

IMPLEMENTATION OF CONCURRENT CONSTRAINT TRANSACTION
LOGIC AND ITS USER INTERFACE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
 MIDDLE EAST TECHNICAL UNIVERSITY

BY

FETHİ ALTUNYUVA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
 FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan ÖZGEN

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Prof. Dr. Ayşe KİPER

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assist. Prof. Pınar ŞENKUL
 Supervisor

Examining Committee Members

Prof. Dr. Faruk POLAT (METU) _____________________

Assist. Prof. Dr. Pınar ŞENKUL (METU) _____________________

Assoc. Prof. Dr. Ali DOĞRU (METU) _____________________

Assoc. Prof. Dr. İsmail Hakkı TOROSLU (METU) _____________________

Assist. Prof. Dr. Murat ERTEN (ETU) _____________________

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this wok.

Name, Last name : Fethi ALTUNYUVA

Signature :

 iv

ABSTRACT

IMPLEMANTATION OF CONCURRENT CONSTRAINT TRANSACTION

LOGIC AND ITS USER INTERFACE

Altunyuva, Fethi

MS., Department of Computer Engineering

Supervisor: Assist. Prof.Dr. Pınar Şenkul

September 2006, 49 pages

This thesis implements a logical formalism framework called Concurrent

Constraint Transaction Logic (abbr.,CCTR) which was defined for modeling and

scheduling of workflows under resource allocation and cost constraints and

develops an extensible and flexible graphical user interface for the framework.

CCTR extends Concurrent Transaction Logic and integrates with Constraint Logic

Programming to find the correct scheduling of tasks that involves resource and cost

constraints. The developed system, which integrates Prolog and Java Platforms, is

designed to serve as the basic environment for enterprise applications that involves

CCTR based workflows and schedulers. Full implementation described in this

thesis clearly illustrated that CCTR can be used as a workflow scheduler that

involves not only temporal and causal constraints but also resource and cost

constraints.

 v

Keywords: Concurrent Transaction Logic, Workflow Scheduling, Constraint Logic

Programming, Resource Allocation

 vi

ÖZ

KOŞUT ZAMANLI KISIT HAREKET MANTIĞI ÇİZELGESİ

GERÇEKLEŞTİRMESİ VE KULLANICI ARA YÜZÜ GELİŞTİRİLMESİ

Altunyuva, Fethi

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Yrd.Doç.Dr. Pınar ŞENKUL

Eylül 2006, 49 sayfa

Bu tez maliyet ve kaynak tahsisine bağlı iş akışlarının modellemesi ve

çizelgelenmesi için tanımlanan ve koşut zamanlı kısıt hareket mantığı çizelgesi

(KZKHMÇ) adı verilen mantıksal formülleme çatısını gerçekleştirmekte, bu çatı

için genişletilebilir ve uygun bir kullanıcı ara yüzü geliştirmektedir. KZKHMÇ,

maliyet ve kaynak kısıtları içeren işlemler için bir çizelgeleme bulma amacıyla

koşut hareket mantığını genişletmiş ve Kısıt Mantık Programlamasına entegre

olmuştur. Prolog ve Java platformları entegre edilerek geliştirilen sistem,

KZKHMÇ tabanlı iş akışları ve çizelgelemeler ihtiva eden iş uygulamaları için

temel ortam hizmeti sunacak şekilde tasarlanmıştır. Bu tezdeki gerçekleştirmeler

KZKHMÇ’nin sadece geçici ve sebep kısıtları için değil aynı zamanda maliyet ve

kaynak tahsisi kısıtları gerektiren iş akışların çizelgelemesi için de

kullanılabileceğini göstermiştir.

 vii

Anahtar Sözcükler: Koşut Zamanlı Hareket Mantığı, İş Akışı Çizelgeleme,Kısıt

Mantık Programlama, Kaynak Tahsisi.

 viii

ACKNOWLEDGMENTS

I would like to present my special thanks to my supervisor Assist.Prof. Dr.

Pınar Şenkul for her supervision, guidance, and understanding throughout the

development of this thesis.

I would like to thank Assoc. Prof. Dr. İ.Hakkı Toroslu for his suggestions

and comments.

I would also thank to my wife, Hilal, for his great support and

encouragement.

 ix

TABLE OF CONTENTS

ABSTRACT ... IV

ÖZ ... VI

ACKNOWLEDGMENTS ... VIII

TABLE OF CONTENTS.. IX

LIST OF TABLES ...XII

LIST OF FIGURES ... XIII

LIST OF ABBREVIATIONS...XIV

CHAPTER

1.INTRODUCTION...1

1.1. MOTIVATION AND SCOPE .. 2

1.2. ARCHITECTURE OF THE PROPOSED CCTR ENVIRONMENT 3

1.3. ORGANIZATION OF THE THESIS... 3

2.CONCURRENT CONSTRAINT TRANSACTION LOGIC..............................5

2.1. OVERVIEW OF TRANSACTION LOGIC PROGRAMMING 6

2.2. OVERVIEW OF CONCURRENT TRANSACTION LOGIC

PROGRAMMING .. 6

2.3. OVERVIEW OF CONCURRENT CONSTRAINT TRANSACTION

LOGIC PROGRAMMING ... 7

 x

3.THE CCTR ENVIRONMENT ..13

3.1. DESIGN GOALS.. 14

3.2. EVALUATION OF UTILIZED TECHNOLOGIES 15

4.USER INTERACTION AND GRAPHIC DESIGN...17

4.1. CCTR ENVIRONMENT INTRODUCTION... 17

4.2. STARTING CCTR ENVIRONMENT ... 19

4.3. CCTR APPLICATION ... 20

4.4. MENU OVERVIEW... 21

4.5. CREATING CCTRFLOW DIAGRAMS.. 22

4.6. RUNNING CCTRFLOWS ... 26

4.7. SHOWING RESULTS.. 26

5.DESIGN AND IMPLEMENTATION...28

5.1. APPLICATION CONTROL AND GUI(JAVA PART)............................. 28

5.2. CCTR SCHEDULER(PROLOG PART) .. 30

6.CONCLUSIONS ...36

REFERENCES...37

 xi

APPENDICES

A.TUTORIAL:STARTING CCTR ENVIRONMENT39

B.TRANSFORMER GRAMMER..42

C.SAMPLE WORKFLOWS...42

 xii

LIST OF TABLES

TABLE 2.1: TRANSFORMATION RULES. .. 11

TABLE 4.1: EXAMPLE 4.1 CONSTRAINTS TABLE.. 19

TABLE 4.2: CCTRFLOW PALETTE ELEMENTS. ... 23

TABLE 5.1: CCTRFLOW PALETTE ELEMENTS. ... 29

TABLE 5.2: MODIFIED TRANSFORMATION RULES................................... 32

TABLE 5.3: TRANSFORMER PARTIAL PREDICATES EQUIVALENCES . 34

TABLE 8.1: SAMPLE 1 CONSTRAINTS TABLE.. 47

TABLE 8.2: SAMPLE 1 SOLUTION TABLE. .. 48

TABLE 8.3: SAMPLE 2 CONSTRAINTS TABLE.. 49

TABLE 8.4: SAMPLE 2 SOLUTION TABLE. .. 49

 xiii

LIST OF FIGURES

FIGURE 1.1: HOUSE CONSTRUCTION CCTRFLOW....................................... 3

FIGURE 2.1: OVERVIEW OF TR,CTR,CCTR. .. 5

FIGURE 2.2: THE BIG PICTURE.. 10

FIGURE 3.1: ARCHITECTURAL OVERVIEW OF CCTR ENVIRONMENT. 13

FIGURE 4.1: CONFIGURATION WINDOW.. 20

FIGURE 4.2: MAIN WINDOW OF CCTR ENVIRONMENT............................ 21

FIGURE 4.3: MAIN MENU OF CCTR ENVIRONMENT.................................. 21

FIGURE 4.4: DEFINE RESOURCES WINDOW .. 25

FIGURE 4.5: DEFINE RESOURCE COSTS WINDOW..................................... 25

FIGURE 4.6: HOUSE CONSTRUCT CCTRFLOW DIAGRAM....................... 26

FIGURE 4.7: HOUSE CONSTRUCT CCTRFLOW RESULTS......................... 27

 xiv

LIST OF ABBREVIATIONS

WfMS : Workflow Management System

TR : Transaction Logic

CTR : Concurrent Transaction Logic

CCTR : Concurrent Constraint Transaction Logic

 1

CHAPTER 1

INTRODUCTION

A workflow is defined as coordinated set of activities that act together to achieve a

well-defined goal. Trip planning, catalog ordering and manufacturing process of

enterprises are typical examples of workflows [7]. While achieving a goal

workflow is subject to various constraints that reflect the business logic of an

enterprise. In enterprise applications it is needed to find a correct execution

sequence of workflows that obeys the constraints logic of a workflow. Finding a

correct sequence of execution is called workflow scheduling. There has been much

research on workflow scheduling [9, 10, 11, 12]. However most of these

researches are mainly focused on temporal and causality constraints, which aim to

find correct ordering of tasks. A temporal/causality constraint is typically of form

“task 1 precedes task 2” or “if task 1 executes then tasks 2 and 3 must execute as

well”. In these forms of constraints resource allocations constraints and cost

constraints are ignored [7]. In contrast, business applications frequently require

resource allocations constraints and cost constraints. For example a company’s

personnel or physical objects may not be allocated to the same task simultaneously

or there might be a limit on the cost of using these resources. To fill this gap, a

logical framework called Concurrent Constraint Transaction Logic which extends

Concurrent Transaction Logic is proposed in [8]. Proposed logical formalism

specifies, verifies, and schedules workflows subject to resource and cost

constraints [8].

 2

1.1. Motivation and Scope

This thesis implements the proposed logical formalism framework in [8] and

develops an extensible and flexible graphical user interface for the proposed

framework. The developed system, called CCTR Environment which integrates

Prolog and Java Platforms, is designed to serve as the basic environment for

modeling enterprise applications that involves CCTR based workflows and

schedulers. Developed environment containing CCTR Scheduler and its user

interface is designed in such a way that can be an alternative for workflows

schedulers that requires not only temporal and causal constraints but also resource

and cost constraints.

The motivating example defined below will be followed in this thesis. The

example derived from [13] and used in [8].

Example 1.1 “Company A builds a house, does gardening, and moves customer’s

furniture into the new house. The company subcontracts various tasks to other

companies. There are several candidate subcontractors for each task and some

subcontractors may qualify to perform several subtasks. Company A wants to

choose subcontractors in a way that satisfies the customer’s requirements and so

that the costs (in time and money) do not exceed a previously agreed upon

estimate. The CCTRflow diagram is shown in Figure 1.1 which designed in

CCTRflow Designer. In the figure, the represents branches of work that can be

done in parallel (and all must be executed). represents alternative courses of

action where only one of the branches needs to be executed. For instance, the

facade can be painted or the customer might choose to use vinyl siding (but not

both). Tasks that must be done in sequence are connected via directed edges.

Resource related constraints for this workflow can include the following:

• The budget for the entire project should not exceed $30,000.

• The project should not last longer than 10 days.

• Different subcontractors must be chosen for tasks that are determined to be

parallel.

 3

• In addition, it is required that the cost of building the facade, installing

windows, and doing gardening should not exceed $15,000.”[8]

The goal is to develop an environment for defining above CCTRflow and to find

valid schedule(s) for it. The schedule should include an execution order of the

entire subtask plus an assignment of the resources to tasks so that all the

constraints are satisfied.

Figure 1.1: House Construction CCTRflow.

1.2. Architecture of the Proposed CCTR Environment

The proposed architecture of CCTR Environment is constituted by integrating Java

Platform[14], XSB Platform[15] and SWI Platform[16]. Java Platform controls the

application logic and provides Graphical User Interface. Implementation of CCTR

Scheduler is developed on XSB Platform. Finally, SWI Platform is used for the

implementation of Constraint Solver. Details of architecture are presented in

chapter 3 of this thesis.

1.3. Organization of the thesis

The thesis is organized as follows:

Chapter 2 contains an overview for Transaction Logic and Concurrent

Transaction Logic and describes Concurrent Constraint Transaction Logic.

 4

Chapter 3 describes developed CCTR Environment, and design goals, and

explains the utilized technologies.

Chapter 4 presents the graphical design developed for the CCTR Environment

Chapter 5 explains design and implementation details.

Chapter 6 summarizes and concludes the thesis.

 5

CHAPTER 2

CONCURRENT CONSTRAINT TRANSACTION

LOGIC

In this chapter, a brief overview of Transaction Logic Programming (abbr,TR),

Concurrent Transaction Logic (CTR) and Concurrent Constraint Transaction

Logic(abbr,CCTR) is given. Relation among TR, CTR, and CCTR is depicted in

Figure 2.1.

Figure 2.1: Overview of TR,CTR,CCTR.

 6

2.1. Overview of Transaction Logic Programming

Transaction logic is extension of predicate logic proposed by Bonner and Kifer[1],

which accounts for the state change of logic programs and databases in a

declarative fashion. Model theory and complete proof theory of Transaction Logic

is presented in [1]. Main contribution of Transaction Logic to predicate logic is its

ability to program transactions. It is possible to program transactions in

Transaction Logic because Horn version of TR has both procedural and declarative

semantics.

The most important operator that TR extends the syntax of first-order logic is the

binary operator, ⊗, called serial conjunction. The formula ψ ⊗φ means “First

execute transaction ψ then execute transaction φ.” To build a wide variety of

formulas, TR combines serial conjunction operator with the standard logical

operators such as ¬,∧, and ∨. By combining simple actions into complex ones TR

increases its expressiveness and supports wide range of functionality in different

application areas such as database queries and updates, bulk updates, transaction

definition, deterministic and non-deterministic transactions, conditions on actions

etc. [2].

Hung in [2] implemented Transaction Logic and evaluated the performance in

different environments. Hung developed four prototypes ranging from slow but

simple ones to fast but complex ones. The results of Hung’s work show that in

some implementations, Transaction Logic programs achieve more efficiency

comparable to programs with destructive updates in procedural programming

languages [2].

2.2. Overview of Concurrent Transaction Logic Programming

CTR is an extension of TR which models concurrent execution of complex

processes by introducing new connectives. Concurrency feature of CTR increases

the flexibility, performance and power of the language [3]. CTR integrates

concurrency, communication, and database updates in a completely logical

framework. [3] This feature of CTR makes it unique among the other deductive

databases. Natural model theory and proof theory of CTR can be found in [4, 5].

 7

CTR, covers concurrent access to shared resources, communication between

sequential processes, and isolating the inner workings of a group of processes form

the outside world which many of them are features of process algebras [6]. For

example in [4] it is explained that CTR is compositional that is processes are

defined recursively in terms of sub-processes. This means that it is possible to

specify multi-level processes, even when the number of levels is determined at

runtime. In [4] it is also explained that, CTR provides high-level support for

database functions. These include declarative queries bulk updates, views, and

serializability. CTR also has many features of advanced transaction models,

including sub-transaction hierarchies, relaxed ACID requirements and fine-grained

control over abort and rollback [19]. This integration of process modeling and

database functionality is reflected in the formal semantics of CTR, which is based

on both database states and events, while the semantics of process algebras is

based entirely on events [3]. Most recent implementation of CTR including two

optimizations are presented in [3].

2.3. Overview of Concurrent Constraint Transaction Logic

Programming

Concurrent Constraint Transaction Logic is extension of Concurrent Transaction

Logic (CTR) which integrates CTR with Constraint Logic Programming. CCTR

can be used to model and schedules workflows that obey wide range of resource

allocation problems [8].

2.3.1 Syntax

“The alphabet of CCTR consists of four countable sets of symbols: a set F of

function symbols, a set V of variables, a set P of (regular) predicate symbols and

a set C of constraint predicates. Each function, predicate and constraint predicate

symbol has an arity, which indicates the number of arguments the symbol takes.

Constants are viewed as 0-arity function symbols and propositions are viewed as

0-arity predicate symbols. A term is a constant or has the form f(t1, ..., tn),

where f is a function symbol of arity n, and t1, ..., tn are terms.”[8]

 8

CCTR models workflows and constraints using the rule-based paradigm, and

workflows are represented using only a subset of CCTR: rules and goals.

Definition 2.3.1 CCTR goals are recursively defined as follows:

• Atomic goal: p(t1,..,tn), where p ∈ P

• Serial goal: φ1⊗…⊗φ2, where each φi is a CCTR goal

• Parallel goal : φ1⏐…⏐φ2, where each φi is a CCTR goal

• Disjunctive goal : φ1∨…∨φ2, where each φi is a CCTR goal

• Constraint goal : φ1∧constr, where each φi is a CCTR goal and constr is a

Boolean expression.

We can define House Construction example in section 1.2 in CCTR Syntax as
follows.

wall⊗((((carpentry⊗roof)|installations)⊗the-middlepiece)|ceiling)
⊗paint⊗move

The middle piece defined separately as :

(façade-paint ∨ façade-vinyl) | (wooden-windows ∨ metal-windows) |
gardening
2.3.2 Semantics.

In CTR, serial and concurrent execution is modeled as m-paths which is not

sufficient to model resource requirements of CCTR. For this purpose partial

schedule is introduced in [8] which adds more structure to m-paths. Partial

schedules are defined in terms of two operators: •p, ||p

Definition 2.3.2 A partial Schedule is defined as follows:

• An m-path, π, is a partial schedule

• Serial composition of two partial schedules, ω1 •p ω2, is a partial schedule

• Parallel composition of two partial schedules, ω1 ||p ω2, is a partial
schedule

 9

Other notations introduced by CCTR for defining and solving resource allocation
constraints are resource and resource assignments.

Definition 2.3.3 A resource is an object that represents a physical or abstract

resource that is needed for a workflow to execute. It is assumed that each resource

has one or more associated use costs of different kinds, and that these costs are

represented by the attributes of the resource.

Definition 2.3.4 A resource assignments is a partial mapping from partial

schedules to sets of resources. Any resource assignment, must satisfy the following

conditions:

• ε(ω1 •p ω2) = ε(ω1) ∪ ε(ω2), if both ε(ω1) and ε(ω2) are defined

• ε(ω1 ||p ω2) = ε(ω1) ∪ ε(ω2), if both ε(ω1) and ε(ω2) are defined

Last definition needed to complete the CCTR semantics is constraint universe

definition.

Definition 2.3.5 A constraint universe D is a set of domains together with some

relations over these domains.

The domains in a constraint universe include scalar domains such as integer, float,

or string and special CCTR domains of partial schedules, resources, resource

assignments.

2.3.3 CCTR as Workflow Scheduler.

The algorithm for scheduling workflows subject to cost and resource algorithms is

as follows: A CCTR goal is formed that specifies the control flow of a workflow

plus resource allocation and cost constraints. CCTR goal is transformed into a

CTR goal where resource allocation and costs are incorporated as postconditions

rather than conjuncts. Since output goal does not contain ∨ logical connective it

can be executed using CTR[3] proof theory. Execution of CTR finds partial

schedules and generates constraint set for constraint solver. Constraint solver

determines a complete schedule of tasks that is consistent with the given goal and

outputs the resource assignment that obeys the resource and cost constraints.

Architecture of CCTR Scheduler is shown in Figure 2.2.

 10

Figure 2.2: The Big Picture.

2.3.4 Transformation Rules

As stated before purpose of the transformation step is to get a CTR formula so that

it can be evaluated by using the proof theory of [3]. The transformation rules are

shown in Table 2.1. For the simplicity of notation it is assumed that cost and

resource constraints are represented by a single atomic formula of the form c(t1

..t2), where c ∈ C.

 11

Table 2.1: Transformation Rules.

 Θ(G): Θ1(DNF(G)) ; Θ1 is described below.

 Transformation Θ1; uses auxiliary transformation Θ2

(1) Θ1(A): A ⊗ resource(A, ResourcesA), if A is a an atomic formula

 resource is the assignment predicate; ResourcesA is a new variable

(2) Θ1(G∧constr): Θ1(G) ⊗ constr(Θ2(G)), constr ∈ C is constraint
predicate and constr is a new predicate that simulates CD - interpretation
of c in constraint universe D. Θ1 is defined below

(3) Θ1(G1 op G2): Θ1(G1) op Θ1(G2), if op is |, ⊗, or ∨

 Auxiliary transformation Θ2;

(1) Θ2(A): ResourcesA, if A is an atomic formula ResourcesA is the same
variable that was used in step (1) of Θ1 .

(2) Θ2(G∧constr): Θ2(G), where constr ∈ C is a constraint predicate

(3) Θ2(G1 ⊗ G2): •p(Θ2(G1), Θ2(G2))

(4) Θ2(G1 | G2): ||p(Θ2(G1), Θ2(G2))

2.3.5 Constraint Definitions

Definition of new predicate constr introduced in transformation rules depends on

the semantics of constr, so it is not possible to define a general transformation that

will adjust all cases. However using common properties of resource and cost

constraints we can define templates for them.

Resource Template:

rsrc_constr (Args, •p(G1,G2)) rsrc_constr(Args, G1), rsrc_constr(Args, G2),

 test_rsrc serial (Args, G1,G2)

rsrc_constr (Args, ||p (G1,G2)) rsrc_constr(Args, G1), rsrc_constr(Args, G2),

 test_rsrc parallel (Args, G1,G2)

 12

Cost Template:

cost_constr(Args,G) aggregate _cost (Args, Cost), cost_test (Args,Cost)

aggregate _cost(Cost, •p(G1,G2))

aggregate _cost (Cost, G1), aggregate _cost (Cost, G2),

combine serial (Cost, G1,G2)

aggregate _cost (Cost, ||p (G1,G2))

aggregate _cost (Cost, G1), aggregate _cost (Cost, G2),

 combine parallel (Cost, G1,G2)

2.3.6 CTR Interpreter

The transformed workflow is passed to the CTR interpreter [3], which tries to find

a valid execution of the workflow using the inference rules of the CTR proof

theory. Any path produced by the CTR Interpreter is a valid serialization of the

workflow execution. Constraint solving process of CCTR Scheduler needs to

obtain partial scheduler structure from CTR interpreter. In order to capture partial

schedule structure from CTR Interpreter, goal transformation process creates

additional argument, and CTR Interpreter defines a new predicate, called

schedule(Task). Details are given in Chapter 5 of this thesis.

2.3.7 Constraint Solver

The role of Constraint Solver is to process the constraints that are found by CTR

Interpreter while it searches for valid execution of the given workflow. Any

solution to the constraint set is a valid resource assignment for the workflow

schedule produced by the interpreter [8]. In the implementation constraint solver

library of SWI is used. Although CTR Interpreter is a XSB application, SWI is

used to show that any off-the-shelf constraints solver that is compatible with the

defined constraints can be used.

 13

CHAPTER 3

THE CCTR ENVIRONMENT

CCTR Environment is constituted by integrating three platforms: Java platform,

XSB Platform, and SWI Platform. Figure 5 depicts the general architecture and

gives an overview of the interaction between these platforms:

Figure 3.1: Architectural overview of CCTR Environment.

Java Platform: Application framework of CCTR Environment is developed on the

Java Platform. All the user interactions are controlled by the GUI developed on

 14

the top of this platform. Main components of CCTR GUI are CCTRflow Designer

and Result Interface. CCTRflow Designer is a “What You See What You Get”

(WSYWYG) designer specially developed for CCTR Environment. It enables to

create CCTRflows with drag and drop facilities in an easy way to the user. The

execution of CCTRflow is tracked by Result Interface. Interactions with other

platforms are also managed from the java platform with the help of Interprolog

communication framework.

XSB Platform: XSB Platform is the platform that holds the CCTR Interpreter.

XSB platform executes any CCTRflow with constraints assignments provided by

Java Platform and finds partial schedules and creates its corresponding constraint

sets for SWI platform.

SWI Platform: SWI platform tries to find a solution for constraint set provided

by XSB platform via Java Platform and return the results to Java Platform to

represent to the user.

The detail of the implementation is explained Chapter 5 of this thesis.

3.1. Design Goals

The main goal of this thesis is to implement CCTR Interpreter and develop an

extensible and flexible graphical user interface for the CCTRflows. On the other

hand achieving this goal requires to integrate different systems in different

platforms. In this respect, developed CCTR Environment must be integrated in a

way that gives users the feeling of using a single application. Beside the demands

of the users, it must also meet the demands of application programmers who wish

to extend the system and of third parties who wish to customize the system.

Consequently main design goals in this thesis can be summarized as:

Conformance to standards: The GUI must conform to the Java Look and Feel

Guidelines. It should also be similar to other applications the users know from

similar domains.

 15

Models and mappings: The GUI must provide a good conceptual model of the

CCTR Framework. It must support the user by providing natural mappings

between theory and implementation.

Accessibility: All important functions should be accessible easily. It should give

user to configure some of the options.

Extensibility: The Application framework must provide a simple way to extend

the functionality of CCTR.

Platform Independency: The developed CCTR environment must be available in

a platform independent way. It should follow the promise “write once, run

anywhere”

3.2. Evaluation of Utilized Technologies

In this section, some of the technologies that are selected for the implementation of

CCTR Environment, according to design goals above will be explained. Main

technologies used in the implementation are JAVA J2SE[14], JGraph[17],

InterProlog[18], XSB[15] and SWI[16].

JAVA J2SE: “Java Platform, Standard Edition (also known as Java 2 Platform)

lets to develop and deploy Java applications on desktops and servers, as well as

today's demanding Embedded and Real-time environments”[14]. Java is the name

of programming language used by Java Platform. “Java is a simple, object-

oriented, network-savvy, interpreted, robust, secure, architecture neutral, portable,

high-performance, multithreaded, dynamic language” [14]. The ability to write

code that can be executed on any platform which has a Java virtual machine ported

to it is the most significant reason for the selection of Java Platform as the

implementation platform of CCTR Environment.

JGraph: “JGraph is nature, feature-rich open source graph visualization library

written in Java. JGraph is a swing compatible library, both visually and its design

architecture. It provides a range of graph drawing functionality for client-side or

server-side applications. JGraph has a simple, yet powerful API enabling you to

 16

visualize, interact with, automatically layout and perform analysis of graphs”[17].

Support of dragging and cloning cells, re-sizing and re-shaping, connecting and

disconnecting facilities of JGraph made the development of CCTRflow graphical

designer tool easier and fast.

InterProlog: “InterProlog is a Java front-end and enhancement for Prolog.

InterProlog is an open source Java front-end and functional enhancement for

standard Prologs, running on Windows, Linux and Mac OS X, and currently

supporting the top open source logic engines. Mutual recursion and (Java)

multithreading are supported. Java Reflection and Serialization mechanisms,

together with Prolog’s natural strengths, are used to give the combination great

flexibility and dynamism. Rather than tasting like an objectified Prolog/C

interfaces, InterProlog provides a higher-level API equating objects to terms,

inducing a more concise and declarative programming style”[18]. InterProlog

framework provided a flexible communication between Prolog and Java by

hiding various details of platform interactions. Interprolog enabled to call any

Prolog goal from Java side and to call any java method from prolog side with a

single instruction.

XSB: “XSB is a Logic Programming and Deductive Database system for Unix and

Windows. It is being developed at the Computer Science Department of the Stony

Brook University, in collaboration with Katholieke Universiteit Leuven,

Universidade Nova de Lisboa, Uppsala Universitet and XSB, Inc.”[15]

SWI: “SWI-Prolog offers a comprehensive Free Software Prolog environment,

licensed under the Lesser GNU Public License. Together with its graphics toolkit

XPCE, its development started in 1987 and has been driven by the needs for real-

world applications. These days SWI-Prolog is widely used in research and

education as well as for commercial applications.”[16]

http://www.cs.stonybrook.edu/
http://www.stonybrook.edu/
http://www.stonybrook.edu/
http://www.kuleuven.ac.be/
http://www.unl.pt/
http://www.uu.se/
http://www.xsb.com/

 17

CHAPTER 4

USER INTERACTION AND GRAPHIC DESIGN

This chapter presents the graphical design developed for the CCTR Environment.

Underlying design decisions are discussed and compared to the criteria given in

Chapter 3. Additionally this chapter can be considered as the user’s manual of

CCTR Environment.

4.1. CCTR Environment Introduction

A typical user scenario in CCTR environment is as follows:

− CCTR Application is started

− A new CCTRflow diagram is created or a previously saved diagram is

opened.

− A CCTRflow is formed according to business requirements using

WYSWYG editor.

o CCTRflow tasks are created and named.

o CCTRflow constraints are created and named

o CCTRflow resources are defined

o Resource assignments for each task is made

o Cost assignments for each task is made

o Constraints arguments for each constraint are defined.

− The new CCTRflow is executed.

 18

− Each partial schedule found by CCTR Interpreter and, if any, its resource

assignment obeying the specified constraints showed to user.

To illustrate the typical usage of CCTR Environment a subpart of “House

Construction Workflow” problem defined in Example 1.1 will be used in the rest

of this thesis.

Example 4.1: Example 4.1 is subpart of the Example 1. 1 that spans carpentry,

roof, installations and gardening tasks. The task names are abbreviated to

c,r,i,g respectively for illustrative purposes. The precedence relations: task c

must be completed before task r starts, task [c,r],[i],[g] can be done in parallel.

There are three machine resources r1, r2, r3, each capable of doing c,r tasks.

Tasks i,g can be done only by resources r1, r2. All resource task couples have

different time, cost, and price value. Values for the example are shown in Table

4.1. The resource allocation and cost constraints are as follows:

− The total price cost of completing c,r tasks should be less than 15000 $

− The total price cost of the workflow should be less than 30000 $

− The total duration of the workflow should be less than 10 days.

− The set of resources assigned to concurrent braches should be disjoint.

 19

Table 4.1: Example 4.1 Constraints Table.

Task Resource Price Duration

carpentry R1 1000 1

 R2 3000 2

 R3 8000 3

roof R1 2000 3

 R2 4000 4

 R3 6000 5

installations R1 9000 1

 R2 7000 2

gardening R1 6500 5

 R2 7500 7

4.2. Starting CCTR Environment

As explained in Chapter 3, CCTR Environment integrates three platforms namely,

Java, XSB and SWI. Although, all Java applications are platform independent

there is still need to make some configuration in order to integrates these

platforms. In CCTR Environment, all configurations related to the application are

kept in an XML file. All settings in configuration file can be modified using

Configuration Window shown in Figure 4.1 The details about configuration and

how to start CCTR Environment are explained in Appendix A. “Tutorial: Starting

CCTR Environment”.

 20

Figure 4.1: Configuration window.

4.3. CCTR Application

All of the user interactions during the realization of the scenario in 4.1 is

controlled by main application window showed in Figure 4.2.

 21

Figure 4.2: Main window of CCTR Environment.

Main application window consist of a menu bar that holds the menu items for

triggering various CCTR actions, a toolbar that holds some of the frequently used

menu items, a CCTRflow palette that holds the selection button elements for

CCTRflow, a CCTRflow panel that holds the diagram of CCTRflow, a console

panel that shows messages created by Java and Prolog , and a status bar that

informs user about the state changes in the application.

4.4. Menu Overview

In this section a brief overview of CCTR menu located on top of CCTR

environment will be explained.

Figure 4.3: Main Menu of CCTR Environment.

 22

CCTR: CCTR Menu holds all the standard file options of Create, Open, Save,

Close and Exit for CCTRflow design files. It also contains menu items to manage

resource and cost definitions, to configure CCTR options and to print CCTRflow

diagram.

CCTRflow: CCTRflow menu provides options to create, remove, and run the

currently selected CCTRflow. It also contains menu items for setting flow

resources, showing CCTR syntax, exporting CCTRflow diagram to a image file

and showing result window.

Edit: Edit Menu provides the standard options of Undo, Redo, Cut, Copy, Paste

and Delete objects within CCTRflow diagram.

Elements: Elements menu allows user to align CCTRflow elements within the

diagram and modify their sizes.

View: View menu allows to turn off/on tool tips, grids in diagrams, anti-alias in

diagrams.

Help: Help menu contains standard help menu items like author, copyright,

acknowledges, and help contents.

4.5. Creating CCTRflow Diagrams

In this section a step by step guide for creating CCTRflow diagram will be

explained. The example defined in 4.1 will be used for the illustration purpose.

Step 1.To create a new CCTRflow user selects the CCTR Create Design menu

item. Clicking this menu items enables the Pallet Bar and creates an empty canvas

for editing CCTRflows. Created canvas contains a Start and Finish element by

default. These default elements can’t be removed from any CCTRflow diagram.

Palette Bar: Palette Bar holds nine selector buttons that is used with creation,

selection and positioning of CCTRflow elements within in the diagram. The

Palette bar items are also accessible by right-clicking anywhere on a CCTRflow

diagram that does not contain an element. Once an element is selected, it is

possible to drop the selected element in the canvas by left- clicking the mouse

button. Available CCTRflow elements and their usages are explained in Table 4.1.

 23

Table 4.2: CCTRflow palette elements.

ICON NAME EXPLANATION

 CCTR Task

Selecting this button creates an atomic task which will

be performed by any external factor. This diagram

element corresponds to the Atomic Goal in definition

2.3.1

Sequence of this diagram element corresponds the

Serial Goal of definition 2.3.1

Parallel(AND)

Split

Selecting this button creates a Parallel Split element that

shows the start of any parallel branch in a diagram.

Parallel(AND)

Join

Selecting this button creates a Parallel Join element that

shows the end of any parallel branch in a diagram.

Parallel Split and Parallel Join Elements together

corresponds the Parallel Goal of definition 2.3.1

Disjunctive(OR)

Split

Selecting this button creates a disjunctive(OR) Split

element that shows the start of any selection branch in a

diagram.

Disjunctive(OR)

Join

Selecting this button creates disjunctive(OR) element

that shows the end of any selection branch in a diagram.

Disjunctive Split and Disjunctive Join Elements

together corresponds the Disjunctive Goal of definition

2.3.1

)
Table 4.2: CCTRflow palette elements(Continued
 24

Cost Constraint

Selecting this button creates a cost constraint element

that enables to define cost constraints in a diagram

This diagram element corresponds the Constraint Goal

of definition 2.3.1

Resource
Constraint

Selecting this button creates a resource constraint
element that enables to define resource constraints in a
diagram

This diagram element corresponds the Constraint Goal
of definition 2.3.1

 Flow Connector Selecting this button creates flow connector that enables
to connect created elements in a diagram.

Element
Selector

Selecting this button enables to select CCTRflow
diagram elements for processing(resizing, deleting,
moving etc.)

Step 2. Second step of creating CCTRflow is dragging and dropping necessary

elements from palette bar to the canvas and connecting them using Flow

Connector according to problem requirements. At this step various alignment

properties in the Elements menu can be used for arranging CCTRflow diagrams.

Step 3. At the third step, user names CCTR tasks, cost and resource constraints.

Any name can be given for CCTR task by simply right clicking specified task and

entering the name to the opened input dialog. Unlike CCTR tasks, cost and

resource constraints must be selected among the predefined constraints. Constraint

definitions are managed via the CCTR Update Cost Constraint Definitions and

CCTR Update Resource Constraint Definitions menu items.

Step 4. In this step user defines the resources that will be used in current diagram.

For this purpose user clicks the CCTRflow Define Resources menu item.

Clicking menu item opens the dialog window showed in FigureXX. With define

resource window user can add, remove resources for the current CCTRflow.

 25

Figure 4.4: Define resources window

Step 5. In this step user makes the resource and cost assignments for each task

and sets the argument for each constraint. For this operation user uses the pop-up

menu accessed by right clicking the specified CCTR task element or CCTR

Constraint. The window used for resource cost assignment is showed in Figure

4.5.

Figure 4.5: Define resource costs window

Step 6.For the last step user saves created diagram by simply clicking the

CCTR Save menu item. Created diagram for “Example 4.1” is showed in Figure

4.6.

 26

Figure 4.6: House Construct CCTRflow diagram

4.6. Running CCTRflows

After creating a valid CCTRflow, it can be executed by clicking the

CCTRflow RunCCTR menu item or clicking the item in the toolbar. Executing

of CCTRflow starts with constructing the CCTR syntax of diagram. Constructed

syntax by visiting all the diagram elements recursively is showed to the user on the

bottom of the main window. Syntax constructed for Example 4.1 is

“((((c*r)&cost_price[15000])#(g#i)))&cost_price[30000]&cost_duration[10]& rsrc_disjoint[0]

Another output of visiting all diagram elements is a file that holds all resource and

cost predicates.

4.7. Showing Results

While executing a CCTRflow, a progress and result window is presented to the

user. Window represents the Start and Finish time of CCTR goal, list of all partial

schedules found and ,if any, all the resource assignments. User can access the last

CCTRflow result window from CCTRflow Show Result Window.

 27

Figure 4.7: House Construct CCTRflow Results

 28

CHAPTER 5

DESIGN AND IMPLEMENTATION

This chapter describes design and implementation of CCTR Environment. As

explained in the chapter 3 of this thesis, CCTR Environment integrates three

platforms in order to achieve the goals of this thesis. This chapter gives

information about details of design and implementation for each platform.

Although physically three platform is used for the implementation, conceptually

system can be analyzed in two parts, Application Control and GUI(Java Part) and

CCTR Scheduler (Prolog Part) .

5.1. Application Control and GUI(Java Part)

As stated before CCTR Environment is a Java Application that communicates with

XSB and SWI. In chapter 4, detail explanation of Graphical User Interface was

given. In this section, menu events, windows events and java programming related

implementation details are skipped. Since application conforms to the common

java development standards any one familiar with java programming can easily

figure out it. Instead, data structures used in the development of CCTRflow

diagram, and how CCTR formulas are formed from the diagram will be explained.

Forming CCTR Syntax From CCTRFlow Diagram:

Creating of CCTR syntax from the CCTRflow diagram is achieved simply by

visiting the diagram elements recursively and collecting the data associated with

them. There are three outputs that span the CCTRFlow diagram; a string that

holds CCTRflow in CCTR syntax, a file that holds resource and cost predicates,

another file that holds resource and cost constraints definitions.

 29

When generating CCTR Syntax, CCTRFlow diagram element CCTR Syntax

equivalences are used. CCTRFlow diagram elements and their equivalences in

CCTR goal and CCTR Syntax are explained in Table 5.1.

Table 5.1: CCTRflow palette elements.

DIAGRAM

ELEMENT
NAME CCTR GOAL CCTR SYNTAX

 CCTR Task Atomic goal: Task Name

 ….
CCTR Task

Sequence
Serial goal: φ1⊗…⊗φ2 (φ1*…*φ2)

 …..
Parallel(AND)

Split and Join
Parallel goal : φ1⏐…⏐φ2 (φ1#…#φ)

 ……
Disjunctive(OR)

Split and Join

Disjunctive goal:

φ1∨…∨φ2
(φ1\/…\/φ2)

 Cost Constraint
Constraint goal :

φ1∧constr

/\

cost_ConstraintName

Resource

Constraint

Constraint goal :

φ1∧constr
/\ rsrc_ConstraintName

 …… Start, Finish - (…….)

In order to create a valid CCTR Syntax from a CCTRflow following properties

should be associated for CCTR Task elements and Constraint Elements.

CCTR Task:

Name: Name of Task

 30

Resources Assignments: Every task holds the data of resource assignments

associated with it.

Cost Assignments: Every task holds the data of cost assignments associated with

it.

CCTR Constraint:

Name: Name of the Resource or Cost Constraint.

Arguments: Arguments of the Resource or Cost Constraint

Generated CCTR Syntax for Example 4.1 is:

((((c*r)&cost_price[15000])#(g#i)))&cost_price[30000]&cost_duration[10]& rsrc_disjoint[0]

Second output of spanning CCTRflow diagram is a file that contains all the

resource and cost assignments. When traversing CCTRflow for every resource

assignment of a task predicate resource(Task,Resource) is created. Similarly, for

every cost assignment of a task predicate constraintName_of

(Task,Resource,Cost) is created.

Third output is the file that contains predefined constraint definitions. It contains a

predicate for each constraint in CCTRflow diagram. Definitions of constraint are

created by using the templates explained in 2.3.4

5.2. CCTR Scheduler(Prolog Part)

After handling all the user interactions, Java Part, generates three input for CCTR

Scheduler; A string that holds CCTRflow in CCTR syntax, a file that holds

resource and cost predicates, another file that holds resource and cost constraints

definitions. The details of these inputs were explained in 5.1.

To pass the control of the system to the Prolog Part, Java Part first loads the

CCTRload.P prolog file and then calls the cctr goal in it by using the deterministic

Goal method of XSBPrologEngine class. Calling cctr goal starts the execution of

CCTR Scheduler which consist of four subsystem, CCTRLoader, Transformer,

CTR Interpreter, and Constraint Solver.

 31

CCTRLoader: CCTRLoader subsystem is responsible for preparing scheduler

(compiling, consulting prolog files etc.) and controlling the flow of the application

in prolog side. Entry point in CCTRLoader is the

cctr(WorkFlow,CctrFilename,IsAll) predicate.

WorkFlow: String presentation of workflow to be scheduled in CCTR syntax.

CctrFilename: File with a .cctr extension that holds all the resource and cost

predicates.

IsAll: Boolean flag for controlling partial schedules. If this flag is true all possible

partial schedules are checked for a valid schedule otherwise execution stops when

a valid schedule with resource assignments is found.

An example of calling cctr predicates for the Example 4.1 is as follows.

Example 5.2.1

cctr(‘((((c*r)&cost_price[15000])#(g#i)))&cost_price[30000]&cost_duration[10]&

rsrc_disjoint[0]’,’ CCTR_HOME/example14.cctr’,true).

Initializing the CCTR Scheduler: Initializing starts with compiling and consulting

the source files. All the CCTR Scheduler source files resides in CCTR

_HOME/XSB/ directory. The content of this directory is as follow.

• CctrLoad.P: Predicates for starting and controlling CCTR Scheduler.

• Transformation.P: Predicates that carry out the transformation explained in

2.3

• Upload.P: A module that loads the CTR transactions base into the XSB[3]

• Parser.P: A parser for CTR rules[3]

• Ctr.P: The basic CTR Interpreter and code for backtrackable updates. [3]

• Constraints.P: Holds the dynamically created resource and cost definition

predicates that generates constraint set for the executing scheduler.

 32

One of the design goals of the CCTR Scheduler is reusing the CTR

implementation in [3] as much as possible. For this purpose, CCTRLoad and

Transformer subsystems makes some processing on CCTR goal and input file that

contains resource and cost constraints and generates a transaction base file which

is acceptable by CTR Interpreter.

Transformer: Transformation algorithm given in 2.3.3 is implemented in

Transmformer.P module. Transformation is implemented as Definite Clause

Grammar(DCG) in XSB. Since it is easy to apply transformation algorithm

extensions, writing a context free grammar preferred instead of string processing.

Grammar source is presented in Appendix 2. For the implementation purposes the

algorithm given in 2.3.3 is slightly modified. Modified algorithm is given in Table

5.2. When transforming CCTR goal, a list of task, Resource Variable is also

created. Purpose of this list is to pass the result of CCTR scheduler or resource

assignments to Java Part.

Table 5.2: Modified Transformation Rules.

 Θ(G): Θ1(G)

 Transformation Θ1; uses auxiliary transformation Θ2

(1) Θ1(A): A , if A is a an atomic formula

(2) Θ1(G∧constr): Θ1(G) ⊗ constr(Θ2(G)), constr ∈ C is constraint
predicate and constr is a new predicate that simulates CD - interpretation
of c in constraint universe D.

(3) Θ1(G1 op G2): Θ1(G1) op Θ1(G2), if op is |, ⊗, or ∨

 Auxiliary transformation Θ2;

(1) Θ2(A): const(A, VarA), if A is an atomic formula const is a constant
predicate used by implementation. VarA is a new variable that represents the
resource assignment of A.

(2) Θ2(G∧constr): Θ2(G), where constr ∈ C is a constraint predicate

 33

(3) Θ2(G1 ⊗ G2): •p(Θ2(G1), Θ2(G2))

(4) Θ2(G1 | G2): ||p(Θ2(G1), Θ2(G2))

(5) Θ2(G1 ∨ G2): γp(Θ2(G1), Θ2(G2))

Transformation process starts with calling cctr_trans(WorkFlow,ResultVar,Out)

predicate.

WorkFlow: String presentation of workflow to be scheduled in CCTR syntax.

ResultVar: Variable which will hold the Task, Resource Variable pair list. This

List will be used to pass CCTR Scheduler to Java Part. In the implementation

‘DummyVariable’ name is used.

Out: Transformed CCTR Syntax.

Transformed syntax for the example workflow syntax in 5.2.1 is as follows

Out: ((((g#i)#((c*r)))))*(

DummyVariable=[[g,'G'],[i,'I'],[r,'R'],[c,'C']],

Constraints=[

cost_price([15000],@(const(c,'C'),const(r,'R'))),

cost_price([30000],$($(const(g,'G'),const(i,'I')),@(const(c,'C'),const(r,'R')))),

cost_duration([10],$($(const(g,'G'),const(i,'I')),@(const(c,'C'),const(r,'R')))),

rsrc_disjoint([0],$($(const(g,'G'),const(i,'I')),@(const(c,'C'),const(r,'R'))))],

compile_constraints(Constraints,FileName,DummyVariable),execute_constraints(

FileName)).

Transformer uses following syntax instead of the predicates introduced in 2.3.3

Table 5.2: Modified Transformation Rules(Continued).

 34

Table 5.3: Transformer partial predicates equivalences .

Serial Partial •p @

Parallel Partial ||p $

Disjunctive Partial γp ^

CTR Interpreter: The CTR Interpreter implementation developed in [3] is used

for CCTR Scheduler. Only modification to this implementation is addition of

schedule(Task) predicate and onBacktrackingSchedule(Task) predicates. These

two predicates are needed for two purposes. First one is to provide found partial

schedules to GUI part during the execution. Second one is to handle disjunctive

goals in CCTR formulas. In [8], CCTR formulas are first transformed to

Disjunctive Normal Form(DNF) before applying the Transformation rules in Table

2.1. DNF transformation phase role is to eliminate disjunctions from constraints

definitions. In this implementation instead of using DNF, partial_schedule(Task)

predicate is used in the constraint generation step in order to test whether a task in

disjunctive goal is in partial schedule or not. Algorithm is as follows:

schedule(Task) is called whenever a task called or committed. It appends the

Task into the maintained partial schedule list and asserts the

partial_schedule(Task) predicate.

onBacktrackingSchedule(Task) is called whenever a task is backtracked or roll

backed. It reverses operation of schedule(Task) predicate. It removes the Task

from the maintained partial schedule list and retracts partial_schedule(Task)

predicate.

 35

Constraint Solver: Constraint solver mechanism is as follows. Each time CTR

Interpreter found a partial schedule, a constraint set file with extension .cst is

created. Constraint file contains all resource and cost predicates and a new

predicate executeConstraints([PartialSchedule]). executeConstraints predicate

body is created dynamically by CTR Interpreter using the constraint definitions of

workflow. executeConstraints([PartialSchedule]) finds all of the resource

assignments for the current schedule.

For the implementation of constraint solver SWI[16] clp/bounds library is used.

The bounds solver is a rather simple integer constraint solver, implemented with

attributed variables. Its syntax is a subset of the SICStus[21] clp(FD) syntax. SWI

clp/bounds library suited well for our examples.

 36

CHAPTER 6

CONCLUSIONS

In this thesis, we implemented a logical framework proposed for scheduling

workflows under resource allocation constraints and developed an extensible and

flexible graphical user interface for the proposed framework . Formalization of this

framework developed in [8] is called Concurrent Constraint Transaction Logic that

integrates Concurrent Transaction Logic [4] with Constraint Logic Programming

[20]. Implementation of semantic formalism and provided algorithm resulted in

correct solutions for workflow scheduling under resource allocation constraints.

The developed system, which integrates Prolog and Java Platforms, is designed to

serve as the basis for many application domains that involves CCTR based

workflows and schedulers. For example, implemented CCTR Scheduler and

developed CCTR Environment can be extended to use by workflow scheduling,

resource management in workflows, scheduling and planning, and agent-based

workflow systems. CCTR Scheduler can also be used for composing Web services

in which Web Services are modeled as resources in conjunction with a planning

system [8]

As a future work developed system can be extended with special-purpose

constraint solvers optimized for workflow scheduling. For instance, Constraint

handling rules (CHR)[21] which is a concurrent committed-choice constraint

programming language can be used to extend Constraint Solver part of the

implementation.

 37

REFERENCES

1. A.J. Bonner and M. Kifer. Transaction logic programming. Technical
Report CSRI-323, Computer Systems Research Institute, University of Toronto,
April, 1995.

2. Samuel Y.K Hung . Implementation and performance of transaction logic
in Prolog. Degree of Master Science, Department of Computer Science ,
University of Toronto, 1996

3. Amalia F. Sleghel . An optimizing interpreter for concurrent transaction
logic. Degree of Master Science, Department of Computer Science , University of
Toronto, 2000

4. A.J. Bonner and M. Kifer. Concurrency and communication in transaction
logic. In Joint Int’l Conference and Symposium on Logic Programming, pages
142–156, Bonn, Germany, September 1996, MIT Press.

5. A.J. Bonner and M. Kifer. Transaction logic programming. In Int’l
Conference on Logic Programming, pages 257–282, Budapest, Hungary, June
1993. MIT Press.

6. A.J. Bonner. Workflow, transactions, and datalog. In ACM Symposium on
Principles of Database Systems, Philadelphia, PA, May/June 1999.

7. H. Davulcu, M. Kifer, and I.V. Ramakrishnan. Ctr-s: A logic for specifying
contracts in semantic web services. In 13th International World Wide Web
Conference (WWW2004), May 2004.

8. P.Senkul, M.Kifer, and I.H. Toroslu. Logic based-modeling and
scheduling of workflows under resource and cost constraints. , September 2005.

9. Special issue on workflow systems. Bulletin of the Technical Committee
on Data Engineering (IEEE Computer Society), 18(1), March 1995.

10. D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow
management:From process modeling to infrastructure for automation. Journal on
Distributed and Parallel Database Systems, 3(2):119–153, April 1995.

11. G. Alonso, D. Agrawal, A. El Abbadi, and C. Mohan. Functionality and
Limitations of Current Workflow Management Systems. In IEEE-Expert. Special
issue on Cooperative Information Systems, 1997

 38

12. F.Wan, K.Rustogi, J.Xing, and M.P. Singh. Multiagent workflow
management. InIJCAI Workshop on Intelligent Workflow and Process
Management: The New Frontier for AI in Business, Stockholm, Sweden, August
1999.

13. C. Schulte and G. Smolka. Finite Domain Constraint Programming in Oz.
A Tutorial. Version1.1.0, February 2000.

14. Java Official Web Site http://java.sun.com, August 2006

15. XSB Web Site http://xsb.sourceforge.net/, August 2006

16. SWI Web Site http://www.swi-prolog.org/, August 2006

17. JGraph Web Site http://jgraph.sourceforge.net , August 2006

18. InterProlog http://www.declarativa.com/InterProlog/default.htm , August

2006

19. A.J. Bonner. Transaction Datalog: a compositional language for transaction
programming. In Proceeding of the International Workshop on Database
Programming Languages, number 1369 in LNCS, pages 373-395. Springer-
Verlag, 1998. Workshop

20. J.Jaffar and J.-L Lassez Constraint logic programming: A survey . Journal

of Logic Programming, 19-20 May 1994

21. T.Frihwirth Programming in Constraint Handling Rules,

www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/ ,August 2006

22. SICStus prolog. http://www.sics.se/isl/sictus.html, , August 2006

http://java.sun.com/
http://xsb.sourceforge.net/
http://www.swi-prolog.org/
http://jgraph.sourceforge.net/
http://www.declarativa.com/InterProlog/default.htm
http://www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/
http://www.sics.se/isl/sictus.html

 39

APPENDIX A

TUTORIAL : STARTING CCTR ENVIRONMENT

The following is a tutorial on how to get started using CCTR Environment. This

tutorial assumes that Windows or Linux operating systems are used. The

instructions are analogous for other operating systems as well

1. Installing Java: CCTR Environment requires that the Java Software

Developers Kit JDK 1.4 or later be installed. If JDK 1.4 does not exist in

your computer download and install it from http://java.sun.com

/j2se/1.4.2/download.html.

2. Installing XSB: CCTR Scheduler part of CCTR Environment requires that

XSB Version 2.7.1 or later be installed. XSB can be downloaded and

installed from http://xsb.sourceforge.net

3. Installing SWI: Constraint solver part of CCTR Environment requires that

SWI Prolog version 5.6.1 or later be installed. SWI prolog can be

download and installed from http://www.swi-prolog.org

4. Installing CCTR Environment: Download the cctr{version}.zip file, and

expand it into somewhere in your disk . Assuming CCTR is installed to the

CCTR_HOME directory. Content of the CCTR_HOME directory is as

follow.

• /dist: Directory containing cctr{version}.zip file

• /build: Directory containing the build files.

• /docs: Directory containing documentation.

http://xsb.sourceforge.net/
http://www.swi-prolog.org/

 40

• /lib: Directory containing dependent jar files;interprolog.jar,

jgraph.jar,swing-layout1-0.jar

• /src: Directory containing java source package and files. It also

contains ant build.xml and default.properties files for re-building

and packaging the project.

• /xsbsource: Directory containing the CCTR Scheduler

implementation source files.

• /scripts: Directory containing the scripts for running CCTR

Environment in Windows and Linux operating systems.

• /examples: Directory containing some example CCTRflow

diagrams.

• cctr{version}.jar: Runnable java jar file for CCTR Environment.

• cctrConfig.xml: XML file containing various settings of CCTR

Environment.

5. Running CCTR Environment: In order to run CCTR Environment it is

needed to execute runWindowsCCTR.bat or runLinuxCCTR.sh in /scripts

directory. Alternatively java –jar cctr{version}..jar command can be

invoked when the current directory is CCTR_HOME.

6. Mounting Bin Directories: XSB_BIN_DIRECTORY and

SWI_BIN_DIRECTORY are two directories that should be set for CCTR

Environment. There are two ways to set Bin directories. It can be set by

simply editing the cctrConfig.xml and changing the INTERPRETER

element BinPath properties or using the Config Window accessed from the

CCTR→CCTR Options menu item.

7. Re-building Project: To re-build the entire CCTR Environment project an

ant build.xml file is provided in /src directory. If ant tool is not exist in your

computer it can be download and installed from http://ant.apache.org/ .

Properties used in the building process are stored in default.properties file

Main ant targets are as follow:

http://ant.apache.org/

 41

• clean: Removes all of the automatically generated files.

• compile: Compiles a version of the project to the build/classes

directory

• jar: Generates a jar (library of compiled code) for the project and

puts it in the top level file cctr{version}.jar file.

• package: Creates the package file for distribution. Two files are

created in /dist directory; cctr{version}.zip and cctr{version}.tar

http://www.alias-i.com/lingpipe/build/classes

 42

APPENDIX B

TRANSFORMER GRAMMER

/* Constraint predicates also includes tasks*/

/*Tabling is required*/

:‐ table cctr_goal/6.

:‐ table cctr_goal2/3.

:‐ import concat_atom/2 from string.

:‐ import append/3 from basics.

:‐ import member/2 from basics.

cctr_trans(In,PairVar,Out) :‐assert(ʹemptyʹ),atom_chars(In,R),

(cctr_goal(Val,Pair,T_Const,T,R,[])‐>true;write(ʹUnable to parse Cctr WorkFlowʹ),write(R),fail),

concat_atom_comma(Pair,PairComma),concat_atom([ʹ(ʹ,T,ʹ)*(ʹ,PairVar,ʹ=[ʹ,PairComma,ʹ]ʹ,ʹ,Constraint
s=[ʹ,T_Const,ʹ],compile_constraints(Constraints,FileName,ʹ,PairVar,ʹ),execute_constraints(FileName)
).ʹ],Out)

 .

/*First Part Transformation */

cctr_goal(Val,Pair,T_Const,T) ‐‐>
cctr_goal(Val1,Pair1,T_Const1,T1),ctr_op(Val2),cctr_goal(Val3,Pair2,T_Const2,T2),

 {concat_atom([Val1,Val2,Val3],Val),concat_atom([T1,Val2,T2],T),

 strong_append(Pair1,Pair2,Pair),(T_Const1
==ʹemptyʹ,T_Const2==ʹemptyʹ‐>T_Const=ʹemptyʹ;((T_Const1\==ʹemptyʹ,T_Const2\==ʹemptyʹ‐
>concat_atom([T_Const1,ʹ,ʹ,T_Const2],T_Const);(T_Const1==ʹemptyʹ‐
>T_Const=T_Const2;T_Const=T_Const1))))}.

cctr_goal(Val,Pair,T_Const,T) ‐‐> [ʹ(ʹ],cctr_goal(Val1,Pair,T_Const,T1),[ʹ)ʹ],

 {concat_atom([ʹ(ʹ,Val1,ʹ)ʹ],Val),concat_atom([ʹ(ʹ,T1,ʹ)ʹ],T)}.

cctr_goal(Val,Pair,T_Const,T) ‐‐> [ʹoʹ,ʹ1ʹ,ʹ(ʹ],cctr_goal(Val1,Pair,T_Const,T1),[ʹ)ʹ],

 {concat_atom([ʹ(ʹ,Val1,ʹ)ʹ],Val),concat_atom([ʹo1(ʹ,T1,ʹ)ʹ],T)}.

cctr_goal(Val,Pair,T_Const,T) ‐‐>
cctr_goal(Val1,Pair,T_Const1,T1),const_op(Val2),const_token(Val1,Val3,T_Const2),

 43

 {concat_atom([Val1,Val2,Val3],Val),T=T1,(T_Const1==ʹemptyʹ‐
>T_Const=T_Const2;concat_atom([T_Const1,ʹ,ʹ,T_Const2],T_Const))}.

cctr_goal(Val,Pair,T_Const,T) ‐‐> ctr_goal_token(Val,Pair,T),{T_Const=ʹemptyʹ}.

ctr_goal_token(Val,Pair,T) ‐‐> [ʹ(ʹ],ctr_goal_token(Val1,Pair,T1),[ʹ)ʹ],

 {!,concat_atom([ʹ(ʹ,Val1,ʹ)ʹ],Val),concat_atom([ʹ(ʹ,T1,ʹ)ʹ],T)}.

ctr_goal_token(Val,Pair,T) ‐‐> res_token(Val1,Up11),ctr_op(Val2),res_token(Val3,Up22),

 {!,
concat_atom([Val1,Val2,Val3],Val),concat_atom([Val1,Val2,Val3],T),

 concat_atom([ʹ[ʹ,Val1,ʹ,ʹʹʹ,Up11,ʹʹʹ]ʹ],FirstPair),concat_atom([ʹ[ʹ,Val3,ʹ,ʹʹʹ,Up22,ʹʹʹ]ʹ],SecondPair),

add_to_list([],FirstPair,TempPair),add_to_list(TempPair,SecondPair,Pair)}.

ctr_goal_token(Val,Pair,T) ‐‐> res_token(Val,Up),{!,concat_atom([Val],T),

 concat_atom([ʹ[ʹ,Val,ʹ,ʹʹʹ,Up,ʹʹʹ]ʹ],FirstPair),add_to_list([],FirstPair,Pair)}.

const_token(Alfa,Val,T) ‐‐> const_r_token(Val1,T1),const_op(Val2),const_token(Alfa,Val3,T2),

 {!,concat_atom([Val1,Val2,Val3],Val),

 trans2(Alfa,T3),concat_atom([T1,T3,ʹ)ʹ],T4),

 concat_atom([T4,ʹ,ʹ,T2],T)}.

const_token(Alfa,Val,T) ‐‐> const_c_token(Val1,T1),const_op(Val2),const_token(Alfa,Val3,T2),

 {!,concat_atom([Val1,Val2,Val3],Val),

 trans2(Alfa,T3),concat_atom([T1,T3,ʹ)ʹ],T4),

 concat_atom([T4,ʹ,ʹ,T2],T)}.

const_token(Alfa,Val,T) ‐‐> const_r_token(Val,T1),{!,trans2(Alfa,T2),concat_atom([T1,T2,ʹ)ʹ],T)}.

const_token(Alfa,Val,T) ‐‐> const_c_token(Val,T1),{!,trans2(Alfa,T2),concat_atom([T1,T2,ʹ)ʹ],T)}.

const_r_token(Val,T) ‐‐> fix_r_const(Val1),res_token(Val2,Up),cost_args(Val3),
 {!,concat_atom([Val1,Val2,Val3],Val),concat_atom([Val1,Val2,ʹ(ʹ,Val3,ʹ,ʹ],T)}.

const_c_token(Val,T) ‐‐> fix_c_const(Val1),res_token(Val2,Up),cost_args(Val3),

 {!,concat_atom([Val1,Val2,Val3],Val),

 concat_atom([Val1,Val2,ʹ(ʹ,Val3,ʹ,ʹ],T)}.

/*Second Part Transformation*/

trans2(Alfa,Res) :‐ true,!,atom_chars(Alfa,Out),cctr_goal2(Res,Out,[]).

cctr_goal2(T) ‐‐> cctr_goal2(T1),ctr_op2(Val),cctr_goal2(T2),

 {concat_atom([Val,ʹ(ʹ,T1,ʹ,ʹ,T2,ʹ)ʹ],T)}.

cctr_goal2(T) ‐‐> [ʹ(ʹ],cctr_goal2(T),[ʹ)ʹ].

 44

cctr_goal2(T) ‐‐> cctr_goal2(T),const_op(Val),const_token2.

cctr_goal2(T) ‐‐> ctr_goal_token2(T).

ctr_goal_token2(T) ‐‐> [ʹ(ʹ],ctr_goal_token2(T),[ʹ)ʹ],

 {!}.

ctr_goal_token2(T) ‐‐> res_token(Val1,Up11),ctr_op2(Val2),res_token(Val3,Up22),

 {!,

 concat_atom([Val2,ʹ(const(ʹ,Val1,ʹ,ʹʹʹ,Up11,ʹʹʹ),const(ʹ,Val3,ʹ,ʹʹʹ,Up22,ʹʹʹ))ʹ],T)}.

ctr_goal_token2(T) ‐‐> res_token(Val,Up1),{!,concat_atom([ʹconst(ʹ,Val,ʹ,ʹʹʹ,Up1,ʹʹʹ)ʹ],T)}.

const_token2 ‐‐> const_r_token2,const_op(Val),const_token2,{!}.

const_token2 ‐‐> const_c_token2,const_op(Val),const_token2,{!}.

const_token2 ‐‐> const_r_token2,{!}.

const_token2 ‐‐> const_c_token2,{!}.

const_r_token2 ‐‐> fix_r_const(Val1),res_token(Val2,Up),cost_args(Val3),{!}.

const_c_token2 ‐‐> fix_c_const(Val1),res_token(Val2,Up),cost_args(Val3),{!}.

/*Part Used by Two Transformations*/

res_token(Val,Up) ‐‐> word(Val1,Up1),res_token(Val2,Up2),

 {!,concat_atom([Val1,Val2],Val),concat_atom([Up1,Up2],Up)}.

res_token(Val,Up) ‐‐> word(Val,Up),{!}.

fix_r_const(Val) ‐‐> [ʹrʹ,ʹsʹ,ʹrʹ,ʹcʹ,ʹ_ʹ],{!,Val=rsrc_}.

fix_c_const(Val) ‐‐> [ʹcʹ,ʹoʹ,ʹsʹ,ʹtʹ,ʹ_ʹ],{!,Val=cost_}.

cost_args(Val) ‐‐> [ʹ[ʹ],cost_args_base(Val1),[ʹ]ʹ],{!,concat_atom([ʹ[ʹ,Val1,ʹ]ʹ],Val)}.

cost_args(Val) ‐‐> [ʹ[ʹ],[ʹ]ʹ],{!,Val=ʹ[0]ʹ}.

cost_args_base(Val) ‐‐> int(Val1),[ʹ,ʹ],cost_args_base(Val2),{!,concat_atom([Val1,ʹ,ʹ,Val2],Val)}.

cost_args_base(Val) ‐‐> int(Val).

int(Val) ‐‐> [ʹ‐ʹ],intpos(Val1),{!,concat_atom([ʹ‐ʹ,Val1],Val)}.

int(Val) ‐‐> intpos(Val),{!}.

intpos(Val) ‐‐> digit(Val1),intpos(Val2),{!,concat_atom([Val1,Val2],Val)}.

 45

intpos(Val) ‐‐> digit(Val),{!}.

ctr_op(Val) ‐‐> [ʹ*ʹ],{!,Val=ʹ*ʹ}.

ctr_op(Val) ‐‐> [ʹ#ʹ],{!,Val=ʹ#ʹ}.

ctr_op(Val) ‐‐> [ʹ\ʹ,ʹ/ʹ],{!,Val=ʹ\/ʹ}.

ctr_op2(Val) ‐‐> [ʹ*ʹ],{!,Val=ʹ@ʹ}.

ctr_op2(Val) ‐‐> [ʹ#ʹ],{!,Val=ʹ$ʹ}.

ctr_op2(Val) ‐‐>[ʹ\ʹ,ʹ/ʹ],{!,Val=ʹ^ʹ}.

const_op(Val) ‐‐> [ʹ&ʹ],{!,Val=ʹ&ʹ}.

digit(Val) ‐‐> [ʹ0ʹ],{!,Val=0}.

digit(Val) ‐‐> [ʹ1ʹ],{!,Val=1}.

digit(Val) ‐‐> [ʹ2ʹ],{!,Val=2}.

digit(Val) ‐‐> [ʹ3ʹ],{!,Val=3}.

digit(Val) ‐‐> [ʹ4ʹ],{!,Val=4}.

digit(Val) ‐‐> [ʹ5ʹ],{!,Val=5}.

digit(Val) ‐‐> [ʹ6ʹ],{!,Val=6}.

digit(Val) ‐‐> [ʹ7ʹ],{!,Val=7}.

digit(Val) ‐‐> [ʹ8ʹ],{!,Val=8}.

digit(Val) ‐‐> [ʹ9ʹ],{!,Val=9}.

word(Val,Up) ‐‐> [ʹaʹ],{!,Val=a,Up=ʹAʹ}.

word(Val,Up) ‐‐> [ʹbʹ],{!,Val=b,Up=ʹBʹ}.

word(Val,Up) ‐‐> [ʹcʹ],{!,Val=c,Up=ʹCʹ}.

word(Val,Up) ‐‐> [ʹdʹ],{!,Val=d,Up=ʹDʹ}.

word(Val,Up) ‐‐> [ʹeʹ],{!,Val=e,Up=ʹEʹ}.

word(Val,Up) ‐‐> [ʹfʹ],{!,Val=f,Up=ʹFʹ}.

word(Val,Up) ‐‐> [ʹgʹ],{!,Val=g,Up=ʹGʹ}.

word(Val,Up) ‐‐> [ʹhʹ],{!,Val=h,Up=ʹHʹ}.

word(Val,Up) ‐‐> [ʹiʹ],{!,Val=i,Up=ʹIʹ}.

word(Val,Up) ‐‐> [ʹjʹ],{!,Val=j,Up=ʹJʹ}.

word(Val,Up) ‐‐> [ʹkʹ],{!,Val=k,Up=ʹKʹ}.

word(Val,Up) ‐‐> [ʹlʹ],{!,Val=l,Up=ʹLʹ}.

 46

word(Val,Up) ‐‐> [ʹmʹ],{!,Val=m,Up=ʹMʹ}.

word(Val,Up) ‐‐> [ʹnʹ],{!,Val=n,Up=ʹNʹ}.

word(Val,Up) ‐‐> [ʹoʹ],{!,Val=o,Up=ʹOʹ}.

word(Val,Up) ‐‐> [ʹpʹ],{!,Val=p,Up=ʹPʹ}.

word(Val,Up) ‐‐> [ʹrʹ],{!,Val=r,Up=ʹRʹ}.

word(Val,Up) ‐‐> [ʹsʹ],{!,Val=s,Up=ʹSʹ}.

word(Val,Up) ‐‐> [ʹtʹ],{!,Val=t,Up=ʹTʹ}.

word(Val,Up) ‐‐> [ʹuʹ],{!,Val=u,Up=ʹUʹ}.

word(Val,Up) ‐‐> [ʹvʹ],{!,Val=v,Up=ʹVʹ}.

word(Val,Up) ‐‐> [ʹwʹ],{!,Val=w,Up=ʹWʹ}.

word(Val,Up) ‐‐> [ʹxʹ],{!,Val=x,Up=ʹXʹ}.

word(Val,Up) ‐‐> [ʹyʹ],{!,Val=y,Up=ʹYʹ}.

word(Val,Up) ‐‐> [ʹzʹ],{!,Val=z,Up=ʹZʹ}.

%

%auxlary predicates

% A strong append to list Insert Elements to list if they donʹt exist

strong_append(List1,[Head|Tail],Result) :‐
strong_append(List1,Tail,TempResult),add_to_list(TempResult,Head,Result).

strong_append(List1,[],Result) :‐ Result=List1,!,true.

% A strong insert to a list : Insert Element to list if it doesnʹt exists.

add_to_list(List,Element,NewList):‐ not(member(Element,List)),!,append(List,[Element],NewList).

add_to_list(List,Element,NewList):‐ NewList=List,!,true.

%

concat_atom_comma([Head|Tail],CommaList) :‐
concat_atom_comma2(Tail,CommaList1),concat_atom([Head,ʹ,ʹ,CommaList1],CommaList),true.

concat_atom_comma([Element],CommaList) :‐ concat_atom([Element],CommaList),true.

concat_atom_comma2([Head|Tail],CommaList) :‐ concat_atom_comma2(Tail,CommaList1),
concat_atom([Head,ʹ,ʹ,CommaList1],CommaList).

concat_atom_comma2([Element],CommaList):‐ concat_atom([Element],CommaList),true.

 47

APPENDIX C

SAMPLE WORKFLOWS

In this part some sample constraint workflows and their solutions are presented

SAMPLE 1.

CCTR Syntax:

(((((f#e#d))&cost_duration[110])\/(((h\/g))&cost_duration[85])\/((a*b*c)&cost_d

uration[70]))*i)&cost_duration[250]&rsrc_disjoint[0]

CONSTRAINTS ASSIGNMENTS:

Table 8.1: Sample 1 Constraints Table.

Task Resource Duration

a r1 10

a r2 20

b r1 100

b r2 20

b r3 40

c r1 12

c r2 150

c r3 25

d r1 10

 48

d r3 50

d r4 60

e r1 60

e r2 20

e r3 15

f r1 150

f r2 175

f r3 15

g r1 75

g r2 40

i r3 200

i r4 50

SOLUTIONS:

Table 8.2: Sample 1 Solution Table.

Flow: f,e,d,i
[f,[r3]] [e,[r1]] [d,[r4]] [i,[r4]]
[f,[r3]] [e,[r2]] [d,[r1]] [i,[r3]]
[f,[r3]] [e,[r2]] [d,[r1]] [i,[r4]]
[f,[r3]] [e,[r2]] [d,[r4]] [i,[r4]]
Flow: a,b,c,i
[a,[r1]] [b,[r2]] [c,[r1]] [i,[r3]]
[a,[r1]] [b,[r2]] [c,[r1]] [i,[r4]]
[a,[r1]] [b,[r2]] [c,[r3]] [i,[r4]]
[a,[r1]] [b,[r3]] [c,[r1]] [i,[r4]]
[a,[r2]] [b,[r2]] [c,[r1]] [i,[r4]]
[a,[r2]] [b,[r2]] [c,[r3]] [i,[r4]]
Flow: h,i
[h,[r4]] [i,[r3]]
[h,[r4]] [i,[r4]]
Flow: g,i
[g,[r1]] [i,[r4]]
[g,[r2]] [i,[r3]]
[g,[r2]] [i,[r4]]

Table 8.1: Sample 1 Constraints Table.(Continued)

 49

SAMPLE 2.

CCTR Syntax:

((((c*r)&cost_price[15000])#(g#i)))&cost_price[30000]&cost_duration[10]& rsrc_disjoint[0]

CONSTRAINTS ASSIGNMENTS:

Table 8.3: Sample 2 Constraints Table.

Task Resource Price Duration

C r1 1000 1

C r2 3000 2

C r3 8000 3

R r1 2000 3

R r2 4000 4

R r3 6000 5

I r1 9000 1

I r2 7000 2

G r1 6500 5

G r2 7500 7

SOLUTIONS:

Table 8.4: Sample 2 Solution Table.

Flow: c,g,i,r
[c,[r3]] [g,[r1]] [i,[r2]] [r,[r3]]

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation and Scope
	Architecture of the Proposed CCTR Environment
	Organization of the thesis

	CONCURRENT CONSTRAINT TRANSACTION LOGIC
	Overview of Transaction Logic Programming
	Overview of Concurrent Transaction Logic Programming
	Overview of Concurrent Constraint Transaction Logic Programm

	THE CCTR ENVIRONMENT
	Design Goals
	Evaluation of Utilized Technologies

	USER INTERACTION AND GRAPHIC DESIGN
	CCTR Environment Introduction
	Starting CCTR Environment
	CCTR Application
	Menu Overview
	Creating CCTRflow Diagrams
	Running CCTRflows
	Showing Results

	DESIGN AND IMPLEMENTATION
	Application Control and GUI(Java Part)
	CCTR Scheduler(Prolog Part)

	CONCLUSIONS
	REFERENCES
	TUTORIAL : STARTING CCTR ENVIRONMENT
	APPENDIX B
	TRANSFORMER GRAMMER
	APPENDIX C
	SAMPLE WORKFLOWS

