

DESIGN AND IMPLEMENTATION
OF

A PLUG-IN FRAMEWORK
FOR

DISTRIBUTED OBJECT TECHNOLOGIES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

KORAY KADIO�LU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan Özgen
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. Ay�e Kiper
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ali Do�ru
Supervisor

Examining Committee Members:

Prof. Dr. Adnan Yazıcı (METU, CENG)

Assoc. Prof. Dr. Ali Do�ru (METU, CENG)

Assoc. Prof. Dr. �smail Hakkı Toroslu (METU, CENG)

Assist. Prof. Dr. Pınar �enkul (METU, CENG)

Ali Özzeybek (ASELSAN)

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name, Last name: Koray Kadıo�lu

Signature :

 iv

ABSTRACT

DESIGN AND IMPLEMENTATION OF A PLUG-IN FRAMEWORK
FOR DISTRIBUTED OBJECT TECHNOLOGIES

Kadıo�lu, Koray

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ali Do�ru

September 2006, 54 pages

This thesis presents a framework design and implementation that enables run-time

selection of different remote call mechanisms. In order to implement an extendable

and modular system with run-time upgrading facility, a plug-in framework design is

used. Since such a design requires enhanced usage of run-time facilities of the

programming language that is used to implement the framework, in this study Java is

selected because of its reflection and dynamic class loading facilities. A sample

usage of this framework is enabling an application to distribute its tasks over a

network using a suitable distributed object technology (DOT). In this work, CORBA,

RMI and Java Sockets are the sample DOT plug-ins. A series of performance

evaluations of these DOTs are presented to establish a baseline for choosing a

suitable DOT for the application domain that uses this framework.

Keywords: Plug-in framework, Java Socket, RMI, CORBA

 v

ÖZ

DA�ITIK NESNE TEKNOLOJ�LER� �Ç�N
PLUG-IN ALTYAPISI TASARIM VE GERÇEKLENMES�

Kadıo�lu, Koray

Yüksek Lisans, Bilgisayar Mühendisli�i Bölümü

Tez Yöneticisi: Assoc. Prof. Dr. Ali Do�ru

Eylül 2006, 54 sayfa

Bu tezde, çalı�ma zamanında de�i�ik uzaktan fonksiyon ça�rımı yapabilme

mekanizmaları arasında seçim yapılabilmesine olanak tanıyan bir altyapının tasarım

ve gerçeklemesi sunulmu�tur. Çalı�ma zamanında yeniden düzenlenebilme

yetene�ine sahip, geni�leyebilir ve modüler bir sistem gerçeklemek için plug-in

altyapısı tasarımı kullanılmı�tır. Böyle bir tasarım, gerçeklemede kullanılacak

programlama dilinin çalı�ma zamanına ait yeteneklerine yo�un derecede ihtiyaç

duyaca�ı için, bu çalı�mada yansıma ve dinamik sınıf yükleme yetenekleri nedeniyle

Java seçilmi�tir. Bu altyapının örnek bir kullanımı, herhangi bir uygulamanın çe�itli

i�leri a� üzerinde da�ıtık nesne teknolojileri ile gerçekle�tirebilmesidir. Bu çalı�mada

CORBA, RMI ve Java soketleri örnek plug-inler olarak gerçeklenmi�tir. Bu altyapıyı

kullanacak uygulamanın kendine uygun bir da�ıtık nesne teknoloji seçebilmesi

konusunda bir dayanak olu�turabilmek amacıyla bir dizi performans analizi

sunulmu�tur.

Anahtar Kelimeler: Plug-in altyapısı, Java Soket, RMI, CORBA

 vi

To My Parents and My Lovely Sister

 vii

ACKNOWLEDGMENTS

The author wishes to express his deepest gratitude to his supervisor Assoc. Prof. Dr.

Ali Do�ru for his guidance, advice, criticism, encouragements and insight throughout

the research.

The author also thanks to ASELSAN Inc. for the support on academic studies.

The author would also like to thank Emre Ba�eski for his suggestions and comments.

 viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ..v

ACKNOWLEDGMENTS.. vii

TABLE OF CONTENTS.. viii

LIST OF TABLES..x

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS .. xii

CHAPTERS

 1 INTRODUCTION ..1

 2 REVIEW OF PLUG-IN FRAMEWORK AND DISTRIBUTED OBJECT

TECHNOLOGIES..3

2.1. Plug-in Framework...3
2.2. DOTs ...7

2.2.1 Sockets...7
2.2.2 CORBA..8
2.2.3 RMI..9

 3 DESIGN AND IMPLEMENTATION...11

3.1. The Plug-in framework...11
3.1.1. Plug-in Interface..11
3.1.2. Sharing Data with a Plug-in ...11
3.1.3. Plug-in Framework Interface ...12
3.1.4. Packing a Plug-in...13
3.1.5. Locating a Plug-in ...14
3.1.6. Run-time Class Loading ..14
3.1.7. Dependency Problem within the Plug-ins ..15
3.1.8. Defining Additional Constraints on Plug-ins..16
3.1.9. Using the Framework for DOTs...16

3.2. Socket Plug-in..21
3.2.1. Extensible Markup Language (XML) ..21
3.2.2. XML Schema Description ...22
3.2.3. Generating Java Classes from XSD File ..23
3.2.4. The Plug-in Design and Implementation..23

3.3. CORBA Plug-in ...25
3.3.1. Interface Definition Language (IDL) ...25
3.3.2. Object Request Broker (ORB) ...26
3.3.3. The Plug-in Design and Implementation..27

3.4. RMI Plug-in ...29
 4 EVALUATION OF COMPARISON RESULTS...32

 ix

4.1. Testing Environment ..32
4.2. General Discussions ...33
4.3. Parameterless Call of Return Type Void...33
4.4. Call of Return Type Void with Primitive Type Parameter.............................34
4.5. Call of Return Type Void with Varying Length Parameter35
4.6. Call of Return Type Void with Primitive Type Parameter Array...................38
4.7. Call of Return Type Void with Varying Length Parameter Array41
4.8. Call with Return and Parameter Type of Primitive Type...............................44
4.9. Call with Return and Parameter Type of Varying Length44
4.10. Call with Return and Parameter Type of Primitive Type Array...................46
4.11. Call with Return and Parameter Type of Varying Length Array..................48

 5 CONCLUSION...51

REFERENCES ...53

 x

LIST OF TABLES

Table 4.1: Results for no parameter...34

Table 4.2: Results for int parameter ..34

Table 4.3: Results for String parameter (Single computer)36

Table 4.4: Results for String parameter (Multiple computers)37

Table 4.5: Results for int array parameter (Single computer)...................................38

Table 4.6: Results for int array parameter (Multiple computers)..............................39

Table 4.7: Results for String array parameter (Single computer)42

Table 4.8: Results for String array parameter (Multiple computers).........................42

Table 4.9: Results for int parameter and return..44

Table 4.10: Results for String parameter and return (Single computer)....................45

Table 4.11: Results for String parameter and return (Multiple computers)...............45

Table 4.12: Results for int array parameter and return (Single computer)47

Table 4.13: Results for int array parameter and return (Multiple computers)47

Table 4.14: Results for String array parameter and return (Single computer)...........49

Table 4.15: Results for String array parameter and return (Multiple computers)49

 xi

LIST OF FIGURES

Figure 2.1: Some possible configurations of plug-ins [10]...5

Figure 2.2: Platform architecture managing a two component application [10]..........6

Figure 2.3: A request passing from client to object implementation [2]9

Figure 2.4: A general RMI architecture ...10

Figure 3.1: The dependencies of the plug-in framework design12

Figure 3.2 Use-case diagram of the framework design ..13

Figure 3.3 Sequence diagram of using this framework ..18

Figure 3.4 Sequence diagram of run-time plug-in loading/unloading.......................20

Figure 3.5: Graphical representation of the schema definition file24

Figure 3.6: Resolution of the circular dependency problem in RMI.........................31

Figure 4.1 Average results of primitive data types from [7].....................................35

Figure 4.2: Results for String parameter (Single computer)37

Figure 4.3: Results for String parameter (Multiple computers)37

Figure 4.4: Results for int array parameter (Single computer)39

Figure 4.5: Results for int array parameter (Multiple computers).............................40

Figure 4.6 Results for int array parameter from [8]..40

Figure 4.7: Results for String array parameter (Single computer)42

Figure 4.8: Results for String array parameter (Multiple computers)43

Figure 4.9 Results for object array parameter from [5] ..43

Figure 4.10: Results for String parameter and return (Single computer)45

Figure 4.11: Results for String parameter and return (Multiple computers)..............46

Figure 4.12: Results for int array parameter and return (Single computer)47

Figure 4.13: Results for int array parameter and return (Multiple computers)48

Figure 4.14: Results for String array parameter and return (Single computer)..........50

Figure 4.15: Results for String array parameter and return (Multiple computers).....50

 xii

LIST OF ABBREVIATIONS

DOT : Distributed Object Technology

OMG : Object Management Group

CORBA : Common Object Request Broker Architecture

RMI : Remote Method Invocation

FSP : Finite State Process

UDP : User Datagram Protocol

TCP : Transfer Control Protocol

IDL : Interface Definition Language

ORB : Object Request Broker

JFC : Java Foundation Classes

JVM : Java Virtual Machine

XML : Extensible Markup Language

XSD : XML Schema Definition

DTD : Document Type Definition

 1

CHAPTER 1

INTRODUCTION

Responding to different distributed architecture demands for the application domain

and choosing a suitable communication methodology for these demands are very

important tasks for reducing the complexity of the design architecture and the cost of

development life-cycle. By using an extendible design for different communication

methodologies, one can reduce the complexity and increase the maintainability of the

code. Also, this extendible design requires less testing since only testing the extended

parts will be sufficient.

In [1] Michael Pilone explains how to build an extendible design using Java’s

dynamic class loading mechanism, namely the plug-in framework. Plug-in

framework constructs the basis for the extendible design mentioned above. With this

design, one can add or remove a code segment called plug-in to a previously

developed application without recompiling or re-testing it. Furthermore, this addition

or removal operation does not require the application to be rebooted.

Different communication methodologies called Distributed Object Technologies

(DOTs) are presented in [2, 3] for the distributed architectures. OMG [2] specifies a

DOT called CORBA which enables heterogeneous systems to interact. In [3] two

DOTs called RMI and Java Sockets are presented. RMI is specified for only

applications that are developed using Java, whereas Java sockets are the generic

socket implementations in Java language.

Since different distributed architectures need different DOTs, it is a common practice

to choose the suitable one that fits best to the application requirements by using the

guidance of previous comparison results of different DOTs. Ahuja and Quintao [4]

 2

evaluate the performance of RMI and Java Sockets. In [5, 6, 7] RMI and CORBA are

compared according to their performance based on different applications. A whole

performance comparison of all three DOTs is given by Eggen and Eggen in [8].

Thesis Organization

In Chapter 2, plug-in framework development and DOTs are reviewed. The plug-in

framework that is implemented in this work is detailed in Chapter 3 which examines

different DOTs as different plug-ins to the system. After considering previous

comparisons in detail, a new performance comparison is presented in Chapter 4.

Finally, in Chapter 5, the presented work is concluded.

Contributions

The contribution of this thesis is implementing a plug-in framework which can use

different DOTs as its plug-ins and evaluating the performance of the implemented

DOT plug-ins in this framework.

 3

CHAPTER 2

REVIEW OF PLUG-IN FRAMEWORK AND
DISTRIBUTED OBJECT TECHNOLOGIES

In this chapter, the plug-in framework design and the distributed object technologies

(DOTs) are reviewed. After presenting the pros and cons of developing a plug-in

framework, three of DOTs, namely CORBA, RMI & sockets will be explained as the

candidate plug-ins of the communication framework implemented in this thesis.

Performance results of these DOTs will be discussed and compared with the previous

work in chapter 4.

2.1. Plug-in Framework

Every software requires some evolutions in any state of its life-cycle, since the

requirements change in time or some bugs may occur in the implementation.

Responding to these changes requires either recompilation of the source code and

retesting the side effects, or stopping and restarting the system in traditional

approaches.

To solve these issues, a new approach called component oriented software

development [9] has been developed. Components are code segments that

encapsulate functionality and implement a certain interface. Plug-in framework

design is simply a component oriented design with extra information that plug-ins

are optional rather than required components.

In [10, 11], the advantages of the plug-in framework design are summarized as:

• Increased extendibility: Since it is impossible to predict all the future work

on the application domain, system should be open to be extended by new

 4

technologies. For instance, a movie player should have the ability to be

extended by a new codec. But it is undesirable to build a new version for each

codec, so by a plug-in framework design, one can add a new codec to the

system without rebuilding a new version.

• Decomposed large systems: Large systems require much bigger resources

than simple applications, so only required part of the whole should be

deployed. This issue can be solved by configuration files but in some cases,

handling all these configuration files also becomes a huge problem. In a plug-

in framework, only required plug-ins are deployed, so the resources would be

utilized. For instance, the Eclipse Integrated Development Environment [12]

works with various programming languages but using this plug-in framework

design, only the required one is deployed.

• Run-time upgrading: In long running safety critical systems, it is a big

problem to shut the application down to perform an upgrade. This issue also

is solved using the framework, since the plug-ins are run-time configurable.

• Enhanced third party usage: Since it is impossible to know all the

requirements when it is initially being developed, a system should be open to

change as much as possible. These changes should not increase the

development and testing cost and effort. In some cases, it is the best way to

use specialist third parties. Since it is inconvenient to give all the source code

to third parties, building a plug-in framework and giving only the plug-in

specification of the system will be sufficient.

• Increased modularity: A plug-in simply implements an interface in the

framework, so all the information behind is hidden by this encapsulation.

This is the primary criteria for system modularization. Any change on such a

framework would be easier than through the traditional software design

approach.

There may also be some problems while developing a plug-in framework, one of

which is the desirable architectural changes (component addition, component

removal and component replacement) conducted at run-time as stated in [13] by

 5

Oreizy et al. All these issues are connected with the run time facilities that the

programming language used to develop the framework supports.

Java programming language has simplified run-time problems associated with plug-

in framework development using the run-time interpretation of bytecodes. Using the

dynamic class loading mechanism [14] of Java, one can easily start, stop or replace

existing plug-ins. This dynamic class loading mechanism and run-time class search

semantics can be easily optimized for the application domain by subclassing the

ClassLoader given in the Java spec.

In [23], Richard S. Hall discusses a policy-driven class loader namely ModuleLoader

that subclasses Java’s ClassLoader. In addition to the run-time facilities in the Java’s

ClassLoader that are crucial for a plug-in framework, ModuleLoader also provides

support for modifying the search path, managing class versions and adding/removing

class definitions at run-time.

Another problem that may arise with plug-in framework development is the

dependency issue within the plug-ins. Fitting all the plug-ins in the framework is

similar to solving a jigsaw puzzle. Holes represent the plug-in interfaces in the

framework, while the pegs are the classes that implement this interface. In Figure

2.1, possible configurations of the plug-ins are stated.

(a) (b) (c)

Figure 2.1: Some possible configurations of plug-ins [10]

 6

In Figure 2.1 (a) and (b), dependency problem would not occur, since (a) has no

dependency at all and the dependency at (b) is the responsibility of the plug-in that is

added to our plug-in framework. In Figure 2.1 (c), the problem is obvious. A plug-in

needs another plug-in to be installed to run correctly.

In [10] this problem is solved using multiple plug-in interfaces and a policy interface

called Strategy. By this solution, plug-in framework uses the Strategy class that the

plug-in supports to resolve the dependency issue (Figure 2.2). In this design, multiple

Strategy classes and plug-in types are supported to avoid multiple dependency

problems.

Figure 2.2: Platform architecture managing a two component application [10]

S. Handschuh solves this issue using the Java’s reflection in sub plug-in interfaces

called OntoPluginServiceProvider and OntoPluginServiceConsumer in [11]. In this

design, plug-in framework acts as a rendezvous between provider plug-in that serves

a service and the consumer plug-in that needs this service to run correctly.

In [15], this problem is discussed in a behavioral manner. In this approach, it is

clearly stated that a group of plug-ins may run correctly, but a new component may

cause problems. To solve this, building a structural and behavioral model is needed.

 7

To accomplish this, the Darwin ADL [16] is used in structural modeling whereas the

Finite State Process (FSP) [17] is used in behavioral modeling.

2.2. DOTs

Because of the difficulty of handling complex distributed applications, DOTs [18]

became the state of the art for distributed systems. In DOTs, all entities are modeled

as objects. The goal of such a system is establishing an interaction with remote

objects. In this section, three DOTs, namely sockets, CORBA and RMI will be

reviewed. Detailed information about these technologies can be found in [2, 3, 19].

2.2.1 Sockets

A socket is a combination of an IP address and a port. They first appeared in early

UNIX systems in the 1970s and are now the standard low-level communication

primitive.

There are two communication protocols that one can use for socket programming: a)

datagram communication, also known as UDP (user datagram protocol) is a

connectionless protocol that requires the local socket descriptor and the receiving

socket's address each time a datagram is sent, b) the stream communication, also

known as TCP (transfer control protocol) is a connection-oriented protocol where

one of the sockets listens for a connection request (server), the other asks for a

connection (client).

The choice of the protocol strongly depends on the application. Since TCP is

connection-oriented, a connection setup time is required. In UDP, there is a size

limit of 64 kilobytes on datagrams, while in TCP there is no limit. Also, UDP is an

unreliable protocol, that is, there is no guarantee that the order of the datagrams you

have sent will be preserved by the receiving socket. On the other hand, TCP is a

reliable protocol.

 8

2.2.2 CORBA

A network usually contains heterogeneous elements like mainframes, workstations,

PC systems or other kind of hardware and software components. Although this

heterogeneous behavior of a network provides satisfying solutions to stand-alone

problems, the communication requirement of elements of such a network is a

challenging task that cannot be underestimated.

The Object Management Group (OMG) was formed in 1989 to develop, adopt and

promote standards for development of applications in distributed heterogeneous

environments. The Common Object Request Broker Architecture (CORBA) is one of

the first specifications that have been adopted by OMG. The main motivation of

CORBA is the object invocation where the objects may reside locally or remotely. A

CORBA-based application from any vendor, on any operating system, programming

language and network can interoperate with another CORBA-based application.

For each object type, an interface is defined in an IDL file. The IDL interface

definition is independent of programming language, but maps to most of the popular

programming languages like C, C++, Java, COBOL, Smalltalk, Ada, Lisp, Python,

and IDLscript via OMG standards. The IDL file is compiled to generate client stubs

and server skeletons for a given language.

The communication between clients and objects is established by a component called

Object Request Broker (ORB). When a client wants to invoke an operation on an

object that is in the server, the ORB is used by the client to specify the required

operation and marshal (serialize) the arguments that will be sent. When the

invocation request reaches the server, the same interface is used to unmarshal the

arguments. After performing the requested operation, the results are marshaled

according to the interface and sent to the requesting client. The last step of the

remote operation call is the unmarshalling (read - deserialize) of the result. In Figure

2.3, a sample remote operation call is illustrated.

 9

Figure 2.3: A request passing from client to object implementation [2]

2.2.3 RMI

Java Remote Method Invocation (RMI) is a mechanism that allows the invocation of

a method on an object that exists in another address space. The address space can be

on the same machine or on a different one. Like CORBA, RMI is a remote procedure

call mechanism, but unlike CORBA, RMI is not language independent, it is a Java-

to-Java technology.

Three processes, client, server and object registry, participate for a remote method

invocation. The client is the process that is invoking the method of the remote object;

the server is the process that owns the remote object and the object registry is a name

server that relates objects with names.

In Figure 2.4, the general architecture of the RMI is presented. The server must first

bind its name to the registry. Then, the client looks up the server name in the registry

to establish remote references. When a client wants to invoke a remote method, the

call is first forwarded to the Stub. The Stub is responsible for sending the remote call

to the sever side Skeleton. It opens a socket for remote server, marshals the object

parameters and forwards the data stream to the Skeleton. The skeleton contains a

method that receives the remote calls, unmarshals the parameters and invokes the

actual methods. The results are then marshaled by the Skeleton and sent back to the

stub.

 10

RMI Server

skeleton

stub

RMI Client

Registry

bind

lookupreturn call

Local Machine

Remote Machine

Figure 2.4: A general RMI architecture

 11

CHAPTER 3

DESIGN AND IMPLEMENTATION

In this chapter, the plug-in framework and the sample plug-ins implemented are

discussed. After presenting the design and implementation of the framework, plug-

ins of three Distributed Object Technologies (DOTs), namely CORBA, RMI &

sockets will be explained.

3.1. The Plug-in framework

3.1.1. Plug-in Interface

Plug-in framework shares a common interface called IPlugin used for initialization

and communication with the plug-ins. This interface is as follows:

The framework calls start() method to load a plug-in and stop() method to unload it.

It is the responsibility of the plug-in to include all the initialization code in the start

method and the cleanup code in the stop method.

3.1.2. Sharing Data with a Plug-in

In this plug-in based approach, the most important decision is determining the

portion of the application, which will use this plug-in framework, that is shared with

a plug-in. The start method takes this portion as an argument which is passed by the

���������	
��
�
����������

� �������������	
�	����
�	����������	
�	���������
�
�������� !�
� �������������	��� !�
"�

 12

application to the plug-in framework. The definition of this class is in the application,

so to make the plug-in framework independent from this class; it is passed as an

Object to the plug-in. In Figure 3.1 the dependency graph of the design is shown.

Figure 3.1: The dependencies of the plug-in framework design

3.1.3. Plug-in Framework Interface

Another parameter to the start method of the plug-in is the interface of the

framework (ICommFramework). Using this interface, a plug-in may use some

features supported by the framework. In Figure 3.2, a use-case diagram based on this

interface is shown. A sample interface is as follows:

A plug-in may obtain another plug-in class loaded previously from the framework

over this interface. Also, the application using this framework can use these methods

to operate any task on all the plug-ins to the system.

���������	
��
�
��������
�
�������

� �������������	
�	�������� !�
� �������������	���������� !�
� �������������	
�	����������
��������
	# !�

�������������	���������$	�������������
��%
�
 !�
� ����������
�	&'��
	�������� !�
� ����������
�	��
	�������$	�������������
��%
�
 !�
"�

 13

Figure 3.2 Use-case diagram of the framework design

3.1.4. Packing a Plug-in

For any plug-in, there may be more then one class to support the extra functionality

to the application. To bundle these classes, a JAR file is used. A JAR file is the file

that includes many java classes inside. Java spec contains many classes to support

processing JAR files. By using these classes, the name of the plug-in class that

implements IPlugin interface can be obtained by the framework to use in the

reflection mechanism from the manifest file of the JAR package.

The manifest file is a special file that contains information about the class files

packaged in a JAR file. By tailoring this "meta" information that the manifest

contains, you enable the JAR file to serve a variety of purposes. There can be only

one manifest file and it always has the path META-INF/MANIFEST.MF. The

manifest file contains header – value pairs separated by a colon.

In this work it is assumed that the manifest file includes an attribute called Plugin-

Class that includes the name of the main plug-in class to be loaded by the

framework. A sample manifest is as follows:

 14

In this manifest, it is stated that the class file in this JAR package that implements the

IPlugin interface is called SamplePlugin and it is located in sample package which is

also located in the com package within the JAR file.

3.1.5. Locating a Plug-in

The plug-in framework locates the plug-ins by a java.io.File parameter that indicates

the folder containing plug-ins, passed by the application that uses this framework. By

extending java.io.FileFilter to filter only the JAR files and passing it as a parameter

to File.listFiles(FileFilter) method, framework lists all the JAR files in the specified

directory. Using one of the standard Java Foundation Classes (JFC) java.util.JarFile,

the framework reaches the manifest (JarFile.getManifest()) and the attributes inside

the manifest (Manifest.getMainAttributes()).

3.1.6. Run-time Class Loading

To load any class at run time, JFC provides java.lang.ClassLoader. The plug-in

framework loads the plug-in class in a JAR file by the java.net.URLClassLoader by

passing the name of the JAR file obtained previously as a parameter sent to it. Using

the JVM class loader as the parent to the new classloader ensures that the plug-in

class can find any class in the application classpath in addition with the plug-in

related classes. The run-time class loading mechanism is as follows:

(
���
�)*
�����+�,-.�
������)��
��+����-�
���
-$
���
�������

 15

3.1.7. Dependency Problem within the Plug-ins

While loading the plug-ins found in the directory specified by the application that

uses this plug-in framework, it is possible that a dependency problem may occur

within the plug-ins. One plug-in may require another plug-in to be loaded previously

to run correctly. To solve this problem, the manifest file attributes have been

populated. Another attribute called Plugin-Dependencies states the dependencies of

the plug-in to the framework as follows in a sample manifest:

This sample manifest states that this plug-in requires some classes within the scope

of two other plug-in JAR files which include SimplePlugin and ComplexPlugin

classes that implement the IPlugin interface. By using Plugin-Dependencies

attribute, the framework obtains the dependency graph of the plug-ins in the

specified directory before loading them. After this graph is constructed, framework

starts loading the plug-ins to the system accordingly. Cyclic dependencies are

handled, so a dependency problem is avoided.

---�
//�
����
+�	#
��
�
-��-���
�	#
	��
��
�
�	��	#
�����)���012����
�
324&'������5��
��324&'����
����
-	�324� "!�
�
324��
��4�
�
����
�
��5��
��324��
��4�
�
������ !�
�
//��
��%
�
+�	#
���
����
�
�����
�
�	����������������������
���
�	�
��
�����������
���5���
�
�-��
���
�����
��%
�
 !�
�
���
�	����������	
��
�5���������
��-�
����	
��
� !�
��������������������5��������� ����������	
��
!�
---�

(
���
�)*
�����+�,-.�
������)��
��+����-�
���
-$
���
�������
������)6
�
��
���
�+��
���
,-$����
��������
���
7-�����
��������

 16

The new classloader that is used to load the plug-ins take the JVM classloader of the

application as the parent parameter to make application classes visible to the plug-in.

Rather than using new classloader instance for each plug-in, only one classloader is

instantiated in the framework using all the JAR files of all the plug-ins as the URL

parameter, so that a plug-in can obtain any class in any of the plug-ins.

3.1.8. Defining Additional Constraints on Plug-ins

The plug-in framework also supports additional interfaces that are defined in the

application that uses this framework which force all the plug-ins to satisfy additional

requirements. This task is performed by the reflection mechanism of the Java spec as

follows:

Application passes the names of the interfaces to the plug-in framework, and in this

code segment, the framework checks whether the loaded plug-in has implemented

that interface or not.

3.1.9. Using the Framework for DOTs

This plug-in framework design is as generic as possible. It can be used to perform

any kind of plug-in based extension of any application. A sample use of the

framework for DOTs is shown in Figure 3.3 with a sequence diagram. The code

segment to use this framework by an application is as follows:

---�
��
�����
�
�5���
��-���%
�
���	
��
�
%
�
 !�
����

����5���
�
-��1�����
��
��������������	
��
-�
	��
��� !�
8���� ��
� //	#
��#
��������9�
"�

 17

CCommFramework is the main framework class that implements ICommFramework

interface that defines the framework to the application that uses it and to the plug-ins

that it has been started. Explanations for the parameters of the constructor are:

• context: The portion of the application desired to be shared with the plug-in

• pluginPath: The paths in which the framework will try to locate the plug-ins

• constraintInterface: The names of the interface classes that the application

wants to force its plug-ins to implement.

The CPluginContext class and ICommPlugin interface is as follows:

���������
�������������	
�	��
� �������������
�
��
$	����(
��
�
�$	������
��
�
 ��
� � ---�
� "�
� �������������
�
��
��	
�
�(
��
�
���	��
��
�
 ��
� � ---�
� "�
� ---�
"�

���������	
��
�
��������������
� �������������
��$	����(
��
�
�$	������
��
�
 !�
� �������������
����	
�
�(
��
�
���	��
��
�
 !�

---�
"�

---�
����������	
�	����	
�	�5��
������������	
�	� !�
�
���
&'��������
	#�5��
�����
&,'!�
�������
	#&.'�5��
�����
�:����
��
�/�������; !�
�
$	����&'�����	�
��	��	
��
�
�5��
��$	����&,'!�
����	�
��	��	
��
�
&.'�5�:���-�
���
1��-�����������;!�
�
�������
�
�����������
�
�����5��

�
���������
�
������
�� ���	
�	��
�� �������
	#��
�� ����	�
��	��	
��
�
 !�

������
�
����-�	
�	�������� !�
---�

 18

Figure 3.3 Sequence diagram of using this framework

In CPluginContext class, application defines the outer interface behavior that is

responsible for performing the related task when a message receives. In

ICommPlugin interface, the application forces the plug-ins to have outer interface

behavior also. By implementing this interface, plug-in becomes the responsible part

of sending the related message using the related DOT.

The application will use the plug-in framework for sending a string message over

related DOT as follows:

 19

Using ICommFramework interface, application gets all the loaded DOT plug-ins and

sends the related message over all of them. If only one plug-in is desired, the

application can obtain related plug-in using getPlugin() method with the name of the

related plug-in class name as the parameter.

When the application needs to change the DOT at run-time or want to upgrade the

related DOT plug-in, it stops the undesired one first using the main class of the plug-

in passed as a parameter to method stopPlugin(). Then application can start the new

plug-in using the method startPlugin() using the main class of the new plug-in passed

as a parameter to it. This usage of the framework is shown in Figure 3.4 by a

sequence diagram.

Using the definitions above, any of the plug-ins will look like in this sample

application as follows:

---�
//������
�
����+�	#
�����)�����
�
��������	<�
��������
�
����
���
�	&'���������5�������
�
����-�
	�������� !�
�������	��5.!��=�������-�
��	#!��>> ��
� ����������������5������������� ��������&�'!�
� ���-�
��$	����(
��
�
�:?
����@����; !�
"�
---�

 20

Figure 3.4 Sequence diagram of run-time plug-in loading/unloading

���������
���$
���
�����������
�
�	������������������������
� ����������	
�	����	
�	!�
� �������������
��$	����(
��
�
�$	������
��
�
 ��

�� //	#
����
��
��������
�����
������	#
��
��
�
��
"�
�������������
����	
�
�(
��
�
���	��
��
�
 ��
�� //	#
����
��
��������
�����
������	#
��
��
�
��
"�
�������������	
�	����
�	����������	
�	���������
�
�������� ��
�� 	#��-���	
�	�5������������	
�	 ����������	
�	!�
�� //	#
����	�
��A
	�������
�
"�

� �������������	��� ��
� � //	#
���

�������
�
� "�
� //	#
��
	#���	#
	�����
��
���#
��
��
��
�
�����
�
��
��
� �������������
��
�
2
�
��
�����
�	��
��
�
 ��
� � //�
���������
�	��
�
�<�
�	#
��
��
�
�
� � ---� �
� � //�
���	#
��
��
�
������
�	#
�
�����
	����
� � ������������	
����	��
�������������

� "�
"�

 21

Since the SamplePlugin class both implements IPlugin and ICommPlugin interfaces,

the plug-in framework will accept it as a plug-in to the system. When a message is

received to this plug-in, it parses the message to forward to the application using the

right method of the CPluginContext class defined by the application.

3.2. Socket Plug-in

In this section, since the socket plug-in uses xml data as a message over a Java

socket, before discussing the plug-in itself, extensible markup language (XML),

XML Schema definition (XSD) and the Castor tool (for the auto-generation of the

XSD based Java classes) are explained briefly.

3.2.1. Extensible Markup Language (XML)

XML is used to define documents with a standard format that can be read by any

XML-compatible application. XML itself is not a markup language. Instead, it is a

"metalanguage" that can be used to create specific markup languages.

While XML is commonly used in Web applications, many other programs can use

XML documents as well. For instance, computer systems and databases contain data

in incompatible formats. Converting the data to XML can greatly reduce this

complexity and create data that can be read by different types of applications. A

sample XML file is as follows:

First line of the document defines the XML version of the document and should

always be included. All XML documents must have a single tag pair to define the

root tag, in which all the sub-tags are nested. XML tags are case-sensitive and since

all the tags should have a closing tag also, they should be properly nested.

=B�����
�����5C,-.CBD�
=���	%��
D�
� =�#���%��
D���
�������
	���=/�#���%��
D�
=/���	%��
D�

 22

3.2.2. XML Schema Description

An XML schema is a description of a type of XML document, typically expressed in

terms of constraints on the structure and content of documents of that type. An XML

schema provides a view of the document type at a relatively high level of abstraction.

There are languages developed specifically to express XML schemas. The Document

Type Definition (DTD) language is a schema language that is of relatively limited

capability, on the other hand two other more expressive XML schema languages are

XML Schema (XSD) and RELAX NG. In this thesis, XSD files are used as the schema

for the XML files. An XSD file is written in the W3C XML Schema language [20].

The process of checking to see if an XML document conforms to a schema is called

validation. All XML documents must be well-formed, but it is not required that a

document be valid unless the document is also checked with its associated schema.

An example XML Schema file (person.xsd) and the corresponding XML file

(person.xml) associated with that schema are as follows:

=��+��#
�
������+��5;#		�+//���-�E-���/7..,/F(4$�#
�
;D�
� =��+
�
�
�	��
�
5;�
����;�	<�
5;�
����;/D�
� =��+�����
�G<�
��
�
5;�
����;D�
� � =��+�
H�
��
D�
� � � =��+
�
�
�	��
�
5;�
�
;�	<�
5;��+�	����;/D�
� � � =��+
�
�
�	��
�
5;
�
;�	<�
5;��+��	;/D�
� � =/��+�
H�
��
D�
� =/��+�����
�G<�
D�
=/��+��#
�
D�

=�
������
�����+���5;#		�+//���-�E-���/7..,/F(4$�#
�
)���	
��
;�
���+��%
�
��
�
$�#
�
4��
	���5;�
����-���;D�
� =�
�
DI��
<=/�
�
D�
� =
�
D7J=/
�
D�
=/�
����D�

 23

3.2.3. Generating Java Classes from XSD File

In order to use XML data inside Java code of the socket plug-in, Castor libraries are

used. Castor provides the only open-source Schema Object Model that loads an XML

Schema in a Java representation. It also generates Java classes given an XML

Schema and performs validation. More information on this tool can be found in [21]

3.2.4. The Plug-in Design and Implementation

Using the CPluginContext class and the ICommPlugin interface defined in 3.1.9,

related sample schema definition file can be defined as follows:

=��+��#
�
������+��5C#		�+//���-�E-���/7..,/F(4$�#
�
CD�
���=��+
�
�
�	��
�
5C(
��
�
G<�
CD�
������=��+�����
�G<�
D�
���������=��+���	��D�
������������=��+
�
�
�	��
�
5C��	
�$�
�
G�1��CD�
���������������=��+�����
�G<�
D�
������������������=��+���	��D�
���������������������=��+
�
�
�	��
� � � �
�
5C$	����(
��
�
C�	<�
5C������	��C/D�
���������������������=��+
�
�
�	��
� � � �
�
5C��	
�
�(
��
�
C�	<�
5C���	��C/D�
������������������=/��+���	��D�
���������������=/��+�����
�G<�
D�
������������=/��+
�
�
�	D�
������������=��+
�
�
�	��
�
5C1��G���	
�$�
�
CD�
���������������=��+�����
�G<�
D�
������������������=��+���	��D�
���������������������=��+
�
�
�	��
� � � �
�
5C$	����(
��
�
C�	<�
5C������	��C/D�
���������������������=��+
�
�
�	��
� � � �
�
5C��	
�
�(
��
�
C�	<�
5C���	��C/D�
������������������=/��+���	��D�
���������������=/��+�����
�G<�
D�
������������=/��+
�
�
�	D�
���������=/��+���	��D�
������=/��+�����
�G<�
D�
���=/��+
�
�
�	D�
=/��+��#
�
D�

 24

In Figure 3.5, a sample graphical representation of the schema file above is given.

Since this schema file is to be used for defining the message type incoming or

outgoing; the important part of it is defining sub elements as choice type till the leaf

elements. Using choice types, those are the “OR” bubbles in the figure, ensures that

only one type of a message is used at a time.

Figure 3.5: Graphical representation of the schema definition file

The main class of the socket plug-in, namely the CSocketPlugin, implements both

IPlugin and ICommPlugin interfaces as the SamplePlugin class given in 3.1.9.

CSocketPlugin methods are responsible of parsing the XML data incoming to pass it

to the plug-in framework using appropriate CPluginContext methods and generating

appropriate XML data defined by the XSD file and passing it to the Java socket.

To validate and examine xml data inside CSocketPlugin, auto generated classes of

the schema definition file is used. This auto-generation is done by Castor tool. Xml

schema support of Castor is defined in [21]. After adding these xsd definition classes

to the plug-in JAR package, using xml data as a message over Java sockets is done

using the Castor generated special methods marshall() and unmarshal(). marshall()

method is responsible of serializing schema based auto-generated classes to the given

output. In this case, output is the output stream of the socket connection. unmarshal()

method is the method used for deserialization (read) from the given input. In this

case, input is the input stream of the socket connection. Since the Castor generated

unmarshal() method could not understand the end of an xml message by itself, rather

than using the input stream directly, parsing the xml data is handled by the socket

plug-in classes before passing it to the unmarshal() method.

 25

3.3. CORBA Plug-in

In this section, since the CORBA plug-in uses interface definition language (IDL) to

define the clients over interfaces, before discussing the plug-in itself, IDL syntax and

JacORB object request broker (ORB) that is used in this work are explained briefly.

3.3.1. Interface Definition Language (IDL)

The OMG IDL supports the specification of object interfaces. In IDL, the objects

itself are not defined, so the implementation of this interfaces can be done in a

standard programming language. Currently, the OMG has standardized on language

bindings for the C, C++, Java, Ada, COBOL, Smalltalk, Objective C, and Lisp

programming languages. Since the clients only depend on interfaces, heterogeneous

systems can communicate.

By using OMG IDL, one can describe object interfaces, namely the operations,

attributes of basic and complex data types, and exceptions that may rise. A sample

IDL file is as follows:

�����
�$
���
(����
��
����	���	�$
���
$	���	��
�������	������
�
!�
�������������!�
���"!�
�
���K��
�	����$
���
%�	�����K��
�	����"!�
�
�����	
��
�
��$
���
��
�������

����<�
		����	
��	������
�����	���!�
������$
���
$	���	��
	$
���
� ��
��
��$
���
%�	�����K��
�	��� !������
���"!�
�
�����	
��
�
��$
���
�
�	��<��
� �$
���
���

	
$
���
�����	������
�����	��� !�
���"!�
"!�

 26

In this IDL file, a sample module named SampleModule is defined. A module defines

a scope for the inner definitions. SampleModule contains a data structure

(SampleStruct), an exception (SampleNotFoundException) and two interfaces

(ISample and ISampleFactory).

Also note that the parameters to operations are tagged with the keywords in, out, or

inout. The in keyword indicates the data are passed from the client to the object. The

out keyword indicates that the data are returned from the object to the client, and

inout indicates that the data is passed from the client to the object and then returned

back to the client.

IDL declarations are compiled with an IDL compiler and converted to their

associated representations in the target programming languages according to the

standard language binding. For instance, an IDL module is mapped to a Java package

when compiled.

3.3.2. Object Request Broker (ORB)

The Object Request Broker (ORB) is responsible from communication between

remote objects. It locates the remote object, passes the request, waits for results and

then passes the results back to the client.

Using ORB to communicate with a remote object results in location transparency,

namely the client could not understand exact place the remote object is located. Also

ORB implements programming language independence for the request, so

heterogeneous systems can communicate using the language bindings stated in 3.3.1.

There are many ORB vendors. Since CORBA 2.0 defines a network protocol called

IIOP (Internet Inter-ORB Protocol), no inter-communication problem does occur. In

this work, an open source ORB called JacORB is chosen. More information on

JacORB can be found in [22].

 27

3.3.3. The Plug-in Design and Implementation

Using the CPluginContext class and the ICommPlugin interface defined in 3.1.9,

related IDL files (plug-in-side and the connected application-side) can be defined as

follows:

MCORBAPlugin module is defined for the CORBA plug-in implemented in this

work. MOuterSpace module describes the application that the application using the

plug-in framework implemented in this thesis desires to communicate with. Since the

sample definitions in 3.1.9 are symmetric, these IDL definitions are very similar.

After compiling these IDL files, all the classes generated are added into the CORBA

plug-in JAR package.

Since Java spec has CORBA support, to use another ORB rather than the Java ORB,

some Java Virtual Machine (JVM) arguments are required. To specify the path of the

JacORB libraries to the JVM, following arguments can be used:

�����
�(��2L1��������
�����	
��
�
���2L1��������
������������
�
��
$	����(
��
�
�����	������	����(
��
�
 !�
������������
�
��
��	
�
�(
��
�
�����������	(
��
�
 !�
���"!�
"!

�����
�(��	
�$�
�
��
�����	
��
�
���	
�$�
�
��
������������
�
��
$	����(
��
�
�����	������	����(
��
�
 !�
������������
�
��
��	
�
�(
��
�
�����������	(
��
�
 !�
���"!�
"!

)6�
�
-
�����
�-����5C�+M��2L1M0
��2LM���C��
)6���-���-��2L1-�2L��
��5���-�
����-���-�2L��
)6���-���-��2L1-�2L$����
	����
��5���-�
����-���-�2L$����
	����
)6���	��-�����5-M�����������������������	���

 28

In these arguments, the library paths of the JacORB are introduced to the VM with

another path of a file named “jacorbFramework.properties” as the custom properties

file. This file is used by the ORB to define custom properties such as the port to

open, default logging configurations or the proxy addresses.

The main class of the CORBA plug-in, namely the CCORBAPlugin, implements

both IPlugin and ICommPlugin interfaces as the SamplePlugin class given in 3.1.9.

CCORBAPlugin also extends the CORBAPluginPOA abstract class that includes

CORBAPlugin interface operations defined in the IDL file which are auto-generated

by the IDL compiler. All these methods only pass the incoming message to the

appropriate CPluginContext methods.

For the outgoing messages, the methods included in the ICommPlugin interface

forward the messages to the appropriate methods defined in the OuterSpace interface

in the IDL file. Since this IDL file has been compiled, CCORBAPlugin class gets

these methods over the name service using the ORB and the OuterSpaceHelper class

that is auto generated by the IDL compiler as follows:

The method getObjectFromNS() method includes the ORB initialization codes to

obtain the object using its name from the naming service that is already being

running by the command line command “ns”. After this object is returned

successfully from this method, CCORBAPlugin class narrows it to the IDL generated

interface OuterSpace. After this, any method of this interface can be called over the

name service for forwarding the messages which comes from the application that

uses this framework.

---�
//�
	��	#
����
�	������	#
��
�
��
����
�
//�
��
�%
�
+�	#
��
�
����	#
��
��
�)���
��
��	
����
�	�
���
�	�����5��
	���
�	����%$��
��
�%
�
 !�
�
��	
�$�
�
����5���	
�$�
�
?
��
�-�
�������� !�
---�

 29

3.4. RMI Plug-in

Using the CPluginContext class and the ICommPlugin interface defined in 3.1.9,

related server interfaces of both sides can be defined as follows:

The important thing in these interfaces is they both extend java.rmi.Remote. This

gives the ability of registering these classes to the RMI naming service for remote

usage by any client connected to that naming service. RMI naming service can be

started by the command line command “start rmiregistry”.

Since method call over naming service means serialization of objects over the

network, all the parameters of the operations defined in these interfaces must extend

java.io.Serializable. Since String definition already extends it and int is one of the

primitive types, in these interface definitions there is no need to define a new class

extending java.io.Serializable.

For the security issues, making a connection over RMI requires definition of a policy

file. In this file one can define the socket permissions that the naming service needs.

A sample policy file named “java.policy” can be defined as follows:

���������	
��
�
�2(�������$
��
��
�	
������������
�������������
�
��
$	����(
��
�
�$	������
��
�
 ��

	#�����2
��	
K��
�	���!�
� �������������
�
��
��	
�
�(
��
�
���	�(
��
�
 �
� � 	#�����2
��	
K��
�	���!�
"�

���������	
��
�
���	
�$�
�
$
��
��
�	
������������
�������������
�
��
$	����(
��
�
�$	������
��
�
 ��

	#�����2
��	
K��
�	���!�
� �������������
�
��
��	
�
�(
��
�
���	�(
��
�
 �
� � 	#�����2
��	
K��
�	���!�
"�

 30

The main class of the RMI plug-in, namely the CRMIPlugin, implements both

IPlugin and ICommPlugin interfaces as the SamplePlugin class given in 3.1.9.

CRMIPlugin also extends java.rmi.UnicastRemoteObject and also implements the

RMIPluginServer interface which is defined above to enable remote method

invocation. All these methods defined in the RMIPluginServer interface only pass the

incoming message to the appropriate CPluginContext methods.

For the outgoing messages, the methods included in the ICommPlugin interface

forward the messages to the appropriate methods defined in the OuterSpaceServer

interface. CRMIPlugin class gets these methods over the name service as follows:

//��
	�	#
��
����	<��
�
�
������	#
����
�	�
$<�	
�-�
	$
����	<(
�
�
���
��2(�$
����	<(
�
�
�� !�
�
//�
	�	#
��
��	
����
�	������	#
��
���	�<�
	�<��
� //���+��������	#
��
�����$
����
���	#�	#
��
��
���
�
�

$	���������5�C//���
�#��	/$1(�4K)$K2*K2C!�
//�
�����	#
����
�	������	��
���
��������
�
�������������
����
��	
���
�	�5�

��������������
�� %
����-���������� !�
//��
�	#
��
��	
����
�	�	���
���
�<��
	#���
---�

"��
	�#��2
��	
K��
�	����
�� ��
$<�	
�-��	-����	���CK��������������+�C�>�
��-	�$	����� !�

"��
	�#���
�
-�
	-(
�����
�324K��
�	����
�� ��
$<�	
�-��	-����	���C(
�����
��324+�C�>�
��-	�$	����� !�

"��
	�#���
�
-���-%�	L����K��
�	����
�� ��
$<�	
�-��	-����	���C%�	L����+�C�>�
��-	�$	����� !�

"�

��
�	���
�����
����������
�
-�
	-$���
	�
���������CN+,.7O)PJJEJC��
��������C����
�	�
��
�	C!�
�����
����������
�
-�
	-$���
	�
���������CN+Q.C��C����
�	C!�
"!�

 31

The important thing in this code segment is that the plug-in narrows the object

returned from the naming service to the server class of the connected application

using the interface OuterSpaceServer defined in that application. Also the connected

application should know the RMIPluginServer interface to call a method over

naming service. This causes a circular dependency problem, and the solution is

separating interface definitions from the local class implementations. Figure 3.6

shows the resolution of this dependency problem.

Figure 3.6: Resolution of the circular dependency problem in RMI

To make the class that extends java.rmi.Remote visible to the clients over the naming

service, after implementing the RMIPluginServer interface in CRMIPlugin main

class of the RMI plug-in, compiling it with a specific compiler named “rmic” is

required. The result of this compilation is a new class named “CRMIPlugin_Stub”.

To use RMI naming service, some Java Virtual Machine (JVM) arguments are

required. To specify the path of the stub classes and the policy file to the JVM,

following arguments can be used:

)6�
�
-���-�
��
�-���
�
�
5���
+/6+M����
�	�M
�����
M���������/��
)6�
�
-�
����	<-�����<5�
�
-�����<�

 32

CHAPTER 4

EVALUATION OF COMPARISON RESULTS

In this chapter, the series of performance evaluations on three Distributed Object

Technologies (DOTs) namely CORBA, RMI and Java Sockets are explained. After

presenting the testing environment, the response times of different method call types

are discussed.

4.1. Testing Environment

In the experiments that are detailed in the following sections, all Intel based PC’s

consisting of single 2.60 GHz processor, 1.50 GB RAM, running Windows XP

Service Pack 2 that are connected by 100 Mbps Fast Ethernet has been used.

At the tables in the following sections, data represents the response time of each

method type that is called 1000 times. For the experiments, two different strategies

have been followed: (a) the server and the client codes have been executed on a

single computer and (b) the execution has been distributed on different computers

one of which is the server and the other is the client. Each experiment is mean of 100

runs in which the response time data has been obtained using getCurrentTimeMillis()

method of Java spec as follows:

R�
������	
�	G��
�5�$<�	
�-����
�	G��
(������ !�
//	
�	����
�����,...�	��
�����	#
	��
	#����
���
R�
����������#G��
�5�$<�	
�-����
�	G��
(������ !�
�����������	�� 	���5������#G��
�S��	
�	G��
!�
R�

 33

4.2. General Discussions

At all the experiments performed in the following sections, following aspects

regarding to the response times were identified:

(i) The response times of all DOT plug-ins when the client and the server codes

executed on a single computer are greater than the response time results

when client and server executions are distributed to different computers. The

reason for the slowness in single computer run is that the two instances of

Java Virtual Machine (JVM), that are associated with client and server

respectively, run concurrently which causes competition for resources and

CPU scheduling, which is detailed in [6]. This causes extra delay rather than

the multiple computers run in which there is less competition since each

JVM has its own CPU and all the delay is generated by the network

transmission.

(ii) The drop in the response times of the Socket plug-in when multiple

computers are used compared with the single computer run is much greater

than other DOT plug-ins. This shows that Socket plug-in requires much

resource than the others, since the drop is caused by the decrease in

competition for resources when two JVMs work in different computers

(iii)Method calls with void return type have less response times compared with

the method calls with return types same as parameter types. This is because

of an extra marshal – unmarshal delay caused by the returned value.

4.3. Parameterless Call of Return Type Void

In this experiment, a method call with no parameters and void return type has been

evaluated. In Table 4.1, the response time results have been stated. In addition to the

general discussions stated in section 4.2, it is identified that the response time of RMI

plug-in is less than CORBA plug-in, which is also less than the Socket plug-in in

both single computer and multiple computers run. But compared with the difference

in the response times of CORBA and RMI plug-ins, Socket plug-in can be counted as

fast as the CORBA plug-in in the multiple computers run since the difference is

much less compared with the difference between CORBA and RMI.

 34

Table 4.1: Results for no parameter

 CORBA RMI SOCKET
Single Computer 515,4 313,9 1922,9
Multiple Computers 401,4 274,9 425,7

4.4. Call of Return Type Void with Primitive Type Parameter

In this experiment, a method call with a primitive type parameter and void return

type has been evaluated. For simplicity, int has been chosen for the primitive type

with the value 0. In Table 4.2, the response time results have been stated. In addition

to the general discussions stated in section 4.2, the following aspects regarding to the

response times were identified:

(i) The response time of RMI plug-in is less than CORBA plug-in, which is also

less than the Socket plug-in in both single computer and multiple computers

run. But compared with the difference in the response times of CORBA and

RMI plug-ins, Socket plug-in can be counted as fast as the CORBA plug-in

in the multiple computers run since the difference is much less compared

with the difference between CORBA and RMI.

(ii) The response times of all DOT plug-ins are similar for a method call with no

parameter, which are stated in Table 4.1, and a method call with a single int

parameter. This is because the serialization of primitive types requires

negligible resource.

Table 4.2: Results for int parameter

 CORBA RMI SOCKET
Single Computer 501,4 320,2 2052,6
Multiple Computers 396,7 273,4 423,8

In Figure 4.1, average response time results of all primitive data types are stated. As

compared with the results obtained in this study, it is identified from the Figure 4.1

that CORBA has greater latency than RMI in both single computer and multiple

computers run, which is consistent with the results in Table 4.1 that are obtained in

this work. In Table 4.1, response times for primitive data types decreased at multiple

computers run due to two different JVMs running on two different computers. On the

 35

other hand, in Figure 4.1, a slight increase is stated at the same condition. This is

because in [7], the programming language chosen for the testing environment is C++

which does not require a virtual machine to run on a computer.

Figure 4.1 Average results of primitive data types from [7]

4.5. Call of Return Type Void with Varying Length Parameter

In this experiment, a method call with a varying length parameter and void return

type has been evaluated. For simplicity, String has been chosen for the varying

length parameter type with value of “a” characters of varying length. In Table 4.3,

Table 4.4, Figure 4.2.and Figure 4.3, the response time results have been stated for

single computer and multiple computers run. The test cases are populated using the

length of the String data. In addition to the general discussions stated in section 4.2,

the following aspects regarding to the response times were identified:

(i) The response time of RMI plug-in is less than CORBA plug-in in both single

computer and multiple computers run and in all the length variations.

 36

(ii) The response time of the Socket plug-in is much greater than other DOT

plug-ins in single computer run and in all the length variations.

(iii)The response time of Socket plug-in in multiple computers run is the fastest

one compared with the other DOTs till the String length reaches up to 10000

characters. This is because the increase in the String length is similar with the

increase in the int primitive type in the Socket plug-in. Since there is no need

for extra tag elements in the XML data to express length variations, using

XML data works fine.

(iv) The response times of RMI and CORBA plug-ins for a method call with a

single String parameter are greater than the response times for a method call

with a single int parameter, which are stated in Table 4.2, in both single

computer and multiple computers run. This is because the serialization of

primitive types requires less resource compared with the serialization of the

Java objects.

(v) In single computer run, the response times of Socket plug-in for a method

call with a single String parameter is much greater than the response times

for a method call with a single int parameter, which are stated in Table 4.2.

(vi) In multiple computers run, the response times of Socket plug-in for a method

call with a single String parameter are less than the response times for a

method call with a single int parameter, which are stated in Table 4.2, till the

String length reaches up to 100. This is because all the XML data is

serialized to characters in transmission and int data requires extra parsing of

the characters representing an integer value while unmarshalling. In this

experiment, length of 100 characters for a String has almost the same

response time with an int that has the value 0.

Table 4.3: Results for String parameter (Single computer)

String length CORBA RMI SOCKET
1 character 550 364 2055,7
10 characters 551,4 371,7 2055,8
100 characters 593,6 404,6 2180,7
1000 characters 734,3 462,4 2894,7
5000 characters 1140,3 859,2 5996,8
10000 characters 1348 1336 10222,3

 37

Table 4.4: Results for String parameter (Multiple computers)

String Length CORBA RMI SOCKET
1 character 399,8 290,6 397,3
10 characters 406,1 292,1 400,8
100 characters 443,6 335,9 424,2
1000 characters 798,2 663,7 611,7
5000 characters 1477,6 1298 940,5
10000 characters 2066,6 1734 2411,5

Single Computer - String Parameter - Void Return

2,5

2,7

2,9

3,1

3,3

3,5

3,7

3,9

4,1

1 10 100 1000 5000 10000

Character Count

lo
g(

R
es

po
ns

e
T

im
e)

CORBA
RMI

SOCKET

Figure 4.2: Results for String parameter (Single computer)

Multiple Computer - String Parameter - Void Return

2,4

2,6

2,8

3

3,2

3,4

1 10 100 1000 5000 10000

Character Count

lo
g(

R
es

po
ns

e
T

im
e)

CORBA
RMI
SOCKET

Figure 4.3: Results for String parameter (Multiple computers)

 38

4.6. Call of Return Type Void with Primitive Type Parameter Array

In this experiment, a method call with a primitive type array parameter and void

return type has been evaluated. For simplicity, int has been chosen for the primitive

type with value of 0. In Table 4.5, Table 4.6, Figure 4.4.and Figure 4.5, the response

time results have been stated for single computer and multiple computers run. The

test cases are populated using the length of the int array. In addition to the general

discussions stated in section 4.2, the following aspects regarding to the response

times were identified:

(i) The response times of RMI plug-in are less than CORBA plug-in, which are

also less than the Socket plug-in in both single computer and multiple

computers run and in all the length variations.

(ii) The increase in the response times with the increase of array length in the

Socket plug-in is much greater than other DOT plug-ins. This is because the

increase in the size of the serialized object for the Socket plug-in is

catastrophically compared with the other DOT plug-ins, since an array in an

XML data means so many extra tags for each array object.

(iii)The response times of all DOT plug-ins for a method call with an int array

parameter which includes only one primitive type inside are greater than the

response times for a method call with a single int parameter, which are stated

in Table 4.2, in both single computer and multiple computers run. This is

because the serialization of primitive types requires less resource compared

with the serialization of the Java objects.

Table 4.5: Results for int array parameter (Single computer)

Array Length CORBA RMI SOCKET
1 531,1 501,4 2197,7

10 570,2 556,7 2572,7
100 681 605,1 4284,5

1000 973,1 773,3 28840
5000 1537,1 1438,6 261020,3

10000 2244,8 2164,3 530234,1

 39

Table 4.6: Results for int array parameter (Multiple computers)

Array Length CORBA RMI SOCKET
1 414,6 347 429,6

10 422,3 354,3 525,9
100 559,7 481 1283,2

1000 1262,9 1132,9 12784
5000 2818,3 2509,7 75660

10000 4810,7 4278 242175

Single Computer - Integer Array Parameter - Void Return

2,5

3

3,5

4

4,5

5

5,5

1 10 100 1000 5000 10000

Array Size (of Integers)

lo
g(

R
es

po
ns

e
T

im
e)

CORBA
RMI
SOCKET

Figure 4.4: Results for int array parameter (Single computer)

 40

Multiple Computer - Integer Array Parameter - Void Return

2,5

3

3,5

4

4,5

5

5,5

1 10 100 1000 5000 10000

Array Size (of Integers)

lo
g(

R
es

po
ns

e
T

im
e)

CORBA
RMI
SOCKET

Figure 4.5: Results for int array parameter (Multiple computers)

In Figure 4.6, average response time results for primitive data type arrays with

different lengths are stated. As compared with the results obtained in this study, it is

identified from Figure 4.6 that CORBA has greater latency than RMI, which is

consistent with the results in Table 4.5 and Table 4.6 that are obtained in this work.

Figure 4.6 Results for int array parameter from [8]

 41

4.7. Call of Return Type Void with Varying Length Parameter Array

In this experiment, a method call with an array of varying length type parameter and

void return type has been evaluated. For simplicity, String has been chosen for the

varying type with value of “a”. In Table 4.7, Table 4.8, Figure 4.7.and Figure 4.8, the

response time results have been stated for single computer and multiple computers

run. The test cases are populated using the length of the String array. In addition to

the general discussions stated in section 4.2, the following aspects regarding to the

response times were identified:

(i) The response time of the Socket plug-in is much greater than other DOT

plug-ins in both single computer run and multiple computers run, and in all

the length variations.

(ii) In single computer run, when the length of the array is less than 100, the

response times of CORBA plug-in are less than RMI plug-in; but when the

length of the array is above 100, RMI plug-in has less response times

compared with the CORBA plug-in.

(iii)In multiple computers run, the response times of RMI plug-in are less than

CORBA plug-in in all the length variations.

(iv) The increase in the response times with the increase of array length in the

Socket plug-in is much greater than other DOT plug-ins. This is because the

increase in the size of the serialized object for the Socket plug-in is

catastrophically compared with the other DOT plug-ins, since an array in an

XML data means so many extra tags for each array object.

(v) The response times of all DOT plug-ins for a method call with an int array

parameter are less than the response times for a method call with a String

array parameter, which are stated in Table 4.5 and Table 4.6, in both single

computer and multiple computers run. This is because the serialization of

arrays of primitive types requires less resource compared with the

serialization of arrays of complex Java objects.

(vi) The response times of all DOT plug-ins for a method call with a String array

parameter which includes only one String inside are greater than the response

times for a method call with a single String parameter, which are stated in

Table 4.3 and Table 4.4, in both single computer and multiple computers run.

 42

This is because the serialization of less complex Java objects requires less

resource compared with more complex Java objects like arrays.

Table 4.7: Results for String array parameter (Single computer)

Array Length CORBA RMI SOCKET
1 559,2 628 2071,5

10 596,8 646,7 2240,8
100 668,6 704,5 3668

1000 2299,3 1827,6 24928
5000 12658 5488,1 124890,2

10000 33654,6 9711,2 284030,5

Table 4.8: Results for String array parameter (Multiple computers)

Array Length CORBA RMI SOCKET
1 416,7 366,5 436,3

10 437 402,6 531,9
100 664,4 647 1161,1

1000 2258,5 1809,7 9733
5000 9506,5 4310,7 60870

10000 21870,5 7370,4 120650,1

Single Computer - String Array Parameter - Void Return

2,5

3

3,5

4

4,5

5

5,5

6

1 10 100 1000 5000 10000

Array Size (of Strings)

lo
g(

R
es

po
ns

e
T

im
e)

CORBA
RMI
SOCKET

Figure 4.7: Results for String array parameter (Single computer)

 43

Multiple Computer - String Array Parameter - Void Return

2,5

3

3,5

4

4,5

5

5,5

1 10 100 1000 5000 10000

Array Size (of Strings)

lo
g(

R
es

po
ns

e
T

im
e)

CORBA
RMI
SOCKET

Figure 4.8: Results for String array parameter (Multiple computers)

In Figure 4.9, response time results for object array parameter are stated. In [5],

Voyager has been chosen for the ORB vendor. As compared with the results

obtained in this study, it is identified from the Figure 4.9 that CORBA has greater

latency than RMI, which is consistent with the results in Table 4.7 and Table 4.8 that

are obtained in this work.

Figure 4.9 Results for object array parameter from [5]

 44

4.8. Call with Return and Parameter Type of Primitive Type

In this experiment, a method call with a primitive type parameter and return type has

been evaluated. For simplicity, int has been chosen for the primitive type with the

value 0. In Table 4.9, the response time results have been stated, in which there is no

column named SOCKET because in socket plug-in, method call is simulated by a

hierarchical XML message sent through a socket that does not have the ability of

returning a value of type something. In addition to the general discussions stated in

section 4.2, it is identified that the response time of RMI plug-in is less than CORBA

plug-in in both single computer and multiple computers run.

Table 4.9: Results for int parameter and return

 CORBA RMI
Single Computer 504,6 321,8
Multiple Computers 409,3 282,7

4.9. Call with Return and Parameter Type of Varying Length

In this experiment, a method call with a varying length parameter and return type has

been evaluated. For simplicity, String has been chosen for the varying length

parameter type with value of “a” characters of varying length. In Table 4.10, Table

4.11, Figure 4.10.and Figure 4.11, the response time results have been stated for

single computer and multiple computers run, in which there is no column named

SOCKET because in socket plug-in, method call is simulated by a hierarchical XML

message sent through a socket that does not have the ability of returning a value of

type something. The test cases are populated using the length of the String data. In

addition to the general discussions stated in section 4.2, the following aspects

regarding to the response times were identified:

(i) The response time of RMI plug-in is less than CORBA plug-in in both single

computer and multiple computers run and in all the length variations.

(ii) The response times of RMI and CORBA plug-ins for a method call with a

single String parameter and return type are greater than the response times

for a method call with a single int parameter and return type, which are stated

 45

in Table 4.9, in both single computer and multiple computers run. This is

because the serialization of primitive types requires less resource compared

with the serialization of the Java objects.

Table 4.10: Results for String parameter and return (Single computer)

String Length CORBA RMI
1 character 556,1 409,4

10 characters 551,4 399,9
100 characters 595,2 426,4

1000 characters 731,2 556,1
5000 characters 1499,4 1323,2

10000 characters 1947,8 1935,1

Table 4.11: Results for String parameter and return (Multiple computers)

String Length CORBA RMI
1 character 434,2 316,2

10 characters 426,5 309,3
100 characters 503 390,5

1000 characters 1196,5 1080,9
5000 characters 2457,1 2396,1

10000 characters 3560 3457

Single Computer - String Parameter - String Return

2,6

2,7

2,8

2,9

3

3,1

3,2

3,3

1 10 100 1000 5000 10000

Character Count

lo
g(

R
es

po
ns

e
T

im
e)

CORBA
RMI

Figure 4.10: Results for String parameter and return (Single computer)

 46

Multiple Computer - String Parameter - String Return

2,45

2,65

2,85

3,05

3,25

3,45

3,65

1 10 100 1000 5000 10000

Character Count

lo
g(

R
es

po
ns

e
T

im
e)

CORBA
RMI

Figure 4.11: Results for String parameter and return (Multiple computers)

4.10. Call with Return and Parameter Type of Primitive Type Array

In this experiment, a method call with a primitive type array parameter and return

type has been evaluated. For simplicity, int has been chosen for the primitive type

with value of 0. In Table 4.12, Table 4.13, Figure 4.12.and Figure 4.13, the response

time results have been stated for single computer and multiple computers run, in

which there is no column named SOCKET because in socket plug-in, method call is

simulated by a hierarchical XML message sent through a socket that does not have

the ability of returning a value of type something. The test cases are populated using

the length of the int array. In addition to the general discussions stated in section 4.2,

the following aspects regarding to the response times were identified:

(i) In single computer run, the response times of RMI plug-in are greater than

CORBA plug-in in all the length variations.

(ii) In multiple computers run, the response times of RMI plug-in are greater

than CORBA plug-in till the length of the array reaches up to 1000. For the

array lengths greater than 1000, CORBA has greater response times than

RMI since delay for the large size of the serialized object over network

becomes more significant.

 47

(iii)The response times of RMI and CORBA plug-ins for a method call with an

int array parameter and return type of length one are greater than the

response times for a method call with a single int parameter and return type,

which are stated in Table 4.9. This is because the serialization of primitive

types requires less resource than the serialization of the Java objects.

Table 4.12: Results for int array parameter and return (Single computer)

Array Length CORBA RMI
1 532,2 754,5

10 580,9 756,1
100 693,7 774,8

1000 1102,8 1113,9
5000 2169,7 2300,9

10000 3517,8 3699

Table 4.13: Results for int array parameter and return (Multiple computers)

Array Length CORBA RMI
1 422,4 426,5

10 440,5 445,1
100 707,6 717

1000 2018,2 2026
5000 5214,2 4703,4

10000 9250,1 8250,5

Single Computer - Integer Array Parameter - Integer Array Return

2,7

2,9

3,1

3,3

3,5

3,7

1 10 100 1000 5000 10000

Array Size (of Integers)

lo
g(

R
es

po
ns

e
T

im
e)

CORBA
RMI

Figure 4.12: Results for int array parameter and return (Single computer)

 48

Multiple Computer - Integer Array Parameter - Integer Array Return

2,6

2,8

3

3,2

3,4

3,6

3,8

4

1 10 100 1000 5000 10000

Array Size (of Integers)

lo
g(

R
es

po
ns

e
T

im
e)

CORBA
RMI

Figure 4.13: Results for int array parameter and return (Multiple computers)

4.11. Call with Return and Parameter Type of Varying Length Array

In this experiment, a method call with an array of varying length type parameter and

return type has been evaluated. For simplicity, String has been chosen for the

primitive type with value of “a”. In Table 4.14, Table 4.15, Figure 4.14.and Figure

4.15, the response time results have been stated for single computer and multiple

computers run, in which there is no column named SOCKET because in socket plug-

in, method call is simulated by a hierarchical XML message sent through a socket

that does not have the ability of returning a value of type something. The test cases

are populated using the length of the String array. In addition to the general

discussions stated in section 4.2, the following aspects regarding to the response

times were identified:

(i) In both single computer and multiple computers run, the response times of

RMI plug-in are greater than CORBA plug-in till the length of the array

reaches up to 1000. For the array lengths greater than 1000, CORBA has

greater response times than RMI since delay for the large size of the

serialized object over network becomes more significant.

(ii) The response times of RMI and CORBA plug-ins for a method call with an

int array parameter and return type are less than the response times for a

 49

method call with a String array parameter and return type, which are stated in

Table 4.12 and Table 4.13, in both single computer and multiple computers

run. This is because the serialization of arrays of primitive types requires less

resource compared with the serialization of arrays of complex Java objects.

(iii)The response times of RMI and CORBA plug-ins for a method call with a

String array parameter and return type which includes only one String inside

are greater than the response times for a method call with a single String

parameter and return type, which are stated in Table 4.10 and Table 4.11, in

both single computer and multiple computers run. This is because the

serialization of less complex Java objects requires less resource compared

with more complex Java objects like arrays.

Table 4.14: Results for String array parameter and return (Single computer)

Array Length CORBA RMI
1 559,7 795,1

10 607,6 826,4
100 904,4 1002,8

1000 3830,2 3221
5000 30888,6 10434,6

10000 76584,2 18719,7

Table 4.15: Results for String array parameter and return (Multiple computers)

Array Length CORBA RMI
1 435,3 513,8

10 484 552,9
100 899,9 1000,9

1000 4563 3043,4
5000 28850,3 9150,6

10000 71349,2 15444,1

 50

Single Computer - String Array Parameter - String Array Return

2,5

3

3,5

4

4,5

5

1 10 100 1000 5000 10000

Array Size (of Strings)

lo
g(

R
es

po
ns

e
T

im
e)

CORBA
RMI

Figure 4.14: Results for String array parameter and return (Single computer)

Multiple Computer - String Array Parameter - String Array Return

2,5

3

3,5

4

4,5

5

1 10 100 1000 5000 10000

Array Size (of Strings)

lo
g(

R
es

po
ns

e
T

im
e)

CORBA
RMI

Figure 4.15: Results for String array parameter and return (Multiple computers)

 51

CHAPTER 5

CONCLUSION

In this thesis, a way of design and implementation of a plug-in framework for

distributed objects technologies (DOTs) has been presented. Three DOTs, namely

CORBA, RMI and Java Sockets have been implemented in sample plug-in

implementations. Using these sample plug-ins, a series of performance evaluations

have been performed.

A plug-in framework has several advantages like run-time upgrading and increased

extendibility. In this study, such a framework has been designed and implemented by

using reflection and run-time class loading mechanisms of Java. It is possible to add

this framework to any kind of application to distribute the tasks of that application

using selected DOTs on a network domain.

Responding to different distributed architecture demands for the application domain

leads the programmer to choose a suitable DOT that best satisfies these demands. To

establish a baseline on the performance of these DOTs, a series of performance

evaluations has been performed on the framework. During the evaluation part of this

work, it has been observed that adopting a different DOT usage by an existing

application using this framework is very quick and easy.

The series of performance evaluations revealed that using XML data on a Java socket

as a DOT leads to catastrophically increasing response times with increasing data

length compared to RMI or CORBA. Experiments also showed that response time

increase is due to:

1. Marshalling mechanism of Castor libraries

2. The lack of ability of Castor libraries to understand the end of an XML

message while unmarshalling incoming data from the socket.

 52

Second problem is resolved by the socket plug-in through manually parsing the

socket data before passing the data to the Castor libraries. To decrease the response

times of this plug-in, as a future work, buffering mechanism on the socket which is

used in parsing of the incoming message may be optimized. Also using another

library rather than Castor may solve performance bottleneck due to marshalling

mechanism.

 53

REFERENCES

[1] Pilone, M., Plug-ins & Java, Dr. Dobb’s Portal (http://www.ddj.com), 2004

[2] Object Management Group, http://www.omg.org/, Last access date: September
2006

[3] Sun Microsystems Inc., http://www.sun.com/Java, Last access date: September
2006

[4] Ahuja, S. P., QuinTao, R., Performance Evaluation of Java RMI: A Distributed
Object Architecture for Internet Based Applications, 2000

[5] Hirano, S., Yasu, Y., Igarashi, H., Performance Evaluation of Popular
Distributed Object Technologies for Java, 1998

[6] Munoz, C., Zalewski, J., Architecture and Performance of Java-Based
Distributed Object Models: CORBA vs RMI, 2001

[7] Juric, M. B., Rozman, I., Hericko, M., Performance Comparison of CORBA and
RMI, 2000

[8] Eggen, R., Eggen, M., Efficiency of Distributed Parallel Processing using Java
RMI, Sockets and CORBA, 2001

[9] Szyperski, C., Component software: Beyond object oriented programming,
Addison-Wesley Pub Co, 1997

[10] Chatley, R., Eisenbach, S., Magee, J., Painless Plugins, 2003

[11] Handschuh, S., OntoPlugins – A Flexible Component Framework, 2001

[12] Object Technology International, Inc. Eclipse Platform Technical Overview,
Technical Report, IBM, July 2001

[13] Oriezy, P., Medvidovic, N., Taylor, R., Architecture-Based Runtime Software
Evolution, In ICSE ’98, 1998.

[14] Liang, S., Bracha, G., Dynamic Class Loading in the Java Virtual Machine,
1998

[15] Chatley, R., Eisenbach, S., Kramer, J., Predictable Dynamic Plugin Systems,
2004

[16] Magee, J., Dulay, N., Eisenbach, S., Kramer, J., Specifying Distributed Software
Architectures, In Proceedings of the 5th European Conference on Software
Engineering, Sitges, Spain, 1995, pages 137–154.

 54

[17] Magee, J., Kramer, J., Concurrency – State Models and Java Programs, John
Wiley & Sons, 1999.

[18] Couloris, G., Distributed Systems, Concepts and Design, Addison-Wesley
Publishing, 1994

[19] Oberleitner, J., Gschwind, T., Jazayeri, M., The Vienna Component Framework
Enabling Composition Across Component Models, In Proceedings of the 25th
International Conference on Software Engineering (ICSE’03), 2003

[20] World Wide Web Consortium, http://www.w3.org, Last access date: September
2006

[21] The Castor Project, http://www.castor.org, Last access date: September 2006

[22] JacORB, http://www.jacorb.org, Last access date: September 2006

[23] Hall, R., A Policy Driven Class Loader to Support Deployment in Extensible
Frameworks, 2004

