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ABSTRACT 

 

 

REMOVAL OF BASELINE WANDERING FROM THE  

ELECTROCARDIOGRAM 

 

 

 

 

Tanrıverdi, Volkan 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Asst. Prof. Dr. Yeşim Serinağaoğlu     

 

September 2006, 125 pages 

 

 

 

ECG measures electrical potentials on the body surface via contact electrodes. 

Conditions such as movement of the patient, breathing, and interaction between the 

electrodes and skin cause baseline wandering of the ECG signal. Baseline wandering 

noise can mask some important features of the ECG signal; hence it is desirable to 

remove this noise for proper analysis of the ECG signal.  This study includes an 

implementation and evaluation of methods to remove this noise, such as finite 

impulse response filters, infinite impulse response filters, interpolation filters and 

adaptive filters. These filters are first applied offline to simulated ECG data. The 

filter outputs and their frequency spectra are compared to the pure ECG signal and 

its frequency spectrum using visual inspection and numerical evaluation criteria 

such as root mean squared error and percentage root relative squared error. The best 

filters are then selected and applied online to the same simulated data. Finally, these 

best methods are used to suppress the baseline wandering noise in real ECG 

 iv



recordings using both offline and online filtering. In the offline application, 

windowing type filters were found to be the most successful filters among the 

implemented filters. However, a high filter order should be used to produce such 

good results, which increases the computation time, thus it may not be the best 

method for online filtering, in which fast computation is essential. Butterworth 

bidirectional type is preferred for online filtering since it has lower computational 

complexity, and it produces acceptable results.  

 

Keywords: Electrocardiography, Baseline wandering noise, ECG noise 
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ÖZ 

 

 

ELEKTROKARDİYOGRAFİ SİNYALİNDEN TEMEL ÇİZGİ 

KAYMALARININ KALDIRILMASI 
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Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Yeşim Serinağaoğlu     

 

Eylül 2006, 125 sayfa 

 

 

 

EKG cihazı ile vücut yüzeyine takılan elektrotlar kullanılarak, vücut yüzeyindeki 

elektrik potansiyelleri ölçülmektedir. Elektrotların vücutla etkileşimi, nefes alma ve 

benzeri hareketler nedeniyle EKG sinyalinin taban çizgisinde kaymalar meydana 

gelir. Bu kaymalar EKG den elde edilen bazı önemli bilgilerin bozulmasına neden 

olur. EKG yi doğru yorumlamak için bu kaymaları yok etmek gerekmektedir. Bu 

çalışmada gürültüyü yok etmek için sonlu tepki filtresi, sonsuz tepki filtresi, eğri 

uydurma ve uyarlanabilir filtreleme metotları kullanılmıştır. Bu filtreler önce 

gürültülü sentetik EKG sinyaline uygulanmıştır ve bu işlemin sonunda elde edilen 

filtrelenmiş EKG sinyali ile gürültü içermeyen EKG sinyali karşılaştırılmıştır. Bu 

karşılaştırmayı yaparken frekans spektrumu incelenmiş ve karekök ortalama hata ve 

karekök bağıl hata değerlendirme metotları da kullanılmıştır. Daha sonra en başarılı 

sonucu veren filtreler seçilip bu filtreler eş zamanlı filtreleme şeklinde 

uygulanmıştır. Son olarak eş zamanlı ve eş zamanlı olmayan filtreler gürültülü 
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gerçek EKG sinyaline uygulanmıştır. Eş zamanlı olmayan filtreler içinde en iyi 

sonucu veren filtre Blackman pencereli sonlu tepki filtresi olarak bulunmuştur. Bu 

sonuca ulaşmak için seçilmiş olan filtrenin derecesi yüksektir. Bu nedenle hızlı 

işlem yapma gerekliliği olan eş zamanlı filtreleme yöntemi için bu filtrenin başarılı 

sonuç vereceği söylenemez. Diğer taraftan iki yönlü sonsuz tepki filtresi başarılı bir 

gürültü bastırma gerçekleştirmiştir ve işlem yoğunluğu da düşüktür. Bu nedenle eş 

zamanlı filtreleme metodu için bu filtreleme yöntemi tercih edilir.  

 

Anahtar Kelimeler: Temel çizgi kayması, Eksen kayması gürültüsü, EKG gürültüsü 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Cardiac failure and cardiac diseases are among the main causes of death in 

the world. Therefore, it is necessary to have proper methods to determine the cardiac 

condition of the patient. Electrocardiography (ECG) is a tool that is widely used to 

understand the condition of the heart, since it records the electrical activity generated 

over the cardiac cycle via electrodes positioned at various locations on the body 

surface [1]. ECG can measure or detect the following features of the heart [2]: 

• The rate and rhythm mechanism of the heart, 

• How the heart is placed in the chest cavity, 

• Evidence of increased thickness (hypertrophy) of the heart muscle, 

• Evidence of the occurrence of a prior heart attack (myocardial infarction), 

• Adverse effects of various heart diseases or systemic diseases such as high 

blood pressure, thyroid conditions, etc., on the heart, 

• Adverse effects of certain lung conditions such as emphysema, pulmonary 

embolus (blood clots to lung) on the heart, 

• Evidence of abnormal blood electrolytes (potassium, calcium, magnesium). 

 

ECG of a patient is examined visually in time domain. But examining the 

ECG curve visually is usually inadequate. Signal processing methods are performed 

to examine the ECG curve accurately. Frequency domain methods, spectrum 

estimation and filtering are necessary to examine the ECG curve.  

Conditions such as movement of the patient, breathing and interaction 

between the electrodes and the skin cause baseline wandering of the ECG signal. 

Baseline wandering can mask some important features of the ECG signal hence it is 
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desirable to remove this noise for proper analysis and display of the ECG signal. 

Examining the ECG signal only in time domain is inadequate. Frequency domain 

ECG signal processing methods are necessary to examine the ECG spectra.  

Suppression of unwanted frequencies is essential and it is required to examine the 

ECG correctly. There are various filters to remove the baseline wandering noise. 

These are finite impulse response (FIR), infinite impulse response (IIR), adaptive 

and spline interpolation filters. This study includes an investigation of these 

methods, implementation and verification of each method for offline applications. 

The offline filters with best performances are then selected and used in online 

applications. We first compare the filters using simulated data, in which we know 

the noise free signal, therefore we can compare the filtered output with this noise 

free data. Then we apply the filters that provide best results with the simulated data 

to real ECG recordings with baseline wander noise. 

In this chapter, we provide background information on the cardiac electrical 

activity and its relation to ECG and baseline wandering, and we present the scope of 

this thesis. 

 
 

1.1       Conduction System of the Heart and the ECG  
 

The distribution of ions across the cell membrane yields a potential difference 

across the membrane of the cell. This difference is called the transmembrane 

potential. The transmembrane potential changes during impulse propagation with 

action potential impulses. An action potential is an essential carrier of the 

information code that provides the control and coordination of organs like heart. An 

action potential is a wave of electrical discharge that travels along the membrane of a 

cell. Depolarization is the rise of the membrane potential, from a negative potential 

value to a more positive potential. Repolarization is the return of the membrane 

potential to its resting potential value, as shown in Figure 1.1 [3]. 
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Figure 1.1: Action potential with depolarization, repolarization and the resting 
phases [3]. 
 

 

 

 
 

Figure 1.2: Conduction system of the heart and the ECG. The atriums, ventricles, 
heart muscle and the electrical nodes (SA, AV) are illustrated [4]. 

 

 

The heart works as a pump that pushes blood to the cells of the body. Atria, 

ventricles, heart muscle, electrical nodes are the main components of the heart as 
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shown in Figure 1.2. The electrical impulse begins in the sinoatrial (SA) node, 

located at the top of the right atrium. The SA node is called the heart's natural 

pacemaker. When an electrical impulse is released from this natural pacemaker, it 

causes the atria to contract (systole); this is called the atrial depolarization. The 

signal then passes from the SA node to atrioventricular (AV) node. The AV node 

receives the signal and waits for blood to pass through the heart valves into the 

ventricles. After this delay, AV node sends the signal to the muscle fibers of the 

ventricles via the “bundle of His” causing the ventricles to contract. The SA node 

sends electrical impulses at a certain rate, but this rate may still change depending on 

physical demands, stress, or hormonal factors. The contraction of any muscle is 

associated with electrical changes, and these changes can be detected by electrodes 

attached to the surface of the body. ECG is a tool to monitor the electrical activity of 

the heart by using electrodes positioned on the body surface [1, 4]. 

Figure 1.3 illustrates the relation between the heart’s electrical activity and 

the ECG signal. In this figure, blue regions on the heart and blue coded parts of the 

ECG signal correspond to depolarization of the heart cells, and pink regions on the 

heart and pink coded parts of the ECG signal correspond to repolarization of the 

heart cells Main components of an ECG signal are the P wave, QRS complex, and 

the T-wave. P wave corresponds to the depolarization of the atria and during this 

activity, atrial muscles contract. Formation of the P wave is shown in panels (a-d) of 

Figure 1.3. When the muscle fibers of the ventricles are excited, contraction of the 

ventricles starts. QRS complex occurs during the contraction of the ventricles as 

shown in Figure 1.3 (e-f). T wave represents the repolarization of the ventricles 

shown in Figure 1.3 (g) [5].   
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Figure 1.3: Cardiac signal generation detected by ECG. The P, QRS, T signals are 
generated according to the electrical activity of the heart [5].  

 

Figure 1.4 shows a sample ECG recording with more detail. In addition to the 

P, QRS and T waves that we have explained above, important intervals are also 

shown in this figure. Among these intervals, P-R interval is the time from the 

beginning of the P wave to the beginning of the QRS complex. It represents the 

interval between the activation of the SA node and the beginning of ventricular 
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depolarization. Q-T interval represents the time from the beginning of the QRS 

complex to the end of the T wave. S-T interval starts from the end of the S wave and 

ends at the end of the T wave. Finally, R-R interval is the time required for 1 

complete cycle, and is measured from one R-wave to the next one. This interval is 

used to determine heart rate [2].  

 

 
Figure 1.4: Two cycles of an ECG signal are shown in this figure. Important 
features and intervals are marked on this illustration [6]. 
 

 

P, QRS and T waves and the indicated intervals are important in diagnosis 

for clinicians. For instance, dead or injured cells from a myocardial infarction will 

generally show up as irregularities in the ECG signal as ST segment depression on 

the S-T interval [6]. 

 
 
1.2 The 12-Lead Electrocardiogram Signals  

 

In the 19th century it became clear that the heart generated electricity. 

Systematical approach to the heart from an electrical view started with Augustus 

Waller. He found that cardiac currents could be recorded by placing surface 

electrodes on the body. Willem Einthoven invented the first practical ECG in 1903 
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[7]. Currently, small size 12 lead ECG devices are developed with interface 

softwares.      

 

 
Figure 1.5: Positions of electrodes for 12 lead ECG. R (RA), right arm. L (LA), left 
arm. F (LL), left leg. N (RL), right leg [8]. 
 

 

Information about heart conditions can be inferred from the ECG recordings 

by positioning electrical sensing electrodes on the body in standardized locations. 

The locations of the electrodes for 12 lead ECG are shown in Figure 1.5. Different 

channels are used because on each channel, electrical activity is monitored from 

different horizontal and frontal planes. This is like looking at an object from 

different angles. ECG leads are attached to the body while the patient lies flat on a 

bed or table. A small amount of gel is applied to the skin, which allows the electrical 

impulses of the heart to be more easily transmitted to the ECG leads. The numbers 1 

to 6 in Figure 1.5 are the positions of electrodes on the chest. R, L, N, and F are the 

positions of the limb leads where R, L, F and N represent right arm (RA), left arm 

(LA), left leg (LL), and right leg (RL), respectively. 

A sample recording obtained from a 12-lead ECG is shown in Figure 1.6. 

Channels V1 to V6 are recorded from the chest leads. The other channels are 
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recorded from limb leads and calculated according to Einthoven triangle (I, II, III, 

aVR, aVL, aVF) [8].  

 

 

Figure 1.6: 12 lead ECG signals. Channel numbers are set on the left corner for each 
channel. Channel II is put in a box for more emphasis [8]. 
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1.3      ECG Stress Test 

When the body is active, it requires more oxygen than when it is at rest, and, 

therefore, the heart has to pump more blood. Because of the increased stress on the 

heart, exercise can reveal problems that are not apparent when the body is at rest. 

The stress test helps medical doctors determine how well the heart handles the 

increased demands imposed by physical activity. It is particularly useful for 

evaluating possible coronary artery diseases and detecting inadequate supply of 

oxygen-rich blood to the tissues of the heart muscle (ischemia), etc. A stress test 

requires exercises on a treadmill or an exercise bicycle while patient’s ECG, heart 

rate, breathing, blood pressure are recorded. Real time visualization and real time 

filtering are required for the stress test [9]. 

 

1.4     ECG Noises and Baseline Wandering 

Some noises can corrupt ECG signal significantly. Considerable ECG noises 

are power-line noise, electromyogram (EMG) noise and baseline noise. These noises 

can mask some important features of the ECG signal hence it is desirable to remove 

them for proper analysis and display of the ECG signal.   

Power-line noise consists of interference in the ECG by nearby AC power 

supplies and power lines. This affects the ECG as sinusoidal waves which are of the 

same frequency as the base and harmonic frequencies of 50 or 60 Hz of the power 

supply.  

EMG noise is caused by the contraction of other muscles besides the heart. 

When other muscles contract, they generate depolarization and repolarization waves 

that can also be detected by the ECG.  

Low frequency artifacts and baseline drift may be caused in the chest lead 

ECG signals by coughing or breathing, with large movements of the chest, or when 

an arm or leg is moved during the ECG data acquisition. Poor contact of the 

electrodes and perspiration of the patient under the electrodes may affect the 
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electrode impedance which causes low frequency artifacts.  Baseline drift may 

sometimes be caused by variations in temperature and bias in the instrumentation 

and amplifiers as well. This type of noise is undesired and needs to be removed 

before any further signal processing, for proper analysis and display of the ECG 

signal.  

Clinicians measure slopes and time intervals in ST, RR and QT segments to 

predict any abnormalities in the cardiac activity [10, 11]. Therefore, the slope of the 

baseline should be zero for clean ECG data. When there is baseline wandering noise 

in the ECG signal, the slope deviates from zero, and this causes difficulties in the 

evaluation of ECG recordings. For example, baseline drift makes analysis of 

isoelectric part of the ST segment difficult especially when there is an ST segment 

elevation or depression, where the slope of the interval is significant. If there is 

baseline wandering noise, it would be hard to differentiate noise related slope from 

the slope of the ST segment. Also, a large baseline drift may cause the positive or 

negative parts in the ECG to be clipped or badly detected by the analog to digital 

converter (ADC) or the other hardware.  

Figure 1.7 shows a sample ECG recording with baseline wandering noise. In 

this figure, baseline wandering noise is highest at 30 seconds; the deviation in the 

baseline at this time instant is approximately 0.5 mV. Moreover, the slope of the 

baseline is quite high from 30 to 40 seconds.  
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Figure 1.7: A baseline noisy data to give the low frequency artifact on the ECG 
data. 
 

 

 

 
Figure 1.8: The spectrum of the baseline noise and ECG. The function of high pass 
filter is to suppress the baseline noise. fc is the cut-off frequency. 
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1.5       Problem Definition  

 

We have stated earlier that the baseline wander noise makes the analysis of 

ECG data difficult. Therefore it is necessary to suppress this noise for correct 

evaluation of ECG.  

The baseline of an ECG waveform can vary considerably. There are both 

high and low amplitude wanders across a number of different frequencies. The 

frequency range of the ECG signal is 0 - 250 Hz and the frequency range of the 

baseline noise based on respiration frequency is 0- 0.3 Hz. The spectra of baseline 

wander and the ECG signal are close, and in some cases may overlap as shown in 

Figure 1.8. Therefore, a good filter should eliminate the wander while leaving the 

ECG signal undistorted.   

Filtering of the baseline wandering noise can be carried out in two ways, 

offline and online. Offline filtering is the case when the whole signal is recorded and 

the entire record is filtered. It is useful in typical 12 channel ECG devices. Online 

filtering is the case when the signal is filtered as it is recorded. It is necessary when 

real time processing and visualization are required as in an ECG stress test, in which 

the signal is simultaneously filtered and monitored in order to examine the effects of 

stress on the electrical activity of heart.  

The main purpose of this study is first to implement various offline baseline 

noise filters and to discuss the advantages and disadvantages of each offline filter; 

then to implement successful offline filters for online filtering case.  

 

 

1.6       Literature Review 

  

One of the most basic techniques for removing baseline wandering noise is 

known as the cubic spline method. This method is used as a reference method in 

many studies and performances of other filters are compared with cubic spline. In 

this method, first the QRS complexes are detected. Then the baseline wander is 
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estimated with a third order polynomial using various points on the ECG such as Q, 

R and S points or isoelectric baseline locations as the knots of the splines. Finally, 

the estimated noise is subtracted from the ECG signal. Cubic spline method has a 

number of disadvantages; for example, in the presence of high amplitude noise, QRS 

detector may not operate correctly. Also, baseline wander with sharp transitions may 

not be accurately described by a cubic polynomial so the order should be increased 

[12, 13].  

A good method of correcting baseline distortion is employing a high pass 

filtering technique. One such filtering technique is to employ Finite Impulse 

Response (FIR) filters where the output of the FIR filter is combined with a group 

delay. As the filter order increases, the complexity of the filter increases. However, 

if the filter order is selected to be low, then the noise suppression performance of the 

filter will decrease [14, 15].  

Infinite impulse response (IIR) filters, on the other hand, can achieve a sharp 

transition region with a small number of coefficients. However, an IIR filter that has 

a cutoff frequency high enough to remove baseline wander has a nonlinear phase 

response which distorts meaningful components of the ECG waveform. To avoid 

this distortion, bidirectional filters are used, in which the signal is filtered in a 

forward direction over a selected window and then the same window is filtered in a 

reverse direction. In Pottala’s study [16], a filter having a nonlinear phase response 

is used to filter an ECG waveform. In this approach, the data are filtered both 

forward and backward in time thereby removing nonlinearities injected by the IIR 

filter. A short window was selected so that the filter could be used for real time 

purposes. Bidirectional IIR filter is implemented for online and offline cases by HP 

and DellMar-Avionics and these filters are licenced by US Patents [12, 17].  

In [18], Jane implemented an adaptive filter that consists of two adaptive 

stages. One stage is the 0 Hz adaptive filter. Second stage is an adaptive impulse 

correlated least mean square (LMS) filter cascaded with a QRS detector. This 

method is used for online filtering but high mathematical complexity of this filter 

causes problems in implementation.  
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In [19], Rossi implemented a fast FIR filter for online filtering. He performed 

binomial filters like (1, 2, 1) and (1, 2, 4, 1) using moving averages. He tested the 

results and observed that the filters were fast but suppression performance of the 

filter was not adequate. 

In [20], Pandit discussed a time frequency analysis such as short time fourier 

transform (STFT) but he showed that it is not adequate when the online filtering 

window is shorter than four seconds. To have a good frequency resolution, the 

window time should be wider.   

           David Cuesta Frau gave an offline baseline removal method using wavelet 

approximations in [21]. This approximation is based on the signal decomposition in 

two parts; high frequency components, and the low frequency components. He 

reported that the results were quite accurate with much less effort than the frequency 

selective filters. 

Xu Lisheng performed a wavelet based cascade adaptive filter to remove the 

baseline wander in [22]. This cascade adaptive filter worked in two stages. The first 

stage was a discrete Meyer wavelet filter and the second stage was the cubic spline 

estimation. But the wavelet filter’s edge influence needed to be improved. 

In order to filter the baseline wander noise successfully, one needs to select 

an appropriate cut-off frequency. Previously we have stated that the frequency range 

of the ECG signal is 0 - 250 Hz and the frequency range of the baseline noise based 

on respiration frequency is 0 - 0.3 Hz and it is altering with the movement of the 

patient. The American Heart Association states that the filter’s cut-off frequency 

should be on the order of 0.67 Hz, since it is generally thought that the slowest heart 

rate is 40 bpm, implying the lowest frequency to be 0.67 Hz. But when the heart rate 

increases, this frequency also changes. Thus, an adaptive cut-off frequency selection 

is required. Time varying cut-off frequency is especially valuable for online filtering 

[17]. Time varying cut-off frequency selection has been studied by a number of 

researchers. The motivation of these studies was concentrated on adapting the cut-off 

frequency, since the ECG spectra and the baseline noise spectra move towards right 

in the frequency axis when the heart rate and the frequency of motion artifact 
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increase. In [23], Aksela observed that the time varying cut-off frequency should be 

inversely proportional to the distance between the RR peaks, but he did not give an 

exact solution to the problem [23]. Sornmo implemented the time varying filter as a 

bank of linear low pass filters, in which each filter has a slightly differing cut-off 

frequency but this approach has problems when the heart rate is high [24]. 

 

 

1.7       Scope of the Thesis  

 

In this thesis, we implemented various offline baseline wandering removal 

filters and compared performances of these offline filters using synthetically 

generated ECG data. Successful filters are selected and applied to online filtering and 

these filtering results are compared with the offline case. Then, these successful 

offline and online filters are used to remove the baseline wandering noise in real 

ECG recordings. Finally, the effects of the filter cut off frequency are studied.  

We implemented all filters using Matlab. A Matlab graphical user interface 

(GUI) is also created for this implementation and to display the results. 

 

 

1.8       Outline of the Thesis  

 

In this thesis, after an introduction to ECG signals, baseline noise and a brief 

literature study in Chapter 1, the theory behind the removal of baseline noise from 

the ECG is given in Chapter 2. Synthetic data and noise is introduced in Chapter 3. 

The filters’ results on the synthetic data are given in Chapter 4 for both offline and 

online cases. In Chapter 5 real noisy ECG data are filtered with two of the successful 

filters. Conclusions and discussions are given in Chapter 6. Finally, the Matlab GUI 

is given in Appendix A. 
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CHAPTER 2 

 

 

THEORY OF THE STUDY 

 

 

 

In this chapter, we provide the theoretical background for the thesis. First, 

we present general information on digital filters. Then we explain characteristics of 

FIR filters, computer based FIR filters and windowing FIR filters. Next, we discuss 

IIR filter design and bidirectional IIR filtering. QRS detection and spline 

interpolation with respect to different points on the ECG signal is introduced. 

Finally, a brief theory on adaptive filters with least mean square (LMS) algorithm is 

given.  

  

 

2.1       Digital Filters 

 

In signal processing, the function of a filter is to remove unwanted parts of a 

signal, such as random noise, or to specify useful parts of the signal, such as 

components lying in a certain important frequency range. There are two main kinds 

of filters; analog and digital. An analog filter uses analog electronic circuits made up 

from components such as resistors, capacitors and operational amplifiers to produce 

the required filtering effect. An analog filter can only be changed by redesigning the 

filter circuit. 

A digital filter uses a digital processor to perform numerical calculations on 

sampled values of the signal for filtering. The processor may be a general purpose 

computer, or a specialized digital signal processor (DSP) chip. A digital filter is 

realized by a program stored in the processor's memory. This means the digital filter 

can simply be changed without affecting the circuitry (hardware). Because of 
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flexibility in their design, digital filters are commonly used for filtering. Digital 

filters are discrete time systems and are characterized by their impulse responses. An 

impulse response can either have a finite or an infinite duration. A finite impulse 

response ‘h(n)’ has values extending over a finite time interval from 0 to N and it is 

zero beyond that interval. The finite impulse response 

h n( ) h 0 h 1, ......., h N,
 

 

(2.1) 

 

has values in the interval (0 to N) and it is referred to as a finite impulse response 

system or filter of order N. So an N’th order digital filter has an impulse response 

with a size of (N+1) samples. The samples of the impulse response function h(n) are 

also called the filter coefficients [25, 26]. 

The digital filter has linear phase characteristics as shown in Figure 2.1. This 

means that the phase response is a linear function of frequency and it has a constant 

group delay response.  

 

 
Figure 2.1: Linear phase characteristics of a digital filter. The y-axis is the phase; 
the x-axis is the frequency axis.  
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General digital filter design process can be divided into four main steps: 

• Approximation (Estimation of the suitable filter parameters for the digital filter.). 

• Synthesis and realization (Implementation and realization of the filter). 

• Performance analysis (Performance test of filter for given specifications and 

adjusting the filter characteristics in order to design required filter.). 

• Implementation (Implementation of the adequate filter on the noisy data and the 

realization of the suppression process.). 

 

Both digital FIR and IIR filters are designed with using this filter design procedure in 

order to approach the required filter specifications.  

 

 

2.2       Digital FIR Filters 

 

FIR filters are linear discrete time systems, in which the output sequence is 

related to the input and the impulse response of the filter by the convolution sum: 

 

 

 (2.2) y n( )

0

N

m

x m( ) .h n m( )

=

The summation on the right hand side is a convolution between the input sequence, 

x(n), and the impulse response of the filter, h(n). The frequency response of an N’th 

order FIR filter is given by: 

 
 

(2.3) H w( )

0

N 1

n

h n( ) . e j w. n.

=
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2.2.1    Estimation of FIR Filter Order  

 

 Estimation methods are performed for the approximation of the filter order in 

order to achieve adequate filter specifications. The magnitude response of the low 

pass filter is given in Figure 2.2 with the important parameters considered in the 

design process. In this figure, H(w) is the frequency response of the filter. The 

regions (0 to wp), (wp to ws) and (ws to infinity) are called the pass band, the 

transition band, and the stop band, respectively. δpass is the pass band ripple,  δstop is 

the stop band ripple. Then, the order of the FIR filter is estimated by: 

N
20 . log10 δ pass δ stop. 13

14.6
ws wp( )

2 π.
.

 

          (2.4) 

According to this equation the filter length of an FIR filter is inversely proportional 

to the transition bandwidth, (ws - wp). When the designed filter does not give the 

desired result, the order (N) is increased [27, 28]. 

 

 
 
Figure 2.2: Magnitude response of low pass filter. The interval between 0 to wp is 
pass-band. The interval between wp to ws is transition-band. The interval after ws is 
called stop-band. Deviation from magnitude 1 in the pass-band is (δpass) pass-band 
ripple. Deviation in the stop-band is (δstop) stop-band ripple.  
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2.2.2    Computer-Based FIR Iterative Filter Design Technique  

Computer-based iterative methods are performed to design digital filters.  

Desired

h

 

 filter characteristics are determined and the filter design process starts 

according to an approximation algorithm using iteration. Desired filter has the 

magnitude response, D(w), and let |H(ejw)| denote the magnitude response of the 

digital transfer function to approximate t e desired magnitude response D(w). The 

objective is to determine the transfer function coefficients so that the difference 

between |H(ejw)| and D(w)  for all values of w, which is in the range of  0 w π,  is 

minimized [29]. This difference is specified as a weighted error function E(w) given 

by: 

    

  E(w)= P(w).[ | ejw) |- D(w)]   

 

(2.5)

 

here P(w) is the weighting function. The mini-max criterion is used as an 

    

 H(  

w

approximation method, in which the peak absolute value of the error E(w), is 

denoted as ε: 

ε max E w( ) 0 w π  (2.6) 

 

The linear-phase FIR filter obtained by minimizing the peak absolute value 

of the 

   

weighted error is called the “optimum FIR filter”. The Parks-McClellan 

algorithm [4] is used for designing the optimum linear-phase FIR filter. The 

frequency response of a linear phase FIR filter H(ejw) with order N is given by: 

H ejw e
j N 1( ) w

2 . ejβ . Ha w( ) β 0 or π/2
 

 

(2.7)

where the amplitude response Ha(w) is a real function of w which is given in 

 

equation 2.8. In equation 2.7, type-1 linear-phase FIR filter is considered. Type-1 
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linear phase FIR filter has a symmetric impulse response of order N equals to 2M+1. 

Amplitude response of this type of FIR filter is calculated as: 

Ha w( )

0

M

n

a n( ) . cos w n.( )

=  

      (2.8) 

where the coefficients a(n) are related to the filter's impulse response coefficients 

h(n) according to the relation given in equation 2.9: 

 

A(0) = h(M)          a(n) = 2.h(M-n)         (2.9) 

 

The amplitude function Ha(w) is minimizing the error if there exists ‘M+2’ angular 

frequencies w1,w2,....,wM+2    

 
0 w π such that w 1 w 2< ........< wM 1< wM 2<

E w i E wi 1 with 1 i M 1

E wi( ) ε with 1 i M 2  

(2.10) 

 

The optimum solution can be obtained by solving the set of M+2 equations. 

 

P w i Ha w i D w i 1( )i . ε 1 i M 2
 

(2.11) 

 

In order to find unknowns a(i) and ε, equation 2.11 can be rewritten in a matrix 

form: 
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.
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a 0( )

a 1( )

.

.

.

a M( )

ε

D w 1

D w 2

.

.

.

D wM 1

D wM 2

 

(2.12) 

which can be solved for the unknowns if the locations of the ‘M+2’ frequencies are 

known. Remez algorithm [27], which is an iterative procedure, is used to determine 

the locations of the frequencies. 

 

 

2.2.3    FIR Windowing Method 

 

FIR filters can also be designed using the windowing method. The ideal filter 

has infinite number of samples in time domain given in equation 2.15. Windows are 

performed in order to have finite number of samples in time domain for realizable 

filter design. 
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Figure 2.3: Magnitude response of an ideal filter. The cut-off frequency is wc.  

 

 

The ideal high pass filter characteristic is given in Figure 2.3. The continuous 

frequency response and the discrete-time impulse response are related by the 

equation 2.13. The aim is giving the relation between ideal frequency domain filter 

and its impulse response in time domain and to show the importance of windowing 

method. 

 

D w( )

∞

∞

k

d k( ) . e jwk

=
 

d k( )

π

π

w
D w( )
2. π

ej w. k. d

 

(2.13) 

The filter’s impulse response can be obtained by using the inverse fourier transform. 

The filter coefficients will simply be the impulse response samples. The desired low 

pass filter’s response is given by equation 2.14: 
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                                      D(w)=1  ,  if      |w|<wc   

                                              = 0 ,   elsewhere                
    (2.14) 

 

            
Figure 2.4: Magnitude response of an ideal window. A window function from –wc 
to wc is employed to show the windowing effect. 
 

 

The impulse response of the ideal window, d(k), is determined in equation 2.15: 

d k( )

π

π

w
D w( )
2 π.

ej w. k. d

d k( )

wc

wc
w

1
2 π.

ej w. k. d

d k( )

wc

wc
w

1
2 π.( ) j. k.

ej w. k. e j wc. k. d

d k( )
sin wc k.( )

π k.
∞ k< ∞<

 

(2.15) 
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Figure 2.5: Sinc function, d(k) function with k from -10 to 10. 

 

 

In order to compute the impulse response of a finite duration, a window function is 

employed. The ideal impulse response, d(k), is multiplied by a window function, 

w(n), which results in a finite duration. There are different windowing functions. 

The important window functions are rectangular window, Hamming, Hanning, 

Blackman windows. 

 

 

2.2.3.1     Rectangular Window 

  

The filter is required to have finite number of values within a certain interval, 

from -M to M. This is equivalent to multiplying d(k) by a rectangular function given 

by: 

                                          w(n)= 1 ,  |n|<M  

   w(n)= 0 ,  otherwise 
(2.16) 
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2.2.3.2     Hamming Window 

 

Discontinuities in the time function cause ringing in the frequency domain. 

The rectangular window is replaced by a window function ending smoothly at both 

ends which will cause reduction in ripples. The hamming window is an important 

window function. The hamming window is defined as: 

w n( ) 0.54 0.46. cos
2 π n
N 1  

                                          n=0,1,…..,N-1 

 

(2.17) 

where N is the order of the filter and M is the window length. This equation defines 

the window samples as already shifted (indices from 0 to ‘N-1’). So the impulse 

response of the FIR low pass filter designed using the hamming window is: 

 

h(n)=w(n) .d(n-M) 

h n( ) 0.54 0.46. cos
2 π n
N 1

.
sin n M( ) . wc( )

n M( ) . π

 

(2.18) 

The ripples that occur in rectangular windowing in both the pass band and the stop 

band are virtually eliminated. Thus, the filtered data will have a wider transition 

width. 
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2.2.3.3      Hanning Window 

 

The Hanning window is defined mathematically as: 

w n( ) 0.5 0.5 cos
2 π n
N 1  

                                      n=0,1,…..,N-1 

(2.19) 

 

The difference of Hanning window is performed window function. This function is 

quite similar to the Hamming window. 

 

  

2.2.3.4     Blackman Window 

 

The Blackman window exhibits a lower maximum stop band ripple in the resulting 

FIR filter than the Hamming window. It is defined mathematically as: 

w n( ) 0.42 0.5. cos
2 π n
N 1

0.08
4 π n
N 1

 

(2.20) 

The width of the main lobe in the magnitude response is wider than that of the 

Hamming window. 

 

 

2.2.4    High Pass Filter Design 

 

The amplitude response of a low pass filter is shown in Figure 2.6. Low pass 

filter is first applied, and with simple transformations the high pass filter can then be 

easily performed.  
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Figure 2.6: Magnitude response of a low pass filter. Pass-band and stop-band 
regions are illustrated with equation 2.21 and equation 2.22. 
 

 

The derivation of the transformation is specified with the following equations: 

wp
2 π f pass

f s  

     
ws

2 π f stop
f s  

                                            

w c
2 π f c

fs
 

(2.21) 

The ideal cut off frequency, fc, is at the midpoint between the pass band and stop 

band edge frequencies set in equation 2.22: 

                                     

f c
f pass f stop

2
 

(2.22) 

The transition width is defined as: 

  ∆ f f stop f pass  (2.23) 
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Since the role of fpass and fstop are interchanged in order to design high pass filter. 

The ideal high pass impulse response is obtained from the inverse fourier transform 

of the ideal high pass frequency response. It is specified by equation 2.24: 

d k( ) δ k( )
sin w c k.

π k
 

(2.24) 

The windowed filter impulse response is: 

h n( ) w n( ) . δ n M( )
sin n M( ) w c.

n M( ) π

h n( ) δ n M( ) w n( ) .
sin n M( ) w c.

n M( ) π
 

        (2.25) 

 

 

2.3       IIR Filter Design 

 

An IIR filter is one whose impulse response theoretically continues for ever 

because the recursive terms feed back energy into the filter input and keep it as 

specified in the following equation: 

y n( )

1

N

k

a k( ) . y n k( )

0

M

k

b k( ) . x n k( )

==  

H z( )
0

M

k

b k( ) . z k

=

0

N

k

a k( ) . z k

=  

(2.26) 
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The theory of Butterworth function is explained here but, the order of the filter 

should be high and implementing a filter of that order is not easy to perform. In 

addition to this difficulty, solving these high order equations is not straightforward.  

 

 

2.3.1 Butterworth Function 

 

The magnitude squared function of the Butterworth approximation is  

H w( )( )2 1

1 w2 n. . c
 

(2.27) 

for an n’th order filter. The constant c determines at which frequency, w, the 

transition of the pass band to stop band occurs. The order of the required 

Butterworth filter is calculated by: 

n
In M( )
In Ω( )  

Ω
ws
wp  

M
100.1 Ks 1

100.1 Kp 1

 

(2.28) 

Ks, Kp are ripples in stop-band and pass-band respectively and in decibels (dB) [14]. 
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Figure 2.7: Butterworth filter design parameters. The ripples, pass-band and stop- 
band region and the boundaries of the frequency selective filter are illustrated. 
 

 

2.3.2    IIR Filters from Analog Filters 

 

Analog filters are designed by using approximation methods. The bilinear 

transformation converts the analog filter into a digital IIR filter. Bilinear 

transformation is a frequency domain method of converting the analog filter transfer 

function H(s) into a digital form, H(z). The transformation is performed by changing 

the variables:  

s
2
T

.
z 1
z 1

 
where T is the sampling period. 

(2.29) 

It is called bilinear since both the numerator and denominator of these 

transformation equations are linear. This transformation is reversible in that H(s) can 

be obtained from H(z) by the following substitution [14]: 
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z

2
T

s

2
T

s
 

(2.30) 

 

2.3.3    Bidirectional IIR Filtering 

 

High pass IIR filters are recursive filters that offer the advantage of fewer 

computations than the FIR filters. But IIR filters have a phase distortion that is 

caused by nonlinear phase response of IIR filters. A solution to phase distortion 

problem is to apply the IIR filter to the ECG signal in both directions. This is 

referred to as the “zero phase IIR filter”. Filtering in forward direction distorts the 

ECG signal. The reverse direction filtering corrects the distortion of the ECG signal. 

The algorithm of the bidirectional filtering is shown in Figure 2.8. And the 

algorithm is represented with a filter h’(n) which is given in Figure 2.9. 

 

 

2.3.4    Non Causal Zero-phase IIR Filtering  

 

    The phase response of causal IIR filter is non linear. However, if the IIR 

filter is implemented as a non causal operator, its phase response can be made 

exactly zero or linear. The recursive difference row is implemented as causal 

systems and it executes in forward, starting at n=0 than n=1, 2, 3... When the 

difference equation is applied at n=0, then n=-1, -2… In this case the impulse 

response of the system is left sided and system is anti-causal. The bilateral z-

transform describes anti causal systems [30, 31]. If a causal system has a rational z-

transform: 
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H c z( )
B z( )
A z( )  

 

    ROC is given as:   

  

z R max>

 

(2.31) 

the related anti-causal system is:         

H a z( )
B

1
z

A
1
z  

 

   ROC is given as:   

                                             

z
1

R max
<

 

(2.32) 

Also the radius of the largest root of A(z) satisfies Rmax < 1 and both of these 

systems are stable. The region of convergence (ROC) determines whether the 

impulse response is right sided or left sided. 

 h a n( ) h c n( )  

 

H a z( ) H c
1
z

 

(2.33) 

The two impulse responses are related with a time flip (time reversal). 
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   y[n]  
 

 

Figure 2.8: Block diagram of a bidirectional filter. The h[n] is the order 5 
Butterworth IIR filter and flip is the time reversal of the signal in time domain.  
 

 

 
Figure 2.9: The h’(n) is a bidirectional zero-phase filter. It is a zero phase filter to 
simply show the group of block diagrams specified in Figure 2.8. 
 

 

 

2.4       ECG QRS Detection and Spline Filtering 

 

One of the most common technique for baseline wander removal is spline 

interpolation where the QRS waves are detected and interpolation techniques are 

employed in order to determine the smoothest curve joining several QRS point. 

Then, filtering of the ECG baseline wander can be performed by subtracting the 

curve representing the baseline wander estimated by the cubic spline technique from 

the ECG signal [32, 33]. In this approach, first, R peaks are detected, than the Q and 

S peaks and iso-electric lines are distinguished. The baseline curve is constructed 

and subtracted from the noisy data. The steps are divided into QRS detection and 

spline interpolation parts and each part is examined in the following subsections.  

 

 
 
 
 
 
  

x[n]  y[n]  
 h’[n]  

flip 

  x[n]  y1[n] y1[-n]  y[-n]  
h[n]  h[n]  Flip  Flip  
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2.4.1 QRS Detection Algorithm 
 

The block diagrams shown in Figure 2.10 are applied serially and each block 

is explained in detail in this subsection. The block diagrams in Figure 2.10 are 

applied in order to find the QRS points.  

 

Pre-filtering: A low pass and a high pass filter are employed serially for a 

better result on the output of the differentiator to smooth the input data before 

derivation. Smoothing filters defined by equations 2.34 are used for low pass and 

high pass filtering. 

For low pass filtering: 

y n( )
x n( ) 2. x n 1( ) x n 2( )

4  
 

For high pass filtering: 

y n( ) x n( ) 3. x n 1( ) x n 2( ) 

         (2.34) 

 

Derivative operator: The derivative procedure suppresses the low 

frequency components of P and T waves, and provides a large gain to the high 

frequency components arising from the high slopes of the QRS complexes [34]. The 

derivative operation for the algorithm is specified as:  

y n( )
2. x n( ) x n 1( ) x n 3( ) 2. x n 4( )

8  
         (2.35) 

 

Squaring: The squaring operation makes the result positive and emphasizes 

large differences resulting from QRS complexes. The small differences arising from 

P and T waves are suppressed, and the high frequency components in the signal 

related to the QRS complexes are further enhanced.  
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Integration: The output of a derivative based operation will exhibit multiple 

peaks within the duration of a single QRS complex. The algorithm performs 

smoothing of the output of the preceding operations through a moving window 

integration filter to yield a single peak for the detection of a single QRS complex 

using equation 2.36 [35]. 

y n( )
x n N 1( )( ) x n N 2( )( ) ...... x n( )

N
 

(2.36) 

 

 
Figure 2.10: The algorithm to find the QRS waves. In our thesis, it is executed to 
identify the R peaks. The block diagrams are carried out in cascade. 
 

 

At the end of the above procedures, R points are detected. An interpolation 

curve is fitted passing through these points [36] and baseline correction is realized 

by using the created interpolation curve.  

R

Q

S

 
Figure 2.11: Base line correction with respect to R waves. In the first curve, signal 
has baseline noise and the estimated baseline noise is shown. In the second figure, 
the signal is corrected by subtracting the estimated baseline noise. 

flip 
  x[n]  

 Differentiator Integrator  Prefiltering Squaring 
  y[n]  
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The simplest method of performing spline correction is the linear spline 

interpolation method. Other methods are quadratic and cubic spline. In these 

methods, interpolation is executed using curves instead of lines [37]. The following 

section will present the theory of spline interpolation. 

 

 

2.4.2    Spline Interpolation 

 

Spline interpolation is a method that fit a polynomial between an interval 

using points according to the degree of interpolation. After the detection of 

interpolation points the spline interpolation is performed with these points. In each 

interval ‘i’ a spline is constructed according to the degree of polynomial Si(x) (linear, 

quadratic or cubic). Spline function Si(x) in the specified intervals is given as: 

 

S0(x): x є [x0, x1] 

S1(x): x є [x1, x2] 

… 

Sn-1(x): x є [xn-1, x1] 

Using Si(x) polynomial of degree ‘n’, data set is uniquely interpolated. 

 

2.4.2.1    Linear Spline Interpolation 

 

Linear spline interpolation is the simplest form of spline interpolation. The 

data points are graphically connected by straight lines. The resultant spline is just a 

polygon. Each Si(x) is a linear function and it is formulated with equation 2.37. The 

linear spline interpolation is illustrated in Figure 2.12. 

S i x( ) yi

yi 1
yi . x xi

xi 1
xi  

(2.37) 
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Figure 2.12: Spline interpolation curve (linear). The present and the neighbor points 
used in the iteration to find the spline curve. 
 

 

2.4.2.2    Cubic Spline Interpolation 
 

For a data set, xi, using ‘n+1’ points, we can build a cubic spline curve with 

‘n’ piecewise cubic polynomials between these data points. Cubic polynomial Si(x) 

is such that: 

S0(x): x є [x0, x1] 

S1(x): x є [x1, x2] 

... 

Sn-1(x): x є [xn-1, xn] 

 

Interpolation polynomial to build cubic spline curve is defined in equation 2.38 and 

zi is the second derivative of Si(xi). 

 

Si x( )
zi 1 x xi

3 zi xi 1 x 3

6.hi

yi 1

hi

hi

6
zi 1 x xi

yi

hi

hi

6
zi . xi 1 x

 

                                                                                                                              (2.38) 

hi xi 1 xi  
(2.39) 
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2.5      Adaptive Filters  

 

Adaptive filters are used when the noise is not stationary and the noise is 

uncorrelated with the signal. When no information is available about the spectral 

characteristics of the signal and noise, a second source or recording site is available 

to obtain a reference signal that is strongly correlated with the noise but uncorrelated 

with the signal. Adaptive filter acts as a fixed filter when the signal and noise are 

stationary [17]. Least mean square and normalized least mean square algorithms are 

explained in the following subsections. 

 
 
 

2.5.1    Least Mean Square (LMS) Algorithm 
 

The objective of the algorithm is to adapt the coefficients of FIR filter, W, to 

match as closely as possible to the response of unknown system, H. The adaptive 

filter, W, is adapted using the least mean square algorithm, which is the most widely 

used adaptive filtering algorithm. As shown in Figure 2.13 d(n) is the desired signal 

and y(n) is the output of filter. The error signal e(n), is computed as: e(n) = d(n) – 

y(n) which measures the difference between the output of the adaptive filter and the 

output of the unknown system. On the basis of this measure, the adaptive filter will 

change its coefficients in an attempt to reduce the error [38]. In equation 2.40 the 

filter adaptation equation is given as: 

                   

wn 1
k( ) w n k( ) µ E. e n( ) . x n( )( )

 

(2.40) 

In this equation, µ is a constant that represents the step size and it controls the 

gradient information used to update each coefficient. After adjusting each coefficient 

according to the gradient of the error, the adaptive filter should converge; that is, the 

difference between the unknown and adaptive systems should get small. The 

adaptation of the equation is: 
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wn 1 k( ) w n k( ) µ e n( ). x n k( ).

 
(2.41) 

When x(n) is a complex number, complex conjugate of x(n) is applied in equations 

2.40 and 2.41. 

 

 

             
Figure 2.13: Adaptive filtering block diagram using gradient descent adaptation. 
Here the W is the coefficient matrix, d(n) is the desired signal, e(n) is the error 
signal, H is the unknown system. 
 

 

  If µ is very small, then the coefficients change only a small amount at each 

update and the filter converges slowly. On the other hand, when the step-size is too 

large, the coefficients may change too quickly and the filter will diverge. Suitable 

step size should be selected by adjusting the step size.  

LMS filter may not converge due to suitable step size. Since, it controls the 

gradient information used to update each coefficient. In normalized least mean 

square (NLMS) filter gradient step factor is normalized and it converges easily. 

 

 

2.5.2    Normalized LMS 

 

In ‘normalized’ LMS, the gradient step factor µ is normalized by the energy 

of the data vector.  
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µ n( )
β

xH n( ) x n( ) ε
 

(2.42) 

where β is a normalized step size selected between 0 and 2, and ε is a small number 

introduced to prevent division by zero if the denominator zero. 

      
wn 1 wn µ n( ) x n( ). e n( ).

 
(2.43) 

When x(n) is a complex number in equation 2.43, the complex conjugate of x(n) is 

applied [39].                                                                                                     
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CHAPTER 3 

 

 

SYNTHETIC DATA, NOISE AND THE EVALUATION CRITERIA 

 

 

 

In this chapter, the synthetic data recorded from an ECG simulator and the 

generated noise for modeling baseline wander is presented, and the employed 

evaluation criteria are specified. 

 

 

3.1    Reference Synthetic Data  

 

   The synthetic data used in this study were recorded from a 12 lead ECG 

simulator and provided by Oğuz Tanrısever from Kardiosis. The duration of the 

recording is 50 seconds and sampling rate is 1 kHz. The resolution of the data is two 

bytes (16 bits). Lead ‘II’ is used in the thesis because it has the highest amplitudes in 

the 12 lead ECG. The magnitudes of the signal at the Q, R, S points of all 12 leads 

are given in Table 3.1. In Figure 3.1 three consecutive beats are plotted in order to 

show the data of Lead ‘II’. Figure 3.2 shows the entire 50 seconds recording from 

lead ‘II’. The synthetic recording used as the reference data in this thesis is shown in 

Figure 3.3. In this figure, samples between seconds 10 to 30 are taken from the 

signal in Figure 3.2 to show the data in detail and also to examine the baseline 

wandering noise easily.  
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Table 3.1: Magnitudes of Q, R, S points in 12-lead ECG channels (scaled in 
milivolts).         
            

                      Q           R            S                                         Q          R           S           

       --------------------------------------                    --------------------------------------- 

        I         -0.09       0.92      -0.34                      V1        -0.03       0.38      -0.10     

       II         -0.14       1.50     -0.55                       V2        -0.05      0.53       -0.17     

      III        -0.05       0.58      -0.20                      V3        -0.06       0.70      -0.25      

  AVR        -1.20       0.43       0.08                       V4        -0.06      0.70       -0.25      

  AVL            0          0.18     -0.06                       V5        -0.09      1.15       -0.41     

  AVF         -0.1         1.04     -0.36                       V6        -0.08      0.90       -0.30   
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Figure 3.1: Pure ECG signal from Lead ‘II’; 3 consecutive beats taken from 
synthetic data are plotted in this figure to show the data in detail. It illustrates the Q, 
R and S points magnitudes given in Table 3.1. 
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Figure 3.2: Pure (clean) ECG signal. Time axis is scaled in seconds (s), y axis is in 
milivolts. The amplitude of the data changes between -1 to 2 milivolts. 
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Figure 3.3: Reference data. Samples between 10- 30 seconds are extracted from 
Figure 3.2. 
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In Figure 3.4 power spectrum estimation of pure ECG data shown in Figure 

3.2 is given. Y-axis is in (power/frequency) unit to understand the spectra easily and 

the x-axis is the frequency (f) axis with ‘Hz’ unit. The harmonics of simulator data 

are given and frequency range is approximately from 1 Hz to 45 Hz. Figure 3.5 is 

the zoomed version of the Figure 3.4 in order to examine the influenced frequency 

components by filtering process in detail. 
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Figure 3.4: Power spectrum density estimation of pure ECG data. The harmonics 
are given with the frequency. Y axis is formed in power/frequency scale. 
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Figure 3.5: Power spectrum density estimation of the pure data. It is specified as a 
reference. It is scaled up using Figure 3.4 in order to show the spectrum in detail. 
 
 

 

3.2    Synthetic Noisy Data  

 

Noise is modeled and added to the pure data to form the noisy data. Pottala’s 

noise model was used in this study [12]. In this model, the noise has two cosine 

wave components at frequencies 0.25 Hz and 0.3 Hz. These frequencies are the 

typical respiratory frequencies. The magnitudes of the 0.25 and 0.3 Hz cosine waves 

have the amplitudes 250 and 200 micro-volts, respectively [12]. Generated noise to 

simulate baseline wandering noise model is shown in Figure 3.6. The noise in Figure 

3.6 is added to the pure data in Figure 3.2 and the noisy data in Figure 3.7 is 

constructed. In Figure 3.8 samples from second 10 to 30 include one period of noise. 

Power spectrum density estimation of the noisy data is shown in Figure 3.9 from 0 

to 10 Hz. The spectrum is clipped from 4 Hz to compare the noisy data and filtered 

data in detail. Figure 3.10 is specified as a reference and aim is suppressing the noise 

and obtaining the PSD of synthetic data given in Figure 3.5. 
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Figure 3.6: Generated noise to form baseline wandering noise model. The noise is 
added to the pure data using specified cosine waves. 
 

 

0   5 10  15  20  25 30  35 40  45 50

-1

-0.5

0

0.5

1

1.5

2

Time (s)

A
m

pl
itu

de
 (m

ili
vo

lt)
 

 
Figure 3.7: Noisy ECG data. The noise in Figure 3.6 is added to the pure data in 
Figure 3.2.  
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Figure 3.8: Noisy synthetic data. It is focused from Figure 3.7. Samples are from 
second 10 to 30 including one period of noise. 
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Figure 3.9: Power spectrum density estimation of the noisy data. It is scaled up in 
order to show the PSD of baseline noisy data in the spectra. 
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Figure 3.10: Power spectrum density estimation of the noisy data. It is specified as a 
reference. It is the zoomed version of spectrum in Figure 3.9 in order to show the 
noisy synthetic data spectra in detail. 

 

 

3.3 Evaluation Criteria 

 

Root mean square error and root relative square error are the commonly used 

performance tests. Performance of filter is important because desired filter will be 

designed according to minimum error criteria in Chapter 4. The filter parameters will 

be selected suitably in order to perform the filter with minimum RMSE and RRSE.  

 

 

3.3.1    Root Mean Squared Error 

The root mean squared error (RMSE) is one of the most commonly used 

measures of success for numeric practices. The error is computed by calculating the 

average of the squared differences between each computed value ‘ci’ and its 
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corresponding correct value ‘ai’. The root mean squared error is simply the square 

root of the mean squared error. Here ‘n’ is the number of samples.  

RMSE a 1 c 1
2 a 2 c 2

2 ... a n c n
2

n
 

(3.1) 

3.3.2 Root Relative Squared Error:  

Root relative squared error (RRSE) is the total squared error formed with 

correct and calculated data divided by the error formed with calculated and average 

data. Here ‘a’ is the mean value of vector [a1 a2 … an]. Similar to the RMSE, the 

square root of the relative squared error is performed. One can also find the 

percentage RRSE by multiplying it by 100%. Throughout the thesis, we use the 

percentage RRSE. 

RRSE
a 1 c 1

2 a 2 c 2
2 ... a n c n

2

a 1 a 2 a 2 a 2 ... a n a 2

 

(3.2) 
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CHAPTER 4 

 

 

RESULTS WITH SNYTHETIC DATA 

 

 

 

In this chapter, various baseline wander removal filters will be applied to 

synthetic noisy ECG data, and the performances of these filters will be studied. In 

the following sections, frequency response of filters, frequency spectrum of filtered 

ECG data, the result of filtered ECG data and deviation from noise-free data 

(difference) will be given. The RMSE and the RRSE values will be determined for 

each filter. 

In the first part of this chapter, offline filters are applied to the noisy ECG 

data shown in Figure 3.7 and suppression performances are compared in detail. In 

the second part, successful offline filters will be used in online filtering of the same 

simulated data, and the suppression performances of the filters are compared. In 

section 4.7 the effects of the cut-off frequency using a bidirectional IIR filter on an 

ST segment depressed-baseline noisy ECG signal is demonstrated. 

 

 

4.1 Offline FIR Filters 

 

In this section, computer based iterative FIR filter, windowing FIR filters 

with Hamming, Hanning and Blackman functions are performed. The performance 

characteristics of these filters will be given in the following subsections. 
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4.1.1 Computer Based Iterative FIR Filter 

 

As we have discussed in Chapter 2, basic filter design parameters are pass-

band ripple, stop-band ripple and cut-off frequencies. The filter design process that 

was given in section 2.1 is applied step by step; in this design, pass-band ripple (rp) 

is 0.01 dB, stop-band ripple (rs) is 30 dB and the desired cut-off frequency is 0.67 

Hz. With these design parameters and using equation 2.4, the order of the filter was 

found to be 7412 and it is quite high. Computer based iterative FIR filter was 

designed using mini-max criterion of difference, between designed filter and desired 

filter, given in equation 2.6. The designed filter has a small ripple in the pass band 

(0.1 dB) and cut-off frequency of 0.89 Hz which is shown in Figure 4.1. The 

transition band of this filter is narrow and approximately 0.1 Hz (from 0.89 Hz to 1 

Hz). Throughout the design process given in section 2.1, the selected filter has the 

smallest RRSE and RMSE among the computer-based iterative FIR filters. 

When this filter was applied to the synthetic ECG signal with the baseline 

noise shown in Figure 3.7, this filter introduced 3706 ms of group delay in the 

filtered signal. After compensation of the group delay, the filtered output signal 

shown in Figure 4.2 (a) is obtained. The error signal, which is the difference 

between the pure data (without any noise component) shown in Figure 3.3 and the 

filtered data shown in Figure 4.2 (a), is less than 5 micro-volts and this deviation 

represents a satisfactory performance of this filter, especially when compared to 1.5 

mV values at R peaks. The RMSE and the RRSE are calculated as 1.55 micro-volts 

(µV) and 0.7 %, respectively. Performances of filters which have RRSE less than 1 

% are quite good and this filter can be implemented due to its successful suppression 

performances. 

Finally, the power spectrum density estimate of the filtered signal is 

presented in Figure 4.3. When we compare this estimate with the power spectrum 

density estimate of the pure data shown in Figure 3.5, we observe that the filtering 

performance of this filter is acceptable and the signal’s frequency components are 
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not disturbed. There is not too much difference between the pure and the filtered 

data in the spectrum as shown in Table 4.1.  
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Figure 4.1: Optimal FIR filter’s frequency response. Magnitude is given in dB. 
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Figure 4.2: (a) Optimal FIR filtered data. The group delay is compensated, thus, there 
is no group delay. (b) The difference between the pure and the filtered data. 
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Figure 4.3: Power spectrum density estimation of iterative FIR filtered signal.   
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4.1.2 FIR Filtering with Windowing Methods 
 

The Hamming, Hanning and Blackman windowing methods are implemented in this 

subsection and performances of these filters are examined. 

 

 

4.1.2.1 Hamming Window Filtered Data 

 

Filter design parameters are the same in every FIR filters performed in the 

thesis study and the parameters are shown in section 4.1.1. Since the order of all 

windowing functions is calculated as 7412, the group delays of all FIR filters are the 

same. As shown in the frequency response of the filter, there is no ripple in the pass 

band (Figure 4.4). Cut-off frequency at the 3 dB point is 0.85 Hz (this filter is 

designed according to minimum RRSE criteria). The transition band is narrow 

(approximately 0.1 Hz). The window length is 7413 which is selected according to 

filter order 7412 (window length is order plus one). 

The group delay effect is corrected by using the following steps; apply zero 

padding to data, then, filter it, and, finally, shift the resultant signal to the left. The 

result of this filter is given in Figure 4.5 (a). Figure 4.5 (b) displays the error signal, 

which is the difference between the pure data shown in Figure 3.3 and the filtered 

data shown in Figure 4.5 (a). The RMSE and the RRSE are calculated as 1.09 micro-

volts (µV) and 0.49 %, respectively. Since filters with RRSE less than 1 % are 

accepted to be good filters, this filter can be considered a good filter. 

Finally, the power spectrum density estimate of the filtered signal is 

presented in Figure 4.6. It is observed that the filtering performance of the filter is 

acceptable and the signal’s frequency components are not disturbed. There is not too 

much difference between the pure and the filtered data in the spectrum as shown in 

Table 4.1. The filtering time of windowing filter (mathematical complexity of filter) 

is shorter than the computer based iterative filter due to iterative algorithm of 

computer based iterative filters. 

 55



           

0 1 2 3 4 5 6 7 8-6

-5

-4

-3

-2

-1

0

1

Frequency(Hz)

M
ag

ni
tu

de
(d

B
) 

 
Figure 4.4: Hamming window FIR filter’s frequency response. 
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Figure 4.5: Hamming window FIR filter results. (a) filtered data, (b) the difference 
between the filtered data and the pure signal. 
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Figure 4.6: Power spectrum density estimation of hamming window filtered signal. 
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4.1.2.2 Hanning Window Filtered Data 

 

Filter design parameters are the same in every FIR filters performed in the 

thesis study and the parameters are shown in section 4.1.1. Since the order of all 

windowing functions is calculated as 7412, the group delays of all FIR filters are the 

same. As shown in the frequency response of the filter, there is no ripple in the pass 

band (Figure 4.7). Cut-off frequency at the 3 dB point is 0.85 Hz (this filter is 

designed according to minimum RRSE criteria). The transition band is narrow 

(approximately 0.1 Hz).  

The result of this filter is given in the Figure 4.8 (a). The error signal, which 

is the difference between the pure data (without any noise component) shown in 

Figure 3.3 and the filtered data is shown in Figure 4.8 (b). The RMSE and the RRSE 

are calculated as 1.05 micro-volts (µV) and 0.48 %, respectively. Performances of 

filters which have RRSE less than 1 % are quite well. 

Finally, the power spectrum density estimate of the filtered signal is 

presented in Figure 4.9. When we compare this estimate with the power spectrum 

density estimate of the pure data shown in Figure 3.5, we observe that the filtering 

performance of the filter is acceptable and the signal’s frequency components are 

not disturbed. The windowing methods are quite similar. Only the window function 

is changed. 
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Figure 4.7: Hanning window FIR filter’s frequency response. 

 

   

          

10  12  14  16  18 20  22  24  26  28 30

-0.5

0

0.5

1

1.5

Time (s)

A
m

pl
itu

de
 (m

ili
vo

lt)
 

 
(a) 

 

 59



               
Time (s)

A
m

pl
itu

de
 (m

ili
vo

lt)
 

10 12 14 16 18 20 22 24 26 28 30
-0.02

0

0.02

0.04

0.06

0.08

0.1

 
(b) 

 

Figure 4.8: Hanning window FIR filter results. (a) filtered data, (b) the difference 
between the filtered data and the pure signal. 
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Figure 4.9: Power spectrum density estimation of Hanning window filtered signal. 
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4.1.2.3 Blackman Window Filtered Data 

 

Filter design parameters are the same in every FIR filters performed in the 

thesis study and the parameters are shown in section 4.1.1. As shown in the 

frequency response of the filter, there is no ripple in the pass band (Figure 4.10). 

Cut-off frequency at the 3 dB point is 0.8 Hz (this filter is designed according to 

minimum RRSE criteria). The transition band is narrow (approximately 0.1 Hz). The 

transition band is narrower than both in the Hamming and Hanning windows. There 

is no ripple in the pass band.  

The result of this filter is given in the Figure 4.11 (a). The error signal, which 

is the difference between the pure data (without any noise component) shown in 

Figure 3.3 and the filtered data is shown in Figure 4.11 (b). The RMSE and the 

RRSE are calculated as 1 micro-volt (µV) and 0.45 %, respectively. This filter has  

the smallest RRSE and RRSE among all filters examined during this thesis study. 

Thus, suppression performance of this filter is the most successful among all filters. 

Finally, the power spectrum density estimate of the filtered signal is 

presented in Figure 4.12. When we compare this estimate with the power spectrum 

density estimate of the pure data shown in Figure 3.5, we observe that the filtering 

performance of the filter is acceptable and the signal’s frequency components are 

not disturbed as shown in Table 4.1.  
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Figure 4.10: Blackman window FIR filter’s frequency response. 
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Figure 4.11: Blackman window FIR filter results. (a) filtered data, (b) the difference 
between the filtered data and the pure signal. 
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Figure 4.12: Power spectrum density estimation of Blackman window filtered signal. 
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4.2 Offline IIR Filter Results 

 

Butterworth IIR filter is one of the commonly used IIR filters. In this study, 

it is used to filter the noisy ECG data both in one-directional and zero-phase 

(bidirectional) filtering cases. One-directional filter changes the original signal. 

Because of the frequency components of the original signal, the filters, which have 

wide transition band (one-directional filter has a wide transition band as shown in 

Figure 4.13) distorts the original signal. Especially 1 Hz and 3 Hz components in the 

frequency spectrum are important (Because the magnitude of the energy is high at 

1Hz and 3 Hz). Since, these frequency components are distorted and the original 

signal will be changed. Also we know that IIR filter has non-linear phase responses 

and the filter changes the signal considerably. But there is a solution of removing 

this non-linearity of phase in the zero phase IIR filtering section.The results of both 

filters are given in the following subsections.  

 

 

4.2.1 Butterworth IIR Filtered Data 

 

The Butterworth IIR filter has a quite wide transition band compared to the 

other filters as shown in Figure 4.13. The order of the filter is selected 5 according to 

equation 2.28. The coefficients of this filter are: 

 

a= [1   -4.9864   9.9454   -9.9185   4.9458   -0.9865] 

b= [0.9932   -4.9661   9.9321   -9.9321   4.9661   -0.9932] 

 

The output of this filter is given in Figure 4.14 (a). The error signal, which is 

the difference between the pure data shown in Figure 3.3 and the filtered data is 

shown in Figure 4.14 (b). The RMSE and the RRSE are calculated as 141.34 micro-

volt (µV) and 64.66 %, respectively. This filter has the highest RMSE and RRSE 
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among all filters examined during this thesis study. Thus, suppression performance 

of this filter is not satisfactory.  

The power spectrum density estimate of the filtered signal is presented in 

Figure 4.15. When we compare this estimate with the power spectrum density 

estimate of the pure data shown in Figure 3.5, we observe that the filtering 

performance of the filter is not acceptable and the signal’s frequency components 

are disturbed. We know that IIR filter has a non-linear phase response and the filter 

changes the signal considerably. The solution to remove this non-linearity of phase 

is to use bidirectional zero phase IIR filtering. 
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Figure 4.13: Butterworth IIR filter’s frequency response. 
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Figure 4.14: IIR filtered data results. (a) filtered data, (b) the difference between the 
filtered data and the pure signal. 
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Figure 4.15: Power spectrum density estimation of Butterworth IIR filtered signal. 

 

 

4.2.2 Butterworth Bidirectional IIR Filter 

 

The Butterworth IIR filter studied in section 4.2.1 (the frequency response of 

the filter is given in Figure 4.13) is applied in both forward and backward directions 

to suppress the nonlinear phase distortion. The result of this filter is given in Figure 

4.16 (a). The error signal, which is the difference between the pure data shown in 

Figure 3.3 and the filtered data is shown in Figure 4.16 (b). The RMSE and the 

RRSE are calculated as 1.55 micro-volt (µV) and 0.70 % respectively. Error results 

are satisfactory and filter has successful suppression performance.  

Finally, the power spectrum density estimate of the filtered signal is 

presented in Figure 4.17. When we compare this estimate with the power spectrum 

density estimate of the pure data shown in Figure 3.5, we observe that the filtering 

performance of the filter is acceptable and the signal’s frequency components are 

not disturbed. The frequency spectrum terms are almost the same with the pure data. 

But there is a small difference in the 1 Hz component as shown in Table 4.1. 
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 Implementing this filter is easy in real life because the signal is filtered in 

one direction and then reversed signal is passed through the same filter. As a result, 

the phases of the filters in two directions cancel each other yielding a zero phase 

filter. 
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Figure 4.16: Butterworth bidirectional IIR filtered data results. (a) filtered data, (b) 
the difference between the filtered data and the pure signal. 
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Figure 4.17: PSD estimation of butterworth bidirectional IIR filtered signal. 

 

4.3      Offline Interpolation Filters 

 

            In Section 2.4 we have stated that the interpolation of the baseline wander 

noise can be carried out with respect to different correction points, such as Q, R, S 

and isoelectric line points. To determine the locations of these correction points (i.e., 

knots) the QRS detection algorithm introduced in Section 2.4.1 was performed. The 

cubic spline (interpolation polynomial of order 3) is selected as an interpolation 

method which is given in section 2.4.2.2, since cubic spline interpolation is widely 

used as a reference method compared to linear and quadratic interpolation cases. 

  In the following subsections we present Q, R and S point alignment. Aim of 

examining Q, R and S point alignment is deciding the best method corresponding to 

the baseline noise. So, the chief point is the correspondence between the baseline 

noise and the interpolated noise.  The filtering time is quite long for interpolation 

type filters since the mathematical complexity is high. The performance of 

interpolation methods is not satisfactory when compared to FIR and bidirectional 

IIR methods. However, since it does not change the frequency spectrum, this is 

considered a fundamental study. 
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4.3.1    Correction with respect to R-Peaks 

 

            R point aligning filter requires less time among interpolation filters and this 

is an advantage compared to other correction points since other points are detected 

after detection of R peaks. The detected R-peaks are used as knots of the cubic 

spline curve. The cubic spline curve is created and it is subtracted from the noisy 

ECG signal. Cubic spline interpolation curve with respect to R-peaks (blue) and 

synthetic baseline noise (red) are plotted in Figure 4.18. In general, the interpolated 

noise matches the synthetic noise. However, there is some deviation at the crest 

points. 

 The result of this filter is given in the Figure 4.19 (a). The error signal, which 

is the difference between the pure data shown in Figure 3.3 and the filtered data is 

shown in Figure 4.19 (b). The RMSE and the RRSE are calculated as 8.58 micro-

volt (µV) and 3.91 % respectively. The RRSE is high and it is greater than 1 %, 

which is an expected result considering that the cubic-spline interpolation curve 

does not correspond to the baseline noise exactly.  
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Figure 4.18: Cubic spline interpolation curve with respect to R-peaks (blue) and 
synthetic baseline noise (red) is plotted in the same figure. 

 70



10   12  14  16  18 20  22  24  26  28 30

-0.5

0

0.5

1

1.5

Time (s)

A
m

pl
itu

de
 (m

ili
vo

lt)
 

 
(a) 

 

          

10 12 14 16 18 20 22 24 26 28 30
-0.02

0

0.02

0.04

0.06

0.08

0.1

A
m

pl
itu

de
 (m

ili
vo

lt)
 

Time (s)
 

(b) 

 

Figure 4.19: Cubic spline correction with respect to R peaks. (a) filtered data, (b) 
the difference between the filtered data and the pure signal.  
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Figure 4.20: Power spectrum density estimation of cubic spline correction with R 
peaks.  
 
 
 
 When we compare the spectrum of the filtered signal shown in Figure 4.20 

with the spectrum of the pure ECG data in Figure 3.5, we observe that there is some 

frequency component that is not suppressed below 1 Hz. Frequency components 

corresponding to larger frequencies, on the other hand, are not distorted since it is 

not a frequency domain filter. This method has some area of usage when the 2 Hz, 3 

Hz frequencies’ energies are desired to be very similar to the original signal’s 

energies.  

 

 

4.3.2    Correction with respect to S Peaks 

 

            The S points are detected and a cubic spline is implemented. This method’s 

difference from the correction with respect to the R points is finding and using the S 

points instead of R points as knots. Cubic spline interpolation curve with respect to 

S peaks (blue) and synthetic baseline noise (red) is plotted in Figure 4.21 and the 
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interpolated noise is following the synthetic noise. However, similar to the 

interpolation with respect to R points, there is some deviation at the crest points. The 

result of this filter is given in the Figure 4.22 (a). The error signal, which is the 

difference between the pure data shown in Figure 3.3 and the filtered data is shown 

in Figure 4.22 (b). The RMSE and the RRSE are calculated as 7.72 micro-volt (µV) 

and 3.52 % respectively. The RRSE is high and it is greater than 1 %. Correction 

with respect to S points gives the minimum error results among the other aligning 

methods. So, S points are most suitable nodes for interpolation. 

 The power spectrum density estimate of the filtered signal is presented in 

Figure 4.23. When we compare this estimate with the power spectrum density 

estimate of the pure data shown in Figure 3.5, we observe that the signal’s frequency 

components are not disturbed but, there is some frequency component that is not 

suppressed below 1 Hz.  
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Figure 4.21: Cubic spline interpolation curve with respect to S-peaks (blue) and 
synthetic baseline noise (red) is plotted in the same figure. 
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Figure 4.22: Cubic spline correction with respect to S peaks. (a) filtered data, (b) the 
difference between the filtered data and the pure signal. 
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Figure 4.23: PSD estimation of cubic spline correction with S peaks.  
 
 
 
4.3.3 Correction with respect to the Isoelectric Line 

 

 The isoelectric line points are detected and a cubic spline is implemented. 

This method’s difference from the correction with respect to the R and S points is 

finding and using the isoelectric points instead of R and S points as knots. Cubic 

spline interpolation curve with respect to isoelectric line points (blue) and synthetic 

baseline noise (red) is plotted in Figure 4.24 and the interpolated noise is following 

the synthetic noise. However, there is some deviation at the crest points and at the 

beginning of signal since the first interpolation node is far from the beginning of 

signal. The result of this filter is given in the Figure 4.25 (a). The error signal, which 

is the difference between the pure data shown in Figure 3.3 and the filtered data, is 

shown in Figure 4.25 (b). The RMSE is 15.99 micro-volt (µV) and RRSE is 7.28 % 

thus, error is maximum among the other interpolation methods. The result of power 

spectrum density estimation is shown in Figure 4.26. There is some frequency 

component that is not suppressed below 1 Hz since, the baseline wander noise 

estimation using isoelectric points does not match the true baseline noise.  
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Figure 4.24: Cubic spline interpolation curve with respect to isoelectric line points 
(blue) and synthetic baseline noise (red) is plotted in the same figure. 
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Figure 4.25: Cubic spline correction with respect to isoelectric line. (a) filtered data, 
(b) the difference between the filtered data and the pure signal. 
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Figure 4.26: Power spectrum density estimation of cubic spline correction with 
isoelectric line points.  
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4.3.4 Correction with respect to Q Peaks 
 

            This method’s difference from the correction with respect to the other points 

is finding and using the Q points instead other points as knots. Cubic spline 

interpolation curve with respect to Q-peaks (blue) and synthetic baseline noise (red) 

is plotted in Figure 4.27 and the interpolated noise is following the synthetic noise. 

However, there is some deviation at the crest points. The result of this filter is given 

in Figure 4.28 (a). The error signal, which is the difference between the pure data 

shown in Figure 3.3 and the filtered data, is shown in Figure 4.28 (b). The RMSE is 

7.99 micro-volt (µV) and RRSE is 3.64 %. Power spectrum density estimation is 

shown in Figure 4.29 and it is quite similar to those of interpolation with respect to 

Q and R points methods.  
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Figure 4.27: Cubic spline interpolation curve with respect to Q-peaks (blue) and 
synthetic baseline noise (red) is plotted in the same figure. 
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Figure 4.28: Cubic spline correction with respect to Q peaks. (a) filtered data, (b) 
the difference between the filtered data and the pure signal. 
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Figure 4.29: Power spectrum density estimation of the correction with Q peaks.  
 
 

4.4       Offline Adaptive Filtering 

The normalized LMS filter is used as an adaptive filter since it converges easily.  

 

4.4.1 NLMS Filtering 

 

Different values are tried in order to minimize the RRSE and RMSE. As a 

result of the design process the following values are selected as filter parameter: the 

normalized step size ‘β’ is 0.1 and NLMS offset ‘ε’ is 0.0001. Length of the filter is 

1024. The result of this filter is given in the Figure 4.30 (a). The error signal, which 

is the difference between the pure data shown in Figure 3.3 and the filtered data, is 

shown in Figure 4.30 (b). The magnitude of the peaks in signal is changed as shown 

in Figure 4.30 (b) because of that reason, the difference is high and the periodic 

pulses are seen in that figure. RMSE is 30.26 micro-volt (µV) and RRSE is 14.01 %. 

The result of power spectrum density estimation is shown in Figure 4.31. The 

performance of filter is not satisfactory; RMSE and RRSE values are quite high.  
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Figure 4.30: Adaptive NLMS filtering result (a) filtered data, (b) the difference 
between the filtered data and the pure signal. 
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Figure 4.31: Power spectrum density estimation of adaptive NLMS filtered signal. 

 

 

4.5       Summary of Offline Filtering Results 

 

 In this section the results of offline filters are summarized in Table 4.1, Table 

4.2 and Table 4.3. The PSD of pure data is the reference (shown in Figure 3.5) and 

the performances of the filters on the spectra (normalized form) can be seen for the 

frequencies of 1, 2, 3 and 4 Hz in Table 4.1. Calculated RRSE and RMSE values are 

given in Table 4.2 and Table 4.3 in order to examine the error performaces for 

whole ECG data and one period noise included ECG data. Also the graphical 

projections of these Tables are shown in Figure 4.32, Figure 4.33 and Figure 4.34. 

 The performed cut-off frequency for FIR optimal filter is 0.89 Hz, the pass 

band ripple is 0.1 dB and the order of filter is 7412, the group delay is 3706 mili-

seconds. The group delay of the windowing FIR filter is again 3706 mili-seconds 

and the window length is 7413. Also, performed cut-off frequency for both 

Hamming and the Hanning window filters is 0.85 Hz and there is no ripple in the 

pass band. Performed cut-off frequency of the Blackman window is 0.8 Hz. When 

RRSE and RMSE values are compared, Blackman window FIR filter has the best 
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suppression performance among the all filters. The error of IIR filter is the highest 

compared to the other filters as shown in Tables 4.2 and Table 4.3. Graphical form 

of the percentage RRSE of the filters are shown in Figure 4.34. The interpolation 

filters use the knots and the most proper method as knots is the R peaks. When PSD 

estimate of filters are compared interpolation filters give the smallest deviation from 

the PSD estimate of original signal. But the error terms of interpolation filters are 

high as shown in Figure 4.32 and Figure 4.33. The IIR and bidirectional IIR filters 

are quite sufficient both for time and complexity because of their small order. When 

RRSE and RMSE values are compared the most successful filters are Blackman 

window FIR filter and bidirectional IIR filters. These two filters are examined for 

online case in this chapter and they are performed to filter real noisy signals in 

Chapter 5 due to their successful suppression performances. 

 

 

Table 4.1: The power spectrum density estimation normalized with respect to the 
pure data. 
 

 
 

1Hz  2Hz  3 Hz  4 Hz 
Pure data 1 1         1         1 
FIR optimal filter 0.93 0.93 1.01 1.03 
FIR Hamming window filter 0.98 0.98 1.01 0.99 
FIR Hanning window filter 0.98 0.98 1.01 0.99 
FIR Blackman window filter 0.98 0.98 1 0.99 
IIR Butterworth filter 0.94 0.97 1.01 0.99 
Bidirectioanal Butterworth IIR filter 0.98 1 1 0.99 
Q peak aligning interpolation filter 1.01 1.03 0.99 1 
R peak aligning interpolation filter 0.99 1 1 1 
S peak aligning interpolation filter 0.99 1 1 1 
Isoelectric line aligning interpolation filter 1.30 0.81 1.04 0.95 
NLMS Adaptive filter  1.03 0.82 0.99 0.97 
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Figure 4.32: The normalized deviations from the pure data for 1 Hz and 2 Hz. It is 
the graphical projection of Table 4.1. 
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Figure 4.33: The normalized deviations from the pure data for 3 Hz and 4 Hz. It is 
the graphical projection of Table 4.1. 
 
 
 
Table 4.2: The RMSE and percentage RRSE of the filters. 
 

 ( calculated from second 10 to 30 )   RMSE (µV)  RRSE % 
Pure data 0 0 
FIR optimal filter 1.55 0.70 
FIR Hamming window filter 1.09 0.49 
FIR Hanning window filter 1.05 0.48 
FIR Blackman window filter 1.00 0.45 
IIR Butterworth filter 141.34 64.46 
Bidirectional Butterworth IIR filter 1.55 0.70 
Q peak aligning interpolation filter 7.99 3.64 
R peak aligning interpolation filter 8.58 3.91 
S peak aligning interpolation filter 7.72 3.52 
Isoelectric line aligning interpolation filter 15.99 7.28 
NLMS Adaptive filter  30.26 14.01 
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Figure 4.34: The percentage RRSE of the filters. It is the graphical projection of 
Table 4.2. Error term is calculated for the time interval from 10 to 30 seconds which 
contains a period of synthetic noise.  
 
 
 
Table 4.3: The RMSE and percentage RRSE of the filters. 
 

 (calculated from second 0 to 50)   RMSE(µV)  RRSE % 
Pure data 0 0 
FIR optimal filter 7.21 3.29 
FIR Hamming window filter 7.05 3.21 
FIR Hanning window filter 6.97 3.18 
FIR Blackman window filter 7.08 3.23 
IIR Butterworth filter 141.19 64.39 
Bidirectional Butterworth IIR filter 7.21 3.29 
Q peak aligning interpolation filter 26.01 11.74 
R peak aligning interpolation filter 8.56 3.89 
S peak aligning interpolation filter 8.53 3.88 
Isoelectric line aligning interpolation filter 120.07 47.93 
NLMS Adaptive filter  38.99 18.14 
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4.6       Online Filtering 
 

Online filtering is the case when real time processing and visualization are 

required and the signal is simultaneously filtered and monitored. In our model, 

whole signal is divided into windows of length ‘w1’ as shown in Figure 4.35. In real 

applications signal is loaded from ECG device to the memory and the loaded 

window of length ‘w1’ is filtered and monitored. Online filters need extra efforts in 

order not to deteriorate the original signal at the edges of the w1 windows, since 

there are deterioration ‘transients’ at the beginning and the end of the w1 windows.  

First, signal length is divided into number of ‘w1’ windows in order to 

perform equal size ‘w1’ windows. Second, in order to suppress the deterioration due 

to transients of the filter, a symmetric data is padded at the beginning of the first and 

at the end of the last window. As each w1-length window is received, a filtering 

window of length w1+2.w2 is formed that consists an w2-length window at the 

beginning, the w1-length window of interest and an w2-length window at the end. 

After the signal in this filtering window is filtered, w2-length windows at the 

beginning and at the end are discarded, since we are only interested in filtering the 

w1-length window in the middle. The transients are thrown out with the two w2-

length windows, and we are left with a filtered w1-length window that is almost free 

of the transient deteriorations. This procedure is repeated for every w1-length 

window in the ECG recording. If the whole filtered signal is needed, for analysis or 

for display purposes, it is formed by combining all filtered w1-length windows. This 

procedure is illustrated in Figure 4.35. 

 We have observed that Blackman window FIR filter and bidirectional IIR 

filters have the minimum RRSE and RRSE among the all offline filters. Therefore, 

these filters are used for online filtering in the following subsections.  
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Figure 4.35: Graphical diagram of online filtering algorithm. 

   

 

4.6.1 Blackman Window FIR Online Filter 

 

 The offline Blackman window FIR filter is performed for online filtering. 

The result of offline Blackman window FIR filter was given in the Figure 4.11 (a), 

and the RMSE and the RRSE were calculated as 1 micro-volt (µV) and 0.45 %, 

respectively for the offline case. This offline filter had the smallest RRSE and RRSE 

values among all filters examined during this thesis study. Therefore, we chose it as 

one of the online filtering methods that we implement in this study. 
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 In this study, ‘w1’ is selected as 2000.  The value of w2 should be at least 

3706 milliseconds for this filter, which is the length of group delay, therefore ‘w2’ is 

selected as 4000. The group delay effect is suppressed for each w1-length window.  

 The result of online Blackman window FIR filter is given in the Figure 4.36 

(a). The error signal, which is the difference between the pure data shown in Figure 

3.3 and the filtered data, is shown in Figure 4.36 (b). The RMSE and the RRSE are 

calculated as 1 micro-volt (µV) and 0.45 %, respectively for the online case. This 

means that the online Blackman window FIR filter has the same error as the offline 

case. Also the results of other windowing methods are shown in Table 4.4, Table 4.5 

and Table 4.6.  The power spectrum density estimate of the online filtered signal is 

presented in Figure 4.37. When we compare this estimate with the power spectrum 

density estimate of the pure data shown in Figure 3.5, we observe that the signal’s 

frequency components are not disturbed.  
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Figure 4.36: Blackman window online FIR filter results. (a) filtered data, (b) the 
difference between the filtered data and the pure signal. 
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Figure 4.37: Power spectrum density estimation of online Blackman window 
filtered signal. 
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4.6.2 Bidirectional IIR Online Filter 

 

The offline bidirectional IIR filter is performed for online filtering. The 

result of offline filter was given in Figure 4.16 (a). The error signal, which is the 

difference between the pure data shown in Figure 3.3 and the filtered data, was 

shown in Figure 4.16 (b). The RMSE and the RRSE were calculated as 1.55 micro-

volt (µV) and % 0.70 respectively for the offline case. So, suppression performance 

of offline filter is quite well and it is applied for the online case.  

 In this study, similar to the Blackman window online FIR filtering case, 

‘w1’ and ‘w2’ are selected as 2000 and 4000, respectively. 

The result of online bidirectional IIR filter is given in Figure 4.38 (a). The 

error signal is shown in Figure 4.38 (b). Again, this online filter has the same error 

as the offline case; the RMSE and the percentage RRSE values are 1.54 micro-volt 

(µV) and 0.70 % respectively.  

The power spectrum density estimate of the online filtered signal is presented 

in Figure 4.39. When we compare this estimate with the power spectrum density 

estimate of the pure data shown in Figure 3.5, we observe that the signal’s frequency 

components are not disturbed. The results are summarized in Table 4.4, Table 4.5 

and Table 4.6. 
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Figure 4.38: Bidirectional IIR online filtered data results (a) filtered data, (b) the 
difference between the filtered data and the pure signal. 
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Figure 4.39: Power spectrum density estimation of online bidirectional IIR filtered 
signal. 
 

 

4.6.3       Summary of Online Filtering Results 

 

The table of the normalized PSD values for the frequencies of 1, 2, 3 and 4 

Hz are given in Table 4.4. We compare these normalized PSD values with the power 

spectrum density estimate of the pure data of Figure 3.5, and the offline filtering 

results. As a result, the online filter normalized PSD values (in Table 4.4) are quite 

similar to the offline filter results (in Table 4.1).  The length of selected window ‘w2’ 

is 4 seconds for the performed online filters. The length of window ‘w1’ is selected 

as 2 seconds and 4 seconds for each filter. We observed that the performance of 

window length of 4 seconds is better than that of window length of 2 seconds (for the 

data from 0 to 50 seconds given in Table 4.6), since, the transient effect is a problem 

at the beginning and at the end of the signal. The algorithm described in Figure 4.35 

suppressed the deterioration ’transients’ at both edges of window ‘w1’. So, the 

results of online filtering are quite similar to the results of offline filtering given in 
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Table 4.2 and Table 4.5 (for the signal from second 10 to 30). The result of length 2 

seconds is satisfactory, which is given in Table 4.5 and Table 4.6, since, online filters 

need short widow length and short filtering time due to real time monitoring and 

filtering applications.    

 

 

Table 4.4: The power spectrum density estimation normalized with respect to the 
pure data. 
 

 
 

1Hz  2Hz  3 Hz  4 Hz
Pure data 1 1 1 1
FIR Hamming window filter (w1=2000) 0.98 0.98 1 0.99
FIR Hamming window filter (w1=4000) 0.99 0.99 1 1
FIR Hanning window filter (w1=2000) 0.98 0.98 1 0.99
FIR Hanning window filter (w1=4000) 0.99 1 1 1
FIR Blackman window filter (w1=2000) 0.98 0.98 1 0.99
FIR Blackman window filter (w1=4000) 0.99 1 1 1
Bidirectional Butterworth IIR filter (w1=2000) 0.95 0.98 1 1
Bidirectional Butterworth IIR filter (w1=4000) 0.96 0.99 1 1

 

 

Table 4.5: The RMSE and percentage RRSE of the filters from 10 s to 30 s of the 
original ECG signal 
 

 (from second 10 to 30)   RMSE (µV)  RRSE % 
Pure data 0 0 
FIR Hamming window filter (w1=2000) 1.09 0.49 
FIR Hamming window filter (w1=4000) 1.09 0.49 
FIR Hanning window filter (w1=2000) 1.05 0.48 
FIR Hanning window filter (w1=4000) 1.05 0.48 
FIR Blackman window filter (w1=2000) 1.00 0.45 
FIR Blackman window filter (w1=4000) 1.00 0.45 
Bidirectional Butterworth IIR filter (w1=2000) 1.54 0.70 
Bidirectional Butterworth IIR filter (w1=4000) 1.54 0.70 
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Table 4.6: The RMSE and percentage RRSE of the filters from second 0 to 50 of 
the original ECG signal. 
 
 

(from second 0 to 50) 
  
RMSE(µV)  RRSE % 

Pure data 0 0 
FIR Hamming window filter (w1=2000) 7.07 3.22 
FIR Hamming window filter (w1=4000) 3.04 1.38 
FIR Hanning window filter (w1=2000) 7.00 3.19 
FIR Hanning window filter (w1=4000) 2.88 1.31 
FIR Blackman window filter (w1=2000) 7.11 3.24 
FIR Blackman window filter(w1=4000) 2.78 1.27 
Bidirectional Butterworth IIR filter (w1=2000) 7.24 3.30 
Bidirectional Butterworth IIR filter (w1=4000) 3.15 1.43 

 

 
 
4.7 The Effect of Cut-off Frequency on the ST Segment Depressed Data 

 

We have stated in Section 1.4 that when heart rate and respiration frequency 

changes, the cut-off frequency of the baseline wander filters should also change to 

reflect these changes. In this section, we demonstrate the effects of the cut-off 

frequency using a bidirectional IIR filter on an ST segment depressed-baseline noisy 

ECG signal by time domain observations.  

ST segment depression is an indicator of myocardial infarction. When ST 

segment depressed ECG data including baseline noise is filtered, some important 

information is lost. Therefore, it is important to select an appropriate cut-off 

frequency for the baseline wander removal filters in order to keep important features 

of the ST segment depressed ECG signal. 

In this study, we used a simulated ECG recording shown in Figure 4.40, 

which has ST segment depression and baseline noise, obtained from Kardiosis. The 

duration of the recording is 10 seconds and sampling rate is 1 kHz as shown in 

Figure 4.40. The resolution of the data is two bytes (16 bits). We used Channel II of 

a 12-lead ECG recording. PSD estimation of noisy data is shown in Figure 4.41. 
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Only offline bidirectional IIR filter is implemented due to its successful 

suppression performance and easy implementation advantage. Four different cut-off 

frequencies, ( 0.4 Hz, 0.67 Hz, 0.85 Hz and 1.2 Hz), are used in order to observe the 

effects of the cut-off frequency. The effect of cut-off frequencies are examined by 

observing the time domain results and PSD estimate of the filtered signals. 

When we apply the filter with a cut-off frequency of 0.4 Hz, we obtain the 

result shown in Figure 4.42. PSD estimate of this filtered data is shown in Figure 

4.43. With this choice of filter cut-off frequency, suppression of baseline wander 

noise is not satisfactory. When we choose the cut-off frequency as 0.67 Hz, we 

obtain the result shown in Figure 4.44 with PSD estimate as shown in Figure 4.45. 

The suppression performance is satisfactory. Result of using the cut-off frequency of 

0.85 Hz is shown in Figure 4.46. The PSD estimate of the filtered data is shown in 

Figure 4.47. With this choice of the cut-off frequency, suppression performance is 

more satisfactory than 0.67 Hz when the time domain result and PSD estimate are 

examined carefully. Finally, Figure 4.48 shows the filtered signal when the cut-off 

frequency is equal to 1.2 Hz, and its PSD estimate is shown in Figure 4.49. This filter 

distorts the frequency components at 1.2 Hz and the original signal is changed.  

When the frequency components between 0 and 1.2 Hz are filtered, the ST 

segment interval is changed and some vital ECG frequency components are 

suppressed. Also as can be seen from Figure 4.48, the slope of ST segment 

depression is altered. When only the frequency range between 0 to 0.4 Hz is 

suppressed, the suppression performance of baseline filter is not acceptable. The aim 

of successful baseline suppression is not to change the original data while 

suppressing the noise more effectively. Cut-off frequency varies from 0.6 Hz to 0.9 

Hz corresponding to the heart rate and baseline noise spectra. The desired cutoff 

frequency of 0.67 Hz was adequate for the simulated noisy ECG signal used in the 

previous sections, however, when the heart rate varies, the spectrum of the signal 

should be examined for satisfactory selection of cut-off frequency. When baseline 

spectrum moves right as shown in Figure 4.41, a more proper cut-off frequency, 
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which lies between 0.8-0.9 Hz for this ECG example, should be selected in order to 

suppress the baseline noise adequately.   
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Figure 4.40: ST segment depressed baseline noisy data. Sampling frequency is 1 
kHz and it is recorded from an ECG simulator. 
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Figure 4.41: Power spectrum density estimation of baseline noisy data which has 
ST segment depression. Frequency range is from 0 to 6 Hz  
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Figure 4.42: Offline bidirectional IIR filtered data. The performed cut-off frequency 
is 0.4 Hz. 
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Figure 4.43: PSD estimate of offline bidirectional IIR filtered data. The performed 
cut-off frequency is 0.4 Hz. 
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Figure 4.44: Offline bidirectional IIR filtered data. The performed cut-off frequency 
is 0.67 Hz. 
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Figure 4.45: PSD estimate of offline bidirectional IIR filtered data. The performed 
cut-off frequency is 0.67 Hz. 
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Figure 4.46: Offline bidirectional IIR filtered data. The performed cut-off frequency 
is 0.85 Hz. 
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Figure 4.47: PSD estimate of offline bidirectional IIR filtered data. The performed 
cut-off frequency is 0.85 Hz. 
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Figure 4.48: Offline bidirectional IIR filtered data. The performed cut-off frequency 
is 1.2 Hz. 
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Figure 4.49: PSD estimate of offline bidirectional IIR filtered data. The performed 
cut-off frequency is 1.2 Hz. 
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CHAPTER 5 

 

 

FILTERING REAL ECG DATA WITH BASELINE WANDER 

 

 

 

In this chapter, we apply offline and online filtering techniques to real ECG 

recordings with baseline wandering noise and discuss the effectiveness of these 

filters in removing this noise. In the previous chapter, we have observed that with 

simulated noisy ECG data, Blackman window FIR and bidirectional IIR filters 

removed the baseline wander better than other filters. Therefore, we used only these 

two filters in this chapter. 

 

 

5.1 Real ECG Data with Baseline Wander Noise 

 

In this chapter, we applied offline and online Blackman window FIR and 

bidirectional IIR filters to real ECG data with baseline wander noise. The noisy data 

were provided by Oğuz Tanrısever from Kardiosis. The duration of the data is 100 

seconds and sampling rate is 1 kHz. The resolution of the data is two bytes (16 bits). 

We used Channel II of a 12-lead ECG recording, which is shown in Figure 5.1, since 

it has the highest amplitudes in the 12 lead ECG data. In order to see the details in 

the signal, we also plot the same ECG signal between 85 and 92 seconds in Figure 

5.2 (this interval includes a considerable amount of baseline wander noise). Power 

spectrum density of the noisy ECG signal is plotted in Figure 5.3 from 0 to 60 Hz. 

Baseline wander noise appears in the lower frequencies of this spectrum, therefore in 

order to better observe the effects of the noise components, we show the low 

frequency components only in Figure 5.4. With real ECG recordings, we do not have 

access to the noise-free signal, therefore we can not use RMSE or RRSE to evaluate 
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the filtered outputs. Thus, we compare the suppression performances of the filters by 

examining the power spectrum density estimate of the filtered signals (cut-off and 

PSD deviations). Also, we examine the suppression performance visually in time 

domain.   

 

 

5.1.1 Offline Filtering Results 

 

In Chapter 4, we observed that Blackman window FIR and bidirectional IIR 

filters provided the best filtering results with simulated ECG data with baseline 

wander noise. Therefore, we only apply these two filters to real ECG recordings.  

In the first part of this section, Blackman window FIR filter with parameters 

and characteristics given in section 4.1.2.3 is applied and the resulting ECG signal is 

plotted in Figure 5.5. In order to better observe the details in this signal, a few 

consecutive beats are shown in Figure 5.6. This figure plots the signal within the 

same time interval as in Figure 5.2. When we compare Figure 5.5 with Figure 5.1, 

and Figure 5.6 with Figure 5.2, we observe that the baseline wander is suppressed 

and the original signal is not distorted. The power spectrum density estimate of the 

filtered signal is presented in Figure 5.7. When we compare this estimate with the 

power spectrum density estimate of the pure data shown in Figure 5.4 (0 to 6 Hz in 

detail), we observe that the frequencies below 0.6 Hz are suppressed and the signal’s 

frequency components are not disturbed. The frequency spectrum terms are almost 

the same with the pure data.  

 In the second part of this section, Bidirectional IIR filter with the parameters 

and characteristics given in section 4.2.2 is applied and the result is plotted in Figure 

5.8. Again, we plot a few consecutive beats from the time interval used in Figure 5.2, 

in Figure 5.9. We observe that the baseline wander noise is filtered and the original 

signal is not distorted, when we examine Figure 5.2 and Figure 5.9 carefully. The 

power spectrum density estimate of the filtered signal is presented in Figure 5.10. 

When we compare this estimate with the power spectrum density estimate of the pure 
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data shown in Figure 5.4, we observe that the frequencies below 0.62 Hz are 

suppressed and the signal’s frequency components are not disturbed. The frequency 

spectrum terms are almost the same with the pure data.  

 

Tim e (s)

A
m

pl
itu

de
(m

ili
vo

lt)
 

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

1.5

2

 
Figure 5.1: Baseline noisy data recorded from Channel II of a 12 channel ECG 
device. 
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Figure 5.2: Baseline noisy ECG signal. A few consecutive beats taken from real data 
in Figure 5.1 and are plotted in this figure to show the data in detail. 
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Figure 5.3: Power spectrum density estimation of the baseline noisy data. 
Frequency range is from 0 to 60 Hz to show the spectra of baseline noise and whole 
ECG. 
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Figure 5.4: Power spectrum density estimation of baseline noisy data. Frequency 
range is from 0 to 6 Hz to show the baseline noise. 
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Figure 5.5: Baseline noise is suppressed with Blackman window FIR filter. 
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Figure 5.6: Blackman window FIR filtered ECG signal. A few consecutive beats 
taken from filtered real data in Figure 5.5 and these are plotted in figure to show the 
data in detail. 
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Figure 5.7: Power spectrum density estimation of Blackman window FIR filter. 
Frequency range is from 0 to 6 Hz to show cut off frequency and suppression of the 
filter. The performed cut off frequency is 0.6 Hz. 
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Figure 5.8: Baseline noise is suppressed with Bidirectional IIR filter. 
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Figure 5.9: Baseline noise is suppressed with Bidirectional IIR filter. A few 
consecutive beats taken from filtered real data in Figure 5.8 and these are plotted in 
in order to show the data in detail. 
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Figure 5.10: Power spectrum density estimation of bidirectional IIR filter. 
Frequency range is from 0 to 6 Hz to show cut off frequency and suppression of the 
filter. The performed cut off frequency is 0.62 Hz. 
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5.1.2 Online Filtering Results 

 

In Chapter 4, we observed that Blackman window FIR and bidirectional IIR 

filters provided the best filtering results with simulated ECG data with baseline 

wander noise. Therefore, we only apply these two filters to real ECG recordings.  

In the first part of this section, Blackman window FIR filter with parameters 

and characteristics given in section 4.2.2 is applied and the resulting ECG signal is 

plotted in Figure 5.11. In order to better observe the details in this signal, a few 

consecutive beats are shown in Figure 5.12. When we compare Figure 5.12 with 

Figure 5.2, we observe that the baseline wander is suppressed and the original signal 

is not distorted. The power spectrum density estimate of the filtered signal is 

presented in Figure 5.13. When we compare this estimate with the power spectrum 

density estimate of the pure data shown in Figure 5.4 (0 to 6 Hz in detail), we 

observe that the frequencies below 0.6 Hz are suppressed and the signal’s frequency 

components are not disturbed. The frequency spectrum terms are almost the same 

with the pure data.  

In the second part of this section, online Bidirectional IIR filter is performed 

and the result is plotted in Figure 5.14 and a few consecutive beats taken from 

filtered real data in Figure 5.14 and these are shown in Figure 5.15. The signal is 

filtered and the original signal is not distorted as Figure 5.2 and Figure 5.15 are 

examined carefully. The power spectrum density estimate of the filtered signal is 

presented in Figure 5.16. When we compare this estimate with the power spectrum 

density estimate of the pure data shown in Figure 5.4, we observe that the 

frequencies below 0.62 Hz are suppressed similar to the offline case and the signal’s 

frequency components are not disturbed.  

 The results of the graphs from Figure 5.5 to Figure 5.16 are examined and it 

is concluded that both the online and the offline type filters used in this chapter 

provide satisfactory results. And it can be observed that the frequency components 

do not deviate significantly.  
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Figure 5.11: Baseline noise is suppressed with Blackman window FIR online filter. 
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Figure 5.12: Baseline noise is suppressed with Blackman window FIR online filter. 
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Figure 5.13: Power spectrum density estimation of Blackman window FIR online 
filter. Frequency range is from 0 to 6 Hz to show cut off frequency and suppression 
of the filter. The performed cut off frequency is 0.6 Hz. 
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Figure 5.14: Baseline noise is suppressed with Bidirectional IIR online filter. 
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Figure 5.15: Baseline noise is suppressed with Bidirectional IIR online filter. 
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Figure 5.16: Power spectrum density estimation of bidirectional IIR online filter. 
Frequency range is from 0 to 6 Hz to show cut off frequency and suppression of the 
filter. The performed cut off frequency is 0.62 Hz. 
 

 112



CHAPTER 6 

 

 

CONCLUSION AND DISCUSSION 

 

 

 

Baseline wandering noise makes the analysis of ECG data difficult. It is 

desirable to remove this noise for proper analysis and display of the ECG signal. 

There are different filters to remove this noise. Finite Impulse Response (FIR) 

filters, Infinite Impulse Response (IIR) filters, interpolation filters and adaptive 

filters are implemented to suppress the baseline noise in this study.  

Baseline wandering noise suppression may be carried out in two ways, 

offline and online. In offline filtering, the whole signal is recorded and the entire 

record is filtered. In online filtering, the signal is filtered as it is being recorded. It is 

necessary when real time processing and visualization are required as in an ECG 

stress test, in which the signal is simultaneously filtered and monitored in order to 

examine the effects of stress on the electrical activity of heart.  

The main purpose of this study was first to implement various offline 

baseline noise filters and to discuss the advantages and disadvantages of each offline 

filter; then to apply successful offline filters for online filtering case. Also the 

suppression performances of both online and offline filters were investigated on real 

ECG data.  

 

 

6.1 Comparison of FIR Filters 

 

Sharp transition band, no ripple in pass-band and no ripple in stop-band is 

expected to eliminate the noise without changing the content of ECG signal for FIR 

filters. Thus, the order of the filter will be high to obtain such filter conditions. For 
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the applied FIR filters, this order equals 7412. This high order causes some 

implementation problems, such as hardware density, memory size, required time for 

the process etc. Also the group delay is high and it is approximately 3.7 seconds for 

FIR filters. A window of length having 7413 samples is used for windowing FIR 

filters given in Chapter 4. The optimal FIR filter is optimal in minimum error 

(difference between magnitude response of desired filter and designed filter) sense 

and it does not have the minimum RRSE. Root relative square error (RRSE) of 

offline type Blackman window FIR filter is 0.45 % and this is the minimum error 

result among the applied FIR filters. In fact, Blackman window FIR filter produces 

the best results among all filters used in this study. 

 

 

6.2 Comparison of IIR filters  

 

The order of performed Butterworth IIR filter is 5 and it is a recursive filter. 

Thus, IIR filters require less computation-power, and their implementation is easier 

than that of FIR filters. However, IIR filters have a phase distortion that is caused by 

nonlinear phase response of IIR filters and the RRSE is 64.46 %. It is the highest 

error and we observed that this filter disturbed the ECG signal. Phase distortion 

problem is solved by applying the IIR filter to the ECG signal in both directions. 

Reverse direction filtering is performed after forward direction filtering in order to 

correct the distortion of the ECG signal caused by the forward filtering phase 

distortion with non linear phase. This procedure is named as “zero-phase” or 

“bidirectional IIR filtering”. The RRSE of offline type zero-phase IIR filter is 

calculated as 0.7 %. It is slightly higher than the RRSE of the FIR filters; however it 

is still less than 1 %, which makes this filter a successful filter. Moreover, its 

computational complexity is low, therefore it is easy to implement, which makes this 

filter valuable for some applications, including online filtering.  
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6.3 Cubic Spline Interpolation Filters 

 

When we implemented cubic spline interpolation filters, it was observed that 

the noise estimates constructed by using Q, R and S points as nodes do not match 

the actual baseline noise exactly. This mismatch between the actual noise and the 

interpolated noise decreases the performance of spline interpolation filters (SIF). As 

a result, RRSE in SIF is 3.52 % and it is higher than that of the FIR filters, and the 

bidirectional IIR filter. On the other hand, since SIF is not a frequency selective 

method, it does not negatively affect the power spectrum density of the ECG 

compared to the other methods. The frequency components at the frequencies of 1, 

2, 3 and 4 Hz deviated from the original spectral peaks by approximately 1 %.   

 

 

6.4 Adaptive Filters 

 

NLMS filter is implemented as an adaptive filtering method. The normalized 

step size ‘β’ is 0.1 and NLMS offset ‘ε’ is 0.0001. Length of the filter is 1024. The 

RMSE and the RRSE were found to be equal to 30.26 micro-volt (µV) and 14.01 %, 

respectively. The performance of this filter is not satisfactory due to selection of 

inappropriate desired signal; RMSE and RRSE values are quite high.  

 

 

6.5 Online Filtering 

 

Online filtering is the case when real time processing and visualization are 

required and the signal is simultaneously filtered. Two successful offline filters 

performed on synthetic ECG are bidirectional IIR and Blackman window FIR. 

These offline filters had the smallest RMSE and RRSE values among all filters 

examined during the thesis study. Therefore, we chose these filters for online type 

filtering. The RMSE and the RRSE are calculated as 1 micro-volt (µV) and 0.45 %, 
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respectively for the online Blackman window FIR output. This means that the online 

Blackman window FIR filter has the same error as the offline case. We also observe 

that the signal’s frequency components are not disturbed. The RMSE and the RRSE 

were calculated as 1.54 micro-volt (µV) and 0.7 %, respectively for the online 

bidirectional IIR output. The online bidirectional IIR filter has the same error as the 

offline case, and the signal’s frequency components are not disturbed, as well. 

Although the suppression performance of Blackman window FIR filter is successful, 

the computational complexity of this filter is not appropriate for online filtering 

where fast implementation is important. Computational complexity of bidirectional 

IIR filter is much less than that of FIR filters, thus, it is more preferable for online 

filtering applications. 

 

 

6.6 Real ECG Data Filtering 

 

Two successful filters applied to synthetic ECG data are bidirectional IIR 

and Blackman window FIR. These filters are implemented and applied to real ECG 

signals and their performances are evaluated for both online offline cases. It is 

demonstrated that the signal’s frequency components are suppressed (at both online 

and offline cases) up to 0.6 Hz with Blackman window FIR filter and up to 0.62 Hz 

with bidirectional IIR filter. The signal’s frequency components are not disturbed, 

while the noise related low frequency components are suppressed.  

 

 

6.7 Effects of the Cut-off Frequency 

 

When the heart rate and respiration frequency changes, the cut-off frequency 

of the baseline wander filters should also change. In this study, we examined the 

effects of cut-off frequency on an ST segment depressed-baseline noisy data by 

using an offline Bidirectional IIR filter. Four different cut-off frequencies, 0.4 Hz, 

 116



0.67 Hz, 0.85 Hz and 1.2 Hz, are used in order to observe the effects of the cut-off 

frequency. 0.4 Hz cut-off frequency did not suppress baseline wander noise 

properly. When the frequency components between 0 and 1.2 Hz are filtered, the ST 

segment interval is changed and some vital ECG frequency components are 

suppressed. The suppression performance of 0.85 Hz is higher than 0.67 Hz, when 

time domain result and PSD estimate are examined carefully. Cut-off frequency 

varies corresponding to the heart rate and baseline noise spectra. Thus, constant cut-

off frequency is not always appropriate for baseline wandering suppression and 

adaptive cut-off frequency selection should be more stable. 

 

 

6.8 Summary of Conclusions 

 

 When we examine the filtering results in this thesis, we observe that 

Blackman window FIR filter yields the smallest RRSE value among all the filters. 

This observation is valid for both offline and online applications. However, high 

filter orders are required to obtain this satisfactory result, and this increases the 

computational complexity of the filter. Furthermore, there is significant delay in the 

filter results, thus this filter can be applied to long data windows. Therefore, this 

filter is appropriate for offline applications, but for online applications, in which 

short intervals of data is filtered and displayed and fast implementation is important, 

FIR filtering is not an appropriate filtering method. Bidirectional IIR filtering is 

more appropriate for online filtering applications due to its lower computational 

complexity, and its RRSE value for the simulated data is within an acceptable range. 

The performance of interpolation methods is not satisfactory when compared 

to FIR and bidirectional IIR methods. However, since spline interpolation filtering is 

not a frequency selective method, frequency components of the ECG signal 

corresponding to large frequencies are not distorted. This method has some area of 

usage when the 2 Hz, 3 Hz frequencies’ energies are desired to be very similar to the 
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original signal’s energies. This method is considered as a reference method for 

comparison of the filtering performances. 

The performance of applied adaptive filter is not satisfactory compared to 

FIR and bidirectional IIR methods. This filter is more suitable when there is random 

noise added to the ECG signal. Selection of proper reference signal is the main 

problem of this filter.   

We have also observed that the choice of the cut-off frequency is very 

important; a lower than required cut-off frequency does not filter the actual ECG 

signal components, however some of the noise components remain as well. A higher 

cut-off frequency on the other hand, filters the noise successfully, but the ECG 

signal is distorted in the process. Cut-off frequency varies corresponding to the heart 

rate and baseline noise spectra. Thus, constant cut-off frequency is not always 

appropriate for baseline wandering suppression; it should be selected adaptively 

after a careful examination of the signal spectrum. 

 

 

6.9 Future Work 

 

As future work, spectrum adaptive cut-off frequencies could be studied for 

online type ECG applications. It would be better to study ST segment, other 

sensitive intervals in the ECG and the frequency spectrum of these segments. Also 

online baseline filtering of the ECG could be studied in detail in order to improve 

the performance of the filters for hardware implementations. 
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APPENDIX A 

 

 

MATLAB BASED GRAPHICAL USER INTERFACE 

 

 

 

MATLAB based graphical user interface (GUI) is prepared and function of 

filtering is executed with this GUI as shown in Figure A.1. 

 

 
 

Figure A.1: Prepared graphical user interface (GUI).  The graph on the top of GUI is 
noisy data and graph at the bottom is the filtered data. 
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(b) 

 
Figure A.2: Filter design parameters are shown in (a) and property selection boxes 
are shown in (b).  
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 Cut-off frequency (Hz), sampling rate (Hz), ripples (dB), length of windows 

(w1, w2) are selected in order to design required filter. Parameters can be selected 

within the edit boxes shown in Figure A.2 (a). The signal will be selected within 

selection box shown in Figure A.2 (b-5). If signal contains noise, the box shown in 

Figure A.2 (b-4) should be selected as ‘real data’. If signal does not contain noise, 

the box shown in Figure A.2 (b-4) should be selected as ‘synthetic data’ and the 

synthetic noise will be added to the synthetic data selected in Figure A.2 (b-5). The 

channel type can be selected by Figure A.2 (b-8) because the binary signal contains 

data of 12 channels. Filter type can be selected as demonstrated in Figure A.2 (b-1, 

b-3, b-6). The online or offline type of filtering is selected by using list box shown in 

Figure A.2 (b-2). Error can be calculated by the box shown in Figure A.2 (b-7). 

Frequency response of filter, PSD estimation of filtered data, difference error, can be 

plotted when the radio buttons had been selected shown in Figure A.2 (b-9). After 

filter type and filter design parameters are selected, program executes the filtering 

process by selecting the run button on the screen as shown in Figure A.1. 
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