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ABSTRACT 
 
 

DIM TARGET DETECTION IN INFRARED IMAGERY 
 
 
 

Çifçi, Barış 

M.Sc., Department of Electrical Electronics Engineering 

Supervisor : Assoc. Prof. Dr. A. Aydın ALATAN 

Co-Supervisor : Prof. Dr. Mete SEVERCAN 

 

September 2006, 115 pages 
 

 
This thesis examines the performance of some dim target detection algorithms in 

low-SNR imaging scenarios. In the past research, there have been numerous 

attempts for detection and tracking barely visible targets for military surveillance 

applications with infrared sensors. In this work, two of these algorithms are 

analyzed via extensive simulations. In one of these approaches, dynamic 

programming is exploited to coherently integrate the visible energy of dim targets 

over possible relative directions, whereas the other method is a Bayesian 

formulation for which the target likelihood is updated along time to be able to 

detect a target moving in any direction. Extensive experiments are conducted for 

these methods by using synthetic image sequences, as well as some real test data. 

The simulation results indicate that it is possible to detect dim targets in quite 

low-SNR conditions. Moreover, the performance might further increase, in case 

of incorporating any a priori information about the target trajectory. 

 
 
 
Keywords: dim target, detection, tracking, infrared imagery, dynamic 
programming 
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ÖZ 
 
 

INFRARED GÖRÜNTÜLERDE  
SOLUK HEDEF TESPİTİ  

 
 
 

Çifçi, Barış 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü  

Tez Yöneticisi           : Doç. Dr. A. Aydın ALATAN 

Ortak Tez Yöneticisi : Prof. Dr. Mete SEVERCAN 

 
 

Eylül 2006, 115 sayfa 
 
 

Bu çalışmada, düşük işaret-gürültü-oranına (SNR) sahip görüntüleme 

senaryolarında bazı soluk hedef tespit algoritmalarının performansı incelenmiştir. 

Geçmiş araştırmalarda, kızılötesi algılayıcı kullanan askeri izleme uygulamaları 

için zorlukla görülebilen hedeflerin tespit ve takibine yönelik çok sayıda deneme 

vardır. Bu çalışmada, kapsamlı simülasyonlarla bu algoritmalardan ikisi 

incelenmiştir. Bu yaklaşımlardan bir tanesi olan dinamik programlama soluk 

hedefin görülür enerjisini var olan bağıl yönler üzerinde uygun şekilde 

biriktirirken, diğer yöntem olan Bayes formülasyonu herhangi bir yönde hareket 

eden hedefi tespit edebilmek için zamanda hedef olabilirliğini günceller. Hem 

yapay görüntü dizileri hem de gerçek test verileri kullanılarak deneyler 

yapılmıştır. Deneyler oldukça düşük işaret-gürültü-oranı (SNR) seviyelerinde 

soluk hedeflerin tespit edilmesinin mümkün olduğunu göstermiştir. Ayrıca, hedef 

rotası hakkında herhangi bir ön bilgi kullanarak, tespit performansı daha da 

artabilir.  

 

Anahtar Kelimeler:  soluk hedef, tespit, takip, kızılötesi görüntüleme, dinamik 

programlama  
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CHAPTER 1 

 
 

INTRODUCTION 

1 CHAPTER 1 
 

1.1 Motivation 
 

Detection and tracking are important issues in military projects, especially at 

radar applications and video tracking tasks. The problem of detection dim, weak, 

small, barely discernible, low-observable objects may appear not only in military 

projects, but also in different fields in research projects or in daily life, such as 

investigating meteors, satellites, or other small moving objects against night-sky 

background in astronomy; or in climatology detecting whirlpools in the oceans 

using the image sequences of earth, which are obtained from down-staring and 

orbiting satellites [14]. 

 

In this aforementioned problem, the main drawback is the missing information 

about both the location and the velocity of the target in such sequences. 

Moreover, the clutter in the environment, in which the desired target is roaming 

and the sensor noise is another challenging part of the task.  

 

In visible, or bright, target cases, video target tracking has two main consecutive 

phases: detection and tracking [1]. In these approaches, typically, detection are 

achieved by an optimal linear filter [2][3], followed by an optimal threshold and 

the outcomes of the detection process are fed to a conventional tracker in order to 

estimate the target trajectories. Although, the performances of these traditional 

techniques are sufficient for the bright targets, i.e. targets with high signal-to-

noise ratio (SNR), unfortunately, their performance degrades quickly for their 
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dim counterparts. This degradation is mainly due to the information loss, 

introduced during the application of the detection threshold.  

 

There is a trade-off for utilizing such a detection threshold. If the detection 

threshold is not selected sufficiently low to detect targets with low amplitude, a 

large number of false alarms should be inevitable. Hence, such large number of 

false alarms is much more than that of the association part of a traditional tracker 

could handle.  Therefore, it is apparent that the classical detect-before-track 

scheme should be modified, in order to achieve reliable detection in low SNR 

conditions. 

 

As an alternative to the traditional detect-before-track approaches, the idea of 

processing a sequence of raw images in order to achieve target detection in very 

low-SNR conditions has been proposed [4][11]. The motivation behind the idea 

of such a batch processing approach is to coherently integrate the target energy 

present in each frame in order to obtain a relatively high-SNR image. However, 

since the location of the target in each frame is not known in advance, the batch 

processor should estimate, or hypothesize, the target location in each frame to 

make the integration along the trajectory of the target. Due to this inherent 

requirement for tracking possible targets in the scene, before making decisions 

about the presence of these targets, these techniques are commonly referred to as 

track-before-detect techniques in literature [5],[8],[11],[14]. 

 

It is theoretically possible to search all target trajectories in a given sequence of 

frames to integrate target energy. However, since the number of potential target 

trajectories grows exponentially with the length of the sequence, such an 

exhaustive search is computationally unachievable. It is crucial to constrain the 

search space, as well as to develop efficient search algorithms, in order convert 

the track-before-detect concept into a practical approach. 
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There are some proposed techniques to reduce the inevitable computational 

complexity for solving track-before-detect problem. In Chapter 2, some proposed 

techniques from the literature will be examined briefly. 

 

1.2 Scope of Thesis 
 

In this thesis, it is intended to examine some methods from the literature with 

promising solutions for the dim target detection problem. Past researches efforts 

about this topic are examined and it is observed that computational complexity is 

one of the important issues in dim target detection. Hence, a method, which is 

based on the well-known Dynamic Programming approach [9], is selected to 

overcome this issue. Dynamic Programming is a well-known simple batch 

processing algorithm, capable of decreasing any search time from exponential to 

linear order. In this aspect, a relatively novel algorithm is proposed and tested 

that utilizes dynamic programming to determine the best path between states, 

which consist of possible relative directions of a target. The state transition 

metrics are defined based on coherency of target signature between frames, as 

well as target trajectory consistency.  

 

On the other hand, another algorithm from the dim target detection literature [17], 

which has a Bayesian formulation, is also fully implemented and tested via 

simulations. This algorithm is a sequential one, which iteratively determines the 

likelihood of having a target at a location in time and detects such a target, 

whenever the likelihood is above some threshold.  

 

Extensive simulations are conducted on these two approaches by using synthetic 

and reel image sequences in order to asses their performance.  
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1.3 Outline of Thesis 
 

The outline of this thesis can be briefly summarized as follows:  

 

Chapter 2 consists of a brief summary of the noteworthy former research efforts 

on dim target detection problem.  

 

Chapter 3 presents a revised version of a dynamic programming-based dim target 

detection algorithm. In this chapter, some details of this algorithm, such as state 

selection criteria, some design parameters as well as the velocity model, are 

stated. The simulation results for this algorithm for both synthetic and real data 

are also presented towards the end of this chapter. 

 

Chapter 4 is devoted to a recent Bayesian approach from the literature. A detailed 

mathematical formulation of the algorithm, as well as, the simulation results for 

the algorithm, are both presented in this chapter.  

 

Finally, Chapter 5 concludes this thesis by performing some comparisons 

between the implemented algorithms.  
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CHAPTER 2 

 
 

PAST RESEARCH  

ON DIM TARGET DETECTION 

 

2 CHAPTER 2 
 

The detection and tracking of low-contrast moving targets in optical image 

processing have been under intensive investigation for over the past two or more 

decades. There have been many interesting and promising methods in the 

literature for dim target detection. Among these techniques, there are 5 

fundamental approaches, which cover most of the proposed methods. These 

methods are 3-D Matched Filters (MF) [5][6], Recursive Moving Target Indicator 

(RMTI) [8], Dynamic Programming-based dim target detection (DP) [11][12], 

Sequential Hypothesis Testing (SHT) [13][14] and Bayesian approaches (BA) 

[15][16][17]. 

 

The aforementioned techniques can be classified into two classes, based on their 

decision mechanism, as batch and sequential processing. Another taxonomy can 

also be proposed, according to their processing domain, as spatial and frequency 

domains. The classification of these methods based on these classes is tabulated 

in Table 2.1. 

Table 2.1 Classification of the dim target detection algorithms 
 

Decision Mechanism 
 

Batch Processing Sequential Processing 

Spatial - DP [11] 
 - SHT [14] 
 - BA [17] Processing 

Domain 
Frequency - MF [5]  - RMTI [8] 
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The basic procedure for the detection of a dim target in background clutter is 

integrating the target energy along the sequence of frames. If the target is 

stationary, then this procedure is expected to work in an acceptable performance 

and with such a summation, relatively high SNR values could be obtained. 

However, if the target is non-stationary with its location and velocity both 

unknown, brute-force summing might not give the desired result. In order to 

overcome this problem, one should track the target with known or hypothesized 

features in advance for integration, hence, detection of the target. Having this 

nature, mostly these algorithms are denoted, as “track-before-detect” algorithms.  

 

Track-before-detect algorithms are processing strategies designed to track a target 

with known characteristics through a sequence of optical images. The tracking 

process increases the effective target energy, while simultaneously reducing the 

received noise. The major “track-before-detect” methods from the literature are 

summarized in the following sections. 

 

2.1 3-D Matched Filters (MF) 
 

This technique involves moving target signature matched-filtering in the 

frequency domain. Specifically, the algorithm provides proper signal phasing to 

3-D spatio-temporally transformed image sequence. In [5], the solution for the 

detection of a moving dim target, having a fixed velocity, is proposed by casting 

the problem into a general framework of three-dimensional filter theory. From 

this point of view, the target detection problem reduces to the problem of finding 

optimal 3-D filters in 3-D transform domain and processing the observed scene 

via this filtering. 

 

3-D filter theory is a straightforward extension of 1-D filters, which derives 

optimal filters in a single domain (usually in time domain) for the maximization 

of a temporal SNR and 2-D filter theory, which derives optimal filters in two 
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dimensions (mostly in spatial coordinates) for a spatial SNR maximization. Since 

the application is related with an observation of a spatial area over a fixed time 

period, these three dimensions should be associated with area and time. 

 

3-D filtering is a form of transform signal processing applied to an observable 

(imaged scene) in order to detect a hypothesized element (moving target 

intensity) from among additive background interference (scene clutter). 

In one of the proposed MF techniques [5], the problem is reduced to derive 

optimum 3-D filters, which should be designed in harmony with the known 

properties of the target, clutter and observing optics. These filters are matched 

with the target motion and clutter models. Since the filtering is accomplished in 

the Fourier transform domain, all targets, moving with the same velocity, are 

detected automatically.  

 

Let r = (x, y, t) be a vector coordinate in 3-D space of time and the Cartesian 

coordinates (x, y). The observed signal v(r) is composed of target and noise 

components, as 

 

 v(r) = s(r) + n(r) r ∈ Γ3      
 
where s(r) denotes a target signal function, Γ3  defines the 3-D region, over which 

v(r) is observed, and n(r) is an additive noise, which is stationary, over r, with 

known homogeneous mutual coherence, as 

 

 R(r, r1) = E [n (r1) n (r1 + r)]    
 

A linear filter, h(r), is defined that operates on v(r) to produce an output    

 

 y(r) = ∫Γ3

v(u) h(r - u) du      

It is desired to find the particular linear filter that produces an output y(r) at some 

point  r  =  r
0
   such that  

(2.1) 

(2.2) 

(2.3) 
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 SNR  =  
 [mean of y(r

0
)]2

 variance of y(r
0
)       

 

is maximized.  It is known [7] that SNR is maximized, if h(r) is such that its 3-D 

transform 

 

 H(k) = ∫Γ3

h(r) e  
jk ⋅⋅⋅⋅ r dr      

Satisfies the following relation 

 H(k)  =  
 S*(k) 
 B(k)  e

 -jk⋅⋅⋅⋅ r0    

 

where S(k) and B(k) are the corresponding 3-D transforms of s(r) in (2.1) and 

R(r) in (2.2), respectively, (* denotes complex conjugation). The resulting 

maximum SNR in (2.4) can be obtained as   

 SNR  =  ∫Γ3

 
 S(k) 

2
  

 B(k)   dk .    

(2.6) defines the optimal filtering that must be applied in (2.3) for achieving the 

maximum SNR in (2.7). A detection system, looking for the peak values of y(r), 

will be able to detect s(r), if the SNR is maximal at some point. The derivation of 

the optimal three-dimensional filter at (2.8) is given in [5] and this relation shows 

that the filter is dependent on the characteristics of the target, clutter, optics and 

the detector and these parameters are effective on the SNR performance. 
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Following figure presents the block diagram for 3-D matched filtering technique. 

 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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Figure 2-1 General block diagram of 3-D matched filtering solution [6] 

 

 

The design of the 3-D matched filter requires the prior knowledge of the signal 

and the statistical characteristics of the additive noise. The primary problem for 

this technique is the requirement on the filter be matched to a specific velocity. In 

order to cover the desired ranges of speed, use of filter banks are introduced [5]. 

However, this might cause velocity mismatch problem, when the observed speed 

of the target does not exactly equal to those of filter banks. 

 

2.2 Recursive Moving Target Indication (RMTI) 
 

As another dim target detection approach, Recursive Moving Target Indicator 

(RMTI) algorithm [8] creates matched filter peaks, corresponding to specific 

target movement at enhanced SNRs, as in 3-D matched filtering algorithm. 

However, this specific technique results with a basic relation, in the form of a 

linear, constant-coefficient difference equation with a unity magnitude damping 

factor [8].  Similar to the 3-D matched filtering, RMTI algorithm also aims to 

integrate the signal energy to achieve better detection. 

 

Let the received intensity, s(r, t), for a linearly moving target of constant intensity 

to be written as 

 

  s(r, nt0) = s0(r − vnt0)      

 

where s0(r) is the spatial intensity distribution of imaged target and v is its vector 

velocity, n is the discrete time index and t0 is the time-sampling interval. The 

observed signal is then, 

(2.9) 
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 y(r, nt0) = s0(r −  vnt0) + n(r, nt0)    

 

where n(r, nt0) is the additive noise component. The 2-D spatial Fourier 

transform of (2.10) is obtained in the form, 

 

 Y(k, nt0) = S0(k) exp{−i k⋅vnt0} + N(k, nt0)   

 

where k denotes two-dimensional spatial wave-number vector. Except for the 

noise term, (2.11) states that the Fourier transform of each image in the sequence 

differs from its neighbors by a periodic function. Rewriting (2.11), one obtains  

 

 Yn(k) = S0(k) αn + Nn(k)     

  

                              

 

where   

  α = exp{− i k ⋅ vt0}   

 

For obtaining processed result, one should multiply this image by the appropriate 

matched filter and inverse Fourier transforms. Hence, (2.11) can be written in a 

recursive manner, as 

 

 Xn(k) = Yn (k) + αXn-1(k)     

 

where Yn (k) is the transform of the current observation and Xn-1(k) is processed 

result of the previous observation. 

 

It should be noted that (2.14) is a linear, constant-coefficient difference equation 

with damping factor equal unity. A spatial matched filter operates on this 

composite image and a processed picture is obtained after inverse Fourier 

transformation. The output of the filter is used for threshold detection. If the 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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predefined threshold is not exceeded, then the processed composite picture is 

stored for the next observation step, so that the decision can be deferred until a 

clear detection.   

 

RMTI has similar drawbacks, as in MF; there is the strict requirement for a priori 

information about the velocity of the target. Obviously, such a constraint limits 

the applicability of this approach in practical scenarios.  

 

2.3 Dynamic Programming (DP) 
 

Application of Dynamic Programming (DP) for the detection and tracking of 

low-observable targets was first proposed by Barniv [11]. DP algorithm 

accumulates the target energy along the sequence of image frames by performing 

the equivalent of an exhaustive search of all possible target state sequences, 

representing physically realizable target paths. Hence, DP reduces the complexity 

of optimum state sequence search from exponential to linear. For a sequence of K 

frames of images with M x N pixels, the number of unconstrained possible target 

trajectories is (M x N)K, utilizing dynamic programming the number of 

trajectories are reduced to the number equal to the pixel number of the images, 

i.e. M x N trajectories. With constant velocity within a specified range 

assumption, the search space can be narrowed and the computational complexity 

can be further reduced.  

 

Although, the absolute target locations are selected as DP states in [11], it is also 

possible to select relative target locations, as proposed in Chapter 3. In [11], each 

pixel is divided into 4 cells and computations are conducted after such a cell 

definition. However, selection of absolute locations as states should cause high 

numbers of states to cope with. Figure 2-2 illustrates the states of the approach in 

[11] and Figure 2-3 presents an example for the corresponding transitions. Due to 

defined nominal target speed bounds given in (2.15), there is an annulus where 

the consecutive states might locate.  
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 Vmin = 1   pixel 
 frame 

  ;               Vmax = ( G + 0.5) / G   pixels 
 frame 

  

 

where G is the number of frames in a stage. 

It should be noted that in Figure 2-2, one quarter of the annulus is sketched; only 

41 states are shown, which resides inside the speed bound annulus. However, 

there are a total of 164 states for a focal cell. Consequently, for a 64x64 size 

image, the number of all states turns out to be 671.744, which is a quite large 

number for any practical implementation. 

 

 

 

(2.15) 
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Figure 2-2 Absolute states in [11]  

 
 

 

 
Figure 2-3 State transitions in [11]  
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In any DP algorithm, the states should be defined according to the requirements 

of the particular problem. Moreover, the state transition merit functions and state 

merits should also be defined to construct a trellis, which is the key feature of this 

algorithm. 

A typical DP algorithm can be summarized with the following steps of operation: 

1) Initialization: For frame k = 1; for all states ø 

Initiate the merit function: I(ø) = zij(1), where  zij(1) is the 

measurement recorded at resolution cell (i,j) at time instance k = 1. 

2) Recursion: For frame k = 2, 3, …,K; for all states ø 

Register the most likely previous state:  Ψk (ø) = arg max {I(ø)}. 

Update the merit function: I(ø) � max{I(ø)} +  z(k).  

3) Termination: Find {x
K
  : I(x

K
 ) > VT } 

Final states with merit function exceeding threshold.  

4) Back-tracing:  For each x
K
 , construct the estimated track 

X̂ 
K
  = {x(1), x(2), x(3),…, x(K), } such that 

x(K) = x
K
 , x(K − 1) = ΨK (x(K)), x(K − 2) = ΨK-1 (x(K − 1)), …,  

x(1) = Ψ2 (x(2)) 

where x(k) is the state of the target for a specific time instant. 

For each frame of the sequence, the states are traced and linked to the most 

appropriate state in the previous frame. With this approach, a set of linked lists 

are constructed, where each list ends at a different state in the last frame. The 

constructed lists are the optimum state sequences ending at a particular state. 

A relatively novel version of a DP algorithm is further analyzed, implemented 

and tested in Chapter 3.  

 

2.4 Sequential Hypothesis Testing (SHT) 
 

Sequential Hypothesis Testing (SHT) is proposed by Blostein [14] for the 

detection of small, moving objects in image sequences. In SHT, large number of 

candidate trajectories is organized into a tree structure. In this manner, they are 
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hypothesized at each pixel in the sequence and tested sequentially for a shift in 

the mean intensity. A truncated sequential probability test is also used to prune 

the tree structured list of candidate trajectory segments at each pixel:  Summed 

pixel values are sequentially compared against two thresholds until either the 

hypothesis that the trajectory contains an object, is rejected or accepted. When the 

test statistic falls between the two thresholds, this decision is deferred and the 

trajectory state is stored in a list. 

 

In [14], the concepts of Fixed Sample Size (FSS) Test and Sequential Probability 

Ratio Test (SPRT) and a new introduced concept truncated SPRT are compared 

with each other in complexity of test design parameters aspects. 

 

FSS is simply a binary hypothesis testing computed over K samples of observed 

realization of the random variable of collection of image pixels against a 

threshold. The number of test sample (K) and the threshold are given as functions 

of probability of false alarm and probability of detection. Since the object 

position and velocity are both unknown, the binary hypothesis testing should be 

used on a subset of the possible finite collections of image pixels. Each subset 

corresponds to a segment of a hypothesized object trajectory. In this brute-force 

search, the number of necessary tests at each image pixel will be quite large in 

order to consider performing exhaustive tests. 

 

For overcoming this mentioned problem of FSS, a revised form, SPRT is 

introduced, in which at each stage K, a test statistic that is formed from the 

observations, is sequentially compared to an upper and a lower threshold. SPRT 

is an alternative to the FSS test. However, as opposed to FSS test, the sample size 

of SPRT is a random variable. By using SPRT, it is possible that the error 

probabilities can be achieved with an appropriate selection of thresholds, for 

which the test will eventually terminate. On the other hand, a disadvantage of 

SPRT is that occasionally long tests may occur. Moreover, the number of free 

parameters in SPRT is too large to be optimized. For a K stage test, there must be 

2K + 1 number of parameters to be specified. In [14], it has been shown that the 



16 

number of design parameters can be reduced to 4 via a truncated SPRT with 

boundaries a and b, and truncation point τ, at stage K, where a and b are the lower 

and upper thresholds until K
th observation and τ is the threshold used at K

th 

observation. 

 

In order to detect small, low-contrast objects moving in the image plane, 

candidate trajectory segments, originating from each pixel in each image are 

hypothesized and each one is tested by using truncated SPRT. Various 

restrictions are put on these candidate trajectory segments to control the search 

space. The search is usually limited to straight paths, typically spanning less than 

10 frames. In [14], tree-structured lookup tables are constructed, containing the 

information of the possible target trajectories with a confined speed of [0,1] 

pixels/frame range in all directions and test statistics prior to computation of the 

proposed algorithm. The real trajectories, with real-valued coordinates, are turned 

out to be discrete trajectory segments for computational purposes and relative 

locations are stored in these off-lien constructed lookup tables. The construction 

of candidate trajectories is depicted in Figure 2-4. 
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Figure 2-4 Candidate trajectories for truncated SPRT [14]. 

 

 

In the example in Figure 2-4, each plane represents an image in a sequence, 

whereas the lines represent 5 discrete trajectories. For clarity, the origin of the 

path is marked in gray color. For every pixel occurring in each frame, the 

truncated SPRT-based track-before-detect algorithm initiates D K-stages tests, 

where D is the number of candidate discrete trajectories, and the partial sums 

along the hypothesized trajectories are compared to upper and lower thresholds. 

 

Although truncated SPRT seems to be confined the number of design parameters, 

the need for constructing lookup tables in advance, according to some constraints 

of target motion might reduce the applicability of the algorithm.  
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2.5 Bayesian Approaches (BA) 
 

When considering the estimation problem of time-invariant parameters of a 

system, there are two widely used models for those parameters [2]: 

• Non-random: The parameter is an unknown true value. (non-Bayesian 

approach) 

• Random: The parameter is a random variable with a (prior) probability 

density function p(x) (Bayesian approach) 

 

In non-Bayesian approaches, there is no prior probability density function (PDF) 

and a posterior PDF cannot be defined. In this case, for estimating the parameters, 

the maximum likelihood estimation is used, which is defined as follows:  

x     ˆ ML(k) =
 ∆

   arg max
x

 p( Zk │x ) 

where Zk indicates the set of observed samples and x is the  unknown parameter. 

On the other hand, in Bayesian approaches, given the prior PDF of the parameter, 

one can obtain its posterior PDF by using the well-known Bayes’ rule : 

 

 p( ) x │ Zk  =  
p( ) Zk

 │ x  p( )x

 p( )Zk  

                   

The corresponding estimate for a random parameter is the maximum a posteriori 

(MAP) estimate, which aims to maximize the numerator of (2.17), since the 

denominator is independent of x and therefore, irrelevant for this maximization: 

 

x       ˆ MAP(k) =
 ∆

   arg max
x

 p( x │ Zk )  =
 ∆

   arg max
x

 [ ]p( Zk │ x ) p(x)  

                  

 

Bayesian solution for track-before-detect problem has been investigated in [15] 

and [16]. In these approaches, the authors independently developed a recursive 

scheme for the calculation of the likelihood ratio. The tracker described in [15] 

(2.16) 

(2.17) 

(2.18) 
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operates recursively on a succession of measurements fields over the state space 

of the target, and it generates as output a Bayesian posterior distribution for the 

target state. However, the method relies on an assumed “appearance probability”. 

The study in [16] introduces a tracker, called “Non-Associative Sensor Fusion” 

(NASF). NASF is a track-before-detect Bayesian field tracker, which maintains 

an estimate over some bounded region of target state space, for which the 

probability density p(x) that a target is present at X. This method also relies on an 

assumed “appearance probability”. 

 

Recently, a novel Bayesian recursion scheme is proposed in [17]. This method 

estimates the posterior likelihood ratio and posterior state density, based on all 

past observations. The algorithm detects the presence of a possible target and 

estimates its position simultaneously. The recursive nature of the proposed 

solution eliminates the need to store all previous measurements; each received 

measurement frame is used for updates and discarded. As an important 

advantage, this technique neither assumes constant velocity motion nor requires a 

filter-bank implementation structure. The algorithm is also computationally quite 

efficient and suitable for any real-time operation. BA algorithm is further 

analyzed, implemented and tested in Chapter 4.  

 

2.6 Discussion 
 

First of all, dim target detection algorithms can be compared in terms of their 

properties. In general, these algorithms can be classified, as sequential or batch, 

according to their processing domain. In sequential processing algorithms, such 

as SHT, BA and RMTI, the decision can be make at any time, whenever the 

detection threshold is exceed, whereas in batch processing algorithms, e.g. DP 

and 3-D MF, the decision is stated at the end of the sequence of the frames. 

Hence, sequential processing algorithms have an advantage over the batch 

algorithms, since slightly brighter targets might be detected in a relatively faster 

time without facing any delays due to waiting the whole set of frames in a batch. 
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MF is the optimal solution for detecting the targets in a cluttered environment. 

However, this technique requires some priori information about the target, since 

the velocity and the initial position should be known. However, this information 

is not available in any practical target detection scenario. Hence, the target 

trajectories should be hypothesized before using any 3-D matched filtering. Since 

it is not practical to hypothesize all the target trajectories, filter banks are utilized 

to overcome this problem with some velocity mismatch effects. Therefore, it can 

be concluded that MF could only be useful for the scenarios with some reliable a 

priori information.  

 

On the other hand, RMTI has similar detection properties with that of MF, but 

less complexity during execution due to its recursive formulation. However, 

RMTI also requires some a-priori information about the target motion, similar to 

MF. Unlike 3-D matched filtering, RMTI does not require all the data collected 

before processing due its recursive nature; rather RMTI processes each frame and 

generates a final processed picture or stores the result for further processing. 

However, it has to be matched to a specific velocity vector, as in the case of 3-D 

matched filtering, which could be overcome partially by using a bank of filters, 

each of which matched to a specific velocity. 

 

Dynamic Programming does not strictly require some a priori information of the 

target, such as initial position, velocity. However, any information should be 

incorporated with the system, in order to decrease the computational complexity. 

By the help of some intuitive assumptions, DP can be made computationally 

efficient, if it is formulated to use reasonable number of states and stages.  

 

Similar to MF and RMTI, SHT also assumes target motion to be constant. Unlike 

DP, SHT handles the exponential increase for the possible number of target 

trajectories by utilizing some special data structures. Nevertheless, the 

computation complexity of the overall SHT system could be quite drastic, 

especially for the low-SNR scenarios. 
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Finally, Bayesian approaches are simply formulated based on the recursive 

calculation of likelihood ratio. Obviously, there should be initial random models 

for target and background before having such a formulation. Nevertheless, the 

formulation itself does not explicitly require strict a priori information of the 

target motion. Moreover, the recursive method prevents to store all the past 

observation and computationally less complex compared to other algorithms 

considered in this work. 

 

In conclusion, among different approaches for the dim target literature, dynamic 

programming-based and Bayesian approaches are considered for being more 

promising for any practical application due to their minimum number of 

assumptions about target and its trajectory, as well their low computational 

complexity. The next chapters, two particular methods will be explained and 

tested by simulations.  
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CHAPTER 3 

 
 

DIM TARGET DETECTION  

VIA DYNAMIC PROGRAMMING  

3 CHAPTER 3 

3.1 Fundamentals of Dynamic Programming 
 
Dynamic Programming is a mature approach that has been developed to solve 

sequential, or multi-stage, decision problems. Dynamic programming, also 

known as Viterbi algorithm in information theory discipline, reduces the 

complexity of optimum state sequence search from exponential to linear. This 

approach is equally applicable for decision problems, where sequential property 

is induced solely for computational convenience. 

 

Dynamic programming is invented by Richard Bellman, an American 

mathematician, in 1953. The essence of dynamic programming is Richard 

Bellman's “Principle of Optimality”. This principle, even without rigorously 

defining the terms, is intuitive:  

“An optimal policy has the property that whatever the initial state and the initial 

decisions are, the remaining decisions must constitute an optimal policy with 

regard to the state resulting from the first decision.” [9] 

 

Dynamic Programming is a method for reducing the runtime of algorithms 

exhibiting the properties of overlapping sub-problems and optimal substructure. 

Optimal substructure means that optimal solutions of sub-problems can be used 

to find the optimal solutions of the overall problem. For example, the shortest 

path to a goal from a vertex in an acyclic graph can be determined by first 

computing the shortest path to the goal from all adjacent vertices, and then using 

this to pick the best overall path, as shown in Figure 3-1. 
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Figure 3-1 Finding the shortest path  

 

 

In general, one can solve a problem with optimal substructure using a three-step 

process [10]: 

1. Break the problem into smaller sub-problems.  

2. Solve these problems optimally using this three-step process recursively.  

3. Use these optimal solutions to construct an optimal solution for the 

original problem.  

The sub-problems are, themselves, solved by dividing them into sub-sub-

problems, and so on, until one reaches some simple case that is easy to solve. 

 

 

 

 
Figure 3-2 The sub-problem graph for the Fibonacci sequence  

 

 

 
Figure 3-2 shows the sub-problem graph for the Fibonacci sequence. In other 

words, it is not a tree, but a directed acyclic graph indicates overlapping sub-

problems. In order to state that a problem has overlapping sub-problems, the 

same sub-problems should be used to solve many different larger problems. For 

example, in the Fibonacci sequence, F3 = F2 + F1 and F4 = F3 + F2  computing 
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each number involves computing F2. Since both F3 and F4 are needed to 

compute F5, a brute-force approach to computing F5 may end up computing F2 

twice or more. This applies, whenever overlapping sub-problems are present: a 

brute-froce approach might waste time by re-computing optimal solutions to the 

sub-problems that it has already solved. 

 

In order to avoid this situation, one should save the solutions to problems that 

have been already solved, instead. Then, if the same problem is required to be 

solved later, one can retrieve and reuse the already-computed solution. This 

approach is called “memoization” (not memorization, although this term also fits) 

[10]. In some cases, one can even compute the solutions to sub-problems, that it 

is known to be required in advance. 

In summary, dynamic programming makes use of: 

• Overlapping sub-problems  

• Optimal substructure  

• “Memoization”  

 

Dynamic programming usually takes one of two approaches: 

• Top-down approach: The problem is broken into sub-problems, and 

these sub-problems are solved and the solutions remembered, in case they 

need to be solved again. This is the case in which recursion and 

“memorization” are combined together.  

• Bottom-up approach: All sub-problems that might be needed are solved 

in advance and then used to build up solutions to larger problems. This 

approach is slightly better in stack space and number of function calls, but 

it is sometimes not intuitive to figure out all the sub-problems needed for 

solving given problem.  

A top-down example is given in Figure 3-3. 
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Figure 3-3 Various stages of the DP algorithm for a system of 5 states [17]  
 

 

Figure 3-3 shows a system with 5 states and the decision is finalized at stage-3. 

Figure 3-3 (a) represents the search for the optimal previous state for state-1 at 

k=1. It is observed that state-3 is chosen, as the optimal one at Figure 3-3 (b). The 

complete selection of optimal previous states for k=1 is shown by Figure 3-3 (e) 

and for k=2 and k=3 by Figure 3-3 (f) and Figure 3-3 (g), respectively. The 

remaining state sequences (tracks) after thresholding are shown in Figure 3-3 (h).  

 

3.2 Algorithm for Dim Target Detection 
 

In the following algorithm, the fundamental concepts of the dynamic 

programming technique are adapted for the dim target detection problem. These 

basic definitions are given in Section 3.2.1. 
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3.2.1 Definitions 
 

It is assumed that the image sequence is captured by a stationary sensor, i.e. the 

only moving object is the dim target, if any. In order to simplify the problem, the 

dim target is assumed to be 1-pixel in size and moves 1 pixel/frame to one of the 

9 possible directions (including staying at the same location) at each frame. These 

9 directions are as follows: North (N), North East (NE), East (E), South East 

(SE), South (S), South West (SW), West (W), North West (NW) and Stay at 

Center (C). Since the target in real world will be in a far distance and far targets 

motion is observed in low in speed, C is also considered as an option. 

 

In terms of dynamic programming formulation, each of these 8+1 directions is 

taken as a “state”. Every time instant (frame) is assumed as one stage to be 

processed. The possible dim target (Ix) and its 8 neighbors are given in Figure 

3-4, 

 

 

NW  N  NE 

 Ih Ia Ib  

W Ig Ix Ic E 

 If Ie Id  

SW  S  SE 

 
Figure 3-4 States of Dynamic Programming implementation  

 

 

where I stands for the gray-level (illumination) of the pixels.  

 

State benefit and transition probability are key concepts of dynamic programming 

technique. State benefit is a metric which is assigned to a state. In this problem, 
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state benefit is assumed to equal, since there is no a priori information about the 

directions of the target. Transition probability is the probability of switching from 

one state at a stage to a new state at the following stage and calculated by using a 

suitable metric, which matches to the problem that is solved by using dynamic 

programming. The appropriately selected metrics for dim target detection 

problem are given in Section 3.2.4.2. 

 

3.2.2 Constructing Trellis 
 

For implementing dynamic programming in dim target detection problem, a state 

transition diagram, called as trellis, as shown in figure below, is constructed. 

 

 

 
Figure 3-5 Trellis structure  
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In order to form a trellis matrix accompanying to the transitions of Figure 3-5, its 

members can be calculated by using different transition metrics. For N-stage dim 

target computation, the size of the trellis matrix will be 9xN. Trellis matrix is 

constructed by using a state transition matrix of size 9x9. The size of the state 

transition matrix is independent from either the number of the stages or the size 

of the frames processed. The elements of state transition matrix store the sum of 

the state benefit of source state, the transition probability between source and 

target and the target state benefit. Each column of the state transition matrix 

stores to the total scores of the paths from one state to 9 different target states, so 

that each row stores the path scores form 9 different source states to one target 

state. Elements of the state transition matrix are refreshed at every state transition. 

For a particular state transition the maximum value of each row of the state 

transition matrix is transferred to the corresponding trellis matrix row.  

 

 
Figure 3-6 illustrates an example for state transition and trellis matrices, 

evaluation for a 5-stage execution. At the initialization phase, the elements of the 

matrices are all initialized to zero. 
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Figure 3-6 An example construction of a trellis matrix for a 5-stage execution 
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At every stage, the transition probabilities for 81 transitions are calculated and 

stored in a volatile state transition matrix, instead of storing the scores of all these 

81 transitions, only highest scores for 9 state transitions are stored in trellis matrix 

for a given stage. In other words, for any stage with 9 states only 9 scores are 

stored instead of a total of 81 transition scores. 

 

 

 

 
Figure 3-7 Illustration of the trellis matrix  

 

 

 

Figure 3-7 shows the methodology of score assignment for the trellis in Figure 

3-6 and paths formation.  
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3.2.3 Implementation 
 

The operations mentioned below will be applied on every pixel on the image with 

size MxN. 

 

 

Initialization Stage:  

The first image of the sequence is captured and the pixel at position i,j is taken as 

starting point of the target. All elements of trellis matrix and state transition 

matrix are initialized to zero. Next, a second frame is captured from the sequence 

of frames and the elements of the state transition matrix are calculated, according 

to the selected state transition metric (details of state transition metrics can be 

found in Section 3.2.4.2.). At the end of processing, there will MxN paths with 

different scores. The path score is the sum of all transition probabilities on a 

particular path. 

 

Recursive stages:  

The next frame is captured from the frame sequence and the elements of the state 

transition matrix are calculated. The elements of the column of the trellis matrix 

corresponding to the current stage obtained from the state transition matrix with 

the highest score of each row. While storing the highest score of each row of the 

state transition matrix, the absolute location of the target state and the direction is 

also stored in different matrices. This iterative operation is repeated until the last 

frame of the sequence. When last frame is reached the values in last column of 

the trellis matrix which are also the scores of each path can be used, after 

thresholding in order to declare detection. The threshold value should be 

determined as a result of some experiments. 
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3.2.4 Algorithm Parameters 
 

3.2.4.1 State Selection 
 
As it has been mentioned before, the states are selected as the relative locations of 

the pixels, i.e. towards the direction of the target motion. With the 1 pixel/frame 

speed assumption, these states are selected as 8-neighbors of the pixel of interest 

(N, NE, E, SE, S, SW, W, NW). In order to cover the stationary targets, staying at 

the same location, the state CENTER (C) is also considered as the 9th state.  

 

In case of considering target speed up to 2 pixels/frame, not only the 1st order 8 

neighbors, but also the 2nd order 16 neighbors should also be included in the state 

diagram to obtain a total of 25 states. 

 

Unlike in Barniv’s work, the selection of relative locations as states, instead of 

using absolute locations, dramatically reduces the size of the resulting trellis and 

computationally more effective. 

 

3.2.4.2 Selection of Transition Metrics 
 

While implementing the proposed algorithm, different transition probability 

models are introduced and examined. It should be noted that it is preferable to 

denote these values as transition metrics, since these values do not meet the 

probability axioms. These metrics should be chosen carefully, so that they should 

be useful, while solving the dim target detection problem by using dynamic 

programming. 

 

In this thesis, the following 3 metrics are introduced: 

• Metric-1 : Absolute intensity metric    m1 =  Ib , 

• Metric-2 : Contrast-based metric     m2 =  Ib – avg(Ib) , 

• Metric-3 : Normalized contrast   m3 = ( Ib – avg(Ib) ) / σN  , 
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where Ib is the intensity of the next target position to be inspected. The index b 

stands for the observed pixel.  

 

Absolute intensity metric, m1, uses the intensity of the target pixel, since the 

intensity information reflects the absolute temperature in an infrared image. By 

defining such a metric, then it would be possible to accumulate the absolute 

temperature information for the dim target along frames.  

 

On the other hand, contrast-based metric, m2, is the difference between the 

intensity of the target pixel and the average neighborhood intensity of the same 

pixel. Average neighborhood intensity is calculated by adding intensity values of 

8 neighbors and dividing by 8. Such a metric is useful for the cases in which the 

neighboring background and target has enough temperature difference that is 

sufficient for detection of the target. For example, although the absolute 

temperature of the target is not “hot” enough, it should be still possible to detect 

this target, if it causes sufficient temperature difference between its neighbors. 

 

Finally, Normalized contrast metric, m3, is the normalization of m2 by the 

standard deviation of the background noise (σN ), which can be estimated reliably 

in the dim target detection problem, since the effect of target is negligible for any 

statistical parameter estimation for the background. Such a metric is expected to 

be useful, in order to determine a single detection threshold in any background 

noise level. 

 

All these metrics are tested via simulations for different image noise levels and 

target trajectories and the results are presented in Section 3.3. 

 

3.2.4.3 Velocity Model 
 

Most of the track-before-detects methods in the literature make use of some a 

priori information about the absolute velocity of the target. However, the 
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proposed dynamic programming-based approach does not assume any velocity 

for the target, except for the assumption of small displacements. Although, it is 

impractical to assume the value of any velocity vector, it should be a neat idea to 

support the continuity of its motion along its trajectory. In other words, without 

making any assumptions on the velocity vector, it is intuitively quite acceptable 

to punish abrupt motion vector changes along its present trajectory.  

 

A velocity model can be incorporated into the proposed dynamic programming 

approach by utilizing an additive parameter, δ, which is incorporated into the 

transition metrics. This parameter might increase or decrease the transition value 

and at the same time, the overall path score, according to the motion model of the 

target. The following figures show the various proposed alternatives to determine 

the velocity model parameter, δ, which is based on the assumption of a smooth 

target trajectory. As it is observed from these figures, any target following the 

same directions as its previous direction (e.g. from N to N) will be assigned 2δ, 

whereas sharp directions changes, such as from N to S will get -2δ, during the 

determination of the “best” path with maximum transition values. The velocity 

values in between these two extremes are relatively ad-hoc, but they can be 

derived based on a priori information about typical target motions. An example 

for the effect of velocity model on the path score for the same example is 

depicted in Figure 3-8. 
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Figure 3-8 Illustrative example for velocity model 
 

3.3 Simulations 
 
In this section, the proposed DP-based dim target detection algorithm is tested by 

using artificial and real data sets. The artificial simulations are conducted for 

different noise levels, velocity models, δ,  and target trajectories. 
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3.3.1 Artificial Data Set Tests 
 

3.3.1.1 Test Setup 
 

A number of sequences are generated in order to model the infrared images. In 

these sequences, the background model of an image is assumed to be Gaussian, 

with a mean gray level of 128, while the target has a constant intensity of value 

141. In this thesis, the aim is to detect a dim target with 5% contrast, and hence, 

the target pixel gray-level is calculated as 141, based on the formula given in 

(3.1) 

 

 I(target)  = 








255 x 
5

100  + I(background)  

 

 

For this target-background pair, different sequences are generated with  

• various background noise levels and 

• a variety of target trajectories. 

The image sequences are 30-200 frames in length and their frame size is equal to 

64x64 pixels. 

 

6 video sequences are generated having different target trajectories, 

• Video-1: The target is one-pixel in size with gray-level of 141 and its 

initial location is at (10,10). The target is moving with a speed of 1 

pixel/frame to the direction East (E). All the other pixels of the images in 

this Video-1 sequence have gray-level 128 for the noise-free case. The 

corresponding target trajectory is illustrated in Figure 3-9. 

 

• Video-2: Video-2 differs from Video-1 only in terms of the speed of the 

target. The average speed of target in Video-2 is 0.5 pixel/frame on the 

average with the same direction to that of Video-1. The initial location of 

the target is (10, 10) and the target moves one pixel to E and stops at that 

(3.1) 
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location for the next frame, and continues in this manner, periodically. 

The target trajectory is given in Figure 3-10. 

 

• Video-3: This sequence has a target which has a circular trajectory, 

instead of a linear trajectory. The initial location of this maneuvering 

target is (10, 45). The speed of the target is 1 pixel/frame. The target 

trajectory is presented in Figure 3-11. 

 

• Video-4: In Video-4, the target trajectory is similar to that of Video-2. 

The initial location of the target is (10, 10). The target moves one pixel to 

East at every fourth frame of the sequence; it stops at that location for the 

next 3 frames. The target trajectory is given in Figure 3-12. 

 

• Video-5: The target resides always at the same location, (32, 32), along 

the sequence of frame in Video-5. The target trajectory is given in Figure 

3-13. 

 

• Video-6: The target in Video-6 is not one pixel in size. The target has a 

size of 3x3 and moves one pixel to East at every fourth frame of the 

sequence; it waits at that location for the next 3 frames, similar to Video-

4. The initial location of the target is (10, 10). The target trajectory is 

shown in Figure 3-14. 
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      (a) Frame 1     (b) Frame 2 

     
      (c) Frame 3     (d) Frame 4 

Figure 3-9 A sample view of Video-1 
 

     
      (a) Frame 1     (b) Frame 2 

     
      (c) Frame 3     (d) Frame 4 

Figure 3-10 A sample view of Video-2 
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      (a) Frame 1     (b) Frame 2 

     
      (c) Frame 3     (d) Frame 4 

Figure 3-11 A sample view of Video-3 
 

     
      (a) Frame 1     (b) Frame 2 

     
      (c) Frame 3     (d) Frame 4 

Figure 3-12 A sample view of Video-4 
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      (a) Frame 1     (b) Frame 2 

     
      (c) Frame 3     (d) Frame 4 

Figure 3-13 A sample view of Video-5 
 

     
      (a) Frame 1     (b) Frame 2 

     
      (c) Frame 3     (d) Frame 4 

Figure 3-14 A sample view of Video-6 
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3.3.1.2 Results for Various Background Noise Levels 
 

In order to simulate infrared imagery due to different sensors, Gaussian 

distributed noise, whose standard deviations are equal to 1, 5, 7, 10 and 13, are 

added onto these sequences. The first frames of Video-1 for different noise levels 

are presented in Figure 3-15. 

 

 

       
                             (a) σ

N
 = 0                                (b) σ

N
 = 1 (SNR = 22.2 dB)                (c) σ

N
  = 5 (SNR = 8.2 dB) 

       
                (d) σ

N
 = 7 (SNR =  5.3 dB)                 (e) σ

N
 = 10 (SNR = 2.2 dB)                  (f) σ

N
  = 13 (SNR = 0 dB) 

 
Figure 3-15 Video-1 with different noise levels. 

 

 

In all the simulations, SNR is calculated, by the following formula 

SNR = 20 log 
 I(target) − I(background) 

  σ
N

    

 

 

 

(3.2) 
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3.3.1.3 Simulation Results 
 

The simulations are conducted for a number of target trajectories, different state 

transition metrics and various values of velocity model parameter, δ. The target 

trajectories in sequences, Video-1, Video-2 and Video-3 are utilized during these 

simulations. The proposed state transition metrics are compared during these 

simulations. All the results are tabulated at Tables 3.1–3.6. At these tables, the 

different noise levels of the input image sequences can be observed in columns. 

In order to observe the effects of different initial locations, some cases, 

corresponding to the locations other than the true points, are also included. These 

starting locations are selected such that one of them is the true location of the 

target trajectory, whereas the other two locations are selected from neighborhood 

of the start point, and finally, completely different location is also chosen, which 

is far away from the true target trajectory. Since the true target trajectory is also 

known in advance, as a ground-truth, a distance measure between true target path 

and the path determined by the corresponding simulation is also presented. This 

measure is defined as the sum of the pixel distance for every frame in the 

sequence.  In all these tables, the symbol, “����”, stands for the reaching to the 

correct final position of the target trajectory with highest path, whereas the 

symbol, “�”, denotes that dynamic programming method has failed to locate the 

target. 

 
In Table 3.1, the simulation results of the proposed DP-based dim target detection 

algorithm for Video-1 are presented. For all different noise levels, up to noise-

levels with the standard deviation 5, the algorithm marks successfully the 

trajectory, for the case starting at the true initial point (10,10). Since the 

trajectories, which initiates from the locations (20,20), have lower path scores, 

this result gives the ability to define a threshold for detection of dim targets. 

However, for the higher noise levels, above σN = 7, the detector fails to determine 

the trajectory for all 3 metrics. It should be noted that for different noise levels, 

the detection threshold between target and no-target path scores should be 

adapted appropriately. Hence, Metric-3, which normalizes the path score 
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according to the noise level, is designed to overcome this problem, to give the 

detector the ability to detect the target trajectory with a single threshold. 

 

Table 3.1 Simulation results for Video-1 with δ = 0 
 

Background Noise 
Level 

Noise-free 
σN = 1 

σN
2 = 1 

σN = 5 

σN
2 = 25 

σN = 7 

σN
2 = 49 

σN = 10 

σN
2 = 100 

σN = 13 

σN
2 = 169 

Path 
Starting 
Location 

SNR  22.2 dB 8.2 dB 5.3 dB 2.2 dB 0 dB 

 State Transition Metric - 1 

Best path score 705 703 704 727 721 752 

0 0 0 1 37 14 (10,10) 
Displacement error 

(10,15) (����) (10,15) (����) (10,15) (����) (11,15) (�) (14,7) (�) (9,11) (�) 

Best path score 692 691 689 717 730 747 

5 5 6 7 19 7 (10,13) 
Displacement error 

(10,15) (����) (10,15) (����) (10,15) (����) (11,15) (�) (9,9) (�) (11,15) (�) 

Best path score 640 649 685 695 741 742 

42 19 18 17 26 17 (9,9) 
Displacement error 

(4,9) (�) (10,12) (�) (10,11) (�) (9,11) (�) (8,8) (�) (9,11) (�) 

Best path score 640 648 668 704 715 759 

90 113 93 103 92 103 (20,20) 
Displacement error 

(15,20) (�) (18,24) (�) (19,18) (�) (19,19) (�) (17,18) (�) (19,19) (�) 

 State Transition Metric - 2 

Best path score 65 63.375 61 90.125 98.250 122.625 

0 0 0 1 23 14 (10,10) 
Displacement error 

(10,15) (����) (10,15) (����) (10,15) (����) (11,15) (�) (8,8) (�) (9,11) (�) 

Best path score 52 50.625 50.250 80.375 98 114.500 

6 6 6 7 5 7 (10,13) 
Displacement error 

(10,15) (����) (10,15) (����) (10,15) (����) (11,15) (�) (10,15) (����) (11,15) (�) 

Best path score 0 10 41.750 61.500 103.375 117.125 

42 32 39 17 26 17 (9,9) 
Displacement error 

(4,9) (�) (12,8) (�) (7,9) (�) (9,11) (�) (8,8) (�) (9,11) (�) 

Best path score 0 9.250 32.125 68.250 75.875 127 

90 98 102 111 99 111 (20,20) 
Displacement error 

(15,20) (�) (22,16) (�) (18,22) (�) (23,20) (�) (21,17) (�) (23,20) (�) 

 State Transition Metric - 3 

Best path score 65 63.375 9.540 10.640 9.258 7.729 

0 0 0 1 24 14 (10,10) 
Displacement error 

(10,15) (����) (10,15) (����) (10,15) (����) (11,15) (�) (8,8) (�) (9,11) (�) 

Best path score 52 50.625 9.110 10.441 8.329 7.594 

6 6 6 7 15 16 (10,13) 
Displacement error 

(10,15) (����) (10,15) (����) (10,15) (����) (11,15) (�) (10,15) (����) (9,11) (�) 

Best path score 0 10 8.335 7.699 9.258 7.696 

42 32 17 17 26 17 (9,9) 
Displacement error 

(4,9) (�) (12,8) (�) (10,11) (�) (9,11) (�) (8,8) (�) (9,11) (�) 

Best path score 0 9.250 6.085 7.929 6.725 7.817 

90 98 102 111 93 111 (20,20) 
Displacement error 

(15,20) (�) (22,16) (�) (18,22) (�) (23,20) (�) (17,18) (�) (23,20) (�) 

 
 
 



44 

Table 3.2 Simulation results for Video-1 with δ = 15 
 

Path 
Starting 
Location 

 Noise-free 
σN = 1 

σN
2 = 1 

σN = 5 

σN
2 = 25 

σN = 7 

σN
2 = 49 

σN = 10 

σN
2 = 100 

σN = 13 

σN
2 = 169 

 SNR  22.2 dB 8.2 dB 5.3 dB 2.2 dB 0 dB 

 State Transition Metric - 1 

Best path score 825 823 824 845 833 861 

0 0 0 0 0 0 (10,10) 
Displacement error 

(10,15) (����) (10,15) (����) (10,15) (����) (10,15) (����) (10,15) (����) (10,15) (����) 

Best path score 773 772 781 777 793 804 

9 9 20 27 32 24 (10,13) 
Displacement error 

(10,13) (�) (10,13) (�) (10,8) (�) (5,11) (�) (14,18) (�) (5,16) (�) 

Best path score 760 765 781 795 830 836 

42 47 42 18 27 18 (9,9) 
Displacement error 

(4,9) (�) (14,4) (�) (9,4) (�) (6,14) (�) (9,9) (�) (6,14) (�) 

Best path score 760 763 775 783 807 825 

90 75 105 105 108 103 (20,20) 
Displacement error 

(15,20) (�) (15,15) (�) (15,25) (�) (20,20) (�) (25,17) (�) (19,19) (�) 

 State Transition Metric - 2 

Best path score 185 183 181 207 196 227 

0 0 0 0 0 1 (10,10) 
Displacement error 

(10,15) (����) (10,15) (����) (10,15) (����) (10,15) (����) (10,15) (����) (11,15) (�) 

Best path score 129.750 129.875 137.500 138 156.750 166.500 

9 9 20 27 32 28 (10,13) 
Displacement error 

(10,13) (�) (10,13) (�) (10,8) (�) (5,11) (�) (14,18) (�) (14,18) (�) 

Best path score 120 125.500 138.125 164.375 190.375 203 

42 47 42 47 27 47 (9,9) 
Displacement error 

(4,9) (�) (14,4) (�) (9,4) (�) (14,4) (�) (9,9) (�) (14,4) (�) 

Best path score 120 124.500 134.750 141.625 175.375 185.375 

90 75 108 105 108 108 (20,20) 
Displacement error 

(15,20) (�) (15,15) (�) (17,25) (�) (20,20) (�) (25,17) (�) (23,18) (�) 

 State Transition Metric - 3 

Best path score 185 183.375 129.540 130.194 127.117 126.373 

0 0 0 0 0 0 (10,10) 
Displacement error 

(10,15) (����) (10,15) (����) (10,15) (����) (10,15) (����) (10,15) (����) (10,15) (����) 

Best path score 129.750 129.875 124.120 122.092 122.974 122.018 

9 9 20 24 33 24 (10,13) 
Displacement error 

(10,13) (�) (10,13) (�) (10,8) (�) (15,13) (�) (15,18) (�) (15,13) (�) 

Best path score 120 125.500 123.075 124.242 126.318 124.104 

42 47 47 47 27 47 (9,9) 
Displacement error 

(4,9) (�) (14,4) (�) (14,4) (�) (14,4) (�) (9,9) (�) (14,4) (�) 

Best path score 120 124.500 122.430 121.638 123.936 121.773 

90 75 105 120 105 120 (20,20) 
Displacement error 

(15,20) (�) (15,15) (�) (15,25) (�) (20,25) (�) (25,15) (�) (20,25) (�) 

 
 

In Table 3.2, the simulation results for the velocity model parameter, δ = 15, are 

presented. Compared to Table 3.1 the paths starting with location (10,10) have 

the highest path scores as desired at all noise levels, which means that utilizing 
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the velocity parameter for the targets, increases the success of the algorithm, 

considerably. 

 

Table 3.3 Simulation results for Video-2 with δ = 0 
 

Path 
Starting 
Location 

 Noise-free 
σN = 1 

σN
2 = 1 

σN = 5 

σN
2 = 25 

σN = 7 

σN
2 = 49 

σN = 10 

σN
2 = 100 

σN = 13 

σN
2 = 169 

 SNR  22.2 dB 8.2 dB 5.3 dB 2.2 dB 0 dB 

 State Transition Metric - 1 

Best path score 705 705 701 704 725 753 

0 0 0 1 10 12 (10,10) 
Displacement error 

(10,13) (����) (10,13) (����) (10,13) (����) (10,13) (����) (9,9) (�) (8,11) (�) 

Best path score 692 693 696 698 727 767 

5 5 5 5 14 13 (10,13) 
Displacement error 

(10,13) (����) (10,13) (����) (10,13) (����) (10,13) (����) (9,9) (�) (11,14) (�) 

Best path score 692 694 700 704 732 795 

3 3 3 3 16 34 (9,9) 
Displacement error 

(10,13) (����) (10,13) (����) (10,13) (����) (10,13) (����) (9,9) (�) (4,10) (�) 

Best path score 640 648 678 691 734 736 

96 121 118 118 111 121 (20,20) 
Displacement error 

(15,20) (�) (23,19) (�) (21,19) (�) (21,19) (�) (21,18) (�) (22,20) (�) 

 State Transition Metric - 2 

Best path score 65 65.125 61.750 67.625 87.375 129.250 

0 0 0 1 10 16 (10,10) 
Displacement error 

(10,13) (����) (10,13) (����) (10,13) (����) (10,13) (����) (9,9) (�) (8,11) (�) 

Best path score 50.375 51.875 55.375 58.375 94.625 124 

5 5 5 5 14 13 (10,13) 
Displacement error 

(10,13) (����) (10,13) (����) (10,13) (����) (10,13) (����) (9,9) (�) (10,15) (�) 

Best path score 50.375 52.875 61.500 67.625 88.500 150.750 

3 3 3 3 30 34 (9,9) 
Displacement error 

(10,13) (����) (10,13) (����) (10,13) (����) (10,13) (����) (7,7) (�) (4,10) (�) 

Best path score 0 8.250 40.125 55.500 103.375 105 

96 125 118 114 110 112 (20,20) 
Displacement error 

(15,20) (�) (23,22) (�) (21,19) (�) (21,19) (�) (21,17) (�) (19,20) (�) 

 State Transition Metric - 3 

Best path score 65 65.125 11.130 8.253 8.332 8.336 

0 0 0 1 10 16 (10,10) 
Displacement error 

(10,13) (����) (10,13) (����) (10,13) (����) (10,13) (����) (9,9) (�) (8,11) (�) 

Best path score 50.375 51.875 10.875 8.064 8.405 8.451 

5 5 5 5 14 12 (10,13) 
Displacement error 

(10,13) (����) (10,13) (����) (10,13) (����) (10,13) (����) (9,9) (�) (18,15) (�) 

Best path score 50.375 52.875 11.120 8.156 8.332 11.330 

3 3 3 30 12 34 (9,9) 
Displacement error 

(10,13) (����) (10,13) (����) (10,13) (����) (9,7) (�) (9,9) (�) (4,10) (�) 

Best path score 0 8.250 7.405 7.036 8.357 6.506 

96 125 118 118 112 112 (20,20) 
Displacement error 

(15,20) (�) (23,22) (�) (21,19) (�) (21,19) (�) (22,18) (�) (19,20) (�) 

 
 



46 

For the simulation results for Video-2, the algorithm succeded marking the target 

trajectory at higher noise levels, compared to Video-1. At noise level σN = 7, the 

algorithm is able to mark the target trajectory, correctly for all the paths, starting 

from the locations around the to real trajectory of the target. 

 

Table 3.4 Simulation results for Video-2 with δ = 4 
 

Path 
Starting 
Location 

 Noise-free 
σN = 1 

σN
2 = 1 

σN = 5 

σN
2 = 25 

σN = 7 

σN
2 = 49 

σN = 10 

σN
2 = 100 

σN = 13 

σN
2 = 169 

 SNR  22.2 dB 8.2 dB 5.3 dB 2.2 dB 0 dB 

 State Transition Metric - 1 

Best path score 708 709 711 712 723 753 

1 1 1 1 13 14 (10,10) 
Displacement error 

(10,13) (����) (10,13) (����) (10,13) (����) (10,13) (����) (9,9) (�) (10,7) (�) 

Best path score 692 693 693 703 733 771 

4 4 30 30 16 13 (10,13) 
Displacement error 

(10,13) (����) (10,13) (����) (7,18) (�) (7,18) (�) (9,9) (�) (11,14) (�) 

Best path score 704 706 712 716 740 807 

3 3 3 3 16 34 (9,9) 
Displacement error 

(10,13) (����) (10,13) (����) (10,13) (����) (10,13) (����) (9,9) (�) (4,10) (�) 

Best path score 672 674 691 700 744 741 

96 96 117 114 110 106 (20,20) 
Displacement error 

(15,20) (�) (15,20) (�) (21,19) (�) (21,19) (�) (21,17) (�) (21,16) (�) 

 State Transition Metric - 2 

Best path score 66.375 67.875 72.125 78.125 84.500 137.250 

1 1 1 18 5 16 (10,10) 
Displacement error 

(10,13) (����) (10,13) (����) (10,13) (����) (14,11) (�) (9,14) (�) (8,11) (�) 

Best path score 50.375 51.750 51.375 59.250 101.500 132 

4 4 5 30 19 13 (10,13) 
Displacement error 

(10,13) (����) (10,13) (����) (10,13) (����) (7,18) (�) (9,16) (�) (10,15) (�) 

Best path score 62.375 64.875 73.500 82.125 99.375 162.750 

3 3 3 20 16 34 (9,9) 
Displacement error 

(10,13) (����) (10,13) (����) (10,13) (����) (14,11) (�) (9,9) (�) (4,10) (�) 

Best path score 32 34.625 54.625 63.500 115.375 112 

96 117 117 114 110 119 (20,20) 
Displacement error 

(15,20) (�) (25,18) (�) (21,19) (�) (21,19) (�) (21,17) (�) (24,18) (�) 

 State Transition Metric - 3 

Best path score 66.375 67.875 32.725 32.574 34.095 34.217 

1 1 21 21 9 21 (10,10) 
Displacement error 

(10,13) (����) (10,13) (����) (15,15) (�) (15,15) (�) (10,10) (�) (15,15) (�) 

Best path score 50.375 51.750 34.770 34.270 34.609 33.152 

4 4 14 14 39 9 (10,13) 
Displacement error 

(10,13) (����) (10,13) (����) (10,8) (�) (10,8) (�) (5,18) (�) (10,13) (����) 

Best path score 62.375 64.875 37.450 37.207 35.440 37.657 

3 3 36 36 36 35 (9,9) 
Displacement error 

(10,13) (����) (10,13) (����) (9,4) (�) (9,4) (�) (4,9) (�) (4,10) (�) 

Best path score 32 34.625 33.475 33.474 36.540 35.150 

96 117 111 111 96 126 (20,20) 
Displacement error 

(15,20) (�) (25,18) (�) (15,25) (�) (15,25) (�) (20,15) (�) (25,20) (�) 



47 

For Video-2, different values for the velocity model parameter is tested. 

However, even for the modest levels of this parameter, the performance of the 

algorithm does not yield satisfactory results. In Table 3.4, the results of the 

simulations of Video-2 with velocity model parameter δ = 4, are presented. For 

the transition metric m1, the algorithm is able to mark the trajectory of target up 

to the noise level σN = 7, whereas m2 succeeds to detect target for the noise level 

σN = 5. However, m3 is only successful for only the noise-free and for σN = 1 

cases.  
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Table 3.5 Simulation results for Video-3 with δ = 0 
 
 

Path 
Starting 
Location 

 Noise-free 
σN = 1 

σN
2 = 1 

σN = 5 

σN
2 = 25 

σN = 7 

σN
2 = 49 

σN = 10 

σN
2 = 100 

σN = 13 

σN
2 = 169 

 SNR  22.2 dB 8.2 dB 5.3 dB 2.2 dB 0 dB 

 State Transition Metric - 1 

Best path score 705 702 707 717 741 750 

0 0 3 6 3 8 (10,45) 
Displacement error 

(12,46) (����) (12,46) (����) (10,47) (�) (13,48) (�) (12,46) (����) (10,48) (�) 

Best path score 705 702 707 717 741 750 

1 1 4 7 4 8 (11,45) 
Displacement error 

(12,46) (����) (12,46) (����) (10,47) (�) (13,48) (�) (12,46) (����) (10,48) (�) 

Best path score 692 691 692 708 725 737 

3 3 6 9 35 12 (10,43) 
Displacement error 

(12,46) (����) (12,46) (����) (10,47) (�) (13,48) (�) (8,40) (�) (10,48) (�) 

Best path score 640 647 684 703 704 759 

192 199 214 217 182 207 (20,20) 
Displacement error 

(15,20) (�) (21,23) (�) (21,20) (�) (21,17) (�) (17,25) (�) (19,19) (�) 

 State Transition Metric - 2 

Best path score 65 61.125 70.125 75.125 102 110.750 

0 0 0 6 4 8 (10,45) 
Displacement error 

(12,46) (����) (12,46) (����) (12,46) (����) (13,48) (�) (12,46) (����) (10,48) (�) 

Best path score 65 61.125 70.125 75.125 102 110.750 

1 1 1 7 5 9 (11,45) 
Displacement error 

(12,46) (����) (12,46) (����) (12,46) (����) (13,48) (�) (12,46) (����) (10,48) (�) 

Best path score 50.375 49.125 53.500 70 91.625 116.500 

3 3 4 9 35 23 (10,43) 
Displacement error 

(12,46) (����) (12,46) (����) (12,46) (����) (13,48) (�) (8,40) (�) (13,42) (�) 

Best path score 0 8.500 49.500 64.500 63 127 

192 200 215 220 194 213 (20,20) 
Displacement error 

(15,20) (�) (21,23) (�) (21,20) (�) (21,17) (�) (18,22) (�) (23,20) (�) 

 State Transition Metric - 3 

Best path score 65 61.125 11.225 10.028 8.344 7.980 

0 0 0 6 4 20 (10,45) 
Displacement error 

(12,46) (����) (12,46) (����) (12,46) (����) (13,48) (�) (12,46) (����) (13,42) (�) 

Best path score 65 61.125 11.225 10.028 8.344 7.980 

1 1 1 7 5 21 (11,45) 
Displacement error 

(12,46) (����) (12,46) (����) (12,46) (����) (13,48) (�) (12,46) (����) (13,42) (�) 

Best path score 50.375 49.125 10.560 9.923 7.126 8.030 

3 3 4 9 35 23 (10,43) 
Displacement error 

(12,46) (����) (12,46) (����) (12,46) (����) (13,48) (�) (8,40) (�) (13,42) (�) 

Best path score 0 8.500 8.860 7.426 6.878 7.817 

192 200 215 219 183 213 (20,20) 
Displacement error 

(15,20) (�) (21,23) (�) (21,20) (�) (21,17) (�) (17,25) (�) (23,20) (�) 

 

 

In contrast to Video-1 and Video-2, the target trajectory in Video-3 is non-linear 

(maneuvering). Table 3.5 shows the performance of the proposed algorithm for 

this maneuvering dim target. In general, the algorithm could mark the true 



49 

trajectory up to σN = 5 noise level. There are also some cases, where the 

algorithm determines the final position of the target for the noise level σN = 10, 

correctly, although the displacement error is non-zero. 

 

Table 3.6 Simulation results for Video-3 with δ = 1 
 
 

Path 
Starting 
Location 

 Noise-free 
σN = 1 

σN
2 = 1 

σN = 5 

σN
2 = 25 

σN = 7 

σN
2 = 49 

σN = 10 

σN
2 = 100 

σN = 13 

σN
2 = 169 

 SNR  22.2 dB 8.2 dB 5.3 dB 2.2 dB 0 dB 

 State Transition Metric - 1 

Best path score 705 702 707 717 738 752 

0 0 3 6 3 8 (10,45) 
Displacement error 

(12,46) (����) (12,46) (����) (10,47) (�) (13,48) (�) (12,46) (����) (10,48) (�) 

Best path score 707 704 709 719 739 751 

1 1 4 6 4 9 (11,45) 
Displacement error 

(12,46) (����) (12,46) (����) (10,47) (�) (13,48) (�) (12,46) (����) (10,48) (�) 

Best path score 695 694 695 713 727 740 

3 3 6 9 35 12 (10,43) 
Displacement error 

(12,46) (����) (12,46) (����) (10,47) (�) (13,48) (�) (8,40) (�) (10,48) (�) 

Best path score 648 651 687 703 709 758 

192 207 215 217 182 207 (20,20) 
Displacement error 

(15,20) (�) (25,25) (�) (21,20) (�) (21,17) (�) (17,25) (�) (19,19) (�) 

 State Transition Metric - 2 

Best path score 65 61.125 70.125 77.375 98.500 112.750 

0 0 0 5 3 8 (10,45) 
Displacement error 

(12,46) (����) (12,46) (����) (12,46) (����) (13,48) (�) (12,46) (����) (10,48) (�) 

Best path score 67 63.125 72.125 79.375 99.500 111.750 

1 1 1 6 4 9 (11,45) 
Displacement error 

(12,46) (����) (12,46) (����) (12,46) (����) (13,48) (�) (12,46) (����) (10,48) (�) 

Best path score 53.375 52.125 55.875 75 93.625 120.500 

3 3 3 9 35 23 (10,43) 
Displacement error 

(12,46) (����) (12,46) (����) (12,46) (����) (13,48) (�) (8,40) (�) (13,42) (�) 

Best path score 8 12.500 53.500 64.500 75 126 

192 222 215 220 183 213 (20,20) 
Displacement error 

(15,20) (�) (25,20) (�) (21,20) (�) (21,17) (�) (17,25) (�) (23,20) (�) 

 State Transition Metric - 3 

Best path score 65 61.125 13.375 14.679 12.316 12.126 

0 0 4 7 4 29 (10,45) 
Displacement error 

(12,46) (����) (12,46) (����) (10,47) (�) (13,48) (�) (12,46) (����) (6,50) (�) 

Best path score 67 63.125 15.375 15.013 12.570 14.012 

1 1 5 6 19 29 (11,45) 
Displacement error 

(12,46) (����) (12,46) (����) (10,47) (�) (13,48) (�) (10,43) (�) (6,50) (�) 

Best path score 53.375 52.125 13.535 15.638 11.989 12.749 

3 3 3 10 33 12 (10,43) 
Displacement error 

(12,46) (����) (12,46) (����) (12,46) (����) (13,48) (�) (13,39) (�) (10,48) (�) 

Best path score 8 12.500 12.860 10.232 12.878 11.911 

192 222 215 183 183 216 (20,20) 
Displacement error 

(15,20) (�) (25,20) (�) (21,20) (�) (16,23) (�) (17,25) (�) (23,18) (�) 
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Based on the results in Table 3.6, as in the case of Video-2, where the target is 

not moving consistently towards a single direction with a constant velocity, 

utilizing velocity model parameter has no significant contribution for the 

performance of the proposed algorithm for this maneuvering target by the 

proposed velocity model in this thesis. 
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Table 3.7 Simulation results for Video-4 with δ = 0 
 

Path 
Starting 
Location 

 Noise-free 
σN = 1 

σN
2 = 1 

σN = 5 

σN
2 = 25 

σN = 7 

σN
2 = 49 

σN = 10 

σN
2 = 100 

σN = 13 

σN
2 = 169 

 SNR  22.2 dB 8.2 dB 5.3 dB 2.2 dB 0 dB 

 State Transition Metric - 1 

Best path score 705 705 709 702 724 761 

0 0 1 2 6 6 (10,10) 
Displacement error 

(10,11) (����) (10,11) (����) (10,11) (����) (10,10) (�) (8,13) (�) (12,11) (�) 

Best path score 679 680 698 707 718 755 

10 8 10 26 18 21 (10,13) 
Displacement error 

(10,11) (����) (10,11) (����) (10,11) (����) (8,15) (�) (8,13) (�) (7,11) (�) 

Best path score 705 705 709 702 724 761 

2 2 3 4 8 8 (9,9) 
Displacement error 

(10,11) (����) (10,11) (����) (10,11) (����) (10,10) (�) (8,13) (�) (12,11) (�) 

Best path score 640 648 682 710 716 742 

102 104 120 123 109 108 (20,20) 
Displacement error 

(15,20) (�) (16,21) (�) (20,21) (�) (21,22) (�) (19,18) (�) (19,20) (�) 

 State Transition Metric - 2 

Best path score 65 66.375 63.250 65.875 77.875 125.750 

0 0 1 3 9 6 (10,10) 
Displacement error 

(10,11) (����) (10,11) (����) (10,11) (����) (10,10) (�) (9,10) (�) (12,11) (�) 

Best path score 39 41.750 48.875 71.625 78 128.125 

10 7 9 26 18 13 (10,13) 
Displacement error 

(10,11) (����) (10,11) (����) (10,11) (����) (8,15) (�) (8,13) (�) (12,11) (�) 

Best path score 65 66.375 63.250 65.875 78.125 125.750 

2 2 3 5 5 8 (9,9) 
Displacement error 

(10,11) (����) (10,11) (����) (10,11) (����) (10,10) (�) (9,10) (�) (12,11) (�) 

Best path score 0 9.250 44.750 65.375 90.500 109.375 

102 104 132 120 108 105 (20,20) 
Displacement error 

(15,20) (�) (16,21) (�) (22,23) (�) (20,21) (�) (19,18) (�) (17,19) (�) 

 State Transition Metric - 3 

Best path score 65 66.375 10.230 7.747 6.460 8.062 

0 0 1 7 9 9 (10,10) 
Displacement error 

(10,11) (����) (10,11) (����) (10,11) (����) (10,10) (�) (9,10) (�) (12,11) (�) 

Best path score 39 41.750 8.835 8.717 6.860 8.223 

10 7 9 26 20 13 (10,13) 
Displacement error 

(10,11) (����) (10,11) (����) (10,11) (����) (8,15) (�) (8,13) (�) (12,11) (�) 

Best path score 65 66.375 10.230 8.140 6.114 6.653 

2 2 3 8 5 19 (9,9) 
Displacement error 

(10,11) (����) (10,11) (����) (10,11) (����) (10,10) (�) (9,10) (�) (7,11) (�) 

Best path score 0 9.250 8.010 8.176 7.970 7.180 

102 104 132 120 108 128 (20,20) 
Displacement error 

(15,20) (�) (16,21) (�) (22,23) (�) (21,22) (�) (19,18) (�) (20,22) (�) 

 

 

In Table 3.7, simulation results for Video-4 are presented. Although the motion 

of the target in Video-4 is similar to that of in Video-2, in Video-4 the target is 
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slower than the target in Video-2. The algorithm could only barely mark the true 

trajectory up noise levels σN = 5, in contrast to the case of Video-2. 

 

Table 3.8 Simulation results for Video-5 with δ = 0 
 
 

Path 
Starting 
Location 

 Noise-free 
σN = 1 

σN
2 = 1 

σN = 5 

σN
2 = 25 

σN = 7 

σN
2 = 49 

σN = 10 

σN
2 = 100 

σN = 13 

σN
2 = 169 

 SNR  22.2 dB 8.2 dB 5.3 dB 2.2 dB 0 dB 

 State Transition Metric - 1 

Best path score 705 705 692 721 717 770 

0 0 3 2 9 11 (32,32) 
Displacement error 

(32,32) (����) (32,32) (����) (33,32) (�) (32,32) (�) (33,34) (�) (30,30) (�) 

Best path score 705 705 693 721 723 760 

1 1 6 3 11 12 (32,33) 
Displacement error 

(32,32) (����) (32,32) (����) (33,32) (�) (32,32) (�) (33,34) (�) (30,30) (�) 

Best path score 640 649 682 702 711 751 

159 136 148 148 138 155 (20,20) 
Displacement error 

(15,20) (�) (19,22) (�) (21,18) (�) (21,18) (�) (21,19) (�) (18,20) (�) 

 State Transition Metric - 2 

Best path score 65 64.750 52.750 83 90.750 128 

0 0 3 2 9 11 (32,32) 
Displacement error 

(32,32) (����) (32,32) (����) (33,32) (�) (32,32) (����) (33,34) (�) (30,30) (�) 

Best path score 65 64.750 53.125 83 93.500 121.125 

1 1 6 3 11 24 (32,33) 
Displacement error 

(32,32) (����) (32,32) (����) (33,32) (�) (32,32) (����) (33,34) (�) (35,36) (�) 

Best path score 0 9.125 46.250 70.875 96.875 115.875 

159 126 133 148 138 155 (20,20) 
Displacement error 

(15,20) (�) (22,23) (�) (23,19) (�) (21,18) (�) (22,18) (�) (18,20) (�) 

 State Transition Metric - 3 

Best path score 65 64.750 9.170 9.270 8.134 7.556 

0 0 3 2 9 11 (32,32) 
Displacement error 

(32,32) (����) (32,32) (����) (33,32) (�) (32,32) (����) (33,34) (�) (30,30) (�) 

Best path score 65 64.750 9.205 9.270 8.214 7.826 

1 1 6 3 11 24 (32,33) 
Displacement error 

(32,32) (����) (32,32) (����) (33,32) (�) (32,32) (����) (33,34) (�) (35,36) (�) 

Best path score 0 9.125 8.355 8.839 8.034 7.866 

159 126 134 147 138 155 (20,20) 
Displacement error 

(15,20) (�) (22,23) (�) (23,19) (�) (21,18) (�) (22,18) (�) (18,20) (�) 

 

 

 

The simulation results for Video-5 are presented in Table 3.8. It is observed that 

the performance of the algorithm degraded for the stationary target motion model. 

The algorithm is only succesful to mark the target trajectory up to noise level σN 

= 5, although exceptional successful results occurred for the noise level of σN = 7. 
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Table 3.9 Simulation results for Video-6 with δ = 0 
 
 

Path 
Starting 
Location 

 Noise-free 
σN = 1 

σN
2 = 1 

σN = 5 

σN
2 = 25 

σN = 7 

σN
2 = 49 

σN = 10 

σN
2 = 100 

σN = 13 

σN
2 = 169 

 SNR  22.2 dB 8.2 dB 5.3 dB 2.2 dB 0 dB 

 State Transition Metric - 1 

Best path score 705 705 719 743 745 789 

0 0 5 6 6 4 (10,10) 
Displacement error 

(10,11) (����) (10,11) (����) (9,11) (�) (10,10) (�) (9,10) (�) (10,11) (����) 

Best path score 701 702 718 733 737 770 

4 4 8 8 19 7 (10,8) 
Displacement error 

(10,11) (����) (10,11) (����) (9,11) (�) (10,10) (�) (9,10) (�) (10,11) (����) 

Best path score 688 690 705 732 735 754 

7 7 11 10 11 17 (10, 13) 
Displacement error 

(10,11) (����) (10,11) (����) (9,11) (�) (10,10) (�) (9,10) (�) (10,11) (����) 

Best path score 640 648 682 708 739 758 

102 128 110 139 102 135 (20,20) 
Displacement error 

(15,20) (�) (23,20) (�) (21,18) (�) (21,24) (�) (18,18) (�) (23,21) (�) 

 State Transition Metric - 2 

Best path score 25.625 27.125 48.500 72.875 80.625 130.500 

10 6 9 6 10 4 (10,10) 
Displacement error 

(9,12) (�) (10,11) (����) (10,9) (�) (10,10) (�) (9,10) (�) (10,11) (����) 

Best path score 25.625 27.125 48.500 65.500 82.375 102.125 

12 8 11 32 13 7 (10,8) 
Displacement error 

(9,12) (�) (10,11) (����) (10,9) (�) (9,6) (�) (9,10) (�) (10,11) (����) 

Best path score 18.250 19.750 35.625 61.750 85.750 105.375 

14 12 18 12 23 28 (10, 13) 
Displacement error 

(11,12) (�) (10,11) (����) (11,12) (�) (10,10) (�) (10,15) (�) (7,15) (�) 

Best path score 0 8.625 42.125 63.375 106 113.250 

102 134 110 139 102 112 (20,20) 
Displacement error 

(15,20) (�) (23,20) (�) (21,18) (�) (21,24) (�) (18,18) (�) (19,20) (�) 

 State Transition Metric - 3 

Best path score 25.625 27.125 8.645 9.477 6.878 7.305 

10 6 8 6 16 4 (10,10) 
Displacement error 

(9,12) (�) (10,11) (����) (10,9) (�) (10,10) (�) (14,12) (�) (10,11) (����) 

Best path score 25.625 27.125 8.540 8.296 6.951 7.137 

12 8 10 8 30 7 (10,8) 
Displacement error 

(9,12) (�) (10,11) (����) (10,9) (�) (10,10) (�) (9,6) (�) (10,11) (����) 

Best path score 18.250 19.750 7.810 9.199 7.861 6.348 

14 12 13 10 24 28 (10, 13) 
Displacement error 

(11,12) (�) (10,11) (����) (10,9) (�) (10,10) (�) (10,15) (�) (7,15) (�) 

Best path score 0 8.625 7.105 7.431 8.474 9.172 

102 134 110 139 102 115 (20,20) 
Displacement error 

(15,20) (�) (23,20) (�) (21,18) (�) (21,24) (�) (18,18) (�) (19,20) (�) 
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The simulation results for Video-6 in Table 3.9 present that the DP-based 

algorithm exhibit poor performance for the targets, which are slow in speed. For 

the noise levels above σN = 1, the algorithm could not mark the target trajectory 

correctly, except for the unreliable results in very low SNR case such as 0dB at 

the last column of the  Table 3.9. Although, the algorithm points the ending 

location of the target trajectory correctly, the trajectory does not fully matches the 

true trajectory of the target even for the (10,10) starting point case. 

 

At the table below, the path scores for the path initializing pixels of all the 64x64 

pixels of the image, are presented. The scores are calculated according to 

transition metric m1 and velocity model parameter δ = 0. The algorithm 

computed on Video-1 with noise level σN = 5. 

 

Table 3.10 The top 100 path scores for Video-1 (σN = 5, δ = 0) 
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Table 3.10 represents the highest 100 path scores among 64x64 paths, sorted 

according to their path scores, which are calculated over Video-1 by using the 

proposed DP-based algorithm. 

The top 9 paths have the maximum path scores; unfortunately the paths, which 

they indicate, do not match the true target trajectory of the target. The paths 

between 10 and 18 have true ending locations. The path with number 13 fully 

matches to the true target trajectory. In order to asses the contribution of velocity 

model parameter, δ, for Video-1 with noise level σN = 5, the experiment is 

repeated for δ = 15. At the table below, the path scores for the path initializing 

pixels of all the 64x64 pixels of the Video-1, are presented. The scores are 

calculated according to transition metric m1 and velocity model parameter δ = 15. 

 

Table 3.11 The top 100 path scores for Video-1 (σN = 5, δ = 15) 
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Table 3.11 similarly represents the highest 100 path scores among 64x64 paths, 

which are sorted according to their path scores for Video-1 (σN = 5, δ = 15). The 

path with highest score at the top of the table fully matches to the true target 

trajectory. In this experiment, it can be stated that utilization of the velocity 

model parameter increases the detection performance of the algorithm. 

 

3.3.2 Real Data Set Tests 
 

For the real test set, a helicopter in far distance is recorded by using a day-light 

sensor. A typical frame from the recorded sequence is shown below. 

 

 

(a) 

 

(b) 

Figure 3-16 (a) Day-light sensor real test data (b) Zoomed target location. 
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In this video, the target departs from the pixel location (23,58) and reaches to 

(24,56) at the end of a 5-frame sequence. The mean intensity of the images in the 

sequence is the gray-level of 200 and the highest intensity of the target pixel is 

about 185 gray-level, which gives the contrast, as % 5.8. The sensor noise 

variance is measured as 5.07. A region of interest, whose size is equal to 30x75 

pixels, is selected around the target, and dynamic programming method is 

computed over this region of interest.  

 

At the table below, the path scores for the path initializing pixels, which are 

located around the neighborhood of the target location, are presented. The scores 

are calculated according to transition metric m1 and velocity model parameter, δ 

= 0. 

 

Table 3.12 The path scores for the pixels around the correct target location 
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Table 3.12 represents the highest “100” path scores among 30x75 paths, sorted 

according to their path scores, which are calculated over the given real image 

sequence by using the proposed DP-based algorithm. 

In this table, the first 9 paths have the path score of 354, and all of them are 

matching paths, which match to the locations in the vicinity of the real target 

trajectory. If the table is examined in detail, it can be observed that the top 88 

paths have the true ending location. The number of candidate trajectories can be 

eliminated by proper thresholding of these path scores, or implementation of an 

association algorithm, or by applying dead zones around the most probable 

trajectory starting point. 

 

For a second real test set, a helicopter in far distance is recorded by using an IR 

sensor. A typical frame from the recorded sequence is shown below. 
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(a) 

 

(b) 

 

Figure 3-17 (a) IR sensor real test data (b) Zoomed target location. 
 

 

In this video, the target is stationary at pixel location (20,23) along the 5-frame 

sequence. The mean intensity of the images in the sequence is the gray-level of 

40 and the lowest intensity of the target pixel is about 31 gray-level, which gives 

the contrast, as % 3.5. The sensor noise variance is measured as 3.84. A region of 

interest, whose size is equal to 30x30 pixels, is selected around the target, and 

dynamic programming method is computed over this region of interest.  
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Table 3.13 The path scores for the pixels around the correct target location 
 

    

 
 
Table 3.13 represents the highest 100 path scores among 30x30 paths, sorted 

according to their path scores, which are calculated over the given real image 

sequence by using the proposed DP-based algorithm. 

 

In this table, the first 9 paths have the path score of 1127, and all of them are 

matching paths, which match to the locations in the vicinity of the real target 

trajectory. If the table is examined in detail, it can be observed that the top 80 

paths have the true ending location. The number of candidate trajectories can also 

be eliminated by proper thresholding of these path scores, or implementation of 

an association algorithm, or by applying dead zones around the most probable 

trajectory starting point. 
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3.4 Discussion 
 

The simulations in this chapter are grouped according to utilized the parameters 

• Target trajectory and speed, 

o Video-1: Linear trajectory to East with a speed of 1 pixel/frame. 

o Video-2: Linear trajectory to East with average speed of 0.5 

pixel/fr. 

o Video-3 : Circular and continuous trajectory 

o Video-4 : Linear trajectory to East with average speed of 0.2 

pixel/fr. 

o Video-5 : Stationary target trajectory at location (32,32) 

o Video-6 : Linear trajectory of 3x3 size target to East with a speed 

of  1 pixel/frame 

• State Transition Metrics, 

o Metric-1 : Absolute intensity metric :   m1 =  Ib , 

o Metric-2 : Contrast-based metric :    m2 = Ib – avg(Ib) , 

 Metric-3 : Normalized contrast :  m3 =( Ib – avg(Ib) ) / 

σN  

• δ (Velocity Model). 

o 0 

o 1 

o 4 

o 15. 

The results over the artificial sequences showed that the DP-based algorithm is 

successful up to noise levels of σN = 5 for the examined trajectories, without 

utilizing any velocity model parameter. Proper utilization of velocity model 

parameter increases the performance of the algorithm as in the case of Video-1. 

Any significant performance difference has not been declared between 3 different 

state transition metrics m1, m2, m3. However, m3 is preferable due its 

normalization property. 
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On the other hand, two different real data sets are tested by utilizing the proposed 

algorithm. This algorithm has marked the true target trajectory at both day-light 

and IR sensor cases. 

The algorithm is successfully performed on real data sets, since the observed 

noise level of these sequences are within the noise limits of the proposed 

algorithm.  
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CHAPTER 4 

 
 

DIM TARGET DETECTION  

VIA BAYESIAN FORMULATION 

 

4 CHAPTER 4 
In any type of detection problem, Bayesian formulation simply aims modeling the 

class-conditional probability density functions of the “target” and “no-target” 

classes, by incorporating the measurements and the available a priori information 

for the target and background models into these functions. In dim target detection 

problem, the likelihood of these class-conditional densities should yield, not only 

the existence of a target, but also give an estimate for the trajectory of the target. 

 

The algorithm in [17] detects the presence of a target and estimates its position, 

simultaneously. There is no need to store all the history of measurements, since 

the algorithm uses a recursive method to detect a target and its positional 

estimate. The technique neither assumes constant velocity motion nor requires a 

filter-bank implementation structure. The algorithm is computationally quite 

efficient and suitable for any real-time operation. In this chapter, the effectiveness 

of the proposed algorithm is tested over sequences of synthetic and real data, and 

it will be presented to be capable of detecting targets in quite low-SNR 

conditions.  

 

4.1 Algorithm 
 
This algorithm can be divided into two stages as detection and tracking. 

The detection stage is based on a hypothesis testing problem, which can be 

defined as, 
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  H0 :  z( ) k  = n( ) k   

. H1 :  z ( ) k  = A( )x( ) k  + n ( ) k   

 

where z( k ) is the matrix consisting of the image frame at time k, x( k ) is the 

state vector at time k, n( k )  is the measurement noise and A( . ) is the target 

signal component inside noisy measurement. In this formulation, H0 is the 

hypothesis that target does not exit, whereas H1 denotes the existence of a target 

in the observed scenery. Assuming that the sensor noise is Gaussian distributed 

with variance σ2, the class-conditional probability density functions for those two 

hypotheses can be written as 

 

p ( ) z(k) │ H0   = 
i,j
Π  

1

   2πσ2
  
   e 

     
   2
z     i,j (k)     

2σ2
     

 

p ( ) z(k) │x(k), H1   = 
i,j
Π  

1

   2πσ2
  
   e 

  (zi,j(k) − Ai,j (x (k)))2    

2σ2
        

 

In the above relation, Ai,j is the intensity of the target at location (i,j). The ratio of 

these two densities gives a likelihood value, indicating the existence of a target in 

the observed scenery. For every measurement, the following likelihood should be 

computed, in order to be compared to a threshold to give a decision of detection. 

It should be noted that Zk denotes the set of all observations up to time k in (4.4).  

 

 Λ ( )k   = 
p ( ) Zk

 │ H1

 p ( ) Zk
 │ H0

  

 

 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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If the likelihood is larger than a pre-defined threshold than one should declare 

detection of a target. 

 

  Λ ( )k   
H1

<>
H0

  δ  

 
In order to obtain some computational simplification of (4.4), the recursive 

computation of this likelihood is introduced [17], after a number of 

simplifications 

 

 Λ( )k   = K   Λ( )k − 1   
x(k)∈ X

 Σ     
i,j
Π e 

zi,j Ai,j (x (k))
σ2

  p( )x(k) │Z
k−1, H1  

  

where the normalization constant K is equal to  

 

 K = 
i,j

Π e
-

    2 A      
i,j

 (x)

 2σ2  

 

In tracking stage, the posterior state probabilities p( )x(k) │Z
k, H1   are calculated, 

recursively and the expected value of the target state estimate is determined as, 

 

X̂ (k) = 
x(k)∈ X

 Σ    x(k) p( )x(k) │Z
k

 

 

In the equation above, the posterior state density can be calculated by using the 

following equation, given in (4.9)[17]. 

 

 

(4.5) 

(4.6) 

(4.7) 

(4.8) 
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p( )x(k) │Z
k

 = 
   p( )x(k) │Z

k − 1
 e

1
σ2

i,j
 Σ zi,j(k) Ai,j( )x(k)  

               

 
x(k)
 Σ  p( )x(k) │Z

k − 1
 e

1
σ2

i,j
 Σ zi,j(k) Ai,j( )x(k)  

  

  

 

The prediction equation is given below: 

 

  p( )x(k + 1) │Z
k

 = 
x(k−1) ∈ X

 Σ p( )x( k+1 ) │ x(k)  p( )x(k) │Z
k

 

 

For incorporating the a priori target model, since the target motion is unknown, 

the random-walk state transition model should be selected. According to this 

model state transition is defined as 

 

p( )x( k ) │ x(k − 1)  = 


1/9      ║ x(k) − x(k − 1) ║  ≤ 1

0         otherwise                      
   

 

However, in this model, it is assumed that the target can not move more than 1 

pixel/frame. With point target signature assumption, likelihood computation is 

reduces to  

 

Λ( )k   = K   Λ( )k − 1   
x(k)∈ X

 Σ   e 

zx,y 

σ2

  p( )x(k) │Z
k−1, H1  

 

 

 

 

 

 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
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This algorithm can be summarized with the following pseudo-code; 

 

Initialization:  

 Λ(0) = 1, p(x(1)| Z0) = 1/M for all x,y  

For k = 1..K 

1. Retrieve z(k)  

2. Calculate Λ(k)  

3. Calculate p(x(k)| Zk) (estimation matrix)  

4. Calculate p(x(k+1)| Zk) (prediction matrix)  

5. If Λ(k) > δ declare detection and calculate xML(k)  

 

In this algorithm, M is the number of pixels in each frame and K is the total 

number of frames in sequence and steps between 1 and 5 are repeated in a 

recursive manner. 

 

In the next section, simulations are conducted in order to asses the performance 

of the algorithm, explained in this section. 

 

4.2 Simulations 
 

In this section, the proposed Bayesian formulated detection algorithm is tested by 

using artificial and real data sets. The artificial simulations are conducted for 

different noise levels and frame length. For real data sets, the image sequences of 

a dim target observed by a day-light sensor and another sequence of an IR sensor 

are used, whose sample screen shots were given in Section 3.3.2. 

 

4.2.1 Artificial Test Data Set 

 

In order to test this algorithm, artificial image sequences, given in Section 3.3.1.1 

are utilized in order to be able perform fair comparisons between these two 

algorithms.  
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The simulation results are presented by the help of some figures (Figure 4-1 - 

Figure 4-60). These figures are organized in such a way that, the plot of the 

likelihood (in log-scale) for the case, in which the target exists in the image 

sequence (subfigures (a) ), the resulting posterior state density of image sequence 

at the end of iterations (subfigures (b) ), the expected value of target state 

(trajectory) estimate (“o”), and the true target trajectory (“∆”), as groundtruth 

(subfigures (c) ), a typical likelihood figure (in log-scale) for the case, in which 

there is no target in the image sequence for the same noise level (subfigures (d) ) 

and, the resulting posterior state density at the end of iterations for no-target case 

(subfigures (e) ) and, finally, the most probable target state (“x”), and the true 

target trajectory (“∆”), as groundtruth (subfigures (f) ) are presented, respectively. 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                           (e) 
 

(f) 

Figure 4-1 Simulation Result for Video-1 (Noise-free, 50 frames) 
 

    

                     (a)                              (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-2 Simulation Result for Video-1 (Noise-free, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-3 Simulation Result for Video-1 (σN = 1, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-4 Simulation Result for Video-1 (σN = 1, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-5 Simulation Result for Video-1 (σN = 5, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-6 Simulation Result for Video-1 (σN = 5, 100 frames) 
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The figures between Figure 4-1 and Figure 4-6 presents the simulation results of 

proposed algorithm for Video-1 at different noise levels and for 50- and 100-

frame length sequences.  

 

The algorithm is found out to be successful only for the noise-free case and for 

noise level σN = 1. The reason for this failure is due to fact that the target velocity 

is faster than the algorithm could handle.  Moreover, the target model is assumed 

to be Gaussian distributed and this assumption is violated by using a point-target 

in the simulations. 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-7 Simulation Result for Video-2 (Noise-free, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-8 Simulation Result for Video-2 (Noise-free,100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-9 Simulation Result for Video-2 (σN = 1, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-10 Simulation Result for Video-2 (σN = 1, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-11 Simulation Result for Video-2 (σN = 5, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-12 Simulation Result for Video-2 (σN = 5, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-13 Simulation Result for Video-2 (σN = 7, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-14 Simulation Result for Video-2 (σN = 7, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-15 Simulation Result for Video-2 (σN = 10, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-16 Simulation Result for Video-2 (σN = 10, 100 frames) 
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The figures between Figure 4-7 and Figure 4-16 present the simulation results of 

proposed algorithm for Video-2 for different noise levels.  

 

The algorithm gives successful performance up to the noise level σN = 7. The 

increase of the likelihood ratio is apparent up to the noise level σN = 7 and the 

algorithm marked the true target location at the last stages of execution. Another 

important point to note is as follows: as noise levels increasing, higher number of 

iterations are required for a successful detection. In other words, the algorithm 

should be executed longer, as the noise energy increases. 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
  

(f) 

Figure 4-17 Simulation Result for Video-3 (Noise-free, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-18 Simulation Result for Video-3 (Noise-free,100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-19 Simulation Result for Video-3 (σN = 1, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-20 Simulation Result for Video-3 (σN = 1, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-21 Simulation Result for Video-3 (σN = 5, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-22 Simulation Result for Video-3 (σN = 5, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-23 Simulation Result for Video-3 (σN = 7, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-24 Simulation Result for Video-3 (σN = 7, 100 frames) 
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The figures between Figure 4-17 and Figure 4-24 gives the simulation results of 

the proposed algorithm for Video-3, where the target has a circular trajectory, at 

different noise levels and for 50 and 100 frame executions of the algorithm.  

 

Since the speed of the target is quite fast for the algorithm could handle, the 

results were successful only up to noise level σN = 5. In this case, the same 

conclusion, as in the previous experiments, could be stated, as increasing the 

number of processed frames, improves the detection rate of the algorithm. 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-25 Simulation Result for Video-4 (Noise-free, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-26 Simulation Result for Video-4 (Noise-free, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-27 Simulation Result for Video-4 (σN = 1, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-28 Simulation Result for Video-4 (σN = 1, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-29 Simulation Result for Video-4 (σN = 5, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-30 Simulation Result for Video-4 (σN = 5, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-31 Simulation Result for Video-4 (σN = 7, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-32 Simulation Result for Video-4 (σN = 7, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-33 Simulation Result for Video-4 (σN = 10, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-34 Simulation Result for Video-4 (σN = 10, 100 frames) 
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The figures between Figure 4-25 and Figure 4-34 show the results for the 

proposed algorithm for Video-4, where the target has a similar trajectory as in 

Video-2, at different noise levels for different sequence lengths. 

 

Since the speed of the target is slower than that of in Video-2, the algorithm 

marked the true location of the target up to the noise level σN = 7, at the end of 

100 frame execution. 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-35 Simulation Result for Video-5 (Noise-free, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-36 Simulation Result for Video-5 (Noise-free,100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-37 Simulation Result for Video-5 (σN = 1, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-38 Simulation Result for Video-5 (σN = 1, 100 frames) 
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The figures between Figure 4-35 and Figure 4-38 present the simulations for the 

proposed algorithm for Video-5, where the target stays stationary along the 

sequence of frames, at different noise levels and for 50 and 100 frame executions 

of the algorithm. 

 

These unexpected results show that the algorithm is not successful even for the 

noise free case, since the size of the target was one-pixel and it does not move 

along the sequence. 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-39 Simulation Result for Video-6 (Noise-free, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-40 Simulation Result for Video-6 (Noise-free,100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-41 Simulation Result for Video-6 (σN = 1, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-42 Simulation Result for Video-6 (σN = 1, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-43 Simulation Result for Video-6 (σN = 5, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-44 Simulation Result for Video-6 (σN = 5, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-45 Simulation Result for Video-6 (σN = 7, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-46 Simulation Result for Video-6 (σN = 7, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-47 Simulation Result for Video-6 (σN = 10, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-48 Simulation Result for Video-6 (σN = 10, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-49 Simulation Result for Video-6 (σN = 13, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-50 Simulation Result for Video-6 (σN = 13, 100 frames) 



99 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-51 Simulation Result for Video-6 (σN = 15, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-52 Simulation Result for Video-6 (σN = 15, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-53 Simulation Result for Video-6 (σN = 17, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-54 Simulation Result for Video-6 (σN = 17, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-55 Simulation Result for Video-6 (σN = 19, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-56 Simulation Result for Video-6 (σN = 19, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-57 Simulation Result for Video-6 (σN = 21, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-58 Simulation Result for Video-6 (σN = 21, 100 frames) 
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                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-59 Simulation Result for Video-6 (σN = 25, 50 frames) 
 

    

                     (a)                             (b) 
 

(c) 

    

                      (d)                             (e) 
 

(f) 

Figure 4-60 Simulation Result for Video-6 (σN = 25, 100 frames) 
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The figures between Figure 4-39 and Figure 4-60 give the simulation results for 

the proposed algorithm for Video-6, where the target is modeled, as 3x3 pixels in 

size and being the slowest target among all of the previous experiments, at 

different noise levels and for 50 and 100 frame executions of the algorithm. This 

target is clearly a better fit for the Gaussian assumption. 

 

The performance of the proposed algorithm up to the noise levels of σN = 21 

(corresponds to a SNR level of -4.16 dB) is remarkable. Since the speed of the 

target is quite slow (0.2 pixels/frame) and the target has a Gaussian form in 

shape, the algorithm exhibits this superb performance for the Video-6 case.  
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4.2.2 Real Test Data Set 
 

For the real test set, an air-vehicle in far distance is recorded by using a day-light 

sensor. A typical frame from the recorded sequence is given in Figure 3-16. 

 

 

  

                                     (a)                                                             (b)        

Figure 4-61 Simulation Result of Bayesian Algorithm  
for the day-light sensor sequence 

(a) Target state estimates (estimated vs. groundtruth)  
(b) Likelihood Ratio (in log-scale) 

 

 

 

(a)1 

 

(b)10 

 

(c)15 

 

(d)20 

 

(e)25 

 

(f)30 

Figure 4-62 The evolution of the target posterior density along the sequence  
(a) frame no : 1, (b) frame no : 10,    (c) frame no : 15,  
(d) frame no : 20, (e) frame no : 25, (f) frame no : 30 
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For the second test set, another dim air-vehicle is recorded by using a IR sensor. 

A typical frame from the recorded sequence is given in Figure 3-17. 

 

 

  

 
Figure 4-63 Simulation Result of Bayesian Algorithm for IR sensor sequence  
(a) Target state estimates (b) Evolution of the likelihood Ratio (in log-sclae) 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 4-64 The evolution of the target posterior density along the sequence 
(a) frame no : 1,   (b) frame no : 20,   (c) frame no : 40, (d) frame no : 60,  
(e) frame no : 70, (f) frame no : 80,    (f) frame no : 90,  (g) frame no : 100 

 

 

In both cases, with day-light sensor sequences and IR sequences, since the noise 

level of the frames is quite low and the target moves slowly (less than 1 

pixel/frame), the algorithm gives a promising performance on the real test data, as 

well. 
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4.3 Discussion 
 

The proposed technique for detection of dim targets in image sequences is a quite 

promising approach which has the potential to be applied to the real-life 

scenarios. Unlike the existing TBD algorithms, this technique is capable of 

dealing with very low SNR situations, does not require filter banks and 

computationally inexpensive. The impressive performance of the Bayesian 

approach can be obtained for the cases in which the target intensity distribution is 

Gaussian. For such cases, the Bayesian TBD algorithm is capable of detecting 

dim target in extremely low-SNR conditions. Another factor improves the 

performance of Bayesian algorithm is the length of the image sequence. In case 

of longer sequences, the algorithm detection performance improves, as expected. 



108 

 
 

CHAPTER 5 

 
 

COMPARISONS AND CONCLUSIONS  

 

5 CHAPTER 5 

5.1 Summary 
 

In this thesis, dim target detection problem is examined via two promising 

algorithms. Dynamic programming-based (DP) approach and a Bayesian-

formulated method are implemented and tested to compare their performances for 

detecting dim targets.   

 

DP-based algorithm is a batch processing algorithm, whereas the Bayesian-

formulated algorithm is a sequential approach. DP-based algorithm is slightly 

revised compared to similar methods in the literature by selecting relative target 

locations as states, novel state transition metrics and utilizing a velocity model 

parameter. On the other hand, there is some past research on Bayesian formulated 

dim target detection problem and a recent Bayesian algorithm [17] is selected to 

test due to promising performance and computational effective property. 

Following sections present conclusions for the comparison of these two 

algorithms. 

 

5.2 Conclusions on Dynamic Programming Based Dim Target 
Detection 

 

The proposed algorithm is tested on some artificial image sequences with 

different noise levels by using different state transition metrics (m1, m2, m3) and 

a design parameter, δ, as a target velocity model. Although there is no significant 

performance difference when utilizing these different metrics, m3 should be 
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preferred due to its normalization property. However, a precise normalization of 

the path sums for different noise levels could not be obtained, as desired.  

 

There are also cases, where the velocity model parameter, δ, is useful, especially 

for the targets, moving along a single direction, consistently. By utilizing a proper 

velocity model parameter, the true target trajectory has been achieved to be 

marked, even in 0 dB SNR. However, the value for this parameter should be 

selected carefully, since a mismatch between the possible target speed and the 

velocity model parameter might cause a failure on detecting dim targets.  

 

After the simulations, it is observed that the proposed DP-based algorithm has 

mostly marked the true target trajectory only after 5-stage (frame) processing. 

However, for the noise levels, above σN = 7, the DP detector has failed in 5-stage 

detection. By utilizing new metrics or longer executions might improve the 

performance.  

 

The proposed algorithm is also tested on real data sets, which includes an image 

sequence captured by using a day-light sensor and another sequence via an IR 

sensor. In both cases, the algorithm has successfully marked the true target 

trajectory after 5-stage processing.  

 

5.3 Conclusions on Bayesian Formulated Dim Target Detection 
 

Extensive tests on artificial image sequences showed that the Bayesian 

formulated dim target detection algorithm is not capable of marking the weighted 

target estimate in early frames. This observation is due to the fact that the 

algorithm is not able to accumulate likelihood in typical neighborhoods for the 

fast moving targets. The algorithm usually shows a better performance for slow 

targets. In other words, it could be concluded that the targets which have sub-

pixel motions can also be detected successfully with the aforementioned property 

of the algorithm.  
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The tests also showed that for the cases in which the target stays stationary longer 

periods of time for a detection (as seconds instead of milliseconds), the algorithm 

results with satisfactory detection results, even for the cases with 0dB SNR 

levels.  

 

While testing the algorithm for one-target cases, it has been observed that the 

false alarm rate of the algorithm is relatively low, although the false alarm rate is 

not quantitatively measured. In other words, it is quite unlikely to observe any 

false declaration from the algorithm, when there is no target. This conclusion can 

also be observed by considering the likelihood curves, which do not have any 

increasing nature for any of the no-target cases. 

 

5.4 Comparison between DTD Methods 
 

Both of these methods give competitive performances on most of the tested data. 

Bayesian formulated algorithm is quite reluctant to declare any detection for no-

target cases, whereas DP-based algorithm easily indicates a possible target 

trajectory, even there is no target in the image sequences. Improper thresholding 

of such path scores for DP might cause high false alarm rate.  

 

Bayesian formulated algorithm performs quite promising for the Gaussian-shaped 

targets, as in the case of Video-6 experiment, whereas DP-based algorithm is 

usually more successful at one-pixel targets by the help of the velocity model 

parameter. 

 

Bayesian formulated algorithm requires more frames compared to that of the DP-

based algorithm, but still quite successful to detect the target in an acceptable 

execution time. However, for the case with many frames, DP algorithm requires 

quite long execution time before giving any results. 
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Target speed is another important issue to be considered. DP-based algorithm is 

usually more successful compared to the Bayesian algorithm, for the cases of fast 

moving targets, more than 1 pixel/frame. However, Bayesian formulated 

algorithm gives better performance for lower (sub-pixel) target speeds.  

 

In order to summarize the performance of both algorithms for different noise 

levels, are tabulated in the following table by using the artificial data results.  

 

Table 5.1 Comparison between DP-Based and Bayesian formulated algorithm 
 

DP-based 

Bayesian Form. 
σN = 0* σN = 1 σN = 5 σN = 7 σN = 10 σN = 13 

���� ���� ���� � � � 
Video-1 (δ = 0) 

���� ���� � � � � 

���� ���� ���� ���� ���� ���� 
Video-1 (δ = 15) 

���� ���� � � � � 

���� ���� ���� ���� � � 
Video-2 

���� ���� ���� ���� � � 

���� ���� ���� � � � 
Video-3 

���� ���� ���� � � � 

���� ���� ���� � � � 
Video-4 

���� ���� ���� ���� � � 

���� ���� ���� ���� � � 
Video-5 

� � � � � � 

���� ���� � � � � 
Video-6 

���� ���� ���� ���� ���� ���� 

 
*Noise-free case 
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As it can be observed from this table, both algorithms have similar noise 

performance for Video-2 and Video-3.  By the help of the velocity model 

parameter, DP-based algorithm gives superior results compared to Bayesian 

formulated algorithm. At Video-4, Bayesian formulated algorithm seems to result 

in slightly better performance than DP-based algorithm, since it is successful at 

the noise level σN = 7, where DP-based algorithm was not successful on detecting 

the dim target. At Video-5 Bayesian formulated algorithm exhibit a relatively 

poor performance, since the target was one-pixel in size and stationary, where 

DP-based algorithm could detect the target up σN = 7 noise levels.  

 

The most interesting result is obtained for Video-6 case. Bayesian formulated 

algorithm is successful for quite high noise levels. In fact, as observed in Section 

4.2.1, Bayesian formulated algorithm was successful up noise levels σN = 21, 

which is a surprising result. This result is due to the fact that Bayesian formulated 

algorithm is fully optimized for the Gaussian shaped, slow targets. 

 

It can be concluded that the Bayesian algorithm is more preferable than DP-based 

algorithm, especially with more realistic target models, as in case of Video-6. 

 

5.5 Future Directions 
 

Image sequences consisting of one-pixel target is not realistic. When the targets 

in real data sets are examined, it has been observed that the targets are small, but 

not one-pixel size; i.e. they are mostly larger than one pixel with small tails in 

different directions in sub-pixel resolution. Another set of experiments might be 

conducted by using more realistic target models in image sequences, including 

considerations of different target speeds and maneuvering targets. 

 

In order to asses the performance the algorithms in a more reliable way,  Receiver 

Operating Characteristics (ROC) curves for different cases should be obtained. In 

these curves, the probability of detection and false alarm for these two 
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approaches could be observed for various algorithm parameters. However, the 

presented simulation results still give enough insight to understand the 

performance of these algorithms. 

 

The experiments in this thesis concentrated on single sensor (camera) systems. 

The re-formulation of the algorithm to incorporate target energies from different 

sensors should also improve the performance, considerably for any target 

detection approach.  
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