 1.4507 2.0218        
 
15 -2.0449 -1.4918 -1.1387 -0.8611 -0.622 -0.4047 -0.1996 0 0.1996 0.4047
 0.622 0.8611 1.1387 1.4918 2.0449       
 
16 -2.0966 -1.5435 -1.1948 -0.9227 -0.6899 -0.4798 -0.2831 -0.0936 0.0936 0.2831
 0.4798 0.6899 0.9227 1.1948 1.5435 2.0966      
 
17 -2.1372 -1.5879 -1.2443 -0.9777 -0.7509 -0.5474 -0.3581 -0.1771 0 0.1771
 0.3581 0.5474 0.7509 0.9777 1.2443 1.5879 2.1372     
 
18 -2.1569 -1.6206 -1.2846 -1.0245 -0.804 -0.607 -0.4247 -0.2515 -0.0833 0.0833
 0.2515 0.4247 0.607 0.804 1.0245 1.2846 1.6206 2.1569    
 
19 -2.196 -1.6609 -1.3285 -1.0725 -0.8564 -0.6642 -0.4872 -0.3199 -0.1585 0
 0.1585 0.3199 0.4872 0.6642 0.8564 1.0725 1.3285 1.6609 2.196   
 
20 -2.2125 -1.6894 -1.3636 -1.113 -0.902 -0.7149 -0.5432 -0.3816 -0.2265 -0.0751
 0.0751 0.2265 0.3816 0.5432 0.7149 0.902 1.113 1.3636 1.6894 2.2125  


