

DATA SHARING AND ACCESS
WITH A

CORBA DATA DISTRIBUTION SERVICE IMPLEMENTATION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUSTAFA DURSUN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences.

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Examining Committee Members

Prof. Dr. Hasan Güran (Chairman) (METU, EEE) _________________________

Prof. Dr. Semih Bilgen (METU, EEE) _________________________

Asst. Prof. Dr. Cüneyt Bazlamaçcı (METU, EEE) _________________________

Dr. Ece Schmidt (METU, EEE) _________________________

Ali Özzeybek (M.S.) (ASELSAN Inc.) _________________________

Prof. Dr. Canan Özgen

Director

Prof. Dr. �smet Erkmen

Head of Department

Prof. Dr. Semih Bilgen

Supervisor

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Surname: Mustafa Dursun

Signature:

iv

ABSTRACT

DATA SHARING AND ACCESS

WITH A

CORBA DATA DISTRIBUTION SERVICE IMPLEMENTATION

DURSUN Mustafa,

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Semih B�LGEN

September 2006, 54 pages

Data Distribution Service (DDS) specification defines an API for Data-Centric

Publish-Subscribe (DCPS) model to achieve efficient data distribution in distributed

computing environments. Lack of definition of interoperability architecture in DDS

specification obstructs data distribution between different and heterogeneous DDS

implementations. In this thesis, DDS is implemented as a CORBA service to

achieve interoperability and a QoS policy is proposed for faster data distribution

with CORBA features.

Keywords: Middleware, Data Distribution Service (DDS), CORBA,

interoperability

v

ÖZ

B�R CORBA VER� DA�ITIM H�ZMET�

GERÇEKLE�T�R�M�YLE

VER� PAYLA�IMI VE ULA�IMI

DURSUN Mustafa

Yüksek Lisans, Elektrik ve Elektronik Mühendisli�i Bölümü

Tez Danı�manı: Prof. Dr. Semih B�LGEN

Eylül 2006, 54 sayfa

Veri Da�ıtım Servisi (DDS) Spesifikasyonu da�ıtımlı bilgi i�leme uygulamaları için

Veri-Merkezli Yayıncı-Abone (DCPS) modeli kapsamında bir API tanımlamaktadır.

DDS Spesifikasyonu’nda birlikte çalı�abilirlik mimarisinin tanımlanmamı� olması

de�i�ik ve heterojen DDS uygulamaları arasındaki veri da�ıtımına engel

olu�turmaktadır. Bu tezde, birlikte çalı�abilirli�i sa�lamak için DDS CORBA servisi

olarak uygulanmı� ve CORBA araçları ile veri da�ıtımını daha hızlı yapabilmek için

bir QoS politikası önerilmi�tir.

Anahtar Kelimeler: Arakatman, Veri Da�ıtım Servisi (DDS), CORBA, birlikte

çalı�abilirlik

vi

To my mother…

vii

ACKNOWLEDGMENTS

I would like to express my gratitude to Prof. Dr. Semih Bilgen for his

understanding, patience and supervision throughout this thesis. This thesis would

not have been completed without his guidance.

I would like to thank ASELSAN Inc. for understanding and support for academic

studies. I also want to thank my colleagues at ASELSAN Inc. for their valuable

support throughout this study.

Finally, I wish to thank my mother for everything she does.

viii

TABLE OF CONTENTS

ABSTRACT... iv

ÖZ ... v

ACKNOWLEDGMENTS ..vii

TABLE OF CONTENTS...viii

LIST OF TABLES.. x

LIST OF FIGURES ... xi

LIST OF ACRONYMS ...xiii

CHAPTERS

1. INTRODUCTION .. 1

2. LITERATURE SURVEY... 4

2.1 Middleware Architecture Models ... 4

2.1.1 Client-Server Model .. 5

2.1.2 Publish-Subscriber Model.. 6

2.2 Data Distribution Service (DDS) .. 8

2.2.1 Overall Conceptual Design [8] .. 9

2.2.2 Information Flow ... 11

2.2.3 DDS QoS Policies.. 16

2.2.4 DDS Profiles .. 16

2.2.5 Open-Source DDS Applications .. 17

3. CORBA DDS (CDDS) IMPLEMENTATION... 21

3.1 CDDS Participants .. 22

3.1.1 cDomainParticipantFactory ... 23

3.1.2 cDomainParticipant ... 23

3.1.3 cPublisher... 23

3.1.4 cDataWriter.. 23

ix

3.1.5 cSubscriber... 23

3.1.6 cDataReader... 24

3.1.7 cSampleInfo ... 24

3.1.8 cTopic .. 24

3.1.9 cDataReaderListener.. 24

3.1.10 cMediator ... 24

3.1.11 cDataHandler ... 26

3.2 CDDS Deployment ... 27

3.3 CDDS Data Dissemination Mechanism ... 28

3.3.1 Creating Factory Participants... 29

3.3.2 Subscription ... 31

3.3.3 Publication ... 32

3.3.4 Data Notification.. 32

3.3.5 Data Reception... 33

3.4 A New QoS Policy: BLOCK .. 34

3.5 CDDS Type-Specific Classes ... 35

4. EVALUATION .. 36

4.1 Experiment Overview ... 37

4.1.1 Experiment 1.. 37

4.1.2 Experiment 2.. 40

4.1.3 Experiment 3.. 42

4.1.4 Experiment 4.. 47

5. DISCUSSION AND CONCLUSION .. 50

REFERENCES ... 52

x

LIST OF TABLES

Table 1 Middleware Architecture Model Comparison ... 4

Table 2 Experiment 1 Testbed Properties... 37

Table 3 Roundtrip time of CDDS and JacORB DDS (µs) 38

Table 4 Experiment 2 Testbed Properties... 40

Table 5 Roundtrip time of CDDS in heterogeneous distributed environment (µs) .. 41

Table 6 Experiment 3.a Testbed Properties .. 43

Table 7 Roundtrip time of CDDS for different number of producers (µs)............... 44

Table 8 Experiment 3.b Testbed Properties.. 45

Table 9 Roundtrip time of CDDS for different number of producers (�s) 46

Table 10 Roundtrip time of CDDS for different number of blocksize (�s).............. 47

xi

LIST OF FIGURES

Figure 1 Conceptual Design of DCPS Layer [8] .. 10

Figure 2 Information Flow Overview of DDS [8] .. 12

Figure 3 DDS Publication Sequence Diagram [8].. 13

Figure 4 DDS Subscription with Listener Sequence Diagram [8]............................ 14

Figure 5 DDS Subscription with Condition Sequence Diagram [8]......................... 15

Figure 6 JacORB 2.2.3 Event Service Model [10] ... 19

Figure 7 JacORB 2.2.3 DDS Implementation Event Service Mechanism [20]........ 19

Figure 8 CDDS DCPS Entities Model Diagram... 22

Figure 9 Mediator Interface Specification .. 25

Figure 10 DataHandler Interface Specification .. 26

Figure 11 CDDS Participants Deployment Diagram.. 28

Figure 12 Creating cPublisher Sequence Diagram ... 29

Figure 13 Creating cSubscriber Sequence Diagram ... 30

Figure 14 Creating cTopic Sequence Diagram... 30

Figure 15 Subscription Sequence Diagram... 31

Figure 16 Publication Sequence diagram ... 32

Figure 17 Data Notification Sequence diagram.. 33

Figure 18 Data Reception Sequence diagram... 34

Figure 19 Testbed Configuration .. 36

Figure 20 Experiment 1 Testbed Configuration ... 38

Figure 21 JacORB DDS versus CDDS performance.. 39

Figure 22 Throughput of CDDS ... 40

Figure 23 Experiment 2 Testbed Configuration ... 41

Figure 24 Performance of CDDS in heterogeneous distributed environment 42

Figure 25 Experiment 3.a Testbed Configuration .. 43

Figure 26 Performance of CDDS for different number of consumers 44

xii

Figure 27 Experiment 3.b Testbed Configuration .. 45

Figure 28 Performance of CDDS for different number of producers....................... 46

Figure 29 Performance of CDDS for different data volumes 48

Figure 30 Performance of CDDS for different blocksize values.............................. 49

xiii

LIST OF ACRONYMS

API: Application Programming Interface

CDDS: CORBA Data Distribution Service

CDR: Common Data Representation

CORBA: Common Object Request Broker Architecture

CPU: Central Processor Unit

DCOM: Distributed Component Object Model

DCPS: Data-Centric Publish-Subscribe

DDS: Data Distribution Service

DLRL: Data Local Reconstruction Layer

DOC: Distributed Object Computing

GIOP: General Inter ORB Protocol

HTTP: Hypertext Transfer Protocol Overview

IDL: Interface Definition Language

IIOP: Internet Inter ORB Protocol

JMS: Java Message Service

OBV: Object-By-Value

OMG: Object Management Group

ORB: Object Request Broker

OS: Operating System

RPC: Remote Procedure Call

TAO: The ACE ORB

1

CHAPTER I

INTRODUCTION

Performance and usage requirements force information systems developers to use

distributed systems. This means that information processing applications are

distributed on separate systems over a network. Separate systems may use different

types of hardware platforms and operating systems, while applications may be

implemented in different programming languages over a heterogeneous network.

The variety of systems requires a distributed system to use software, called

middleware [1], to implement applications independent of platform, operating

system, and programming language. Middleware provides simplicity and

uniformity for the development.

For different distributed system requirements, different approaches are developed.

These approaches, broadly classified as service-oriented [2] and message-oriented

[1], are shaped according to the need for distributing service accessibility and

availability on one hand, and distributing messages, on the other. In service-

oriented approach middleware provides remote procedure call (RPC) or distributing

object references. In message-oriented approach middleware focuses on distributing

messages. Approaches for middleware are tied to middleware architectures in the

phase of implementation. Client-Server and publish-subscribe architecture models

are the main middleware architecture models.

Common Object Request Broker Architecture (CORBA) [3] is an Object

Management Group (OMG) [4] standard for distributed object computing (DOC).

CORBA is structured to allow integration of a wide variety of object systems [3].

CORBA provides predictability of real-time systems, but it causes a high overhead

for data distribution [5]. CORBA meets interoperability requirement by specifying

General Inter ORB Protocol (GIOP) with the Common Data Representation (CDR)

2

transfer syntax, and Internet Inter ORB Protocol (IIOP). OMG published CORBA

Event Service [6] and CORBA Notification Service [7] CORBA service

specifications to enhance CORBA with publish-subscribe model properties.

A new specification, Data Distribution Service (DDS) for Real-Time Systems

Specification [8], published by OMG standardizes the software API for publish-

subscribe model while adding data-centric property to publish-subscribe model.

This specification defines interface classes for API, but does not specify any

marshalling and protocol for interoperability between different DDS

implementations. DDS inherits decoupling properties of publish-subscribe model

and achieves a predictable data-centric distributed system by controlling Quality of

Service (QoS) of each data object in the system. To achieve a predictable data-

centric distributed system, DDS presents a new middleware architecture model:

Data-Centric Publish-Subscriber (DCPS) model. DDS aims to minimize overhead

of data in a distributed system while increasing scalability.

The objective of this work is to implement DDS specification by using CORBA

features. The aim of using CORBA features is to transport interoperability to DDS

to work in a heterogeneous distributed environment. On the other hand,

implementing DDS by using CORBA features transports decoupling and data-

centric properties of DDS to CORBA. Minimizing CORBA overhead in data

distribution by applying a new QoS policy that we call BLOCK QoS policy, is

another aim of this work.

The scope of this study consists of implementing the DDS Specification as a

CORBA service that achieves interoperability while enabling high scalability. As a

CORBA service, implementation aims to be more efficient and compatible with

DDS specification data distribution from JacORB DDS implementation.

Implementation is working towards the Minimum Profile, but provides architecture

to implement Ownership and Persistence Profiles

3

Along with the details of the proposed implementation itself, its evaluation is also

presented in the thesis. In order to evaluate the implementation an experiment

environment is prepared. Performance, interoperability and scalability properties of

the implementation are examined within the framework of four experiments. All

experiments are carried out on an Ethernet infrastructure with no background

traffic. This is expected to reflect the typical practical environments in which such

applications are usually implemented. In Experiment 1 performance of

implementation is examined with increasing data volume in a homogenous

distributed environment. In Experiment 2 interoperability of implementation is

examined in a heterogeneous distributed environment. In Experiment 3 scalability

of implementation is examined with increasing number of producer and consumer

applications in a homogenous distributed environment. Finally in Experiment 4

effect of BLOCK QoS policy in performance is examined with increasing data

volume in a homogenous distributed environment.

The remainder of the thesis is organized as follows:

In Chapter 2, a survey of literature on distributed software system approaches and

middleware architectures is presented. Specifically, CORBA and DDS

implementations reported in the literature are reviewed.

Chapter 3 describes the features of the DDS implementation realized in this study.

First, description of implemented DDS participants and their relationship are

presented. Then, data dissemination mechanism of implementation is explained

with the help of message sequence diagrams. Finally, BLOCK QoS policy is

described in this chapter.

Chapter 4 presents an evaluation of the constructed software infrastructure. The

evaluation focuses on performance, scalability, and interoperability analysis of the

implementation.

Finally, Chapter 5 concludes the work by presenting the achievements and

shortcomings of the study as well as suggestions for future work on the subject.

4

CHAPTER II

LITERATURE SURVEY

2.1 Middleware Architecture Models

We may classify middleware architecture models as client-server model, publish-

subscribe model, and data-centric publish-subscribe model. Each of these models

supports different network approaches, service-oriented approach and message-

oriented approach. The cause of variety in network approaches is different system

requirements. System requirements may be classified as performance, reliability,

scalability, and interoperability [12]. Table 1 presents a comparison between

architecture models.

Table 1 Middleware Architecture Model Comparison

Property Client – Server

Model

Publish – Subscribe

Model

Network Approach Service-Oriented Message-Oriented

Data Distribution Server to Client Many to many nodes

Decoupling Strongly Synchronized Time, Space, Flow

Decoupling

Data Units Replies of Methods Messages

Abstraction of Network Connection-Oriented Connectionless

Obligation of Applications Data Dissemination

and Process

Data Process

5

The client-server model is a reliable model because of its connection-oriented and

strongly synchronized origin. On the other hand the connection-oriented and

strongly synchronized origin of client-server model limits the scalability in data

distribution [21]. Interoperability is provided by implementation of client-server

model such as CORBA, and DCOM. Publish-subscribe model achieves reliability

in spite of its connectionless origin. The most important property of publish-

subscribe model is decoupling between publishers and subscribers in time, space,

and flow [14]. Decoupling property of this model causes high scalability and fault-

tolerance in a distributed system. Publish-subscribe model is far from meeting the

interoperability needs, because marshalling is not defined by any publish-subscribe

specification [1].

2.1.1 Client-Server Model

Client-Server model [22] supports the service-oriented approach. This model

includes servers, managing services, and clients, requesting service. Server objects

are invoked remotely by clients through stubs. In classical Client-Server model

clients and servers are strongly synchronized. Synchronous communication in

Client-Server model leads to leads to static distributed system.

Client-Server model achieves data distribution by requests and replies. Client-

Server model works well for systems with centralized information, synchronous

transactions, and large size replies. If multiple nodes are generating data in network,

Client-Server model requires all data to be sent to the server. Such indirect client-

to-client communication is inefficient [22].

Most Client-Server middleware designs present an Application Programmer

Interface (API) that strives to make the remote node appear to be local. Successful

Client-Server middleware designs include CORBA, used in developing object

oriented distributed applications, DCOM, developed by IBM corporation for

component based distributed applications and HTTP, used universally in web-based

communications, and Enterprise Java Beans (EJB) [23].

6

CORBA is a standard published by OMG [4]. The heart of CORBA is Object

Request Broker (ORB) that allows clients to invoke operations on distributed

objects without concerns of object location, programming language, operating

system, communication protocols, and hardware. CORBA specification enables

interoperability between ORB implementations regardless of programming

language by supporting CDR (Common Data Representation) and IIOP (Internet

Inter ORB Protocol). CORBA specification defines a distributed object as an

instance of IDL (Interface Definition Language). Objects are identified by object

references. Clients possess object references identifying objects and make remote

method calls. A standard CORBA client request results in the synchronous

execution of an operation by an object in server. CORBA 3.0 supports both

synchronous and asynchronous method calls. TAO [11] and JacORB [10] are

among the most widely used open-source CORBA implementations.

2.1.2 Publish-Subscriber Model

Publish-subscribe model [22] supports message-oriented approach. Model includes

publishers, publishing messages, subscribers, expressing an interest in messages

(subscription), and message service, providing storage and management for

subscriptions and efficient delivery of messages.

Publish-subscribe model enables a subscriber to express its interest in messages by

different ways. Channel-Based subscription scheme is the most basic scheme.

Communication by using Channel-Based subscription scheme is similar to notion

of group communication [13]. Subscribers subscribe to a message channel, a

message service, and receive all messages published to channel. Topic-Based

subscription scheme is based on notion of subjects (topics). Subscribers subscribe

to unique topics which are identified by keywords. Topic-based subscription

scheme introduces an abstraction mapping of each individual topic to distinct

message channels. Content-Based subscription scheme improves topic-based

subscription scheme by introducing a subscription scheme based on content of

messages. In other terms, messages are not classified according to some predefined

keywords, but according to the properties of the messages themselves [13]. Type-

7

Based subscription scheme [14] usually regroup messages that present

commonalities not only in content, but also in structure such as topic type that is

defined in object oriented programming languages. In this scheme messages are

considered as objects. [15]

Publish-subscribe model provides decoupling between publishers and subscribers in

three dimensions; space, time, and flow. The interacting participants do not need to

know each other, in other words they do not need to hold any references, do not

need to be actively participating in the interaction at the same time, and data

reception and data sending do not block participants. [14]

Publish-Subscribe model achieves data distribution by using messages. Publish –

Subscribe model works well for systems that information is distributed on fault-

tolerant and time-critical networks. While model decouples participants, it enables

participants to send and receive messages instead of accessing object states. This

means data units that form messages have to be built by applications.

Publish-Subscribe Model is deprived of a public API. Most known Publish-

Subscribe implementations are CORBA Event Service [6], CORBA Notification

Service [7], and Java Message Service (JMS) [17].

2.1.2.1 CORBA Event Service

In the scenarios that client and server must be more decoupled, standard CORBA

becomes inadequate because of its client-server model. CORBA Event Service [6]

decouples the communication between applications using CORBA by

implementing Publish-Subscribe Model. CORBA Event Service defines Publisher

as Supplier, Subscriber as Consumer, and Message Service as Event Channel.

Event Channel is defined as standard CORBA objects and communication with an

Event Channel is accomplished by using standard CORBA requests. CORBA Event

Service transmits events by the help of Any feature of CORBA [3] .

8

2.1.2.2 CORBA Notification Service

CORBA Notification Service [7] extends the CORBA Event Service by adding new

capabilities. CORBA Notification Service transmits events in the form of a well-

defined data structure, in addition to Anys as supported by the existing Event

Service. This makes Consumers to specify exactly which events they are interested

in receiving.

2.1.2.3 Java Message Service

JMS [17] is the Java implementation of Publish-Subscribe model. JMS defines

Publisher, and Subscriber as JMS Clients, and Message Service as Topics.

Publishers and subscribers are active when the Java objects that represent them

exist. JMS supports time decoupling.

2.2 Data Distribution Service (DDS)

DDS specification [8] standardizes the software API by which a distributed

application can use publish-subscribe model as a middleware model, and extends

publish-subscribe model to data-centric publish-subscribe model. DDS

specification only defines interfaces between application and service. It does not

address protocols and techniques for different actors implementing the service, does

not address management of internal DDS resources, and does not support

interoperability between DDS implementations.

Data-Centric Publish-Subscribe (DCPS) model [8] supports information-oriented

approach. This model includes publisher writing data to data objects, subscriber

subscribing to data objects, and reading data from data objects, and Global Data

Space keeping data objects.

DCPS model uses high level data-models instead of exchanging object references

or elementary data units like messages [8]. The data model defines the Global Data

Space and specifies how Publishers and Subscribers refer to portions of this space.

DCPS model provides the ability to configure QoS of system for each data object

by using QoS polices.

9

NDDS by RTI and SPLICE by Thales are the most mature commercial products of

DCPS model. These products have been the initiator of a public API of DCPS

Model, DDS (Data Distribution Service) Specification [8] that is published by

OMG in December 2005.

DDS specification describes two levels of interfaces; DCPS Level, and DLRL

(Data Local Reconstruction Layer) Level. DCPS Level is targeted towards the

efficient delivery of the proper information to the proper recipients. DLRL Level,

which is optional, allows for a simple integration of the Service into the application

layer.

2.2.1 Overall Conceptual Design [8]

DCPS entities, DomainEntity, DomainParticipant, Publisher, DataWriter,

Subscriber, DataReader, and Topic, are the main communication objects. All these

communication entities support QoS policy, accept a Listener and a

StatusCondition. Relations of DCPS entities can be seen in Figure 1.

10

Figure 1 Conceptual Design of DCPS Layer [8]

DomainParticipant is the entry point for the service and represents the local

membership of the application in a domain. A domain represents Global Data Space

component of DCPS model. Domain is a distributed concept that links all the

applications able to communicate with each other. Global Data Space in DCPS

model is represented by a domain in DDS. DomainEntity is the abstract base class

for all DCPS entities, except for the DomainParticipant.

A Publisher is the object responsible for the actual dissemination of publications. A

publication is defined by the association of a DataWriter to a Publisher. A

DataWriter is the object that allows the application to set the value of the data to be

published under a given Topic.

11

A Subscriber is the object responsible for the actual reception of the data resulting

from its subscriptions. It may receive and dispatch data of different specified types.

To access the received data, the application must use a typed DataReader attached

to the subscriber. A DataReader is the object that allows the application to make a

subscription and to access the data received by the attached Subscriber.

Topic is the most basic description of the data to be published and subscribed. A

Topic is identified by its name, which must be unique in the whole Domain. In

addition it fully specifies the type of the data that can be communicated when

publishing or subscribing to the Topic.

Each DCPS entity specifies its own QoS (Quality of Service). A QoS is a set of

characteristics that controls some aspect of the behavior of the DDS Service by

specifying the degree of coupling between the participants. QoS is comprised of

individual QoS policies.

Listeners and StatusConditions are two alternative mechanisms that allow the

application to be made aware of changes in the DCPS communication status, such

as arrival of data corresponding to a subscription, and violation of a QoS setting.

2.2.2 Information Flow

Information flow [8] is achieved with the aid of Publisher, DataWriter, Subscriber,

and DataReader entities as shown in Figure 2. Publisher object is responsible for

data distribution, while Subscriber object is responsible for receiving distributed

data. A data-object is described by Topic. Topic entity associates a name, a data-

type, QoS related to a data-object.

Information flow behavior of publisher side is controlled by QoS of Topic defining

the publishing data, QoS of DataWriter associated with Topic, and QoS of

Publisher associated with DataWriter. Information flow behavior of subscriber side

is controlled by QoS of Topic defining the subscribed data, QoS of DataReader

12

associated with Topic, and QoS of Subscriber associated with DataReader. In

several cases, for information flow QoS policy on the publisher side must be

compatible with QoS policy in the subscriber side. If the policies are incompatible

the service does not establish communication between publisher and subscriber

entities.

Figure 2 Information Flow Overview of DDS [8]

To publish data of a given type, an application must make a publication by creating

a Publisher and a DataWriter with desired QoS policy, and modify data by using

DataWriter as seen in Figure 3.

To receive data of a given type, an application must make a subscription by creating

a Subscriber and a DataReader with desired QoS policy, and receive data by using

DataReader by the help of Listeners as seen in Figure 4, and Conditions as seen in

Figure 5.

13

Figure 3 DDS Publication Sequence Diagram [8]

14

Figure 4 DDS Subscription with Listener Sequence Diagram [8]

15

Figure 5 DDS Subscription with Condition Sequence Diagram [8]

16

2.2.3 DDS QoS Policies

The Data-Distribution Service (DDS) relies on the use of QoS [8]. The ability to

specify different QoS policies for each data-object is a condition for data-centricity.

DDS achieves this ability by associating QoS policies with Topic, DataReader,

DataWriter, Subscriber, Publisher, and DomainParticipant entities.

DDS defines two kind of compatibility for QoS. First one is the compatibility

between QoS policy values. In this case, some QoS policy values must be

compatible with other ones. If a new QoS policy is inconsistent with previous QoS

policies, change of QoS fails. Second one is the compatibility between QoS policies

of entities. In this case a QoS Policy in publisher side must be compatible with QoS

policy in the subscriber side. If there exist any inconsistency, service fails in

communication.

DDS enables change in QoS policy values for some QoS policies after entity is

enabled.

2.2.4 DDS Profiles

DDS specification includes 5 profiles [8]. Each profile designates different behavior

and degree of coupling of service by specifying different QoS.

2.2.4.1 Minimum Profile

Minimum Profile contains just the mandatory features of the DCPS model. None of

the optional features are included.

2.2.4.2 Content-Subscription Profile

Content-Subscription Profile enables DCPS model with content-based subscription.

To achieve subscription by content, this model adds the optional

ContentFilteredTopic, QueryCondition, MultiTopic classes.

17

2.2.4.3 Persistence Profile

Persistence Profile enables saving data transiently or permanently to achieve

durability of the service. This profile adds the optional QoS policies

DURABILITY_SERVICE, and DURABILITY with optional settings

TRANSIENT, and PERSISTENCE.

2.2.4.4 Ownership Profile

Ownership Profile enables receiving the strength data [ref] from the replica

publishers to achieve fault-tolerance. This profile adds the optional QoS policies

OWNERSHIP_STRENGTH, and OWNERSHIP with optional settings

EXCLUSIVE.

2.2.4.5 Object Model Profile

Object Model Profile includes the implementation of DLRL level to the service,

and support PRESENTATION access_scope setting of GROUP.

2.2.5 Open-Source DDS Applications

NDDS and SPLICE are the commercial implementations of DDS specification.

Except for these commercial implementations there exist open-source DDS

implementations: TAO DDS implementation [18] and JacORB 2.2.3 DDS

implementation [19]. The common property of open-source implementations is

using CORBA Technology.

2.2.5.1 TAO DDS Implementation

TAO DDS Implementation [18] implements Minimum Profile of DDS. TAO DDS

implementation defines CORBA server as Publisher, CORBA client as Subscriber,

and DCPS Information Repository as Message Service. In TAO DDS

implementation CORBA features are used to initialize and control service usage.

ORB is used to register for Topic and QoS. The data transmission is not done with

CORBA features. Instead of CORBA features, a TAO specific Pluggable Transport

Layer is used. Pluggable Transport Level enables applications to use TCP, UDP,

and their specific protocols. TAO DDS implementation uses a more efficient

18

variation of CDR of CORBA for marshaling. TAO DDS implementation defines

Topics by using IDL. Implementation uses #pragma statement to identify the Topic

type and Topic key in IDL.

TAO DDS implementation provides limited number of QoS policies, and does not

support changing of QoS of an existing entity. The provided QoS policies are

LIVELINESS, RELIABILITY, HISTORY, and RESOURCE_LIMITS.

2.2.5.2 JacORB 2.2.3 DDS Implementation

JacORB DDS implementation [19] is presented as a CORBA service in JacORB

version 2.2.3. JacORB 2.2.3 DDS implementation defines CORBA server as

Publisher, CORBA client as Subscriber and CORBA Event Service Event Channel

implementation as Message Service. JacORB 2.2.3 DDS implementation

implements DDS entities DomainParticipant, Publisher, Subscriber, Topic, and

other classes to use CORBA Event Service Event Channel implementation as

Message Service. DataWriter, DataReader, and DataReaderListener must be

implemented by the developer of each Topic. JacORB 2.2.3 DDS uses CORBA

Event Service for notification of subscribers.

Figure 6 shows the structure of JacORB 2.2.3 Event Service push-model as

described in [10]. Proxy objects in Event Channel decouple the Suppliers and

Consumers. An application that wants to push an event should create a supplier

object and an application that wants to receive an event should create a consumer

object.

19

Figure 6 JacORB 2.2.3 Event Service Model [10]

JacORB 2.2.3 DDS implementation creates a supplier object for each one of

DataWriter objects. On the other hand, only one consumer object is created as

Super Consumer for service as in Figure 7. The super consumer has as a role to

distribute the data collected to all Subscribers concerned. This causes notification of

subscribers sequentially for all data-types in the service [20]. The super consumer

object keeps the references of subscriber objects not only in one domain but also in

the service. This causes communication between entities in different domains.

Figure 7 JacORB 2.2.3 DDS Implementation Event Service Mechanism [20]

20

The supplier objects are used by DataWriter objects, which mean data

dissemination is under the control of DataWriter objects. This violates the

responsibility of Publisher objects in data dissemination principle of service.

As TAO DDS implementation does, JacORB 2.2.3 DDS implementation defines

Topics by using IDL, except for any statements to identify Topic type and key.

21

CHAPTER III

 CORBA DDS (CDDS) IMPLEMENTATION

DDS specification defines standard interfaces and QoS policies to allow

applications to use data-centric publish-subscribe model in communication.

Definition of interfaces comprises definition of functions and interaction of DCPS

entities. DDS specification does not describe implementation of functions and

interaction of DCPS entities such as notifying data to subscribers and making data

available between DCPS entities.

JacORB 2.2.3 DDS implements DDS specification as a CORBA Service in

minimum profile. JacORB 2.2.3 DDS uses JacORB 2.2.3 Event Service to notify

data to subscribers. The usage of Event Service makes JacORB 2.2.3 DDS

incompatible with DDS specification in the points of responsibility of publisher in

notification and domain definition. CDDS, developed and implemented within the

scope of this study, essentially aims to overcome this incompatibility.

CDDS implements a subset of DCPS layer of DDS, whose boundary is determined

by minimum profile of DDS. CDDS implements DDS as a CORBA Service like

JacORB 2.2.3 DDS. CDDS is compatible with DDS specification in notification

and domain definition. Publisher is responsible for notification of data in CDDS

implementation, and any interaction is not possible between entities in different

domains. Also CDDS implementation provides an infrastructure to implement

different QoS policies and DDS profiles.

As a CORBA Service, CDDS implementation implements DCPS entities as

CORBA servant objects. CDDS implementation uses JacORB 2.2.3 Naming

Service to make applications get reference of CDDS entry point.

22

3.1 CDDS Participants

CDDS implements the DCPS entities DomainParticipantFactory,

DomainParticipant, Publisher, Subscriber, Topic, SampleInfo, DataWriter,

DataReader, and DataReaderListener as

• cDomainParticipantFactory,
• cDomainParticipant,
• cPublisher,
• cSubscriber,
• cTopic,
• cSampleInfo,
• cDataWriter,
• cDataReader,
• cDataReaderListener;

With two additional participants; cMediator, and cDataHandler. These participants

are used to manage subscription, data distribution and notification in CDDS

implementation. Figure 8 shows the relations between CDDS participants.

Figure 8 CDDS DCPS Entities Model Diagram

23

3.1.1 cDomainParticipantFactory

cDomainParticipantFactory class implements DomainParticipantFactory interface.

The purpose of the cDomainParticipantFactory object is to create and destroy

cDomainParticipant objects. cDomainParticipantFactory object is a singleton

object. The applications get the reference of cDomainParticipantFactory object by

using JacORB 2.2.3 Naming Service.

3.1.2 cDomainParticipant

cDomainParticipant class implements DomainParticipant interface. The purpose of

cDomainParticipant object is to create a domain by acting as factory for cPublisher,

cSubscriber, cMediator, cDataHandler, and cTopic objects. It is possible to create

different domains by creating cDomainParticipant objects with different domain ID

values. cDomainParticipant object is singleton for the same domain ID values.

3.1.3 cPublisher

cPublisher class implements Publisher interface. The purpose of cPublisher object

is to notify cSubscriber objects of a change in a data object associated with one of

its cDataWriter objects. cPublisher object makes a decision about notification by

the help of QoS policy. cPublisher object acts as a factory for cDataWriter.

3.1.4 cDataWriter

cDataWriter class implements DataWriter interface. The purpose of cDataWriter

object is to allow application to publish data. cDataWriter object achieves this by

enabling application to set the value of data object that is associated with a cTopic

object. cTopic object has priority in creating a cDataWriter object.

3.1.5 cSubscriber

cSubscriber class implements Subscriber interface. The purpose of cSubscriber

object is to get value of data that application subscribes to. cSubscriber object acts

as a factory for cDataReader objects.

24

3.1.6 cDataReader

cDataReader class implements DataReader interface. The purpose of cDataReader

object is to allow application to make a subscription to a data object, and to access

value of data that is received by cSubscriber object.

3.1.7 cSampleInfo

cSampleInfo class implements SampleInfo interface. cSampleInfo object creates a

data sample with the data values. The purpose of cSampleInfo object is to keep the

state values for a data sample. CDDS creates a cSampleInfo object for each one of

cDataReader objects. cSampleInfo objects are created and kept by cDataHandler

objects.

3.1.8 cTopic

cTopic class implements Topic interface. The purpose of cTopic object is to

describe the data objects to publish and subscribe. A cTopic object is identified by

its name in a domain. Topic name must be unique in the domain. cTopic object also

specifies data type.

3.1.9 cDataReaderListener

cDataReader class implements DataReaderListener interface. The purpose of

cDataReaderListener objects is to make DataReader object get data values, and to

submit data values to application.

3.1.10 cMediator

cMediator class implements Mediator interface (See Figure 9) that is defined in

Mediator design pattern [21].

25

IMediator
no attribute
Operations
add_subscription ReturnCode_t

 topic_name String
 subscriber Subscriber

get_subscribers Subscriber []
 topic_name String

set_datahandler ReturnCode_t
 topic_name String
 datahandler DataHandler

get_datahandler DataHandler
 topic_name String

Figure 9 Mediator Interface Specification

3.1.10.1 add_subsription

This operation enables keeping a subscriber object reference for specified topic.

3.1.10.2 get_subscribers

This operation allows access to subscriber objects associates with specified topic.

3.1.10.3 set_datahandler

This operation enables keeping a DataHandler object reference for specified topic.

3.1.10.4 get_datahandler

This operation allows access to a DataHandler object associates with specified

topic.

The purpose of cMediator object is to achieve decoupling between cPublisher and

cSubscriber objects. At this concept it keeps DataHandler and Subscriber object

references and allows accessing to DataHandler and Subscriber objects.

26

3.1.11 cDataHandler

cDataHandler implements DataHandler interface as in Figure 10.

DataHandler
no attribute
Operation

set_data ReturnCode_t
 data Data

Get_data Data
 datareader DataReader

get_samplestate sample_state
 datareader DataReader

create_sampleinfo ReturnCode_t
 datareader DataReader

Figure 10 DataHandler Interface Specification

3.1.11.1 set_data

This operation enables keeping data object for receiving.

3.1.11.2 get_data

This operation allows accessing to data object.

3.1.11.3 get_samplestate

This operation allows accessing to sample_state associates with specified

DataReader.

3.1.11.4 create_sampleinfo

This operation creates a SampleInfo for specified DataReader.

27

The purpose of cDataHandler object is to enable service to achieve data

dissemination suitable with QoS of cTopic objects. CDDS implementation creates a

cDataHandler object for data objects described by cTopic objects.

cDataHandler object creates a cSampleInfo object for each one of cDataReader

objects related with specified cTopic object. When set_data operation is invoked,

cDataHandler sets data value and changes sample state of all cSampleInfo objects

to NOT_READ. When get_data operation is invoked, cDataHandler changes

sample state of related cSampleInfo object to READ.

3.2 CDDS Deployment

The deployment of CDDS participant objects is depicted in Figure 11. All

participant objects except for cDataReaderListener object are deployed in a server

computer, CDDS Server. DCPS entity implementations are created as CORBA

servant objects. This makes possible application to invoke operations on DCPS

entity implementation objects by getting their CORBA object references.

cDomainParticipantFactory is the first object created in CDDS server, entry point

of CDDS. Applications get CORBA object reference of cDomainParticipantFactory

object using JacORB Naming Service. cDataReaderListener objects are deployed in

the computers where consumer applications run.

28

Figure 11 CDDS Participants Deployment Diagram

3.3 CDDS Data Dissemination Mechanism

DDS specification specifies that data dissemination is made from publisher to

subscriber. This means publisher is responsible for data dissemination. A data

supplier communicates with a publisher by a DataWriter to notify data. Subscriber

receives published data and makes it available to the receiving application.

CDDS achieves data dissemination in four stages:

• Creating Factory Participants

• Publication

29

• Subscription

• Data Notification

• Data Reception

Factory participants mean participants, cDomainParticipant, cPublisher,

cSubscriber, acting as factory for other participants, and cTopic.

3.3.1 Creating Factory Participants

An application must create a cPublisher object to publish data by invoking

create_publisher operation of cDomainParticipant object. cDomainParticipant

object creates a cPublisher object as CORBA servant and returns CORBA object

reference of cPublisher object to application. Figure 12 shows sequence diagram of

creating a cPublisher object.

Figure 12 Creating cPublisher Sequence Diagram

An application must create a cSubscriber object to receive data by invoking

create_subscriber operation of cDomainParticipant object. cDomainParticipant

object creates a cSubscriber object as CORBA servant and returns CORBA object

reference of cSubscriber object to application. Figure 13 shows sequence diagram

of creating a cSubscriber object.

30

Figure 13 Creating cSubscriber Sequence Diagram

To publish or receive data as seen in Figure 14, a cTopic object must be created by

any application. When an application invokes create topic operation from

cDomainParticipant object, cDomainParticipant objects creates a cTopic object as

CORBA servant, a cDataHandler object for specified type of cTopic objects, and

returns CORBA object reference of cTopic object. After creating cDataHandler

object, cDomainParticipant object registers cDataHandler object reference to

cMediator object.

Figure 14 Creating cTopic Sequence Diagram

31

3.3.2 Subscription

In subscription stage cDataReader object, cSampleInfo object, and

cDataReaderListener objects are created as in Figure 15. DDS Specification defines

subscription by the association of a data-reader with a subscriber. An application

invokes create_datareader operation on cSubscriber object to subscribe a topic.

cSubscriber object creates a cDataReader object as a CORBA servant, and returns

CORBA object reference of cDataReader object. After creating a cDataReader

object, cSubscriber object registers this subscription to cMediator object.

cSubscriber object creates a cSampleInfo object for created cDataReader object by

invoking create_sampleinfo operation on cDataHandler object.

After getting CORBA object reference of cDataReader object, application must

create a cDataReaderListener as a CORBA servant, and set CORBA object

reference of cDataReaderListener object to cDataReader object.

Figure 15 Subscription Sequence Diagram

32

3.3.3 Publication

DDS specification describes publication by the association of a cDataWriter to a

Publisher. In publication stage cDataWriter object is created. An application creates

a cDataWriter object for a topic by invoking create_datawriter on cPublisher object.

cPublisher object creates cDataWriter object as a CORBA servant, and returns

CORBA object reference of cDataWriter object. After creating cDataWriter object,

cPublisher object gets cDataHandler object reference for the topic for which

cDataWriter object created. Figure 16 shows sequence diagram of publication.

Figure 16 Publication Sequence diagram

3.3.4 Data Notification

When CDDS factory participants and publication is created, service is ready to

notify data. An application invokes write operation on cDataWriter object to notify

data. cDataWriter object invokes notify_readers operation on cPublisher object

when write operation is invoked. At this point service gives responsibility of data

notification to cPublisher object. Notification is shaped with the QoS policy of

cPublisher object. To notify data, cPublisher object first get cSubscriber object

references, which are subscribed to specified topic, from cMediator object, and set

data to related cDataHandler object. When set_data operation is invoked on

cDataHandler object, cDataHandler object sets sample state of all cDataReader

33

objects to NOT_READ. After setting data, cPublisher object invokes

notify_datareaders operation on cSubscriber objects whose references are get from

cMediator object. Figure 17 shows sequence diagram of Data Notification.

Figure 17 Data Notification Sequence diagram

3.3.5 Data Reception

Data reception is achieved by cSubscriber, cDataReader, and cDataReaderListener

objects as shown in Figure 18. Data reception starts when notify_datareaders

operation is invoked on cSubscriber object. cSubscriber invokes get_samplestate

with parameter cDataReader reference on cDataHandler object. cDataHandler

object returns cSampleInfo object sample state to cSubscriber object. If

cSampleInfo object sample state is NOT_READ, cSubscriber gets

cDataReaderListener CORBA object references from cDataReader objects, and

invokes data_available operation on cDataReaderListener objects. When

data_available operation is invoked, cDataReaderListener object invokes read

operation on cDataReader object. cDataReader object gets data by invoking

34

get_data operation on cDataHandler object and return data to cDataReaderListener

object. cDataHandler object sets sample state of cSampleInfo object of the related

cDataReader object as READ, when get_data operation is invoked.

Figure 18 Data Reception Sequence diagram

3.4 A New QoS Policy: BLOCK

CORBA overhead is an important drawback from the aim of minimal overhead in

data distribution with CDDS implementation. DDS specification [8] does not offer

any QoS policy to minimize overhead. CDDS defines a new QoS policy, BLOCK

policy, for data-objects that are periodically published. The purpose of BLOCK

policy is to reduce CORBA overhead in read method invocation by increasing data

payload size.

35

BLOCK policy has a value; blocksize. The default value of blocksize is 1. With this

QoS policy, service keeps the published data-objects, and blocks notifying data to

subscribers until the number of data-objects reaches blocksize value. When number

of data-objects reaches blocksize, service notifies data to subscribers, and

DataReaderListener object reads blocksize number of data-objects from

DataReader. BLOCK policy concerns Topic and DataReader entities, and it is

changeable.

Difference of BLOCK policy defined within the scope of this study, from

HISTORY policy [8] is in the notification of data. With HISTORY policy, service

notifies data to subscribers for each data publication. On the other hand, with

BLOCK policy, service notifies data to subscribers when blocksize publications of

data have been realized for the topic for which this QoS policy has been set.

3.5 CDDS Type-Specific Classes

Data Distribution Service requires to create a number of specialized classes for each

data class defined by the application to facilitate the type-safe interaction of the

application with the service. Specialized classes for data classes are DataWriter,

DataReader, and Type Support classes. CDDS handles type-specific classes by the

help of Java Reflection Technology.

36

CHAPTER IV

EVALUATION

This section investigates the performance of CDDS implementation with changing

number of publishers and subscribers.

Figure 19 Testbed Configuration

Configuration of CDDS server, producer application, and consumer application in

the testbed is illustrated in Figure 19. While CDDS implementation is running on

CDDS Server machine, producer and consumer applications run on Producer and

Consumer machines. Network connection between server, producer and consumer

37

machines is achieved by 100Mbps Ethernet. No background traffic is present, as

these systems aim to support distributed and closed communication networks with

no external traffic load.

4.1 Experiment Overview

The experiments presented here investigate performance, interoperability and

scalability of CDDS implementation by measuring average latency of write

operation of DataWriter object. Experiment 1 measures the performance of CDDS

and JacORB DDS implementations in a homogeneous distributed environment.

Experiment 2 investigates interoperability of CDDS by measuring the performance

of CDDS in heterogeneous distributed environment. Experiment 3 investigates

scalability of CDDS by measuring the performance of CDDS with increasing

number of producers and consumers in a homogeneous distributed environment.

Finally, Experiment 4 investigates effect of BLOCK QoS policy on the

performance of CDDS.

4.1.1 Experiment 1

Experiment 1 investigates performance by measuring the variation of throughput

and latency of write operation in CDDS and JacORB DDS with increasing data

volume in data dissemination from one producer to one consumer. The testbed is

illustrated in Table 2 and Figure 20.

Table 2 Experiment 1 Testbed Properties

 CPU OS ORB

CDDS Server Pentium IV, 3 GHz Windows XP JacORB 2.2.3

Producer Pentium IV, 3 GHz Windows XP JacORB 2.2.3

Consumer Pentium IV, 3 GHz Windows XP JacORB 2.2.3

38

Figure 20 Experiment 1 Testbed Configuration

Table 3 shows average write operation latency for 1000 calls. Latency is measured

as the time elapsed from invocation of write operation to return of write operation

of DataWriter object. It is measured for JacORB DDS and CDDS for increasing

data size.

Table 3 Roundtrip time of CDDS and JacORB DDS (µs)

0,004

Kbytes

0.5

Kbytes

1

Kbytes

2

Kbytes

4

Kbytes

8

Kbytes

16

Kbytes

JacORB

DDS
1753.191 2108.106 2494.723 2966.939 3721.404 4821.277 7241.000

CDDS 1728.478 2100.304 2444.065 2992.717 3742.826 4913.674 7109.674

39

As shown in Figure 21, JacORB and CDDS performances are similar, in spite of

the fact that CDDS does not use JacORB Event Service. This means CORBA

overhead in read and write operations has an important role in the performance of

both applications.

It is possible to see the effect of CORBA overhead on throughput in Figure 22.

Throughput of CDDS increases with increasing data payload.

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

8000.0

0 2 4 6 8 10 12 14 16 18

Data Size (Kbytes)

Ti
m

e
(u

s)

CDDS JacORB DDS

Figure 21 JacORB DDS versus CDDS performance

40

CDDS

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18

Data Sizes (Kbytes)

T
hr

ou
g

hp
ut

 (K
b

yt
es

/s
)

CDDS

Figure 22 Throughput of CDDS

4.1.2 Experiment 2

Experiment 2 investigates interoperability property of CDDS implementation. The

testbed is illustrated in Table 4 and Figure 23. In this context, interoperability is

defined as the ability to distribute data from producer programs to consumer

programs that may be coded in different programming languages and possibly run

on different hardware and operating system platforms.

Table 4 Experiment 2 Testbed Properties

 CPU OS ORB

CDDS Server Pentium IV,3 GHz Windows XP JacORB 2.2.3

Producer Motorola, 400MHz VxWorks 5.5 TAO 1.4

Consumer Pentium IV, 3 GHz Windows XP JacORB 2.2.3

41

Figure 23 Experiment 2 Testbed Configuration

In this experiment producer coded in C++ publishes data to consumer coded in

Java. Table 5 shows write operation latency for 1000 calls for JacORB producer

and TAO producer for increasing data size.

Table 5 Roundtrip time of CDDS in heterogeneous distributed environment (µs)

 0,004

Kbytes

0.5

Kbytes

1

Kbytes

2

Kbytes

4

Kbytes

8

Kbytes

TAO

Producer
2281.17 2878.91 3369.34 4047.24 4796.65 5929.99

JacORB

Producer
1728.478 2100.304 2444.065 2992.717 3742.826 4913.674

42

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

0 1 2 3 4 5 6 7 8 9

Data Size (Kbytes)

Ti
m

e
(u

s)

TAO Producer JacORB Producer

Figure 24 Performance of CDDS in heterogeneous distributed environment

As illustrated in Figure 24, TAO producer latency is higher than JacORB producer

latency because of different CPU properties. JacORB producer run on a more

powerful CPU than TAO producer.

Hence this experiment shows that CDDS has the same performance characteristic in

heterogeneous distributed environment as in homogeneous distributed environment.

4.1.3 Experiment 3

Experiment 3 investigates the scalability of CDDS implementation. We examined

the impact of increasing number of consumers and producers in Experiment 3.a and

Experiment 3.b. In the context of this study, scalability is defined as the

independence of communication latency from the number of producers and

consumers.

43

4.1.3.1 Experiment 3.a

Experiment 3.a investigates scalability of CDDS by measuring variation of

throughput and latency of write operation in CDDS with increasing data volume in

data dissemination from one producer to three consumers. The testbed is illustrated

in Table 6 and Figure 25.

Table 6 Experiment 3.a Testbed Properties

 CPU OS ORB

CDDS Server Pentium IV, 3 GHz Windows XP JacORB 2.2.3

Producers Pentium IV, 3 GHz Windows XP JacORB 2.2.3

Consumer Pentium IV, 3 GHz Windows XP JacORB 2.2.3

Figure 25 Experiment 3.a Testbed Configuration

44

Table 3 shows write operation latency for 1000 calls for 1, 2, and 3 subscribers.

Latency is measured for CDDS for increasing data size.

Table 7 Roundtrip time of CDDS for different number of producers (µs)

 0,004

Kbytes

0.5

Kbytes

1

Kbytes

2

Kbytes

4

Kbytes

8

Kbytes

16

Kbytes

1

Consumer
1728.478 2100.304 2444.065 2992.717 3742.826 4913.674 7109.674

2

Consumers 3052.35 3693.47 4230.85 5083.57 6162.66 7811.19 12345.26

3

Consumers 4621.66 5474.74 6273.55 7520.98 8882.66 11370.32 17516.66

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

14000.0

16000.0

18000.0

20000.0

0 2 4 6 8 10 12 14 16 18

Data Size (Kbytes)

Ti
m

e
(u

s)

1 Consumer 2 Consumers 3 Consumers

Figure 26 Performance of CDDS for different number of consumers

45

4.1.3.2 Experiment 3.b

Experiment 3.b investigates scalability of CDDS by measuring variation of

throughput and latency of write operation in CDDS with increasing data volume in

data dissemination from three producers to one consumer. Testbed is illustrated in

Table 8 and Figure 27.

Table 8 Experiment 3.b Testbed Properties

 CPU OS ORB

CDDS Server Pentium IV, 3 GHz Windows XP JacORB 2.2.3

Producers Pentium IV, 3 GHz Windows XP JacORB 2.2.3

Consumer Pentium IV, 3 GHz Windows XP JacORB 2.2.3

Figure 27 Experiment 3.b Testbed Configuration

46

Table 9 shows write operation latency for 1000 calls for 1, 2, and 3 producers.

Latency is measured for CDDS for increasing data size.

Table 9 Roundtrip time of CDDS for different number of producers (�s)

 0,004

Kbytes

0.5

Kbytes

1

Kbytes

2

Kbytes

4

Kbytes

8

Kbytes

16

Kbytes

1

Producer
1728.478 2100.30 2444.06 2992.71 3742.82 4913.67 7109.67

2

Producers 2681.27 2738.81 3259.313 4678.75 4970.25 7127.33 11674.19

3

Producers 3391.97 4158.87 4815.469 5478.06 8719.04 9281.81 14196.84

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

14000.0

16000.0

0 2 4 6 8 10 12 14 16 18

Data Size (Kbytes)

Ti
m

e
(u

s)

1 Producer 2 Producers 3 Producers

Figure 28 Performance of CDDS for different number of producers

47

As shown in Figures 26 and 28, latency of write operation increases linearly with

increasing number of consumers or producers. This means that CDDS

implementation is not scalable in the sense defined above in Section 4.1.3. The

reasons are synchronous two-way function definition of DCPS entities in the DDS

specification, and deployment of CDDS objects in a server.

4.1.4 Experiment 4

Experiment 4 investigates effect of BLOCK QoS policy by measuring the

throughput and latency of data dissemination in CDDS with increasing data volume

when blocksize value of BLOCK policy is 1,2,3,5,10,15,30. In this experiment,

Experiment 1 testbed illustrated in Figure 20 and Table 2 is used.

Table 10 Roundtrip time of CDDS for different number of blocksize (�s)

 0,004

Kbytes

0.5

Kbytes

1

Kbytes

2

Kbytes

4

Kbytes

8

Kbytes

16

Kbytes

1 Block

Size 1728.48 1050.78 833.87 634.57 515.89 471.39 421.17

2 Block

Size 2099.77 1753.40 1362.94 937.13 778.89 736.68 644.26

3 Block

Size 2446.19 1654.53 1384.94 1192.11 1037.53 884.60 826.96

5 Block

Size 2992.72 2044.46 1796.46 1599.61 1374.11 1261.17 1212.61

10

Block

Size 3744.85 2653.62 2370.74 2101.28 2022.19 1945.57 1877.13

15

Block

Size 4914.74 3854.23 3601.74 3417.87 3280.60 3250.00 4835.51

30

Block

Size 7144.70 6380.72 6072.00 5937.38 6375.41 7552.75 8855.68

48

Table 10 shows write operation latency for 1000 calls for increasing blocksize.

Latency is measured for CDDS for increasing data size.

In Figure 29 and Figure 30, it is observed that increase in blocksize value causes a

dramatic decrease in latency of write operation. The reason is reducing CORBA

overhead with increasing data payload in read operation. With the blocksize value

greater than 10 decreases in latency is minimal, that means data payload becomes

dominant in operation calls.

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

8000.0

9000.0

10000.0

0 5 10 15 20 25 30 35

Block Size

Ti
m

e
(u

s)

0.004 Kbytes 0.5 Kbytes 1 Kbytes 2 Kbytes
4 Kbytes 8 Kbytes 16 Kbytes

Figure 29 Performance of CDDS for different data volumes

49

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

8000.0

9000.0

10000.0

0 2 4 6 8 10 12 14 16 18

Data Size (Kbytes)

Ti
m

e
(u

s)

1
2
3
5
10
15
30

Figure 30 Performance of CDDS for different blocksize values

50

CHAPTER V

DISCUSSION AND CONCLUSION

A DDS implementation as a CORBA service and a QoS policy BLOCK QoS policy

is proposed in this study.

CORBA Services, CORBA Event Service and CORBA Notification Service, which

aims to transport publish-subscribe properties to CORBA are implemented by

applying OMG specifications for CORBA Event Service and CORBA Notification

Service. These specifications do not define a common API for publish-subscribe

model. DDS specification defines API for publish-subscribe model while enhancing

it with data-centricity property. DDS implementation transports data-centricity and

decoupling properties of Data-Centric Publish-Subscribe model to CORBA by

applying DDS specification and transports interoperability property of CORBA to

DDS, which is not specified in specification. DDS implementation is compatible

with DDS specification in API and responsibilities of DCPS entities. DDS

implementation participants are deployed in a server machine as in CORBA Event

Service and CORBA Notification Service.

DDS implementation uses CORBA features in data dissemination. This causes high

CORBA overhead in data dissemination. Aim of BLOCK QoS policy is to

minimize CORBA overhead in periodic data dissemination. In implementation of

BLOCK QoS policy service blocks DataReaderListener to read data until the

number of published data reaches the blocksize.

DDS implementation aims to bring a data dissemination mechanism, which is

compatible with DDS specification and not cause an extra overhead. In JacORB

51

DDS implementation there exist incompatible points in data dissemination

mechanism. As evaluated in Experiment 1, performance of DDS implementation is

nearly the same with the performance of JacORB DDS implementation. Another

aim of DDS implementation is to transport interoperability property of CORBA to

DDS. Experiment 2 results show that interoperability between heterogeneous

distributed system participants works in DDS implementation. Experiment 3 results

show that DDS implementation violates scalability property of DDS specification.

The reasons of violation are two-way invocation calls and deployment of DCPS

participants into a server machine which is caused from the nature of CORBA

Service deployment. Experiment 4 results show that implementation BLOCK QoS

policy causes a dramatic decrease in latency time for periodic data distribution.

Implementing BLOCK QoS policy achieves this by increasing data payload in

CORBA invocation. BLOCK QoS policy differs from HISTORY QoS policy in

notification of data. BLOCK QoS has blocksize value and concerns Topic and

DataReader entities in the service.

In general, DDS implementation achieves data distribution as specified in DDS

specification by using CORBA features and presents a QoS policy, BLOCK QoS

policy, to reduce the CORBA overhead in distribution of periodically published

data-objects. By using CORBA features DDS implementation transports

interoperability and reliability from CORBA. On the other hand, DDS

implementation violates scalability property of DDS specification.

As a future study, one-way write and read operation definitions can be added to

interface definition of DataWriter and DataReader classes to increase the scalability

of DDS implementation as a CORBA service.

Lack of DDS interoperability causes shortcoming in data distribution between

different, heterogeneous DDS implementations. In the next versions of DDS

specification, interoperability solutions should be defined.

52

REFERENCES

[1] H. Pinus, Middleware: Past and Present a Comparison, June 2004

[2] S. Güner, Architectural Approaches, Concepts and Methodologies of

Service Oriented Architecture, August 2005

[3] Object Management Group, CORBA Specification Version 3.0.3, March

2004, http://www.omg.org/cgi-bin/doc?formal/04-03-01, last accessed August 2006

[4] Object Management Group, http://www.omg.org/, last accessed August

2006

[5] J. Zou, D.Levy, A. Liu, Evaluating Overhead and Predictability of a Real-

time CORBA System, 2004 IEEE

[6] Object Management Group, Event Service Specification Version 1.2,

October 2004, http://www.omg.org/cgi-bin/doc?formal/2004-10-02, last

accessed August 2006

[7] Object Management Group, Notification Service Specification Version 1.1,

October 2004, http://www.omg.org/cgi-bin/doc?formal/2004-10-11, , last

accessed August 2006

[8] Object Management Group, Data Distribution Service for Real-Time

Systems Specification, March 2005,

53

http://www.omg.org/technology/documents/formal/data_distribution.htm, last

accessed August 2006

[9] S. Vinoski, New Features for CORBA 3.0, Communications of the ACM,

October 1998

[10] JacORB, http://www.jacorb.org/, last accessed August 2006

[11] Object Computing Inc., http://www.theaceorb.com/, last accessed August

2006

[12] RTI, Build-Your-Own Middleware Analysis Guide, http://www.rti.com, last

accessed August 2006

[13] D. Powell, Group Communications, Communications of the ACM, 39:4, pp.

50-97, April 1996.

[14] P. T. Eugster, R. Guerraoui, Distributed Programming with Typed Events,

IEEE Software, March-April 2004

[15] H. K. Y. Leung, Subject Space: A State-Persistent Model for

Publish/Subscribe Systems, September 2002

[16] P. Th. Eugster, P. A. Felber, R. Guerraoui, A. Kermarrec ,The Many Faces

of Publish/Subscribe, ACM Computing Surveys, Vol. 35, No. 2, June 2003, pp.

114–131.

[17] Sun Microsystems, Java Message Service Version 1.1, April 2002,

http://java.sun.com/products/jms/docs.html, last accessed August 2006

54

[18] Object Computing Inc., http://www.ociweb.com/products/dds, last accessed

August 2006

[19] F. Allaoui, A. O. Yehdih, Implémentation de l’intergiciel DDS (Data

Distribution Service), Juillet 2005

[20] E. Gamma, R. Helm, R. Johnson, J.Vlissides, Design Patterns, Addison-

Weisley, 1995

[21] A. B. Arulanthu, C.O’Ryan, D. C. Schmidt, M. Kircher, J. Parsons, The

Design and Performance of a Scalable ORB Architecture for CORBA

Asynchronous Messaging, Middleware 2000, LNCS 1795, pp 208-230,2000

[22] R. Kindel, What Real-Time Data Distribution System Is Right for You?,

AFRL Technology Horizons, August 2005

[23] M. Rogosin, Design Strategies for Real-Time Data in Distributed Systems,

Data Management, June 2005

