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ABSTRACT 
 
 
PREDICTIVE MODELING OF SETTLEMENT MOUNDS (9000-5500 BC) IN THE 

LAKE DISTRICT REGION AND ITS IMMEDIATE ENVIRONS 
 
 
 

Kalaycı, Tuna 

M. Sc., Department of Settlement Archaeology 

Supervisor      : Assist. Prof. Dr. Geoffrey D. Summers 

Co-Supervisor: Prof. Dr. Vedat Toprak 

 

September 2006, 185 pages 
  
 
 
 

This study aims to construct a predictive model that investigates patterning of 

settlement mounds by employing environmental variables. The results then will help to 

search for unknown sites of the same age. The methodology is applied to the Lake 

District of Anatolia for the period of 9000B.C. – 5500B.C. 

Four main sets of data are used in this study. The first set is the settlement data, which 

includes the names, coordinates, and periods of the sites. The sources of independent 

datasets are topography, lithology and soil. The study starts with the straightforward 

procedure of plotting the sites in the region. Then the layers (independent variables), 

populated with their sub-fields, are included in the model in the GIS to construct a 

predictive model by using logistic regression. 

Results reveal some high potential areas with no known occupation, as well as some 

zones which need more research. Also, hierarchy of environmental variables is detected, 

which affected the settlement patterning of the study area.  

 
Keywords: Lake District, Predictive Model, GIS, Logistic Regression 
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ÖZ 
 
 
GÖLLER BÖLGESĐ YÖRESĐ VE ETRAFINDAKĐ HÖYÜK YERLEŞĐMLERĐNĐN 
(M.Ö. 9000-5500) CBS ÜZERĐNDE TAHMĐN MODELLEMESĐ 
 
 
 

Kalaycı, Tuna 

Yüksek Lisans: Yerleşim Arkeolojisi 

Supervisor      : Yrd. Doc. Dr. Geoffrey D. Summers 

Co-Supervisor: Prof. Dr. Vedat Toprak 

 

Eylül 2006, 185 sayfa 
 
 
 
Bu çalışma, çevresel değişkenleri kullanan tahmin modellemesi ile höyük 

yerleşimlerinin yayılımlarını incelemektedir. Çalışma, Anadolu’daki Göller Bölgesi’ne 

uygulanmış olup M.Ö. 9000- 5500 dönemini kapsamaktadır. Sonuçların tespit 

edilememiş yerleşimlerin bulunmasına  yardım edeceği umulmaktadır. 

Çalışmada dört ana veri kümesi bulunmaktadır. Birinci küme, yerleşimlerin isimlerini, 

koordinatlarını ve dönemlerini içermektedir. Bağımsız değişkenler topoğrafya, kayaç ve 

toprak verisinden üretilmiştir. Yerleşimlerin bölgedeki dağılımlarının incelenmesinin 

ardından tabakalar (bağımsız değişkenler) CBS ortamında çeşitlendirilmiş ve lojistik 

regresyon ile tahmin modeli kurulmuştur.  

Sonuçlar, üzerinde bilinen yerleşimlerin olmadığı bölgeleri ve daha fazla araştırma 

yapılması gereken yerleri ortaya koymuştur. Aynı zamanda, çalışma alanındaki 

yerleşimlerin yayılımına etki eden çevresel faktörlerin önem dereceleri belirlenmiştir.  

 

Anahtar Kelimeler: Göller Bölgesi, Tahmin Modeli, CBS, Lojistik Regresyon 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
Advancement of information technologies has brought new dimensions and possibilities 

to many scientific and pseudoscientific applications. Increased processing power and 

storage capacities altered non-feasible activities to ordinary ones. Archaeological 

applications, and even archaeological thoughts, are affected by this progress. Today, 

people ask different archaeological questions and employ different techniques to solve 

them. On the other hand, it is clear that some questions have never changed, and they 

are waiting to be solved with classical tools of archaeology. 

 

Predictive modeling was a concern of archaeology even before the extensive use of 

computers, but with different names, or even without any name. Now, it is turning out 

to be a standard procedure for any big scale archaeological project, yet it can be stated 

that modeling efforts are still in their infancy. If employed properly however, broad 

information and even useful knowledge can be obtained.  

 

Any model is constructed with many assumptions and restrictions. For this reason, they 

should be supplied with a clear list of problems and possible alternatives of solutions. 

Those restrictions are not general, but case specific and they do depend on temporal and 

spatial domains of any study area. Thus, there is no single predictive model covering all 

archaeological questions.  

 

1.1 Purpose and Scope 

 

This study aims to construct a predictive model over a wide area by employing 

environmental variables obtained from various sources. Apart from its modeling 

aspiration, single environmental variable to site location relations are also sought after. 

These relations are specified via constructing quantified data layers.  
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Definitely, the main objective is to locate possible site locations in the study area. To 

accomplish this, formal statistical procedures are the best candidates. Then again, there 

are many statistical tools which can be used to construct the model, and obtain 

probabilities of possible site locations.  

 

1.2 Study Area 

 

Study area is located in so called the Lake District and western fringes of Konya Plain. 

It is comprised of eight drainage basins extracted through GIS analysis, which are also 

later on manually corrected. Each basin has a particular lake at its base, but there are 

more than eight lakes in the area which are used for modeling. The intention behind 

choosing such a characteristic area to apply a predictive model is to make use of 

potentials of area, such as palynological studies, environmental reconstructions and 

various others (Figure 3.1). Although they are not planned to be fully employed, the 

potentials are well defined and some conclusions are expected to be drawn. 

 

One of the discussions in building a predictive model is the determination of boundaries 

of a study area. Knowing this, a considerable effort is given obtaining a well defined 

and proper boundary. To do this, both geographical and archaeological data are used. 

While the extent of the area is determined by archaeological knowledge, the exact 

boundaries of those extents are drawn on the basis of geological information.  

 

Temporal domain of the study area occupies a considerable part throughout the study. 

Efficiency of any predictive model is also based on temporal coverage of the model. A 

wide timespan will produce a very general picture and a set of rules which are not 

applicable for the entire time period.  

A very narrow timespan, on the other hand, will be too restrictive and the use of data for 

that particular period of time will be questionable. In this study, a time range of 9000-

5500 B.C. is used to perform the analysis.  
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This period is claimed to be the last period of human history which is greatly influenced 

by environment, and first period in which material culture is visible through substantial 

elements. 

 

1.3 Methodology  

 

To construct the predictive model, logistic regression is used. It is selected as a tool 

since it requires fewer assumptions than other statistical techniques, and it is widely 

employed for predictive modeling applications.  

 

A dichotomous dependent variable, Site Presence, is the main focus, where probabilities 

are found in between 0 (No Site) and 1 (Site). As covariates, environmental variables 

are used. Those variables can be divided into four categories. 

 

First category of variables is topography. Basic source of this set is Shuttle Radar 

Topography Mission (SRTM) imagery. This satellite data is imported and combined in 

GIS platform to obtain primary coverage, and secondary coverage is obtained through 

GIS analysis. Primary coverage was also used to draw the exact boundaries of study 

area.  

 

Second category of variables is soil. Data used to construct the model was already 

digitized and provided with an attribute table. Each attribute is decided to be a potential 

variable for the model. On the other hand, querying data screened some of those 

attributes, and they are withheld from the analysis.  

 

As a third category, rock data is decided to be used. It was also available in digital 

format, and directly imported to GIS.  

Data has been reclassified both for the ease of visual improvement and statistical 

excellence, but this classification is geological rather than archaeological, so that 

criticism can be raised.  
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Fourth category is comprised of hydrological data. This set of data is obtained from 

Elevation data through GIS analysis. As a very dynamic entity, use of this layer requires 

attention. In knowing this, social use of water is considered rather than the domestic 

use. Thus only lakes and higher level rivers are used in the analysis.  

Variables obtained from those major categories are then used to create a predictive 

model, which can serve both to academic purposes in terms of understanding the 

determinants of settlement patterns for the given time period, and management purposes 

for planning future land development.  

 

1.4 Organization 

 

Total predictive modeling effort is not solely to produce a formula, but to understand 

the results of it. Thus, there is a need far more than a mathematical integration of 

datasets. To accomplish this, study is divided into many components, or chapters, for an 

easy understanding of whole concept. Chapter 2 is devoted to a survey of predictive 

modeling definitions, tools and theoretical controversies. By this way, the tool to be 

used in this study is chosen. Chapter 3 deals with archaeology of the area. Although 

there are some excavated sites in the area, total amount of information is not enough 

when surveyed material is also considered. Then each piece is important for grasping a 

general idea on response of human to nature. Chapter 4 is on geography and ecology of 

the area. Information obtained from this part is used to interpret the environmental 

variables in an efficient way. Chapter 5 is devoted to a discussion on determining the 

boundaries of study both in space and time. While doing this, understanding obtained 

from previous chapters is used. Chapter 6 introduces data which will be used to 

construct the model. Some graphs and descriptive statistics are also given for a better 

understanding.  

Chapter 7 is the core of this study. Basic understanding of site environmental variables 

is obtained through the modeling efforts. Chapter 8 is a general survey on settlement 

patterning of the sites in concern. Chapter 9 provides a general conclusion on predictive 

modeling of settlement mounds of the Lake District Region and its immediate environs.  
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CHAPTER 2 
 
 

PREDICTIVE MODEL: A SHORT REVIEW 
 
 
 

2.1 Definition 
 

A predictive model is defined by Kohler (1988; 33) as  

 
A simplified set of testable hypotheses, based on either behavioral 
assumptions or empirical correlations, which at a minimum attempts to 
predict loci of past human activities resulting in a deposition of artifacts or 
alteration of the landscape. 

 

Then archaeological predictive modeling is a method for estimating the probability of 

archaeological site occurrence within a specific geography (Moon, 1993; 2). The casual 

link between site locations and natural independent variables is considered to be 

multivariate- that is, people positioned their sites with respect to an optimal 

combination of all resources in which they were tested (Altschul, 1988), or in a simple 

manner, predictive models are tools for projecting known patterns or relationships into 

unknown times and places (Warren and Asch, 2000). 

 

Less formally, a predictive model identifies “patterns in spatial relationships between 

sites and their physical locations and thus indicate potential relationship between the 

natural and social environment and the locations of past human activities” (Moon, 

1993).  Then whole concern can be reduced to the basic question of whether or not a 

location contains any archaeological material (Wheatley and Gillings, 2002; 166). On 

the other hand, it should be clear that predictive model hypotheses potential of being 

rather than strongly asserting, or pinpointing, a site is placed at a particular place 

(Ejstrud, 2002; 2). 

 

Although there are various methodological differences that exist in constructing a 

predictive model, the ultimate aim is to identify the location of human activities which 
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can be claimed as the responses to environment from various aspects such as time, 

space, and function (Kincaid, 1988, 550). Although such an approach attracts much 

criticism, the idea is still a base for constructing a predictive model. 

While a model aims to locate sites, it also investigates the reasons for those responses. 

Apart from its fashionable use, predictive modeling can also be used for predicting the 

type or quality of remains, and as a database of sites, the current damage status of sites 

from a resource management perspective (vanLeusen, 2001; 2). 

 

Different cultural groups, behave differently in response to different environments at 

different time periods (Moon, 1993), or conversely, but more correctly, landscapes are 

perceived and used in different ways. This perception is reflected and can be observed 

as a patterning in a region, which should also be measurable (Fry et al., 2004; 98). Thus 

there is no single predictive model for the whole. In other words, strategies determine 

the use of environment, which is reflected in archaeological data. This reflection is also 

observed in the correlation of locations of sites with other variables, or so-called 

independent variables, from a formal modeling perspective. 

 

Predictive modeling is not new in archaeology, and in fact each survey and regional 

study is carried out with an implicitly defined set of rules about where a site might be 

located. What is different from the earlier studies is the advent of computational power 

and sophisticated tools to conduct such an analysis, such as Geographical Information 

Systems, or GIS (Wescott, 2000; 2).  

 

A well defined study by Williams et al. (1973; 3) tries to identify presence/absence of 

sites in a specific study area with given decision rules:  

The locus should be on a ridge or a saddle.  

The ground should be relatively flat. (<5% slope) 

The locus should be in the low foothills. (<250 m above the valley floor) 

The locus should be within the modern pinon-juniper ecotone (<1000m) 

The locus should be near semi-permanent water source (<1000m) 

The locus should be some minimal distance from this source (>100m) 
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The formal definitions of those rules were the initial steps for the future of formalized 

GIS predictive modeling studies. In fact, this set of rules can be used as the layers of a 

GIS.  

 

2.2 Use of the Model 

 

Many sites are being destroyed, especially in developing countries, in the name of land 

development (Warren and Asch, 2000; 6). Since such progress is claimed to be 

irreversible then it is vital to distinguish between sites and non-sites. On the other hand, 

there is no consensus on the definition of an archaeological site and the definition 

changes through time and space. Thus, if a settlement distribution is studied over the 

landscape, a clear definition has to be set for the definition of settlement. It can be 

claimed that it is any area which contains human activity, but to be more restrictive it is 

the place where people live or were living (Sollars, 2005; 253). The difference between 

the workshops, caves, hilltop settlements, mounds should be explicitly defined. This can 

be done by setting clear definitions, and/or putting strict assumptions. Moreover, those 

definitions and/or assumptions might not be valid for a different period of the same 

region and can not be generalized for different places in same era. In other words, 

settlements evolve, change, progress or regress, thus a new explanation has to be made. 

 

Overall effort is about modeling a very complex system, thus it is nearly impossible to 

locate each response of the ancient people to the environmental system. As a set of 

tools, predictive modeling aims to understand the human locational behavior. (Ejstrud, 

2002; 18), but it can not be replaced, at least for the moment, by a proper archaeological 

survey. On the other hand, it might be helpful to conduct such an analysis over an area 

which has not studied before, or to show the places that need more research (Ejstrud, 

2002; 19).Also, it will decrease the effort given to a survey and, optimistically, will give 

help in developing an intensive survey strategy (Moon, 1993; 26). 
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The popularity in developing predictive models is a result of the ‘identification, 

protection and management of increasingly threatened cultural resources’ (Duncan and 

Beckman, 2000; 33). Then again, it is clear that modeling should be performed in an 

effective manner, both in terms of time and resources. With the advent of GIS, 

manipulation of huge quantities of data as well as the flexibility of the analysis is 

possible, which makes predictive modeling an efficient tool, if constructed properly 

(Duncan and Beckman, 2000; 34). Moreover, a predictive model provides determinants 

of a location of a site (Warren and Asch, 2000; 8, Trigger, 1968), a schema for the 

protection of the area (Warren and Asch, 2000; 8). 

 

2.3 Variables used in the Model 

 

To construct a model, a number of variables are introduced to the model, and a number 

of results are obtained according to the questions asked. This is well defined by 

Wheatley and Gillings (2002; 168) as a distinction between inputs to the model, and 

outputs from the model. The inputs are: 

•  Spatial parameters (spatial behavior of observations, clustering, randomness) 

•  Physical environmental characteristics (for example, slope, aspect, distance to 

water, surface roughness.) 

•  Economic features (palaeoeconomic reconstruction) 

•  Cultural features (road networks, central places)  

 

This categorization is not unique, but any of the variables might fall into one of the 

categories. In an ideal case, a model should include each of the input components stated 

above, but since social and cultural aspect of locations are unknown for most of the 

cases, researchers tend to use biophysical properties of any location and exclude or 

make proper assumptions on cognitive variables (Moon, 1993; 10), which is in fact the 

main source of criticism of predictive modeling.  
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The outputs, based on inputs can vary from simple to complex.  

• Presence/absence of a site. Output is binary 

• Site class. Output is categorical, where the model decides whether the 

location is a hunting camp, work shop or a base camp. 

• Densities of sites/artifacts. Output is ordinal or real number. 

• Site significance. Classification of the landscape according to the perceived 

importance of the archaeological remains.  

• Site probability. A probability is assigned to the pixel on the 

presence/absence of the site. 

 

2.3.1 Archaeological Data 

 

Archaeological data for predictive modeling studies, or in other words, locations of 

sites, are manifestations of human locational behavior. The selection of the location of a 

mound, for instance, represents an initiative that effects future generations of that past, 

assuming that there was no severe environmental change that made the successive 

people to abandon the area. In fact, there are some clear examples of such cases of 

abandonment (Farrand, 1964, Bordaz, 1968; 44, Mellart; 1970; 8). Workshops, on the 

other hand, were set up for specific purposes such as the manipulation of raw material, 

butchering functions, and various others. It can be assumed that those locations do not 

necessarily reflect vital conditions, but aim to minimize the effort to access certain 

sources. The determinants for the locations of such workshops can then be, for instance, 

proximity to resources or migrating animal routes. On the other hand, such kind of 

‘least cost’ approach is an end-product of industrialization, and it is suspicious that such 

methodology can be applied to a Neolithic society, where a numerous practices could be 

in contradiction. Also, according to Kohler and Parker (1986) oversimplifying the 

phenomenon results in deficit models, where even simple foraging systems can have 

differentiated site functionalities. 
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There should be at least three basic concerns in using archaeological data in a predictive 

model (Ejstrud, 2002; 5): 

 

• Context: The way a site makes use of the landscape. Different land use 

characteristics should be defined separately and explicitly in a model. 

• Dating: The sites should belong to a main cultural period, since cultural 

characteristics and technologies might result in different land use characteristics. 

Moreover, a wide timespan will include severe environmental changes, which 

might in turn affect the locations of the sites. Thus, integration of temporal GIS 

with predictive modeling might produce better results (Yuan, 1996).  

 

Predictive modeling studies do not consider time in great detail and sometimes the 

concept is totally missed. Even when it is considered to some extent, minor details are 

overlooked. Time as a concept, creates norms and such norms can sometimes surpass 

the current conditions and lead to ‘illogical’ decisions. Moreover, even if some ‘logical’ 

decisions were given for locating a settlement, those criteria can change form and 

evolve to other set of rules, and can even be totally be forgotten (Kohler and Parker, 

1986).  

 

• Location: The locations of the sites must be exact, because modern predictive 

modeling applications require accurate coordinates rather than ambiguous 

phrases like ‘near’. On the other hand, in order to include the old survey data 

into models elaborate media should be developed. 

 

Locations of sites should be approached critically since they can be approached from 

two counter aspects. One, landscape can be viewed from an individual site, and two, 

landscape can be viewed where it is occupied by sites. Different approaches result in 

different methodologies (Perkins, 2000; 133). 
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2.3.2 Modeling Data 

 

To summarize, data may include clusters of spatial parameters, physical environmental 

characteristics, economic features, and cultural features, which can be also stated as 

biophysical properties of the location, the social subsystem, and the ‘cultural’ 

information (Moon, 1993; 2), but it can be claimed that most models only include 

environmental variables. This is not just because of the ease of finding the 

environmental determinants of the location, but due to the asperity of obtaining ‘social’ 

data (Brandt, Groenewoudt, Kvamme, 1992; 269, vanLeusen, 1993; 107). 

 

Data itself provides information, and thus creates knowledge, but it is the context that 

changes knowledge to understanding (Tosta, 1991). Social context is a highly 

speculative issue, and a predictive model using a social context will create a biased end 

product. Environmental variables are measurable, and this is why they are widely used. 

On the other hand, they are used with the assumption that the environmental variables 

of the past are represented, at least indirectly, in the existing data (Warren and Asch, 

2000; 6; Dalla Bona, 1997; 17).  

 

In this study, as in most others, social variables are not included to the model. Rather 

great emphasis is given to environmental variables. 

 

2.3.2.1 Environmental Variables 

 

Environmental (or independent) variables of predictive modeling studies stem from 

primary coverage. Then there is a need for discussion of the origins of data. On the 

other hand, as being discussed, it should be kept in mind that very few variables are 

directly used, but most others are proxies for other real archaeological determinants. For 

instance, elevation, apart from its direct use, is a proxy for the growing season, the 

amount of summer rainfall or winter snowfall, and vegetation type.  
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On the other hand, the use of those proxies without discussion can be misleading 

because the meaning can be opposite in two different models (Kohler and Parker, 1986; 

415). Moreover those embedded meanings of proxy variables can create implicit 

correlations of variables and distort the model.  

 

2.3.2.1.1 Geomorphology 

 

Geomorphological data is one of the least shifting agents through time used in a 

predictive model. For this reason, it is widely used (Warren and Asch, 2000; Duncan 

and Beckman, 2000). On the other hand, this shift considers natural changes rather than 

human induced changes.  

Although this is much more rapid today than in prehistoric times, terracing, leveling or 

similar practices are known to be applied even in the early phases of prehistory.  

 

Basic elements of concern are slope, aspect, and elevation. On the other hand, 

geomorphological elements are environmental variables rather than archaeological ones. 

Although they are measures of terrain, they implicitly define exposure to sun and rain, 

defensive values and other survival conditions (Church, Brandon, and, Burgett, 2000; 

143). 

 

2.3.2.1.2 Soil 

 

Soil data to be used in a predictive model are obtained from soil maps. Most of the time, 

soil data is not suitable for the analysis and thus they are reclassified and combined in 

order to create other soil related variables and much more related with human locational 

behavior, such as permeability, drainage, flood frequency, and landform type (Warren 

and Asch, 2000; 15). Unfortunately, this is an ideal case as well, and due to 

methodological constraints this reclassification does not end up being the perfect case, 

even sometimes they are hardly reliable (Leveau et al., 1999). Quantitative data, on the 

other hand, can be reclassified without much subjectivity (vanDalen, 1999; 122).  
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A modern soil map can hardly be representative of past soil distributions. For this 

reason, past ‘soilscapes’ should be reconstructed. In order to accomplish this task, 

archaeological excavations, geomorphology and sedimentology, palynology and 

biological indicators, and edaphology can be used (Leveau, Trement, Walsh, Barker, 

1999). On the other hand, such reconstructions depend on the scale of study, and can 

hardly be feasible.  

 

As a general observation, it can be stated that sandy soils are easy to cultivate but holds 

less nutrition and water, whereas clayey soil, on the other hand, is rich in water and 

nutrients, but hard to cultivate. Such preliminary acceptations are first steps for 

reconstructions and land use determinations (Bintliff, 1992; 76) 

 

Erosion is one other important concept to be discussed under the title of soil. Erosion is 

a cause of destruction of settlements. Also, this process buries them under alluvium 

(Zangger, 1992; 135). Although, erosion can occur naturally, it is the human affect that 

boosts the course of action. Attica near Athens showed great landscape stability in the 

Holocene, with minor erosion instances, but with the evidence of increased land use, the 

level of erosion is immensely increased. It has been estimated that in Greek Argolid of 

c2500 BC the level of erosion is 40cm in mountains and 100 cm in lowlands. The 

ancient city of Eretria was abandoned due to catastrophic erosion in the vicinity. Also 

historic evidences state the immense breakdown in Attic crop production (Bintliff, 

1992; 127).  

 

Climatic change or human induced devegetation does not only affect the soil loss but 

also the agricultural potential. On the other hand, introduction of new technology and/or 

new species can resist this change or loss.  

 

2.3.2.1.3 Hydrology 

 

There is no doubt that water is the key element for life. It can be stated that it was much 

more important in the early times of prehistory, since there were limited transportation 
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methods for water, but as technology progressed the impact and manipulation of 

humans on their environment was brandished by artificially diverting water courses, 

digging holes to reach the water table, and building aqueducts.  

 

Although it cannot be totally generalized, a case study shows that there is a tendency of 

movement away from water as human technology progressed. The hunter-gatherers of 

Eastern Jutland, Denmark, shows a distribution along rivers, lakes, and shorelines, but 

by the Neolithic direct contact was lost, and by the Late Bronze Age, the contact with 

open water is totally broken (Ejstrud, 2002; 19). Also according to Sollars (2005; 258), 

no permanent water supply is found within the periphery of the Cypriot Late Bronze 

Age sites of Pyla Kokkinokremos or Maa Palaeokastro. 

On the other hand, it was not clear if a source has vanished or there was really no water 

source, but in any case human activities of wells, river diversions, terracing are then for 

minimizing the environmental stress (Raikes, 1967; 5).  

 

On the other hand, a distinction should be made between the domestic use and other 

uses of water. The use may change, and it should be explicitly defined in a model, 

where water is used for drinking as well as for irrigation (Wilkinson, 2003; 45). Small 

streams might have been used for domestic purposes, whereas larger ones might have 

been used for other purposes such as transportation, fishing, and other economic and 

ritual activities (Ejstrud, 2002; 4). While it is true that the variable concerned is the 

same, the results are entirely different, and should be interpreted in a different way.  

 

Springs and streams should have been the main sources of water. Thus any research 

based on potentials, and behavior of those sources can shed light on the locations of 

ancient settlements. Not surprisingly, they are affected by climate and topography so 

that they are dynamic entities. Thus using them as variables in a model requires extreme 

attention and critical thinking.  

 

Springs can be expected to occur at the valley sides where the massive horizontal 

bedrock is suddenly cut.  
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Also, rocks with joints enable circulation of ground water, but there is little movement 

of the ground water, thus not many springs are observed, but in a valley forms can be 

eroded to the level of an aquifer which enables the springs to be revealed. To sum up, 

one can expect to find a spring along the side of a hill or in the walls of a valley or at a 

fissure or a crack, due to joins or faults (Lobeck, 1939). On the other hand, ground 

water is also affected by the permeability of the bedrock.  

 

Streams should also be examined and used wisely in models since they are not static, 

but dynamic entities where the abundance of the rain affects the effectiveness, duration, 

strength, etc. of the stream. Even when rain is abundant, if the soil is porous and/or 

heavy forest is on the soil the river system will not be complex.  

VanLeusen (1993; 110) gives an algorithm for simulating the hydrological behavior of 

the terrain so that reconstruction of past flow can be done.  

 

Lithology is also a determinant of the type, in fact even of the existence of streams. For 

instance limestone landscape results in springs but not streams. Arid regions can have 

streams due to minimal vegetation, but the system is also minimal in terms of volume, 

number, and permanency. 

 

Not only the lithology but also soil type is highly correlated with streams. If in a 

drainage basin most of the precipitation is added to the stream system as surface run-

off, then the effect is erratic, but instantaneous and not long-lived. This is the case if soil 

is clayey, which does not permit penetration inside, or the drainage basin is full of bare 

rock with few breaks and/or joints. On the other hand, if the soil is sandy, or covered 

with loose soil or humus, then the precipitation penetrates to underground, and joins to 

stream system, resulting in sustainment even in periods of drought (Lobeck, 1939). 

Thus, the variables to be used in a predictive model are not independent of each other, 

but highly correlated.  

 

Water availability depends on factors other than direct human affect on water sources, 

but it should be clear that most of the factors are dependent on hydrological factors or 
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“at least have a predictable affect” (Raikes, 1967; 8). The climate, soil type, landscape 

and very many factors determine the availability of water. On the other hand, the 

availability is not the sole factor, but duration and quality is also important (Church, 

Brandon, and, Burgett, 2000; 143).  

 

The quality of the water is effected by the character of the bedrock, the style of 

weathering, the hydrogen ion content (pH) the oxidation/reduction conditions (Eh), and 

locally, magmatic conditions. Also hard water has an excess of bicarbonates, which is 

due to the existence of limestone, or other carbonate rocks, or of sulphate derived from 

gypsum (Watson, 1983). The quality of water can also be used for determining the 

choice of irrigation as well, such as spring-fed irrigation versus rain fed flood, where 

alkalinity and salinity analysis can be used to detect to choice (Barker et al., 1999; 278). 

 

The ordinary reaction to the end product of a predictive model is seeing the highest 

potential along the water sources, but in fact the distribution is as varied as the 

landscape itself. The high possibility of selection along the shorelines and riverbanks 

might be true, but there are also places near water bodies where it is impossible to settle 

down (Dalla Bona, 2000; 86).  

 

2.3.2.1.4 Geology and Lithic Sources 

 

Lithology is static like geomorphology, which makes it easier to model. As a raw 

material, lithic sources can be seen as a determinant in location selection, but this may 

only be true for some special use sites (Church, Brandon, and, Burgett, 2000; 145).  

 

An example of how geology can be used for archaeological understanding is given by 

Zangger (1992; 142), where slight erosion of limestone creates ridges, whereas soft 

marl and flysch are vulnerable.  
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In the same manner, limestone landscapes are often characterized by clay rich terra-

rossa soil; highly fragile but fertile as well. Also marl and flysch dominated landscapes 

create gentle slopes, suitable for agriculture.  

 

2.3.2.1.5 Vegetation 

 

Although geomorphological variables are commonly used in predictive modeling, it is 

agreed that vegetation is also important, but it is again a dynamic entity rather than 

static (Dalla Bona, 1997; 6). The variable is important for two main reasons: 

• Different types of vegetation contain different plants in different quantities. 

• Borders of vegetation are attractive since it is possible to exploit two different 

zones, maximizing the quantity of plants (Moon, 1993; 38).   

 

Vegetation is not only a source for food, but it is known that plants can also be used for 

medicine, or as a dye (Dalla Bona, 1997; 6; cf. Dalla Bona; 2000, 75 – Schermer and 

Tiffany; 1985, 220). On the other hand it is questionable that if such a parameter can be 

a major determinant for a selection of a location, depending on the site type.  

 

Vegetation itself is a source for construction material as well as fuel. Thus it can be 

stated that it is important as a determinant of settlement patterning, like many others. 

Unfortunately, its use is not so easy since it requires reconstructions of the immediate 

environment, which is hardly possible in most instances.  

 

2.4 Methodology 

 

There is no clear agreement on constructing predictive models, which has resulted in a 

wide range of methodology. In fact a rigid theoretical framework of predictive modeling 

is not yet fully developed. A brief review will quickly reveal that early predictive 

modeling efforts (and modern ones as well) were based on dichotomies. This has been 

well described in a study of vanLeusen (2000; 5-4) as: 



 18 

• Inductive vs. Deductive 

• North America vs. Europe 

• Cultural Resource Management vs. Academic 

• Ecological vs. Cognitive 

 

2.4.1 Inductive and Deductive Models (Theoretical Approaches) 

 

The basic duality in predictive modeling stems from data itself. However, this duality 

does not originate from data manipulation but, rather, from the understanding of it. This 

problem, if it is a problem, is general and not specific for predictive modeling. 

 

2.4.1.1 Inductive Models 

 

The Inductive (Empirical, or Correlative) model helps to create some decision rules 

based on a sample of observations. Such decision rules are based on statistical methods 

and after extracting those rules, a model is constructed (Warren and Asch, 2000; 8). In 

other words, the researcher uses an available set of sites (data) to construct the model so 

as to find the unknown (theory) (White, 2002; 22). In fact, the term or the problem of 

induction is defined as “generalizing about the properties of a class of objects based on 

some number of observations of particular instances of that class of objects” (Wikipedia 

Dictionary, 2006a). 

 

A correlative or inductive model shows where the sites might have been located, but not 

why they have been located to those particular places. For that reason correlative 

models are not totally predictive, but they are the projections from known to unknown, 

producing an explanation of the sample of sites but not the whole universe. This type of 

model is successful if applied to societies whose decisions are heavily determined by 

environment, such as hunter-gatherers (Moon, 1993; 15). Since any correlative model is 

based on an archaeological inventory, or site database, questions raised should be 
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changed or modified as new data is introduced to the model, while in certain 

circumstances iteration of the model might be necessary (Moon, 1993; 18). 

 

Since an inductively-derived model is generated from a database (Dalla Bona, 1997) it 

is vulnerable to biases in the database. French (1970; 139) gives a clear list of possible 

biases for archaeological locations: 

1) Samples collected for dating the mounds does not necessarily reflect the age of 

the mound. 

2) Terraces and valleys at the edge of the study area might be neglected as well as 

hill and mountain tops.  

3) Some types of mounds, e.g. low or flat ones, may have been neglected.  

Moreover, French asserts a critical assumption that all sherds found on a site indicate a 

settlement-occupation (1970; 142), which might not be always the case.  

 

Furthermore, inventory elements might not be truly recorded, or even mistyped. The 

environmental data collected might be too coarse to be used in the model, or even 

missing. The information obtained can be outdated due to severe changes, but the most 

important error is the systematic error, and should be checked for at the very beginning 

of analysis (Dalla Bona, 1997; 5). 

 

Ebert (2000; 133) heavily criticizes inductive models due to their inefficiency, and adds 

that there is a need to search for those factors that attracted ancient people to particular 

places. Thus an inductive model should be a search for theory rather than a mere 

exploration. Moreover, a general level of success is about 60-70% for an inductive 

predictive model, which is not low but, at the same time not completely satisfactory. 

 

Despite the fact that inductive models suffer from various aspects, they are widely 

chosen. Processing information and turning it into knowledge does not take so much 

time and effort (Church, Brandon, and, Burgett, 2000; 136).  
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2.4.1.2 Deductive Models 

 

Deductively-derived models aim to understand human locational behavior and then try 

to predict site locations accordingly (Kohler, 1988; 37; White, 2002; 22). This 

prediction is then tested according to the existing database. 

 

According to Kohler and Parker (1986; 432), deductive models cover three 

considerations: 

1. Inference about human locational behavior. It consists of (i) a process of 

decision making; and (ii) a result of the process 

2. Specification about the determinants of decision making process 

3. An opportunity to measure the determinants as variables, and test those 

according to a hypothesis.  

 

By employing deductive models, some specific questions are asked about human 

locational behavior (Whitley, 2001). Although they are quite significant, they are rarely 

answered.  

1. How any site selection process happened? 

It is not just economic, but also psychological and/or sociological. It is not static but a 

dynamic process that cannot be reduced to ordinary generalizations (or laws).  

2. How were the decisions made? 

This is not merely a process, but also elements involved in the process. Neurons 

(individuals of the society) work on data in both parallel ways and hierarchically, they 

evaluate and compare. Also they learn from the experiences. Then if there is such an 

algorithm to find out the mechanism of locating settlements in the landscape, the result 

of the algorithm will produce one best place with superior conditions to any other place. 

On the other hand, due to constraints, there will be sacrifices from the perfect case. 

Moreover, since the environment is a dynamic phenomenon one best place can never 

have the same conditions forever, and there will be new ‘best’ places to locate as 

settlements.  
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3. How were the potentials evaluated? 

4. How was evaluation implemented?  

 

There are attractors (or determinants) which cause to locate a settlement. They can be 

seen as the “representation of the observable characteristics of the rules of the system.” 

They can be classified into permanent point attractors (a lithic source), periodic 

attractors (migrating game) and strange attractors, where it is the response of the system 

to the other systems, which is not predictable but can be simulated (Whitley, 2001). 

 

The discussion above can be defined mathematically to put into GIS (Wheatley and 

Gillings, 2002; 169). If the attractors are the variables of the decision making function 

then: 

M=f(x1, x2, x3,…,xn>0)      (2.1) 

M’=f(x1, x2, x3,…, xn<=0)      (2.2) 

where M is the case representing site and M’ is non-site, then f is called  the 

multivariate discriminant function. 

 

There are (at least) two scales which determine the location of the settlement. The 

regional scale is more general and concerned with settlement strategies. The local scale 

is directly related with the minute affects of the environment, closeness to water or raw 

resources (Whitley, 2001).  

 

Although deductive models seem much more elaborate and exact than inductive 

models, this type of modeling suffers from the theoretical orientation of the researcher. 

Such a bias is more destructive when compared to an incomplete model.  

 

Moreover, there is no clear cut division between those two theoretical concerns. In fact, 

existing knowledge of determinants of settlement patterns comes from survey data, and 

surveys are performed with an implicit knowledge and orientation of the researcher.  
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Thus they are not totally separate, but feeding each other. The selection of one or the 

other is not theoretical, but a practical matter.  

 

At this point it is logical to follow a methodology that considers constructing various 

types of models, and various variations of a single model. The advent of GIS to 

predictive modeling makes such kind of work applicable.  

 

2.4.2 Approaches  

 

Apart from theoretical considerations, there are also some methodological 

controversies. They are independent of theoretical dichotomy, and have their own bases. 

The first division is on approaches to methodology, namely numerical vs. graphical. 

The other dichotomy is about procedures of methodology, intersection method vs. 

weighted value method.  

 

2.4.2.1 Numerical Approach 

 

Numerical approach can be stated as an end product of the effect of statistical 

techniques to archaeology. As a branch of statistics, multivariate analysis is used in 

order to discover the associations between variables (Dalla Bona, 1997; 7). Those 

associations then are evaluated by the researcher for a proper discussion.  

 

As in Inductive Models, a numerical approach is heavily affected from biases in the 

archaeological inventories, since the methodology directly makes use of it. Also, 

numerical approach models generally avoid using time as a concept. They do not 

address temporal considerations, whereas physical and cultural environment changes 

continuously change over time (Dalla Bona, 1997; 8). 

 

Another problem with the numerical approach is its heavy reliance on statistics, where 

not all of the developers can use and understand statistical theory. Then the inferences 

might be incomplete and even sometimes wrong (Dalla Bona, 1997; 9). 
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2.4.2.2 Graphical Approach 

 

The progress in information sciences enabled manipulation of vast data, as well as 

feasible handling. With this approach, different variables of a model are represented as 

in the same way as the layers of a GIS. 

 

In this approach, statistics are used in evaluating the associations rather than 

discovering them. This approach does not investigate the unknown; rather it investigates 

more of the same, nor does it contribute to the system, but rather it validates known site 

distributions. On the other hand, this approach is helpful in discriminating between the 

majority of the sites having the same environmental characteristics, and the remaining 

sites (outliers), where these outliers might lead to new understandings (Dalla Bona, 

1997; 11). 

 

2.4.2.3 Intersection Method 

 

If each variable of the model is considered as a layer (or a set) and if for each layer there 

are some preferred places for locating settlements, then intersections of those preferred 

locations depict the attractive places for locating settlements. On the other hand, such an 

assumption is not very accurate due to extremely complex human systems (Dalla Bona, 

1997; 12).  

 

In a deductive framework the intersection method, with the corresponding background 

information, can be mathematically defined as the following (Wheatley and Gillings, 

2002; 169): 

 

In a given location with given set of rules: 

1) Sites tend to occur in flat areas. (Slope<10) 

2) Sites tend to be close to fresh water sources. (Distance<1km)  

3) Sites tend to be located on a particular soil type, A 
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4) Sites tend to be located to the south facing aspect. Then the rules will be: 

M = (Slope<10) ∩ (Distance <1) ∩ (Soil = A) ∩ (Aspect = South)  (2.3) 

M’= (Slope>=10) U (Distance >=1) U (Soil ≠ A) U (Aspect ≠ South) (2.4) 

where M depicts the location with a site, and M’ is the no-site. 

 

2.4.2.4 The Weighted Value Method 

 

If the assumption used in the intersection procedure is degraded then it can be rephrased 

as, the variables contribute in different weights to the decision of locating the 

settlements in a region. Weights are assigned to the classes or categories of map layers, 

according to some criteria. Then the sum is computed to reveal favorable lands for 

occupying the terrain (Brandt, Groenewoudt, Kvamme, 1992; 271).  

 

The basic problem with this assumption is the lack of an agreement on assigning the 

weights. The weights are heavily influenced by the experience and understanding of the 

researcher (Dalla Bona, 1997; 12). Not surprisingly, different results can be obtained 

from the same predictive model by employing different weights. 

 

The weights can be assigned by using ethnographic, ethnological and historical studies. 

Also, empirical studies can benefit from the definition of weights to be used in the 

model (Dalla Bona, 1997; 14), or the layer weighting approach can be coupled with the 

empirical data itself to create more objective weights (Brandt, Groenewoudt, Kvamme, 

1992; 278). 

 

2.5 Tools  

 

There are various ways to perform predictive modeling. Each of them has both 

advantages and disadvantages over the other, and there is no clear rule of thumb for 

selection.  
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One or more ways can be used to construct the same predictive model with some 

success, but the performances of the tools are case specific (Ejstrud, 2002; 16).  

 

There are four main categories of tools in the literature (Brandt, Groenewoudt, 

Kvamme, 1992; Dalla Bona, 1993, 1997; Whitley, 2001; Wheatley and Gillings, 2002).  

Some advanced extensions of the recent tools or some new tools will be introduced to 

the literature with the full integration of GIS with statistics software packages and 

advanced database structures. 

 

The easiest, but surprisingly sometimes the most competent method is the Binary 

Addition. In this, areas having less sites than expected are assigned to ‘zero’ and the 

areas having more sites than expected are assigned to ‘one’, and those binary layers are 

added to each other for the result. This simplicity made the results easily understandable 

among archaeologists. It also permits the researcher to add his/her own variables as are 

thought to be important for the model (Ejstrud, 2002; 10). 

 

The other tool with which to construct a predictive model is an extension of Binary 

Addition, called Weighted Binary Addition. As the name implies, the tool adds weights 

according to the importance of binary layers (Ejstrud, 2002; 10), but such weighting is 

not so easy and objectivity is hardly obtained while assigning the weights, as discussed 

earlier on.  

 

Another tool is called the Dempster-Shafer, which is in fact base on Bayesian Inference. 

On the other hand, it contains a degree of belief as a “…belief function rather than a 

Bayesian probability distribution” (Wikipedia Dictionary, 2006b).   

 

While constructing any model, an inexplicit assumption is made at the time that full 

information about the phenomenon can be set. In other words, for a particular location if 

there is 10% of the evidence favoring existence of a site, then the model will reveal 90% 

of the evidence for non-existence for the same area of concern.  
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Definitely such distinct assignments are not correct most of the time. By adding a level 

of ignorance, it is also then possible to deal with the incomplete data that cannot say 

much about a site (Ejstrud, 2002; 13). 

 

By employing the Dempster-Shafer Theory, the model can make use of knowledge, and 

experience. An example given by White (2002, 23) can clarify the theory. The evidence 

of distance to water can be tested for (i) the sites near a water body (P[presence]), (ii) 

the sites are not near water body (P[absence]), and by employing Dempster-Shafer 

Theory a third hypothesis can be introduced as (iii) uncertainty about the evidence 

(P[presence, absence]). 

 

An outstanding tool used in predictive modeling is called logistic regression, but this 

role is mostly due to its widespread use rather than its theoretical excellence. On the 

other hand, its consistency and feasibility over other tools makes it a popular tool.  

 

Logistic regression creates a ‘prediction formula’ for the study area. It employs 

variables of ‘any scale’ of data, and provides a formula to correlate variables with site 

locations (Warren and Asch, 2000; 8). It can be divided into two: probability 

component, and score component (Warren and Asch, 2000; 18). Ratio-interval scale is 

the ordinary regression coefficients, but nominal- ordinal scale (categorical variables) 

operate on design variable codes. 

 

If it is thought that the study area is divided into grids, then each grid (or cell or pixel) 

will have a potential score (assigned by logistic regression). This score is the integration 

of ‘attractiveness’ of the cell and the ‘disturbance’ to the cell (Duncan and Beckman, 

2000; 36). 

 

It was stated that the basic problem of the weighted value method was the formal 

determination of the weights. This problem can be reduced, if not totally solved, by 

logistic regression. 
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The weights can be adjusted with the use of logistic regression, and then can be used 

through map algebra (Duncan and Beckman, 2000; 42).  

 

The use of regression analysis can also solve the deficits of other tools, where 

1) Effect of the variables on the model is unanswered. 

2) The extent of fitting of the model to the reality? 

3) The extent to which the ordinal or continuous variables can be predicted 

(Wheatley and Gillings, 2002; 171).  

 

Moreover, it (i) requires less assumptions, (ii) stands more powerful, and (iii) enables 

the use of mixed scale data (White, 2002; 24).  

 

Logistic regression is stimulated from ordinary linear regression. Although there are 

many similarities, logistic regression is separated by employing dichotomous dependent 

variables, namely sites and non-sites. Then at least two assumptions of ordinary least 

squares regression analysis are being violated. First, the variance of error is not constant 

anymore, and secondly, errors in the model are not distributed normally (Allison, 2000; 

8). Thus another model, logit model, is used in cases with relatively less restrictions as 

well as due to the capacity to analyze mixed scale data (Tabachnick and Fidell, 1996; 

578). 

 

Another concept, namely ‘odds’ should be explained before examining logistic 

regression analysis. Odds of an event or simply ‘odds’, is the ratio of the expected 

number of an occurrence of an event to the expected number of non-occurrence of the 

same event. Mathematically, if the probability of the occurrence of an event is ‘p’ then 

odds of an event will be: 

 

p)-(1 / p  O = , or  1)(O / O  p +=         (2.5) 
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In linear probability models, the probabilities are bounded by 0 and 1. While a 

transformation from probabilities to odds removes the upper bound, taking the 

logarithm (either natural or 10-base) of the odds removes the lower bound of the model 

(Allison, 2000; 13). 

 

Then for one independent variable the model will be: 

x     ) p)-p/(1 (ln βα +=          (2.6) 

 

The equation 2.6 is also equal to ln(odds) or logit (p) 

 

If the equation 2.6 is transformed then, 

 

p)-(1p/   x)  ( exp =+ βα          (2.7) 

 

After leaving p alone, the equation 2.7 can be written as: 

 

x))  ( exp  (1 / x)  ( exp  p βαβα +++=         (2.8) 

 

Then for a multivariate case the equation of 2.8 for presence of site will be: 

 

 ))(  + (1 / )== ∑∑ ii xx ii exp ( exp  ) x |1(y p ββ       (2.9) 

 

Although the tool is widely used, it has some basic problems. The first trouble is about 

non-sites. The prediction formula is heavily affected by the number of non-sites 

(absence), thus there should be an adjustment for it. Either a random selection of non-

sites is obtained or this bias can be adjusted after modeling via taking the natural 

logarithm of the ratio of the sample sizes.  

 

) / += 1nn2ln(   ' αα         (2.10) 
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where α is raw constant; n2 frequency of cases in large sample (non-sites) n1 frequency 

of cases in small sample (sites) (Warren, 1990; 106). 

 

Moreover, there is the problem of the assumption on the 0 value (non-site) pixels, where 

it is not always certain that a pixel coded as ‘0’ value is really free of archaeological 

material (Wheatley and Gillings 2002; 174, Warren, 1990). Furthermore, the 

interpretation of the coefficients of the logistic regression is not as easy as the multiple 

regressions (Wheatley and Gillings 2002; 175). Also, poorly presented categorical 

variables are problematic. The simple solution is screening them, and then weak 

categories can be combined to create stronger ones (Warren, 1990; 212). 

 

Apart from the theoretical constraints, some practical problems put logistic regression in 

a deprived position. These problems can be listed as: (i) the lack of any check on the 

linearity of the regression model, (ii) neglecting the autocorrelation problem (Warren 

and Asch, 2000; 18), (iii) not performing a proper test of the model (Wheatley and 

Gillings 2002; 179). As a simple check, residuals of logistic regression can be examined 

for a patterning in order to see if the model contains systematic error (Warren, 1990, 

211). 

 

2.6 Testing 

 

Predictive modeling of archaeological sites should be tested by two distinct procedures, 

one is the test of individual variables used to develop the model, and the other one is the 

general model checking.  

 

2.6.1 Testing Variables 

 

For testing variables, univariate statistical tests are used to compare environmental 

characteristics of site and non-site locations (Warren and Asch, 2000; 14). There is no 

single test for such a comparison.  
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Thus depending on scale, the Mann-Whitney rank-sum statistic test can be used for 

interval-ratio scale, and Chi-square or Fisher’s exact tests can be used for nominal and 

ordinal scales (Blalock, 1979). There are also examples of the use of Kolmogorov-

Smirnov two-sample test for the variables (Duncan and Beckman, 2000; 42; Thomas, 

1986).  

 

2.6.2 Testing and Validating Models 

 

Comparison of frequency distributions of sites and non-sites on the axis of 

discrimination reveals the degree of separation between sites and non-sites (Warren and 

Asch, 2000; 19). This separation can be due to chance. In that case the log-likelihood 

chi-square value can be checked against a tabulated value to validate this. (Warren and 

Asch, 2000; 20) A simpler testing procedure is to construct a line plotted through points 

representing observed versus expected frequencies in which case it should approach a 

45 angle with small residuals (Kohler and Parker, 1986; 431).  

 

The test of the model accuracy is performed by running the training samples against 

sites and non-sites. Although this gives an estimation, another test should be performed 

for objectivity supplied by test samples (Warren and Asch, 2000; 20).  In this particular 

case, training samples are obtained from the cells (pixels) that were used for 

constructing the model, whereas test samples are from the pixels of sites and non-sites 

which are intentionally withheld from the model while constructing it.  

 

Another test procedure can be performed by applying the predictive model to a new 

study area, whilst it will suffer from the theoretical framework of the model, as 

discussed above.  

 

There is another formal tool to evaluate the performance of the model, defined as Gain 

Statistic (Kvamme, 1988). The gain is defined as 1- %Area / %Sites, where the value is 

from 0 as the lowest value, to 1 as the highest. This statistic divides the model into two 

parts as high and low.  
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A measure of efficiency then is obtained and by measuring the proportion of sites and 

areas on the high part of the model (Wescott and Kuiper, 2000; 69; Ejstrud, 2002; 15). 

 

The outcome should always be checked by a close comparison with the data. It is not 

necessary to obtain valid results from formal test procedures.  

The assumptions made while constructing the model can be wrong, or the necessary 

prerequisites of statistical tests can be missed, or any other uncontrollable error might 

have been introduced to the model.  

 

2.7 Algorithm 

 

A stepwise algorithm can be given to construct a predictive model. Although the given 

list below is not covering the whole set of procedures, the implementation is trivial. The 

list below is from Duncan and Beckman (2000; 36) 

 

1. collection of primary data sets; 

2. derivation of secondary data sets; 

3. sampling of the environmental variables with site locations and random 

background samples; 

4. exploration and statistical analysis of the two populations; 

5. appropriate, the implementation of logistic regression analysis; 

6. identification of significant variables to be used within the model; 

7. creation of a model formula, which is a weighted sum of the significant variable 

values; 

8. creation of the predictive surface from the formula; 

9. internal testing of the model against the model training sample; 

10. external testing of the model against an independent sample; 

11. reiteration of the model formula and predictive surface given the testing results 

12. continuous updating of the model given future discoveries. 
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The same algorithm can also be given as a flowchart, containing each step above, but 

with a more general idea. Although this flow is not the only way to construct a 

predictive model, it serves well and gives a clear idea of the development of such a 

model. Definitely, for each step some other sources and manipulations can be used, and 

tested accordingly (Figure 2.1).  

 

 
Source: Warren and Asch (2000) 
Figure 2.1 Simplified flowchart of a predictive model.  
 

2.8 Constraints   

 

As in all other modeling efforts, predictive models are deprived of perfect conditions, 

infinite sources, and complete datasets. Thus, before any attempt at modeling studies, 

constraints on those models should be explicitly defined.  

 

2.8.1 Assumptions 

 

It is stated that there are two basic assumptions of the system on which all other 

assumptions are based. Firstly, environmental factors shaped the selection of settlement 

locations in ancient times; and the secondly, those same environmental factors are 

represented today (Warren and Asch, 2000; 6; Dalla Bona, 1997; 17). 

 

Another important point is made by Kohler and Parker (1986), where it is stated that the 

researcher is so ready to accept the assumption of locational behavioral is a multivariate 

function, but maybe very few proxies are enough to construct a model, and superfluous 

data distorts the model.  
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2.8.2 Problems 

 

The problems of predictive modeling can be divided into two main aspects, problems of 

the tools that a model uses, and problems of the model itself, both related to data and to 

its interpretation. 

 

The problems with the tools employed are basically recoverable and usually happened 

due to ‘naive’ use of statistics. The first problem is related with the assumption of 

normality, where a number of statistical tests are based on this assumption, and it is 

rarely checked (vanLeusen, 2000; 5-7). To overcome this, either data should be 

normalized, or some specific tests should be used which do not require normality 

assumption, such as logistic regression.  

 

An important assumption of some statistical tools is the independence of observations. 

Depending on the data type, archaeological observations are geographically referenced. 

Thus use of spatial statistics is essential. On the other hand, some non-spatial tools 

employed are working with small problems, such as Spearman’s rank size rule or 

principle component analysis (vanLeusen, 2000; 5-7). A criticism of the (inductive) 

predictive modeling is its use of sites as being independent of each other, whereas they 

are in fact parts of complex systems (Perkins, 2000; 133)  

The choice of individuals is determined by local (independent, practical) concerns as 

well as global (system) concerns, such as defending, or competing (Ebert, 2000; 131). 

 

The main problem of the predictive model is that each model makes use of limited 

number of variables based on environmental parameters (Dalla Bona, 1997; 15). Most 

of the time, quality of the model is determined by existing data. Although a researcher 

demands more data in order to make a full scale model, it is often impossible to obtain 

the complete set of data. Thus model turns out to be inadequate from the beginning. 

Then the model is subject to heavy criticism. On the other hand, sometimes such kind of 

environment based models can be informative, and can be seen as initial steps in a 

proper (or full) modeling.  
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In any case, overemphasis on environmental variables will create bias. For instance, 

although there seems to be a tendency for the locations to be close to water sources, 

there must be some cases where ancient people were keeping themselves away, due to 

erosion, regular floods or even the quality of water (Ebert, 2000; 132).  

 

A big controversy in predictive modeling is environmental determinism. The first 

studies of this concept started with Montesquieu, Jean Bodin, Friedrich Ratzel, and 

Ellen Semple (Kohler, 1988). An informative discussion is provided by V. Gaffney and 

M. vanLeusen (1995; 367). In this text environmental determinism is given as the result 

of:  

1) Limited availability of geographical datasets.  

2) Limited functionality of GIS  

 

An example of a dictation of environment over culture is provided by Meggers (1954; 

809), where it is suggested  that the decline in the decoration and manufacture quality of 

the pottery may be due to diminution of the environment where more people spent time 

searching for food. Such a diminution of a particular environment can be observed in a 

way that: 

1) The advanced cultures around cannot diffuse into area. 

2) The diffused cultures cannot preserve their positions. 

 

The very basic ideology underlying environmental determinism is “…the situations we 

observe are not or arbitrary, but are caused” (Meggers, 1954; 805, Perkins, 2000). Thus 

the affect of environment can be mapped and measured to some extent in order to study 

the cultural differences or the behavior of a single one for a period of time. On the other 

hand, it should be clear that similar geographies might have different patterns of culture 

(Raikes, 1967; 8). 

 

Then it turns to be the responsibility of the archaeologist, not the GIS itself to prepare 

(obtain) an appropriate dataset, containing geographically referenced variables as well 
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as social variables. The problem is about defining space and adding it to a GIS (Llobera, 

1996; 615).  

 

The inverse case is, then, creating ‘synthetic’ landscapes away from the experience of 

an individual (Llobera, 1996; 613).  Moreover, an archaeological interpretation should 

always be added as a result. Researcher should not merely map the soil and distance to 

water (Ejstrud, 2002; 16), where determinism in applications is implicit. Thus to break 

determinism, the first step should be to define it explicitly, and then to apply an 

interpretative (hermeneutic) approach to landscape studies (Llobera, 1996; 612).  

 

There is also the question of to what extent humans respond to the environment, or 

challenges by transforming the immediate environs (Erickson, 1999; 641), where these 

transformations can be summarized as devegetation, soil loosening, soil water and 

groundwater changes, construction, and accelerated soil erosion (Butzer, 1982). With 

the general understanding of the problem and available dataset, as well as with the 

existing capabilities of the analysis systems, determinism cannot be broken, even cannot 

be avoided.  

 

Another problem is the quality of data sources, whether they are environmental or not 

(Dalla Bona, 1997; 15). This also includes the resolution, temporality and cost. The data 

should be detailed enough, but at the same time should be feasible in terms of 

processing. For general modeling, up-to-date data is always preferable.  

This is also true for archaeological predictive modeling, but an old reference might be 

selected since there is massive destruction of archaeological data in the name of land 

construction, agriculture and various other activities.  

 

Cost is one of the mainstream problems of data, where a predictive model should not go 

beyond the cost of an intensive archaeological survey, where a proper survey can 

produce much more accurate results. 
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Another problem is the selection of the scale of study area, and integration of data 

having different scales. At the end of a generalization (from big scale to small scale), a 

model can lose its precise character, and a move from small scale to big scale for the 

same study area might result in redundant data.  

Those transitions are sometimes necessary in order to find a compromise between 

different scales of data. Selection of the scale is determinant on the analysis of the 

landscape. Wilkinson (2003; 9) states that viewing landscape according to broad zones, 

‘mountain landscapes, or landscapes of tells’ makes it comprehensible. Each landscape 

has a ‘sign’ that shows particular property. For instance tell dominated landscapes can 

be claimed as static.  

 

Compromise is a concern not only for the scale, but also for every component of the 

model. For that reason, integration should be obtained for date (currency) of the data, 

format of the data, and the integrity of different data formats, as well as the integration 

of non-spatial data to the model as attributes (Dalla Bona, 1997; 26-32).  

 

Although it might not be a problem for some, subjectivity is another matter. Selection of 

variables, construction of the model, and final interpretation is based on the experience, 

knowledge, and even political stance of the researcher. From a westernized point of 

view, marginal areas should have less productivity resulting in less density of 

occupation, but people can develop certain technologies or strategies in order to 

overcome the negative effect of the environment. Marginality can be exemplified by 

poor thin soil, high altitude, low temperature, and various others, and it can be claimed 

to effect the settlement locations in a negative way.  

 

Although it is true to some extent, there are some contradicting examples. For instance, 

a ‘marginal’ area, Lake Titicaca in South America above 3800m of sea level was and is 

densely populated (Erickson, 1999; 636) 
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Specific to the locational behavior of ancient humans, each archaeologist might have an 

idea about where the locations of settlements could be. Then the question raised is 

whether there is a need for a formulization of this subjectivity, which then can be 

grasped by others. By means of a well defined formal view, the implicit understandings 

of researchers, whether or not related with the subject, can be measured, tested and, 

more importantly, repeated.  

 

If this is the case, multivariate techniques offer such tools, but it is still the archaeologist 

at the very end, who should reach a conclusion.  

 

One important point, likely to be missed, is the character of the sites. Ebert (2000; 131) 

states that the time spent between sites is much more important than the time spent 

within the site. It is that travel time in which human interacts with the environment. 

Thus for the ancient human, sacrifice from environmental suitability might be the case 

for the sake of the stability of social network.  

 

The problems with the interpretations of the results constitute a main part of modeling 

studies. One problem is about the presentation of the result of a predictive model. The 

implicit terms like ‘high/medium/low potential areas’ or ‘areas of favorability /non-

favorability’ are not informative when unaccompanied by a proper explanation. 

Moreover, the breakpoints between those categories are rarely defined (Dalla Bona, 

1997; 15). 

 

The resulting map of a predictive model consists of pixels indicating probable site 

locations, but it should be read two times. High probability of a pixel does not 

necessarily mean that a site exists in this particular location.  

Archaeological concentrations are very vulnerable to side-effects in the active 

landscapes, and they constitute a very small part of the total landscape. Thus the high 

probability does not show the existence of a site, but it shows the potential (Duncan and 

Beckman, 2000; 56).  
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Predictive modeling is a continuous process with endless iteration with the addition of 

each archaeological and environmental entry as well as other theoretical developments 

(Duncan and Beckman; 2000, 56). It is GIS that enables the researcher to perform 

iterations in a feasible manner, but although GIS is new, predictive modeling is not 

new. It is true that computer hardware and software brought efficiency to the analysis of 

data, but it is the critical thinking in archaeology that is creating models (Ebert, 2000; 

129). The (inductive) model should be accompanied by an explanation rather than a 

simple and fancy colorful presentation of the data.  It should differ “… whether it is 

done with GIS or a stack of semitransparent map overlays on a light table” (Ebert, 2000; 

133). 

 

The failure of early models then can be summed up as “failure address management 

needs, lack of specificity, poor use of existing data, ineffective or biased sampling 

designs, inappropriate statistical analysis techniques, failure to collect inventory data 

suitable for the development of a predictive model, development of models using non-

replicable techniques, lack of comparability of and inappropriate use of environmental 

variables, lack of phasing to allow for model testing and refinement, and failure to use 

such technical aids as remote sensing and geographic information systems (GIS) to 

streamline model development” (Judge and Sebastian, 1988:10).  

 

One very minor problem is omitted most of the time. The existing GIS software 

employs different algorithms for creating data sets, and even when they use the same 

algorithm the output can differ. Although it is not a big issue for larger scales, a focused 

study can suffer from these differentiations. Thus critical readings of the secondary 

variables are definitely needed (Altschul, 1990, 230) 

 

2.8.3 Errors 

 

Apart from problems just outlined, there are also errors. A model can predict that a 

particular location contains a site, when in fact it does not, and a model can also predict 

that a location does not contain a site, when in fact it does.  
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The former error is termed as wasteful error, and the latter is called gross error. The first 

type of error results in wasting time and money, whereas the gross error results in losing 

the archaeological property. Then the success of the model can be measured by the 

amount of error it has, especially with the amount of gross error (Moon, 1993; 2).  

 

2.9 Future Studies 

 

Traditional predictive modeling efforts are part of inductive ideas where known site 

locations are put into a model together with the environmental parameters. The other 

method (deductive methodology) investigates the decision making processes of humans. 

If ancient decision making mechanisms can be modeled, then the same tools can be 

used for archaeological predictive modeling (Whitley, 2001; 2).    

 

As discussed earlier, human behavior is a set of extremely complex systems. Thus, in 

order to have a fully developed comprehensive model, a researcher should raise clever 

questions about the phenomenon. As expected, those questions can be handled with 

more elaborate thinking. In this respect deductive models seem to be a better choice to 

understand the decision making process of ancient human about location selections.  

 

Bayesian inference allows expert knowledge and experience is to be included in the 

model, and fuzzy logic allows the manipulation of uncertain data. Such kind of 

procedures can cope with implicitly defined sets, but maybe the main advance can be 

obtained by coupling landscape reconstruction with given techniques in archaeological 

predictive modeling. It will be then possible to obtain a better model (vanLeusen, 2000; 

5-14).  
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CHAPTER 3 
 
 

STUDY AREA: ARCHAEOLOGY 
 
 
 

3.1 General Locational Information 

 

The area in concern comprises the Lake District, in the southwest of Anatolia as well as 

southern extensions of the Konya Plain bounded by the Taurus Mountains and western 

extensions of the Plain (Figure 3.1). There are significant differences as well as some 

similarities through the region. The rationale behind the selection of more than the core 

area is to include peripheries and beyond of peripheries to some extent with cultural 

similarities in order to search for a very general layout for a specific period of time, as 

well as to increase the limited number of samples obtained from the archaeological 

inventory.  

 

 
 
Figure 3.1 A wide view of study area 
 



 41 

The Lake District (Figure 3.2), as the name implies, full of lakes with various 

characteristics. The district is limited by Taurus Mountains to the South, whereas North 

North-West is bounded by the political border of Afyon and Denizli (Duru, 1999; 165). 

The East of Lake District is not so well examined as the west part, but for the moment 

there seems to be significant archaeological differences between east and west (Duru, 

1999; 166).  

 
 
Figure 3.2 A focused image on Lake District 
 

The Konya Plain (Figure 3.3) is a part of the Southern Anatolian Plateau to the south of 

Tuz Lake. With a rainfall of 250mm/year, it is characterized as an arid region of 

Anatolia. On the other hand, southern parts of plain have wetter conditions (Yakar, 

1994; 180).  
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Figure 3.3 Western extensions of Konya Plain  
 

Determination of exact boundaries of the study area is given after extensive discussion 

of the domains of area, namely spatial and temporal domains. Drawing the limits of the 

study area, both spatially and temporally, is of immense importance since determinants 

of settlement patterns can be heavily affected from the choice.  

 

3.2 Archaeology of the Area 

 

The Southwest of Anatolia, together with some parts of the south-central Anatolian 

Plateau is a well studied and documented area. Specific to the timeframe of this study, 

there are some major sites excavated and published (Bordaz, 1965, 1966, 1968; Mellart, 

1970; Bordaz and Bordaz, 1976, 1982; Duru, 1994). Some surveys have produced 

valuable information about the distribution of sites (Kökten, 1952; Mellart, 1961; 

Solecki, 1964; Bordaz, 1965; French, 1970; Özsait, 1986; Baird, 2000) (Figure 3.4, and 

Appendix-B). It is also important to emphasize that more than 65% of the settlements 

have produced Neolithic and Chalcolithic material (Yakar, 1994; 144). Recent C14 dates 

for major sites in the study area are given in Appendix-C. 
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Figure 3.4 Distribution of sites over study area.  
 

The neolithization of the study area is also a source of problems. As a general 

observation, Aceramic Hacılar is not really aceramic, and although pottery making was 

not known at Can Hasan III, from the very beginning in Bademağacı people were using 

pottery. This might be an indication for movements from the south of the Taurus where 

there are traces of pottery use even before Neolithic. It is also supported by the idea that 

the progress at south of the district is slower than north part (Duru, 1999; 166-168).  

 

Then it is convenient to make an inference comparing north-south rather than east-west. 

Duru (1999; 168) states Bademağacı-Höyücek and Hacılar-Kuruçay produces grey-

beige paste, red or brown washed, burnished and oven-dried pottery. Also the potteries 

are common in Bademağacı EN 5-3, Höyücek ESP, Kuruçay 13, and Hacılar EN. 

Moreover he explicitly states that the Lake District produces a community in terms of 

geography, but no such community can be suggested for the culture of the area, whereas 



 44 

it is clear that cultures have to be defined by more than regional and sequential pottery 

styles. 

 

Duru (1999; 169), then puts the Beyşehir-Suğla basin (Figure 3.5) of the region as a 

transition region, but not a core part of the Lake District, and defines similarities 

between the regions on the evidence of stamp seals, arrowheads, and red paints on the 

floors of houses. 

 

 
 
Figure 3.5 Basin boundary of Beyşehir-Suğla Region.  
  

In fact, not only within the area concerned but also the overall Anatolian Neolithic is 

significant with its diversity in economy and in craftsmanship (Mellart, 1972; 283), and 

those can be responses to different life spaces, as well as the natural cultural diversities. 

A broad look at this diversity reveals a reliance on obsidian at Aşıklı Höyük, an 

extensive hunting at Suberde. At Aceramic Hacılar, there was an emphasis on 

construction, and in Aceramic Can Hasan it was on bone carving, and finally in Çatal 

Höyük specialization was on everything (Mellart, 1972; 283) 
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Such diversity is too complex to be put into a model, and any working effort will be too 

simplistic and general. A properly selected study area in well defined timeframe can 

reveal some, if not all.  

 

There is also a need for an understanding of main characteristics of sites. By this way it 

is possible to determine the spatial and temporal domains of the model, and to discuss 

the result of the model from an archaeological perspective. Thus cognizance should be 

taken of individual sites without losing track of the community of sites, in order to 

understand the determinants of the site locations as well as their cultural associations. 

Because there are not many excavated sites in the area every piece of contributing 

information is important.   

 

In the area, many settlements might have been established but a very small amount has 

survived as mounds since: 

i) The construction materials used for settlements did not survive  

ii) Short periods of occupation resulted in low mounds which were later on destroyed by 

nature or human affect (Yakar, 1994; 294).  

iii) Burial beneath later occupation 

iv) Failure to recognize the presence of early material on multi-period sites 

v) Inadequate archaeological survey 

vi) Inadequate reporting or publication of archaeological evidence 

  

3.2.1 Suberde 

 

Located 11km southeast of Seydişehir, Suberde is placed on a flat limestone ridge 

called Görüklük Tepe (Bordaz, 1965; 31) (Figure 3.6). The location and destiny of the 

site was closely related to the levels of Suğla Lake.  A stream was bringing water from 

Beyşehir Lake, and when the Suğla was in its highest water level, Suberde/Görüklük 

Tepe must have been an island. Also it is highly possible that the abandonment of the 

site is due to this water activity in the Early Neolithic (Bordaz, 1968; 44).  

 



 46 

 
 
Figure 3.6 Location of Suberde in relation to old Suğla Lake 
 

There are 3 distinct strata reported at the site. The upper layer is disturbed by later 

burials. The bottom two strata are prehistoric. The second layer (or the Upper 

Prehistoric Layer) is 0.75m thick and mainly red-brown loam (Bordaz, 1966; 32). It is 

around 1300 square-meters (Bordaz, 1968; 45). There exist the poorly preserved 

remains of mudbrick walls and plaster floors. The bottom layer is around 2.00m thick 

with brown loam (Bordaz, 1966; 32). The total extent of the site is approximately 5000 

square-meters.  

 

There is no indication of sherds or ceramic vessels in the prehistoric strata. With the 

evidence of plaster floors the site then can be put earlier than Çatal Höyük VIa and 

contemporaneous with Aceramic Hacılar (Bordaz, 1966; 32). The first settlers lived in 

houses built of perishable material (Singh, 1974; 80). 

 

The significant character of Suberde as a site is the existence of huge number of animal 

bone fragments (Bordaz, 1973; 283). Those include hunted animals as well as 

potentially domestic ones (Bordaz, 1966; 33), but the only domesticated animal is the 
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dog (Bordaz, 1968; 57). Coming to the flora; cedar, pine, juniper, chestnut, birch, and 

poplar were abundant (Bordaz, 1968; 58).   

 

If there is no significant loss of archaeological data, with its hunting and sedentary 

economy, Suberde had a group of conservative hunters who borrowed some 

architectural elements from farming villages (Bordaz, 1968; 60). It is possible if the 

environment is rich enough to sustain such a system, and if the abandonment is due to 

depletion of sources it is a well marked time that is extremely useful, or if it is the lake 

levels that caused the abandonment of the site, it is still valuable information in terms of 

reconstructing the lake levels which is quite important for the area.   

 

3.2.2 Erbaba 

 

It is located on a natural hill near Beyşehir Lake. It is approximately 80m in diameter 

and about 5000 square meters (Bordaz, 1969; 59) (Figure 3.7). It has no post Neolithic 

occupation (Bordaz, 1973; 283, Bordaz and Bordaz, 1976; 37).  Location is suitable for 

prehistoric farmers. Open vegetation does not require extensive deforestation, which is 

also good for obtaining other wild sources (van Zeist and Buitenhuis; 1983; 48). 

 

There are traces of poor quality grey plaster floor. Also there is evidence for entrances 

from the roof (Bordaz, 1969; 60, 1976; 37). It can be claimed that the site provides a tie 

between Hacılar and Çatal Höyük (Bordaz, 1973; 287, Bordaz and Bordaz 1976; 42). 

Also, the economy clearly indicates that it is later than Suberde (Bordaz and Bordaz, 

1982).  

 

There is an evidence of domestication and the archaeological inventory is similar to 

Çatal Höyük, except for lentils which are absent in Çatal Höyük. Sheep, goat and cattle 

seem to be domesticates as well, while 84% of faunal remains are mostly sheep and 

goat (Bordaz and Bordaz, 1976; 40). 
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Figure 3.7 Erbaba and Beyşehir Lake. 
 

Chipped stone industries also reveal a significant difference between Erbaba and 

Suberde. Projectile points in Erbaba are 3% whereas they make up 20% in Suberde, 

which might be an indication of difference between hunter and agriculturalist 

economies (Bordaz and Bordaz, 1976; 41). 

 

The locations of both Erbaba and Suberde are not in the core of Lake District, but at the 

periphery. According to Duru (1999; 166) this situation makes these sites extensions of 

Konya Plain.  

 

3.2.3 Hacılar 

 

It is located 26km southwest of Burdur, and close to Burdur Lake (Figure 3.8). A spring 

is observed in the limestone, where also the ancient site is located. The Koca Çay 

stream, passing from the west of the site and draining into Burdur Lake contains 

sulphur, arsenic and salt. This puts both the lake and the stream away from the use for 

vital purposes (Mellart; 1970; xii).  
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Figure 3.8 Location of Hacılar and other lakes. 
 

In Aceramic Hacılar, there is an indication of agricultural practices (Singh, 1974; 66).  

On the other hand, there is not much information on the domestication of animals 

except dog (Mellart; 1970; 5). 

 

The interesting thing about Hacılar is its abandonment for more than a millennium. The 

‘newcomers’ brought a fully developed culture with them. First they built the new 

settlement on virgin soil, then two sites were merged destroying some elements of the 

aceramic phase (Mellart; 1970; 8). Such a re-visit raises a basic concern. How is it 

possible to locate the ‘new’ settlement on a very close position of the old one? The 

practical answer is the existing remains of the aceramic phase led the people to re-locate 

the site. On the other hand, the thinness of the walls of aceramic period suggests single 

storey, with no evidence of postholes even in the biggest rooms. Moreover stone 

foundations were found only under the heavier walls (Mellart; 1970; 4). It is then 

questionable to find the traces of such a basic architecture after more than a millennium. 

The other possible explanation is the protected link or memory with the ancestry, where 
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the location of the ‘old’ site was never forgotten, and even there were visits to the site, 

but this also brings the isolated community preserving its oral tradition. This idea is 

open to any criticism, and one can hardly prove its truth. The extremist answer is the 

probabilistic one, but the most optimistic explanation in terms of human location 

behavior is re-locating the site due to the same attractiveness was valid, with the 

implication that no environmental change occurred to shift this attractiveness.  

 

Another concern with Late Neolithic Hacılar is the apparent effort given to defense 

(Mellaart; 1970; 10). Defense can be against human or animal, or both. Other needs, 

such as creating demarcations might very probably result in simple structures rather 

than fortified enclosures. On the other hand, in any case such a risen need is a response 

to a happening. It might be a response to human if the social system is degraded so that 

there is disorder, or it might be a safety measure against attack by big wild animals. 

Such attacks do not start suddenly, but might be due to lack of food or other resources 

for those animals. The depletion can be a result of environmental change either 

naturally happening or happening due to human activity such as heavy deforestation for 

fuel and construction, where Mellart (1970; xii) states that remains of deer, wild cattle, 

and representations of leopard, and bear shows the forest was not so far away in the 

Neolithic and Chalcolithic.   

 

3.2.4 Kuruçay 

 

It is located one of the hills around Burdur Lake, where the topography is much 

undulated (Harmankaya, Tanındı, Özbaşaran, 1997) (Figure 3.9). Kuruçay 11 is 

characterized by fortification walls with towers. Duru (1994; 12) states that a well 

established fortification reflecting a strong architectural tradition protected the 

inhabitants of the site from external dangers. If this reconstruction is true then the 

fortification must be a response a threat more than an animal attack. Hacılar VI, was 

contemporary with Kuruçay 11, and is thus expected to have an independent 

fortification, since these sites are so close to each other (Duru, 1999; 168).  
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Figure 3.9 Location of Kuruçay and Hacılar, and relations to Burdur Lake.  
 

Kuruçay 11 is dated to the Late Neolithic, and after level 11, the site is reported to have 

shifted to the south. Level 10 of Kuruçay belonged to the Early Chalcolithic. Since a 

fortification wall is not reported with the beginning of the Early Chalcolithic no more 

speculation can be made about a possible struggle within the social system in the area, 

but it should be kept in mind that the transition to independent fortification is sudden 

(Duru, 1994; 15). 

 

Architectural tradition from Early Neolithic to the end of the Early Chalcolithic (12-8) 

is stated to be continuous and minor differences can be acceptable (Duru, 1994; 15). 

Moreover, in terms of technique there were still minor differences (Duru, 1994; 14). 

 

3.2.5 Höyücek 

 

It is not an ordinary mound with regular urban elements, but comprised special 

buildings (Figure 3.10). Thus the strata are named accordingly (Duru, 1995; 449). There 

are significant similarities of pottery of Early Neolithic of Höyücek, Kuruçay Level 13, 
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and Aceramic Hacılar. There are also architectural parallels between the Shrine Phase of 

Höyücek and Ceramic Hacılar (Duru, 1995; 467). There are clues of a temporary 

settlement in Early Settlements Phase for Höyücek (Duru, 1995; 470). The same 

discussion can be made for the Sanctuaries Phase, at least for a period of time (Duru, 

1995; 471). Thus Höyücek turns out to have been a cult centre rather then an ordinary 

settlement as indicated at the very beginning.  

 

 
 
Figure 3.10 Höyücek and other major sites in area.  
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CHAPTER 4 
 
 

STUDY AREA: GEOGRAPHY and ECOLOGY 
 
 
 

4.1 Geography 

 

The study area is characterized by lakes, and various basins with several types of 

hydrological feedings as well as valleys of differing sizes. Overall, the area is limited by 

the Taurus Mountains at the South, whereas North and West are bounded by a line 

following the outer depressions of geological features as well as the ancient sites 

thought to be located at the periphery forming cultural limits. The east end of the area, 

on the other hand, is hard to determine and extremely speculative. Passing from the 

Beyşehir-Suğla Region to the east, there starts the great plain of Konya, where it is 

stated that there was a pluvial lake covering the Konya Basin at a depth of 20-25m 

(Erol, 1971; 13). 

 

If the (ancient) Konya Basin is excluded from the area in concern, then the remaining 

part forms what is today called the Lake District. This term is not cultural but 

geographical. Thus the boundaries of this study have been selected using both barriers 

(Taurus Mountains) as well as cultural affiliation.  

 

The south-west end of the area, the western part of the Western Taurus, is characterized 

by the existence of individual chains that are perpendicular to the range. The Western 

Taurus can be divided into two limbs forming an angle near Isparta. The western limb is 

the Lycian Taurus, and the eastern range was formerly called the ‘Taurus Occidental’ 

At the East of the Antalya-Isparta line are NW-SE strikes, parallel to the range prevail, 

whereas at the Lycian Taurus, the strikes are oriented NE-SW, which is also related to 

the existence of nappe systems (van Zeist, Woldring and Stapert, 1975; 57). Due to 

post-alpine epeirogenetic movements, rift valleys occurred, where lakes possibly filled 
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those valleys, such as Eğirdir Lake located in one of the N-S oriented rift valleys 

(vanZeist, Woldring and Stapert, 1975; 58).  

 

Including the Beyşehir-Suğla depression in the Lake District of Anatolia, Eğirdir-

Kovada Basin, Acıgöl Basin, and Burdur Basin with similar traits in terms of physical 

geography to some extent constitutes the broad study area.  

 

From a wider perspective, a broader area than Lake District also can be divided 

ecologically for the provinces of Antalya, Burdur, and Isparta: 

1) The Western Plateau: It is an area with closed drainage basins and large 

depression plains. Plains and basins are suitable for wheat and barley cropping 

due to extensive alluvial and hydromorphic soils.  

2) Lakes Zone: It is comprised of the drainages of three main lakes. Cultivation is 

performed in alluvial plains mainly radiating from the lakes; the rest is mostly 

rock outcrops. 

3) The Coastal Zone: It is basically a strip infiltrating to the foothills of the Taurus. 

Cereal cultivation is affected by annual flooding. 

4) The Mountain Zone: It is a part of the Taurus system where the terrain is 

extremely undulated. Arable land is limited to lower slopes and mountain 

shelves (Allan, 1972; 214). Karstification is a characteristic of the Taurus. 

Although it is a glacial process, it is also active in post-glacial epoch. 

Karstification creates a dynamic landscape, especially for hydrological processes 

(Erinç, 1978; 104).  

 

According to this schema, the study area mainly focuses on the Lakes Zone as well as 

some marginality of other zones, with a continuation to the east covering the east of 

Konya Plain.  
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4.2 Ecology 

 

Apart from the archaeological studies, geological, geomorphological and palynological 

studies can help to identify significant shifts that happened in history, where those shifts 

might be the reasons for changes in settlement patterns. On the other hand, such kind of 

studies which are applicable to archaeology are few, but still helpful while doing 

regional research. A study performed in the east-central area of Anatolia (Woldring and 

Bottema, 2002) reveals temporal zones of homogenous environment, and sheds light on 

possible conditions of the environment. There exist five zones according to pollen 

studies: 13000-10860 B.P., 10860-7900 B.P., 7900-3870 B.P., 3870-1650 B.P., and 

1650-0 B.P. It is also given that around 17000-12000 B.P. arid conditions of a Late 

Glacial Period are detected, and with the end of this phase, lakes and marshes had been 

developed in basins at various times (Wilkinson, 2002; 22). Another set of zones based 

on pollen stratigraphy is given by Eastwood et al. (1999) for Gölhisar Lake (37 8’N, 29 

36’E) in the Burdur province as ~9500-8600B.P., ~8600-3500B.P., ~3500-3000B.P., 

~3000-1300B.P., ~1300-200BP. Also it is claimed that landscape around Gölhisar 

indicates a major pine dominated forest, and important local and regional variations 

exist in forest composition from Early to Mid Holocene. Similar results were obtained 

by vanZeist et al. (1975) for south of Lake Beyşehir. Those results are used for 

constructing the temporal domain of the study area. Although, such reconstructions are 

local, results are still helpful for validating the results.  

 

In fact, a general reconstruction of forests showed that at roughly 8500BP, the interior 

Anatolia was covered with Pinus silvestris and Betula, which are the species in North 

and North-Eastern Turkey (Erinç, 1978; 97). 

 

4.3 Lakes  

 

The study area is significant with its various sized lakes, each with different 

characteristics (Figure 2.3). The main lakes of the area are Beyşehir, Eğirdir, Burdur, 

and Acıgöl.  
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Their immediate surroundings both favored and repelled settlements due to their 

dynamic character. According to Lahn (1948), Suğla was disappearing once every 12 

years in the early 50s. Although modern lake levels are heavily affected by agricultural 

activities and artificial channels by-passing rivers, the geological history of the study 

area is worth looking at. Again Lahn (1948) gives a brief history of the development of 

the Lake District. Accordingly, extensive shallow lakes were covering the south-central 

Anatolia, connected to each other in the Pliocene. By the early Pleistocene basins were 

closed, and lakes were isolated. The isolated lakes then either developed a subterranean 

karstic outlet due to soluble limestone (fresh-water) or they were not able to develop an 

outlet in which case their water became saline. Some lakes disappeared altogether, as 

did broad Pleistocene lake in the Konya basin.  

 

Evidences are clear that lakes were there in the Pleistocene, where no weathering was 

observed in the samples taken from the centers of the basins (Cohen, 1970; 120). 

Farrand (1964; 150) asserts that Beyşehir-Suğla depression fault was “occupied by an 

extensive shallow lake” which is at1180m above sea level.  

 

It was observed that the basins of Western Taurus contained more lakes than today. 

Also they had higher lake levels, disregarding human impact such as artificial channels 

or conscious draining. Both indicate pluvial conditions, and are important in terms of 

settlement locations since the recessions produce fertile soil behind as well as being 

physical obstacles to locate settlements (vanZeist, Woldring and Stapert, 1975; 61, 

Erinç, 1978; 99). 

 

The lakes are both fresh and salt water; Beyşehir, Eğirdir, Söğüt, Avlan, Kestel being 

fresh-water lakes, while Eber, Akşehir, Acı, Salda, Burdur are salt-water lakes. 

 

According to Saraçoğlu (1962; 308) lakes close the Mediterranean are less prone to 

water level fluctuations. Those with external connections, either outlets or fresh-water 

inlets, have fish, while those that are closed have brackish-salty water and there is no 

fish inside.  
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The fresh-water lakes are assumed to be having subterranean drainage, as well as karst 

processes that are observed in limestone mountains of Lycia (van Zeist, Woldring and 

Stapert, 1975; 57). Thus, overall fluctuation of lake levels can be due to karstic terrain 

(Eastwood, Roberts, Lamb, and Tibby, 1999; 690). Apart from creating a dynamic 

framework, it is claimed that limestone also distorts the C14 dates obtained from the 

area (Eastwood, Roberts, and Lamb, 1998; 69).  

 

4.3.1 Evidences of Lake Levels 

 

Cohen (1970; 120) states that the decrease in the lake levels are a result of evaporation, 

or lower surface drainage, rather than an increase in the underground drainage. This 

statement covers the basins of Burdur and Konya-Ereğli. The studies examine footprints 

of lake levels above modern levels, where they are evident with shorelines, raised 

beaches and terraces (Cohen and Erol, 1969; 393).  

 

Although changes are evident, the fluctuations of wet areas are not as significant as the 

ones which are desert-like margins (Butzer, 1964, 25). Thus comparative examination 

of the levels is a must, and it is logical to compare and contrast the behavior of lakes in 

the same climatic zone, such as Burdur and Beyşehir (Cohen, 1970; 121). 

 

Burdur Lake level reached about 860m, where there seems to be a recession until the 

Quaternary (Kökten, 1952; 187).  

 

There is a continuous recession of lake levels through time, though not all of the 

movements of theses lakes are visible. Thus during the study only available data is used 

in terms of reconstructing the ancient lake levels. 

 

4.4 Archaeological Inferences 

 

The dynamic environment of the study area puts the archaeological evidence in an 

interesting framework. The area does not have the typical characterizes of 
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Mediterranean climate, but it also does not have the arid conditions of Central Anatolia 

(Altınkale, 2001; 19). Due to karstic landscape, fluctuations of lake levels can be 

examined physically, but they should also be examined culturally in order to reveal the 

role of lake level changes for the ancient people of the area as well as to make use of the 

environmental reconstructions. 

 

Although recessed land is fertile in the immediate vicinity of a lake, there are some 

problems in terms of locating the settlement. In the area, soil is so wet that it can not 

easily carry the weight of a house. Thus, a minimum distance exists to the vicinity of 

the lake. Also, insects can create immense problems such as malaria. For Swiss lake 

dwellings the ultimate action was to drawback the settlement to the dry land. Each layer 

was an indication of such a withdrawal (Muller-Beck, 1979; 250). 

 

The non-existence of the pre-Neolithic material can be explained by the lake levels of 

basins, which were not permitting access for settlements. Paleolithic artifacts are found 

in uplands, around the Burdur Basin, and to the south of Lake District the zone where 

the Taurus stands (Cohen; 1970, 120). With the start of recessions in the Konya basin 

and in the Burdur Basin the earliest evidences of Neolithic shows up, and it is only the 

Dervişin Hanı tools that give evidences of pre-Neolithic culture (Cohen, 1970; 131).  

 

Hacılar was also affected by this dynamism. There are three raised beaches existing 

between the present lake level and Hacılar, and there is 3,5m of accumulation since the 

first aceramic establishment of the site. Two recessions might have occurred before the 

Late Neolithic of Hacılar. Although it is stated as the second one is not earlier than 6750 

BC, or the abandonment of the site, the new cal B.C. is 7550. In any case, the 

abandonment of Hacılar can be explained with the intrusion of lake water to the site, or 

due to flooding of the area made the site inhabitable (Cohen, 1970; 130).   

 

Suberde was occupied when it was an island. Alan Höyük and Ortakaraviran Höyük 

were clipped by waves during the occupation. The lake dominated landscape was surely 

important for the ancient inhabitants of the area (Farrand, 1964; 153). 
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CHAPTER 5 
 
 

DOMAINS 
 
 
 

Although some basic archaeological and geological information is given, the main 

compilation is made for defining the study area both in spatial and temporal context. 

The boundaries of areas that are prone to predictive modeling are arbitrarily selected (in 

perfect rectangles or sudden cuts of a study area). The study area is also determined 

arbitrarily for the ease of use of projection systems, where the boundaries are the lines 

of projections which are geological, but not archaeological, or very little or, indeed, no 

discussion is made about the peripheries.  

 

On the other hand, there is no agreement on the boundaries of cultures. Indeed, one can 

hardly define the exact area of an ancient settlement, if not fortified. Even it is the case; 

inner core of the settlement cannot fully represent the interaction of people with the 

environment or with other human systems. Moreover, if a predictive model is 

environmentally derived, which is the case most of the time, there is problem of 

ignoring areas where ancient people were interacting with their immediate environment. 

This raises the issue of transhumance, which was usefully be defined as “… a passive 

reaction to environment” by Raikes (1967; 13). Although a settlement is said to be 

permanent, its population can be dynamic. According to Allan (1972; 221) movement 

was alive between the villages of south-western Anatolia, and the population was 

doubling during the specific periods of the year.  

 

Another fallacy of a predictive model concerns time. Like space, time is hardly 

discussed in predictive modeling, or else a very wide timeframe is used to produce a 

precise model, disregarding the environmental and cultural changes, otherwise such a 

frame is divided into smaller components. A better approach might be to make use of 

time as a fourth component in a GIS.  
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Despite the fact that revealing the boundaries of space and time is not easy and beyond 

the scope of this thesis, there should be at least an attempt to put the predictive 

modeling into a better context.  

 

5.1 Spatial Domain 

 

Endless discussion can be made for the spatial domain of the area, where not a single 

researcher can draw exact boundaries of the cultures. Even it is drawn, the periphery 

will contain areas affected by the neighboring culture zones. The choice of study area 

can reduce the effects of some variables while enlarging others (Van Leusen, 1993; 

114). 

 

The modeling will produce better results if it is applied to a core area with minimal 

disturbance of other cultures. While it is impossible to detect such core areas, some 

general terms as ‘Fikirtepe Culture’ or ‘Urfa Culture’ are suggested in archaeological 

literature. Also there is a tendency to put Çatal Höyük, Can Hasan and Tepecik Çiftlik 

to Central Anatolia, Suberde, Erbaba, Bademağacı, Höyücek, Kuruçay and Hacılar to 

Lake District of Anatolia (Özdoğan, 2002; 94).  Neolithization of the Lake District has a 

different style from Konya Plain or Eastern counterparts where most probably the 

origins are also different (Duru, 1996; 59). 

 

Although such divisions are useful in terms of research and understanding, not much 

discussion is made concerning the transition zones. This can be also observed by 

viewing the distribution map of sites for the Neolithic and Chalcolithic Periods of 

Anatolia (Figure 5.1). Thus it should be approached critically that if such distinct zones 

exist or if there is not enough information to see a complete transition. For this reason it 

is essential to perform researches at those void areas with specific questions and with 

prior information of possible site locations.   
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Figure 5.1 Distribution of Neolithic and Chalcolithic Sites in the study area  

 

The study area that the predictive modeling is applied on consists of geographical limits 

of basins of lakes and discussions of previous researchers. The discussion below aims to 

reveal the archaeological standpoint of the differentiation in the study area with spatial 

considerations. 

 

According to Mellart (1954; 187) there is an evidence of contact between the Beyşehir-

Seydişehir Region and Cilicia, where the important point is given as the role of Taurus 

in the spread of painted pottery cultures form Cilicia. Not the Beyşehir-Seydişehir 

Region, but Beyşehir-Suğla Depression can give clues on transformation as well as the 

contact information between Hacılar and Çatal Höyük (Bordaz, 1973; 282), although 

the areas are the same, but named differently by different researchers. The selection of 

Beyşehir-Suğla Depression most probably was based on geological reasons rather than 

archaeological, and again according to Bordaz (1973; 283) there exist more than 60 

sites, which are mostly later than Suberde. Those sites are most probably due to the 
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activities between Hacılar and Çatal Höyük, while ancient people were passing the 

‘fertile basin area’. Moreover the area is suggested to be attractive to Paleolithic people, 

and it is also suggested that the area might be link between Antalya and Ankara 

(Solecki, 1964; 130), where no indication of an Upper Paleolithic exists. 

 

5.2 Temporal Domain 

 

For the specified study area, the main archaeological period of concern is the Neolithic, 

but the process of Neolithization is beyond the scope of this study. The Neolithic period 

is characterized by significantly increased human cognition over the environment. 

Domestication is the most evident result of it. Although there are many theories for 

domestication (Hodder, 1990; McCorriston and Hole, 1991; Thorpe, 1996; Richerson, 

Boyd, and Bettinger, 2001; Hayden, 2003; Veen, 2003; Hole, 2004) it is clear that there 

is a strong two-way influence between domestication and human cognition of 

environment. This period is also characterized by permanent settlements which do 

reflect a final, but critical decision about locating a settlement to a proper place with 

some criteria. Although these criteria are assumed to be energy minimizing by the 

beginning of the Holocene, cultural systems turned to be much more complex, but at the 

same time leaving much more material remains which enables mapping, testing, and 

predicting. To conclude, the specified temporal domain is the latest period that permits 

construction of the model, and the earliest period of which human-environment relation 

peaked but not in a destructionist way. The beginning of Bronze Age, by contrast, 

shows a significant increase in the size and area of the settlements indicating a level of 

urbanism (Baird, 2000; 15). Also for the eastern Mediterranean vegetation disturbance 

is clear by palynology after the emergence of complex societies; i.e. Bronze Age 

societies (Roberts, Meadows, Dodson, 2001; 634). This is also supported by the heavy 

use of the wheel and ploughing from the beginning of the 3rd millennium. This is 

accompanied with the use of ox-power with the increased level of technology, resulting 

in an extreme increase in the level of the complexity of the society (Allan, 1972; 224), 

and manipulation of environment in behalf of humans, but independent of 

environmental constraints. 
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This is not an isolated fact, but also observed in Jordan where it is indicated as heavy 

soil erosion, and environmental degradation between the Early Bronze Age and 

Classical times (Barker et al., 1998; 278) which might be due to the heavy manipulation 

of environment with the increased level of technology, and unlimited demand from 

social complexity been reached. Similar discussion is made by Wilkinson (2003; 20) 

where the correlation between the decline of species with the appearance Early Bronze 

Age mounds might have been caused by mainly human effect rather than environmental 

change. This simply means that although there was no detected significant change in the 

environment, ancient humans were able to alter it according to their needs and the 

environment itself was no longer the determinant over humans.  

 

Although the Neolithic period of the region is the main concern, there is no way to 

define exactly the beginning and ending of this period, but each archaeological period is 

diffused to its temporal neighbors to some extent. Thus if there is no clear evidence of 

settlement pattern change, introduction of a new technological innovation, or a clear 

environmental event then the temporal limits of the study will be arbitrary rather than 

caused.  

 

Mellart (1972; 279) added the Early Chalcolithic to his Anatolian Neolithic settlement 

patterns study because he thought that the economy of the Early Chalcolithic was still 

purely Neolithic, but he also suggests (1963; 199) a shift of settlement patterning after 

the end of Early Chalcolithic period. On the other hand Duru (1996; 55) states that in 

the Early Chalcolithic of Hacılar a deep change is observed in both the plan and the 

techniques of construction, concluding that a new group came to the area with new 

traditions. 

 

According to the discussion given above the study focuses on mainly the Neolithic 

period while the Early Chalcolithic is also considered as well as the Epipaleolithic.  
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5.3 Drawing Exact Boundaries in Space  

 

Although the results of discussion given above cannot produce an exact polygon 

limiting the area of concern, it helps to make a rough estimate both in space and time. 

 

Spatially, limits of study area basically follow the ridges of drainage basins of lakes. On 

the other hand, since GIS analysis produces many watersheds from SRTM data in the 

broader context, the selection of basins was based on the archaeological excavations and 

surveys. Northern and western fringes were automatically selected with the watershed 

algorithm, but little manual correction was made with the help of 1:100000 topography 

maps as well as considering archaeological studies. Selection of southern borders was 

straightforward due to the existence of the Taurus Mountains, acting as a barrier. On the 

eastern side, it was hard to draw a proper and satisfying boundary due to various 

reasons (Figure 5.2).  

 

 

Figure 5.2 Exact boundaries of study area (inner polygon), and initial area of concern 

(outer rectangle) 
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A westernmost fringe of the Konya Plain, which is given as Beyşehir-Suğla area, is 

included into the study region. The area is claimed to be a geographical transition area 

to the Lake District since the Beyşehir Plain discharges into the Konya Plain 

(Kuzucuoğlu, 2001). 

The Beyşehir-Suğla area is an also archaeological transition area although some basic 

similarities exist with core of Lake District Region. Then, although it will not be totally 

correct to add the sub-region to the study area, it is also not  a great mistake while the 

area is not totally different from the rest.  

The initial idea about the study area was also to add Konya Pluvial Lake. Although 

main pluvial lake and its neighboring wetlands do not exist today, they might have 

played a similar role as the lakes to the west of the south of plateau. Moreover, the 

validity of arid conditions of Konya Plain cannot be projected to earlier than fourth 

millennium BC (Erol; 1978). On the other hand it is claimed that Konya Pluvial Lake 

dried suddenly around 17000 BP, and never reached its original scale again (Fontugne 

et al., 1999; 579). Thus contemporaneity is highly questionable, and since lakes are the 

main focuses of the study, Konya Plain was withheld from the study area.  

Apart from hydrological problems, area in question is also problematic in terms of 

alluvial deposition. It is stated that at Can Hasan III there is at least 1.5m of 

accumulation above the seventh millennium deposit (French, 1970; 139). If this is the 

case, then the sample from the area will not be representative, and future possible 

environmental constructions will not be liable.   

The Lake District is promising in terms of obtaining a general reconstruction where 

reconstructions obtained from individual sites will reveal information about the 

immediate environment. Thus several samples from several lakes are needed for a 

regional reconstruction (Eastwood, Roberts, and Lamb, 1998; 69). Moreover, climatic 

changes in Anatolia are not easily followed since there is not enough material to be 

dated by C14 and there is no continuous sequence in shallow lakes. On the other hand, 

some lakes (Van or Burdur) permit such procedures (Fontugne et al., 1999; 586). 
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CHAPTER 6 
 
 

DATA 
 
 
 

In the analysis, logistic regression is employed to construct a predictive model. Data is 

comprised of a dependent variable, or location of sites, and independent variables with 

various sources and characteristics. This chapter is devoted to an introduction of data 

and their sources as well as to reveal some basic statistics for a better understanding. 

 

Study area is divided into 8 sub-zones based on watersheds. Determination of sub-zone 

boundaries were automated, but some minor manual corrections were made as in 

determining the study area. 

 

6.1 Dependent Variable 

 

Locations of sites are all obtained from the TAY database (Harmankaya, Tanındı, 

Özbaşaran, 1997), in which locations were supplied with exact geographical locations 

in the Lat-Lon coordinate system. On the other hand, accuracy is a matter since data 

does not contain ‘seconds’ part of that projection. The archaeological inventory also 

contains physical dimensions for most of the sites as well as some orientations. It is 

discussed that the determination of site and study boundaries are of immense 

importance and it is known that current measurements hardly reflect ancient 

settlements. The case is more problematic for multi-period sites.  

 

Minimum and maximum values from the set of site areas are removed from the 

inventory in order to get rid of the extreme values. Then, average site size is obtained by 

creating 133m x 133m pixels, where the necessary resampling is applied both to 

satellite imagery and soil and lithology data. Then total number of 64 sites ended up 

with 95 pixels. The number of sites is very few in consideration of the immense study 

area. Previous predictive modeling studies focuses on very small areas with large 
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sample sizes. Then it is a must to obtain a large scale site database as well as making an 

effort to merge the existing knowledge in a useful manner. Randomly selected 85 pixels 

are used as training sample to construct the model, whereas 10 of them are left for 

testing the model. 

 

An initial look at the distribution of sites reveals that there was a focus on lakes and 

streams and in flat areas. In contrast, there is an irregular distribution of sites when sub-

zones are examined (Figure 6.1). 

 
 
Figure 6.1 Slope map overlay on Distance to Lake Map. Site distributions are also put 
in order to show the frequency of matching of the sub-areas concerned. 
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6.2 Independent Variables  

 

Independent variables of the model come from various sources. Some of them were 

rasterised before being put into the analysis such as lithology and soil data, while some 

were in raster format already, such as topographical data. In any case, all of the ‘end’ 

raster were resampled to a 133m pixel resolution. Since they were produced by different 

institutes in different time periods they have different scales, though the problems of 

integrating different scales were discussed in previous pages.  

 

Major sets of the model are topographic data, rock data, soil data, and hydrological data. 

Each data set is processed in order to be used in the model, where some are used as they 

are, such as rock data, and some are used to produce some minor variables such as 

‘Adjusted Distance to Basin Ridges’.  

 

Topographical data is obtained from SRTM (Shuttle Radar Topography Mission) 

satellite imagery. Data have a 90m pixel resolution and a16m vertical accuracy (Japan 

Aerospace Exploration Agency, 2006) (Figure 6.2). There are some other ways to 

obtain general topographic characteristics of any area, such as GPS mapping, creating 

(or digitizing) contours and various others. The preference for SRTM data comes from 

various aspects. First, and maybe the most important, is its public accessibility. One of 

the mainstreams of any research is cost, and such ‘free’ data source is a gateway for 

researchers. Second, by using SRTM data, immense time can be saved. Although some 

automated or semi-automated contour identification is available, accuracy is 

questionable and manual correction is always needed. Although 90m pixel resolution 

might not be totally desirable for a study with particular research questions, for this 

case, when the dimensions of study area are considered this resolution is more than 

enough.  

 

According to the report published by (Rodriguez at al., 2005) absolute error for study 

area is between 5 and 10m around ridges of the Taurus Mountains, and less than 5m for 

core of study area.  
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Figure 6.2 Estimated 90% vertical absolute error  
 

Rock data were already in digitized form, where it comprises of four sheets; Ankara, 

Konya, Đzmir and Denizli. The main source of data is MTA (General Directorate of 

Mineral Research and Exploration). Data is available at 1:500,000 scale.  

 

Soil data is available in vector format and can be obtained from General Directorate of 

Rural Services. Data is accompanied by an attribute table so that some variables can be 

queried and used in a model. Although it needs extensive extra work, final information 

is valuable. 

 

Hydrological data (rivers and lakes) is extracted from topographical data and checked 

against existing 1:100:000 topographical maps. The dynamic character of this data layer 

required some special attention because of altering lake levels and changing river 

courses both due to natural and artificial processes.  

 

6.2.1 Topographical Data 

 

Topographical data is composed of some basic elements as well as other components 

which are extracted by processing in GIS. Basic elements are Elevation, Slope and 

Aspect, whereas others are Adjusted Elevation, Degree of Surface Roughness, Distance 

to Roughness Joints, and Distance to Basin Ridges.  
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Basic elements are produced with a straightforward analysis in TNTMips 6.9 platform. 

Thus, any error introduced into data is due to the algorithm, but minor topographical 

variables are already produced, but with some assumptions so that use of them can be 

criticized.  

 

6.2.1.1 Elevation 

 

Elevation is in fact is source of each variable used as topographical component, and 

imported into GIS from ‘hgt’ data format (Figure 6.3). Thus any problematic part in 

data is inherited to other variables, such as voids and vertical inaccuracies in SRTM 

data collection.  

 

Although elevation can be a direct determinant, it can be also considered as a proxy 

variable since it is a measure of snowline or it determines the faunal and floral 

abundance or scarcity.  

 

Figure 6.3 Elevation map of study area. 
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The study area has a mean elevation of 1590 meters. The value around 1500m 

dominates data, forming 60%. The rest is distributed somewhat equally at either side 

(Figure 6.4).  Elevation is generally lower around lakes and it increases as one gets 

further from lakes. The effect of the Taurus Mountains on topography is visible at the 

South side of study area. 

 

 
 
Figure 6.4 Histogram of study area elevation values. 
 
 
The average elevation of pixels having site values is around 1360 meters, which is 

250m lower than average elevation of whole study area (Figure 6.5). On the other hand, 

site pixels are also characterized by values around 1500m being more than 70%, which 

decreases the significance of this data layer, but it should be also said that the maximum 

site pixel of the inventory is less than 1500m. Thus although there is a tendency for site 

pixel values to follow general topography, elevation higher than 1500m is avoided.  
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Figure 6.5 Histogram of site pixel elevation values. 
 

6.2.1.2 Adjusted Elevation 

 

Adjusted Elevation is constructed by subtracting base lake levels of each basin from 

each pixel in that basin. If an ancient lake level is known then it is used instead of the 

current level. The aim is to eliminate relative height differences in each basin and to 

consider sites relative positions to their focal lake levels (Figure 6.6) 

 
 
Figure 6.6 Hypothetical relative and absolute site elevations according to lake levels. 
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Definitely, reconstruction of ancient lake levels should be approached critically. 

Moreover, not all of the ancient lake levels are available. Thus, there is no such final 

decision on lake levels, but in any case operation was subtraction since it is known that 

lake levels were higher before, where by this operation some amount of bias is 

introduced to the model. After subtracting lake levels from each basin, an adjusted 

elevation map of the study area is obtained (Figure 6.7) 

 

 
 
Figure 6.7 Adjusted elevation map of study area (in meters) 
 

After making adjustments in elevation values, the overall study area elevation drops to 

670 meters (Figure 6.8), where each basin has its own average elevation. On the other 

hand, it is helpful to examine to what extent elevation drops by such an adjustment. 

Adjustment also changes the distribution of data to a skewed one.  
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Figure 6.8 Histogram for Adjusted Elevation values of study area 
 
Adjustment applied to pixel site values is significant, since this operation gathers those 

values around 500m with 95%. Then it can be stated that 500m is the critical limit as a 

distance to lake level in the vertical axis (Figure 6.9). This situation makes this layer a 

possible contributor to the model.   

 

 
 
Figure 6.9 Histogram of site pixel adjusted elevation values. 
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6.2.1.3 Slope 

 

Slope is calculated in degrees from the horizontal axis. Hypothetically, sites are 

expected to be located in flat or relatively flat areas. On the other hand, since the study 

area is geographically in contact with flat lands (Konya Plain), and since the area is 

characterized by recession of lakes which produce smooth areas, this site-slope relation 

(if exists) can be artificial due to the abundance of flat pixels.  

 

Also, as started the immediate vicinity of the lakes is relatively flat, and might have 

been used accordingly by the ancient settlers (Figure 6.10). The basin ridges are 

expected to have higher degree of slopes. 

 

 
 
Figure 6.10 Slope map of study area in degrees. 
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The study area can be claimed to be relatively flat when its average slope value 10 is 

considered, and emphasis is on small values of slope with a skewed distribution (Figure 

6.11). Since this is the case, there is a categorical look of data rather than a continuous 

one, so no reclassification is performed. Moreover, such reclassifications are biased in a 

way that it should be avoided if possible. There is no exact threshold slope value that 

decides whether a pixel is flat or not. In other words, it would be highly questionable to 

reclassify 2 degrees of slope as ‘flat’ areas and 3 degrees of slope as ‘not flat’ areas.  

 

 
 
Figure 6.11 Histogram of slope values of pixels for study area. 
 

Site pixel values are distributed unevenly. Nearly 70% of data is less than 3 degrees 

(Figure 6.12). Then as a general observation and with a logical guess, it can be stated 

that a tendency exists for ‘flat’ areas. Then again, it should be re-emphasized again that 

humans are very ambitious and successful in changing their immediate environment so 

that any possible relatively flat area can be used to locate a settlement. Then it is a 

question of deciding what is flat, what is potentially flat, and what is not flat.  
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Figure 6.12 Site pixel histogram.  
 

6.2.1.4 Aspect 

 

Aspect data is reclassified according to the principle axis. This approach aims to 

diminish the complexity of situations as well as to produce a better interpretable result. 

Aspect values are classified into 9 classes where 8 of them contain directional 

information, and the last one comprises pixels which do not have orientations. The 

categorization is summarized in Table 6.1, and representing Aspect map is given in 

Figure 6.13.  

 

Table 6.1 Reclassification of Aspect values 

DIRECTION INTERVAL of DEGREES 
FLAT Slope=0 
NORTH 337.5-22.5 
NORTHEAST 22.5-67.5 
EAST 67.5-112.5 
SOUTHEAST 112.5-157.5 
SOUTH 157.5-202.5 
SOUTHWEST 202.5-247.5 
WEST 247.5-292.5 
NORTHWEST 292.5-337.5 
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Figure 6.13 Aspect map of study area after reclassification.  
 

Each principal axis contributes equally to the model. It is helpful in a way that any 

minor significance in response data can contribute to the model. Choice for ‘flat areas’ 

affected this situation, and resulted in such distribution of aspect values (Figure 6.14). 

 

Figure 6.14 Study area Aspect values in percentages. 
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Aspect values of site pixels (Figure 6.15) differ from study area aspect values, most 

significantly for South values. This is much more visible if ‘flat pixels’ with coding ‘1’ 

are omitted. This is, in fact, an unexpected situation when previous researches are 

considered. 

 

 
 
Figure 6.15 Aspect values of site pixels in percentages. 
 

6.2.1.5 Adjusted Distance to Basin Ridges 

 

Distance to Basin Ridges can be an important determinant. It can be stated that although 

each basin has similar general characteristics, they also have specified differences. This 

is both due to the different water qualities of lakes and different average elevations. 

While Distance to Basin Ridges is an important variable, it cannot be used directly. 

Each basin has different amount of land cover. Thus there is no standardized distance 

between any point in any basin and ridge line of that particular basin. In other words, 

even if a passenger goes the same amount of distance in different basins, he or she ends 

up with different niches since relative location to any particular distance, thus an 

adjustment is needed.  
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Assuming the areas of basins are the same, shapes of basins produce another problem, 

and thus standardization is needed. In order to do this, a shape parameter, compaction, 

is used. Simply, a compaction is a ratio between the area of any shape and the area of a 

circle. By doing this each basin is standardized according to their perfect circles. To 

obtain an overall adjustment, first Distance to Basin Ridges is found for each pixel and 

they are multiplied with reciprocals of area ratios and compaction values. The result of 

each step is given in Table 6.2, and after multiplication of Distance to Basin Ridges 

with Scale values Figure 6.16 is obtained. 

 

Table 6.2 Compactness Values and Area Ratios for Each Basin 

 

BASINS BASIN BOUN. R COMPACTNESS 1/COMPACTNESS 

Suğla 2,E+13 4,E+12 0,098 10,255 

Acıgol 3,E+13 5,E+12 0,172 5,825 

Avlan 3,E+13 5,E+12 0,189 5,302 

Beysehir 6,E+13 9,E+12 0,521 1,919 

Burdur 5,E+13 9,E+12 0,434 2,303 

Gölhisar 3,E+13 5,E+12 0,158 6,311 

Eğirdir 5,E+13 8,E+12 0,326 3,067 

Kestel 4,E+13 6,E+12 0,204 4,910 

 

BASINS AREA RATIO 1/AREA RATIO 

Suğla 0,046 21,827 

Acıgol 0,083 12,062 

Avlan 0,086 11,679 

Beysehir 0,250 4,000 

Burdur 0,207 4,825 

Gölhisar 0,073 13,622 

Eğirdir 0,160 6,263 

Kestel 0,095 10,488 

 

BASINS 1/AREA RATIO 1/COMPACTNESS 
SCALE 

Suğla 21,827 10,255 223,83913 

Acıgol 12,062 5,825 70,26080 

Avlan 11,679 5,302 61,92471 

Beysehir 4,000 1,919 7,67810 

Burdur 4,825 2,303 11,11067 

Gölhisar 13,622 6,311 85,97074 

Eğirdir 6,263 3,067 19,20620 

Kestel 10,488 4,910 51,49373 
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Figure 6.16 Map of Weighted Distance to Basin Ridges in unit distance. 

 

Average adjusted Distance to Basin Ridges in the study area is 40 units. Distribution is 

highly skewed favoring a mean value (Figure 6.17).   

 
Figure 6.17 Histogram of Distance to Basin Ridges for study area. 
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The average distance for site pixel values is not very different from the overall value 

(Figure 6.18). It has a unit distance of 50. When exaggerating the effect of the scale is 

considered, this difference is larger than observed.  

 

 
 
Figure 6.18 Histogram for site pixel values for Distance to Basin Ridges 
 

6.2.1.6 Surface Roughness 

 

Different topographical characteristics lead to different land uses and different 

perceptions of landscape. Thus, in this study topographical variety is represented by 

Surface Roughness. 

 

The variable aims to measure complexity of terrain. The amount of change of elevation 

in any unit area can be used to create such a variable. This approach can be formulized 

by taking a second derivative of the elevation map, or slope of the slope map, which is 

easy to produce with GIS tools. In this study, a new approach will be followed. 

 

If topography is represented as a mathematical function, then observation frequencies of 

local and global minimums and maximums as well as saddle points are indications of 
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complexity, or roughness. To obtain a measure, the densities of those points are 

produced and classified and used as Surface Roughness (Figure 6.19).  

 

On the other hand, such a measure is not totally true, and there should be a difference 

between smooth undulations and big topographical changes, where both happenstances 

are represented by similar configurations of points in space. For this study, no 

adjustment is made, and it is assumed that there are no such coincidences of 

happenstances. 

 

 

Figure 6.19 Surface Roughness degrees for study area. 

 

Total study area can be claimed as homogenous in relief since first and second smooth 

categories constitute 90% of all data (Figure 6.20). This can be explained with the 

abundance of lakes, thus lake shores. The situation might be different when lake levels 

were higher.  
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Figure 6.20 Surface Roughness values of overall study area.  
 

The character in distribution of Surface Roughness degrees for sites is very similar to 

the overall pixels’ case (Figure 6.21). Sites close to lakes are contributing to this event 

so that frequency of sites located on smooth terrain is increased.  

 

 

Figure 6.21 Site pixels Surface Roughness values. 
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6.2.1.7 Distance to Surface Roughness Junctions 

 

Different landscape characteristics result in different flora and fauna. For instance, goats 

prefer to live in undulated topography whereas sheep prefer flat areas. If it is assumed 

that human aims so maximize its exploitation, then it is logical to look for areas of 

junctions where in that case, a farmer or a hunter can exploit different niches.  

 

Then Distance to Surface Roughness Junctions (Figure 6.22) can reveal 

environmentally rich areas. In this case, a pixel close to two or more surface roughness 

degrees should be preferable, whereas a homogeneous environment is avoided.  

 

 
Figure 6.22 Distance to Roughness Junctions in kilometers.  
 

Any pixel in the study area is close to a junction of different topographies with an 

average of 2 kilometers (Figure 6.23). Other question to be asked then, for this variable, 

if there is a difference in the same amount of distance in different topographies. In other 

words, to what extent it is feasible to distinguish 2 km in a mountainous area and in a 
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flood plain. Although there is no clear answer for it, such kind of superficial variables 

can shed light on the phenomenon. 

 
Figure 6.23 Histogram of Distance to Roughness Junctions values for study area.  
 

Average distance to roughness junction is 2 km. There is no substantial diminishing of 

distance, but after 2km it is suddenly cut off. One pixel significantly differs from the 

general with 10 km (Figure 6.24). 

 
Figure 6.24 Site pixel distance histogram.  
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6.2.2 Rock Data 

 

Rock data is maybe the most stable agent among all of other variables, where 

topography is manipulated by people, soil is heavily affected by deforestation and other 

natural processes and water is continuously active. Thus this data type turns out to be 

less biased than others, but only one layer of data is used, and no other minor variables 

are produced.  

 

6.2.2.1 Lithology 

 

The attribute table of this layer contains many variables so that it is reclassified for a 

better regression model. This categorization is geological rather than archaeological. 

Existing inventory for rock data includes alluvial fan, andesite, basalt, carbonates and 

clastic rocks, clastic rocks, dunite, gabro, marble, neritic limestone, melange and 

various others. Reclassified data is given in a simplified Table 6.3. Due to subjective 

classification and deep geological emphasis, there is little expectation for a contribution 

the model, but definitely, this data layer must have played an important role, at least in 

an indirect way (Figure 6.25).  

 

Table 6.3 Reclassification table for rock data. Left hand side denotes super classes and 

right hand side contains original attribute data.      

 

Quaternary Undifferentiated Quaternary 

Volcanics Andesite, Trachite, Pyroclastics 

Melange Peridotite, Ophiolithic Melange, Schist 

Neritic Neritic Limestone,  

Clastic Clastic Rocks, Continental Clastic Rocks,  

Clastic and Carbonates Clastic and Carbonate Rocks,  



 88 

 
Figure 6.25 Rock data distribution of the study area.  
 
 
Rock types are distributed evenly except the volcanic class, which is not surprising. 

Thus any patterning in site data will contribute directly to the model (Figure 6.26). 

 
 
Figure 6.26 Percentages of rock types in study area.  
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The Quaternary class significantly differs from remaining classes. No site pixel is 

observed with volcanic class. Then it is the discussion of finding out the reasons for the 

correlation between quaternary geology and archaeology, or the effect of Early 

Holocene landscape and settlement strategies.  

 
 
Figure 6.27 Percentages of rock types for site pixels 
 

6.2.3 Soil Data 

 

Soil data is composed of many sub datasets. Although not all of them are used in 

constructing the model, they still produce invaluable information on the study area. As 

stated, this data represents the current layout of soil, not that of the time in concern. 

Thus this datasets should be approached critically.   

 

6.2.3.1 Land Use Potential 

 

Land Use Potential is a degree of value of soil, assigned by the General Directorate of 

Rural Services. Data can be used as a decision making tool for modern investments, but 

as discussed earlier on; to what extent such degrees reflect the past is highly 

questionable. An interesting issue about this set is the question of to what extent ancient 

humans were aware of the soil quality without employing chemical techniques. Some 
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observations should have been made on soil. Definitely, the difference between clay soil 

and silty soil was understood by ancient people in their qualities and compositions but it 

must be the technology that has changed the manipulation. 

 

Existing data does not contain Land Use Potential information for every part of the 

study area, as it can be seen in Figure 6.28. Thus it is not used in the analysis.  

 
Figure 6.28 Land Use Potential Map of the study area. 
 

6.2.3.2 Current Land Use  

 

As the name of the layer implies, data reflects ‘current’ land use rather than the ancient 

land use. If there was a choice among ancient people, then it should be reflected into the 

data, at least indirectly.  

 

As seen in Figure 6.29, there are also some void values (white areas) in north part of 

study area, but not as wide as ‘Land Use Potential’. The situation is overcome by 

assigning random values to null pixels. Moreover, after an initial look it can be stated 

that most of the null values belong to agricultural fields and shrubbery and forests, and 

with small probability of grasslands.  
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The study area is dominated by shrubbery and forests. Second, agricultural fields 

comprise an important proportion. Immediate observation on distribution of sites 

reflects a potential of selection of (modern) agricultural fields, which is also evident in 

the histogram. On the other hand, it is the logistic regression which will decide on the 

importance.  

 
 
Figure 6.29 Land use classes of the study area. 
 

The study area is dominated by agricultural fields and forests and shrubbery. The 

remaining 20% is shared between grasslands and gardens (Figure 6.30). This kind of 

distribution is expected when the effect of the Konya Plain and Taurus Mountains is 

considered.  
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Figure 6.30 Land use categories of the study area, and their overall percentages.  
 

Site pixel distribution resembles the distribution above except for the forests and 

shrubbery category. Modern agricultural fields are the best choice for the concerned 

ancient settlements. Remaining 30% categories are shared equally by other sites (Figure 

6.31). 

 
 
Figure 6.31 Site pixel land use classes.  
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6.2.3.3 Soil Inclusion Size 

 

Soil Inclusion Size can be a proxy for the potential land use. A finer (thinner) soil might 

be a choice for ancient people depending on the level of technology, whereas coarse soil 

was avoided. If this is the case, it should be reflected in one of variables, and Soil 

Inclusion Size is a good candidate for it (Figure 6.32).  

 

Also, the layer can be used in combination with ‘Current Land Use’, to create another 

data set which can be used as a substitute for ‘Land Use Potential’. On the other hand, 

the rules of combination are not clear, thus it is avoided in the study.  

 
 
Figure 6.32 Soil Inclusion Texture Distributions 
 

Fine and mixed soil (1,4) dominates the data set (Figure 6.33). Fine soils might be due 

to the recessions of lakes.  
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Figure 6.33 Inclusion classes of study area. 
 

60% of site pixels represent fine soil type. Then medium coarse soil follows the leading 

category at 25% (Figure 6.34). There is no visual significant difference in the domain 

and site pixel distributions, so that any comment on determinants of patterning will be 

speculative.  

 
 
Figure 6.34 Inclusions for site pixels.  
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6.2.3.4 Erosion 

 

The use of this layer (Figure 6.35) can also be considered as an example of the cultural 

management vs. academic approach, as in Soil Depth. Again the survival rates of sites 

(mounds, in this case) can be explored via this layer, and can be used as a filter for 

future archaeological surveys. 

 

 
 
Figure 6.35 Erosion levels of study area.  
 
The overall study area is exposed to heavy erosion (Figure 6.36). Then, it is lucid not to 

expect flat settlements and sites built up by perishable material in the area. This 

situation can be a cause for not finding Upper Paleolithic evidence. On the other hand it 

is not true to charge only one variable of all non-existence. The basic aim of this study 

is not to solve a hugely complex problem, but to screen possible variables in order to 

construct better models in future.  
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Figure 6.36 Erosion level percentages of the study area.  
 

More than half of the site pixels are observed where there is no erosion or only limited 

amount of erosion. The existence of 10% with heavy erosion, in contrast, is a guide that 

even under heavy erosion some sites can survive (Figure 6.37).   

 

 
 
Figure 6.37 Erosion levels for site pixels.  
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6.2.3.5 Soil Depth 

 

Although this variable is questionable in terms of being a criterion for a site selection 

procedure, it is important to show the geological processed happened before. Then it is 

more helpful for a management aspect than an academic aspect. Dependent data is 

comprised of sites which are surviving. Thus, if geological processes affecting the 

survival, then this layer can be seen as a filter for the constructed model, in a manner 

that different processes results in different soil depth, and different survival rates. To 

examine this, Figure 6.38 is produced. 

 

 

Figure 6.38 Soil Depth distribution of study area 

 
Soil depth of the study area varies from deep to shallow, but the amount of very shallow 

soil and barren rock is so small that they are not visible as percentages (Figure 6.39).  
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Figure 6.39 Soil Depth Classes and percentages of the study area 
 

Site pixel values are very similar in overall study area values except for shallow soil. 

This category value is shared between deep and half deep categories (Figure 6.40).  

 

 
 
Figure 6.40 Soil Depth Classes of site pixel values. 
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6.2.3.6 Major Soil Classes 

 

Apart from other measures for soil, type itself can be a basic determinant for site 

selection. Different cultures might be sought after different soil types (hunter-gatherers 

vs. agriculturalists), but with the beginning of deforestation, started in very early times, 

changes in soil classes should have happened. Then it is very critical to use soil classes 

as a layer in the analysis (Figure 6.41). 

 

 
 
Figure 6.41 Major Soil Class distribution map. 
 

Since there are many soil categories, it is hard to visualize and interpret the graph 

(Figure 6.42). Moreover, percentages are so small that even an impression of a 

significance of one particular major soil class should be examined critically.  
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Figure 6.42 Major Soil Classes and their percentages in the study area.  
 

For site values Alluvium gains an important percentage when abundance of soil classes 

is considered (Figure 6.43). It is also approved by Current Land Use in the area. 

Assuming that, this category is significant for ancient people in terms of locating their 

settlements, then it might be considered that environmental shifts were not able to 

utterly change the landscape and land use, but still this variable is not used due to its 

unpredictable dynamic character.  

 

 
 
Figure 6.43 Major Soil Classes for site pixels. 
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6.2.3.7 Distance to Major Soil Classes   

 

If Major Soil Classes is not used as a layer, a layer with a less strict assumption can be 

used, such as Distance to Major Soil Classes (Figure 6.44). In this case, continuous data 

measure (distance) is less affected by geological changes when compared with 

categorical data (classes).  

 

Moreover, it can be easily assumed that there was a tendency to exploit as many 

ecological niches as possible. Then a site is expected to be located at the periphery of 

soil classes rather than residing in the core area. Then Distance to Major Soil Classes 

gains more importance, and surpasses Major Soil Classes.  

 

 
 
Figure 6.44 Distance to Major Soil Classes in kilometers.  
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The average distance to any soil category is so low, 2km, that it does not falsify but 

weakens the idea of exploiting different niches. This can be explained by the abundance 

of different soil categories.  

 
Figure 6.45 Histogram of Distance to Major Soil Classes. 
 
The average distance as well as the distribution is like the overall study area values, so 

that little can be extracted from this data layer. On the other hand, within site pixel 

values there is a remarkable decline after 3km, so that layer still deserves attention.  

 
Figure 6.46 Histogram of Distance to Soil Classes for site pixels. 
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6.2.4 Hydrological Data 

 

6.2.4.1 Distance to Water 

 

Distance to Water layer (Figure 6.47) is the union of two datasets, namely Distance to 

Water and Distance to River. Thus, it is artificially created in order to observe the 

behavior of location of sites with respect to the term ‘water’, and it is not used as a 

variable in the analysis.  

 

Definitely, such a generalization is not fully correct. In the study area, lakes have 

different characteristics in terms of water abundance and quality, and rivers have 

dynamic characters so that any projection is speculative.  

 

 

 
 
Figure 6.47 Distance to Water (Rivers and Lakes).  
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Any pixel in study area is having an average of 9km to water source, namely rivers or 

lakes. The skewed distribution implies that there is no big water shortage issue in the 

study area, assuming those sources can be used for domestic purposes as well as for 

social considerations (Figure 6.48).  

 
Figure 6.48 Histogram for Distance to Water.  
 

Site pixel values have a slightly lower average than overall pixels, but there is no 

change in the shape of distribution. The histogram is helpful in terms of showing a 

general tendency, and being close to water is a general fact for sites. 

 
Figure 6.49 Histogram of Distance to Water for site pixels. 
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6.2.4.2 Distance to River  

 

River courses are obtained by employing GIS watershed analysis. Distances are 

obtained in kilometers. Since seasonality, soil type and various others are important 

factors in the existence of a river, it is of immense importance to create a layer that is 

not affected by such parameters. The easiest solution, which is also used here, is to 

include major branches of rivers, and omit less loaded ones. 

 

A general measure to classify rivers is the Strahler Order. In this study, river courses 

having Strahler Order 4 and more is used, since the lower class ones produce redundant 

data in terms of distance. Since only major courses were considered the domestic use of 

water is overlooked. Then the use is not only domestic anymore, but some social 

considerations are also included, such as transportation. Moreover, there are some site 

locations which cannot make use of branches of rivers, but were still able to survive, 

which can be explained with the existence of springs, which most of the modern 

villages are based on.  

 
Figure 6.50 Map of Distance to Rivers. 
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Although river network is constructed according to Strahler Order 4, the river system 

covers the study area so that the average distance of a pixel to any river is 9km (Figure 

6.51). 

 
Figure 6.51 Histogram for values of Distance to River. 
 

Average Distance to River for site pixels is slightly less than general average. 

Moreover, sites and non-sites have similar distributions, but there is a cutoff value after 

12km (Figure 6.52). 

 

Figure 6.52 Histogram for site pixel values of Distance to River. 
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6.2.4.3 Distance to Lake 

 

Lakes are major players in the study area. Each basin is selected with a focal lake. As 

expected, current lake levels cannot be consistent with ancient lake levels. Even, some 

lakes do not exist anymore, such as Suğla Lake. Then it is essential to construct ancient 

lake levels. Lake levels used in the analysis are given in Table 6.4. Marked levels are 

hypothetical ancient lake levels, remaining is used as it is since to information is 

available. For the given lake levels, Distance to Lake map is produced (Figure 6.53). 

 

Table 6.4 Lake Levels used in the study. 

 

Avlan Acıgöl Beyşehir Burdur Eğirdir Gölhisar Kestel Suğla 
1028m 860m 1122m 870m 916m 950m 784m 1093m 
 

But definitely it can be stated that the levels were higher than today. This is due to both 

climate change and by-passing sources of lakes.  

 
Figure 6.53 Map of Distance to Lake. 
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Pixel values for Distance to Lake have an average of 17km in the study area. This is 

mainly due to the abundance of lakes and lake systems (Figure 6.54). This value does 

not take into account different characteristics of lakes.  

 
Figure 6.54 Histogram of Distance to Lake Values of the study area. 
 

Values for site pixels are slightly different than study area values. It has an average 

distance of 15km, but most importantly there is a clear choice for being close to lake, 

and there is a sharp decline after 20km of distance (Figure 6.55).  

 

Figure 6.55 Histogram of Distance to Lake Values of site pixels in the study area. 
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CHAPTER 7 
 
 

MODEL 
 
 
 

After evaluating the possible choices for the construction of a predictive model it was 

decided to use logistic regression. This has been selected as a tool since it provides a 

comprehensive statistical evaluation of the subject. Moreover, it is much more open for 

future studies. Another interesting tool which stems from Dempster-Schafer Theory was 

not chosen, since it is still in its infancy for archaeological applications.  

 

Although Logistic Regression considers less strict assumptions, it is also problematic 

for this particular study. This is because, there is a huge imbalance between the 

dichotomous dependent variable. In more than 1 million pixels, there are only 95 site 

pixels, and 10 of them are withheld from the total for testing purposes. For such an 

extreme case, there is no clear answer for constructing a model. To solve this, non-site 

pixels selected randomly from whole study area. In this selection, there is a possibility 

of using sites as non-sites, which will introduce and error to model, but considering the 

total amount of pixels this is unlikely to happen.  

 

The other problem is the determination of sample size for possible non-site values. As a 

criterion, behavior of standard error of coefficients is used. Double size of site-pixel 

values, which is around 200, produces inflated standard errors, whereas a sample 

around 120 produces considerable standard errors 

 

But then another question is raised about the coverage of sample of size 205 (120+85) 

for such a huge study area. To over come this up to a point, 20 randomly selected 

samples are used to construct 20 different predictive models. Then a resulting model is 

obtained from those different predictive models by taking average.  
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7.1 Predictive Models 

 

Each predictive model constructed is given with the resulting probability surface and its 

logistic regression formula. For continuous data coefficients are supplied in the 

equation, whereas categorical data coefficients are given as a list. For any pixel, the 

regression equation is run to obtain the resulting image. 

 

Sites and non-site values are put into a statistical program (SPSS 13.0 Evaluation 

Version). Response variable is encoded as 1 for pixels having sites and 0 for pixels 

having no sites. Cut value is selected as 0.5 for each model and according to this value 

beginning block predicted sites around 55% when intercept values were included in the 

models.  

 

For categorical variables, Indicator contrast is used and as reference, the last category of 

each categorical variable is used.  

 

As the method, Forward Stepwise (Likelihood Ratio) is selected, and variables entering 

to the model are selected accordingly. ‘-2 Log likelihood’ is used as a criterion and after 

deciding on the final variables with a cut value 0.5 prediction values are observed. An 

average of 80% total true prediction is obtained. Necessary model summary is given in 

Appendix - D 

 

As model diagnostics, VIF (Variance of Inflation Value) and tolerance levels are used 

to detect multicollinearity. SPSS 13.0 does not provide this tool for Logistic Regression, 

so model variables are treated as ordinary linear regression components. Although this 

is not the best way to test multicollinearity, it is given as a way in (Field, 2000). Results 

are given in Section 7.5 in a combined table for each predictive model, and categorical 

variable codes are given in Appendix-A. 
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7.1.1 Predictive Model 1 (PM1) 

 
Figure 7.1 Probability surface of PM1.  
 

ŷ=7.194+(-0.097xS)+(-9.63xEA)+(-0.096xDtL)+(-0.657xDtMSC). 

 

S: Slope – EA: Adjusted Elevation – DtL: Distance to Lake – DtMSC: Distance to Soil Classes 

 

Randomly selected ‘non-site’ values with 85 ‘site’ values have produced a highly 

optimistic predictive model. The study area is basically divided into two: Areas with 

very high probability, that is sites very likely to occur, and areas with the smallest 

probability, in other words areas in which no sites are expected.  

 

There are very few pixels assigned to transition probabilities. Two continuous variables 

Adjusted Elevation and Distance to Lake put emphasis on vicinity of lakes. The other 

two variables as well as the two discussed have negative values. That is, a higher degree 

of slopes and elevation, and increased distance from lakes and major soil classes does 

not favor the occurrence of sites. There are no categorical variables in the equation, 

which is due to random selection of the training sample and study area pixels.  
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7.1.2 Predictive Model 2 (PM2) 

 
Figure 7.2 Probability surface of PM2. 
 

ŷ=3.674+(-0.097xS)+(-6.82xEA)+(-0.072xDtL)+(-0.416xDtMSC)+A+CLU  

 

S: Slope – EA: Adjusted Elevation – DtL: Distance to Lake – DtMSC: Distance to Soil Classes 

– A: Aspect – CLU: Current Land Use 

 

Categorical Variable Coefficients for their particular values are given as: 

A(1): 5.930, (2):-0.445, (3):-0.518, (4):-1.823,  

(5):-2.648, (6):-2.909, (7):-1.866, (8):-0.865 

CLU(1): 2.131, (2): 1.434, (3):-0.092 

 

A new set of samples produced a similar predictive surface with a shift in very high and 

very low probabilities. Emphasis is still on lake vicinities and at adjusted low 

elevations.  

Two categorical variables with given coefficients are introduced to the model. 

Continuous variables still have negative coefficients, and model has a smaller intercept 

value. Then again, there are very few pixels with transitional probabilities.  
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7.1.3 Predictive Model 3 (PM3) 

 
Figure 7.3 Probability surface of PM3. 
 

ŷ=1.503+(-6.869xEA)+(-0.050xDtL)+A+CLU 

 

A: Aspect – EA: Adjusted Elevation – DtL: Distance to Lake – CLU: Current Land Use 

 

A (1): 0.193, (2): 1.401, (3): 0.285, (4):-0.859, (5):-1.905, (6):-2.411, (7):-1.924, (8): 0.042 

CLU(1): 2.095, (2): 8.025, (3):-0.368 

 

Result of PM3 is not so different from result of PM2. The same zones are marked as 

high probability areas with nearly the same coverage. Transition probabilities also 

located at roughly the same places as in the previous model. This is basically due to 

employing same variables except Slope, and Distance to MSC. Variable coefficients are 

also similar to other model coefficients. The probability of finding a site decreases as 

one gets higher in elevation and gets further away from a lake. As a land use coefficient, 

if Shrubbery and Forests (4) are fixed then Grasslands (3) are avoided and Agricultural 

Fields (1) and Yards and Gardens (2) are preferred. The same discussion can be made 

for Aspect values according to their signs of coefficients.  
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7.1.4 Predictive Model 4 (PM4) 

 
Figure 7.4 Probability surface of PM4. 
 

ŷ=-0.388+(-5.963xEA)+L+CLU 

 

L: Lithology – CLU: Current Land Use – EA: Adjusted Elevation 

 

CLU(1): 1.197, (2): 8.0, (3):-0.503 

L (1): 1.814, (2):-3.007, (3): 1.810, (4): 1.107, (5): 0.044 

 

PM4 produces fewer maximum probability areas, but transitional probabilities are much 

clearer in this model, and they are basically located at the East and West sides of study 

area. Interestingly, the intercept coefficient of the predictive model is below zero in this 

case. Moreover, the coefficient of the Adjusted Elevation is also significantly different 

from previous models. Current Land Use and Lithology are also in the model as 

categorical variables. Current Land Use has similar emphasis on labels of data. Again, 

Agricultural Fields (1) and Yards and Gardens (2) are preferred and Grasslands (3) are 

avoided when they are compared with Shrubbery and Forests (4). Similarly, Lithology 

coefficients can be interpreted as when Clastics and Carbonates (6) are fixed then 

Volcanics (2) are avoided and rest is significantly preferred except for Clastics (5) itself.  
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7.1.5 Predictive Model 5 (PM5) 

 
Figure 7.5 Probability surface of PM5. 
 

ŷ=-2.289+(-4.885xEA)+(-0.188xDtoR)+A+CLU+L 

 

EA: Adjusted Elevation - A: Aspect - L: Lithology - CLU: Current Land Use  

DtR: Distance to River 

 

A (1): 1.617, (2): 1.380, (3): 0.622, (4):-0.943, (5): 0.117 , (6):-0.682, (7):-0.047, (8): 0.270 

CLU(1): 1.763, (2): 9.650, (3): 0.907 

L (1): 1.331, (2):-8.011, (3): 0.844, (4): 1.228, (5):-0.643 

 

This model also has negative intercept value. The coefficient of Adjusted Elevation is 

also decreased. This might be due to a new variable introduced, Distance to River.  

 

Although balance between low and high probabilities is unchanged, the area for 

transitional probabilities has decreased. This should be basically a result of employing 

different combinations of categorical and continuous variables.  



 116 

7.1.6 Predictive Model 6 (PM6) 

 
Figure 7.6 Probability surface of PM6. 
 

ŷ=-3.412+A+CLU+L+TOK_D 

 

A: Aspect - L: Lithology - CLU: Current Land Use – TOK_D: Soil Depth 

 

A(1): 0.901, (2): 0.532, (3): 1.462, (4): 0.479, (5):-0.567, (6):-1.146, (7):-0.757, (8):-0.068 

CLU(1): 1.768, (2): 0.787, (3): 0.684 

L(1): 1.597, (2): 1.397, (3): 1.439, (4): 0.253   

TOK_D(1): 0.386, (2): 1.723  

 

This model has produced a very pessimistic result on existence of sites. Only few areas 

have high probabilities, whereas the whole study area is dominated by low probability 

pixels. A new categorical variable, Soil Depth, is introduced and model does not make 

use of continuous variables. 
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7.1.7 Predictive Model 7 (PM7) 

 

 
Figure 7.7 Probability surface of PM7. 
 

ŷ=-0.155+(-0.075xS)+A+TOK_D 

 

A: Aspect – S: Slope – TOK_D: Soil Depth 

 

A (1): 0.478, (2): 0.689, (3): 0.296, (4):-0.671, (5):-1.124, (6):-1.824, (7):-1.241, (8):-0.194 

TOK_D(1): 0.375, (2): 1.007 

 

This model resembles to PM6 in terms of pixel probability combinations and 

distributions. On the other hand, a continuous variable, Slope, is in the model this time. 

A negative coefficient of Slope states that as the degree increases, the probability of 

finding a site is decreased. This is an expected case but, as stated earlier, the human 

effect on topography should be considered as well.  
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7.1.8 Predictive Model 8 (PM8) 

 

 
Figure 7.8 Probability surface of PM8. 
 

ŷ=0.415+(-0.099xS)+(-0.107xDtR)+(0.047xDtL)+A+TOK_D  

 

A: Aspect – S: Slope – DtL: Distance to Lake – TOK_D: Soil Depth  

DtR: Distance to River 

 

A (1): 0.276, (2): 0.530, (3): 1.082, (4):-0.633, (5):-0.468, (6):-1.622, (7):-1.226, (8):-0.551 

TOK_D(1):-0.405, (2): 0.823 

 

This model has increased probability pixels in southwest of the study area. The 

significance of the model is the positive coefficient of the Distance to Lake, that is, the 

probability of site existence increases as one gets further away from a lake, which is 

contradicting with the previous models. This situation replaces high probability pixels 

with low probability pixels around lakes. 
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7.1.9 Predictive Model 9 (PM9) 

 
Figure 7.9 Probability surface of PM9. 
 

ŷ=-0.389+(-0.093xDtR)+(0.323xDtMSC)+A+CLU+RGH  

 

DtR: Distance to River - DtMSC: Distance to Soil Classes – A: Aspect - CLU: Current Land 

Use 

RGH: Surface Roughness 

 

A (1):-0.197, (2): 0.175, (3):-0.249, (4):-1.507, (5):-1.414, (6):-2.378, (7):-1.483, (8):-1.041 

CLU(1): 1.831, (2): 1.818, (3): 0.573 

RGH(1):-0.573, (2): 0.294, (3): 1.270 

 

This is an ideal result for a predictive model with distinct high and low probabilities as 

well as some transitional probabilities in between those high and low values, but since 

Distance to Lake is not in the model, an expected emphasis to those areas is missing. A 

categorical variable, Roughness is included in the model, favoring moderately rough 

areas, where no extremely rough data (4 and 5) is included via random selection. 
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7.1.10 Predictive Model 10 (PM10)  

 

 
Figure 7.10 Probability surface of PM10. 
 

ŷ=-2.254+A+CLU+TOK_D 

 

A: Aspect – CLU: Current Land Use – TOK_D: Soil Depth 

 

A (1): 1.423, (2): 0.648, (3): 0.679, (4):-0.380, (5):-0.982, (6):-1.690, (7):-0.671, (8): 0.258 

CLU(1): 1.767, (2): 1.745, (3): 0.090 

TOK_D(1): 0.819, (2): 1.515 

 

No continuous variable is used to construct the model, but a logical model was still 

produced, with a fairly good distribution of probabilities. This implies that any 

combination of independent variables can produce any model so that no perfect 

combination is possible with a particular sampling strategy. Soil Depth favors deep soil, 

and Land Use is in favor of agricultural fields and yards and gardens. Aspect values are 

in consistency with other models, where southern directions are avoided while locating 

settlements. 
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7.1.11 Predictive Model 11 (PM11) 

 

 
Figure 7.11 Probability surface of PM11. 
 

ŷ=-2.186+A+CLU+L+TOK_D 

 

A: Aspect – CLU: Current Land Use – TOK_D: Soil Depth – L: Lithology 

 

A (1): 8.341, (2): 0.887, (3): 0.204, (4):-0.598, (5):-0.555, (6):-1.452, (7):-1.042, (8):-0.037 

CLU(1): 1.649, (2): 0.471, (3): 0.303 

L (1): 1.390, (2):-7.137, (3): 0.508, (4):-0.125, (5):-0.183  

TOK_D(1): 0.007, (2): 1.342 

 

This is another model with no continuous variable, and with a negative intercept value. 

Aspect values favor non-south directions, and in terms of lithology, volcanics, clastics, 

and clastics and carbonates are avoided. Agricultural areas are also contributing to the 

model.  
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7.1.12 Predictive Model 12 (PM12) 

 
Figure 7.12 Probability surface of PM12. 
 

ŷ=2.462+(-2.879xE)+L 

 

L: Lithology – E: Elevation 

 

L (1): 2.305, (2):-4.352, (3): 0.726, (4):-0.025, (5):-0.228 

 

This model makes use of limited number of variables, namely Elevation and Lithology. 

With a positive intercept, low areas and quaternary lithology is producing high 

probability.  

 

The resulting map is very similar to the distribution of lithology data. Then elevation 

data is used as an adjustment for the model.  
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7.1.13 Predictive Model 13 (PM13) 

 
Figure 7.13 Probability surface of PM13. 
 

ŷ=-0.431+(-3.882xEA)+A+CLU 

 

A: Aspect - CLU: Current Land Use – EA: Adjusted Elevation 

 

A (1): 1.753, (2): 1.402, (3): 1.317, (4):-0.216, (5):-0.646, (6):-1.469, (7):-0.928, (8): 0.091 

CLU(1): 1.356, (2): 1.783, (3): 0.438 

 

The variables produce probabilities with very small probabilities, and even with no 

maximum probability. Transition probabilities have occurred with patches of areas 

indicating that one or a simple combination of variables were influential on the model. 
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7.1.14 Predictive Model 14 (PM14) 

 

 
Figure 7.14 Probability surface of PM14. 
 

ŷ=0.751+(-0.092xS)+(-3.99xEA)+L 

 

S: Slope – EA: Adjusted Elevation – L: Lithology 

 

L (1): 1.287, (2):-5.436, (3): 0.876, (4): 0.704, (5):-0.354 

 

This is again a simplistic model with limited number of variables. As in most other 

models, there is a focus on lake vicinities, but the variable causing this is not Distance 

to Lake, but Adjusted Elevation. Slope variable is also influential for producing higher 

level probabilities. In terms of lithology, the Quaternary category is the contributor.   
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7.1.15 Predictive Model 15 (PM15) 

 

 
Figure 7.15 Probability surface of PM15. 
 

ŷ=-1.499+(-4.011xEA)+A+L+ ERZ 

 

A: Aspect – EA: Adjusted Elevation – L: Lithology – ERZ: Erosion 

 

A(1): 2.393, (2): 1.160, (3): 0.970, (4):-0.488, (5):-0.705, (6):-0.581, (7):-0.288, (8):-0.001 

L(1): 1.733, (2):-3.509, (3): 0.917, (4): 0.112, (5):-0.581 

ERZ(1): 1.601, (2): 2.288, (3): 1.635 

 

The model produces small number of transition probabilities. Favorable areas do not 

contradict other predictive models. Southern directions, and volcanics, carbonates and 

clastics are avoided. Erosion, surprisingly, made no significant differentiation between 

the erosion categories when entered to the model.  
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7.1.16 Predictive Model 16 (PM16) 

 
Figure 7.16 Probability surface of PM16. 
 

ŷ=6.984+(-3.073xE)+(-0.072xDtMSC)+A  

 

DtMSC: Distance to Soil Classes – A: Aspect – E: Elevation 

 

A(1):-1.931, (2):-3.198, (3):-1.723, (4):-3.150, (5): 4.621, (6):-4.610, (7):-5.435, (8):-0.323 

 

PM16 is another optimistic model produced through the continuous and categorical 

variables. Maximum probabilities surpass any lower class probabilities. Continuous 

variables, Elevation and Distance to MSC, produce negative coefficients as expected. 

Aspect, on the other hand, contains positive coefficient only for the Southeast direction, 

where as in other models, this variable takes negative values in most cases. 



 127 

7.1.17 Predictive Model 17 (PM17) 

 
Figure 7.17 Probability surface of PM17. 
 

ŷ=7.87+(0.002xDtRd)+A 

 

A: Aspect – DtRDG: Distance to Basin Ridge 

 

A(1):-6.778, (2):-8.331, (3):-7.415, (4):-8.745, (5): 0.013, (6):-9.687, (7):-11.104, (8):-6.500 

 

Variables of the model are Distance to Ridges and Aspect. Although this is the case rare 

maximum variables are aligned at the ridge of the southernmost basin. This can be due 

to the influence of Aspect values or intercept value or both. The same anomaly also 

happens at the Northernmost of the study area.  
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7.1.18 Predictive Model 18 (PM18) 

 

Figure 7.18 Probability surface of PM18. 

 

ŷ=11.468+(-2.730xE) +A  

 

E : Elevation – A : Aspect 

 

A(1):-7.387, (2):-8.236, (3):-8.661, (4):-8.327, (5):-0.438, (6):-10.210, (7):-10.436, (8):-0.574 

 

Comprised of one continuous and one categorical variable, PM18 produces an easily 

readable but interesting model. Intercept value is high, and all of the coefficients are 

negative. It is expected that as elevation increases, the probability of expecting a site 

decreases. On the other hand, all of the Aspect categories are likely to contribute to 

‘Non-Site’ dependent variable, in relation to Northwest areas, having Aspect coding 9.  
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7.1.19 Predictive Model 19 (PM19) 

 
Figure 7.19 Probability surface of PM19. 
 

ŷ=8.732+(-0.096xDtR)+(0.002xDtRd)+A 

 

DtR: Distance to River – DtRd: Distance to Ridge 

 

A(1):-7.603, (2):-8.623, (3):-7.742, (4):-8.679, (5):-0.055, (6):-9.780, (7):-11.354, (8):-7.370 

 

PM18 is very similar to PM19, in terms of the characteristics of the result, and 

employment of independent variables. Probability decreases as the pixels get further 

away from rivers, and probability increases as one move away from basin ridges. As in 

the previous case, all Aspect directions work in contrast to ‘Northwest’ direction.  

 



 130 

7.1.20 Predictive Model 20 (PM20) 

 
Figure 7.20 Probability surface of PM20. 
 
ŷ  =15.352+RGH+A 
 
RGH: Roughness – A: Aspect 
 
A(1):-8.942, (2):-8.908, (3):-8.933, (4):-9.617, (5): 0.311, (6):-10.967, (7):-12.607, (8):-7.045 

RGH(1):-6.885, (2):-5.548, (3):-4.450 

 

PM20 has produced patches of different probability zones, dominated by maximum and 

minimum probabilities. Comprised of categorical variables, PM20 has covariates 

opposing to existence of sites Maximum probability areas then due to increased 

intercept value of the logistic regression equation.  
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7.2 Merging Predictive Models 

 

Each predictive model employs different variables and produces different probability 

surfaces (Table 7.1). Thus there is a need to figure out the final predictive model so that 

some archaeological inferences can be made. 

 

The first way might to examine individual predictive models visually so that any 

‘different’ predictive surface can be omitted before a final decision is made.  

 

Second way might be to use testing samples for those models and according to some 

criteria decide on the ones to be used for the resulting model. Again the decision on the 

threshold value of success will be totally subjective and different results will be 

obtained with different threshold values. 

 

The other basic problem is to decide on how different predictive models will be 

combined to produce a final model. To give options, an average of all chosen predictive 

models’ pixel values can be used to produce the final model. Second, minimum of pixel 

values can be used to construct the resulting model. This way will produce a pessimistic 

model, and it will increase the gross error. A third option can be using the maximum 

value of predictive models. This is in contrast will produce an optimistic model with an 

increased wasteful error. A fourth option might to use random values of different 

predictive models which are later assigned to resultant model.  

 

There might be other ways to combine different models into one big model, but 

considering the scope of this study only the operations of minimum, maximum and 

average taking will be used and the results will be given for comparison.  

 

Then as a strategy, models to be used to construct the final model will be chosen. The 

later step will to combine with averaging tools. The resulting map will be reclassified 

into readable probabilities.  
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Table 7.1 Predictive Model Equations and their variables. 

 

 E
levation 

A
djusted E

levation 

S
lope 

A
spect 

A
djusted D

istance to R
idges 

R
oughness 

D
istance to R

oughness Junc. 

L
ithology 

C
urrent L

and U
se 

S
oil P

article S
ize 

E
rosion 

S
oil D

epth 

D
istance to M

ajor C
lass 

D
istance to R

iver 

D
istance to L

ake 

PM1  X X          X  X 

PM2  X X X     X    X  X 

PM3  X  X     X      X 

PM4  X      X X       

PM5  X  X    X X     X  

PM6    X    X X   X    

PM7   X X        X    

PM8   X X        X  X X 

PM9    X  X   X    X X  

PM10    X     X   X    

PM11    X    X X   X    

PM12 X       X        

PM13  X  X     X       

PM14  X X     X        

PM15  X  X    X   X     

PM16 X   X         X   

PM17    X X           

PM18 X   X            

PM19    X X         X  

PM20    X  X          
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Without any manipulation, 20 sub-models produce the so-called Predictive Model_All 

(Figure 7.21). The result looks similar to each of the other sub-model in terms of 

distribution of probability values.  

 
Figure 7.21 Combination of 20 Predictive Models without any filtering. 
 

Predictive Model_All passes the threshold with 4 site pixels falling into the top 

probability category, and 3 site pixels falling into {0,6-0,8 }probability category (Figure 

7.22). As the threshold value, archaeological inventory is used. If the final model 

includes 70% of the inventory in the 0.8 probability or more then the model is decided 

to be valid. 

 
Figure 7.22 Frequencies of Testing Variables according to Predictive Model_All 
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7.3 Visual Inspection 

 

As a visual inspection, models PM1, PM13, and PM16 are withheld from the final 

model. PM1 and PM16 are significant with their extensive distribution of maximum 

probabilities. PM13, on the other hand, produced so many minimum probability values 

so that it definitely ignores some possible site locations.  

 

After removing those concerned sub-models, the remaining ones are combined by 

taking the averages of each pixel. The resulting model is given in Figure 7.23.  

 

 
 
Figure 7.23 Predictive Model_Visual is obtained after screening PM1, PM13 and 
PM16. 
 

Predictive Model_Visual reveals 3 site pixels at top probability category, and 4 site 

pixels at {0,6-0,8 }probability category (Figure 7.24).   
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Figure 7.24 Frequencies of testing variables for Predictive Model_Visual.  
 

7.4 Threshold Inspection 

 

Testing samples are used as decision tools. The threshold value is the same with above, 

where if 70% of the testing sample falls into 80% probability or more then sub-model is 

included into the final model 

 

Table 7.2 Observed frequencies of testing sample for each predictive model falling into 

{0-0.2}, {0.2-0.4}, {0.4-0.6}, {0.6-0.8}, {0.8-1.0} probability categories. The success 

rate of the model is given with percentages for each model. Also, probability categories 

are depicted as integers where 1 stands for {0-0.2}, 2 for {0.2-0.4}, 3 for {0.4-0.6}, 4 

for {0.6-0.8}, and 5 for {0.8-1.00}.  

 
PM1; 100% 

 
PM2; 70% 

 
PM3; 70% 

 
PM4; 80% 

 
PM5; 70% 

 
PM6; 30% 
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Table 7. 2 (Continued) 

 

 
PM7; 60% 

 

  
PM8; 50% 

 

 
PM9; 70% 

 
PM10; 90% 

 
PM11; 80% 

 
PM12; 70% 

 
PM13; 50% 

 
PM14; 90% 

 
PM15; 70% 

 
PM16; 100% 

 
PM17; 60% 

 
PM18; 80% 

 
PM19; 80% 

 
PM20; 90% 

 

Then according to the given histograms, PM6, PM7, PM8, PM13 and PM17 are 

excluded from the model since they do not satisfy the criterion. The resulting predictive 

model, called Predictive Model_Threshold is given in Table 7.2.  
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After obtaining the model, a testing sample is used to evaluate the efficiency of the 

model. 5 site pixel values fall into the top probability category, and 3 site pixels fall into 

the {0,6-0,8 }probability category, which makes 80% satisfaction according to  the 

threshold value (Figure 7.26). This approach then is the one which produces the highest 

percentage. On the other hand, due to the small size of testing sample, this comparison 

is questionable.  

 

 
Figure 7.25 Predictive Model_Threshold is obtained after screening PM6, PM7, PM8, 
PM13 and PM17. 

 

Figure 7.26 Frequencies of testing variables for Predictive Model_Threshold.   
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7.5 Model Diagnostics 

 

Multicollinearity is simply the correlation between the independent variables. In other 

words, it is the representation, or quantification of the same happenstance with different 

variables. The problematic variables might have different data scales as well. The 

problem is evident when the model p_value is low, while contributing independent 

variable p_values are high.  

 

According to Field (2000), and Neter et al.(1996), if VIF (Variance of Inflation Value) 

is greater than 10, or if the average of VIF values of variables considerably exceeds 1, 

then there is a serious multicollinearity problem.  

 

SPSS 13.0 produces VIF and tolerance values for particular regression models. As a 

general rule, a model will be stated to have multicollinearity problem if tolerance value 

is less than 0.1 and VIF is greater than 10.  

 

Calculated VIF values and tolerance levels (APPENDIX-E) reveal that for any 

predictive model constructed, there is no serious multicollinearity problem, whereas 

average of VIF values for each predictive model slightly passes the value of 1, but never 

reaches to 2.  
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CHAPTER 8 
 
 

DETERMINANTS of SETTLEMENT LOCATIONS 
 
 
 

This chapter aims to discuss the determinants of settlement locations from an 

archaeological and ecological perspective. The arguments then can be compared with 

the results obtained from the predictive model. Moreover, the discussion below is also 

used to obtain a general understanding of settlement locations as well as to determine 

the limits of the study area both in space and time.  

 

In order to understand the patterning, factors correlated with the pattern should be 

highlighted, and ‘articulation of factors’ should also be examined. Then, determinants 

of settlement patterns are the ‘classes of factors that interact with each other to produce 

the spatial configurations of a social group’ (Trigger, 1968; 53). Independent of a 

specific temporal frame, determinants can be given as trade (medieval cities, Assyrian 

tradeposts in Anatolia, Greek colonies around the Black Sea (Trigger, 1968; 68)), 

warfare, and religion. Within a given geographic area, change in determinants can also 

be examined.  

 

Determinants can be more simple then expected as well. The agriculturalists, for 

instance, were looking for water as well as Paleolithic and Mesolithic hunters, but they 

were having another concern of arable land, for instance in the Berbati Valley. Later in 

the same area, a prosperous farming economy led the people to move on plateaus. With 

the increased population, land clearance occurred on even bedrock slopes, then 

conditions and thus determinants have changed again (Zangger, 1992; 144). 

 

As the complexity of an entire society increases, or at least as level of relations 

increases, then pattern can not solely be determined by subsistence factors anymore, but 

some advanced economical, political, and religious factors should be considered 

(Trigger, 1968; 67). 
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Effort should be made to define and use related variables with the locations of 

settlements. On the other hand, such an endeavor is not easy, and in fact this is the basic 

fallacy of the modeling studies in archaeology, but any effort will shed light to the 

question. 

 

There are some studies which explicitly define the determinants of site location, 

whereas some other studies do not look for an answer of such a question, but still 

implicitly defined in the study. Zangger (1992) reveals determinants as fertile and 

arable soil, water, shelter from wind, protection from sun and exposure to it, availability 

of building stones, and strategic control from elevated heights, remoteness and 

inaccessibility. Again, they are not global rules, and cannot be applied to the site 

nearby, but at least they are helpful to construct a predictive model in a GIS. It is known 

that Suberde is characterized by its huge amount of animal bones (Bordaz, 1973). If 

such a huge consumption is detected, then it might be asserted that proximity to animal 

migrating zones is a determinant for the site.  

 

In the Beyşehir-Suğla Area, Solecki (1964; 131) observed at least 7 different categories 

of human occupation. 

1) Mounds with no evidence of underlying stone outcrops.  

2) Natural summits with human occupation 

3) Tumuli 

4) Monuments and architectural works 

5) Caves 

6) Rock shelters 

7) Open sites 

 

Although there are some, like caves and rock shelters, which are determined by the 

existence of distinct clear geographical features (namely rocks and caves), there should 

be some complex motivations for some others to be located. Naturally not all of the 

caves and rock formations are/were suitable for inhabitation, and not all of the suitable 

ones were/are inhabited, but they are all matters of pragmatism. Similar discussion can 
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also be made about natural summits to some extent. On the other hand, the selection of 

the initial location of a tumulus, mound or a monument or an architectural work is a 

response to a decision making process. Monumentality will be obtained if it is visible 

from many places, and if it is large enough then it will be visible. Both concerns include 

some criteria, such as being on a peak, or being close to raw materials for the ease of 

transportation, at least for the time period where transportation was a matter of concern. 

In the same way, locations of tumuli were selected by some rule, and might produce a 

non-random pattern, but maybe the most complex system is the one for the locations of 

mounds and flat settlements since they are the places that are chosen to be lived on and 

at least some criteria should be met for vital purposes.  

 

Mounds, the source of dependent variables in the analysis, are considered to be 

permanent places which are occupied for a period of (from centuries to millennium or 

more) time (Mellart, 1972; 280) and exploiting the natural environment to some extent. 

A broad generalization reveals that the existence of a stream or a lake and a good arable 

land is common to most of the Neolithic sites, with exceptions (Mellart, 1972; 280). 

Suberde/Görüklük Tepe, for instance, located in a strategic position that it was possible 

to view both the lake and the plain, which was the reason for the hunters to be settled 

(Solecki, 1964; 134). According to Kökten (1952; 194), mounds are generally located at 

the places where modern agriculture is performed, near the lakes and streams, and on 

islands and at the top of the hills, which is also evident in the model. Although current 

lake levels in the study area hinders the situation it is highly possible that some sites 

were located on islands. Moreover they tend to be in water heap due to karst 

topography, or in shrubberies near sea or forests. On the other hand, extents of forests 

for the time in concern are questionable so that both simple observations and 

complicated models can hardly satisfy this judgment. Similar observation was made by 

Tringham (1971, 91) about the locations of settlements of earliest agriculturalists as 

being on the upper terraces of valleys, or on the edges of plateaus. Another derivation 

was obtained by Barker (1975, 100) on Neolithic sites of Yugoslavia as being close to 

major river courses, and an escape from loess and sandy soil. Allan (1972; 211) states 

two features are significant for earliest agricultural settlements: small size, and the 
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community of ecology of the sites around. Also, according to the surveys made in the 

study area generalizations on Neolithic and Chalcolithic sites can be made (Yakar, 

1994; 287): 

i) Small to medium sized permanently settled unwalled settlements with 

individual houses, as Can Hasan III, Erbaba 

ii) Small sized unwalled settlements inhabited seasonally, as Suberde 

iii) Small to medium sized with no indication of ‘social stratification’ 

settlements, as   Kuruçay, Hacılar II 

iv) Medium to large sized, walled or unwalled settlements with some indication 

of ‘social stratification’ with some special buildings, as Hacılar I, Çatal 

Höyük 

 

Those generalizations are questionable, but important in terms of showing that it is 

possible to create more complex models that can test deductive ideas.  

 

Independent of any study area and independent of the researcher’s stance, five basic 

elements can be set as the result of any generalization for agriculturalists (Chisholm, 

1968; 102): 

1) arable land 

2) fuel 

3) building material 

4) grazing land 

5) water 

 

On the other hand, constructing the model merely on those elements will not be false, 

but lacking. Moreover those elements are not stable, and in a very simplistic manner 

heavy use and climatic change can affect one or more of them, and in a chain reaction 

exploitation and climate change reduce fertility, increase pollution, and even collapse 

well based settlements (Ponting, 1991). Thus the exploitable land should be left, or has 

to be waited for regeneration.  
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Four types of environment can be defined for food production, thus for the 

agriculturalists (Meggers, 1954; 803).  

1) Areas of no agricultural potential. 

A subsistence economy based on hunting-gathering, and fishing will support only small 

group of people in a seasonal basis. The environment permit the basics and little more 

in the area, but it do not mean that the specified area is totally is free of sites. 

2) Areas of limited agricultural potential. 

In the area, more time is available for manipulating raw materials and process of 

manufacture, which might introduce the pottery and loom weaving.  

3) Areas of increasable (improvable) agricultural potential. 

4) Areas of unlimited agricultural potential.  

 

The potential is an implicit term so that it should be clearly defined, and even more 

substantial research should be made for past potentials of particular areas. In the model, 

one of the important environmental variables is the current land use. Thus, even a 

tentative reconstruction can reveal some for defining the patterning of the sites in the 

area. In any case, existing sites can be considered falling one of the above categories. In 

fact, similar procedures are used in modern geography to divide the land according to 

some criteria. The criterion in this case is the potential for agriculture, but again a 

researcher should keep in mind that parameters determining the potential are not static, 

but dynamic. A similar categorization was made for the provinces of Antalya, Burdur, 

and Isparta, an area of 37,000 square-km, and four ecological zones were recognized; 

namely, the Western Plateau, the Lakes zone, the Coastal zone, and the Mountain zone. 

Based on hypothetical parameters it was estimated that the total area would be able to 

support an overall population density of twelve per square-km, but the specific numbers 

were 24.3, 16.5, 11.3, and 1.8 per square-km accordingly (Allan, 1972; 215). Then 

those numbers can be used in proportions to obtain a hypothetically estimated number 

of sites in the area. Definitely, it will not be exactly true, but it will be informative for 

the potentials of zones.  
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Food production is depending on environmental conditions, and at the same time 

production determined the density, population of a region, and to some extent socio-

politics of the region. The degree of relation is the concern and this degree is the one to 

be predicted, tested and judged (Meggers, 1954; 802). 

 

But the general picture would not have been so straightforward. For instance, 

backswamp soils were very close to the settlements of Çatal Höyük, and Nea 

Nikomedeia despite the fact that that type of soils were marshy, and the marsh was 

probably a source of malaria. Maybe it was the stock, but not the crop were the factor 

for a decision of site location, where domesticated fauna was the interest (Barker, 1975; 

90).  

 

As a determinant, land use is important but not enough by itself. Another concern 

should be the locations of trade routes and their relations with the settlements. On the 

other hand, it will not be wrong to assume that the locations of settlements had created 

the network, and not the other way around. Not surprisingly, the routes can be natural 

and the locations can be determined by considering the use of natural paths, such as 

Calycadnus Valley which leads from the Konya Plain to the Mediterranean Coast. This 

issue is again related with the problem of transhumance and determined by the cost of 

being between the sites, and there is evidence of such transhumance as early as the 

second half of the ninth millennium B.C. at Mureybit and Jericho (Mellart, 1972; 280).   

 

The effect of environment, thus the effect of determinants of settlement locations on the 

construction and evolution of a culture is speculative (Meggers, 1954). On the other 

hand, if a population is moved from one place to another for any reason the lifestyle of 

that society will adapt or change. Moreover, as Sollars states (2005; 258)  

 
… to move from the plains to settle in a mountainous region, their lifestyle would, of 
necessity, come to reflect their location, rather than the influence their choice of it. 
Their choice of location would reflect the broader social situation of conflict. 
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CHAPTER 9 
 
 

CONCLUSION 
 
 
 

In the study area, 64 settlement mounds are transformed into 95 site pixels. 

Transformation is based on available information on sizes of mounds. 85 of the pixels 

are used to train model, and 10 of them are withheld from the analysis to test the model. 

Then a total of 15 independent variables and 1 dependent variable are put to the 

analysis, and logistic regression equations are obtained. Considering the immense size 

of the study area, and limited number of positive responses for the model, more than 

one regression equation is run, and they are used to construct different predictive 

models. At the end, with given criteria the resulting predictive model is obtained. 

 

There are two major outcomes of the study. First, individual environmental variable and 

site location relations are revealed via graphs and descriptive statistics. Second, by 

obtaining a predictive surface, possible site locations are detected so that those areas can 

be used in future studies.  

 

To begin with, in terms of topography, it can be claimed that sites tend to be located 

around 1400m. After making an adjustment with respect to lake levels, it had been 

found that sites tend to gather around lakes, and in few cases they are located far away 

from lakes. Also, sites are located at flat areas, or to explicitly define, at areas having 

less than 3 degrees of slope. There is an interesting recognition on Aspect variable. 

Although sites are expected to be located at the South faces, in the study area sites are 

located at non-South faces. This fact was also significant at regression equation so that 

Aspect is used in most of the predictive models. Adjusted Distance to Ridges revealed 

that sites are close to ridges in terms of unit distance. This is both due to the fact that 

locations of lakes, in which they are close to ridges, and distribution of pixel values in 

the overall study area.  
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According to the measure created for Roughness, sites avoid very smooth areas, and 

people had looked for some undulation. On the other hand, this undulation should be 

noted as a proxy, where it can be claimed that such areas are suitable for rich flora and 

fauna, but after some degree of undulation it is not feasible to settle down.  

 

In terms of lithology, ancient settlers really favored quaternary alluvium, where rock 

categories are evenly distributed in the study area except for volcanic class.  

 

Modern agricultural fields contain many of the existing settlement mounds. This was 

also stated by Kökten in the year of 1952. Although such observations are clear for 

some, there is still a need for a formalization of whole understanding to obtain a general 

perspective.  

 

Very few sites are found at areas where very heavy erosion is observed. This can be 

related with survival of sites, and thus can be used for future field surveys. Most of the 

sites are located on alluvium. This is another indicator of relation of locations of sites 

and where modern agriculture is practiced. Moreover, such an assertion can be used to 

put the relation of rivers, or soils around rivers and settlement locations.  

 

Sites are mostly located within 5km range of river courses, but as stated earlier, high 

order rivers are put to the analysis, and so domestic use of water is omitted. Distance to 

Lakes produces an interesting result. There are three groups of sites in relation to lakes. 

One group with around 40% is found to be located very close to lakes. Another group is 

found to be located at a distance of 20km, and the last group is having an average 

distance of 40km. Those distances are significant when adjacent distances are 

considered. That is, those distance values are making peaks when compared with other 

values which are close to those distances. Considering again the size of the study area, 

those results divulge general patterning of sites rather than specific responses of site 

locations to their immediate environments.  

Second outcome of the study was to obtain particular places that deserve more 

archaeological investigation (Figure 9.1).  
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Figure 9.1 Predictive Model_Threshold with particular areas of interest.  
 
Areas marked as Number 1 and Number 2 contains no site in the archaeological 

inventory, but claimed to be high potential areas, which means it is highly possible to 

find other sites according to the model developed. As revealed in layers, those specific 

zones are relatively flat when compared to immediate vicinities, and close to river 

systems. Areas marked as Number 3 and Number 4 also shows high potential areas. 

Although some sites exist in their close district, more research can be conducted in 

those areas since they are still broad zones. 

 

Model suffers from a number of limitations. First of all, the model is heavily influenced 

from the existing archaeological inventory. The bias in the inventory is directly 

reflected into the model, such as the surveyors prejudice for data collection, mistakes in 

the existing coordinates or mistakes for dating sites. Secondly, data obtained from 

various sources have various fallacies. For instance, soil data obtained from Directorate 

of Rural Services have missing values for particular places, thus a random filling for 
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those missing values had to be employed. Moreover, some attributes are not totally 

reliable at all, such as erosion. Topographical data obtained from SRTM imagery have 

some gaps so that a built-in algorithm is used to fill those gaps in the elevation data. 

Since elevation data is the primary coverage for other data types, the errors in this layer 

is automatically introduced to the secondary coverage. Although water is claimed to be 

very important for the sites in concern, only major river courses are used in the model 

since it is nearly impossible to reconstruct the locations of springs and streams carrying 

water for that particular period of time. Not all of the ancient lake levels are available so 

that only existing ones are used. This situation introduced some bias to the model since 

relative locations of sites in concern are not totally depicted in the model.  

 

There are also some other implicitly defined limitations in the model stemming from the 

assumptions used to create the model. Definitely, projection of current data to the past is 

not exactly true. For example, modern land use can hardly be utilized instead of ancient 

land use, and any reconstruction to do this is beyond the scope of this study. The second 

assumption used to construct the model is about human locational behavior stating that 

activities are not arbitrary but caused. This is based on energy minimizing and profit 

maximizing ideology, whereas such a terminology cannot be entirely true for all human 

history.  

 

In any case, efforts for such modeling studies in any area for any time period are an 

asset for the discipline and should not be underestimated. The collaboration of 

computational power with the well defined questions equipped with proper data can 

reveal more than expected.  
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APPENDICES 
 
 

APPENDIX-A 
 

List of categorical variables used in the logistic regression analysis and their value 
labels. 
 
SITE PRESENCE 
1 Site 
0 No Site 
 

ASPECT 
1 Flat 
2 337,5 – 22,5 
3 22,5 – 67,5 
4 67,5 – 112,5 
5 112-5 – 157,5 
6 157,5 - 202,5 
7 202,5 – 247,5  
8 247-5 – 292,5 
9 292,5 – 337,5 
 

EROSION (ERZ) 
1 No Erosion 
2 Moderate Erosion 
3 Heavy Erosion 
4 Very Heavy Erosion 
 
SOIL DEPTH (TOK_D) 
1 Deep Soil 
2 Moderately Deep 
3 Shallow  
4 Very Shallow 
5 No Soil 
 
SOIL INCLUSION SIZE (TOK_B) 
1 Fine 
2 Medium 
3 Coarse 
4 Mixed 
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CURRENT LAND USE (CLU) 
1 Agriculture 
2 Yard and Garden 
3 Grassland 
4 Shrubbery and Forest 
 

LITHOLOGY 
1 Quaternary 
2 Volcanic 
3 Melange 
4 Neritic 
5 Clastic 
6 Carbonate Clastic 
 

ROUGHNESS 
1 Smooth 
2 Considerably Smooth 
3 Average 
4 Moderately Rough 
5 Rough 
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APPENDIX-B 
 

List of sites used in the analysis 
 

NAME N E NAME N E 

Akcay1 36,58 29,74 KayaliI 37,30 29,93 

AlanHoyuk 37,63 31,61 Kecili 37,36 30,39 

Aziziye 37,42 30,23 KizilHoyuk 37,88 30,63 

Baskuyu1 37,51 29,88 Kizilviran 37,86 32,07 

BektemurHoyuk 37,66 31,82 KizlarHoyuk4 37,24 30,29 

Beykoy 38,05 31,37 Kurucay 37,63 30,16 

BeysehirHoyukC 37,79 31,68 Kuyucak 38,22 31,21 

Cavdir 37,14 29,65 Leylekbeleni 37,61 30,38 

Cemcem 37,69 31,74 Murseller 37,40 29,94 

Derekoy1 37,66 29,81 OrtaKaraviran 37,37 32,06 

Duden 37,55 29,81 Pamuklu 37,77 30,68 

Efeoglu 37,13 30,29 Salda 37,52 29,61 

Erbaba 37,75 31,68 Sarikayali_AyasCiftlik 37,95 31,30 

EskikoyYeri 37,30 30,25 Sazak 37,58 29,93 

EvregiII 37,58 31,83 SazliHoyuk 37,26 32,23 

Gokpinar 36,73 29,98 Seydiler 37,25 29,79 

Golde 37,50 30,24 SeydisehirHoyuk 37,44 31,86 

Hacilar 37,57 30,08 Sorkun 37,15 29,59 

Hacimusalar_Beyler 36,64 29,83 Suberde_GoruklukTepe 37,35 31,92 

HanvakfiEskiII 37,51 31,87 Tekke 36,62 29,88 

Heybeli 37,36 30,35 Teknepinar 38,34 31,09 

Hoyucek 37,45 30,55 Tepeli 37,75 30,88 

IlyasI 37,77 30,15 Topraktol 37,74 31,43 

Incirdere 37,47 30,53 YagcaTasHoyuk 37,18 30,33 

Incirlipinar_IncirliII 37,87 30,42 Yakaemir 38,08 31,23 

KanalHoyuk 37,38 31,98 Yakalar 37,32 30,00 

KanliHoyuk 37,83 30,60 Yarikkaya_Isparta 38,45 31,07 

Kanlitepe 37,71 29,96 YazirHoyuk 37,67 29,88 

Karaaliler 37,35 30,48 Yenice 37,35 29,98 

Karamusa 37,18 29,75 YenikoyHoyuk 37,98 31,34 

Karayaka 37,98 31,40 YilanHoyuk 37,77 31,64 

KarayugHoyuk 37,90 30,57 Yug_Bozanonu 37,86 30,56 
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APPENDIX-C 
 

Some C14 dates for major sites 
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APPENDIX-D 
 

Model Summaries of the predictive models. 
 

Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM1 0.619 0.833 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 116 4 96.7 
 Site 6 79 92.9 

Overall Percentage 95.1 
 
Variables 
 S.E. Wald Statistics 
S 0.048 3.997 
EA 2.375 16.447 
DtL 0.029 10.589 
DtMSC 0.215 9.342 
Constant 1.293 30.952 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM2 0.555 0.748 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 112 8 93.3 
 Site 11 74 87.1 

Overall Percentage 90.7 
 
Variables 
 S.E. Wald Statistics 
CLU(1) 0.618 11.899 
CLU(2) 1.489 0.927 
CLU(3) 0.956 0.009 
EA 1.921 12.604 
DtL 0.028 6.832 
DtMSC 0.212 3.859 
A(1) 19.799 0.090 
A(2) 0.960 0.215 
A(3) 0.966 0.287 
A(4) 1.076 2.872 
A(5) 1.156 5.246 
A(6) 1.342 4.700 
A(7) 1.336 1.952 
A(8) 1.021 0.717 
Constant 1.221 9.059 

 



 165 

 
Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM3 0.477 0.643 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 106 14 88.3 
 Site 17 68 80.0 

Overall Percentage 84.9 
 
Variables 
 S.E. Wald Statistics 
CLU(1) 0.521 16.167 
CLU(2) 20.510 0.153 
CLU(3) 0.791 0.216 
EA 1.498 21.023 
DtL 0.021 5.898 
A(1) 0.997 0.038 
A(2) 0.862 2.639 
A(3) 0.818 0.121 
A(4) 0.932 0.849 
A(5) 0.929 4.205 
A(6) 0.987 5.964 
A(7) 1.006 3.660 
A(8) 0.876 0.002 
Constant 0.871 2.976 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM4 0.415 0.559 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 107 13 89.2 
 Site 21 64 75.3 

Overall Percentage 83.4 
 
Variables 
 S.E. Wald Statistics 
CLU(1) 0.494 5.874 
CLU(2) 19.637 0.166 
CLU(3) 0.746 0.455 
EA 1.436 17.237 
L(1) 0.623 8.469 
L(2) 60.439 0.002 
L(3) 0.663 7.457 
L(4) 0.716 2.390 
L(5) 0.623 0.005 
Constant 0.708 17.237 

 



 167 

 
Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM5 0.386 0.520 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 101 19 84.2 
 Site 21 64 75.3 

Overall Percentage 80.5 
 
Variables 
 S.E.  Wald 
CLU(1) 0.545 10.450 
CLU(2) 18.860 0.262 
CLU(3) 0.858 1.117 
L(1) 0.658 4.089 
L(2) 42.638 0.035 
L(3) 0.711 1.407 
L(4) 0.800 2.356 
L(5) 0.703 0.837 
EA 1.510 10.470 
DtR 0.062 9.235 
A(1) 0.993 2.649 
A(2) 0.740 3.475 
A(3) 0.707 0.774 
A(4) 0.783 1.451 
A(5) 0.855 0.019 
A(6) 1.016 0.452 
A(7) 0.931 0.003 
A(8) 0.741 0.133 
Constant 0.933 6.023 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM6 0.298 0.401 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 98 22 81.7 
 Site 27 58 68.2 

Overall Percentage 76.1 
 
Variables 
 S.E.  Wald 
CLU(1) 0.543 10.616 
CLU(2) 0.839 0.880 
CLU(3) 0.836 0.670 
L(1) 0.753 4.501 
L(2) 0.811 2.965 
L(3) 0.857 2.819 
L(4) 0.748 0.114 
TOK_D(1) 0.499 0.599 
TOK_D(2) 0.536 10.321 
A(1) 0.724 1.548 
A(2) 0.652 0.666 
A(3) 0.728 4.035 
A(4) 0.763 0.395 
A(5) 0.721 0.618 
A(6) 0.843 1.848 
A(7) 0.787 0.923 
A(8) 0.693 0.010 
Constant 1.004 11.551 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM7 0.195 0.263 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 90 30 75.0 
 Site 34 51 60.0 

Overall Percentage 68.8 
 
Variables 
 S.E.  Wald 
S 0.033 5.242 
TOK_D(1) 0.455 0.680 
TOK_D(2) 0.444 5.141 
A(1) 0.674 0.504 
A(2) 0.676 1.038 
A(3) 0.659 0.202 
A(4) 0.665 1.018 
A(5) 0.692 2.636 
A(6) 0.807 5.107 
A(7) 0.758 2.678 
A(8) 0.668 0.084 
Constant 0.618 0.063 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM8 0.244 0.328 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 96 24 80.0 
 Site 33 52 61.2 

Overall Percentage 72.2 
 
Variables 
 S.E.  Wald 
TOK_D(1) 0.492 0.680 
TOK_D(2) 0.476 2.990 
S 0.037 7.032 
DtR 0.035 9.075 
DtL 0.017 7.280 
A(1) 0.669 0.170 
A(2) 0.647 0.672 
A(3) 0.690 2.458 
A(4) 0.683 0.859 
A(5) 0.716 0.428 
A(6) 0.832 3.806 
A(7) 0.766 2.563 
A(8) 0.669 0.677 
Constant 0.717 0.355 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM9 0.293 0.394 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 99 21 82.5 
 Site 24 61 71.8 

Overall Percentage 78.0 
 
Variables 
 S.E.  Wald 
CLU(1) 0.470 15.203 
CLU(2) 0.825 4.856 
CLU(3) 0.748 0.588 
R(1) 1.299 0.336 
R(2) 1.293 0.052 
R(3) 1.475 0.742 
DtR 0.040 5.514 
DtMSC 0.160 4.080 
A(1) 0.817 0.058 
A(2) 0.702 0.062 
A(3) 0.719 0.120 
A(4) 0.745 4.093 
A(5) 0.790 3.205 
A(6) 0.865 7.556 
A(7) 0.850 3.046 
A(8) 0.756 1.896 
Constant 1.461 0.071 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM10 0.297 0.400 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 98 22 81.7 
 Site 31 54 63.5 

Overall Percentage 74.1 
 
Variables 
 S.E.  Wald 
CLU(1) 0.436 16.424 
CLU(2) 0.848 4.229 
CLU(3) 0.718 0.016 
TOK_D(1) 0.472 3.006 
TOK_D(2) 0.468 10.477 
A(1) 0.771 3.406 
A(2) 0.679 0.910 
A(3) 0.695 0.955 
A(4) 0.695 0.300 
A(5) 0.725 1.831 
A(6) 0.832 4.122 
A(7) 0.844 0.632 
A(8) 0.705 0.134 
Constant 0.687 10.751 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM11 0.363 0.401 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 105 15 87.5 
 Site 27 58 68.2 

Overall Percentage 79.5 
 
Variables 
 S.E.  Wald 
CLU(1) 0.447 12.087 
CLU(2) 0.882 0.285 
CLU(3) 0.812 0.139 
L(1) 0.708 3.861 
L(2) 99.634 0.005 
L(3) 0.706 0.517 
L(4) 0.722 0.030 
L(5) 0.713 0.066 
TOK_D(1) 0.512 0.000 
TOK_D(2) 0.493 7.407 
A(1) 21.224 0.154 
A(2) 0.708 1.571 
A(3) 0.657 0.097 
A(4) 0.728 0.674 
A(5) 0.797 0.486 
A(6) 0.908 2.557 
A(7) 0.824 1.597 

A(8) 0.757 0.002 
Constant 0.875 6.249 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM12 0.294 0.397 
 
 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 109 11 90.8 
 Site 35 50 58.8 

Overall Percentage 77.6 
 
Variables 
 S.E. Wald Statistics 
E 0.990 8.452 
L(1) 0.591 15.215 
L(2) 13.506 0.104 
L(3) 0.595 1.488 
L(4) 0.612 0.002 
L(5) 0.560 0.165 
Constant 1.280 3.701 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM13 0.351 0.472 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 98 22 81.7 
 Site 24 61 71.8 

Overall Percentage 77.6 
 
Variables 
 S.E.  Wald 
CLU(1) 0.438 9.574 
CLU(2) 0.974 3.384 
CLU(3) 0.762 0.331 
EA 1.204 10.400 
A(1) 0.902 3.780 
A(2) 0.695 4.063 
A(3) 0.707 3.466 
A(4) 0.724 0.089 
A(5) 0.715 0.815 
A(6) 0.810 3.290 
A(7) 0.771 1.449 

A(8) 0.666 0.019 
Constant 0.591 0.531 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM14 0.298 0.401 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 98 22 81.7 
 Site 27 58 68.2 

Overall Percentage 76.1 
 
Variables 
 S.E.  Wald 
EA 1.274 9.807 
S 0.039 5.570 
L(1) 0.621 4.292 
L(2) 20.314 0.072 
L(3) 0.611 2.054 
L(4) 0.658 1.144 
L(5) 0.598 0.351 
Constant 0.628 1.433 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM15 0.431 0.580 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 105 15 87.5 
 Site 23 62 72.9 

Overall Percentage 81.5 
 
Variables 
 S.E.  Wald 
ERZ(1) 0.993 2.601 
ERZ(2) 0.650 12.389 
ERZ(3) 0.580 7.932 
L(1) 0.801 4.895 
L(2) 15.010 0.055 
L(3) 0.697 1.729 
L(4) 0.732 0.024 
L(5) 0.686 0.717 
EA 1.425 7.927 
A(1) 1.375 3.030 
A(2) 0.743 2.436 
A(3) 0.762 1.619 
A(4) 0.840 0.338 
A(5) 0.859 0.673 
A(6) 0.969 0.359 
A(7) 0.834 0.119 

A(8) 0.823 0.000 
Constant 1.000 2.248 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM16 0.474 0.638 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 104 16 86.7 
 Site 18 67 78.8 

Overall Percentage 83.4 
 
Variables 
 S.E.  Wald 
DtMSC 0.121 5.704 
E 1.303 5.561 
A(1) 1.401 1.901 
A(2) 1.303 6.022 
A(3) 1.366 1.589 
A(4) 1.369 5.294 
A(5) 24.477 0.036 
A(6) 1.427 10.439 
A(7) 1.348 16.266 
A(8) 1.551 0.043 
Constant 2.154 10.517 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM17 0.446 0.600 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 104 16 86.7 
 Site 19 66 77.6 

Overall Percentage 82.9 
 
Variables 
 S.E.  Wald 
DtRd 0.001 5.517 
A(1) 20.070 0.114 
A(2) 20.067 0.172 
A(3) 20.069 0.137 
A(4) 20.068 0.190 
A(5) 31.755 0.000 
A(6) 20.073 0.233 
A(7) 20.069 0.306 
A(8) 20.078 0.105 
Constant 20.063 0.154 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM18 0.403 0.542 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 97 23 80.8 
 Site 27 58 68.2 

Overall Percentage 75.6 
 
Variables 
 S.E.  Wald 
E 1.151 5.623 
A(1) 19.878 0.138 
A(2) 19.875 0.172 
A(3) 19.875 0.190 
A(4) 19.879 0.175 
A(5) 31.515 0.000 
A(6) 19.881 0.264 
A(7) 19.879 0.276 
A(8) 19.902 0.078 
Constant 19.922 0.331 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM19 0.436 0.588 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 102 18 85.0 
 Site 19 66 77.6 

Overall Percentage 82.0 
 
Variables 
 S.E.  Wald 
DtR 0.044 4.716 
DtRd 0.001 4.272 
A(1) 19.606 0.150 
A(2) 19.603 0.194 
A(3) 19.604 0.156 
A(4) 19.606 0.196 
A(5) 30.823 0.000 
A(6) 19.610 0.249 
A(7) 19.606 0.335 
A(8) 19.611 0.141 
Constant 19.604 0.198 
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Model Summary 
 Cox & Snell R Square Nagelkerke R Square 
PM20 0.461 0.621 
 
Classification Table 

Predicted 
Presence-Absence Observed 

Non-Site Site 
Percentage 
Correct 

Presence-Absence Non-Site 104 16 86.7 
 Site 20 65 76.5 

Overall Percentage 82.4 
 
Variables 
 S.E.  Wald 
RGH(1) 63.666 0.012 
RGH(2) 63.666 0.008 
RGH(3) 63.670 0.005 
A(1) 32.253 0.077 
A(2) 32.252 0.076 
A(3) 32.252 0.077 
A(4) 32.255 0.081 
A(5) 50.624 0.000 
A(6) 32.256 0.166 
A(7) 32.254 0.153 
A(8) 32.267 0.048 
Constant 71.367 0.046 
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APPENDIX – E 
 

VIF and tolerance levels for the predictive models. 

 

PM1 VIF TOLERANCE 

Adjusted Elevation 2,044 0,489 

Slope 1,422 0,703 

Distance to Major Soil Classes 1,422 0,693 

Distance to Lake 1,247 0,802 

PM2 VIF TOLERANCE 

Slope 1,598 0,626 

Aspect 1,094 0,914 

Adjusted Elevation 1,737 0,576 

Current Land Use 1,746 0,573 

Distance to Major  Soil Classes 1,132 0,883 

Distance to Lake 1,161 0,861 

PM3 VIF TOLERANCE 

Aspect 1,039 0,963 

Adjusted Elevation 1,247 0,802 

Distance to Lake 1,066 0,938 

Current Land Use 1,158 0,864 

PM4 VIF TOLERANCE 

Adjusted Elevation 1,331 0,751 

Lithology 1,208 0,828 

Current Land Use 1,265 0,790 

PM5 VIF TOLERANCE 

Aspect 1,509 0,944 

Adjusted Elevation 1,737 0,576 

Lithology 1,184 0,844 

Current Land Use 1,349 0,741 

Distance to River 1,468 0,681 

PM6 VIF TOLERANCE 

Aspect 1,026 0,974 
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Lithology 1,149 0,870 

Current Land Use 1,223 0,818 

Soil Depth 1,163 0,860 

PM7 VIF TOLERANCE 

Slope 1,243 0,804 

Aspect 1,024 0,977 

Soil Depth 1,220 0,819 

PM8 VIF TOLERANCE 

Aspect 1,032 0,969 

Slope 1,297 0,771 

Soil Depth 1,256 0,796 

Distance to Lake 1,032 0,969 

Distance to River 1,085 0,922 

PM9 VIF TOLERANCE 

Aspect 1,038 0,963 

Surface Roughness 1,109 0,902 

Current Land Use 1,040 0,961 

Distance to Major Soil Class 1,082 0,924 

Distance to River 1,118 0,842 

PM10 VIF TOLERANCE 

Aspect 1,008 0,992 

Soil Depth 1,176 0,850 

Current Land Use 1,177 0,849 

PM11 VIF TOLERANCE 

Aspect 1,035 0,967 

Lithology 1,175 0,851 

Current Land Use 1,139 0,878 

Soil Depth 1,195 0,837 

PM12 VIF TOLERANCE 

Distance to Surface Roughness  Junctions 1,011 0,989 

Elevation 1,011 0,989 

PM13 VIF TOLERANCE 

Adjusted Elevation 1,278 0,783 

Current Land Use 1,293 0,773 

Aspect 1,024 0,977 
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PM14 VIF TOLERANCE 

Slope 1,751 0,571 

Adjusted Elevation 1,737 0,576 

Lithology 1,237 0,808 

PM15 VIF TOLERANCE 

Aspect 1,043 0,959 

Adjusted Elevation 1,449 0,690 

Lithology 1,207 0,828 

Erosion 1,478 0,677 

PM16 VIF TOLERANCE 

Elevation 1,567 0,638 

Aspect 1,126 0,888 

Distance to Major Soil Classes 1,420 0,704 

PM17 VIF TOLERANCE 

Aspect 1,069 0,935 

Adj. Distance to Basin Ridges 1,069 0,935 

PM18 VIF TOLERANCE 

Elevation 1,154 0,866 

Aspect 1,154 0,866 

PM19 VIF TOLERANCE 

Aspect 1,051 0,951 

Adj. Distance to Basin  Ridges 1,106 0,904 

Distance to River 1,114 0,898 

PM20 VIF TOLERANCE 

Aspect 1,007 0,993 

Surface Roughness 1,007 0,993 

 

 

 

 

 

 

 



 


