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ABSTRACT 
 

 

 
FEATURE BASED MODULATION RECOGNITION  

FOR INTRAPULSE MODULATIONS 

 

 

Çevik, Gözde 

 

M.S., Department of Electrical and Electronics Engineering 

Supervisor      : Assoc. Prof. Dr. Gözde Bozdağı Akar 

 

September 2006, 143 pages 

 

 

In this thesis study, a new method for automatic recognition of intrapulse modulations has 

been proposed. This new method deals the problem of modulation recognition with a 

feature-based approach.  

 

The features used to recognize the modulation type are Instantaneous Frequency, 

Instantaneous Bandwidth, Amplitude Modulation Depth, Box Dimension and Information 

Dimension. Instantaneous Bandwidth and Instantaneous Frequency features are extracted 

via Autoregressive Spectrum Modeling. Amplitude Modulation Depth is used to express the 

depth of amplitude change on the signal. The other features, Box Dimension and Information 

Dimension, are extracted using Fractal Theory in order to classify the modulations on signals 

depending on their shapes. A modulation database is used in association with Fractal 

Theory to decide on the modulation type of the analyzed signal, by means of a distance 

metric among fractal dimensions. Utilizing these features in a hierarchical flow, the new 

modulation recognition method is achieved. 

 

The proposed method has been tested for various intrapulse modulation types. It has been 

observed that the method has acceptably good performance even for low SNR cases and for 

signals with small PW. 

 

 

Keywords: Automatic Modulation Recognition, Feature Extraction, Fractal Theory, 

Autoregressive Model, Intrapulse modulation 
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ÖZ 
 
 
 

DARBE İÇİ MODÜLASYONLARIN 

ÖZNİTELİKLERE BAĞLI OLARAK TANIMLANMASI 

 

 

Çevik, Gözde 

 

Master, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi          : Doç. Dr. Gözde Bozdağı Akar 

 

Eylül 2006, 143 sayfa 

 

 

Bu tez çalışmasında darbe içi modülasyonların otomatik olarak tanımlanması için yeni bir 

metot önerilmiştir. Bu metot, modülasyon tanımlama problemini özniteliklere bağlı bir 

yaklaşımla ele almaktadır.  

  

Modülasyon tipinin tanımlanması için kullanılan öznitelikler Anlık Frekans, Anlık Bant 

Genişliği, Genlik Üzerindeki Modülasyon Yüzdesi ve Kutu Boyutu ile Bilgi Boyutudur. Anlık 

Frekans ve Anlık Bant Genişliği bilgileri Otoregrasyon Spektrum Modeli kullanılarak elde 

edilmiştir. Genlik Modülasyon Yüzdesi parametresi ile sinyalin genliğindeki değişimin derinliği 

ifade edilmektedir. Diğer öznitelikler olan Kutu Boyutu ve Bilgi Boyutu bilgileri Fraktal Teori 

yaklaşımı ile çıkarılmış ve bu bilgiler modülasyonların sinyal şekillerine göre ayrıştırılmasında 

kullanılmıştır. Fraktal ölçülerle şekli ifade edilen sinyalin en çok benzediği modülasyon tipini 

bulabilmek amacıyla, farklı modülasyon tiplerine ait ölçülerin bulunduğu bir veritabanı 

kullanılmıştır. Çıkarılan özniteliklerin hiyerarşik bir akışta kullanılması sonucunda, yeni bir 

modülasyon tanımlama metodu elde edilmiştir. 

  

Önerilen metot farklı modülasyon tiplerindeki çok sayıda sinyal ile test edilmiştir. Bu testler 

sonucunda, önerilen metodun yüksek gürültülü ortamlarda ve küçük darbe genişlikli 

sinyallerde bile kabul edilebilir düzeyde iyi sonuçlar verdiği gözlenmiştir. 

 

 

Anahtar Kelimeler: Otomatik Modülasyon Tanımlama, Öznitelik Çıkarımı, Fraktal Teori, 

Otoregrasyon Modeli, Darbe İçi Modülasyon 
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CHAPTER 1 

 
 

1. INTRODUCTION 
 
 
 

1.1 BACKGROUND 

RADAR is mainly the abbreviated form of the words “Radio Detection and Ranging”. Radars 

are systems which have the ability to sense a remote object by transmitting a particular type 

of electromagnetic wave and examining the nature of the signal reflected back from the 

object. 

 

Every radar has some descriptive characteristics such as modulation type, scan type, pulse 

repetition interval (PRI) pattern and polarization.  

 

Scan type describes how the radar beam sent from the antenna scans the environment, and 

how it tracks a certain target. Circular scan, sector scan, raster scan and conical scan can be 

listed as main types of scan for a radar. PRI is the time duration that passes between the 

transmissions of two consecutive pulses of a radar. PRI determines the maximum range at 

which the radar can make unambiguous range measurements. Constant, Staggered, Dwell-

and-Switch and Jittered PRIs are among the types of PRI patterns. Polarization describes 

how the radar antenna is polarized. Vertical, Horizontal and Circular are listed as main 

polarization types. 

 

Being mentioned above, the modulation type employed by a transmitter can be very helpful 

in establishing a radar's use and purpose. Depending on the complexity of the radar system, 

various kinds of modulations can be applied to the pulse train [1]. There are two basic types 

of modulation—interpulse and intrapulse.  

 
Interpulse modulations refer to variations seen on the PRI, Frequency, Amplitude or Angle of 

Arrival values between pulses. In other words, interpulse modulations separate the radar 

pulses from a fixed PRI, constant pulse radar. Interpulse modulation helps the radar reduce 

range ambiguities. This is due to the fact that echo of each pulse must be received by the 

radar before a new pulse is transmitted. Hence, modifying the PRI of the radar, one can 

improve the maximum range that a specific target can be detected. Another point is that, 

Radio Frequency (RF) Jammers usually save the pulse received from a radar and then 

sends it back to that radar at an unexpected time to make the radar misunderstand the 
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location of the target. For this reason, if interpulse modulation is applied on the radar signal, 

this will help the radar to distinguish between a real echo-signal and a synthetic one, 

improving the anti-jamming characteristics of the radar. 

 

The second type of modulation applied on radar signals is the intrapulse modulation, or 

Intentional Modulation on Pulse (IMOP).  IMOP radars, also named as Pulse Compression 

Radars, apply intentional changes in the amplitude, frequency or phase of the generated 

pulse. In other words, instead of the pulse being a burst of RF energy at a given carrier 

frequency, the pulse is a form of RF energy at a carrier frequency that varies in phase 

(PMOP), frequency (FMOP), or amplitude (AMOP). Intrapulse modulation techniques make it 

possible to simultaneously maximize the target range, the range resolution, and the velocity 

resolution of the radar [1]. The concept of intrapulse modulations and the effects of 

intrapulse modulations on radar performance are described in the next chapter in detail.   

 

As described above, radars change their pulse characteristics and transmission styles in 

different ways for several benefits. On the other hand Electronic Warfare (EW) Systems aim 

to extract the descriptive characteristics of a radar from the RF signal and use them to 

determine other aspects of that radar, such as mission and capability.  

 

In the past, EW systems such as Electronic Intelligence (ELINT) systems have relied on the 

operator interpretation (manual modulation recognition) of measured parameters to provide 

classification of different modulations [2]. This means that signals received by the ELINT 

system were analyzed by the operator manually and also radar tone was listened to by the 

operator, then several decisions about the source radar were made due to what the analyst 

sees and hears. 

 

Later on, modulation recognizers began to develop. One of the oldest versions of modulation 

recognizers uses a bank of demodulators, each designed for only one type of modulation. 

However the number of modulation types that can be recognized is limited by the number of 

demodulators used.  

 

Afterwards, to make modulation recognition independent of operator skills, automatic 

modulation recognition algorithms came to the scene. These algorithms firstly differ in the 

type of modulation they can classify: Analog or Digital Modulation.  

 

For analog modulation classification, readers are referred to [2].  
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On the other hand, in digital modulation recognition part lies two main branches: 

“Recognition based on the Predetection Signal itself” and “Recognition based on Features 

extracted from the Predetection Signal”.  

 

In the first one, the aim is to group the signals of similar modulation type together from a 

bunch of RF signals according to their own properties and parameters. An additional 

decision block must follow this “classification” in order to recognize the modulation type of 

each class. “Maximum Likelihood Approach” [3], “Fixed-Sample-Size Classifier” [4] and the 

“Fixed- Error- Rate Classifier” [4] can be listed in this type.  

 

In the Maximum Likelihood approach, average log-likelihood function of the signal is derived 

and some rules are developed from this function. However, as mentioned in the work of 

Boiteau and Le Martret, this development is only valid for baseband pulse of duration equal 

to the symbol period [3].   

 

Fixed-Sample-Size Classifier is also known as the Likelihood Ratio Test. This classifier uses 

a fixed amount of data to in order to make classification, but correct ratio is varying 

depending on the data size. On the other hand, the Fixed- Error- Rate Classifier, also known 

as the Sequential Probability Ratio Test uses a variable amount of data just enough to 

achieve a certain correct rate. Both classifiers claim that they classify the modulation scheme 

of a signal waveform modeled by a finite state Markov Chain [4]. 

 

In the second branch, the method is to extract some features from the RF signal which will 

somehow represent the signal, and use them for recognition of the modulation type. There 

are three main steps in feature based modulation recognition. In the first step preprocessing 

takes place, the second is the extraction of significant features and the third is a pattern 

classifier. In the preprocessing part mostly cyclostationarity of signals is used [14]. For the 

feature extraction step many methods as “Constellation Shape Recognition” [5], “Complexity 

Feature Extraction” [6], “Fractal Feature Extraction” [7], “Instantaneous Frequency and 

Bandwidth Extraction” [8] can be listed.  

 

The Constellation Shape Recognition method proposes a technique that treats modulation 

recognition as a kind of “shape recognition”. This is possible by treating constellation shape 

as the key feature for modulation recognition. “Experiments are made for various modulation 

standards including V.29, V.29_fallback, QPSK, 8-PSK and 16QAM. For most cases, the 

method shows consistent performance above 90% for Eb/No ~0dB and above” [5]. This 

method is consistent but is concentrated on recognition of QPSK, 8-PSK and 16QAM only, 

which introduces a nonflexible method. 

 

 3



Complexity Feature Extraction Method says that the Complexity Feature, including Lempel-

Ziv complexity and Correlation Dimension can measure the complexity and irregularity of 

radar signals effectively. These features are chosen because intrapulse modulation 

characteristics of signals are reflected directly on the regularity and the complexity 

dimensions of the waveform [6]. 

 

In the Fractal Feature Extraction Method, Box Dimension and Information Dimension are 

used as classification features to recognize the types of intrapulse modulation of radar 

signals. It is proved that features are not sensitive to noise [7]. 

 

Both Complexity Feature Extraction method and the Fractal Feature Extraction method are 

said to recognize up to 10 different modulation types. Being insensitive to noise, the Fractal 

Dimensions seem the most effective features to be used in digital modulation recognition. 

 

Additionally, the Autoregressive Model approach provides a signal representation that is 

convenient for subsequent analysis. This model uses the instantaneous frequency and 

bandwidth parameters that are obtained from the roots of an autoregressive polynomial. 

These parameters are claimed to provide excellent measures for modulation type in addition 

to being noise robust [8]. Being independent of the SNR value, the instantaneous frequency 

and bandwidth parameters obtained by this method seem to be beneficial for the modulation 

recognition process. 

 

As a result, the “Modulation Recognition of Radar Signals” topic plays a very important role 

in emitter identification which is one of the musts of Electronic Support Measures (ESM), 

Electronic Counter Measures (ECM), and Electronic Counter Counter Measures (ECCM) 

systems. In the sub-branch of “Intra-pulse Digital Modulations”, several approaches have 

been developed, and this will continue being a “hot” topic for a long time because an EW 

system need to know the modulation type in order to demodulate the received signal, 

understand the threat of the emitter, and determine the suitable jamming. 

1.2 OUTLINE OF THESIS 

The thesis consists of six chapters.  

 

In Chapter 2, a general overview on the modulation subject and intrapulse modulations is 

given. 

 

In Chapter 3, previous works among the “Modulation Recognition” subject that are 

encountered through the literature-search phase are summarized. 
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In Chapter 4, “Feature Based Modulation Recognition” concept is investigated in depth. First 

of all, methodologies of the extraction of features that are used in this thesis are described 

referring to the published papers. Then, the Modulation Recognition System offered by the 

author is presented and described in detail. 

 

In Chapter 5, computer simulations made for testing the offered system, and the results of 

these performance tests are given. 

 

And for the last, Chapter 6 contains some concluding remarks. 
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CHAPTER 2 
 
 

2. INTRAPULSE MODULATIONS 
 
 
 

2.1. PURPOSE OF RADAR SYSTEMS FOR APPLYING 
MODULATIONS ON PULSE 

Radars are systems that find the location and many other properties of an object that reflects 

the electromagnetic wave sent by the radar. Radars process these echo signals, and extract 

various information about the target. Distance, size and velocity of the target may be listed 

among this information.  

 

Distance between the radar and the target is the time duration between the radar pulse was 

sent and the echo signal came back to the radar. In the case that an echo pulse is received 

back by the radar T seconds after it was sent, the distance to the target (R) is calculated as; 

 

2
.cTR=  

(2.1) 

where c is the speed of light. 

 

For instance, the range (R) corresponding to 1msec time difference is 150 kilometers. 

 

PRI of a radar is determined using this formula. This is due to the fact that; between two 

consecutive emissions, the radar must wait long enough for the echo of the first pulse to 

reach the radar. If the reflected wave reaches the radar after the second pulse is sent, 

distance of the target cannot be measured certainly, because the radar can never be sure if 

the reflected signal corresponds to the first pulse or the second pulse. For this reason, for a 

desired maximum range value (Rmax); the PRI of the radar (PRIreq), must be chosen as; 

 

 
(2.2)

c
RPRIreq max2

=

 
Furthermore, if there are two targets close to each other, this introduces another ambiguity. 

For the targets to be perceived as two distinct targets by the radar, the echo pulses 

reflected from these two targets must not overlap when they reach the radar. For this reason, 

 6



for a radar pulse with a predefined Pulse Width (PW) value (τ), minimum distance between 

two targets that can be correctly distinguished can be; 

2
min τcd =∆  

(2.3) 

 

For instance, if the PW of the radar is 1µsec, this radar can distinguish between two targets 

as long as they are far from each other more than 150 meters. 

 

As it is seen from the last example, PW of a radar must become shorter in order to increase 

the range resolution. However, peak power required for correct transmission must be 

increased as the width of the radar pulse is decreased. This “high peak power” requirement 

hardens the process of transmitter and receiver design. 

 

Fortunately, the parameter that determines the range resolution is actually the PW that is 

used in the receiver of the radar, not the width of the pulse transmitted by the radar. 

Depending on this fact, transmitter applies intentional modulations on the pulse with large 

PW, and at the receiver end, this pulse is processed with the corresponding modulation 

technique. Hence, the pulse observed by the receiver has smaller PW. This technique is 

known as “Pulse Compression”, and it is applied at the receiver part of the radar. 

 

However, radars also aim to distinguish between moving targets. This requirement 

introduces the subject of “Frequency resolution”, since velocities of the targets are found with 

the Doppler Frequency effect.  

 

The phenomena of improving both range resolution and frequency resolution is known as the 

“Ambiguity Problem”, and radar parameters are chosen depending on the requirements on 

the ambiguity diagram. 

 

The ambiguity diagram is actually a three dimensional diagram that shows the amplitude 

value corresponding to a certain Doppler shift and at a certain time shift. 

 

Ideally, the ambiguity diagram must be an impulse. In the ideal case, however close the 

targets to each other, and whatever their velocities are, they will have their peaks at distinct 

“points” on the diagram, thus they will be distinguishable.  

 

However, in real life applications, the ambiguity diagram has some width along the time and 

frequency axes. 

 

In frequency axis, the first zero-crossing of the diagram occurs at; 
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PW
f crosszero

1
_ ±=  

(2.4) 

 

Referring to equations (2.3) and (2.4) it is seen that, frequency resolution is improved with 

increasing PW, in spite of the fact that range resolution is improved with decreasing PW.  

To overcome this problem, i.e. to make the ambiguity diagram approach the ideal case, 

“Pulse Compression Techniques” have been developed. 

 

Pulse Compression refers to intentional modulations applied to the frequency or phase 

values inside the pulse. By the help of this technique, the “Band Width” of the pulse is 

increased without decreasing the Pulse Width of the signal. Thus, required resolution is 

achieved both at range and frequency.  

 

Modulations on frequency or phase of the pulse will increase the Bandwidth (BW) of the 

signal, and the first zero-crossing of the ambiguity diagram in frequency axis will occur at 

BW
f crosszero

1
_ ±  =

(2.5) 

 

It is seen from equation (2.5) that, although the PW of the radar is not affected, the ambiguity 

diagram in the frequency domain becomes narrower.  

 

Hence, pulse compression radars can achieve good range resolution and good velocity 

resolution at the same time, applying intrapulse modulations on their pulses. 

 

In the next section, detailed descriptions about intrapulse modulation types are given. 

 

2.2. INTRAPULSE MODULATIONS 

Intrapulse modulations are classified according to the part of the signal where modulation is 

applied. Mainly, they can be grouped as; 

- AMOP (Amplitude Modulation On Pulse) 

- FMOP (Frequency Modulation On Pulse) 

- PMOP (Phase Modulation On Pulse) 

 

2.2.1. AMPLITUDE MODULATION ON PULSE 

As the name implies, in this type of signals, the Amplitude of the signal is intentionally 

modulated while the Frequency or Phase of the signal is kept constant.  
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These modulation shapes can be mainly divided into two groups as; Linear AMOP and 

Nonlinear AMOP. Modulation shapes such as Parabolic, Sinusoidal, Ramp, Triangular, and 

Square may be counted as Nonlinear AMOP types.  

 

Amplitude, Frequency and Phase components corresponding to AMOP shapes which are 

considered in this thesis are included in the Appendix A, in AMPLITUDE MODULATION 

SHAPES section.   

 

2.2.2. FREQUENCY MODULATION ON PULSE 

In this class of signals, Amplitude is kept constant, and intentional modulation is applied on 

the Frequency component of the radar signal.  

 

FMOP modulation types are mainly divided into two groups as; Linear FMOP and Nonlinear 

FMOP. Linear FMOP signals are also named as “Chirp” signals. Modulation shapes such as 

Parabolic, Sinusoidal, Ramp, Triangular, Square and FSK may be counted as Nonlinear 

FMOP types.  

 

As mentioned in the previous section, Frequency Modulation is applied to the signals so that 

Pulse Compression is achieved and the Ambiguity diagram is approximated to the ideal 

case. 

 

Amplitude, Frequency and Phase components corresponding to FMOP shapes which are 

considered in this thesis are included in the Appendix A, in FREQUENCY MODULATION 

SHAPES section.   

 

2.2.3. PHASE MODULATION ON PULSE 

Phase Modulation on Pulse is another method for Pulse Compression. In this modulation 

type, Phase of the signal is modulated depending on a binary or M-ary code, while the 

Amplitude of the signal is kept constant.  

 

PMOP modulations are named depending on the minimum phase shift applied on the 

modulated phase. For instance, in BPSK codes minimum phase shift is π radians, whereas 

in QPSK codes minimum phase shift is π/2 radians. Compression rate for the signal 

depends on the number of sub-pulses (number of bits in the code) in the phase.  
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For BPSK modulations, Barker Codes are the mostly used codes in literature. The most 

favorable property of Barker codes is that, after the pulse is passed through the matched 

filter at the receiver end, the pulse has its maximum peak at the main lobe and all its side 

lobes have the same energy. This fact is illustrated in the figure below.  

 

 

 

Figure 2.1. Comparison of the BPSK signal and its matched filter output [11] 

 

 

In Figure 2.1 the signal is binary phase coded with 5-bit Barker code. It is seen that after the 

signal is demodulated at the receiver end, the frequency axis cut of the ambiguity diagram is 

approximated to the ideal case. 

 

A lookup table is given in Appendix C, with number of bits in the Barker code and their 

corresponding binary codes. 

 

On the other hand, Frank code is the mostly used coding technique for M-ary Phase Shift 

Keying. In this technique, if the number of phase steps is set as N, the pulse is first divided 

into N groups, and then each group is again divided into N sub-groups. Minimum phase shift 

is 2π/N radians. Namely, for a QPSK signal, N is chosen as 4. Frank coding technique is 

described with the following matrix. 
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(2.6) 

corresponding Frank code types for N = 2, 4, 6 and 8. 

 
A lookup table is given in Appendix C, with phase difference matrices and their 
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There are many other coding techniques in literature such as Combined Barker (as a type of 

PSK coding); Pseudorandom Codes, P1-P2-P3 and P4 codes (as types of Polyphase 

mplitude, Frequency and Phase components corresponding to PMOP shapes which are 

used in this thesis can be seen in Appendix A, in the PHASE MODULATION SHAPES 

section 

 

B

codes) to generate PMOP signals, but only Barker and Frank codes are considered in the 

scope of this thesis.  

 

A
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CHAPTER 3 
 
 

3. AUTOMATIC RECOGNITION OF INTRAPULSE 
MODULATIONS 

 
 
 
Automatic modulation recognition algorithms mainly differ in the type of modulation they can 

classify: Analog or Digital Modulation.  

 

For analog modulation classification, readers are referred to [2]. In [2] firstly the center 

frequency of the incoming signal is estimated, and then several feature extraction methods 

were used for signal classification. The key features are: 

• Envelope standard deviation, σa(n)  

• Similarity measure of the coherent demodulation result and envelope, µ   

• Difference between the standard deviation of the instantaneous frequency of 

the signal and that of the squared signal, D, and   

• Carrier information, C.  

 

After extraction, these key features were given to the decision block as inputs. In the 

decision block, employing suitable weighting coefficients, the Euclidean distance of these 

key features with respect to all modulation types were calculated. Then the modulation type 

with the smallest Euclidean distance was chosen as the correct modulation type. This 

recognizer was used to discriminate between AM, FM, DSB, VSB-C, and CW modulations. 

The algorithm was tested with 1500 signal segments of each 279msec time length, at SNR 

levels 34.8dB, 14.8dB and 12.8dB. It is claimed that the algorithm performs over 80% 

success for AM, DSB and VSB-C signals even at low SNR values. However, the algorithm 

was not so powerful for AM-CW discrimination and FM-DSB discrimination at low SNRs. In 

order to increase the performance of AM-CW modulation discrimination at low SNR values 

an additional block was introduced to the system, which increased the success rate to 99% 

at low SNR values. 

 

Even though we gave a brief summary of recognition of analog modulations, we mainly deal 

with digital modulation recognition techniques in this thesis. We also insert some additional 

blocks in order to identify AM and FM analog modulations. 
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In recognition of digital modulations, there are two main approaches: “Recognition based on 

the Predetection Signal itself” and “Recognition based on Features extracted from the 

Predetection Signal”.  

 

In the first approach, the aim is to group the signals of similar modulation type together from 

a bunch of RF signals according to their own properties and parameters. An additional 

decision block must be used after this “classification” in order to recognize the modulation 

type of each class. “Maximum Likelihood Approach” [3], “Fixed-Sample-Size Classifier” [4] 

and the “Fixed- Error- Rate Classifier” [4] can be listed in this type.  

 

In the work of Boiteau and Le Martret [3], a General Maximum Likelihood Classifier (GMLC) 

was introduced, based on an approximation of the likelihood function. In the classical 

Maximum Likelihood (ML) approach, quasi-optimal rules were derived from the development 

of the average log-likelihood function of the signal. However, that approach was only valid for 

baseband pulse of duration equal to the symbol period. Boiteau and Le Martret, with the 

introduction of GMLC, removed the restriction of signal duration, thus GMLC could be 

applied to any baseband signal. GMLC was tested for PSK and QAM signals, and the 

algorithm was also applied to M PSK / MıPSK classification. It is claimed that, test results 

had shown that the GMLC approach gives equivalent result to ML tests, so GMLC provides a 

general theoretical framework for the modulation recognition approach. 

 
Lin and Kuo, worked on the sequential modulation classification of dependent samples, 

using a finite state Markov Chain model [4]. They compared the Fixed-Sample-Size 

Classifier and the Fixed- Error- Rate Classifier in their work. The initial one is also known as 

the Likelihood Ratio Test (LRT), and uses a given fixed amount of data to decide for the 

modulation type. Its performance can be measured by the average decision error probability. 

The disadvantages of LRT are that the number of samples required to make decision is 

related to the computational complexity and decision time delay, and that although LRT tries 

to minimize the average decision error probability, it has no control on the individual error 

rate.  

 

The second one is also known as the Sequential Probability Ratio Test (SPRT), and uses a 

variable amount of data just enough to achieve a certain correct ratio. This approach has 

many advantages over the LRT test, such as reduced computational complexity, less 

decision delay, and controllable individual classification error rate. 

 

One of the tests was handled for classification of 8-PSK and 16-PSK, for SNR ranging from 

8dB to 17dB. The claim is that, SPRT needs approximately the half of the samples to 

achieve the same correct decision level with respect to LRT. 
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Another test was handled for the performance comparison of SPRT and LRT, using 8-PSK 

TCM shapes. Yu-Chuan Lin and C.-C. Jay Kuo claimed that for a low SNR value of 4dB, 

LRT gives 90% performance for 4-state TCM, but only 29% performance for the 2-state 

TCM. Thus, although the average correct rate is at 60%, individual error rates differ in a wide 

range. And the average optimum correct rate is achieved at 100 – symbol – periods.  On the 

other hand, SPRT gave 99% individual correct rate with the same number of symbols. 

 

Finally, Lin and Kuo mentioned that number of symbols required for correct decision directly 

affects the delay in communication links and the computational complexity. For this reason, 

requiring less number of samples for correct decision, SPRT is more efficient and more 

appropriate for practical use than LRT. 
 
In the second approach of digital modulation classification, the method is to extract some 

features from the RF signal, and use them for recognition of the modulation type. There are 

three main steps in feature based modulation recognition. In the first step preprocessing 

takes place, the second is the extraction of significant features and the third is a pattern 

classifier.  

 

In the preprocessing part cyclostationarity property of signals is used. In communications 

many signals have an underlying periodicity due to factors such as sampling, scanning, 

modulating, multiplexing and coding. This periodicity is not always obvious. In some cases it 

is hidden and then manipulation on the incoming data is necessary to bring it out. 

Cyclostationarity calculations bring out this periodicity. For instance, a cyclostationary signal 

of second order, is a stationary signal that exhibits second order periodicity [14].  

 

For the  feature extraction step many methods as “Constellation Shape Recognition” [5], 

“Complexity Feature Extraction” [6], “Fractal Feature Extraction” [7], “Instantaneous 

Frequency and Bandwidth Extraction” [8] can be listed. 

 

Mobasseri, proposed the Constellation Shape Recognition method [5]. This method 

proposes a technique that casts modulation recognition into shape recognition. In this 

approach Constellation Shape is chosen as the key modulation feature. From a shape 

perspective, a constellation is characterized by a particular and regular pattern of points on a 

p-dimensional grid. It is the recognition and identification of this pattern that reveals the 

underlying modulation. For this purpose, the proposed method firstly concentrates on 

recovery of the constellation shape. The constellation of the received signal is considered as 

a multidimensional random process.  
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The constellation recovery method used in the algorithm is fuzzy c-means. This is a typical 

clustering algorithm, which takes the symbols taken from the signal as inputs, and in the end 

outputs some key points revealing information about the modulation type of the signal, the 

most important being the number and position of clusters. This knowledge is then used to 

narrow down the search space of candidate modulations considerably. For each candidate 

modulation, a constellation space is formed up with the samples corresponding to that 

cluster. Constellation space can be thought of as a binary space; zeros everywhere except 

on modulation state vectors.  

 

For the last step in modulation classification, development of an optimal decision rule was 

employed. An optimum Bayes classifier that selects the most likely modulation class based 

on a single observation was selected for the classification engine. For this classification 

phase, 500 instances of the reconstructed constellations for each modulation type, each 

corrupted with Gaussian noise, were generated and cataloged. For the recognition step, 

1000 samples of the unknown signal were processed through the constellation 

reconstruction algorithm and a single constellation was recovered. 

 

Experiments were made for various modulation standards including QPSK, 8-PSK and 

16QAM. For most cases, the method has performance above 90%. This method is 

consistent but is concentrated on recognition of QPSK, 8-PSK and 16QAM, which introduces 

a nonflexible method. 

 

Zhang et. al. proposed two new methods for the modulation recognition problem: Complexity 

Feature Extraction Method [6] and Fractal Feature Extraction Method [7].  
 

Complexity Feature Extraction Method [6] utilizes the Complexity Feature (CF) as the key 

feature, which is composed of two other features as Lempel-Ziv complexity (LZC) and 

Correlation Dimension (CD).  Intra-pulse modulations of radar signals are reflected directly 

on the signal waveform, as the regularity and the complexity of the waveform.   

 

It is mentioned that the LZC can reflect the changes of phase, frequency and amplitude of a 

signal, thus it is used to measure quantitatively the complexity and irregularity of radar 

emitter signals. In LZC measure, only two simple operations (copy and add) are used to 

describe a signal sequence and the number of required add operations is the LZC measure 

value. 

 

Fractal Theory is claimed to depict the complexity and irregularity of signals. CD is one of the 

fractal dimensions, and is chosen as a classifying feature in this work for its easiness to be 

obtained from signal samples directly. 
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For the simulations, ten typical modulation types as CW, BPSK, QPSK, MPSK, LFM, NLFM, 

FD(Frequency Diversity), FSK, IPFE(intra-pulse frequency encoding) and CSF(Chirp 

stepped-frequency) were chosen. Numerous signals were generated for different SNR 

values. 

 

Mean and variance values of LZC and CD features were calculated for each modulation 

type. It is claimed that the measured values for different modulation types have obvious 

separations and there is nearly no overlapping. However, variations in the features with 

respect to changing SNR can not be neglected. 

 

As mentioned above, the second method which was introduced by Zhang et. al. was the 

Fractal Feature Extraction Method [7]. In this method, Box Dimension and Information 

Dimension are used as classification features to recognize the types of intra-pulse 

modulation of radar signals. It is claimed that Fractal dimensions can depict the complexity 

and irregularity of signals quantitatively. Box dimension can reflect the geometric distribution 

of a fractal set, and information dimension can reflect the distribution density of a fractal set 

in space. Also it was proved that these features were insensitive to noise.  

 

Since radar signals are time sequences, it is said that these sequences can be represented 

effectively by fractal theory, and these modulation shapes can be extracted by the help of 

fractal dimensions. 

 

This method was tested with the same set of data that were used to test the Complexity 

Feature Extraction Method.  

 

Both Complexity Feature Extraction method and the Fractal Feature Extraction method are 

said to recognize up to 10 different modulation types. Being insensitive to noise, the Fractal 

Dimensions seem to be suitable features to use in digital modulation recognition. 

 

Additionally, Assaleh et. al. had proposed another method in 1992 [8]. This method is the 

Autoregressive Model approach, and it provides a signal representation that is convenient for 

subsequent analysis. In this model the instantaneous frequency and the instantaneous 

bandwidth parameters are used as the key features and these features are obtained by 

using autoregressive spectrum analysis. It is said that autoregressive spectrum estimation is 

an alternative to Fourier analysis for obtaining the frequency spectrum of a signal. The angle 

and the magnitude terms of the poles of the autoregressive polynomial correspond to the 

instantaneous frequency and instantaneous bandwidth for the signal respectively. It is 
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claimed that these features provide excellent measures for modulation type in addition to 

being noise robust.  

 

The algorithm was tested for CW, BPSK, QPSK, BFSK and QFSK signals. It is shown that 

the algorithm correctly classifies modulation type at least 99% correct for an input SNR of 

15dB. 

 

In the light of knowledge above, the Fractal Feature Extraction Method [7] and the 

Autoregressive Model [8] approach were chosen to form up a complete system for the 

intrapulse modulation recognition problem, since both of them claim to be noise robust. The 

methods and formulations are described in detail in the following chapter. 
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CHAPTER 4 
 
 

4. FEATURE BASED MODULATION RECOGNITION 
 
 
 

4.1 METHODOLOGY FOR FEATURE EXTRACTION 

Mainly five parameters are selected as key features for modulation recognition in this thesis. 

These features are: 

 

• Instantaneous Frequency 

• Instantaneous Bandwidth 

• Box Dimension 

• Information Dimension 

• Percent AM Depth 

 

The process for extracting these features is described in detail in the following sections. 

 

4.1.1. INSTANTANEOUS FREQUENCY AND BANDWIDTH 

The method proposed in [8], is used in order to extract the instantaneous frequency and 

instantaneous bandwidth features of the signal. 

 

In that method a signal representation known as the modulation model is used in order to 

extract the frequency and bandwidth properties of the signal via autoregressive spectrum 

modeling. This model represents a signal that has numerous modulations as the sum of 

signals each having individual amplitude modulations or phase modulations. It must be 

noticed that frequency modulation can also be depicted as phase modulation because 

frequency deviation of a signal from the center frequency is the derivative of the phase of 

that signal. Referring to this model, a signal is represented as follows: 

 

∑ +=
i

iii tttAts ))(cos()()( φω  (4.1) 

 

where i denotes the signal interval, Ai(t) is the signal envelope, ωi is the center frequency of 

the i th interval, φi(t) is the instantaneous phase. Ai(t) reflects the amplitude modulation 

measure and φi(t) reflects the phase modulation measure of the signal. 
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AM signals are not considered in [8].  Also, it is assumed that only one modulation type is 

present in the received signal. Within these categories, the modulation model representation 

of a signal will be as follows: 

  

))(cos()( θφω ++= kkAks c  (4.2) 

 

where A is the constant amplitude of the signal, ωc is the center frequency, θ is the phase 

difference at the receiver, and Ф(k) is: 
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(4.3) 

 

Here, ωd is the frequency deviation from the center frequency for the FSK modulation type. 

 

In this method, instantaneous frequency is computed using autoregressive spectrum 

analysis [8]. It is claimed that autoregressive spectrum estimation is an alternative to Fourier 

analysis for obtaining the frequency spectrum of a signal. Given an input signal; 

)()()( knkskx +=  (4.4) 

 

autoregressive spectrum modeling can be accomplished by solving the following system of 

equations; 
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where, 

∑ +=
M

=
xx knxnxkR )().()(ˆ  (4.6) 

n 0
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Here M is the number of samples existing in the analysis frame, and a is a vector that 

represents the coefficients for the polynomial that best fits the frequency spectrum. Phase of 

a pole of this polynomial corresponds to the frequency of that signal, and the magnitude of a 

ole corresponds to the bandwidth of that signal. These relations are given with the following 

formula; 

 

p
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⎤
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== −

)Re(
)Im(

tan
22

1

i

is
i

s
i Z

ZFF
F

π
θ

π
 (4.7) 

nd a
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ii

s
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 (4.8) 

 

where F is the instantaneoui  s frequency and BWi  is the instantaneous bandwidth of the 

sponding samples in the analysis frame, is the sampling rate, θ  is the phase angle 

of these segments is called an “instant” of the signal. 

Fi and BWi values are calculated for all these signal segments. The concatenation of 

these in bandwidth 

4.1.2. BOX DIMENSION AND INFORMATION DIMENSION 

ox dimension 

 

 c shape that can be subdivided in parts, 

- are most 

or irregularity 

over multiple scales. (Modulation creates irregularities on the signal waveform.) 

corre Fs  i

between the real and imaginary components of Zi, and Zi is the i th complex pole of the 

autoregressive polynomial. 

 

In the beginning of these calculations, the whole signal is partitioned into overlapping 

analysis frames of a fixed length. Each 

Then, 

stantaneous frequency and bandwidth values reflects the frequency and 

properties of the corresponding pulse.  

 

The metho

and information dimension features of the signal.  

d proposed in [7], employs Fractal Theory in order to extract the b

First of all, a brief information about Fractal Theory should be given [9]: 

Fractals are of rough or fragmented geometri-

each of which is (at least approximately) a reduced copy of the whole. 

They are crinkly objects that defy conventional measures, such as length and 

often characterized by their fractal dimension.  

- Fractal Dimension measures the degree of fractal boundary fragmentation 

- Fractal Dimensions are relatively insensible to image scaling.  

- Very often, fractal dimension is a quite unique classifier for similar shapes.  
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Thus, if we consider a signal, as a composition of infinitely small fractals, we can represent 

the “length” of this signal and the irregularities in the signal in terms of its fractal dimensions. 

he last two bullets confirm that fractal dimensions correctly fit the aim of modulation 

tion shapes. 

age (signal waveform) covers in 

pace. The issue of box dimension-calculation is given below [10]; 

• Cover the image (signal waveform) with square boxes of a side length r. 

• Measure the number of nonempty boxes for different r; 

 

T

recognition, as finding the similarities of the current signal’s modulation shape with 

previously known modula

 

In [7], Box Dimension and Information Dimension are chosen as the key features for 

modulation recognition.  

 

Box Dimension gives a measure about the area that the im

s

 

Figure 4.1. Representation of Box Dimension for different r values [10] 

 
 
• n(r) is the number of boxes that cover the image (signal waveform), chang th 

respect to r. 

ing wi

• Then box dimension is;  

)log(
)(

log

lim
0 r

rn
D

r
B

⎟⎟
⎠

⎜⎜
⎝=

→

 
(4.9) 

 

1 ⎞⎛
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The

the oposed; 

ete time 

sequence. By Fourier transform the signal is transformed to a discrete signal in 

frequency domain. Then the energy of the signal is normalized so that the effect of the 

distance of radar emitter and the signal is eliminated.  

- After the signal preprocessing, the sequence g(i) is obtained. Then, for a certain box 

 

}

 description above is given for images, and this calculation method must be adapted to 

signal waveform case. In [7], the following method is pr

- First of all the signal is passed through a preprocess. In this phase the signal is 

transformed to a sequence in frequency domain. The received signal is a discr

size, the number of boxes that cover the signal waveform N(q) is calculated as; 

{ } {
2

1

1 1)(
q

NqN i i ⎦⎣+= = =   

where N is the length of the sequence, and q is the size of the boxes chosen to cover the 

signal.  

 

Investigating the formula, we see that if the signal had constant value through all 

samples, only N boxes would be sufficient to cover the s

1

)1(),(min)1(),(max qigigqigig
N N

⎥
⎤

⎢
⎡

+−+∑ ∑
− −

(4.10) 

ignal in space. Then, 

onsidering the discontinuities found in the signal shape, the second part of the addition 

rm is obtained. 

Fs is the sampling rate. 

This is because the signal is composed of samples each 1/Fs seconds apart. A larger 

box size selection would result in data loss and a smaller box size selection would 

require interpolation between two real samples. 

 

c

is generated. This part calculates the absolute difference between two consecutive 

samples of the signal and calculates the number of boxes of size q that will cover this 

difference. Making this calculation for all consecutive samples of the signal, the total 

number of boxes that will cover the signal wavefo

 

After certain trials the ideal box size is found as q = 1/Fs, where 

- After the calculation of N(q), the box dimension is calculated as; 

 

qb ln
 

qN )( (4.11) 

 

The second key feature is the Information Dimension. The issue of box dimension 

calculation is given below [10]; 

• Cover the image by squares of size r. 

• Count the number of points in each square i; ni(r). 

D ln
−=
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Figure 4.2. Interpretation of Information Dimension [10] 

 Divide by the sum of all points to get a probability measure; pi(r). 
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• Compute Shannon’s Entropy; E(r). 

 

i

 

)(log)()( 2 rprprE i
i
∑−=  (4.13) 

 

 

• Then information dimension is calcul ed as; 
 

at

rr
i

20 log
rED )(lim −

=  
(4.14) 

 

In [7 tion Dimension calculation is handled as follows; 

ed in Box 

Dimension calculation.  

- Then the sequence in frequency domain is reconstructed in the following way; 

 

→

 

], the method of Informa

- First of all the signal is passed through the same preprocess that was describ

1,,2,1),()1()( −=−+= Niififis ss K  (4.15) 
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Authors claim that this reconstruction method can eliminate a part of noise. Since the 

noise in our system is AWGN, it is spread overall the frequency spectrum, thus by 

differentiating the signal we can reduce the effect of this noise by a certain amount.  

- Finally, Information dimension is calculated by using the following formula e 

y domain signal. 

 

(4.16) 

where, 

s in th

frequenc

∑
−

=

=
1

1
)/1log(.

N

i
iii PPD  

∑
−

=

=
1

1

N

i
isL  (4.17) 

L
s

P i
i =  (4.18) 

 

ere si is the reconstructed signal, N is the length of the signal, and Pi is the probability 

ox 

Dimension calculations. This choice eliminates the usage of the limit function present in 

ult it is seen that Box Dimension of a fractal set can reflect the geometric distribution, 

nd Information Dimension can reflect the distribution density of the fractal set in space.  

nd are not easily affected by 

noise.  

 

In the figure below, we can see the distribution of fractal dimensions among various 

modulation types. It is seen that Box Dimension and Information dimension give a useful 

measure for distinguishing between different modulation types. 

H

that all the irregularities present in the signal can be represented by the corresponding 

individual irregularity, si. Here, the box size is chosen as q=1/Fs, same as the B

the definition of Information Dimension. 

 

As a res

a

 

It is claimed by the authors that these features, reflecting the complexity and irregularity of 

the radar signal, depict the modulation property of that signal a
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Figure 4.3. Distribution of Fractal Dimensions for various modulation types. 

 

 

4.1.3. PERCENT AM DEPTH 

Percent AM Depth is the measure of the modulation on the envelope of the signal. It is the 

rate of the maximum irregularity in the shape of the amplitude throughout the pulse, 

calculated in the percent scale. Formula for calculating this feature is given below: 

 

100.
))min()(max(

% ⎥
⎦

⎢
⎣ +

=
amplitudeamplitude

AM  (4.19) 

It is agreed in literature that if this value is greater than 10%, this depicts either some 

intentional amplitude modulation is applied on the signal, or the signal envelope is affected 

by another intentional modulation present in Frequency o

))min((max( ⎤⎡ − amplitudeamplitude

r Phase of the signal, or the signal 

mplitude is affected by some unintentional modulation. 

xiliary blocks, but not  obligatory for the system to achieve 

s Modulation Recognition issue. 

)

a

 

4.2 PROPOSED SYSTEM 

The system proposed in this thesis consists of three main parts: Signal Generator, Receiver, 

and Modulation Recognizer. This structure is represented in Figure 4.3. The other two 

blocks, i.e. Basic Feature Extraction & Database Update and Signal Decomposition are 

blocks presented to the user as au

it
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Figure 4.4. Blocks of the system. 

 

NR value corresponds to the noise measured at the front end of the receiver of 

e system. 

 

is signal is sent to the Receiver block. Structure of 

e Receiver block is given in Figure 4.4. 

 

4.2.1. SIGNAL GENERATION 

In the Signal Generator block, AMOP – FMOP – PMOP or Modulationless Pure Signals are 

produced depending on the operator’s choice, with the parameters entered via the Graphical 

User Interface (GUI). The signal is generated with a symbol rate of 1024 Msamples/second. 

Since the system is implemented in Matlab, we cannot generate “continuous” signals. 

However, with 1024 Msamples/second symbol rate, time resolution is more than 1 nsec, and 

this signal is “assumed to be continuous”. The desired signal is generated at the Center 

Frequency (fc) entered by the user. Also some Additive White Gaussian Noise (AWGN) is 

added to the generated signal at the SNR value entered from the GUI. According to this 

SNR, the required noise power is calculated with respect to the power of the noiseless 

signal. This S

th

4.2.2. SIGNAL RECEPTION 

After the continuous signal is generated, th

th
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Figure 4.5. Receiver block of the system 

 

 
In the Receiver block, continuous signal is first carried to the Intermediate Frequency (IF). IF 

of the system is 160 MHz. In this process, we assume that the center frequency of the 

incoming signal is known. In real systems, the center frequency of the signal can be 

extracted with a precision rate of a few kHz, thus our assumption does not diverge from the 
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real case. After this process, signal is passed through a Bandpass Filter in order to avoid 

aliasing that may occur during downsampling. This filter is a 50th-order linear-phase FIR 

filter. The pass-band of the filter is 128 MHz around the intermediate frequency. Following 

the filter, signal is sampled with the Sampling Rate preferred by the user. Sampling Rate 

choices are 256 MHz and 128 MHz. Two choices were presented to the operator in order to 

observe the effect of different sampling speeds in modulation recognition. 

 

4.2.3. SIGNAL DECOMPOSITION 

After the signal is received and sampled, this signal is decomposed into its envelope, phase 

and frequency components, to be presented to the operator. This Signal Decomposer block 

is given in Figure 4.5 in detail. 

 

 

Figure 4.6. Decomposer block of the system 

 

 
In this block, complex envelope of the signal is calculated. Magnitude of this complex 

envelope corresponds to the Amplitude, and Angle of the complex envelope corresponds to 
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the Phase of the signal. Frequency of the signal is found by differentiating the Phase of the 

signal. 

 

Throughout the algorithms, it is assumed that we know the center frequency of the original 

signal. However, if there were some discrepancy between the original center frequency 

value and the extrac er frequency value, this effect would be seen in the output of the 

Decomposer block as a deviation in the Pulse Frequency from the IF. Taking this probability 

into account, Phase  the pulse is corrected according to the deviation of mean of the 

xtracted Pulse Frequency from IF. For this purpose the following method is used; 

ted cent
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e
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Phase of the Pulse is corrected with the method described above, and the Frequency of the 

pulse is calculated again due to this corrected phase. 

 

At this point, there are two preferences for the user: “Basic Feature Extraction & Database 

Update” or “Modulation Analysis & Recognition”.  

 

4.2.4. BASIC FEATURE EXTRACTION AND DATABASE UPDATE 

User may choose to analyze the signal step by step and save the analysis results in the 

IMOP database.  
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IMOP Database is implemented in Ms Access. Below is given the details of this database. 

 

 

 

Figure 4.7. Structure of the IMOP Database 

 

 
For each signal entering the database, a new row is opened in the Main table with a unique 

ID, which is the primary key for the database. In the Main table; Center Frequency, Sampling 

Frequency, Mean Amplitude, PW and PRI values are stored. Also the AM Percent, Box 

Dimension and Information Dimension values of the entered signals are saved in this table, 

to be used in signal comparison in the Fractal Theory Decision block. Details of AM Percent 

extraction is given in 4.1.3. PERCENT AM DEPTH, and details of Fractal Dimension 

extraction are given in the 4.1.2. BOX DIMENSION AND INFORMATION DIMENSION 

sections of this chapter. Also there are AMOP, FMOP, PMOP, CW flags in this table. User 

elects the modulation type of the signal from the GUI before sending the analyzed signal to 

b-table. 

s

the database. Referring to these flags the corresponding sub-table is filled, i.e. if AMOP flag 

is set to 1, then a row is opened in the AMOP sub-table with the same ID on the Main table, 

and corresponding properties of the signal are filled to this row on the AMOP su
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As mentioned in the preceding paragraph, there are sub-tables related to the Main table with 

the ID parameter. This relationship is 1-1, thus an element in the AMOP table can be related 

to only one element that has the same ID in the Main table.  

 

AM Type, AM Depth, Modulation Frequency and Duty Ratio fields exist in the AMOP sub-

table. AM Type can be “Linear-Increasing”, “Linear-Decreasing”, “Positive Parabolic”, 

egative Parabolic”, ”Sinusoidal”, ”Triangular”, “Ramp” or ”Square”. AM Depth value is valid 

rabolic”, “Negative Parabolic”, ”Sinusoidal”, ”Triangular”, “Ramp”, 

quare” or “BFSK”. FM Depth value is valid for all these types, however “Modulation 

modulation is ”Square”, and “BitNum” field is filled if 

e modulation is BFSK. 

code) fields exist in the PMOP sub-

ble. PM Type can be BPSK or MPSK.  

gh to totally describe the CW signal. 

On the oth ncoming signal 

without  Analyzer and 

4.2.5. MODULATION ANALYSIS AND RECOGNITION 

Details of the Mod

 

“N

for all these types, however “Modulation Frequency” field is filled if the modulation is Periodic 

(”Sinusoidal”, ”Triangular”, “Ramp” or ”Square”), and “Duty Ratio” field is filled if the 

modulation is ”Square”. 

 

FM Type, FM Depth, BitNum (Number of Bits in the modulating code), Frequency and Duty 

Ratio fields exist in the FMOP sub-table. FM Type can be “Linear-Increasing”, “Linear-

Decreasing”, “Positive Pa

”S

Frequency” field is filled if the modulation is Periodic (”Sinusoidal”, ”Triangular”, “Ramp” or 

”Square”), “Duty Ratio” field is filled if the 

th

 

PM Type and BitNum (Number of Bits in the modulating 

ta

 

There is no sub-table for the “No Modulation” or “CW” case, because the parameters in the 

Main table are enou

 

er hand, if the user chooses to find the modulation type of the i

making manual analysis, the signal is sent to the Modulation

Recognizer block. 
 

ulation Recognition block is given in Figure 4.7. 
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Figure 4.8. Modulation Recognizer block of the system 

 

 

4.2.5.1. AUTOREGRESSIVE MODEL DECISION 

Discrete signal entering the Recognizer block is first passed into the Autoregressive Model 

Decision block. Details of this sub-block is given in Figure 4.8. 
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Figure 4.9. Autoregressive Model Decision sub-block of the Recognizer block 

ered at the very beginning points of a 

ulse. After this process, signal is segmented into overlapping parts. Then instantaneous 

n of this chapter. Union of the instantaneous values for each parameter is assumed to 

semble the behavior of that parameter through the pulse. Referring to the union of 

instantaneous frequency values, it is decided whether the signal is single tone or multi tone. 

If the signal is found to be multi tone, it is said that this signal is either BFSK or QFSK [8]. 

 

 

In the Autoregressive Model Decision block, first of all PW of the signal is found and with the 

help of this PW value initial and final points of the pulse is calculated. This process is made 

to avoid the overshoot effect that may be encount

p

frequency and instantaneous bandwidth is calculated for each signal segment. Details of 

these calculations are given in 4.1.1. INSTANTANEOUS FREQUENCY AND BANDWIDTH 

sectio

re
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However, th g other types of FM, so we 

ther techniques. On the 

ther hand, if the signal is found to be single tone, this means that signal is either CW 

 algorithm is continued outside 

this block. Als  i found to be PSK, signal is processed outside this block in 

order to make BPSK or MPSK dec

 

oreg ck, if the signal is found to be CW, this signal is 

e proposed system is also capable of discriminatin

consider this output as “FSK” only, and keep on recognition by o

o

(modulationless pure signal) or PSK. Referring to the union of instantaneous bandwidth 

values, discrimination between CW and PSK is made [8]. However, our system is also 

capable of AM recognition, which is included in the “CW” answer of this block. For this 

reason if the signal is found to be CW in this block, recognition

o, f the signal is 

ision. 

After the Aut ressive Model Decision blo

passed to the AM Percent Decision Block. 

 

4.2.5.2. AM PERCENT DECISION 

Details of the AM Percent Decision block is given in Figure 4.9. 

 

 

Figure 4.10. AM Per  Recognizer block 

 

 

 this block, the mean, minimum and maximum Amplitude values of the entered Pulse is 

calculated. Then, from these values, Amplitude Modulation Percent is calculated. If this value 

cent Decision sub-block of the

In
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is greater than a threshold, it is assumed that the signal has amplitude modulation. 

Otherwise, we say that signal has “No Modulation”. This threshold value is selected as 10%, 

which is accepted as a valid value in literature. 

Decision block is given in Figure 4.10. 

itial and final points of the pulse are determined. This process is made to 

void the overshoot effect that may be encountered at the very beginning points of a pulse. 

After this process, three features of the signal are calculated; 

• Information Dimension 

M Depth% value is calculated as the way described in AM Percent Decision sub-block. 

e calculation of these parameters are given in the 4.1.2. BOX DIMENSION AND 

malized 

uclidean Distances (NEDs) between the entered signal parameters and the signals in the 

 

 

If the output of the AM Percent Decision sub-block is “AM”, then the signal is sent to the 

Fractal Theory Decision sub-block in order to decide whether it is Linear AM or Nonlinear 

AM. 

 

4.2.5.3. FRACTAL THEORY DECISION 

Details of the Fractal Theory 

 

In the Fractal Theory Decision block, first of all PW of the signal is found and with the help of 

this PW value in

a

• AM Depth % 

• Box Dimension 

 

A

 

Box Dimension and Information Dimension are the Fractal Features of the signal. Details of 

th

INFORMATION DIMENSION section of this chapter.  

 

To find the modulation type of the entered signal, a database search is handled. Nor

E

database are calculated, with the following method; 
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here  

e is ‘AM’); 

Vector = [BoxDimension   InformationDimension], 

(if Modulation Type is ‘FM’) 

 

If the calculated NED is less than a threshold value, that modulation type is saved as a 

 type is given as the “Most 

robable Modulation Type”. 

12 − ii VectorVector

1
N

 

w

Vector = [AMDepth%   BoxDimension   InformationDimension], 

(if Modulation Typ

“Candidate Modulation Type”. This process is repeated for all records present in the 

database.  

 

After the database search, histogram of the “Candidate Modulation Type” is formed, and the 

Modulation type that has the maximum weight is chosen as the “Most Probable Modulation 

Type”. If there are more than one modulation types having this weight, the one with the least 

NED is chosen for the “Most Probable Modulation Type”. Furthermore, if any of the NEDs is 

very close to zero, then these signals’ shapes are assumed to be “very close to each other”, 

and independent of the histogram result, that signal’s modulation

P

 

Outputs of this block may be one of the types; “Linear AM”, “Nonlinear AM”, “Linear FM” or 

“Nonlinear FM”. 
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Figure 4.11. Fractal Theory Decision sub-block of the Recognizer block 
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If the output of the AM Percent Decision sub-block is “No Modulation”, then no further 

processing is required; signal is said to have no modulation, i.e. the signal is a pure sinusoid. 

 

If the ou  sub-block is “PSK”, then the Phase of the 

pulse is differentiated. If any of ss than π radians, the signal is said to 

By the help of this block, the signal is decided 

hether it is Linear FM or Nonlinear FM. 

resented to the user. Details about this interface is given in Appendix B. 

tput of the Autoregressive Model Decision

 the differences is le

have MPSK modulation. Otherwise the signal is decided to have BPSK modulation.  

 

After the Autoregressive Model Decision block, if the signal is found to be FSK, this signal is 

passed to the Fractal Theory Decision Block. 

w

 

In order to make the simulations of the proposed system easier, a graphical user interface is 

also designed and p
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CHAPTER 5 
 
 

5. PERFORMANCE TESTS 
 
 
 
In order to test the performance of the system, computer simulations were carried out using 

the Graphical User Interface created in MATLAB. 

 

5.1. SIGNAL TYPES USED IN SIMULATIONS 

Proposed algorithm was tested for AMOP, FMOP, PMOP modulation types and for signals 

without modulation. All signals were constructed using MATLAB programming language.  

 

ignals were constructed at the given center frequency with a symbol rate of 1024MHz at 

rst, so that they could be assumed to be continuous signals coming to the receiver of the 

 entered from the User Interface. This SNR value corresponds to the 

oise measured at the front end of the receiver of the system. 

In the re was 

recovered 

the as cho 60MHz. e that the cente ncy 

of the incoming signal is known. In uency of the signal can be 

xtrac h a precisi kHz, thu doe t dive  

mpling in order to avoid aliasing. This filter was 

esigned with the “fir1” command of Matlab. Filtered signal was then sampled at one of the 

esponding variable parameters used in the performance tests 

re given in Table 5.1. 

S

fi

system from the surrounding, with approximately 1nsec time resolution. In order to model the 

noise effects, Additive White Gaussian Noise was generated and added to the incoming 

signal, at the SNR value

n

 

ceiver part of the system, it is assumed that center frequency of the signal 

correctly and the signal was moved to the intermediate frequency (IF). IF value for 

 system w sen to be 1 In this process, we assum r freque

real systems, the center freq

s our assumption e ted wit on rate of a few s no rge from the

real case.  

 

The signal at IF which was assumed to resemble the continuous signal model, was filtered 

with a 50th order Bandpass filter, before sa

d

two different Sampling Frequency (Fs) choices, depending on the user selection. Fs values 

offered to the user were 256MHz and 128MHz respectively. 

 

Modulation Types and the corr

a
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Each combination of these parameters formed a new signal version, and each version was 

sent to the modulation recognition block, in order to identify the modulation type. 

ith different combinations of Sampling Rate, PW, Mean Amplitude and SNR values, a total 

of 36 distinct signals without modulation were formed. These signals were generated 100 

times with and a ne chieve correct 

recognition percentages given in the graphs.  

 

In order to tes t of PW on rec f “N lation” gnal s 

swept through 0,1µsec to 100µsec, and other parameters were kept fixed. Test results are 

given in Table 5.2. 

 

 

Table 5.2. Effect of PW on recog  of “No M ulation” type signals 

Fs (MHz) PW (µsec) Mean Amplitude (mV) SNR Result 

5.2. RESULTS OF SIMULATIONS 

5.2.1.  NO MODULATION CASE 

W

w noise was added to each of them in order to a

t the effec ognition o o Modu  type si s, PW wa

nition od

256 0,1 10 35 NL-AM 

256 
0,5; 1; 2; 5; 10; 

20; 30; 50; 100 
10 35 No Mod. 

 
 

 

As it is seen from the table, recognizer makes correct decision for PW values greater than 

0,5µsec, when the signal is sampled at 256MHz. 

For the tests of s = 128MHz. Test 

results are given in Table 5.3. 

 

 

Table 5.3. Effect of  Fs on recognition o odulation” type sig  

Hz) Mean Ampl mV) SNR Re

 

ampling rate, tests given in Table 5.2 were repeated for Fs 

f “No M nals

Fs (M PW (µsec) itude ( sult 

128 0,1 10 35 NL-AM 

128 ,5; 1 10 35 L-0 AM 

128 50; 100 10 35 
No Mod. 

2; 5; 10; 20; 30; 
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Referring to the table, recognizer makes correc cision for PW values greater than 2µsec, 

when the signal is sampled at 128MHz. System performance for two sampling rates are 

illustrated in Figure 5.1. 

t de
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o see the effect of Mean Amplitude on pure signals’ modulation recognition, Mean 

mplitude was swept through 0,1mV to 100mV, with all other parameters fixed. Test results 

are give

 

 

le 5.4. t of  Mean Amplitude on reco  of “No dulatio pe si

Hz) PW (µsec) Mean Am  (mV) SN

Figure 5.1. System performance at different sampling rates for No Modulation signals. 

 

 

T

A

n in Table 5.4.  

Tab Effec gnition  Mo n” ty gnals 

Fs (M plitude R Result 

256 10 

0; 30; 5

100 35 N
0,1; 0,5; 1; 2; 5; 10; 2 0; 

o Mod. 
 
 

 

 is vious th ystem perfor ce is indep ude value for 

n of “No Modulation” type signals. 

SNR is one of the most important parameters in modulation recognition. For this reason, 

tests were handled to see the effect of noise on modulation recognition of pure signals. For 

fixed values of Fs, PW and Mean Amplitude, SNR was swept through 35dB to 0dB. Test 

results are given in Table 5.5. 

 

 

It  ob at s man endent of the Mean Amplit

recognitio
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Table 5.5. Effect of  SNR on recognition of “No Modulation” type signals 

Fs (MHz) PW (µsec) Mean Amplitude (mV) SNR Result 

256 10 10 

35; 30; 

25; 20; 

15 No Mod. 

256 10 10 10 BPSK 

256 10 10 5 MPSK 

256 10 10 0 NL-FM 
 
 

 

As seen from the table, system performance decays as the SNR decreases. System makes

cor . 

 

rect decision for SNR greater than 15dB. This fact can also be observed from Figure 5.2
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5.2.2. AMOP CASE 

5.2.2.1. Linear AMOP Case 

ith different combinations of Sampling Rate, PW, Modulation Shape, % AM Depth, Mean 

Amplitude and SNR values, a total of 53 distin t Linear AM signal type  was formed. These 

s

 achieve correct recognition percentages given in the graphs.  

.2. System SNR value  for No Modu tion s nals. 

W

c

ignals were generated 100 times with and a new noise was added to each of them in order 

to

 

Through the tests for Linear AM recognition, it is seen that Linear AM is mostly confused with 

Nonlinear AM signals. However, Linear modulation shape is also equivalent to half period of 
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Triangular and Ramp modulation shapes. So, one should investigate the tables below taking 

this fact into account. 

 

In order to test the effect of PW on recognition of Linear AM signals, PW of the signals was 

swept through 0,1µsec to 100µsec as we kept all other parameters constant. Test results are 

given in Table 5.6. 

Fs (MHz) PW (µsec) 

Mean 
Amplitude 

(mV) AM Type 
%AM 
Depth SNR Result 

 

Table 5.6. Effect of PW on recognition of Linear AM signals 

2

NL-AM 
ular) 56 0,1 10 L-inc 30 35 (Triang

256 0,5 ; 1 nc 30 35 L-AM 10 L-i

256 2 ; 5 10 L-inc  N 30 35 L-AM 

256 10 ; 20 ; 30 c 30 35 L-AM 10 L-in

256 50 ; 100 30 35 NL10 L-inc -AM 
 
 

 

Referring to the table, it is seen that system can recognize Linear AM modulation for even 

very small PW values. However, some fluctuations between Linear and Nonlinear AM were 

etected due to the variations in the randomly generated noise.  

pling 

te. Test results are given in Table 5.7. 

 

Table 5.7. Effect of  Fs on recognition of Linear AM signals 

Fs ) PW c) 
Mean tude 

(mV) A e %AM pth SNR 

d

 

For the tests of sampling rate, tests given in Table 5.6 were repeated for 128MHz sam

ra

 (MHz  (µse
 Ampli

M Typ  De Result 

128 0,1 ; 0,5 ; 1 10 L-inc 30 L-AM 35 

128 2 10 L-inc 30 35 NL-AM 

128 5 ; 10 ; 20 10 L-inc 30 35 L-AM 

128 30 10 L-inc 30 35 NL-AM 

128 50 ; 100 10 L-inc 30 35 L-AM 
 
 

s iven in  table, system shows similar ior for b  of the mp s. 

ystem performance for two sampling rates are also illustrated in Figure 5.3. 

A it is g  the behav oth sa ling rate

S
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Figure 5.3. System performance at different sampling rates for Linear AM signals. 

 

 

o observe the effects of modulation shape on Linear AM recognition, tests in Table 5.6 

ere repeated for “Linear Decreasing” AM type. Results are given in Table 5.8 and Figure 

5.4. 

 

dulation Shape on recognition of Linear AM signals 

Fs (M

T

w

 

Table 5.8. Effect of  Mo

Hz) PW (µsec) 
Mean Amplitude 

(mV) AM Type %AM Depth SNR Result 

256 0,1 10 L-dec 30 35 L-AM 

256 0,5 NL-AM 10 L-dec 30 35 

256 1 ; 2 ; 5 10 L-dec 30 35 L-AM 

256 10 ; 20 10 L-dec 30 35 

NL-AM 
(Triangular) 

256 100 10 L-dec 30 35 L-AM 
30; 50; 
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Figure 5.4. System perf different modulati s for Linear AM signals. 

 

 

It is se  modulatio shape s no nificant change in system perfo ce 

for L  reco ion, whic n ex . 

 

 ord  to test the effect of Percentage AM Depth, Percentage AM Depth was swept through 

50% 

and F

 

 

Fs (M sec) (mV) AM Type %AM Depth SNR Result 

ormance at on shape

en that n doe t make a sig rman

inear AM gnit h is a pected case

In er

to 1%, and other parameters were kept constant. Test results are given in Table 5.9 

igure 5.5. 

Table 5.9. Effect of  Percentage AM Depth on recognition of Linear AM signals 

Hz) PW (µ
Mean Amplitude 

256 10 10 L-inc 50 ; 40 35 

NL-AM 
(Ramp) 

256 10 10 L-inc 30 35 L-AM 

256 10 10 L-inc 20 35 NL-AM 

256 10 10 L-inc 15; 10; 5; 1 35 No Mod. 
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Figure 5.5. System perfo s. 

 

 

As AM depth reas plitu e thr e pul stee ich 

mak odulation more observable. Fu so very important for the 

modulation to be gnized, w r the eep the modulation. For inst % 

AM depth is reco for 10µsec PW  in th ble, how  

reco d if the PW was 500µ . Para  facts, for the fixed PW value of 10µsec, 

system can recognize L-AM type for Percent AM De r than 20%. For AM depth 

alue ss than 15%, system confuse l with modulationless pure as 

expected. 

 

To see the effect of Mean Amplitude on recognition of Linear AM signals, other parameters 

were kept constant and Mean Amplitude was swept through 0,1mV to 100mV. Test results 

are given in Table 5.10.  

 

 

Table 5.10. Effect of  Mean Amplitude on recognition of Linear AM type signals 

Fs (MHz) PW (µsec) 
Mean Amplitude 

(mV) AM Type %AM Depth SNR Result 

rmance at different modulation depth values for Linear AM signal

percent inc es, am de chang ough th se gets per, wh

es m rthermore PW value is al

reco ide pulse less st ance 30

gnized  as given e ta ever it would not be

gnize sec llel to these

pths greate

v s le s the signa signals, 

256 10 

0,1; 0,5; 1; 2; 5; 10; 

20; 30; 50; 100 L-inc 30 35 L-AM 
 
 

 

It is early seen from Table 5.10 that system performance is independent of Mean 

Amplitude value, for Linear AM signals. 

 

cl
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Finall

to 0dB

 

Table 5.11. Effect of  SNR on recognition of Linear AM type signals 

Fs (MHz) 

y, to see the result of changing SNR on system decision, SNR was swept through 35dB 

 for fixed values of other signal parameters. Test results are given in Table 5.11. 

PW (µsec) 
Mean Amplitude 

(mV) AM Type %AM Depth SNR Result 

25 35 L-AM 6 10 10 L-inc 30 

25

30; 

6 10 10 L-inc 30 

25; 

20 

NL-AM 
(Ramp) 

256 10 10 L-inc 30 15 NL-FM 

256 10 10 L-inc 30 10 BPSK 

25 SK 6 10 10 L-inc 30 5 MP

256 10 10 L-inc 30 0 NL-FM 
 
 
As  the ta ance s as t R decr s. Syst kes 

correct decision for SNR greater than 15dB. This fact can also be observed from Figure 5.6. 
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Figure 5.6. System performance at different SNR values for Linear AM signals. 

 

 

5.2.2.2. Nonlinear AMOP Case 

This type of tests can be classified into three groups depending on the modulation shape. 

 Parabolic AMOP Case 

With different combinations of Sampling Rate, PW, Modulation Shape,  % AM Depth 

and SNR values, a total of 55 distinct Parabolic AM signal type was formed. These 
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signals were generated 100 times with and a new noise was added to each of them in 

order to achieve correct recognition percentages given in the graphs.  

Table 5.12. Effect of PW on recognition of Parabolic AM signals 

Am e %AM 

 

To observe the effect of PW on recognition of Parabolic AM signals, PW was swept 

through 0,1µsec to 100µsec, and other parameters were kept fixed. Test results are 

given in Table 5.12. 

 

 

Fs (MHz) PW (µsec) 

Mean 
plitud
(mV) AM Type Depth SNR Result 

256 0,1 10 P-parabolic 50 35 NL-AM 

256 0,5 P-parabolic 50 35 L-AM 10 

256 1 ; 2 P-parabolic 50 35 NL-AM 10 

256 5 10 P-parabolic 50 35 L-AM 

256 

10; 20; 30; 

50; 100 10 P-parabolic 50 35 NL-AM 
 

 128MHz sampling rate in order to see the 

ffect of sampling rate on Parabolic AM recognition. Results are presented in Table 

Table 5.13. Effect of  Fs on recognition of Parabolic AM signals 

Fs (MHz) PW (µsec) 

Amplitude 

AM Type 
%AM 
Depth SNR Result 

 

 

Additionally, same tests were handled with

e

5.13. 

 

 

Mean 

(mV) 

128 0,1 P-parabolic 35 NL-AM 10 50 

128 0,5; 1; 2; 5 10 P-parabolic 50 35 L-AM 

128 10 10 P-parabolic 50 NL-AM 35 

128 20 10 P-parabolic 50 35 L-AM 

128 30; 50; 100 10 P-parabolic 50 35 NL-AM 
 

ble d Ta  that system can recognize “Pa c 

MOP” type signals even for very small PW values. However, it is observed that the 

ystem performance decreases as the sampling rate changes from 256MHz to 

128MHz. This is due to the fact that number of samples that can be supplied to the 

 
 From Ta 5.12 an ble 5.13 it is seen raboli

A

s
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algorithm for modulation recognition increases with increasing sampling rate. 

Performance of the system for the two sampling rates can be seen comparatively in 

Figure 5.7.  
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Figure 5.7. System performance at different sampling rates values for Parabolic AM signals. 

ercent AM Depth effects the recognition performance of the system. To 

easure this effect, Percentage AM Depth was swept through 70% to 1%, with all 

T t of  Percentage AM Depth on recognition of Parabolic AM signals 

Fs (MHz) 

Mean 
Amplitude %AM 

Result 

 

 

PW is another parameter that effects the number of samples taken from the pulse, 

number of samples increases with increasing PW.  

 

Furthermore, P

m

other parameters fixed. Test results are given in Table 5.14 and Figure 5.8. 

 

 

able 5.14. Effec

PW (µsec) (mV) AM Type Depth SNR 

256 10 10 P-parabolic 70 35 NL-AM 

256 0 P-parabo 35 L-AM 1 10 lic 60 

256 10 10 ab 35 NP-par olic 50 L-AM 

256  10 aboli 40 ; 30 35 10 P-par c  L-AM 

256 10 10 P-parabolic 

20; 15; 1

5; 1 35 No Mod. 
0; 
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8.  per ce  m n ara AM  

 

 given he table ove,  PW lue system performance gets as 

the Pe  Depth increases, since the change in the signal amplitude becomes 

re obvious.  

o sum up, performance of the system is improved when amplitude change through 

the pulse is large enough with respect to the PW, and when the continuous signal is 

sampled well enough to resemble the original signal’s behavior. 

 

To observe the effects of modulation shape on Parabolic AM recognition, tests in 

Table 5.12 were repeated for “Negative Parabolic” AM type. Results are given in Table 

5.15. 

 

Table 5.15. Effect of  Modulation Shape on recognition of Parabolic AM signals 

Fs (MHz) PW (µsec) 

Mean 
Amplitude 

(mV) AM Type 
%AM 
Depth SNR Result 

Figure 5.  System forman at different odulatio depths for P bolic signals.

 

As  in t  ab  for a fixed  va better 

rcent AM

mo

 

T

256 2; 5 10 N-parabolic 50 35 L-AM 
0,1; 0,5; 1; 

256 10; 20 10 N-parabolic 50 35 NL-AM 

256 30; 50; 100 10 N-parabolic 50 35 L-AM 
 

 

If we compare the shapes of the envelopes of “Positive Parabolic” and “Negative 

Parabolic” signals, we see that “Positive Parabolic” has sharp edges at the beginning 
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and end of the pulse. On the other hand, “Negative Parabolic” has a smoother shape. 

This explains why “Negative Parabolic” signals are mostly confused with Linear AM 

ignals, as seen in the table. This effect can also be observed from Figure 5.9. s
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Figure 5.9. System perfo nce m n sha for Para  AM

Table 5.16. Effect of  Mean Amplitude on recognition of Parabolic AM type signals 

Fs (MHz) PW (µsec) 

Mean 
Amplitude 

(mV) AM Type 
%AM 
Depth SNR Result 

rma at different odulatio pes bolic  signals. 

 

 

To see the effect of Mean Amplitude on recognition of Parabolic AM signals, for fixed 

values of other parameters Mean Amplitude was swept through 0,1mV to 100mV. Test 

results are given in Table 5.16.  

 

 

256 10 

0,1; 0,5; 1; 

2; 5; 10; 

20; 30; 50; 

100 P-parabolic 50 35 NL-AM 
 

 

 

It is clearly seen from Table 5.16 that system performance is independent of Mean 

Amplitude value, for Parabolic AM signals. 
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Finally, to see the result of changing SNR on system decision, SNR was swept 

rough 35dB to 0dB and all other parameters constant were kept constant. Test 

Table 5.17. Effect of  SNR on recognition of Parabolic AM signals 

Fs ( (mV) AM Type Depth SNR Result 

th

results are given in Table 5.17 and Figure 5.10. 

 

 

MHz) PW (µsec) 

Mean 
Amplitude %AM 

256 10 10 P-parabolic 50 

35; 30; 25; 

20 NL-AM 

25 M 6 10 10 P-parabolic 50 15 NL-F

256 10 10 P-parabolic 50 10 BPSK 

256 10 10 P-parabolic 50 5 MPSK 

256 10 10 P-parabol 1 NL-FM ic 50 
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ure 5.1 ystem p rmance at different R values for Parabolic AM sign

As se  the table and graph, system performance decays as the SNR 

creas ystem m es corr is n NR gr an 15

 

Periodic AMOP Case

Fig 0. S erfo  SN als. 

 

 

en from

es. Sde ak ect dec io for S eater th dB. 

  

A total of 74 distinct Periodic AM signal type was formed  with different combinations 

of Sampling Rate, PW, Modulation Shape, % AM Depth, Frequency of the Modulating 

Wave and SNR values. These signals were generated 100 times with and a new noise 
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was added to each of them in order to achieve correct recognition percentages given 

in the graphs. 

 

To observe the effect of PW on recognition of Periodic AM signals, PW was swept 

through 0,1µsec to 100µsec, and Modulation Frequency was adjusted so that 2 

eriods of the modulating wave would be included in one pulse. Test results are given 

 Table 5.18. 

 

 

Table 5.18. Effect of PW on recognition of Periodic AM signals 

Fs (MHz) 
PW 

(µsec) 

Mean 
Amplitude 

(mV) AM Type 
%AM 
Depth 

Modulation 
Freq(MHz) SNR Result 

p

in

256 0,1; 0,5 10 Sinusoidal 50 20 35 NL-AM 

256 1 10 Sinusoidal 50 2 35 L-AM 

256 

2; 5; 10; 

20; 30; 

50 10 Sinusoidal 50 1 35 NL-AM 

256 100 10 Sinusoidal 50 0,02 35 L-AM 
 

 

ame signals were also sampled with 128MHz, in order to observe the effect of 

Table 5.19. Effect of  Fs on recognition of Periodic AM signals 

Fs (MHz) 
PW 

(µsec) 

Mean 
Am e 

AM Type 
%AM Modulation 

SNR Result 

 

S

sampling rate on recognition of Periodic AM. Results are given in Table 5.19 and 

illustrated in Figure 5.11. 

 

 

plitud
(mV) Depth Freq(MHz) 

128 

1; 2; 5; 

10 10 Sinusoidal 50 20 35 NL-AM 

0,1; 0,5; 

128 20 Sinusoidal 50 0,1 35 L-AM 10 

128 

30; 50; 

100 10 Sinusoidal 50 0,067 35 NL-AM 
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re 5.11 stem p ent pling rat r Peri  si

g to the Table 5.18 and T e 5.19 it is see hat syste  can  

eriodic AMOP” type signals even for very small PW values. However, as the PW 

creases the change throughout the pulse becomes smoother, and this causes the 

dditionally, Percent AM Depth effects the recognition performance of the system. To 

easure this effect, Percentage AM Depth was swept through 70% to 1%, and other 

parameters were kept constant. Test results are given in Table 5.20. 

 

 

Table 5.20. Effect of  Percentage AM Depth on recognition of Periodic AM signals 

Fs (MHz) 
PW 

(µsec) 

Mean 
Amplitude 

(mV) AM Type 
%AM 
Depth 

Modulation 
Freq(MHz) SNR Result 

Figu . Sy erformance at differ sam es fo odic AM gnals. 

 

 

Referrin abl n t m recognize

“P

in

modulation to be confused with Linear AM signals. Also we see that, system 

performance is approximately the same for both of the sampling rates. 

 

A

m

256 10 10 Sinusoidal 

70; 60; 

50; 40 0,2 35 NL-AM 

256 10 10 Sinusoidal 30; 20 0,2 35 L-AM 

256 10 10 Sinusoidal 15 0,2 35 NL-AM 

256 10 10 Sinusoidal 10; 5; 1 0,2 35 No Mod. 
 

From Table 5.20 it is seen that system performance gets worse with decreasing AM 

depth. As AM depth decreases, system begins to confuse the NL-AM signal with 
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Linear AM signals. If AM depth is further decreased, modulation on the amplitude 

becomes unobservable and the system makes “No Modulation” decision. This fact is 

also demonstrated in the figure below. 
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Figure 5.12. System performance at different modulation depths for Periodic AM signals. 

 

 

the pulse is large enough with resp  PW, and when the continuous signal is 

ampled well enough to resemble the original signal’s behavior. 

t of  Modulation Shape on recognition of Periodic AM signals 

Fs (M

 

To sum up, performance of the system is improved when amplitude change through 

ect to the

s

 

To observe the effects of modulation shape on Periodic AM recognition, tests in Table 

5.18 were repeated for “Triangular” and “Ramp” type AM signals. Results are given in 

Table 5.21. 

 

 

Table 5.21. Effec

Mean

Hz) 
PW 

(µsec) 
Amplitude 

(mV) AM Type 
%AM 
Depth 

Modulation 
Freq(MHz) SNR Result 

256 

0,1; 0,5; 

1 10 Triangular 50 20 35 NL-AM 

256 2 10 Triangular 50 1 35 L-AM 

25 gular 50 0,4 35 NL-AM 6 5; 10 10 Trian

256 20 10 Triangular 50 0,1 35 L-FM 
 

 

 56



Table 5.21 (cont’d) 

Hz) 
PW 

(µsec) 

Mean 
Amplitude %AM Modulation 

Fs (M (mV) AM Type Depth Freq(MHz) SNR Result 

256 

30; 50; 

100 10 Triangular 50 0,067 35 NL-AM 

256 0,1; 0,5 10 Ramp 50 20 35 L-AM 

256 1; 2 10 Ramp 50 2 35 NL-AM 

256 5 10 Ramp 50 0,4 35 L-FM 

256 10 10 Ramp 50 0,2 35 NL-AM 

256 NL-FM 20 10 Ramp 50 0,1 35 

256 

30; 50; 

35 BPSK 100 10 Ramp 50 0,067 
 

st of a is seen that this type of modulation is mostly confused with Linea for 

all of th lation shapes. However, due to the “linear” inclines and declines in the 

shape gular” and “Ramp” modulations, these are more exposed to confusion 

th Li M. Fu rmore,  sharp ertices  Tria lar a p 

veform  the en pe of pu are reflected as jumps to the phase and cy 

f these signals. This causes Triangular and especially Ramp waveforms to be 

onfused with FM or PM signals, which is not encountered with Sinusoidal waveforms. 

 

 

Fir ll, it r AM, 

e modu

of “Trian

near Awi rthe the   v of the ngu nd Ram

wa s in velo lse frequen

o

c

System performance for different modulation shapes can be comparatively seen in 

Figure 5.13. 
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Figure 5.13. System performance at different modulation shapes for Periodic AM signals. 
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To see the effect of Mean Amplitude on recognition of Periodic AM signals, other 

parameters were kept constant and Mean Amplitude was swept through 0,1mV to 

100mV. Test results are given in Table 5.22.  

 

 

Table 5.22. Effect of  Mean Amplitude on recognition of Periodic AM type signals 

PW 
Mean 

Amplitude %AM Modulation 
Fs (MHz) (µsec) (mV) AM Type Depth Freq(MHz) SNR Result 

256 10 

0,1; 0,5; 1; 

2; 5; 10; 

20; 30; 50; 

100 Sinusoidal 50 0,2 35 NL-AM 
 

 

 

As it is seen from Table 5.22, system performance is independent of Mean Amplitude 

value, for Periodic AM signals. 

 

In order to see the result of changing SNR on system decision, SNR was swept 

through 35dB to 0dB for fixed values of other signal parameters. Test results are given 

in Table 5.23. 

 

Table 5.23. Effect of  SNR on recognition of Periodic AM signals  

Fs (M

 

Hz) 
PW 

(µsec) 

Mean 
Amplitude 

(mV) AM Type 
%AM 
Depth 

Modulation 
Freq(MHz) SNR Result 

256 10 10 Sinusoidal 50 0,2 

35; 30; 

25; 20 NL-AM 

256 10 10 Sinusoidal 50 0,2 15 NL-FM 

256 10 10 Sinusoidal 50 0,2 10 BPSK 

2 K 56 10 10 Sinusoidal 50 0,2 5 MPS

256 10 Sinusoidal 50 0,2 0 NL-FM 10 
 

 

It is seen from the table that system p nce decays as the SNR decreases. 

stem m es corre ecision SNR g er than 15dB. System perform for 

ferent  values  also given in Figure 5. 14. 

 

erforma

reatSy ak ct d  for ance 

dif SNR  are
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Figure 5.14. System performance at different SNR values for Periodic AM signals. 

 

 

Finally, several tests were handled for the effect of Modulation Frequency. For this 

urpose, other parameters were kept fixed and the Modulation Frequency was swept 

Ta  Frequency on recognition of Periodic AM type signals 

Fs (MHz) 
PW 

Mean 
Amplitude %AM Modulation 

Result 

p

from 0,1MHz to 1MHz, so that 1 to 10 periods of the modulating wave would be 

included in one pulse. Test results are given both in Table 5.24 and in Figure 5.15. 

 

 

ble 5.24. Effect of  Modulation

(µsec) (mV) AM Type Depth Freq(MHz) SNR 

256 10 Sinusoidal 50 0,1 35 L-AM 10 

256 Si al 35 NL-AM 10 10 nusoid 50 0,2; 0,3; 0,4 

256 10 10 Si l nusoida 50 0,5 35 L-AM 

256 10 10 Sinu idal 0,6; 0,7; 0,8 so 50 35 NL-AM 

256 10 10 Sin dal usoi 50 0,9 35 L-FM 

256 10 10 S  inusoidal 50 1 35 NL-AM 
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Fig M 

signals. 

cision when Modulation 

requency is 0,1MHz, i.e. 1 period of the sine wave is seen in the amplitude of the 

occur very fast, system becomes more apt to make 

rong decisions. 

 

ure 5.15. System performance at different Modulation Frequency values for Periodic A

 

 

Referring to the table we see that system makes Linear AM de

F

pulse. This means that change in the amplitude is very smooth, hence it is confused 

with Linear AM. Furthermore, for very high Modulation Frequencies, due to the reason 

that changes in the amplitude 

w

 Square AMOP Case 

A total of 66 distinct Square AM signal type was generated with different combinations 

of Sampling Rate, PW, M pe,  % AM Depth, Fre ncy and Duty Ratio of 

o  Wave, and SNR s. T ign rated 100 th 

and a new noise d to each of them in order to achieve correct recognition 

percentages given aphs. 

 

 obse he effe  PW o cognition of Squar  signals, PW w pt 

rough 0,1µsec to 100µsec, and Modulation Frequency was adjusted so that 2 

eriods of the modulating wave would be included in one pulse. Test results are given 

odulation Sha

 value

que

als were genethe M dulating hese s times wi

 was adde

 in the gr

ct ofTo rve t n re e AM as swe

th

p

in Table 5.25. 
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Table 5.25. Effect of PW on recognition of Square AM signals 

Fs (MHz) (µsec) 

Mean 

Ratio Depth Freq(MHz) SNR Result 
PW Amplitude Duty %AM Modulation 

(mV) 

256 35 NL-AM 0,1 10 50 20 20 

256 0,5 10 50 20 4 35 L-AM 

256 

1; 2; 5; 

10; 20; 

30; 50 10 50 20 2 35 NL-AM 

256 100 10 50 20 0,02 35 BPSK 
 

ame signals were also sampled with 128MHz, in order to observe the effect of 

Table 5.26. Effect of  Fs on recognition of Square AM signals 

Fs (M
PW 

Mean 
Amplitude Duty %AM Modulation 

lt 

 

 

S

sampling rate on recognition of Square AM. Results are given in Table 5.26. 

 

 

Hz) (µsec) (mV) Ratio Depth Freq(MHz) SNR Resu

128 0,1 10 50 20 20 35 NL-AM 

128 0,5 10 50 20 4 35 L-AM 

12

1; 2; 5; 

8 10 10 50 20 2 35 NL-AM 

128 20 10 50 20 0,1 35 L-FM 

128 

30; 50; 

100 10 50 20 0,067 35 NL-AM 
 

 to 

the performance in Periodic AM case. Like Periodic AM, system can recognize 

“Square AMOP” ty nals even for very small PW values. However, as the PW 

se pulse r. Additionally, ke 

Triangular and Ramp waveforms, sharp  edges of the Square waveform in the 

velope pulse a flected jumps to the pha frequency of the signals. 

is cau Square AM waveforms to be fused with FM or PM signals. we 

e that tem pe mance i pproxim ly th both of the g 

tes. Th ct can b served from the gr  in Figu . 

 

 

Referring to the Tables 5.24 and 5.25 it is seen that system performance is similar

pe sig

ange throughoincrea s the ch ut the  becomes smoothe just li

en  of re re as se and 

Th ses con  Also 

se , sys rfor s a ate e same for  samplin

ra is fa e ob aph re 5.16
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Figure 5.16. System performance at different sampling rates for Square AM signals. 

 

 

Percent AM Depth is another factor that effects recognition performance. In order to 

see this effect, Percentage AM Depth was swept through 70% to 1%, and other 

parameters were kept fixed. Test results are given in Table 5.27 and illustrated in 

Figure 5.17. 

 

 

Table cognition of Square AM signals 5.27. Effect of  Percentage AM Depth on re

Fs (MHz) 
PW 

(µsec) 

Mean 
Amplitude 

(mV) 
Duty 
Ratio 

%AM 
Depth 

Modulation 
Freq(MHz) SNR Result 

256 10 10 50 50 0,2 35 BPSK 
70; 60; 

256 10 10 50 40 0,2 35 NL-AM 

256 10 10 50 30 0,2 35 NL-FM 

256 10 10 50 

20; 15; 

10 0,2 35 NL-AM 

256 10 10 50 5; 1 0,2 35 No Mod. 
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Figure 5.17. System performance at different modulation depths for Square AM signals. 

nvelope of the signal 

becomes drastically large. This causes the sharp edges of the Square waveform in the 

 begins to confuse the NL-AM signal 

with “No Modulation” type signals. Because, for these AM depths modulation on the 

amplitude becomes unobservable. 

 

Duty Ratio of the Square wave is the ratio of the positive portion of the wave to the 

negative portion, in one period of the square. In order to observe the effects of this 

parameter on modulation recognition, Duty Ratio of the modulating square wave was 

swept from 5% to 90% for constant values of all other parameters. Results are given in 

Table 5.28 and Figure 5.18. 

 

 

Table 5.28. Effect of  Duty Ratio on recognition of Square AM signals 

Fs (MHz) (µsec) 

Me
Amplitude 

(mV
Du
Ra

%AM 
Depth 

odulation 
req(MHz) NR  

 

 

For very large AM depths (greater than %50) splits in the e

envelope of pulse to be reflected as jumps to the phase and frequency of the signals, 

thus Square AM waveforms are confused with FM or PM signals. Also for very small 

AM depths (less than 5%), it is seen that system

PW 
an 

) 
ty 
tio 

M
F S Result

256 10 10 5 20 0,2 35  NL-AM

256 10 10 10 20 0,2 35  NL-FM

256 10 10 15 to 20 0,2 35    90 NL-AM
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From the table and figure above, it is seen that system performance is not effected 

much by the change of the duty ratio of the square waveform. 

 

T

Amplitude was swept through 0,1mV to 100mV, with all other parameters fixed. Test 

results are given in Ta 9. 

ble 5.29.  recognition of Square AM type sign

Fs (MHz) 
PW

(µ

Mea
Amplitude 

(mV
Du
Ra

%AM 
Depth 

odulation 
req(MHz) NR  

Figure 5.18. System performance at different duty ratio values for Square AM signals. 

 

o see the effect of Mean Amplitude on recognition of Square AM signals, Mean 

ble 5.2

 

 

Ta  Effect of  Mean Amplitude on als 

 
sec) 

n 

) 
ty 
tio 

M
F S Result

256 10 

0,1; 0,5; 1; 

2; 5; 

20; 30; 50; 

100 50 20 0,2 35 NL-AM 

10; 

 
 

 

As it is seen from Table 5.29, system performance is independent of Mean Amplitude 

value, for Square AM signals. 

 

In order to see the result of changing SNR on system decision, for fixed values of 

other parameters SNR was swept through 35dB to 0dB. Test results are given in Table 

5.30. 
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Table 5.30. Effect of  SNR on recognition of Square AM signals 

Fs (MHz) 
PW 

(µsec) 

Mean 
Amplitude 

(mV) 
Duty 
Ratio 

%AM 
Depth 

Modulation 
Freq(MHz) SNR Result 

256 10 10 50 20 0,2 

35; 30; 

25; 20 NL-AM 

256 10 10 50 20 0,2 15 NL-FM 

256 10 10 50 20 0,2 10 BPSK 

256 10 10 50 20 0,2 5 MPSK 

256 10 10 50 20 0,2 0 BPSK 
 

 
As seen from Table 5.30, system performance decays as the SNR decreases. System 

makes correct decision for SNR greater than 10dB. This fact can also be seen in 

Figure 5.19. 
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ure 5.19 stem pe mance at different SN s for Squ  AM si

 

 

Additionally, tests were handled for the purpose of measuring effect of Modulation 

pt 

constant and Modulation Frequency pt from 0,1MHz to 1MHz, so that 1 to 10 

periods of the modulating wave would be included in one pulse. Test results are given 

in Table 5.31 and Figure 5.20. 

 

Fig . Sy rfor R value are gnals. 

Frequency on modulation recognition. All other parameters constant were ke

 was swe
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Table 5.31. Effect of  Modulation Frequency on recognition of Square AM type signals 

Fs (MHz) 
PW 

(µsec) 

Mean 
Amplitude 

(mV) 
Duty 
Ratio 

%AM 
Depth 

Modulation 
Freq(MHz) SNR Result 

256 10 10 50 

0,1; 0,2; 

20 0,3; 0,4 35 NL-AM 

256 10 10 50 20 0,5 35 L-FM 

256 10 10 50 20 0,6; 0,7; 0,8 35 NL-AM 

256 10 10 50 20 0,9; 1 35 L-FM 
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gins to 

make wrong decisions. 

 

5.2.3. FMOP CASE 

5.2.3.1. Linear FMOP Case 

With different s of Sampling n Shape, Fre cy Deviation, 

Mea plitude  SNR va s, a tot distinct ear FM si pe wa ed. 

These signals were generated 100 times with and a new noise was added to each  in 

orde chieve correct recognition percentages given in the graphs. 

Figure 5.20. System performance at different modulation frequencies for Square AM signals. 

 

 

Referring to the table and figure it is seen that, for very high Modulation Frequencies, 

due to the reason that changes in the amplitude occur very fast, system be

 combination  Rate, PW, Modulatio quen

gnal tyn Am and lue al of 53  Lin s form

 of them

r to a
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Through the tests for Linear FM recognition, it is seen that Linear FM is mostly confused with 

king 

is fact into account. 

In order to test the effect of PW on recognition of Linear FM signals, PW was swept through 

0,1µsec to 100µsec, and other parameters were kept constant. Test results are given in 

Table 5.32. 

 

 

Table 5.32. Effect of PW on recognition of Linear FM signals 

Fs (MHz) 
PW 

(µsec) 

Mean 
Amplitude 

(mV) FM Type 
Freq. 

Deviation(MHz) SNR Result 

Nonlinear FM signals. However, Linear modulation shape is also equivalent to half period of 

Triangular and Ramp modulation shapes. So, one should investigate the tables below ta

th

 

256 0,1 10 L-inc 30 35 NL-AM 

256 0,5; 1 10 L-inc 30 35 L-FM 

25  6 2; 5 10 L-inc 30 35 NL-FM

256 10 10 L-inc 30 35 L-FM 

256 20; 30 10 L-inc 30 35 NL-FM 

256 50; 100 10 L-inc 30 35 (Triangular
NL-FM 

) 
 
 

 

Referrin em can recognize Linear FM modulation for PW 

values greate

were dete

 

For the test sampling 

rate. Test results are given in Table 5.33. Additionally, we can observe the performance of 

the system fo

 

 

 

 

 

 

 

 

g to the table, it is seen that syst

r than 0.5µsec. However, some fluctuations between Linear and Nonlinear FM 

cted due to the variations in the randomly generated noise. 

s of sampling rate, tests given in Table 5.32 were repeated for 128MHz 

r Fs values comparatively in Figure 5.21. 
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Table 5.33. Effect of  Fs on recognition of Linear FM signals 

Fs (MHz) 
PW 

(µsec) 

Mean 
Amplitude 

(mV) FM Type 
Freq. 

Deviation(MHz) SNR Result 

128 0,1; 0,5 10 L-inc 30 35 NL-AM 

128 NL-FM 1 10 L-inc 30 35 

128 2; 5 L-inc 30 35 NL-FM 10 

128 10 L-inc 35 L-FM 10 30 

128 20; 30 10 L-inc 30 35 NL-FM 

128 50  30 35 

NL-FM 
(Tr ) ; 100 10 L-inc iangular
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1 rfor  at d m s for Linear FM

 

 

As it is seen , system shows s ilar performance for both of the sampling rates. 

dd lly we that recognition li W is h r for Fs = 128MHz  = 

z. This is an expected result because signal bandwidth is larger for small PW values, 

thus r res higher sampling rates due to the Nyquist rate. 

 

To 32 

were repeated for “Linear Decreasing” FM type. Results are given in Table 5.34. 

 

 

 

 

Figure 5.2 . System pe mance ifferent sa pling frequencie  signals. 

in the table

see 

im

mit for PA

256M

itiona ighe than Fs

H

equi

observe the effects of modulation shape on Linear FM recognition, tests in Table 5.
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Table 5.34. Effect of  Modulation Shape on recognition of Linear FM signals 

Fs (MHz) 
PW 

(µsec) 

Mean 
Amplitude 

(mV) FM Type 
Freq. 

Deviation(MHz) SNR Result 

2 L-dec 30 35 NL-AM 56 0,1; 0,5 10 

256 1 10 L-dec 30 35 L-FM 

256 2; 5 10 L-dec 30 35 NL-FM 

256 10 10 L-dec 30 35 L-FM 

256 20; 30 10 L-dec 30 35 NL-FM 

256 50; 100 L-dec 35 

NL-FM 
(Triangular) 10 30 

 
 

 

It is seen that modulation shape does not make a significant change in system performance 

for Linear FM recognition, whi s also  in Figu .22. 
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Figure 5.22. System performance at different modulation shapes for Linear FM signals. 

 

 

In order to test the effect of Frequency Deviation, other parameters were kept constant and 

Frequency Deviation was swept through 50MHz to 1MHz. Test results are given in Table 

5.35 and in Figure 5.23. 
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Table 5.35. Effect of  Frequency Deviation on recognition of Linear FM signals 

Fs (MHz) 
PW 

(µsec) 

Mean 
Amplitude 

(mV) FM Type 
Freq. 

Deviation(MHz) SNR Result 

256 10 10 L-inc 50; 40 35 

NL-FM 
(Triangular) 

256 10 10 L-inc 30 35 L-FM 

256 10 10 L-inc 20; 15 35 NL-FM 

256 10 10 L-inc 10; 5; 1 35 No Mod. 
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Figure 5.23. System performance at differen quency deviation values for Linear FM 

signals. 

 

 

As Frequency Deviation increases, frequency change through the pulse gets steeper, which 

makes modulation more observable. It is seen from the table that, for the fixed PW value of 

10µsec, system can recognize L-FM type for Frequency Deviations greater than 20MHz. As 

the Frequency Deviation keeps decreasing, first of all system confuses the modulation with 

NL-FM. For Frequency Deviation values less than 10MHz, system confuses the signal with 

modulationless pure signals, as expected. 

 

T  

was swept through 0,1mV to 100mV for fixed values of other signal parameters. Test results 

are given in Table 5.36.  

 

 

t fre

o see the effect of Mean Amplitude on recognition of Linear FM signals, Mean Amplitude

 70



Table 5.36. Effect of  Mean Amplitude on recognition of Linear FM type signals 

Fs ( FM Type Deviation(MHz) SNR Result MHz) PW (µsec) 

Mean 
Amplitude 

(mV) 
Freq. 

256 10 

0,1; 0,5; 1; 

2; 5; 10; 

100 L-inc 30 35 L-FM 
20; 30; 50; 

 
 

 

It is seen from the table th nce is independent of Mean Amplitude value, for Linear 

FM signals. 

 

ina  see the of ch N tem deci SNR was ept thr dB 

ther parameters were kept fixed. Test results are given in Table 5.37. 

 

 

Fs (MHz) PW (µsec) 

Mean 
Amplitude 

(mV) FM Type 
Freq. 

Deviation(MHz) SNR Result 

at performa

anging SF

to 0dB, and o

lly, to  result R on sys sion,  sw ough 35

Table 5.37. Effect of  SNR on recognition of Linear FM type signals 

256 

35; 30; 25; 

L-FM 10 10 L-inc 30 20; 15 

256 10 L-inc 10 

NL-FM 
(Ramp) 10 30 

256 10 10 L-inc 30 5; 0 NL-FM 
 
 

 

As s m the table, sys rfo ecays for very small SNR value

ake correct decision for SNR greater than 5dB. This fact is also seen in Figure 5.24. 

 

 

een fro tem pe rmance d s. System 

m s 
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Figure 5.24. System performance at different SNR values for Linear FM signals. 

 

This t on shape. 

 

5.2.3.2. Nonlinear FMOP Case 

ype of tests can be classified into three groups depending on the modulati

 Parabolic FMOP Case 

o observe the effect of PW on recognition of Parabolic FM signals, PW was swept 

r to see the 

ffect of sampling rate on Parabolic FM recognition. Results are presented in Table 

.39 and in Figure 5.25. 

 

 

 

 

With different combinations of Sampling Rate, PW, Modulation Shape,  Frequency 

Deviations and SNR values, a total of 55 distinct Parabolic FM signal type was formed. 

These signals were generated 100 times with and a new noise was added to each of 

them in order to achieve correct recognition percentages given in the graphs. 

 

T

through 0,1µsec to 100µsec, and other parameters were kept fixed. Test results are 

given in Table 5.38. 

 

Additionally, same tests were handled with 128MHz sampling rate in orde

e

5
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T

PW

able 5.38. Effect of PW on recognition of Parabolic FM signals 

Fs (MHz)  (µsec) 

Mean 
Amplitude 

(mV) FM Type 
Freq. 

Deviation(MHz) SNR Result 

256 0,1 10 

P-

parabolic 30 35 NL-AM 

256 0,5 10 

P-

parabolic 30 35 L-FM 

256 1 10 parabolic 30 35 NL-FM 
P-

256 

P-

L-FM 2; 5 10 parabolic 30 35 

256 

10; 20; 30; 

50; 10 10 

P-

parab 30 35 NL-FM 0 olic 
 

ble 5.39. Effect of  Fs on recognition of Parabolic FM signals 

Fs (MHz

Me
Amp

(mV) FM Type 
Fr

Deviation(MHz) SNR Result 

 

 

Ta

) PW (µsec) 

an 
litude eq. 

128 ,1; 0,5 1

P-

rabol 3 N0 0 pa ic 0 35 L-AM 

1

1; 2; 5; 10; 

20; 30; 50; P-

28 100 10 parabolic 30 35 NL-FM 
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Figure 5.25. System performance at different sampling rates for Parabolic FM signals. 
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7 and 5.38, we ake correct decision for 

reater than 0 lso en  beh n a s y 

for both sampling rates.  

 

Another data set was produced to see ect of Frequency Deviation value on the 

cog n perfo nce tem easur s effect, F uency n 

as swept throu 70MHz to 1MHz for constant va  of all oth aramet est 

results are given in Table 5.40. 

Table 5.40. E

Fs (

Referrin

PW

g to 

 values g

Tables 5.3  see that sy

 it is se

stem can m

that system,5µsec. A aves i imilar wa

 the eff

. To mre nitio rma of the sys e thi req  Deviatio

w gh lues er p ers. T

 

 

ffect of  Frequency Deviation on recognition of Parabolic FM signals 

MHz) PW (µsec) 

Mean 
Amplitude 

(mV) FM Type 
Freq. 

Deviation(MHz) SNR Result 

256 10 

P-

parabolic 

70; 60; 50; 40; 

30; 20 35 NL-FM 10 

256 10 10 

P-

parabolic 15 35 L-FM 

256 10 10 

P-

parabolic 10 35 NL-FM 

256 10 10 

P-

parabolic 5; 1 35 No Mod. 
 

 

 

As given in the table above, for a fixed PW value system performance gets better as 

the Frequency Deviation increases, since the change in the signal frequency becomes 

more obvious. For Frequency Deviation values less than 5MHz, modulation on 

frequency becomes unobservable such that signal is confused with modulationless 

pure signals. These facts can also be observed from the figure below. 

 

 

 74



Parabolic FM, Frequency Deviation
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Figure 5.26. System performan quency deviation value

signals. 

 

o ob ve the effects of lation pe on P olic FM recognition in 

able 8 were eated abolic” e. Results are give le 

5.41a igure 5.27. 

Table 5.41. Effect of  Modulation Shape n recognition of Parabolic FM signals 

Fs (MHz) PW (µsec) 

Mean 
Amplitude 

(mV) FM Type 
Freq. 

Deviation(MHz) SNR Result 

ce at different fre s for Parabolic FM 

 

T ser  modu sha arab , tests 

T  5.3 rep for “Negative Par FM typ n in Tab

nd F

 

 

o

256 0,1 10 

N-

parabolic 30 35 NL-AM 

256 0,5 10 

N-

parabolic 30 35 L-FM 

256 

1; 2; 5; 10; 

20; 30; 50; 

100 10 

N-

parabolic 30 35 NL-FM 
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Parabolic FM, Modulation Shape
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F  5.2 st ance at diffe or Parabolic FM signals. 

 

It is seen that system performance does not change among Positive and Negative 

sha signals. 

T ct of  Mean Amplitude on recognition of Parabolic FM type signals 

Fs (MHz) PW (µsec) 

Mean 

(mV) FM Type Deviation(MHz) SNR Result 

igure

 

7. Sy em perform rent modulation shapes f

Parabolic ped frequency modulated 

 

To see the effect of Mean Amplitude on recognition of Parabolic FM signals, Mean 

Amplitude was swept through 0,1mV to 100mV, with all other parameters fixed. Test 

re given in Table 5.42.  results a

 

 

able 5.42. Effe

Amplitude Freq. 

256 10 

,1; 0,5; 1; 

; 10; 

0; 30

100 

P-

parabolic 30 35 NL-FM 

0

2; 5

2 ; 50; 

 
 

inally, to see the result of changing SNR on system decision, for fixed values of other 

 

 

F

parameters SNR was swept through 35dB to 0dB. Test results are given in Table 5.43 

and Figure 5.28. 
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Table 5.43. Effect of  SNR on recognition of Parabolic FM signals 

Fs (MHz) PW (µsec) 

Mean 
Amplitude 

(mV) FM Type 
Freq. 

Deviation(MHz) SNR Result 

256 10 10 

P-

parabolic 30 

35; 30; 25; 

20; 15; 10; 

5; 0 NL-FM 
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Periodic FMOP Case

Figure 5.28. System performance at different SNR values for Parabolic FM signals. 

 

It i  clearly les 5.42 and 5.43 th ystem perf nce is endent 

M  Am  and  values, fo rab igna

 

  

 total of 74 distinct Periodic AM signal type was generated with different 

combinations of Sampling Rate, PW, Modulation Shape, Frequency Deviation, 

d 

100 times with and a new noise was  each of them in order to achieve correct 

recognition percentages given in the graphs. 

o observe the effect of PW on recognition of Periodic FM signals, all other 

A

Frequency of the Modulating Wave and SNR values. These signals were generate

 added to

 

T

parameters constant were kept constant and PW was swept through 0,1µsec to 

100µsec, and Modulation Frequency was adjusted so that 2 periods of the modulating 

wave would be included in one pulse. Test results are given in Table 5.44. 
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Table 5.44. Effect of PW on recognition of Periodic FM signals 

 
z) 

PW 
(µsec) 

Mean 
Amplitude 

(mV) FM Type 

Freq. 
Deviation

(MHz) 
Modulation 
Freq(MHz) SNR Result 

Fs
(MH

256 20 35 NL-AM  0,1 10 Sinusoidal 30 

256 0,5 10 Sinusoidal 30 4 35 NL-FM 

256 1 10 Sinusoidal 30 2 35 L-FM 

256 

30; 

50; 

100 10 Sinusoidal 30 1 35 NL-FM 

2; 5; 

10; 

20; 

 
 

 

ame na o led bserve the effect of 

m te o gniti erio  Re en in  5.45.

 

ble 5.45. Effect of  Fs on recognition of Periodic FM signals 

(MHz) (µsec) 

Mean 
Am  

(mV) FM Type 

Freq. 
D
n (MHz) 

Mod tion 
Freq(MHz) SNR Result 

S

sa

 sig

pling ra

ls were als

n reco

samp

on of P

 with 128M

dic FM.

Hz, in order to o

sults are giv Table  

 

Ta

PW Fs plitude eviatio ula

128 0,1 10 Sinusoidal 30 20 35 L-AM 

128 NL-FM  

0,5; 1; 

2 10 Sinusoidal 30 4 35 

128 5 10 Sinusoidal 30 0,4 35 L-FM 

128 

10; 20; 

30; 50; 

100 NL-FM  10 Sinusoidal 30 0,2 35 
 

 

fe  the d 5.4 see m ca gnize ic 

MOP pe sign even fo W valu reater tha sec. Also see th m 

erfo ce is a oximat sam r both of the sampling s, whic  

bse rom the figure be . 

 

 

Re rring to  Tables 5.44 an 5 it is n that syste n reco  “Period

F ” ty als r P es g n 2µ  we at, syste

p rman ppr ely the e fo rate h can be

o rved f low
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Figure 5.29. System performance at different sampling rates for Periodic FM signals. 

 

 

Additionally, Frequency Deviation effects the recognition performance of the system. 

To measure this effect, Frequency Deviation was swept through 70MHz to 1MHz, and 

other parameters were kept constant. Test results are given in Table 5.46. 

 

 

Fs 
(MHz) 

PW 
(µsec) 

Mean 
Amplitude 

(mV) FM Type 

Freq. 
Deviation 

(MHz) 
Modulation 
Freq(MHz) SNR Result 

Table 5.46. Effect of  Frequency Deviation on recognition of Periodic FM signals 

256 10 10 Sinusoidal 15; 10 0,2 35 NL-FM 

70; 60; 

50; 40; 

30; 20; 

256 10 10 Sinusoidal 5 0,2 35 L-FM 

256 10 10 Sinusoidal 1 0,2 35 

o 
Mod. 
N

 
 

s n Ta 46 t tem  co n for cy Deviation 

values greater than 5MHz. For smalle dulation on the frequency becomes 

nobs ble an e system begins ke “Lin M” decisi If the F cy 

evia  is furth ecreased, system akes “No ulation” de on. Thi an 

e seen from Figure 5.30. 

 

 

It i given i ble 5. hat sys  makes rrect decisio  Frequen

r values, mo

 to mau erva d th ear F on. requen

D tion er d  m Mod cisi s fact c

b
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Figure 5.30. System performance at different Frequency Deviation values for Periodic FM 

o observe the effects of modulation shape on Periodic FM recognition, tests in Table 

.44 were repeated for “Triangular” and “Ramp” type FM signals. Results are given in 

Table

 

 

a . Ef   Mo n Sh  rec eriod  signa

(MHz) (µsec) 

Mean 
Am  

(mV) FM Type 

q. 
D tion 

(MHz) 
Mo  
Freq(MHz) SNR Result 

signals. 

 

 

T

5

 5.47 and Figure 5.31. 

T ble 5.47 fect of dulatio ape on ognition of P ic FM ls 

Fs PW plitude
Fre

evia dulation

256 0,1 10 Triangular 30 20 35 NL-AM 

256 0,5 10 Triangular 30 4 35 NL-FM 

256 1 10 Triangular 30 2 35 L-FM 

256 

2; 5; 

10; 20; 

30; 50; 

100 10 Triangular 30 1 35 NL-FM 

256 0,1 10 Ramp 30 20 35 NL-AM 

256 

0,5; 1; 

2; 5; 

10 10 Ramp 30 4 35 NL-FM 

256 20 10 Ramp 30 0,1 35 BPSK 

256 30 10 Ramp 30 0,067 35 MPSK 

256 

50; 

100 10 Ramp 30 0,04 35 

No 
Mod. 
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Figure 5.31. System performance at different modulation shapes for Periodic FM signals. 

 

 fro 4  47 that milar for Sinusoidal and 

a wav om as s in p mo s, 

change in fre mes smoother and the system recognizes it as “single tone”, 

not “multi tone Ramp signals are confused with PM and No Modulation signals 

for PW value an 20µsec. 

o see the effect of Mean Amplitude on recognition of Periodic FM signals, other 

arameters were kept constant and Mean Amplitude was swept through 0,1mV to 

able 5.48. Effect of  Mean Amplitude on recognition of Periodic FM type signals 

Fs 
(MHz) 

PW 
(µsec) 

Am e 
F  

Modulation 
SNR Result 

 

It is seen

Tri

m Table 5.4

eforms. A

 and

part fr

system

these, 

 behavior is si

PW increasengular  Ram dulation

quency beco

”. Thus, 

s greater th

 

T

p

100mV, and each signal was sampled at 256MHz. Test results are given in Table 

5.48.  

 

 

T

Mean Freq. 
plitud
(mV) M Type

Deviation 
(MHz) Freq(MHz) 

256 10 

0,1; 0,5; 1; 

2; 5; 10; 

20; 30; 50; 

Si al  100 nusoid 30 0,2 35 NL-FM 
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As it is seen from Table 5.48, system performance is independent of Mean Amplitude 

value, for Periodic FM signals. 

 

In order to see the result of changing SNR on system decision, SNR was swept 

through 35dB to 0dB for fixed values of other signal parameters. Test results are given 

in Table 5.49. 

 

Table 5.49. Effect of  SNR on recognition of Periodic FM signals  

Fs 
(MHz) (µsec) 

Mean 

FM Type 

Freq. 

)  SNR Result 
PW Amplitude Deviation Modulation 

(mV) (MHz Freq(MHz)

256 10 10 Si al  

35; 30; 25; 

20; 15; 10; 5; 

nusoid 30 0,2 0 NL-FM 
 

 
It is seen from the table that system performance remains unchanged for different 

SNR values, which can also be seen in Figure 5.32. 
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Figure 5.32. System performance at different SNR values for Periodic FM signals. 

 

 

Finally, several tests were handled for the effect of Modulation Frequency. For this 

purpose, M , so that 1 to 10 

periods of the modulat e would be included in one pulse, and other parameters 

were kept fi Tes  g able 5.  Figure 5.33. 

odulation Frequency was swept from 0,1MHz to 1MHz

ing wav

t results arexed. iven in T 50 and
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Table 5.50. Effect of  Modulation Freque y on recogn  of Period M typ ls 

Fs 
(MHz

PW 
sec) 

an 
itude 
V)  Type 

Freq. 
Deviation Modulation 

Freq(MHz) R lt 

nc ition ic F e signa

) (µ

Me
Ampl

(m FM (MHz) SN Resu

256 10 10 Sinusoidal 30 0,1 35 L-FM 

256 10 10 Sinusoidal 30 0,2 to 1 35 NL-FM  
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Figure 5.32. System performance at different modulat encies for Periodi

signals. 

 

 

Referring to the table we see that system makes Linear FM decision when Modulation 

Freq cy i eriod of the sine wave is seen in e freq

eans that change in the frequency is very smooth, hence it is confused 

ith Linear FM.  

 

ion frequ c FM 

uen s 0,1MHz, i.e. 1 p  th uency of the 

pulse. This m

w

 Square FMOP Case 

A total of 68 distinct Square FM signal type was generated with different combinations 

f Sampling Rate, PW, Modulation Shape, Frequency Deviation, Frequency and Duty 

 to each of them in order to achieve correct 

cognition percentages given in the graphs. 

, PW was swept 

rough 0,1µsec to 100µsec, and Modulation Frequency was adjusted so that 2 

o

Ratio of the Modulating Wave, and SNR values. These signals were generated 100 

times with and a new noise was added

re

 

To observe the effect of PW on recognition of Square FM signals

th
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periods of the modulating wave would be included in one pulse. Test results are given 

in T

 

 

1. E f PW o gn M s  

F
(MHz) 

PW 
(µs

Mean 
plitude 

) 
 

Ratio 

eq. 
D iation 

(MHz) 
Mo tion 
Freq(MHz) SNR Result 

able 5.51. 

Table 5.5 ffect o n reco ition of Square F ignals

s 
ec) (mV

Am Duty
Fr

ev dula

256 0,  50 30 20 35 L-FM 1 10

256 

0,5; 1; 

2; 5

10; 20; 

30; 5

100 10 50 30 4 35 NL-FM 

; 

0; 

 

gnal also sampled with 128MHz, in r to o e effect of 

sampling rate on recognition of Square FM. Results are given in Table 5.52. 

 

 

Table 5.52 Fs nition re FM signals 

Fs 
(MHz) 

PW
(µs

n 
tude 
) 

Duty 
Ratio 

. 
Deviation 

(MHz) 
Modulation 
Freq(MHz) SNR Result 

 

 

Same si s were  orde bserve th

. Effect of  on recog

Freq

of Squa

 
ec) 

Ampli
(mV

Mea

1 0,1 10 50  28 30 20 35 NL-AM 

1 0,5 10 50 28  30 4 35 L-FM 

128 1;  50 30 2 35 NL-FM  2 10

1

5; 

20; 30; 

50; 

100 10 50  28 

10; 

30 0,4 35 BPSK 
 

 

 

m Tabl 51 and  it is seen that system can recognize uare A als 

ectly fo  values ater tha ,5µsec. On  other han  is obs at 

system pe er for large sampling rate. This fact is also seen from Figure 

Fro es 5. 5.52  Sq M sign

corr r PW  gre n 0  the d, it erved th

rformance is bett

5.33. 
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Figure 5.33. System performance at different sampling frequencies for Square FM signals. 

 

 

Frequency Deviation is another factor that effects recognition performance. In order to 

see this effect, Frequency Deviation was swept through 70MHz to 1MHz, and other 

parameters were kept fixed. Test results are given in Table 5.53. 

 

 

Table 5.53. Effect of Frequency Deviation on recognition of Square FM signals 

Fs 
(MHz) 

PW 
(µsec) 

Amplitude 
(mV) 

Duty 
Ratio 

Deviation 
(MHz) 

Modulation 
Freq(MHz) SNR Result 

Mean Freq. 

256

70; 60; 50; 

 10 10 50 

40; 30; 20; 

15; 10 0,2 35 NL-FM 

256 5 0,2 35 BPSK  10 10 50 

256 10 10 50 1 0,2 35 NL-FM 
 

 

According to Table 5.53, system performance is not effected much by the value of 

Frequency Deviation. H er, for very small Frequency Deviation values (less than 

 that begin with P  type 

signals. Because, for these Frequency D ulation on the frequency 

becomes unobservable. We can observe this 34 too. 

 

 

 

owev

system 5MHz), it is seen s to confuse the NL-FM signal M

eviations mod

 from Figure 5.
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Square FM, Frequency Deviation
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Figure 5.34. System perfo

 order to observe the effects of Duty Ratio parameter on modulation recognition, 

uty Ratio of the modulating square wave was swept from 5% to 99% for constant 

value igure 5.35. 

 

 

ble ffect of  Duty Ra rec re nal

Fs 
(MHz) 

PW 
(µsec) 

Mean
Amplitud

(mV) 
 

Freq. 
Deviation 

(MHz) 
Modulation 
Freq(MHz) SNR Result 

rmance at different frequency deviations for Square FM signals. 

 

 

In

D

s of all other parameters. Results are given both in Table 5.54 and in F

Ta  5.54. E tio on ognition of Squa FM sig s 

 
e Duty

Ratio 

256 10 10  90   M 5 to 30 0,2 35 NL-F

256 10 10 97; 99 30 0,2 35 BPSK 
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Figure 5.35. System performance at different duty ratio values for Square FM signals. 

 

 

From Table 5.54 and Figure 5.35, it is seen that system performance is not effected 

, waveform begins to 

lose its characteristic shape. For this reason system begins to make wrong decisions 

at the very high and very low limits of duty ratio. 

 

To see the effect of Mean Amplitude on recognition of Square FM signals, Mean 

Amplitude was swept through 0,1mV to 100mV, with all other parameters fixed. Test 

are g le 5.55

Table 5.55 an Amplitude on recognition of Square FM type signals 

Fs PW 
Mean 

Amplitude Duty 
Freq. 

Deviation Modulation 

much by the change of the duty ratio of the square waveform. However, if the duty 

ratio is too small (less than 5%) or too large (greater than 97%)

results iven in Tab . 

 

 

. Effect of  Me

(MHz) (µsec) (mV) Ratio (MHz) Freq(MHz) SNR Result 

256 10 

0,1; 0,5; 1; 

2; 5; 10; 

20; 30; 50; 

100 50 30 0,2 35 NL-FM 
 

 

 

given in Table 

5.56. 

In order to see the result of changing SNR on system decision, for fixed values of 

other parameters SNR was swept through 35dB to 0dB. Test results are 

 87



 

 

Table 5.56. Effect of  SNR on recognition of Square FM signals 

(MH
W 

(µsec) 

Mean 
 

) 
Du
Ratio

q. 
Devia

(MHz) 
tion 

req(MHz) SNR 
Fs P

z) 
Amplitude

(mV
ty 

Fre

 
tion Modula

F Result 

256 10 50 30 0,2 

; 30; 25; 

20; 15; 10; 5; 

0   10 

35

NL-FM
 

 

 

Finally, tests were handled for the purpose of measuring effect of Modulation 

Frequency on modulation recognition. For this purpose, Modulation Frequency was 

swept from 0,1MHz to 1MHz, so that 1 to 10 periods of the modulating wave would be 

included in one pulse. Test results are given in Table 5.57. 

 

 

Table 5.57. Effect of  Modulation Frequency on recognition of Square FM type 

Fs 
(MHz) 

PW 
(µsec) 

Mean 
Amplitude 

(mV) 
Duty 
Ratio 

Freq. 
Deviation(

MHz) 

Modulatio
n 

Freq(MHz) SNR Result 

As it is seen from Table 5.55 and Table 5.56, system performance is independent of 

Mean Amplitude and SNR values, for Square FM signals. 

 

256 10 10 50 30 0,1 to 1 35 NL-FM 
 

 

 

W Hz – 

1MHz  Modulation Frequency range. We can conclude that system performance is not 

effected by the Modulation Frequency, if the parameter is in an acceptable range, i.e. 

 BFSK Case

e see from Table 5.57 that system gives correct decision through the 0,1M

1-10 periods range.  

 

 

With different combinations of Sampling Rate, PW, Frequency Deviation, Frequency of 

the Modulati ct BFSK 

signal type was generated. These signals were generated 100 times with and a new 

noise was added to each of them in order to achieve correct recognition percentages 

given in the graphs. These then fed to the recognizer block, in order to find 

ng Signal, Barker Code and SNR values, a total of 105 distin

 data were 

the modulation type. 
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In order to test the effect of PW on recognition of BFSK sign  all other eters 

tant were kept constant and PW was swept through 0,1µsec to 10 est 

results are e 5.58. 

Table 5.58. Effect of PW on recognition of BFSK signals 

Fs (MHz) 
P

(µse

 
mplitude

(mV) 
Barker 
Type 

Freq. 
D ation(MHz) SNR Result 

als, param

cons 0µsec. T

 given in Tabl

 

 

W 
Mean

A
c) 

 
evi

256 0,1 10 5 30 L 35 -AM 

256 0,5 10 5 30  35 L-FM 

256 

10

30; 5

100 10 5 30 5 N

1; 2; 5; 

; 20; 

0; 

 3 L-FM 
 

 

rring to it is see at system c recognize BFSK modula  PW 

s greate µsec.  

s given in Table 5.58 were repeated with 128MHz sampli

ffect of  frequency on system re nition for B  signals. sults 

iven in Table 5.59 and Figure 5.36. 

 

Table 5.59. Effect of  Fs on recognition of BFSK signals 

PW 
Mean 

Amplitude Barker Freq. 

 

Refe  the table, n th an tion for

value r than 1

 

Test ng rate, in order to see 

the e sampling cog FSK Test re

are g

 

Fs (MHz) (µsec) (mV) Type Deviation(MHz) SNR Result 

128 0,1 10 5 30 35 NL-AM 

128 0,5 10 5 30 35 NL-AM 

128 10 10 5 30 35 NL-FM 
1; 2; 5; 

128 20 10 5 30 35 L-FM 

128 100 10 5 30 35 NL-FM 
30; 50; 
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re 5.36. Sy  perform different duty ratio values for BFSK sig

 

 

 

Table 5.60. E

Fs (MHz) PW (µsec) 

Mean
plitude
(mV) 

ker 
Type 

. 

Figu stem ance at nals. 

 

Comparing Tables 5.58 and 5.59, it is seen that system behaves in similar ways for 

256MHz and 128MHz Sampling Rates. 

 

To observe the effects of modulation shape on BFSK recognition, tests in Table 5.58 

were repeated for all Barker Types. Results are given in Table 5.60. 

ffect of  Modulation Shape on recognition of BFSK signals 

 
 BarAm Freq

Deviation(MHz) SNR Result 

256 0,1 10 2 30  35 NL-AM

256 0,5 10 2 30 35  L-FM

256 

1; 2; 5; 10; 

20; 30; 50; 

100 10 2 30 35 NL-FM 

256 0,1; 0,5 10 3 30 35 NL-AM 

256 1 10 3 30 35 L-FM 

256 

20; 30; 50; 

100 10 3 30 35 NL-FM 

2; 5; 10; 

256 0,1 10 4 30 35 L-AM 

256 0,5 10 4 30 35 L-FM 
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Table 5.60 (cont’d) 

Fs (MHz) PW (µsec) 

Mean 
Amplitude 

(mV) 
Barker 
Type 

Freq. 
Deviation(MHz) SNR Result 

256 

1; 2; 5; 10; 

20; 30; 50; 

100 10 4 30 35 NL-FM 

256 0,1; 0,5 10 7 30 35 NL-AM 

256 

1; 2; 5; 10; 

20; 30; 50; 

100 10 7 30 35 NL-FM 

256 FM  0,1 10 11 30 35 L-

256 0,5 10 11 30 35 NL-AM 

256 

1; 2; 5; 10; 

20; 30; 50; 

30 35 NL-FM 100 10 11 

256 0,1 10 13 30 35 NL-AM 

256 

 

0,5; 1; 2; 

5; 10; 20; 

30; 50; 

100 10 13 30 35 NL-FM 
 

 

 

Readers are referred to the lookup table given in Appendix C, which consists of  binary 

We see that system performance is nearly the same for 2-3-4-5-7-11 bit Barker Codes. 

Furthermore system performance is improved with 13 bit Barker Code, because 

number of sults for 

different modulation shapes are also illustrated in the figure below. 

 

codes and their corresponding Barker code types. 

 

frequency jumps in this code is greater than other codes. Test re
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.37. forman differe n shap r BFSK s

rder to test the effect of Frequency Deviation, Frequen Deviation ept 

h 70 and other paramete pt con tant. Test re 

 in Tabl gure 8. 

 

 

Table 5.61. Effect of  Frequency Deviation on recognition of BFSK signals 

Fs (MHz) 
PW 

(µsec) 
Amplitude 

(mV) 
Barker 
Type 

Freq. 
Deviation(MHz) SNR Result 

Figure 5 System per ce at nt modulatio es fo ignals. 

 

 

In o cy  was sw

throug MHz to 1MHz, 

e 5.61 and Fi

rs were ke s results a

given  5.3

Mean 

256 10 10 5 

70; 60; 50; 40; 

5 35 NL-FM 
30; 20; 15; 10; 

256 10 10 5 1 35 No Mod. 
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Figure 5.38. System performance at different Frequency Deviation values for BFSK signals. 

 

 

As given in the table above, for a fixed PW value system performance gets better as 

the Frequency Deviation increases, since the change in the signal frequency becomes 

more obvious. For Frequency Deviation values less than 1MHz, modulation on 

frequency becomes unobservable such that signal is confused with modulationless 

pure signals. 

 

To see the effect of Mean Amplitude on recognition of BFSK signals, other parameters 

were kept constant and Mean Amplitude was swept through 0,1mV to 100mV. Test 

results are given in Table 5.62.  

 

Table 5.62. Effect of  Mean Amplitude on recognition of BFSK signals 

Mean 

 

Fs (MHz) 
PW 

(µsec) 
Amplitude 

(mV) 
Barker 
Type 

Freq. 
Deviation(MHz) SNR Result 

0,1; 0,5; 1; 

2; 5; 10; 

256 10 100 5 30 35 NL-FM 
20; 30; 50; 

 
 

 

Finally, to see the result of changing SNR on system decision, SNR was swept 

through 35dB to 0dB for fixed values of other signal parameters. Test results are given 

in Table 5.63. 
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Table 5.63. Effect R on r f BFSK als 

Fs (MHz) 
PW 

(µsec) 

Me
Amplitu

(mV) 
rker 

Type 
Freq. 

Deviation(MHz) SNR Result 

of  SN ecognition o  sign

an 
de Ba

256 10 10 

25; 20; 

5 30 

35; 30; 

15; 10; 

5; 0 NL-FM 
 

 

Mean Amplitude and SNR values, for BFSK signals. 

 

5.2.4. 

5.2.4.1. BPSK Ca

With different combinations of Sa e, PW, Barker Type and SNR values, a total of 

96 di PSK signal ty generated. Th

and a noise w added to e  of them in rder to rrect ition 

perce s given in the graphs. Th  t  fed to the recognizer block, in order 

 find the modulation type. 

In order to test the effects of signal PW, PW as swept through 0,1µsec to 100µsec, and 

other parameters were kept fixed. Test results are given in Table 5.64. 

 

Table 5.64. Effect of PW on recognition of BPSK signals 

Fs (MHz) PW (µsec) 

Mean 
Amplitude 

(mV) Barker Type SNR Result 

 

It is clearly seen from Tables 5.62 and 5.63 that system performance is independent of 

PMOP CASE 

se 

mpling Rat

stinct B pe was ese signals were generated 100 

 achieve co

times with 

 new as ach  o recogn

ntage ese data were hen

to

 

w

 

256 0,1 10 5 35 NL-AM 

256 0,5; 1; 2 10 5 35 NL-FM 

256 

5; 10; 20; 30; 

50; 100 10 5 35 BPSK 
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From the table it is seen that system confuses BFSK signals with Nonlinear FM signals for 

small PW values. Since frequency of a signal is the derivative of its phase value, it is very 

natural that modulation on phase may be confused with modulation on frequency, and vice 

versa. Also, we see that system makes the correct “BPSK” decision for PW values greater 

than 5µsec. 

 

To see the effect of Sampling Frequency on recognition of BPSK signals, tests given in 

Table 5.64 were rep d with Fs = 128MHz. Results are given in Table 5.65. 

 

 

Table 5.65. Effect of  Fs on recognition of BPSK signals 

Fs (MHz) PW sec) 

Mean 
Amplitude 

(mV) Barker Type SNR Result 

eate

 (µ

128 0,1 10 5 35 NL-AM 

128 0,5; 1; 2 10 5 35 NL-FM 

128 

5; 10; 20; 30; 

10 5 35 BPSK 50; 100 
 
 

 

If we make a compa n between Tables 5.64 and 5.65, we see that system performance is 

absolutely the same oth Sampling Rates. This comparison can also be observed from 

Figure 5.39 
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Figure 5.39. System performance at different sampling rates for BPSK signals. 
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To observe the effects of modulation shape on BPSK recognition, tests in Table 5.64 were 

repeated for all Barker Types. Results are given in Table 5.66 and Figure 5.40. 

 

 

Table 5.66. Effect of  Modulation Shape on recognition of BPSK signals 

Fs (MHz) P

Mean 
Amplitude 

Result W (µsec) (mV) Barker Type SNR 

256 0,1 10 35 NL-AM 2 

256 0 10 2 35 L-FM ,5 

256 1; 2 10 NL2 35 -FM 

256 

5; 10; 20; 30; 

50; 100 2 35 BPS10 K 

256 0 35 NL-A,1 10 3 M 

0,5  35 L-FM 256 ; 1 10 3 

2 NL256  10 3 35 -FM 

256 

5; 10; 20; 30; 

50; 100 0 3 35 B1 PSK 

256 0,1 10 4 35 L-AM 

256 0,5 10 4 35 L-FM 

256 1; 2 10 4 35 NL-FM 

256 

5; 10; 20; 30; 

50; 100 10 4 35 BPSK 

256 0,1 10 7 35 NL-AM 

256 0,5 10 7 35 L-FM 

256 1 10 7 35 NL-FM 

25 7 35 BPSK 6 

2; 5; 10; 20; 

30; 50; 100 10 

2 6 0,1; 0,5 10 11 35 L-FM 5

25 11 35 NL-FM 6 1; 2 10 

256 

5; 10; 20; 30; 

50; 100 10 11 35 BPSK 

256 0,1; 0,5 10 13 35 L-FM 

256 1; 2 10 13 35 NL-FM 

256 

5; 10; 20; 30; 

50; 100 10 13 35 BPSK 
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BPSK, Modulation Shape
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eaders are referred to the lookup table in Appendix C, which includes binary codes and 

their corresponding Ba

 

It is seen that sy nce remai e for different Barker code types. For all 

types, system makes t decision for PW values greater than  

 

To see the effect of Mean Amplitude on n of BPSK si ean Amplitude was 

swept through 0,1mV to 100mV, and othe eters were kep re 

given in Table 5.67.  

Figure 5.40. System performance at different modulation shapes for BPSK signals. 

 

 

R

rker code types. 

stem performa ns the sam

 correc  5µsec.

recognitio gnals, M

r param t constant. Test results a

 

 

Table 5.67. Effect of  Mean Amplitude on recognition of BPSK signals 

Fs (MHz) PW (µsec) 

Mean 
Amplitude 

(mV) Barker Type SNR Result 

256 10 

0,1; 0,5; 1; 2; 

5; 10; 20; 30; 

50; 100 5 35 BPSK 
 
 

 

It is clearly seen from Table 5.67 that system performance is independent of Mean 

Amplitude values, for BPSK signals. 
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Finally, to see the result of changing SNR on system decision, other parameters were fixed 

and SNR was

 

 

68. NR og f B

Fs (MHz) sec) 

an 
tude 
V) Barker T NR Result 

 swept through 35dB to 0dB. Test results are given in Table 5.68. 

Table 5. Effect of  S  on rec nition o PSK signals 

PW (µ

Me
Ampli

(m ype S

256 10 10 

35; 30; 25; 

 10 BPSK 5 20; 15;

256 10 10 5 MPSK 5 

256 10 10 5 NL-FM 0 
 
 

 

It can be seen in Table 5.68 that system performance decays with decreasing SNR, 

especially for SNR values less than 5dB. This can also be observed in Figure 5.41. 
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 5.41. Sys m perfo  a t S K signals. 

 

 

5.2.4.2. MPSK Case 

With different combinations of Sampling Rate, PW, Number of Phase Steps and SNR 

values, a total of 66 distinct MPSK signal type was generated. 4, 6 and 8 step Frank codes 

are used in order to generate MPSK signals for the performance tests. In other words QPSK, 

6-PSK and 8-PSK signals are used in the MPSK signal tests. These signals were generated 

Figure te rmance t differen NR values for BPS
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100 times with and a new noise was added to each of them in order to achieve correct 

recognition percentages given in the graphs. 

 

In order to test the effects of PW, QPSK signals were generated for PW values between 

0,1µsec and 100µsec. Test results are given in Table 5.69. 

 

 

Table 5.69. Effect of PW on recognition of MPSK signals 

Fs (MHz) PW (µsec) 

Mean 
Amplitude 

(mV) Frank Type SNR Result 

256 0,1 10 4 35 NL-AM 

256 0,5 10 4 35 L-FM 

256 1 10 4 35 NL-FM 

256 2 10 4 35 L-FM 

256 

5; 10; 20; 30; 

50; 100 10 4 35 MPSK 
 
 

 

From Table 5.67 it is seen that system behavior is similar to the BPSK case. System makes 

the correct decision of “MPSK” for PW values greater than 5µsec. 

 

Tests given in Table 5.69 were repeated with Fs = 128MHz in order to see the effect of 

Sampling Frequency on recognition of MPSK signals,. Results are given in Table 5.70 and 

Figure 5.42. 

 

 

Table 5.70. Effect of  Fs on recognition of MPSK signals 

Fs (MHz) PW (µsec) 

Mean 
Amplitude 

(mV) Frank Type SNR Result 

128 0,1 10 4 35 NL-AM 

128 0,5 10 4 35 L-FM 

128 1 10 4 35 NL-FM 

128 2 10 4 35 L-FM 

128 

5; 10; 20; 30; 

50; 100 10 4 35 MPSK 
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Figure 5.42. System performance at different sampling rates for MPSK signals. 

 

 

We see that system performance remains unchanged with respect to different sampling 

rates. 

 

To observe the effects of modulation shape on MPSK recognition, tests in Table 5.69 were 

repeated for both 6-step and 8-step Frank codes. Results are given in Table 5.71. 

 

 

Table 5.71. Effect of  Modulation Shape on recognition of MPSK signals 

Fs (MHz) PW (µsec) 

Mean 
Amplitude 

(mV) Frank Type SNR Result 

256 0,1 10 6 35 NL-AM 

256 0,5; 1; 2 10 6 35 NL-FM 

256 

5; 10; 20; 30; 

50; 100 10 6 35 MPSK 

256 0,1 10 8 35 NL-AM 

256 0,5; 1; 2; 5 10 8 35 NL-FM 

256 

10; 20; 30; 

50; 100 10 8 35 MPSK 
 
 

 

Readers are referred to the lookup table in Appendix C, which contains phase difference 

matrices and their corresponding Frank code types. 
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System performance at different modulation shapes for MPSK signals is also illustrated in 

Figure 5.43. 
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Figure 5.43. System performance at different modulation shapes for MPSK signals. 

 

 

First of all it is seen that same performance is observed for 4-step, 6-step and 8-step Frank 

coded MPSK signals. Furthermore, system performance with respect to modulation shape in 

MPSK signals is similar to that of BPSK signals. 

 

To see the effect of Mean Amplitude on recognition of MPSK signals, Mean Amplitude was 

swept through 0,1mV to 100mV, and other parameters were kept constant. Test results are 

given in Table 5.72.  

 

 

Table 5.72. Effect of  Mean Amplitude on recognition of MPSK signals 

Fs (MHz) PW (µsec) 

Mean 
Amplitude 

(mV) Frank Type SNR Result 

256 10 

0,1; 0,5; 1; 2; 

5; 10; 20; 30; 

50; 100 4 35 MPSK 
 
 

 

It is clearly seen from Table 5.72 that system performance is independent of Mean 

Amplitude values, for MPSK signals. 
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Finally, to see the result of changing SNR on system decision, other parameters were fixed 

and SNR was swept through 35dB to 0dB. Test results are given in Table 5.73 and Figure 

5.44. 

 

 

Table 5.73. Effect of  SNR on recognition of MPSK signals 

Fs (MHz) PW (µsec) 

Mean 
Amplitude 

(mV) Frank Type SNR Result 

256 10 10 4 

35; 30; 25; 

20; 15; 10; 5 MPSK 

256 10 10 4 0 NL-FM 
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Figure 5.44. System performance at different SNR values for MPSK signals. 

 

 

It can be seen in Figure 5.44 that system performance decays for very low SNR, especially 

for SNR values less than 5dB. 

 

5.3. OVERALL PERFORMANCE 

A total of 800 signals were generated including all the modulation types. Distribution of these 

signals among their modulation types are given in the table below: 
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Signals were generated with 5µsec PW, 10mV Mean Amplitude and 25dB SNR value. For all 

modulation types, half of the signals were sampled with 256MHz and the remaining half were 

sampled with 128MHz. A different Additive White Gaussian noise was generated for each 

signal. 

 

The confusion matrix reflecting the results of the tests is given in Table 5.75. 

 

 

Table 5.75. Confusion Matrix for the Overall System 

 Estimated Modulation 

Actual 
Modulation 

No 

Modulation L-AM NL-AM L-FM NL-FM BPSK MPSK 

No Modulation 200/200 0 0 0 0 0 0 

L-AM 0 100/100 0 0 0 0 0 

NL-AM 0 13/100 69/100 18/100 0 0 0 

L-FM 0 0 0 100/100 0 0 0 

NL-FM 0 0 0 18/100 72/100 3/100 7/100 

BPSK 0 0 0 0 0 100/100 0 

MPSK 0 0 0 0 0 1/100 99/100 
 
 

 

It is seen that system can recognize “Modulationless”, “Linear AM”, “Linear FM”, “BPSK”, 

“MPSK” with approximately 100% rates. 

 

Test results may be summarized as follows; 

 

• 200 of the 800 signals were modulationless pure signals. System made the correct 

decision of ”No Modulation” with 100% rate. 

• 100 of the 800 signals were Linear AM signals. System made the correct decision of 

” Linear AM” with 100% rate. 

• 700 of the 800 signals were not Linear AM signals. However, system made “Linear 

AM ” decision for 13 of these 700 signals. False Alarm Rate for Linear AM signals is 

1,85%. 

• 100 of the 800 signals were Nonlinear AM signals. System made the correct 

decision of ” Nonlinear AM” with 69% rate. System confused this type of signals 

mostly with “Linear AM” and “Linear FM”. 

• 100 of the 800 signals were Linear FM signals. System made the correct decision of 

” Linear FM” with 100% rate. 
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• 700 of the 800 signals were not Linear FM signals. However, system made “Linear 

FM ” decision for 36 of these 700 signals. False Alarm Rate for Linear FM signals is 

5,14%. 

• 100 of the 800 signals were Nonlinear FM signals. System made the correct 

decision of ” Nonlinear FM” with 69% rate. System confused this type of signals 

mostly with “Linear FM” signals. 

• 100 of the 100 signals were MPSK signals. System made the correct decision of ” 

MPSK” with 99% rate. 

• 700 of the 800 signals were not MPSK signals. However, system made “MPSK” 

decision for 7 of these 700 signals. False Alarm Rate for MPSK signals is 1%. 

 

Correct decision rates and false alarm rates of corresponding modulation types are 

summarized in the table below. 

 

 

Table 5.76. Overall Performance of the System 

Modulation Type Correct Decision Rate False Alarm Rate 

No Modulation 100,00% 0,00% 

L-AM 100,00% 1,86% 

NL-AM 69,00% 0,00% 

L-FM 100,00% 5,14% 

NL-FM 72,00% 0,00% 

BPSK 100,00% 0,57% 

MPSK 99,00% 1,00% 
 
 

 

As it is seen in Table 5.76, system behavior is much better than an acceptable modulation 

recognition performance; for No Modulation, Linear AM, Linear FM, BPSK and MPSK 

signals. Nonlinear AM is mostly confused with Linear AM, and  Nonlinear FM is mostly 

confused with Linear FM. These confusions may be decreased if the Euclidean distance, 

which is calculated between Fractal dimensions of the current signal and the database 

signal, is replaced with a more talented decision method. 

 

In order to evaluate the performance of this system, the same set of 800 signals were given 

to the Autoregressive Model Decision block and the Fractal Theory Decision block 

separately, and their decision results were collected. Below is given the results of 

Autoregressive Model Decision block. 
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Table 5.77. Confusion Matrix for Autoregressive Model Decision 

 Estimated Modulation 

Actual 
Modulation 

No 

Modulation BFSK QFSK BPSK QPSK 

No Modulation 200/200 0 0 0 0 

L-AM 100/100 0 0 0 0 

NL-AM 100/100 0 0 0 0 

L-FM 0 82/100 18/100 0 0 

NL-FM 0 50/100 40/100 10/100 0 

BPSK 0 0 0 100/100 0 

MPSK 0 0 0 100/100 0 
 
 

 

As is it seen from Table 5.77, Autoregressive Model can not recognize AMOP signals. Also it 

is not capable of recognizing Linear FM signals; it can make only BFSK or QFSK decision 

which constitute a small portion of Nonlinear FM types. Also, the method recommended in 

the Autoregressive Model to separate between BPSK and QPSK signals fails to separate 

MPSK signals.  

 

Results of Fractal Theory Decision block is given in the table below. 

 

 

Table 5.78. Confusion Matrix for Fractal Theory Decision 

 Estimated Modulation 

Actual 
Modulation 

No 

Modulation L-AM NL-AM L-FM NL-FM BPSK MPSK 

No Modulation 188/200 10/200 2/200 0 0 0 0 

L-AM 0 100/100 0 0 0 0 0 

NL-AM 0 3/100 68/100 27/100 2/100 0 0 

L-FM 0 0 0 100/100 0 0 0 

NL-FM 0 0 0 19/100 70/100 7/100 4/100 

BPSK 0 0 0 100/100 0 0 0 

MPSK 0 0 0 0 100/100 0 0 
 
 

 

Referring to the table we see that, Fractal Theory Decision method confuses “No Modulation 

signals” with AMOP signals. Performance of this method for AM and FM signals are the 

same as the performance of the overall system, because this method is issued for AM and 
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FM recognition in the whole system too. However, Fractal Theory Decision method itself is 

not capable of recognizing PSK signals, thus confuses PSK signals with FMOP types.
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CHAPTER 6 
 
 

6. CONCLUSIONS 
 
 
 
In this thesis, the problem of automatic modulation recognition is considered. First of all an 

investigation was made in order to understand the reason for radar systems to apply 

modulation on their signals. Then a detailed literature search was made among the subject 

of Intra-pulse Modulation Recognition. After all, a complete system has been proposed to 

recognize the modulation type of IMOP signals.  

 

In this system, benefits of the Auto Regressive Model Decision [8] and Fractal Theory 

Decision [7] are combined, and the AM Depth Percent is added as a new feature for more 

accurate classification.  

 

The method based on Fractal Theory decision has good performance for CW (no 

modulation) and FMOP signals. However during the tests, three main problems are 

encountered. The results show that; 

- The method fails to distinguish PMOP signals with FMOP signals. 

- AMOP signals are mostly confused with FMOP signals. 

- The results are sensitive to noise. 

 

This method also cannot classify AM signals. However, being a class of intrapulse 

modulations, recognition of AMOP signals is in scope of our work. To overcome this 

problem, a new feature as “AM Depth Percent” is inserted to the algorithm. This feature 

gives a measure of the modulation on the envelope of the pulse. Together with the “Box 

Dimension” and “Information Dimension”, “AM Depth Percent” is used to find the modulation 

type of the AMOP signals. However, this requires a pre-knowledge of whether the signal has 

FMOP or AMOP property.  

 

To solve this problem, and to be able to recognize PMOP signals, the Autoregressive Model 

Decision method is used in corporation with the Fractal Theory Decision method. 

 

The Autoregressive Model Decision method solves the problem of mixing PMOP signals with 

FMOP signals. However, the method is not successful for distinguishing between BPSK and 

MPSK signals. To overcome this problem, a new decision block is inserted to the system. In 
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this block, magnitudes of the jumps in the phase of the pulse is calculated. Then, if the 

minimum magnitude is less than π radians, the signal is decided to have MPSK modulation, 

otherwise BPSK modulation. However, for the success of the differentiation method, correct 

retrieval of the signal phase from the predetection signal is essential. Correct retrieval of the 

signal phase is directly dependent on the accuracy of the estimated center frequency. To 

eliminate the effect of the error in estimated center frequency, phase of the signal is 

corrected according to the deviation of the extracted Pulse Frequency Mean from the IF.  

 

Furthermore, before all these decision blocks the signal is passed through a bandpass filter 

centered on the intermediate frequency. By this way noise is suppressed more and this 

improves the system performance for low SNR applications.  

 

Performance tests were made for the resultant system. Same set of signals were input to the 

Fractal Theory Decision block and Autoregressive Model Decision block individually. It is 

observed that the proposed system shows better performance than the other two systems. 

 

The system we propose shows good performance for SNR values greater than 10-15dB. 

Improving system performance for more noisy environments can be considered as a future 

work. 

 

Additionally, for AMOP and FMOP signals, we can make Linear or Nonlinear decision for the 

last. Decision of the exact modulation shape for these signals can be another future work to 

be considered. 

 

As a result, Modulation Recognition solution offered in this thesis collects the beneficial 

points of the Autoregressive Model Decision Method and Fractal Theory Decision Method, 

and together with the usage of AM Depth Percent value and the IMOP Database, gives a 

more comprehensive solution for the “Modulation Recognition of IMOP Signals” problem. 

 

Moreover, if the recognition of Unintentional Modulations on Pulse (UMOP) is also studied, 

analysis of IMOP and UMOP signals will introduce a compact solution for the Specific 

Emitter Identification (SEI) problem. 
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APPENDICES 
 
 

A. MODULATION SHAPES 

 
 
 

AMPLITUDE MODULATION SHAPES 

Amplitude, Frequency and Phase components and the baseband signal corresponding to 

AM shapes which are considered in this thesis are illustrated in the figures below. 
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Figure A.1. Linear Increasing Amplitude Modulation (PW = 100µsec, Fs = 320kHz, AM 

Depth = 50%) 
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Figure A.2. Linear Decreasing Amplitude Modulation (PW = 100µsec, Fs = 320kHz, AM 

Depth = 50%) 
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Figure A.3. Positive Parabolic Amplitude Modulation (PW = 100µsec, Fs = 320kHz, AM 

Depth = 50%) 
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Figure A.4. Negative Parabolic Amplitude Modulation (PW = 100µsec, Fs = 320kHz, AM 

Depth = 50%) 
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Figure A.5. Sinusoidal Amplitude Modulation (PW = 100µsec, Fs = 320kHz, AM Depth = 

50%) 
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Figure A.6. Triangular Amplitude Modulation (PW = 100µsec, Fs = 320kHz, AM Depth = 

50%) 

 

 

 

 118



1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.005

0.01

Amplitude

1 1.5 2 2.5 3 3.5 4

x 10
4

-1

-0.5

0

0.5

1
x 10

4 Frequency

1 1.5 2 2.5 3 3.5 4

x 10
4

-5

0

5

Phase

1 1.5 2 2.5 3 3.5 4

x 10
4

-0.01

-0.005

0

0.005

0.01

Baseband Signal

 

Figure A.7. Ramp Amplitude Modulation (PW = 100µsec, Fs = 320kHz, AM Depth = 50%) 
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Figure A.8. Square Amplitude Modulation (Duty Ratio = 40%,  PW = 100µsec, Fs = 320kHz, 

AM Depth = 50%) 
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FREQUENCY MODULATION SHAPES 

 
Amplitude, Frequency and Phase components and the baseband signal corresponding to 

FM shapes which are considered in this thesis are illustrated in the figures below 

 

 

 121



0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.005

0.01

Amplitude

0 1 2 3 4 5 6 7 8 9 10

x 10
4

-1

0

1

x 10
5 Frequency

0 1 2 3 4 5 6 7 8 9 10

x 10
4

-20

0

20

Phase

0 1 2 3 4 5 6 7 8 9 10

x 10
4

-0.01

-0.005

0

0.005

0.01
Baseband Signal

 

Figure A.9. Linear Increasing Frequency Modulation (PW = 100µsec, Fs = 320kHz, 

Frequency Deviation = 200kHz) 
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Figure A.10. Linear Decreasing Frequency Modulation (PW = 100µsec, Fs = 320kHz, 

Frequency Deviation = 200kHz) 
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Figure A.11. Positive Parabolic Frequency Modulation (PW = 100µsec, Fs = 320kHz, 

Frequency Deviation = 100kHz) 
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Figure A.12. Negative Parabolic Frequency Modulation (PW = 100µsec, Fs = 320kHz, 

Frequency Deviation = 100kHz) 
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Figure A.13. Sinusoidal Frequency Modulation (PW = 100µsec, Fs = 320kHz, Frequency 

Deviation = 100kHz) 
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Figure A.14. Triangular Frequency Modulation (PW = 100µsec, Fs = 320kHz, Frequency 

Deviation = 100kHz) 
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Figure A.15. Ramp Frequency Modulation (PW = 100µsec, Fs = 320kHz, Frequency 

Deviation = 100kHz) 
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Figure A.16. Square Frequency Modulation (PW = 100µsec, Fs = 320kHz, Frequency 

Deviation = 100kHz, Duty Ratio = 40%) 
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Figure A.17. BFSK Modulation (PW = 100µsec, Fs = 320kHz, 13-bit Barker, Frequency 

Deviation = 100kHz) 
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PHASE MODULATION SHAPES 

 
Amplitude, Frequency and Phase components and the baseband signal corresponding to 

PM shapes which are examples of the modulation shapes considered in this thesis are 

illustrated in the figures below 
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Figure A.18. BPSK Modulation (PW = 100µsec, Fs = 320kHz, 13-bit Barker) 
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Figure A.19. QPSK Modulation (PW = 100µsec, Fs = 320kHz, 4-step Frank Code) 
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B. GRAPHICAL USER INTERFACE 
 
 
 
Screenshot of the “Modulation Recognizer-GUI” is given in the figure below. 

 

 

Figure B.1. Screenshot of the “Modulation Recognizer-GUI” 

 

 

This screen is composed of the “Signal Generator”, “Signal Decomposer”, “Modulation 

Analyzer”, “Database Update” and “Modulation Recognizer” parts.  

 

 SIGNAL GENERATOR 

Signal Generator enables the system to generate signals with various modulation 

properties. This part is marked on the GUI in Figure B.2. Details of this part is given in 

Figure B.3. 
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Figure B.2. Signal Generator of the GUI 

 

 

 

Figure B.3. Details of the Signal Generator. 

 

 

As given in Figure B.3, there are 4 tab-panels of the Signal Generator, for different 

modulation types. In each tab, different modulation shapes are presented to the user, 

and user can generate any type of signal by choosing the Modulation Shape and 

entering the corresponding parameter’s values. Modulation Shape choices with their 

corresponding tabs are given in the table below. 
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Table B.1. Modulation Shape choices corresponding to different tabs. 

TAB AMOP FMOP PMOP 

Linear-Increasing Linear-Increasing BPSK 

Linear-Decreasing Linear-Decreasing 

Positive Parabolic Positive Parabolic 

Negative Parabolic Negative Parabolic 

Sinusoidal Sinusoidal 

Triangular Triangular 

Ramp Ramp 

Square M
O

D
U

LA
TI

O
N

 S
H

A
PE

 C
H

O
IC

ES
 

Square 

BFSK 

MPSK 

 
 

 

Since CW has “no modulation”, there is not a modulation shape choice for the CW tab. 

 

Once the required parameters are entered for the selected modulation type, user 

presses the “Generate Signal” button on the corresponding tab, and the desired 

continuous signal is generated.  

 

 SIGNAL DECOMPOSER 

After the continuous signal is generated, signal receiver block runs on the backplane. 

After this block the continuous signal is converted to a discrete signal sampled at the 

rate entered by the user at the Signal Generation part. Then this signal is behaved as 

the “received signal”, and in the Signal Decomposer part the “received signal” is 

decomposed into its Envelope(Amplitude) – Phase – Frequency components to be 

presented to the user. This part is marked on the GUI in Figure B.4. 
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Figure B.4. Signal Decomposer of the GUI 

 

 

 MODULATION ANALYZER AND DATABASE UPDATE 

Modulation Analyzer part enables the user to manually analyze the received signal’s 

modulation properties. This part is marked on the GUI in Figure B.5. 

 

 

 

Figure B.5. Modulation Analyzer Part of the GUI. 
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Each section gives opportunity to the user to analyze the signal in a different point of 

view. 

  

Pressing the “Check AMOP” button, one can check the modulation percent on the 

amplitude of the received signal. 

 

In the Autoregressive Model section, signal is segmented into overlapping parts 

according to the values entered by the user. Then pressing the “AR Model” button, 

one can learn the Autoregressive Model’s decision about this signal. 

 

In the Fractal Theory section, Fractal Dimensions of the received signal is calculated 

and plotted on the axis to the right with the Marker Color & Type chosen by the user. 

Unless the user presses the “Clean” button, this axes is not cleaned, so one can 

analyze various signals and see whether they are grouped on the axes with respect 

to their modulation types. 

  

Once the user calculates the signal’s AM % and Fractal Dimension values, he can 

save the properties of this signal in the database by selecting its corresponding 

modulation type. User can also enter some comments related to the signal, to be 

saved in the database. This part is marked on the GUI in Figure B.6. 

 

 

 

Figure B.6. Database Update Part of the GUI. 
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 MODULATION RECOGNIZER 

If the user presses the “Find Modulation Type” button on the GUI, system begins to 

run modulation analysis tools on the received signal automatically. By this way, user 

can learn the system’s decision about the modulation type of the received signal, 

without making any manual analysis. 

 

Depending on the signal’s modulation property, system makes a decision about the 

signal and reports this decision by the use of a dialog box, seen in Figure B.7. 

 

 

 

Figure B.7. Modulation Recognizer Decision Box 

 

 

If the modulation type of the signal is AM or FM, these signals are analyzed by the 

help of Fractal Theory Decision Block. While this block makes decision depending on 

a database search, Another window reporting the database search results are also 

opened for AM and FM modulation types. This window is shown in Figure B.8. 
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Figure B.8. Database Search Results of the Fractal Theory Decision Method. 

 

 

In this window, signals from the database which are found to be close to the currently 

analyzed signal are listed, with an ascending order of their Normalized Euclidean 

Distances. Also signal properties of the currently analyzed signal, and the signals from 

the database are shown respectively, so that one can make a comparison between 

them.  

 

 

A CD containing the standalone executable version of the Modulation Recognizer application 

is also included at the end of  this thesis. The application is compiled with Matlab R2006a, 

thus in order to run the software it is essential that you install the MCR (Matlab Component 

Runtime) 7.4 on your PC. Since this is a standalone version, you do not need to install 

Matlab to your computer.  

 

Furthermore, for the Modulation Recognizer application to operate correctly, it is essential 

that you add the IMOP database given in the CD to your computer’s data sources. To 
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achieve this, from Start menu of your computer, enter  Settings -> Control Panel -> 

Administrative Tools. In this menu click on the Data Sources (ODBC) shortcut. In the 

opening ODBC Data Source Administrator window (Figure B.9), add the IMOPDatabase 
selecting Microsoft Access Driver (*.mdb) option (Figure B.10).  
 
 

 

Figure B.9. ODBC Data Source Administrator window. 

 
 

 

Figure B.10. Create New Data Source window. 
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In the opening ODBC Microsoft Access Setup window, add the IMOPDatabase to your 

computer’s data sources. The resultant form of this window should look like the one in Figure 

B.11. 
 
 

 

Figure B.11. ODBC Microsoft Access Setup window. 
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C. PSK CODES 

 
 
 

Table C.1. Binary Codes corresponding to Barker code Types 

Number of Bits in the Barker Code Binary Code 

2 1 0 

3 1 1 0 

4 1 1 0 1 

5 1 1 1 0 1 

7 1 1 1 0 0 1 0 

11 1 1 1 0 0 0 1 0 0 1 0 

13 1 1 1 1 1 0 0 1 1 0 1 0 1 
 

 

Table C.2. Phase Difference Matrices corresponding to Frank Code Types 

Number of Phase Steps in the 
Frank Code 

Phase Difference Matrix 

2 

 

4 

 

6 

 

8 
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