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ABSTRACT 
 
 

NAVIER-STOKES CALCULATIONS OVER SWEPT WINGS 
 
 
 

ŞAHİN, Pınar 

M.S., Department of Aerospace Engineering 

Supervisor: Assoc. Prof. Dr. Serkan ÖZGEN 

 
September 2006, 83 pages 

 
 
 
 

In this study, the non-equilibrium Johnson and King Turbulence Model (JK 

model) is implemented in a three-dimensional, Navier-Stokes flow solver. 

The main program is a structured Euler/Navier-Stokes flow solver in which 

spatial discretization is accomplished by a finite volume formulation and a 

multigrid technique is used as a convergence accelerator. The aim is the 

validation of this in-house developed CFD (Computational Fluid Dynamics) 

tool with this enhanced enlarged capability in order to obtain a reliable flow 

solver that can solve flows over swept wings accurately. Various test cases 

were evaluated against reference solutions in order to demonstrate the 

accuracy of the newly implemented JK turbulence model. The selected test 

cases are NACA 0012 airfoil, ONERA M6 wing, DLR-F4 wing and two wings 

taken from the 3rd Drag Prediction Workshop. The solutions were analyzed 

and discussed in detail. The results show appreciably good agreement with 

the experimental data including force coefficients and surface pressure 

distributions. 
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ÖZ 
 
 

OK AÇILI KANATLAR ÜZERİNDE NAVIER-STOKES HESAPLAMALARI 
 
 
 

ŞAHİN, Pınar 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi : Doç. Dr. Serkan ÖZGEN 

 

Eylül 2006, 83 sayfa 

 
 
 
 

Bu çalışmada, dengede olmayan Johnson ve King Türbülans Modeli, üç 

boyutlu, Navier-Stokes koduna eklenmiştir. Ana program, yapılı çözüm ağı 

kullanan uzaysal ayrıştırmanın sonlu hacimler formülasyonuyla yapıldığı ve 

yakınsamayı hızlandırıcı çoklu çözüm ağı tekniği kullanan Euler/Navier-

Stokes akım çözücüsüdür. Amaç, ok açılı kanatlar üzerindeki akışları doğru 

olarak çözebilecek güvenilir bir akım çözücü elde etmek için bu yeni eklenen 

yetenekle birlikte ticari olmayan HAD (Hesaplamalı Akışkanlar Dinamiği) 

aracının doğrulamasının yapılmasıdır. Yeni eklenen türbülans modelinin 

doğruluğunu göstermek için çeşitli test problemleri referans çözücülere karşı 

değerlendirilmiştir. Seçilen test problemleri NACA 0012 kanat kesiti, ONERA 

M6 kanadı, DLR-F4 kanadı ve 3. Sürükleme Tahmin Çalışma Grubundan 

alınan iki kanattan oluşmaktadır. Çözümler ayrıntılı olarak analiz edilmiş ve 

tartışılmıştır. Sonuçlar, kuvvet katsayıları ve yüzey basınç dağılımlarını da 

içeren kapsamlı deneysel verilerle fark edilir derecede iyi uyuşum 

göstermişlerdir. 
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CHAPTER 1  

INTRODUCTION 

1.1 General Overview 

 

The accurate calculation of separated turbulent compressible flows is a 

practical need due to its significance in real life applications. The ability to 

understand, predict, and control these fluid flows are very important 

especially for aerospace applications. Since flight tests and/or wind tunnel 

tests can be very time consuming and expensive, the confidence in 

Computational Fluid Dynamics (CFD) should be improved. Experimental 

analyses are very effective in getting the information of the surface pressure 

data at selected points and/or complete lift and drag of the body. However, 

the detailed pressure and/or velocity information throughout the region 

surrounding a body is not feasible both in terms of time and cost. In some 

cases, flight/wind tunnel testing is not possible. Therefore, the computational 

aerodynamics is preferably used for most of the analysis to gain insight into 

the nature of these flows. 

 

Thanks to CFD, a model can be investigated faster when compared to any 

other experimental testing methods, which makes it a valuable aircraft 

design and analysis tool. Since CFD provides a greater flowfield detail than 

is possible by experiments alone, it is widely used to complement the 

experimental investigations. 
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Validation of the CFD Tool by comparisons wind tunnel data of swept wings, 

and the implementation of the Johnson and King Turbulence model is the 

main aim of this thesis. Understanding the flow behavior is particularly 

cumbersome since the flowfield structure over swept wings, containing the 

relevant flow physics differ substantially from a conventional wing planform. 

Analyses of the swept wings are important for most of the aircraft in design 

process. Flow separation occurs especially at transonic speeds. There is a 

significant amount of research in this field, which includes particularly swept 

wings at transonic speeds [1, 2, 3, 4].  

 

1.2 Scope of the Thesis 

 

The purpose of this study is to validate and verify the CFD tool using swept 

wing test cases. It is known that the aerodynamic characteristics of swept 

wings are very sensitive to viscous effects, and selection of the turbulence 

model in numerical codes largely determines the level of success for 

capturing these effects. A non-equilibrium model, namely the Johnson and 

King Turbulence Model is implemented to the existing in-house developed 

flow solver and tested, in order to increase its capability. Besides, the 

Baldwin-Lomax Turbulence model is already available.  

 

This flow solver will be used to investigate the flow over wings for air vehicle 

design, in which the extensive aerodynamic data is needed. Continuing 

advances in CFD provide an attractive means of generating the desired data 

needed for preliminary and detail design.  

 

Carefully coordinated experiments are needed to validate any CFD tools to 

improve numerical confidence. In this thesis, swept wing analyses are based 

upon extensive experimental data sets [1, 5, 6]. Besides, the final test case 
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is taken from the 3rd AIAA Drag Prediction Workshop [7], which provides an 

opportunity to compare the JK turbulence model results with the results of 

the other widely known CFD codes.  

 

In this work, the flow fields around the swept wings are computed using 

xFLOWsvmg. The JK turbulence model results are evaluated and compared 

against reference solutions. Besides, post-processing of the flowfield is done 

in terms of surface pressure distributions and surface streamlines. 

 

1.3 Description of Chapters 

 

The structure of this thesis is organized as follows.  

 

In Chapter 2, detailed information about the computational method is given. 

Governing equations, turbulence modeling, numerical algorithm, 

computational grids, and numerical boundary conditions are included in this 

part. This part is followed by a description of test cases and results.  

 

In Chapter 3, test cases and their results are presented. Initially a general 

overview is given. Then NACA 0012 airfoil, ONERA M6 wing, DLR F4 wing, 

and wing alone cases taken from the 3rd AIAA Drag Prediction Workshop 

and their results are investigated. For each test case treated, extensive 

discussion and evaluation of the results are presented. 

 

In Chapter 4, concluding remarks and future prospects are given.  
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CHAPTER 2  

COMPUTATIONAL METHOD 

The present chapter is divided into two main parts. First part describes the 

grid generation work. Second part describes the solver, which includes the 

governing equations, turbulence modeling and boundary conditions.  

 

2.1 Grid Generation Description 

 

The computational grid is so called single block C-H type structured grid. 

The grid wraps as a C mesh around the apex of the wing, whereas it is H-

type in the cross-sections. The grids can be generated either externally or 

using the grid generation module embedded into the code. However, there is 

a constraint, which is that the dimensions of the grid in each direction should 

be appropriate to the multigrid level. Since the initial grid is coarsened in 

each direction by removing alternate points for each multigrid level, the basic 

rule that has to be followed is that the cell number in each direction has to 

be a multiple of 2 to the power of the multigrid level. 

 

The automatic hyperbolic grid generator is used, which uses the square root 

transformation. In this method, Cartesian coordinates are transformed into 

sheared parabolic coordinates. The wing geometry is provided by a group of 

x-y coordinates of the airfoil at different constant z span sections. The 

coordinate axis can be defined as follows: x is in the direction of chord, y is 

in the direction normal to the chord and span, and z is in the direction of 
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span. After the geometry is given, user should define some parameters in 

order to control the mesh to be used, such as the number of mesh cells in 

each direction should be set appropriate to the multigrid level to be applied. 

Furthermore, some grid clustering parameters should be defined. These are 

the boundary layer mesh size, grid spacing in y-direction, wing 

leading/trailing edge and root/tip mesh sizes. 

 

The flow solver can also be used without the multigrid technique. However, 

multigrid approach provides a faster convergence. Therefore, three levels of 

multigrid are used for the test cases and the structured type of grids are 

generated accordingly (Figure 2-1, 2-2, 2-3). 

 

 

Figure 2-1 Coarse Grid (48x16x12) – Sequence 1 (ONERA M6 Wing) 
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Figure 2-2 Medium Grid (96x32x24) –Sequence 2 (ONERA M6 Wing) 

 

 

Figure 2-3 Fine Grid (192x64x48) – Sequence 3 (ONERA M6 Wing) 
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In Figure 2-4 the grid structure and i-, j-, k- directions are demonstrated. The 

orientation of the coordinate system is as: i-direction wraps the airfoil, j- 

direction starts from the wing surface and increases towards the far field, 

and lastly, k-direction is the spanwise direction, which starts at the wing root 

and increases along the span.  

 

 

Figure 2-4 3D Grid Structure in Plane of Symmetry (ONERA M6 Wing) 

 

Grid on the surface of the ONERA M6 wing and in the plane of symmetry is 

shown in Figure 2-3. The structured mesh of 193x65x49 nodes, in the 

streamwise, spanwise, and the normal direction, is employed. The first grid 

point of the surface in the normal direction is 1x10-4 of the chord length. In 

Figure 2-5, fine resolution grid around the leading edge is presented. Similar 

grids are generated for each of the test cases and the pictures are given in 

Chapter 3.  

 

 i-direction 

 j-direction 

 k-direction 
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Figure 2-5 Grid Around Leading Edge (ONERA M6 Wing) 

 

2.2 Solver Description 

 

2.2.1 Finite Volume Solver (NS) 

 

The xFLOWsvmg is a finite volume program solving three dimensional 

Euler/Navier-Stokes equations on structured meshes. Spatial discretization 

is accomplished by a cell-vertex formulation, in which the control volume for 

each interior vertex is the union of the eight cells surrounding that vertex. 

The flux through each side of the control volume is calculated using the 

values of the flow variables at the center point only. This allows the 

cancellation of downstream contributions to the fluxes by the diffusive terms, 

which are calculated from differences along the coordinate lines. 
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The solution advances using multigrid scheme providing accelerated 

convergence. The initial grid is coarsened for each multigrid level and the 

calculations are performed and then the solution continues with proper 

interpolation. 

 

Turbulence is modeled by the algebraic Baldwin-Lomax [10] and newly 

implemented Johnson and King Turbulence models [11]. The solution 

advances in time using a fifth order Runge-Kutta time-stepping scheme with 

implicit residual smoothing and local time stepping capabilities. 

 

2.2.2 Governing Equations 

 

An integral form of the governing Euler/Navier-Stokes equations for the flow 

of a compressible gas is as given in the following equation, 

where, w  is the vector for the flow variables in the conservative form, Ω  is 

the control volume element with boundary defined by S . The inviscid and 

viscous flux vectors are F
r

 and vF
r

, respectively. Note that, 0=vF
r

for Euler 

equations. 
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For mass conservation, 

For momentum conservation in x-, y- and z-directions, 

where σij is the stress tensor which is proportional to strain rate tensor and 

bulk dilatation,  

and µ and λ are the coefficient of viscosity and bulk viscosity respectively. 

Using the Stokes’ hypothesis λ is taken as,  

For the energy conservation equation, 

 

ρ=w , ( )w,v,uF ρρρ=
r

 

 

( 2.3 ) 

 

uw ρ= , ( )uwuvpuF ρρρ ,,2 +=
r

, ( )xzxyxxvF σσσ ++=
r

 

vw ρ= , ( )vwpvvuF ρρρ ,, 2 +=
r

, ( )yzyyyxvF σσσ ++=
r

 

ww ρ= , ( )pwwvwuF += 2,, ρρρ
r

, ( )zzzyzxvF σσσ ++=
r
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where E is the total energy and H is the total enthalpy. For a prefect gas the 

following relation for E is used: 

Above definitions, P is used for pressure, ρ is for density; u, v and w are the 

velocity components in an orthogonal coordinate system with x, y and z 

coordinate axis. 

 

The Euler equations are a simpler version of the Navier-Stokes equations 

being the system of inviscid conservation laws. Its physical basis is the 

expression of the mass, momentum and energy conservation laws and from 

a mathematical point of view, the viscous flux vectors (diffusive terms) are 

ignored in Euler equations. 

 

Finite volume with cell-vertex scheme approach is used for the evaluation of 

integrals for a hexahedron control volume element for which Equation ( 2.1 ) 

assumes the following form: 

where Q denotes the operator for approximation to the boundary integrals 

over S of the control volume element Ω whose volume is represented by Vol 

and where the flux balance is carried out. 
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=
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It is necessary to augment the finite volume scheme with the addition of 

dissipation terms to prevent the appearance of wiggles in regions near the 

high pressure gradients such as shock waves or stagnation points. With the 

addition of dissipative terms, the Equation ( 2.9 ) is replaced by the 

following, where D stands for the dissipative operator. 

In order to design the scheme to have high accuracy in smooth regions of 

the flow field, well resolved shock waves and contact discontinuities, 

Jameson’s “Symmetric Limited Positive (SLIP) Scheme” [8] is applied. In this 

scheme, a third order artificial dissipation term is modified by inserting 

limiters. Since the limiters tend to reduce the accuracy of the solutions, 

particularly in regions containing smooth extrema [9], an alternative 

formulation is used by forming the diffusive fluxes from left and right states 

at the cell interface. According to the Jameson’s base limiter function, 

where u and v here represents the differences for each flow variable at right 

and left states of the cell interface and q is an integer. R(u,v)≈0 when u and 

v have the opposite sign in the neighborhood of shock waves resulting first 

order scheme for the artificial viscosity and R(u,v)=1 in the smooth flow 

regions resulting in third order accuracy [9]. In the scheme, the following 

form of the limiter function is applied for each flow variable; 

 

( ) 0)()( =−+ wDwQwVol
dt
d  

 

( 2.10 ) 
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Therefore limiting of each dependent variable in each coordinate direction is 

enhanced [9]. 

 

Left and right states for each dependent variable are separately defined. 

The flux terms are obtained by the following; 

Left and right state pressure (PL and PR) terms are evaluated by using the 

wR and wL definitions. Also, in order to preserve the total enthalpy, energy 

terms are replaced by the definition of total enthalpy, which is the equation 

of H in Equation ( 2.8 ). 

 

For the time integration of the linear system given by the Equation ( 2.15 ), 

multi-stage Runge-Kutta method is applied. 

 

2
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w  represents the vector of flow variables at the mesh points and ( )wR  is the 

vector of the residuals. The residual is split as given in Equation ( 2.15 ) with 

the convective and dissipative terms. Let nw  be the result after n steps. To 

advance one step ∆t with an k-stage it is set as; 

where the superscript k  denotes the k -th stage, 1=mα , and, 

The coefficients kα  are chosen to maximize the stability interval along the 

imaginary axis, and the coefficients kβ  are chosen to increase the stability 

interval along the negative real axis [8]. These coefficients for the five-stage 

scheme with three evaluations of dissipation are given in Equation ( 2.18 ).  
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For the computations of test cases, this five-stage scheme is employed. 

Convergence to the steady state is accelerated by using variable time step 

close to the stability limits for each mesh point. Also, utilizing the residual 

averaging, the scheme is further accelerated. The residual smoothing is a 

technique in which the residuals are implicitly averaged in order to increase 

the stability limit of the discretized equations and enable the use of larger 

time steps or larger CFL number. 

 

Local time stepping and implicit residual smoothing techniques are 

employed in order to accelerate convergence to steady state. All cells do not 

march in time to steady state at the same rate. For viscous flows, the time 

step is smaller in the boundary layer compared to the farfield. The idea of 

local time stepping is to advance the equations at each grid point by the 

maximum permissible time step at that point, which ensures stability as 

calculated from local grid and flow properties. Therefore, the local time step 

is made function of the local velocity, speed of sound and cell characteristic 

length, multiplied by the CFL number, shown in Equation ( 2.19 ) . 

Residual smoothing is a technique whereby residuals are implicitly averaged 

in order to increase the stability limit of the discretized equations, and thus 

enable the use of larger time steps, or larger values of CFL number. Implicit 

residual smoothing operation, with a standard second-difference operator, is 

performed at each Runge-Kutta stage k.  

 

The multigrid technique is employed to accelerate the convergence of the 

flow solver. The level of the multigrid determines the number of grid 

coarsening cycle. The cell numbers in i-, j-, and k- directions have to be 

stabtCFLt ∆⋅=∆  

 

( 2.19 ) 
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appropriate with the multigrid cycle. The underlying idea of a multigrid time 

stepping scheme is to transfer some of the task tracking the evaluation of 

the system to a sequence of coarser meshes. The advantage of this is that, 

the computational effort per time step is reduced on coarser mesh. The 

whole set of grids is traversed in which time steps are only performed when 

moving down the cycle. First order numerical diffusion is always used on the 

coarser grids and in cases when characteristic splitting is used on the fine 

grid, simple scalar diffusion is used on the coarser grids. 

 

For the solution of Euler equations and in the absence of shock waves, a 

forcing term proportional to the difference between the total enthalpy and its 

freestream value H∞  is introduced for the convergence acceleration. 

 

2.2.3 Turbulence Modeling 

 

In real life, it is very difficult to determine the turbulent motion of the fluid 

flow. Physical considerations and statistical approaches continue on 

turbulent flows. Also, there are numerous turbulence models trying to make 

the life easier by making some approximations for these flows. From an 

engineering point of view, turbulence is a significant phenomenon for many 

flows. Therefore, engineers need computational procedures which can 

supply adequate information about these flows. A turbulence model is a 

semi-empirical equation relating the fluctuating correlation to mean flow 

variables with various constants provided from experimental investigations 

[12]. It is used to understand the behaviour of the turbulent flows with a 

sufficient accuracy and generality. The turbulence models can be analyzed 

in four different groups which are zero-equation, one-equation, two-equation 

and half equation models. 
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If a turbulence model is described by algebraic equations alone, then it is a 

zero-equation model. The advantage of this is that, it is easy to adapt to a 

Navier-Stokes code and fast to solve. The other type is the half equation 

model, when the turbulence model is reduced to an ordinary differential 

equation. The half-equation model is known as an interesting replacement 

for algebraic models for separated flows. Because it improves the 

agreement between computed and measured flow properties. 

 

The main task of the thesis is to adapt the non-equilibrium type of Johnson-

King model into the existing flow solver so as to solve the aerodynamic flows 

of interest. Besides, the Baldwin-Lomax turbulence model is already 

available in the current solver. With these turbulence models, the solution 

time is shorter with faster convergence and the results are convenient, which 

yield favorable results in three dimensional aerodynamic flows. 

 

There has been always lots of activity to surpass the standards set by 

algebraic models with newer ones. In the analysis of aerodynamic flows the 

most notable ones are the Johnson-King model, the one-equation model 

proposed by Spalart-Allmaras and the ω−k  two-equation model. In the 

following parts, the governing equations of the JK and BL models are given. 

The BL model is also used as a baseline model in JK calculations. In 

addition to this, their references to the original publications are given for the 

precise meaning of all the terms and details related to implementation are 

also granted. Since at each time step, the equation for the turbulent viscosity 

is solved separately from the flow equations, resulting in a loosely coupled 

solution process which allows interchange of new turbulence models to be 

made easily. 
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2.2.3.1 The Baldwin-Lomax Model 

 

This model contains the algebraic relations between the fluctuating 

components and the mean flow values. In zero equation models, though the 

local rate of turbulence is equal to the rate of dissipation of turbulence, since 

the convection of turbulence is not considered, it is not a physically correct 

description of the turbulent flow. On the other hand, undoubtedly it is the 

easiest turbulence model type to apply and fast to solve. The Baldwin-

Lomax model is one of the important and popular algebraic turbulence 

models. The turbulent boundary layer is considered to be formed by two 

regions, an inner and an outer region, with different expressions for the eddy 

viscosity coefficient. The distinguishing property of the model is that the 

model is not written in terms of the boundary layer quantities. The Baldwin-

Lomax model establishes the outer layer length scale in terms of the vorticity 

in the layer. 

 

The term in the equations of motion that is to be modeled is the eddy 

viscosity coefficient, tµ . Thereby, the molecular coefficient, µ  in the stress 

terms of the Navier-Stokes equations is replaced by tµµ + . The Baldwin-

Lomax [10] model is the two layer algebraic eddy viscosity model in which 

the turbulent viscosity is given by, 

where y is the normal distance from the wall and ycrossover is the smallest 

value of y at which values from the inner and outer formulas are equal. In 

the inner region, the model utilizes the exponential function and for the outer 

( )
( )⎩

⎨
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≤
=

crossoveroutert
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µ

µ  
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region it is proportional to the boundary layer thickness. The inner region is 

defined by the Prandtl-Van Driest formulation in Equation ( 2.21 ). 

The term l  is the mixing-length (Van Driest function) and it is formulated in 

Equation ( 2.22 ) using the non-dimensional wall distance  +y  , the Von-

Karman Constant  4.0=κ  and the streamwise dependent pressure gradient 
+A , which is nearly 26 for zero pressure gradient. 

The magnitude of the vorticity, Ω  and the non-dimensional wall distance  +y  

are, 

The friction velocity is defined as wwu ρττ /=  and the subscript ‘w’ denotes 

the ‘wall’ quantities. The eddy viscosity in the outer region is formulated as 

follows, 

( ) Ω= 2linnert ρµ  

 

( 2.21 ) 
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The constants of above formula are 6.1=CPC  and the Clauser constant, 

0168.0=K . The wake parameter is determined from the Equation ( 2.25 ), 

in which the constant 0.1=WKC . 

The maximum value of F and y are calculated from the function )(yF , refer 

to the Equation ( 2.26 ), by setting the exponential term equal to zero. 

Using the maxy  value and the Klebanoff intermittency factor, 3.0=kγ , the 

function )(yFKleb  is calculated in Equation ( 2.27 ). 

The maximum velocity and the minimum velocity (which is zero except in the 

wake) are calculated, then their difference is computed to determine the 

value of diffu  in Equation ( 2.28 ). 
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For more details see [10]. After doing all these calculation, these turbulence 

effects are added into Navier-Stokes equations via replacing the molecular 

viscosity coefficient in the stress terms with the total of the eddy viscosity 

and molecular viscosity coefficients. The heat flux term is also replaced in 

the energy Equation ( 2.29 ). 

where Pr  is the Prandtl number and taken as a constant; 725.0Pr =  and 

9.0Pr =t . This model is appropriate for the structured grid, and extensively 

used for thin, attached, shear layers at moderate Mach numbers with very 

acceptable results. However, it is not able to take into account the transport 

and diffusion of turbulence and thus history effects can not be simulated. 

This deficiency will mainly appear in complex flow configurations, such as 

separated flows. 

 

2.2.3.2 The Johnson-King Model 

 

The starting point of the half-equation model is a so called ‘equilibrium’ 

algebraic model. The most powerful part of the Johnson-King turbulence 

model is that, it offers a promising modification that removes much of the 

inadequacy of algebraic models for separated flows. In this study, the non-

equilibrium type of Johnson-King model [11] is implemented into three-

dimensional Navier-Stokes flow solver. Turbulence transport the history, 

therefore it is not a local phenomena. In order to obtain more realistic 

results, the convection of turbulence should be added in eddies while 

modeling turbulence. In this model the history effects of turbulence are 

modeled for maximum Reynolds shear stress via solving a partial differential 

t

t
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PrPrPr
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equation. Then the eddy viscosity of the model is scaled using this 

maximum. 

 

“Algebraic turbulence models are not suitable for separated flows, because 

these models assume that the turbulent production and dissipation rates are 

locally in balance. To capture the correct physics of separated flow, non-

equilibrium effects such as convection and diffusion for turbulence have to 

be taken into account”, [11]. The turbulent eddy viscosity in the Johnson-

King model is, 

tiµ  is the inner viscosity which is defined as follows, 

The von Karman constant is 4.0=κ . mτ  is the maximum Reynolds shear 

stress and is derived from the turbulent kinetic energy in the form of partial 

differential equation [16]. N  is the local normal distance from the wall. The 

damping factor, D  is formulated in Equation ( 2.32 ). 

where, 17=+A  and the conventional friction velocity τu  is given by the 

Equation ( 2.33 ). 

( )[ ]totitot µµµµ /exp1 −−=  
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wτ  is the wall shear stress, mτ  is invariant to the coordinate system and will 

be calculated later on. The Reynolds shear stress is defined as, 

where Ω  is the magnitude of the vorticity. The Baldwin-Lomax wake model 

is used to determine the outer eddy viscosity (Equation ( 2.35 )). Here, the 

‘non-equilibrium’ feature of the model comes in through the appearance of a 

‘non-equilibrium (or modeling) parameter’, σ . 

The constants are the Clauser constant, 0168.0=K  and 6.1=cC . 

maxmaxFNFw = , and maxF  is determined from the function Equation ( 2.36 ) by 

locating the N  value where )(NF  is a maximum. 

In the separated flow, there is usually more than one peak. Therefore, the 

farthest peak away from the wall should be chosen [11]. The Klebanoff 

intermittency factor (Equation ( 2.37 )) takes care of the intermittency effects. 
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The modeling parameter σ  provides a relation between the assumed eddy 

viscosity distribution and the rate equation for the streamwise development 

of the maximum Reynolds shear stress. According to the Equation ( 2.38 ), 

σ  is updated at each time level. 

The rate equation, mentioned above, is given in the following Equation         

( 2.39 ), 

where the dissipation length scale, mL  is defined in Equation ( 2.40 ). 

The boundary layer thickness, max9.1 N=δ . The subscript ‘eq’ denotes the 

equilibrium condition, in which the modeling parameter σ  equal to unity. mD  

is the turbulent diffusion term given in Equation ( 2.41 ) and eqm,τ  is the 

resultant maximum Reynolds shear stress when convection and diffusion 

effects are small. 
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The constants of the above equation are 25.01 =a  and 5.0=DC . The 

turbulent diffusion term has a negligible effect when the modeling parameter 

σ  is less than unity. Therefore, initial runs obtained from the equilibrium 

model are required. In this thesis, Baldwin-Lomax is used to obtain initial 

steady state solutions at two cycles of the multigrid. It is also possible to 

activate the Johnson-King model at the second cycle, but this increases the 

runtime noticeably. Therefore the JK model is activated at the last cycle, 

which solves the finest grid. At each time advance, the maximum shear 

stresses are determined and then modeling parameter is updated at the next 

time level.  

 

2.2.4 Boundary Conditions 

 

Improper treatment of the boundary conditions can lead to serious errors 

and perhaps instability. In the present computations, flow tangency or no-slip 

boundary condition is applied at the wing surface according to the inviscid or 

viscous flows as represented in Equation ( 2.42 ).  

Density and pressure is calculated on the surface by utilizing the ghost cells 

in where the pressure and density is extrapolated using the one step lagging 

values on the wall and neighbor cells. In the following Equation ( 2.43 ), the 

variable X  represents either density, pressure or the velocities, u, v, w.  At 
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the wake cut planes, the flow variables are averaged using the values of first 

upper and lower cells at the two sides of the plane. 

For the farfield boundary plane, characteristic type of boundary condition is 

applied using the one dimensional Riemann invariants, where +R  is 

associated with au +  and −R  is associated with au − .  
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CHAPTER 3  

RESULTS AND DISCUSSIONS 

3.1 General Overview 

 

In this chapter, investigation of four different test cases is discussed.  The 

results and discussions presented here are also used to compare and 

evaluate the performance of Johnson-King turbulence model for selected 

flow fields. Three dimensional compressible Euler/Navier-Stokes flow solver 

is used for these numerical computations. The convergence of the initial 

solutions is accelerated with mesh sequencing and multigrid. Subsequent 

solutions are restarted from a related solution. 

  

The grids generated for all test cases are similar. The automatic hyperbolic 

grid generator is used which is embedded into the flow solver. Initially, wing 

geometries are analytically defined. Then some parameters, such as the 

number of mesh cells in each direction, boundary layer mesh size, etc., are 

defined. For all test cases, structured, C-H type and composed of 

193x65x49 points, grids are generated. 

 

Results presented here is computed on PC (Intel Pentium 4CPU 2.80 GHz, 

1GB of RAM). The flow solver is iterated on the solution until a certain 

convergence criteria is met. In general, the convergence criteria may 

depend on the conditions of the flow solution. For the following test cases, it 

is desired to reduce the residuals by 3 or 4 orders, which is typical for steady 
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state calculations. Besides, the convergence of force coefficients is also 

observed. 

 

Tecplot tool is used for the post processing. This step is crucial in the 

inspection of the unanticipated flow feature or the grid defects. In addition, 

all of the analysis pictures, including grids, pressure contours and force 

coefficients, are prepared using Tecplot. 

 

3.2 Test Case I: NACA 0012 Airfoil 

 

NACA 0012 is selected as a first test case in order to show the accuracy and 

convergence for the implemented algorithm of the Johnson-King turbulence 

model. The experimental data belongs to the airfoil, which is two 

dimensional. But, the flow solver is three dimensional. Therefore, a constant 

cross-section wing model of large aspect ratio, which is 20, is generated. 

The experimental data available for the airfoil was obtained with a similar 

geometry in the Langley 8-foot transonic pressure tunnel [5]. The employed 

grid for present calculations is C-H type and composed of 193x65x49 points. 

Investigations are performed on the slice extracted from the mid-span of the 

wing (see Figure 3-1). The surface pressure distribution calculated on this 

slice is compared with the experimental results.  
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Figure 3-1 Mesh around the NACA 0012 airfoil 

 

Two separate flow conditions are considered. These are, M∞ = 0.702, 

α=1.49 degrees, and M∞ = 0.799, α=2.26 degrees, both cases with 

Re=6x106. Calculations were performed using three-level multigrid scheme.  

 

In Figure 3-2, the convergence characteristics of the NS solver for the first 

problem (M=0.702, α=1.49 deg.) with the log of the residual and lift/drag are 

shown. The 3 levels of mesh sequencing are shown: 250 coarse-grid 

iterations, 250 medium level iterations, and 500 fine grid iterations. The 

residual drops approximately 5 orders of magnitude. This solution took just 

under 2 hours (wall time) on PC (Intel Pentium 4CPU 2.80 GHz, 1GB of 

RAM). 
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Figure 3-2 Convergence Histories of NACA 0012 airfoil (M∞=0.702, 

α=1.49o) 

 

The solutions of the JK computation are presented with surface pressure 

contours in Figure 3-3. Following this figure, both inviscid and viscous 

numerical results are compared against the experimental data (Figure 3-4). 
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Figure 3-3 Pressure contours around the NACA 0012 airfoil (M∞=0.702, 

α=1.49o) 

 

At this freestream Mach number and the angle of attack value, both of the 

BL and JK models capture the flow field very accurately. Euler solution has a 

slight difference. Since the dissipation is neglected in Euler equations, it 

predicts a weak shock. The differences between the viscous and inviscid 

results are already expected. This test case shows that the solution 

procedure of the JK equations works. But, still it needs to be known that if 

this solution procedure works for more complicated cases. The second test 

condition is at a higher freestream Mach number and angle of attack. 
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Figure 3-4 CP distribution at M∞ = 0.702 and α=1.49o 

 

Similar convergence characteristics with the first test case is observed for 

the following case also (M=0.799, α=2.26 deg.). In Figure 3-5, the log of the 

residual and lift/drag convergences are illustrated. The number of iterations 

used at each multigrid sequence is same. But, this time the residual drops 

approximately 4 orders of magnitude. The solution time does not change. 
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Figure 3-5 Convergence Histories of NACA 0012 airfoil (M∞=0.799, 

α=2.26o) 

 

In Figure 3-6, pressure contours at freestream Mach number, M∞=0.799 and 

the angle of attack, α=2.26 deg. is drawn, in which a shock is observed. The 

results belong to Euler, BL and JK turbulence models are compared with the 

experimental data in Figure 3-7. 
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Figure 3-6 Pressure contours around the NACA 0012 airfoil (M∞=0.799, 

α=2.26o) 

 

Since Euler solutions do not consider the viscous effects and besides, the 

momentum dissipation due to the boundary layer effects is neglected, the 

differences in the surface pressures occur between the experimental data 

and the Euler results is as expected. The BL turbulence model predicts 

separation much farther aft. Overall agreement of the JK computation with 

the experimental data is much more reasonable. 
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Figure 3-7 CP distribution at M∞ = 0.799 and α=2.26o 

 

At M∞ = 0.799, the flow produces a transonic shock on the upper surface at 

approximately, x/c= 0.456. In Figure 3-8, velocity contours near the reverse 

flow region and streamlines of the recirculating flow over the airfoil is shown. 

The boundary layer separates due to the adverse pressure gradient 

immediately downstream of the shock, causing a great increase in the 

pressure distribution over the surface, then the flow reattaches. 
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Figure 3-8 Velocity contours & streamlines around NACA 0012 (M∞ = 

0.799, α=2.26o) 

 

NACA 0012 test case helps establishing the validity of the JK turbulence 

model. However, the following test cases are more important since they are 

three dimensional flow cases. 

 

3.3 Test Case II: ONERA M6 Wing 

 

The reason of selecting ONERA M6 wing as a test case is that, it is a simple 

swept wing with local supersonic flow, shocks, turbulent boundary layers 

and flow separation. It is a classic CFD validation case for external flows. 

The wind tunnel model is shown in Figure 3-9. The experimental test results 

[1] were obtained at transonic Mach number and various angles-of-attacks 

LE TE 
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with a Reynolds number of 11x106 based on the mean aerodynamic chord. 

These results are used for the validation of the JK turbulence model, while 

comparing with the other solutions.  

 

 

Figure 3-9 Wind Tunnel Model of the ONERA M6 Wing 

 

ONERA M6 wing has an aspect ratio of 3.8 and the taper ratio is 0.562. Its 

leading edge sweep angle is 30 degrees and the quarter chord sweep is 

26.7 degrees [1]. The five spanwise stations, where the surface pressure 

distributions are investigated, are as shown in Figure 3-10. The spanwise 

stations in percent are represented by η . 
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Figure 3-10 Geometric layout of the ONERA M6 Wing 

 

The computations were performed at the transonic separated flow conditions 

of Mach number 0.84, the angles of attack are 5.06 degrees and 6.06 

degrees, and the Reynolds number is set at 11x106. The angle of attack 

value of 6.06 degree is the case which is pointed as the most difficult flow 

condition by different authors [13, 14]. Nevertheless, there are also 

remarkably good earlier solutions [2, 4]. For this thesis, it is concluded that 

the flow at these angles of attack is a challenging task and therefore chosen 

as a second test case. 

 

The grid is C-H type with dimensions 193x65x49 points in the streamwise, 

spanwise and the normal directions respectively (Figure 3-11). The first point 

off the surface in the normal direction was at 1x10-5 chord lengths distance 

in order to resolve the wall gradients, and there were 30 points inside the 

boundary layer. The region between the viscous sublayer ( 5≤+y ) and the 

log-law region ( 30≥+y ) is called the buffer layer. It is the transition region 

Aspect ratio, A = 3.8 

Taper ratio, λ = 0.56 

Sweep angle, ΛLE = 30o 

ONERA M6 WING 
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between the viscosity dominated and the turbulence dominated parts of the 

flow [15]. Therefore, it is important to capture the flow physics accurately by 

insertion of enough points in the boundary layer for the viscous flow 

calculations. 

 

 

Figure 3-11 Mesh around the ONERA M6 Wing 

 

The convergence characteristics are given in Figure 3-12 for the initial flow 

condition (M∞=0.86 and α=5.06 degrees) with the log of the residual and 

force coefficients. The 3 levels of multigrid were used. In order to determine 

the numbers for each iterations, the convergence of the initial long run is 

investigated for each test case. For this case the number of iterations for 

initial two sequences are chosen as 4000 and for the fine grid sequence, it is 

5000. The residual dropped approximately 4 orders of magnitude. This 

solution took just over 1 day (wall time) on PC. 
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Figure 3-12 Convergence Histories of ONERA M6 wing (M∞=0.86, α=5.06o) 

 

Figure 3-13, 3-14, and 3-15 depicts the surface pressure distributions and 

“oilflow” patterns obtained from the Euler, BL and JK calculations at the 

angle of attack of 5.06 degrees. In these pictures, lambda type shock 

pattern, which is typical of this wing and can be recognized easily by 

resembling the Greek symbol λ , is captured for all solution techniques. The 

shock-induced separated flow region is observed only for viscous solutions. 

It can be seen that this separation region is significant only at the outboard 

portion of the wing for BL solution. However, the JK model produces larger 

reverse flow region and there is also a slight separation in the middle portion 

of the wing. Two regions of counter-rotating flows, one emanating from and 

the other terminating in a node, are as shown by the letter ‘N’. The saddle 

points, S, are also seen in figures. 
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Figure 3-13 “Oilflow” patterns over ONERA M6 Wing – Euler (M∞ = 0.86, 

α=5.06o) 

 

Figure 3-14 “Oilflow” patterns over ONERA M6 Wing – BL (M∞ = 0.86, 

α=5.06o, N: node point, S: saddle point) 
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Figure 3-15 “Oilflow” patterns over ONERA M6 Wing – JK (M∞ = 0.86, 

α=5.06o, N: node point, S: saddle point) 

 

The surface pressure coefficient distribution along five spanwise stations at 

44-, 65-, 80-, 90-, 95- percent fractional semi span of the solution obtained 

at first flow condition, which is Mach number is 0.86 and the angle of attack 

is 5.06 degrees, is presented in Figure 3-16, 3-17, 3-18, 3-19, and 3-20. In 

general, the BL model has a downstream shock wave compared with the JK 

model. The results of the JK model are much more close to the experimental 

data as the cross sectional station moves towards wing tip, where the 

separation is dominated. Although the overall agreement of the JK results 

with the experiment is good, it may still need some tuning of the model or 

the grid convergence study. 
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Figure 3-16 CP distribution at M∞ = 0.86 and α=5.06o (at 2y/b=0.44) 

 

 

Figure 3-17 CP distribution at M∞ = 0.86 and α=5.06o (at 2y/b=0.65) 
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Figure 3-18 CP distribution at M∞ = 0.86 and α=5.06o (at 2y/b=0.80) 

 

 

Figure 3-19 CP distribution at M∞ = 0.86 and α=5.06o (at 2y/b=0.90) 
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Figure 3-20 CP distribution at M∞ = 0.86 and α=5.06o. (at 2y/b=0.95) 

 

The second case is at the same Mach number but at higher angle of attack, 

6.06 degrees. This test condition is difficult having a stronger lambda type of 

shock pattern with a large separated flow region. Therefore, keeping the 

iteration numbers constant at 4000 for the first two cycles, the number of 

iterations at fine grid level is increased to 8000 to obtain a converged 

solution. The convergence characteristics are illustrated in Figure 3-21. The 

residual dropped about 4 orders of magnitude. Besides, the solution time is 

increased to approximately 11 hours, which makes in total 1.5 days (wall 

time) on PC. 
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Figure 3-21 Convergence Histories of ONERA M6 wing (M∞=0.86, α=6.06o) 

 

The surface pressure distributions and “oilflow” patterns on the upper 

surface of the Euler, BL and JK calculations at the angle of attack of 6.06 

degrees are demonstrated in Figures 3-22, 3-23, and 3-24. Although there is 

no surface flow visualization data available for comparison, the overall flow 

pattern is observed for different solution methods. It is observed that the 

extent of the separated flow region predicted with the JK model is much 

larger compared to the BL results. 
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Figure 3-22 “Oilflow” patterns over ONERA M6 Wing – Euler (M∞ = 0.86, 

α=6.06o) 

 

Figure 3-23 “Oilflow” patterns over ONERA M6 Wing – BL (M∞ = 0.86, 

α=6.06o, N: node point, S: saddle point) 
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Figure 3-24 “Oilflow” patterns over ONERA M6 Wing – JK (M∞ = 0.86, 

α=6.06o, N: node point, S: saddle point) 

 

In the following figures (Figure 3-25, 3-26, 3-27, 3-28, and 3-29), the 

calculated surface pressure distributions along five spanwise stations at 44-, 

65-, 80-, 90-, 95- percent fractional of the semi span are compared with the 

experimental data at freestream Mach number of 0.86 and at the angle of 

attack 6.06degrees. The BL model captured the shock wave downstream of 

the experiment, while the JK model predicts quite satisfactorily. The reason 

of predicting the shock position much further upstream is explained as 

stating that the JK model produces lower values of eddy viscosity in adverse 

pressure gradient regions causing a thicker boundary layer and the 

upstream movement of the shock [11]. At 44% and 65% stations, shock 

locations are remarkably correlated with the experimental results, whereas 

at outer stations (80%, 90% and 95%), predicted shock locations are far 

from the experimental data. 
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Figure 3-25 CP distribution at M∞ = 0.86 and α=6.06o (at 2y/b=0.44) 

 

 

Figure 3-26 CP distribution at M∞ = 0.86 and α=6.06o (at 2y/b=0.65) 
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Figure 3-27 CP distribution at M∞ = 0.86 and α=6.06o (at 2y/b=0.80) 

 

 

Figure 3-28 CP distribution at M∞ = 0.86 and α=6.06o (at 2y/b=0.90) 
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Figure 3-29 CP distribution at M∞ = 0.86 and α=6.06o (at 2y/b=0.95) 

 

Until now, the numerical results are only compared with surface pressure 

distribution on some stations along the wing. In the following test case, 

however, aerodynamic coefficients are also investigated. 

 

3.4 Test Case III: DLR-F4 Wing 

 

DLR-F4 model is actually a wing/body configuration of a transonic transport 

aircraft. However, the three dimensional transonic swept wing is modeled 

and the flow is investigated using this model. There are two leading reasons 

for selecting this test case. Firstly, the model has been extensively tested in 

three different European wind tunnels including the High-Speed Wind 

Tunnel of the National Aerospace Laboratory (NLR-HST), the ONERA-

S2MA wind tunnel, and 8ft x 8ft Pressurized Subsonic/Supersonic Wind 

Tunnel of the Defense Research Agency (DRA), the details of which can be 
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found in [6]. Secondly, the model also has extensive experimental data, 

including aerodynamic coefficients, providing a good candidate database for 

the CFD comparisons. 

 

DLR-F4 wing has an aspect ratio of 9.5 and the taper ratio is 0.3. Its leading 

edge sweep angle is 27.1 degrees and the quarter chord sweep is 25 

degrees. Twist distribution is incorporated in wing sections [6]. The six 

spanwise stations, in which the surface pressure distribution was 

investigated, are as shown in Figure 3-30. 

 

 

Figure 3-30 Geometric layout of the DLR-F4 Wing 

 

Aspect ratio, A = 9.5 

Taper ratio, λ = 0.3 

Sweep angle, ΛLE = 27.1o 

DLR‐F4 WING 
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The grid for the present calculations is C-H type. Three-level multigrid is 

employed, and accordingly the mesh is composed of 193x65x49 points 

(Figure 3-31). 

 

 

Figure 3-31 Mesh around the DLR-F4 Wing 

 

For three different Mach numbers, wide ranges of angles of attack 

computations are performed. Resulting lift curve and drag polar of the wing 

are compared with the experimental wing/body data. The surface pressure 

comparisons on the wing are pursued, at the freestream condition of M∞ = 

0.6, the angle of attack α=1.0 degrees, and at a Reynolds number of 3 x106. 

 

Figure 3-32 presents the characteristics of the convergence for a 

representative run (M=0.6, α=1.0 deg.) by including the log of the residual 



 54

and lift/drag convergences. The number of iterations is: 200 for coarse-grid, 

400 for medium-grid, and 800 for fine-grid. The residual dropped 5 orders of 

magnitude. Each solution took less than 4 hours (wall time) on PC. 

 

 

Figure 3-32 Convergence Histories of the DLR-F4 wing (M∞=0.6, α=1.0o)  

 

Next two figures (Figure 3-33 and Figure 3-34) show pressure contours and 

streamlines on the wing. The color bands basically represent the shock as 

the colors change from blue to green. In other words, attached transonic 

flow over this sweptback wing with pockets of supersonic flow on the upper 

surface is terminated by weak shock waves. A small trailing edge separation 

is observed in the kink region of the trailing edge. Also, there is a slight 

outboard turning of the flow near the trailing edge in sections close to the 

wing tip. 
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Figure 3-33 Surface pressure distribution at transonic regime (M=0.75, 

AOA=4.24o) 

 

Figure 3-34 “Oilflow” patterns over DLR-F4 wing (M=0.75, AOA=4.24o) 

 

In order to obtain lift curve and drag polar, the entire range of angle of attack 

is investigated for three different Mach numbers (0.60, 0.75, and 0.80). The 
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Reynolds number of 3x106 was used. The computed aerodynamic 

characteristics were compared with the experimental data in Figure 3-35, 3-

36, 3-37, 3-38, 3-39, and 3-40. Both the Baldwin-Lomax and the Johnson-

King Turbulence models over-predict the lift coefficient (CL) and under-

predict the drag coefficient (CD). Since the experimental data belongs to 

wing/body configuration and the numerical results are calculated from wing 

alone, this difference could be caused by the negative influence of the 

fuselage. Besides, the overall trends of the turbulence models have some 

differences, especially at higher angles of attack. The resulting curve of the 

JK model has a kink on the curve. This nonlinearity in the data may 

correspond to separation condition. Additionally, the lift curve characteristics 

of the wind-tunnel data shows a similar small break in the linearity of the 

curve. However, BL predictions do not capture this feature. At high angle of 

attack values, the pressure drag due to the flow separation begins to 

dominate. This may be the reason, why drag coefficient initially increases 

similarly for both turbulence models and then at one point it starts to 

increase steeply for JK model. The mesh quality may be reconsidered for 

the differences in lift curve and drag polar. Insufficient resolution of the 

trailing edge and/or wake, may be affect the way circulation (if exists) and lift 

as well. Over prediction in lift will also affect lift dependent drag. 
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Figure 3-35 Lift Curve (M=0.60) 

 

 

Figure 3-36 Drag Polar (M=0.60) 
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Figure 3-37 Lift Curve (M=0.75) 

 

 

Figure 3-38 Drag Polar (M=0.75) 
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Figure 3-39 Lift Curve (M=0.80) 

 

 

Figure 3-40 Drag Polar (M=0.80) 
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The numerical surface pressure distribution data obtained at flow conditions 

of Mach number is equal to 0.60, and the angle of attack is equal to 0.641 

degrees are compared with the results obtained from three different wind 

tunnels (Figure 3-41, 3-42, 3-43, 3-44, 3-45, and 3-46). There are six 

different spanwise sections, in which the pressure distribution is 

investigated. The overall correlation between the viscous CFD results and 

wind-tunnel measurements is reasonable. Inboard of the wing, the suction 

peak predictions near the leading edge are very good, contrary to outboard 

of the wing, where the suction peak is slightly missed. 

 

Since the measured surface pressure coefficients are quite good predicted 

by BL and JK turbulence models, the integrated quantities like lift and drag 

should be in good agreement with the experimental data. The idea 

mentioned above about the wing-body interactions, which produce the lower 

lift coefficient and the higher drag coefficient for the wind tunnel 

measurement when compared to computational results, can also be 

supported by obtaining such a good correlation with the experimental data 

over the wing surface. 
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Figure 3-41 CP distribution at M∞ = 0.6 and α=1.0o (at 2y/b=0.185) 

 

 

Figure 3-42 CP distribution at M∞ = 0.6 and α=1.0o (at 2y/b=0.238) 
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Figure 3-43 CP distribution at M∞ = 0.6 and α=1.0o (at 2y/b=0.331) 

 

 

Figure 3-44 CP distribution at M∞ = 0.6 and α=1.0o (at 2y/b=0.512) 
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Figure 3-45 CP distribution at M∞ = 0.6 and α=1.0o (at 2y/b=0.636) 

 

 

Figure 3-46 CP distribution at M∞ = 0.6 and α=1.0o (at 2y/b=0.844) 
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The issues of affordability and time to market are driving the industry to 

greater reliance on computational tools in the design process. Utility of CFD 

is related to reliability of the solution process. The credibility and confidence 

in the tool can be provided via the process of verification and validation. 

Also, this process allows quantifying uncertainty and error. Up to now, 

computational results are compared against wind tunnel measurements. In 

the next test case, the results will be compared with well known CFD codes, 

including CFL3D and OVERFLOW (from Boeing), TAU-FLOWer (from DLR), 

FUN3D (from NASA), NSU3D (from University of Wyoming, Dimitri 

Mavriplis) and the commercial code FLUENT. 

 

3.5 Test Case IV: DPW3 – WING 1/WING 2 

 

These test cases were selected from the 3rd AIAA CFD Drag Prediction 

Workshop [7]. One of the objectives of this workshop is to provide an 

impartial forum for evaluating the effectiveness of existing Navier-Stokes 

flow solvers. Since this workshop is on ‘blind’ drag prediction accuracy, there 

is no prior experimental data for comparison. However, there is an 

opportunity to compare the results with well-known CFD codes. This test 

case provides a convenient way to distinguish the differences between the 

flow solvers. 

 

Wing-1 is the baseline geometry and Wing-2 was created using simple 

optimization to change camber and twist. CAD models were downloaded 

from the workshop homepage [7]. DPW – WING 1 and WING 2 have an 

aspect ratio of 4 and the taper ratio is 0.5. The leading edge sweep angle is 

17.2 degrees and the quarter chord sweep is 15 degrees [7]. The eight 

spanwise stations, in which the surface pressure distribution was 

investigated, are as shown in Figure 3-47. 
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Figure 3-47 Geometric layout of the DPW – WING 1/ WING 2 

 

The computations were performed at the flow conditions of Mach number is 

equal to 0.76, the range of angle of attack from -1 degrees to +3 degrees by 

the increment of 0.5 degrees, and the Reynolds number is 5 millions based 

on reference chord length. 

 

The employed grids are C-H type having 193x65x49 nodes in the stream 

wise, spanwise and the normal directions respectively. In Figure 3-48, the 

mesh around the WING-1 is represented. Since the WING-1 and WING-2 

are similar in all aspects except the camber and twist, the grid around the 

WING-2 is not shown. 

 

Aspect ratio, A = 4 

Taper ratio, λ = 0.5 

Sweep angle, ΛLE = 17.2o 

DPW – WING 1/ WING 2
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Figure 3-48 Mesh around the DPW – WING 1 

 

The convergence characteristics are as given in Figure 3-49 and Figure 3-50 

for the design flow condition (M∞=0.76 and α=0.5 degrees) with the log of 

the residual and force coefficients. The 3-levels of multigrid was used and 

the number of iterations for each sequence is 1000. The residual dropped 

more than 5 orders of magnitude. Each solution took just about 4.5 hours 

(wall time) on PC. 
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Figure 3-49 Convergence Histories of DPW – WING 1 (M∞=0.76, α=0.5o) 
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Figure 3-50 Convergence Histories of DPW – WING 2 (M∞=0.76, α=0.5o) 

 

Next two figures (Figure 3-51, 3-52) show pressure contours and 

streamlines on the W1 and W2. The BL results are represented on the left 

column, while the results of the JK model are on the right column. Hence, 

these turbulence model solutions can be compared for each angle of attack 

value. The separation starts at around α=1.5o. At first glance, WING 2 

results seem to be the same for WING 1. However, JK model predicts that 

the separation is in the middle part of the wing but, this separation occurs 

close to the outboard for the BL case. At the highest angle of attack (3.0 

deg.), BL turbulence model captures a secondary separation close to the 

wing root. For the same alpha the JK model, predicts slightly wider 

separation, but there is no other secondary separation. In WING 2 results, 

the differences between the turbulence models are significant. 
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BL : M=0.76  AOA=1.5o   JK : M=0.76  AOA=1.5o   

BL : M=0.76  AOA=2.0o   JK : M=0.76  AOA=2.0o   

BL : M=0.76  AOA=2.5o   JK : M=0.76  AOA=2.5o   

BL : M=0.76  AOA=3.0o   JK : M=0.76  AOA=3.0o   

Figure 3-51 “Oilflow” patterns over DPW – WING 1 (BL & JK Solutions) 
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BL : M=0.76  AOA=1.5o   JK : M=0.76  AOA=1.5o   

  

BL : M=0.76  AOA=2.0o   JK : M=0.76  AOA=2.0o   

  

BL : M=0.76  AOA=2.5o   JK : M=0.76  AOA=2.5o   

  

BL : M=0.76  AOA=3.0o   JK : M=0.76  AOA=3.0o   

Figure 3-52 “Oilflow” patterns over DPW – WING 2 (BL & JK Solutions) 
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Since W1 and W2 test cases do not have the measured wind tunnel data, 

the comparisons will be done using the well known CFD codes. Main 

information regarding these flow solvers are tabulated in Table 1. 

OVERFLOW (Boeing) uses structured grid on full Navier Stokes (NS) and 

the turbulence model is Spalart-Allmaras (SA). CFL3D (Boeing) is a 

structured thin layer NS code with SA and the Menter’s k-ω SST models. 

TAU (DLR) is unstructured Reynolds Averaged Navier-Stokes (RANS) 

solver with the Spalart-Allmaras Extended (SAE) Model and the Menter’s k-

ω SST Model (kw-SST). FLOWer (DLR) is the structured RANS solver and 

uses the Reynolds stress models: SST and SSG/LLR, in which the SSG is 

the quasi-nonlinear model of Speciale, Sarkar and Gatski, and LLR model is 

proposed by Launder, Reece and Rodi. FUN3D (NASA Langley Research 

Center) is an unstructured full NS code having SA and SST turbulence 

models. NSU3D is used by Dimitri Mavriplis (University of Wyoming) and it is 

an unstructured thin-layer RANS solver. For the test cases it uses original 

SA model. The last one is the FLUENT, which used unstructured grid 

generated by Boeing. Realizable k-ε (RKE) turbulence model was used by 

FLUENT. Approximate grid sizes used in these flow solvers are around 10 

millions points, which makes 10 times finer mesh than the mesh used in this 

study. 
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Table 3-1 Participants of the DPW-W1 & W2 

AFFILIATION CODE TYPE TURBULENCE 
MODEL 

 TAI xFLOW Structured, 
Full NS BL, JK 

OVERFLOW Structured, 
Full NS SA 

 
THE BOEING 
COMPANY CFL3D Structured, 

Thin Layer NS 
SA & Menter’s 

k-ω SST 

TAU Unstructured, 
RANS 

SAE & Menter’s 
k-ω SST 

 DLR 
FLOWer Structured, 

RANS 
SST & 

SSG/LLR 

 

NASA LANGLEY 
RESEARCH 

CENTER 
FUN3D Unstructured, 

Full NS SA & SST 

UNIVERSITY OF WYOMING NSU3D Unstructured, 
Thin Layer NS SA 

 FLUENT INC. FLUENT 6.3 Unstructured Relizable k-ε 

 

In the following figures (Figure 3-53, 3-54, 3-55, and 3-56), the aerodynamic 

characteristics of the wings are compared with the results of the Drag 

Prediction Workshop. Although it is difficult to judge quality of results without 

any experimental “guide” solutions, the following lift/drag figures indicate that 

most of the represented CFD tools are in reasonable agreement with each 

other.  
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Figure 3-53 Lift Curve for WING 1 (M=0.76, Re=5M) 

 

Figure 3-54 Drag Polar for WING 1 (M=0.76, Re=5M) 
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Figure 3-55 Lift Curve for WING 2 (M=0.76, Re=5M) 

 

Figure 3-56 Drag Polar for WING 2 (M=0.76, Re=5M) 
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The BL model exhibits relatively higher lift and lower drag coefficients. On 

the other hand, the JK model predicts the lowest CL than any other methods. 

In general, the lift and drag trends are well presented for these turbulence 

models, but there is a discrepancy at high angles of attack. This is a blind 

study and the unavailability of experimental data does not allow commenting 

on absolute accuracy. But it can be said that, on the basis of comparison 

with other CFD codes, good accuracy has been presented when considered 

the relative grid sizes, and computing time. 

 

The surface pressures were investigated at eight different span wise 

sections. These comparisons were done at the flow condition of Mach 

number is 0.76, the angle of attack is 0.5 degrees and the Reynolds number 

is 5 millions. The CP distribution of WING 1 is given in Figure 3-57 and 3-58. 

 

The results of the BL model are well correlated with the other computational 

solutions. Especially it is very close to the CFL3D results, which uses the 

Spalart-Allmaras turbulence model. Furthermore, FUN3D, which is used at 

the NASA Langley Research Center and these solutions were obtained by 

using the SA model, captured the shock wave upstream when compared to 

others (except in the middle station-0.42%). All CFD tools agree reasonable 

well with regard to the shock placement. There is upstream shift of shock 

location for the JK model. Only at outer station (94.5%), the JK model shows 

good agreement. Besides, the JK model shows much more smearing of the 

shock at the inboard of the wing (from 2.6% to 15.7%). 
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η=0.026 η=0. 157 

η=0. 289 η=0.420 

Figure 3-57 CP distribution of WING 1 (M∞ = 0.76, α=0.5o) (continued) 
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η=0.551 η=0. 682 

η=0. 814 η=0.945 

Figure 3-58 CP distribution of WING 1 (M∞ = 0.76, α=0.5o) 

 

As it was mentioned before, WING 1 is the baseline wing, and WING 2 is 

obtained from this wing via simple optimization. Only the camber and twist 

parameters were changed. When the results shown in figures from Figure 3-

57 to Figure 3-60 are compared, it is observed that there is a strong shock 

on WING 1, which is started around 42% of the wing. However, there is no 

strong shock on WING 2. The only weak shock was predicted by the JK 

model. Besides, at stations 55.1%, 81.4%, and 68.2% FUN3D tend to 

predict the shock placement in front of the other results. 
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The comparison of the Baldwin-Lomax turbulence model against these well-

known CFD codes is in good agreement at almost every spanwise station 

except the last one (94.5%). 

 

The results obtained from the Navier-Stokes flow solver with the Baldwin-

Lomax turbulence model are robust and gives reasonable results, even if the 

quality of the grid is questionable.  

 

  

η=0.026 η=0. 157 

  

η=0. 289 η=0.420 

Figure 3-59 CP distribution of WING 2 (M∞ = 0.76, α=0.5o) (continued) 
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η=0.551 η=0. 682 

  

η=0. 814 η=0.945 

Figure 3-60 CP distribution of WING 2 (M∞ = 0.76, α=0.5o) 
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CHAPTER 4  

CONCLUSION 

The purpose of this study is the implementation of the Johnson-King 

Turbulence model algorithm into Navier-Stokes flow solver and the 

validation/verification of this CFD tool on swept wings. The Baldwin-Lomax 

turbulence model was already available in the flow solver, and it was used 

as a base solver for this newly implemented model. This CFD tool is aimed 

to be used as a practical analysis tool, in terms of accuracy and robustness.  

 

The validation/verification was carried out using two- and three-dimensional 

test cases. NACA 0012 airfoil, ONERA M6 wing, DLR-F4 wing and DPW3 – 

Wing1/Wing2 were selected as test cases. Both of the turbulence models 

and also Euler solution were compared against experimental and reference 

data. Initial analysis was performed on simplest test case, which is NACA 

0012, at transonic speeds. The flow field was captured very accurately for 

viscous computations. 

 

This work continued on the flow analysis over swept wings. The flow over 

ONERA M6 wing with Mach number of 0.84 and angles of attack 5.06/6.06 

degrees were computed. In order to investigate how accurately the flow field 

computation can be performed using viscous and inviscid methods, the 

surface pressure coefficients were compared against the experimental data 

at various spanwise stations. The following test case was DLR-F4 wing, 

which had a higher aspect ratio than the ONERA M6 wing. For this case, the 

experimental data set includes the aerodynamic performance characteristics 
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and the surface pressure distributions at different sections. The final test 

cases are named as Wing1 and Wing2, which are taken from the 3rd AIAA 

Drag Prediction Workshop. This case provides an opportunity to realize the 

level of our in-house developed code among the other widely known CFD 

codes. 

 

It is noteworthy to point out that the results of the BL and JK models, which 

were demonstrated in the previous Chapter, are quite satisfactory. Although 

meshes were rather coarse, the significant flow features were predicted. On 

balance, JK model appears to be a useful engineering analysis tool, within 

its targeted range of applicability, which is flow with mild separation. 

 

The code is being converted to a parallel, multi-block oversetting grid flow 

solver to run on a network of personal computers, for the analysis of 

complex geometries in feasible durations acceptable for engineering 

development schedules. 

 

As a future work, this code can be used as a base flow solver and many 

more turbulence models can be implemented in it. In this way, these models 

can also be tested using the same grid on the same flow solver. 
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