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ABSTRACT 
 

 
RESOURCE-AWARE LOAD BALANCING SYSTEM WITH ARTIFICIAL  

NEURAL NETWORKS 
 

 
Yıldız, Ali 

 

MS, Department of Computer Engineering 

Supervisor: Dr. Cevat Şener 

 

 

August 2006, 94 pages 
 

As the distributed systems becomes popular, efficient load balancing systems taking 

better decisions must be designed. The most important reasons that necessitate load 

balancing in a distributed system are the heterogeneous hosts having different com-

puting powers, external loads and the tasks running on different hosts but communi-

cating with each other. In this thesis, a load balancing approach, called RALBANN, 

developed using graph partitioning and artificial neural networks (ANNs) is de-

scribed. The aim of RALBANN is to integrate the successful load balancing deci-

sions of graph partitioning algorithms with the efficient decision making mechanism 

of ANNs. The results showed that using ANNs to make efficient load balancing can 

be very beneficial. If trained enough, ANNs may load the balance as good as graph 

partitioning algorithms more efficiently. 

Keywords: load balancing, distributed systems, artificial neural networks, P-
GRADE, graph partitioning 
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ÖZ 
 

 
YAPAY ZEKA AĞLARI KULLANILARAK GELİŞTİRİLMİŞ KAYNAK  

HABERDAR YÜK DENGELEME SİSTEMİ  
 
 

Yıldız, Ali 

 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Dr. Cevat Şener 

 

 
Ağustos 2006, 94 sayfa 

 

Dağıtımlı sistemler populerleştikçe, daha iyi kararlar verebilen verimli yük denge-

leme sistemleri geliştirilmelidir. Dağıtımlı bir sistemde yük dengelemeyi zorunlu 

kılan en önemli nedenler farklı çalışma hızlarına ve dış yüklere sahip heterojen yapı-

daki bilgisayarlar ve farklı bilgisayarlarda koşan fakat birbirleriyle haberleşen görev-

lerdir. Bu tezde, çizge bölümleme and yapay nöral ağlar kullanılarak geliştirilmiş, 

RALBANN adı  verilen bir yük dengeleme yaklaşımı ve yazılımım anlatılacaktır. 

RALBANN’ın amacı çizge bölümlemeli yük dengeleme algoritmalarının başarılı 

sonuçlarını, yapay nöral ağların verimli karar alma mekanizmasıyla birleştirmektir. 

Sonuçlar, yük dengelemesi yapmak için yapay nöral ağları kullanmanın çok yararlı 

olabileceğini gösterdi. Yeterince eğitildikleri zaman, yapay nöral ağlar, daha verimli 

bir şekilde çizge bölümlemeli yük dengeleme algoritmaları kadar iyi yük dengeleye-

bilirler. 

Anahtar Kelimeler: yük dengeleme, dağıtık sistemler, yapay sinir ağları, P-
GRADE, çizge bölümleme 
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CHAPTER 1  

 

INTRODUCTION 

 

 

1.1. Scope of the Thesis 

During the past several decades, the widespread availability of internet and computer 

intranets has motivated the migration of several applications, which require high 

computing power, memory or network communication, from stand alone and central-

ized environments (PC, main frames) into distributed and parallel environments. The 

reason of this migration is the problems raised in centralized systems. For example, a 

centralized system which has to provide web services to millions of users is very 

likely to crash due to point of failure. In computational mechanics applications like 

particle simulations and transient dynamics calculations, the computation can not be 

run on a single processor since most of the CPU would be wasted to switch between 

several subtasks. In distributed systems, a single computational task is divided into 

several subtasks and distributed across several computers so that the power (CPU, 

memory, network, disk) of these computers is accumulated. One of the most impor-

tant features of distributed systems is the availability to increase their overall compu-

tational power by adding new nodes. This requirement is raised because of the need 

to address increasingly growing computation workloads. The possibility of increas-

ing size of the distributed system eventually results in heterogeneous environments 

as the newly-added nodes often have better computational power. Several efforts to 

develop technologies to combine the power of Internet-connected systems are being 

spent. Grid technologies like Globus [1] and MPICH-G2 [2] are example of such 

environments. They have enabled computation on heterogeneous and widely-

distributed systems on the Internet or Intranet. 
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However, it is clear that the idea of distributing tasks over several hosts has made the 

problem of efficient task-resource assignment more difficult. The problem of effi-

ciency emerges from the fact that it is likely to find hosts idle, while there are jobs 

queuing for execution in other hosts. Therefore it would be better to move from 

heavily loaded hosts to idle hosts. This and other efficiency problems can be solved 

via load balancing. 

Load balancing can be described as dividing the amount of work that a computer 

must do between two or more processors or computers so that the average execution 

time of the application is minimized. Therefore, the main objective of load balancing 

can be described to decrease average execution time of distributed software. There 

are two situations: the tasks may communicate with each other or each task execute 

independently without any communication. If the tasks don’t communicate with each 

other, the objective must be to minimize the execution time of the independent tasks. 

Otherwise, the objective must be to minimize the average completion times of inde-

pendent tasks by reorganizing them on hosts so that the average load times of all 

hosts are nearly the same. The reorganization of the tasks must be done to satisfy the 

following main objectives [3-5]: 

1. All hosts must be kept busy as much as possible. 

2. The amount of inter-host communication must be minimized. 

The aim of first goal is make every host have the same amount of workload. This is 

done basically by moving tasks from heavily loaded hosts to idle or less loaded hosts. 

The aim of the second goal is to decrease the usage of network resource so that the 

tasks do not spend their time waiting for messages from the other tasks running on 

different hosts. The solution to this problem is to collect highly communicating tasks 

on a single host as much as possible. 

A lot of load balancing algorithms have been devised to fulfill the main objectives of 

load balancing. What they do is to find the best matching between the tasks and the 

resources that fulfills the 2 requirements. However, examining and finding the best 

matching of T tasks to P processors is an NP-complete problem [6]. Therefore, all 

algorithms try to find an optimal or near-optimal solution in an efficient way. Gener-
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ally, load balancing algorithms is comprised of three phases: information collection, 

decision making and data migration (Figure 1). During the information collection 

phase, load balancer gathers the information of workload distribution and the state of 

computing environment and detects whether there is a load imbalance. The decision 

making phase focuses on calculating an optimal data distribution, while the data mi-

gration phase transfers the tasks from overloaded processors to under loaded ones. 

The load balancing algorithms is widely discussed in section 2.1. 

 

 

Figure 1 - Load Balancing Phases 

 

Classification of Load Balancing Algorithms: 

Load balancing algorithms can be classified according to the following criterias [7]: 

• Whether balancing is done at run-time, dynamically;  

• Load balancing and task migration is done at single host;  

• Whether tasks that have already begun can not be rescheduled. 
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Figure 2 - Classification load balancing algorithms 

 

In centralized algorithms, the load balancing and process migration decisions at only 

one host. On the contrary in decentralized algorithms, load balancing is done at all 

hosts. Centralized are better at balancing interdependent tasks since they can see the 

system globally; but decentralized algorithms are better for scheduling independent 

tasks. 

In static algorithms, load balancing decision is determined statically for each task, 

without considering the run-time loading conditions. They work better when tasks 

have predictable resources and hosts have predictable workloads since they need no 

information collection at run time. However in dynamic algorithms, the host to dis-

tribute the task is chosen at run time according to the workloads of the hosts. These 

are more suitable when little is known about either the tasks being scheduled or the 

loading conditions are changeable during task execution. Dynamic algorithms [8] 

may be further classified as either preemptive or non-preemptive; the former permit 

migration of tasks that have already begun execution, but the latter do not.  

Dynamic load balancing algorithms can be mainly divided into geometric and topo-

logical algorithms [9]. In geometric load balancing algorithms, the tasks are distrib-

uted to hosts according to the geometric locations. Normally, these kinds of algo-

rithms are mostly used for problems in which the interactions are geometric, like 

particle simulations. RCB (Recursive Coordinate Bisection) [3,10] and space filling 
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curves [11] are the most commonly used geometric partitioning algorithms. On the 

contrary topological algorithms work using the interactions between the tasks instead 

of geometric positions. Topological algorithms can be used for nearly all problems 

since connectivity of the tasks is implicit and exploited by the algorithms. Local 

methods (diffusion [12], demand driven, dimension exchange), RSB (Recursive 

Spectral Bisection) and graph partitioning algorithms are the most commonly used 

topology based load balancing algorithms. Researches show that topological algo-

rithms are much more superior to geometric algorithms in terms of quality. Espe-

cially, graph partitioning algorithms create the best load balancing results. However, 

they suffer from large memory usage and processor usage. Geometric and local 

methods run the fastest with less memory usage; however their quality is not as good 

as graph partitioners’ quality. In Table 1, the comparison of load balancing algo-

rithms is given [3,4]. 

 

Table 1 - Comparison of Dynamic Load Balancing Algorithms 

Method Quality Speed Memory 

Master/Slave *** Not Scalable *** 

Geometric Methods    

RCB/URB * *** *** 

RIB * ** *** 

Octree/SFC * *** ** 

Local Methods    

Diffusion ** *** *** 

Demand Driven ** *** *** 

Dimension Exchange ** *** *** 

Graph Partitioners    

RSB *** * * 

Multilevel *** ** * 
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The aim of this thesis is to describe a resource aware, machine learning and dynamic 

load balancing model to address the problems of graph partitioning based load bal-

ancing algorithms. This model is called RALBANN (Resource Aware Load Balanc-

ing with Artificial Neural Networks). The main goal of RALBANN is the learning of 

load balancing based graph partitioning using artificial neural networks, to bring to-

gether the successful partitioning results of graph partitioning algorithms with the 

efficiency and learning capability of artificial neural networks in a resource aware 

scheme. This is accomplished by mapping the task partitions to the computing re-

sources according to the capabilities of the computing resources producing a resource 

aware load balancing scheme. Feed-forward artificial neural networks are used as the 

machine learning tool. 

Graph partitioners are used to teach RALBANN’s learning module how to balance 

the network. The reason for choosing graph partitioners is that they produce the most 

successful load balancing results among all other load balancers (Table 1). However, 

their disadvantage is that they are very inefficient in terms of memory usage and 

speed. Therefore, RALBANN aims at balancing the load as successful as graph parti-

tioners with better memory and processor usage using artificial neural networks. 

RALBANN basically tries to (1) divide the task interaction graph (TIG) of the dis-

tributed application into different task groups and (2) find the best matching between 

the task groups and the hosts considering their computational power and external 

loads. As the supervisor for artificial neural networks, a component which partitions 

the graphs using multilevel graph partitioning algorithms is implemented. 

Traditional graph partitioning based load balancing algorithms have several draw-

backs. Our model tries to find solutions to these drawbacks. These algorithms try to 

divide the tasks into groups of different size. Each group consists of only tasks that 

communicate with each other heavily. However the increase in the execution of dis-

tributed applications depends on not only the distribution of the tasks over the hosts 

composing the distributed environment but also the computational power and exter-

nal load of the hosts. Normally, graph partitioning algorithms don’t take care of these 

issues and are not aware of the computational power and external load of the hosts. 
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To further increase the efficiency of distributed applications, these external con-

straints must be taken care, too. 

Another problem with graph partitioning algorithms is their inefficiency in terms of 

both memory usage and speed. As described in section 2.1, graph partitioning algo-

rithms used for load balancing are generally inefficient since graph algorithms take 

too much memory and computational time. In fact, graph partitioning is an NP com-

plete problem. To find the best solution, the algorithms must scan all possible task-

to-host assignments and select the one which reduces the completion time of the dis-

tributed application at most. Since the complexity of such an operation is very large, 

most graph partitioning algorithms try to find an optimal solution, which is not guar-

anteed to be the best. 

The most important contribution of this thesis is the automated learning and execu-

tion of load balancing. Most load balancing algorithms require some parameters to be 

tuned manually by a human designer before they are executed as explained in Me-

hra’s work [13,14]. Therefore these algorithms work well, only when these parame-

ters are adjusted accordingly. When the configuration of the system changes or when 

new applications are run on the system, the parameters must be adjusted again. On 

the contrary, RALBANN has capabilities to learn and adapt the distributed system 

from scratch without any priori information about the application and the system. 

Our thesis proposes an integrated approach that addresses the problems of current 

problems of graph partitioning based load balancing. Our load balancing module 

contains 2 artificial neural networks which learn (1) to partition TIG graph and (2) 

decide the assignment of the tasks over the hosts by considering their heterogeneous 

computational power and external loads in a resource-aware scheme. The learning 

process can be done automatically during execution. Therefore the load balancing 

module can adapt itself when there are changes in the system. Using neural networks, 

the inefficiency of graph partitioning algorithms is replaced with efficient decision 

making mechanism of artificial neural networks. Once trained enough, it runs more 

efficient than graph partitioning based load balancing algorithms in terms of memory 

and CPU usage. 
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The load balancing module implemented has been fully integrated and test with P-

GRADE (Parallel Grid Run-Time and Application Development Environment) par-

allel application development environment. Using the monitoring tool of P-GRADE, 

our module collects the necessary information and takes the necessary load balancing 

decisions. 

To summarize, the main contributions of this thesis are the following: 

• Learning of graph partitioning and load balancing using artificial neural 

networks, 

• Resource aware load balancing with artificial neural networks, 

• Learning of computing resources and distributed application with differ-

ent artificial neural networks: RALBANN can learn the distributed sys-

tem (properties of the computational resources) separately from the appli-

cation running on the system. For a specific distributed network, the 

properties of computational resources are learnt once and saved to a file. 

Later, it can be used for each application running on the same network. 

This makes learning time faster and efficient. 

1.2. Outline of the Thesis 

The thesis is organized as follows. The next chapter contains background informa-

tion about artificial neural networks and load balancing. Further, several researches 

and projects about load balancing are described briefly. Chapter 3 describes our pro-

posed model. The chapter starts by first explaining the models used in RALBANN, 

namely abstract distributed system model and graph model. In this chapter, the archi-

tecture and operation of RALBANN is described in detail, too. The chapter con-

cludes by describing the steps to integrate RALBANN with other graph partitioner 

algorithms and other distributed systems. Chapter 4 lists the experimental tests of the 

model. In Chapter 5, main contributions of our research and some ideas for future 

work are listed. In Appendix A, developer’s manual for RALBANN takes part. This 

chapter contains class diagram of RALBANN with the important classes and struc-

tures are described. 
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CHAPTER 2  

 

BACKGROUND AND RELATED WORK 

 

 

In this thesis, improving the efficiency and effectiveness of load balancing systems 

used in distributed systems are concerned. Before the relevant research with similar 

objectives is presented, the basics of graph partitioning algorithms and artificial neu-

ral networks are summarized. 

2.1. Load Balancing Algorithms 

Due to its critical role in high-performance distributed computing, the load balancing 

issue has been studied extensively in recent years and a number of load balancing 

algorithms have been devised for parallel computing. The load balancing algorithms 

can be classified in 5 categories according to the methods and data structures they 

used [3,4,15]: 

• Master/Slave 

• Optimization 

o Simulated Annealing 

• Local Methods 

o Diffusion 

o Demand driven 

o Dimensional Exchange 

• Graph Partitioning 

o Geometric Methods 

o Structural Methods 

o Refinement Algorithms 
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o Multilevel Techniques 

o Parallel Techniques 

• Machine Learning 

o Unsupervised 

o Supervised 

2.1.1. Master/Slave 

The master/slave load balancing approach is the simplest load balancing algorithm. 

One of the hosts is called the master which is responsible for maintaining the tasks 

and delivering them to the slaves. The slave hosts finish their tasks and request new 

task from the master host. 

The master/slave approach has very attractive features that make it well suited for 

many problems. It is quite easy to implement. However, master/slave model is only 

suitable for problems in which tasks can be performed independently and asynchro-

nously by a single computer. Furthermore, it must be possible to send a task with 

small messages so that the message communication between the slaves and the mas-

ter doesn’t cause a bottleneck. 

 

 

Figure 3 - Master-Slave 
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2.1.2. Local Methods 

Most of load balancing algorithms use global data to determine the idle hosts and the 

processes to be migrated. That is, all hosts and processes in the distributed systems 

are examined globally to take the necessary steps to decrease average completion 

time. 

On the contrary, local load balancing methods work in smaller neighborhoods [3,16]. 

The aim is to spread the workload of highly loaded processors to other processors in 

the defined local neighborhood. The neighborhoods are chosen to overlap each other 

so that over several iterations the workload is spread over all processors. Unlike 

global methods, each iteration of local methods is usually quite fast and inexpensive. 

Because all of the information and communication is performed within small sets of 

processors, the methods scale well with the number of processors. Local methods are 

incremental and can be parallelized easily. One iteration can reduce a single heavily 

loaded processor’s workload significantly. Since the total time computation time is 

determined by the time required by the most heavily loaded processor, a small num-

ber of iterations may be sufficient to reduce imbalance. 

The most important advantage of local methods is that it is quite incremental, fast 

and efficient since they work on small neighborhoods. In a few iterations, they can 

reduce the workload of an overloaded processor. Since the total computation time is 

determined by the most heavily loaded processor, a small number of iterations are 

enough to reduce the computation time to an acceptable level. These kinds of algo-

rithms are very easy to distribute since they work on individual processors and don’t 

need global data. 

However when global balance instead of local balance is needed, a lot of iterations 

may be needed to converge to a good balance state. Therefore high quality load bal-

ancing is quite difficult with local methods. Local methods are generally very effi-

cient and fast in doing small and local changes in load balance. 

In distributed application that works asynchronously, the local methods may be more 

efficient, since global methods are necessarily synchronous. When a processor has 
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finished its task, it can initiate load balancing to request more jobs. While other 

neighborhoods continue their tasks, single neighborhoods may do load balancing. 

But the disadvantage here is that asynchronous models are difficult to implement. 

Local methods have two simple steps which highly affect their performance. In the 

first step, the method calculates how much work must be moved from the processor 

to other processors to balance the load. In the second step, the method selects the 

tasks and processors to be moved. The tasks to be migrated are chosen according to 

their communication connections with other tasks. This guarantees the minimization 

of the communication costs of the tasks. 

Some example algorithms in this category are diffusion, demand driven and dimen-

sional exchange. 

2.1.2. Graph Partitioning (Mesh Partitioning) 

The most important part of load balancing algorithms includes graph partitioning 

algorithms. This kind of algorithms models the problem domain as a graph consisting 

of weighted vertices and edges [3,4]. Using this model, load balancing problem is 

transformed to a problem with the goal to reduce the imbalance among the nodes and 

minimize the communication between the nodes. 

In its most general form, the graph partitioning tries to find how best to divide a 

graph's vertices into a specified number of subsets such that:  

1. The number of vertices per subset is equal and  

2. The number of edges straddling the subsets is minimized.  

A graph is defined in terms of a set of vertices V, and a set of edges E. Edges connect 

vertices from V pair-wise and are undirected. Self-loops are not permitted. A p-way 

partition of a graph is a mapping P:V->[1..p] of its vertices into p subsets S1,S2,,,Sp, 

where  ∪iSi=V and Si∩Sj= ∅ wherever i≠j. Every partition generates a set of cut 

edges, Ec, defined as the subset of E whose endpoints lie in distinct partitions 

Ec={(vi,vj)|(vi,vj)∈E,P(vi) ≠P(vj)}. The weight of each subset, |Si|, is defined to be the 

number of vertices mapped to that subset by P. 
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Given a graph as input, the graph partitioning problem seeks to find a p-way partition 

in which each subset contains roughly the same number of vertices (|Si|≤|V|/p) and 

the number of cut edges, |Ec|, is minimized. For input graphs that represent workload 

as described in the introduction, each partitioned subset represents data and computa-

tion that should be assigned to a single processor. The cut edges represent the inter-

host communication required by the distribution. Thus, the graph partitioning prob-

lem attempts to find a distribution that balances the computation done by each proc-

essor while minimizing the total inter-host communication. 

Traditional graph partitioners share the drawback that stems from the priori knowl-

edge of the workload and system state, and cannot adapt to system changes. On the 

other hands, they mainly focus on tightly-coupled systems consisting of homogenous 

processors thus can not handle the heterogeneity in distributed systems. Furthermore, 

these algorithms only consider the imbalance of sub domains and the edge-cut com-

munication, while neglect the data movement cost that can be a crucial performance 

bottleneck due to the high communication latency in distributed systems. 

Examples of graph partitioning based load balancing algorithms are: 

• Recursive Bisection: Recursive bisection algorithm [17] is divide-and-conqueror 

approach that recursively divides the graph into 2 different parts. Although this 

algorithm is NP-complete, it is still the most used algorithm because of its sim-

plicity compared to other p-way partitioning algorithms. 

 

 

Figure 4 - Recursive Bisection Algorithm 
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Several variations of the basic graph partitioning problem exist. The weighted 

graph partitioning problem allows weights to be associated with the vertices and 

edges of G. In this problem, a good partition is one in which the total vertex 

weight of each subset is roughly equal, and the total weight of the cut edges is 

minimized. In the context of workload graphs, node weights can be used to en-

code differing computation expenses across the graph (e.g., boundary locations 

vs. internal locations). Similarly, edge weights can signify the volume of com-

munication required between two nodes. 

The δ-partitioning problem is one in which some imbalance in the subset weights 

is tolerated in hopes of significantly reducing the number of cut edges. In this 

problem, a tolerance δ is supplied as input where 1/p<=δ<=1. Legal partitions are 

those that yield subsets with weight |Si|<=δ|V|. Note that the standard graph 

partitioning problem is simply a δ-partitioning problem in which δ=1/p. Another 

variation that allows for unbalanced subsets is the skewed partitioning problem. 

In this version, user-supplied weights are associated with each subset to specify a 

desired imbalance in the partition. Algorithms for this problem compute parti-

tions whose subsets are weighted proportionally to those specified by the user. 

In the context of workload distribution, these generalizations allow the character-

istics of a parallel machine to have some bearing on the partitioning. For exam-

ple, if a machine's inter-host communication overhead is sufficiently high, it 

might be worthwhile to tolerate some degree of load imbalance in order to drasti-

cally reduce the communication volume. This tradeoff can be described using δ-

partitioning. As another example, if a parallel computation is to be performed on 

a heterogeneous processor set, the relative performance of the processors can be 

described by specifying appropriate target weights in the skewed partitioning 

problem. 

• Geometric Methods: These methods assume that the vertices have associated 

geometric coordinates [3,4]. Many mechanical computations like physical simu-

lations have an underlying geometry. The object interacts if they are near each 
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other. This property enables the geometric methods to divide the work to proces-

sors according to their coordinates. The main idea is to divide problem space in 

the several partitions recursively (starting from 2) according to the coordinates. 

Examples of such algorithms are Recursive Coordinate Bisection (RCB), Recur-

sive Inertial Bisection (RIB), Recursive Orthogonal Bisection (ROB) and Circle 

Bisection. These kinds of algorithms have two disadvantages: the first is that they 

work only on graphs that have geometric coordinates associated with them. The 

second is that they never care the connectivity of the graph and require a lot of 

computation. 

• Structural Methods: These kinds of algorithms resemble geometric methods. 

However they don’t lack the disadvantages of the geometric methods. They de-

fine the distance between two vertices as the length of their shortest connecting 

path, rather than their distance in Euclidean space. The algorithm finds two verti-

ces of near-maximal distance from one another and then performs a breadth-first 

search from one of the vertices, until it has reached half of the vertices in the 

graph. These vertices are placed in the first subset, leaving the remainder in the 

second. The algorithm is then applied recursively to each of the subgraphs. Ex-

amples are recursive level-structure bisection, graph walking algorithms and re-

cursive spectral bisection (RSB). 

• Refinement Algorithms: This class of algorithms tries to improve an initial 

(possibly random) partition of the graph by trading vertices from one subset to 

the other with the goal of reducing the number of cut edges. Kernighan-Lin (KL) 

[18] algorithm is based on this notion. This algorithm will be further described in 

section 3.2.3. 

• Multilevel Techniques: The most famous and successful graph partitioning al-

gorithms are multilevel algorithms [17,19-21]. These techniques are analogous to 

multigrid methods for solving numerical problems. Both approaches construct a 

hierarchy of approximations to the original problem so that a coarse solution can 

quickly be generated. This solution is then progressively refined at the more de-

tailed levels of the hierarchy until a solution for the original problem is reached. 

In the same way graph partitioning algorithms construct a smaller approximation 

to the original graph in a few steps. The smallest graph is the partitioned very ef-
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ficiently. In the last step the partitioned graph is propagated back to the original 

graph through intermediate graph. The disadvantage of these algorithms is that 

they are expensive in both computation and memory. However they produce the 

highest quality partitions among all other partitioner algorithms. This algorithm 

will be described in detail in section 3.2.3. 

• Parallel Techniques: The algorithms in this class are generally the parallel 

forms described previously [3,4]. However they are not widely accepted since the 

parallelized versions don’t provide an acceptable increase and are not worth im-

plementing. However they are useful anyway since there are some compelling 

reasons that motivate parallel solutions to the graph. One of these is that although 

the parallel computers have enough memory for handling large computations, the 

graph of these computations may not fit in the memory. Another situation in 

which parallel algorithms would do better is that runtime changes in the compu-

tation's workload result in the need for dynamic load balancing. Given the choice, 

it would be preferable to compute a repartitioning in-place rather than to ship the 

entire graph to a single processor and generate a new partition from scratch. 

Thus, parallel solutions must be considered. 

2.1.3. Optimization 

In these algorithms, load balancing problem is modeled as a graph coloring problem 

[22]. The distributed problem is modeled as an undirected graph as in graph parti-

tioning based load balancing algorithms. Load balancing problem is described as 

coloring the vertices of this graph with P (processors) different colors to minimize a 

cost function which is related to the time taken to execute the program for a given 

coloring. The choice for the cost function here is critical. An example cost function is 

the following: H = Hwl + ηHcomm where Hwl is minimized when each processor has 

equal workload, Hcomm is minimal when communication is minimized, and η is a 

parameter expressing the balance between the two values. 

To apply the optimization algorithms to load balancing, an analogy between load 

balancing and physical systems. The tasks to be distributed can be thought of as par-



 17 

ticles moving around in the discrete space formed by the processors. This physical 

system is controlled by the Hamiltonian (energy function) given as: 

 

The first term in this equation ensures equal work per node and is a short-range re-

pulsive force trying to push particles away if they land in the same node. The second 

term is a long-range attractive force which links ``particles'' (data points) which 

communicate with each other. This force tries to pull particles together (into the 

same node) with strength proportional to the information needed to be communicated 

between them. In general, this communication force depends on the architecture of 

the interconnections of the parallel machine. 

When this equation is used as the cost function in graph coloring analogy, the load 

balancing problem becomes finding the equilibrium state of a system of particles 

with a ``conflict'' between short-range repulsive (hardcore) and long-range attractive 

forces. 

Simulated annealing is an optimization method which simulates the slow cooling of a 

system. In simulated annealing, there is a cost function H, which associates a cost to 

any state of the system and a temperature T. The algorithm works by iteratively pro-

posing changes ∆H in H. The change is accepted or rejected according to the follow-

ing rules, if the cost function decreases ∆H<0, the change is accepted uncondition-

ally; otherwise it is accepted but only with a probability. A crucial requirement for 

the proposed changes is reachability that there be a sufficient variety of possible 

changes that one can always find a sequence of changes so that any system state may 

be reached from any other. 

If the temperature is chosen close to zero, the changes are accepted only if H de-

creases. This is called hill-climbing. The system reaches a state in which none of the 

proposed changes can decrease the cost function, but this is generally a local opti-

mum. 
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On the other hand, if the temperature is very large, all changes are accepted, and in 

this case, all states of the system are visited regardless of cost function because of the 

reachability property of the set of changes. 

Simulated annealing starts by proposing a lot of changes at a high temperature to 

explore state space and gradually decreasing the temperature to zero while hopefully 

settling on the global optimum. 

2.1.4. Machine Learning 

The goal of machine learning algorithms is to discover some underlying structure of 

a set of data. In machine learning load balancing algorithms, load balancing problem 

is taken up as a learning task. 

• Reinforcement Learning: Reinforcement learning [23-25] is a machine learning 

method which is based on mapping states to actions. The learner lives in a dy-

namic environment in which it can receive rewards to its action. The learner is 

given a goal and not told which actions to take in a state but instead must dis-

cover which actions yield the most reward by trying them. It learns how to 

achieve the goal by trial and error interactions with its environment. By choosing 

the action which takes the highest reward in a state, the learner reaches the goal. 

To obtain a lot of reward, a reinforcement learning agent must prefer actions that 

it has tried in the past and found to be effective in producing reward. But to dis-

cover such actions, it has to try actions that it has not selected before. The agent 

has to exploit what it already knows in order to obtain reward, but it also has to 

explore in order to make better action selections in the future. 

The usage of reinforcement learning in load balancing [26-28] is rather restricted 

due to the complexity and huge number of states in load balancing problems. 

Anyway, there are some algorithms which can learn simple load balancing algo-

rithms like master-slave load balancing algorithm. 

• Self-Organizing Maps (Kohonen Networks): Kohonen network [29] is a type 

of artificial neural network model whose learning is unsupervised, unlike the 
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previous self-learning algorithms. No priori knowledge about the input data or 

output is needed by the network. That is, neither external rewards signaling the 

success of the output nor input/output pairs are feed with the input data. The net-

work architecture consists of a set of neurons, usually arranged as a two-

dimensional map. All the map neurons are connected to a set of input neurons. 

Any activity pattern on the input neurons gives rise to excitation of some local 

group of map nodes. After learning, the spatial positions of the excited groups 

specify a mapping of the input onto the map. The result is a system that maps 

similar inputs close to each other in the resulting map. 

There have been some attempts in applying the idea of Kohonen networks to load 

balancing [30-32]. In these algorithms, generally the input is a vector represent-

ing the task interaction graph and depending on the algorithm the output signals 

some kind of information to balance the load in the system. 

 

 

Figure 5 - Kohonen Network 

 

2.2. Artificial Neural Networks 

Artificial Neural Networks [33-35] can be described as computational model, in-

spired by biological findings relating to the behavior of the brain as a network of 
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units called neurons. Neurons are the most basic elements of the human brain which 

provides humans with abilities to remember, think, and apply previous experiences to 

every action. Basically, a biological neuron receives inputs from other neurons, com-

bines them in some way, performs a generally nonlinear operation on the result, and 

then outputs the final result. The power of the human mind comes from the large 

numbers of these basic components and connections between them. 

 

 

Figure 6 - A simple brain neuron  

 

Like brain, artificial neural networks consist of interconnected processing units 

called neurons that send signals to one another depending on their incoming signals. 

The three basic components of the (artificial) neuron are: 

1. The synapses or connecting links that provide weights, wj , to the input val-

ues, xj for j = 1, ...m; 

2. An adder that sums the weighted input values to compute the input to the ac-

tivation function v = w0 + m∑j=1wjxj, where w0 is called the bias (not to be 

confused with statistical bias in prediction or estimation) is a numerical value 

associated with the neuron. It is convenient to think of the bias as the weight 

for an input x0 whose value is always equal to one, so that v = m∑j=0wjxj; 

3. An activation function g (also called a squashing function) that maps v to g(v) 

the output value of the neuron. 
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Figure 7 - An artificial neuron 

 

Input vector is applied to the neuron via input connections. The connections have 

weights which changes while the neural network learns. Weights can either excite or 

inhibit the transmission of the input value. Mathematically, input values are multi-

plied by the value of that particular weight. At the neuron node, all weighted-inputs 

are summed. This summed value is then passed to an activation function. Some ex-

amples of activation functions are: step function, ramp function and sigmoid func-

tion: 

 

  

Figure 8 - Sigmoid function 

 

The sum of the weighted inputs represents the horizontal axis in Figure 8. The curve 

represents the output of the function for each value on the horizontal axis. The func-
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tion output is then sent to each node that is connected to an output weight of the fir-

ing neuron. 

ANN architectures are used in process modeling at most. The main advantage is that 

understanding of the process is not necessary. Given the inputs and outputs, neural 

network can be constructed and trained to accurately imitate the process. 

Feed Forward Networks: While there are numerous different artificial neural net-

work architectures that have been devised to perform a range of tasks including pat-

tern recognition, data mining, classification, and process modeling, the most success-

ful architecture is the multilayer feed forward networks, which has also been used in 

this thesis. These networks consist of layers, which in turn consist of several neurons. 

All nodes in a given layer are connected to all nodes in a subsequent layer. The net-

work requires at least two layers, an input layer and an output layer. In addition, the 

network can include any number of hidden layers with any number of hidden nodes 

in each layer (not necessarily the same in each hidden layer, in fact, typically not). 

An example of a typical feed-forward NN is as following: 

 

 

Figure 9 - Multilayer feed forward network 
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In this architecture, the input is given to the input network. Using algorithms de-

scribed above, the output values are calculated at each neuron and they are propa-

gated through the network until the output layer is reached. The output vector repre-

sents the predicted output. This predicted output may contain error and a tuning may 

be required. Tuning means adjusting the weights of the neurons so that the predicted 

output is closer to actual output. The tuning process is called training. There are a 

variety of learning techniques; the most popular is back-propagation. The output val-

ues are compared with the correct answer to compute the value of some predefined 

error-function. By various techniques the error is then fed back through the network. 

Using this information, the algorithm adjusts the weights of each connection in order 

to reduce the value of the error function by some small amount. After repeating this 

process for a sufficiently large number of training cycles the network will usually 

converge to some state where the error of the calculations is small.  

Recurrent Networks: In the contrary to feed forward networks in which all data 

flows contain no cycles, recurrent networks are models with bi-directional data flow. 

For instance, a hidden unit can be connected with itself over a weighted connection, 

connect hidden units to input units, or even connect all units with each other.  

Each time a pattern is presented, the unit computes its activation just as in a feed for-

ward network. However its net input now contains a term which reflects the state of 

the network (the hidden unit activation) before the pattern was seen. When subse-

quent patterns are presented, the hidden and output units' states will be a function of 

everything the network has seen so far. The network behavior is based on its history, 

and pattern presentation must be arranged as it happens in time. 
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Figure 10 - Simple recurrent network 

 

Simple recurrent network: A simple recurrent network (SRN) is a variation on the 

multi-layer perceptron. A three-layer network is used, with the addition of a set of 

"context units" in the input layer. There are connections from the middle (hidden) 

layer to these context units fixed with a weight of one. At each time step, the input is 

propagated in a standard feed-forward fashion, and then a learning rule (usually 

back-propagation) is applied. The fixed back connections result in the context units 

always maintaining a copy of the previous values of the hidden units (since they 

propagate over the connections before the learning rule is applied). Thus the network 

can maintain a sort of state, allowing it to perform such tasks as sequence-prediction 

that is beyond the power of a standard multi-layer perceptron. 

In a fully recurrent network, every neuron receives inputs from every other neuron in 

the network. These networks are not arranged in layers. Usually only a subset of the 

neurons receive external inputs in addition to the inputs from all the other neurons, 

and another disjunct subset of neurons report their output externally as well as send-

ing it to all the neurons. These distinctive inputs and outputs perform the function of 

the input and output layers of a feed-forward or simple recurrent network, and also 

join all the other neurons in the recurrent processing. 

Hopfield network: The Hopfield network consists of a set of N interconnected neu-

rons which update their activation values asynchronously and independently of other 

neurons. All neurons are both input and output neurons. The activation values are 
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binary. This network guarantees that its dynamics will converge. If the connections 

are trained using Hebbian learning then the Hopfield network can perform robust 

content-addressable memory, robust to connection alteration. 

 

 

Figure 11 - Hopfield Network 

 

Stochastic neural networks: Stochastic neural networks are built by introducing 

random variations into the network, either by giving the network's neurons stochastic 

transfer functions, or by giving them stochastic weights. This makes them useful 

tools for optimization problems, since the random fluctuations help it escape from 

local minimums. For example, Boltzmann machine can be thought of as a noisy Hop-

field network. 

Modular neural networks: Modular neural networks are networks that contain 

smaller networks which cooperate or compete with other to solve the problem. For 

example, a committee of machines (CoM) is a collection of different neural networks 

that together "vote" on a given example. This generally gives a much better result 

compared to other neural network models. In fact in many cases, starting with the 

same architecture and training but different initial random weights gives vastly dif-

ferent networks. A CoM tends to stabilize the result. 

Associative Neural Network (ASNN) is an extension of the committee of machines 

that goes beyond a simple/weighted average of different models. ASNN represents a 

combination of an ensemble of feed-forward neural networks and the k-nearest 
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neighbor technique (kNN). It uses the correlation between ensemble responses as a 

measure of distance amid the analyzed cases for the kNN. This corrects the bias of 

the neural network ensemble. An associative neural network has a memory that can 

coincide with the training set. If new data becomes available, the network instantly 

improves its predictive ability and provides data approximation (self-learn the data) 

without a need to retrain the ensemble. Another important feature of ASNN is the 

possibility to interpret neural network results by analysis of correlations between data 

cases in the space of models. 

2.3. Related Works 

Learning of load balancing is a hard task which has been investigated by several re-

searchers. The difficulty is raised from the complexity of the problem. The presence 

of extra workload and hardware heterogeneity on the hosts puts extra complexity to 

this problem. When hardware heterogeneity is concerned, one of the questions that 

comes to mind is what sizes should task partitions be such that they match the capa-

bilities of the hosts or collection of hosts on which they are to be mapped. Another 

question is how these partitions mapped to hosts so that the average execution time 

of the whole application is minimized. Before the answers to these and related ques-

tions are given, recent efforts that address load balancing and machine learning are 

discussed. 

Mehra and Wah [13,14,36,37] created a tool, SMALL, that uses artificial neural net-

works as the learning tool for load balancing. According to their work, load balanc-

ing problem have two components: load indices, which indicate each host’s load; and 

decision policies, which determine both the conditions under which tasks are mi-

grated and the destinations of incoming tasks. Load balancing systems use workload 

indices to dynamically schedule tasks. Load indices are the values that show how 

much a host is loaded. Load indices generally combine information from the key 

resources of contention: CPU, disk, network, and memory. Alternative destinations 

for each incoming task by the expected speed-ups are ranked according to their load 

indices. Normally, load values are computed using a manually-specified formula as 

functions of current and recent utilization levels of various resources. However, Me-
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hra and Wah propose ranking alternative destinations for an incoming task by their 

respective completion times. However, completion times can only be measured for 

completed tasks, whereas decisions need to be made before tasks start. Therefore, 

completion times need to be predicted using only the information available before a 

task begins execution. Without knowing the resource requirements of tasks, absolute 

task-completion times can not be predicted. Therefore they propose to predict the 

relative completion times of the tasks for different hosts. It is sufficient that every 

host predicts the completion time of an incoming task relative to its completion time 

on the chosen idle file server, given only the loading conditions at task-arrival time. 

Predicted relative completion times can be used as load indices. Comparator neural 

networks, one per host, is used to learn to predict load indices (the relative speedup 

of an incoming job) using only the resource utilization patterns of the hosts observed 

prior to the job’s arrival. 

Another part of the work, Mehra and Wah discusses how decision policies can be 

self-learnt. In Figure 12, there is an example load balancing decision policy. The 

sender-side rules are evaluated at s, the host of arrival of a task. Reference can be 

either 0 or MinLoad; the other parameters - δ, θ1, θ2 - take non-negative real values. 

A remote destination, r, is picked randomly from Destinations, a set of hosts whose 

load indices fall within a small neighborhood of Reference. If Destinations is the 

empty set, or if the last sender-side rule fails, then the task is executed locally at s; 

otherwise, site r is requested to receive the task. Upon receiving that request, site r 

applies its receiver-side rule. If the receiver-side rule succeeds, the task is migrated; 

otherwise, the task is executed locally at s. 

 

 

Figure 12 - Load balancing strategy 
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The parameters that reside in this policy must be adjusted correctly to take correct 

load balancing decisions. 

 

 

Figure 13 - Architecture of  SMALL 

 

There are 3 key components in the architecture of SMALL: a workload generator 

(DWG), a comparator network that trains load-index function, and a teacher that 

tunes the parameters of given load-balancing policies. DWG is responsible for:  

• precise measurement of resource-utilization information 

• precise generation of recorded loads 

• measurement of job-completion time 

After the raw measurements supplied by DWG have been preprocessed using filter-

ing and extrapolation, they are used by the local load-index function for computing a 

load index. The given load-balancing policies use the load indices, along with other 

policy parameters, in order to determine the most appropriate destination for each 

incoming job. 
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Both the load-index function and the parameters of load-balancing policies can be 

modified based on the completion-time measurements provided by DWG. Such 

modifications are carried out by the learning system, which has two components: one 

to learn a new load-index function for each site, and another to tune the parameters 

of a set of site-specific policies. 

The load-balancing system implements the policy shown in Figure 12, and converts 

the primitive measurements provided by DWG’s measurement facilities into the 

more meaningful load indices. This system includes support for communicating the 

load indices among the sites, as well as for computing abstract performance metrics 

such as MinLoad, which denotes the minimum predicted load index. 

Although Mahra’s work contain some innovative ideas in strategy learning and com-

parator neural networks areas, the quality of its load balancing decisions can not 

compete with the quality of complex load balancing algorithms. The reason is that 

SMALL works distributed in small neighborhoods and therefore doesn’t collect 

global data and determine the global balance. 

Heiss and Dormanns [30] described how to use Kohonen networks to create a self 

learning load balancing system. The objective of a Kohonen network is to map input 

vectors (patterns) of arbitrary dimension N onto a discrete map with 1 or 2 dimen-

sions. Patterns close to one another in the input space should be close to one another 

in the map. A Kohonen network is composed of a grid of output units and N input 

units. The input pattern is fed to each output unit. The input lines to each output unit 

are weighted. These weights are initialized to small random numbers. With a given 

input, each neuron computes the weighted sum: 

 

where wip is the weight of input I for neuron p and xi is the ith input value.  

 



 30 

 

Figure 14 - Kohonen Network 

 

The learning process is as roughly as follows:  

initialise the weights for each output unit  

loop until weight changes are negligible  

for each input pattern  

present the input pattern  

find the winning output unit  

find all units in the neighbourhood of the winner  

update the weight vectors for all those units  

reduce the size of neighbourboods if required 

The winning output unit is simply the unit with the weight vector that has the small-

est Euclidean distance to the input pattern. The neighborhood of a unit is defined as 

all units within some distance of that unit on the map (not in weight space). In the 

demonstration below all the neighborhoods are square. If the size of the neighbor-

hood is 1, then all units no more than 1 either horizontally or vertically from any unit 

fall within its neighborhood. The weights of every unit in the neighborhood of the 

winning unit (including the winning unit itself) are updated using 
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This will move each unit in the neighborhood closer to the input pattern. As time 

progresses the learning rate and the neighborhood size are reduced. If the parameters 

are well chosen the final network should capture the natural clusters in the input data. 

Heiss and Dormanns propose to replace the input space of Kohonen networks with 

task interaction graph (TIG) and the output map with processor connection graph 

(PCG). To map the tasks with hosts, first tasks are transformed to feature vectors 

which contain all topological features of the tasks. In the second step, regular Koho-

nen process is applied to map the vectors (input) to a host (processor) in neuron map. 

 

 

Figure 15 – Load Balancing using Kohonen Networks 

 

The aim of Heiss and Dormanns’ work is to find mapping between the tasks and 

processors which minimizes the communication overhead between tasks and load 

imbalance. The main disadvantage of their work is that it doesn’t take into account 

the resource capabilities which can cause serious imbalances. The reason is that the 

tasks are mapped to processors randomly because of the random initial weights of the 

output neurons. To solve this problem, they implemented an external load balancing 

routine which is activated once per a determined number of steps after a globally 

ordered map is handled. This load balancing routine mainly changes the receptive 

fields of PCG nodes according to their load where changing the magnitude of a re-

ceptive field corresponds to transferring the loads between these receptive fields thus 

making tasks assigned to another processor(s). 
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In another work, Atun and Gürsoy [31,32] use Kohonen networks in another way to 

create a self learning system. They use Kohonen networks like Heiss and Dormanns 

do but in reverse order. They divide the input space into p regions each of which 

represents a processor (host) as shown in Figure 16. Each task to be assigned to a 

host is represented by a neuron in the output map. The weight vectors of these neu-

rons represent the positions of the processors on the input space. A task i, is mapped 

to a processor Pij if the weight of the task i, Wi , is in the region of Pij. Figure 16 

shows an input space with 4 processors where tasks are distributed over the S. The 

algorithm distributes the tasks to processors randomly at the beginning. Then weights 

of the tasks evolve to cover the range of input values (processor space) according to 

regular Kohonen learning algorithm. 

 

 

Figure 16 - Input and Output Spaces 

 

Their algorithm chooses the tasks that are in the same neighborhood (that is that 

communicate with each other) so that they are processed on the processor minimiz-

ing the communication overhead. To balance the load of the tasks for each processor 

equally, least loaded processors must be selected for task assignment. By this way, 

the tasks will be shifted towards to least loaded processor, thus minimizing the load 

imbalance. 
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Atun and Gürsoy’s work seems to be better than Heiss and Dormanns’s work. Be-

cause, they begin by choosing the host rather than the task. Therefore if they enrich 

their algorithm with a powerful host selection mechanism, it will correctly move 

tasks from or to the selected host. However their algorithm has a disadvantage. They 

don’t take into account the resource usage ratios of the tasks. That is, they don’t take 

into account whether the tasks needs more processor power than memory. This can 

cause load imbalances in which the tasks that needs high processor power are as-

signed to hosts with slower CPU. 

In another work produced by Abd and Bendary [38], they used winner-Take-All 

(WTA) neural network model for implementing the selection and location policies of 

a typical dynamic load balancing algorithm. All delays due to any usage of the com-

munications network resource are taken into account. The WTA neural network em-

ployed has architecture as depicted in Figure 17. Each neuron represents a task of the 

waiting processes queue or the active processes queue. The winner neuron will de-

note the task with the largest difference between the estimated execution time and the 

inter-host communication cost. The reasoning behind this is the heuristic that the task 

with the highest execution time is more likely to be worth the transfer overhead, and 

that the task with minimum inter-host communication requirements would yield a 

least cost transfer. 

 

 

Figure 17 - Selection Policy 
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The WTA neural network used for implementing the location policy has architecture 

as shown in Figure 18. Each neuron represents a host whose active queue is not at 

maximum capacity. This ensures that a transferred task will receive immediate ser-

vice at the receiver host. The winner neuron identifies the candidate host to which the 

combined cost of execution and communication is minimum. It should be noted that 

the winner neuron may be the one representing the local host, in such case the job 

will be executed locally in spite of the fact that there are other lightly loaded nodes in 

terms of the queue length alone. The worst case communication cost between tasks is 

incorporated so that a selected task will either be transferred to a host along the worst 

communication link or will be placed on a host to which less communication cost 

exists. 

 

 

Figure 18 - Location policy neural network at host H4 and task X* is candidate for transfer 
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CHAPTER 3  

 

RESOURCE AWARE LOAD BALANCING  
USING ANNS 

 

 

In this chapter, the details of our proposed model to address the problems of load 

balancing algorithms are described. RALBANN brings together the successful parti-

tioning results of graph partitioning algorithms with the efficiency and learning ca-

pability of artificial neural networks in a resource aware scheme. RALBANN maps 

the task partitions produced with the capabilities of the computing resources produc-

ing a resource aware load balancing scheme. RALBANN has the following features: 

• RALBANN learns load balancing using artificial neural networks. In the run-

time environment, RALBANN can monitor the system, train itself and do 

better load balancing. Automated learning capability makes RALBANN to 

adapt any changes in the distributed system. 

• RALBANN models and encapsulates the distributed system as an undirected 

graph. Namely, it turns the information coming from the monitoring tool of 

the distributed into a generic graph. RALBANN can easily be integrated to 

any parallel application development environment. The only thing needed is a 

driver that turns monitoring information of the specific environment into a 

specific XML, which will then be turned to our generic graph model. In this 

study the P-GRADE environment together with its monitoring module is se-

lected for testing RALBANN. 

• During training, a multilevel partitioner module supervises the neural net-

works by providing the necessary input/output pairs for training. The integra-

tion of multilevel partitioner and the rest of RALBANN are accomplished us-
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ing a generic interface. Therefore other partitioners can replace multilevel 

partitioner easily. 

• It monitors the distributed environment using the monitoring tool and adapts 

to the system changes very quickly. Once trained and provided the necessary 

system information, RALBANN can balance the system load faster than any 

graph partitioning based load balancer and better than other load balancing 

algorithms. 

• It is fully integrated into P-GRADE parallel application development envi-

ronment replacing its default load balancer. The only thing needed to inte-

grate to any version of P-GRADE is the execution of a batch file which re-

places current load balancer of P-GRADE. 

In the following sections, the architecture of RALBANN will be described in detail. 

Then P-GRADE will be introduced. The details of integrating RALBANN with other 

graph partitioners and distributed systems are described in the following sections. 

3.1. Distributed System Models Used in the Thesis 

The abstract distributed system model that is used in this thesis is illustrated in 
Figure 19.  

 

 

Figure 19 - Abstract Distributed Model 
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All of the hosts in our model have its own CPU and memory; and all hosts commu-

nicate with each other. They have the same architecture. However they have different 

configuration. That is, each has different memory capacity and CPU power. Al-

though some resources, such as network and secondary storage, can be shared trans-

parently; others, such as processing power and virtual memory, can be accessed by 

local tasks only. Therefore these resources are shared using a remote execution sup-

port, such as PVM. Since a host can have its own local tasks beyond the running 

computational task, the local resources of this host can be in use partially or com-

pletely. This demand of use on local resources is called external load. The absolute 

and relative use of resources at each host can be very dynamic. The dynamic nature 

of external load causes frequent: certain resources local to a host may be overloaded 

even similar resources at a remote host are underutilized or idle. With increases in 

the speeds of individual processors, and with growth in the scale of typical systems, 

there are increases in both the magnitude and the frequency of load imbalances. This 

is one of the main reasons why dynamic load balancing is more popular. 

Our model assumes that tasks are dependent, which means each task may communi-

cate with any of the other tasks. Further tasks may originate at any host of the dis-

tributed system. Further, the existence of an external load is assumed, which varies 

outside the control of the load balancing module. No prior knowledge of the behavior 

of the tasks to be balanced and external load imbalances is assumed. Further, the lack 

of knowledge about task length, along with the aforementioned difficulty of long-

term prediction, necessitates preemptive strategies, which can ‘‘undo’’ the effects of 

poor initial placements. Therefore, the focus of this thesis is on dynamic, centralized, 

preemptive load-balancing strategies (Figure 2). 

Another model that is used in this thesis for distributed systems is the graph model 

[15]. In this model, distributed system is modeled using graphs. Modeling distributed 

systems using graphs lets several problems of distributed systems to be reduced to 

useful graph algorithms. Once the problem is solved on the graph, the solution can be 

applied the distributed system directly.  
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In this model, each node of the graph represents the tasks and the edges represent the 

data communication between the tasks. The weights of nodes represent the CPU load 

of the tasks and the weights of the edges represent the data communicated between 

the tasks. This graph is called Task Interaction Graph (TIG). 

 

 

Figure 20 - TIG, graph partitioning and load balancing 

 

Based on the described model, the basic load balancing problem can be described as 

the assignment of a group of tasks to a suitable host so that each host has nearly 

equal load. The tasks that highly communicate with each other must be grouped to-

gether so that the communication between the groups is minimized. Describing in 

another way; the problem of grouping the nodes together can be reduced to graph 

partitioning problem, which produces partitions with minimum edge cut. 

3.2. Operation and Architecture of RALBANN 

RALBANN creates the graph model of the distributed application and the underlying 

network using the information retrieved from the monitoring tool. The monitoring 

tool is periodically polled to collect data about the distributed system and the applica-

tion that is running on this system. However, in order this data to be used in RAL-

BANN, a conversion from the environment specific trace file format to RALBANN 

specific XML file format must be accomplished. This conversion is done by a C++ 

driver class that has a well-defined interface. The usage of such a driver concept 

makes RALBANN easy to integrate with another distributed system easier. The only 
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thing to do is to code the driver class of distributed environment and put compile 

RALBANN with the driver codes. 

 

 

Figure 21 - RALBANN converts the monitoring information to graph model 

 

The graph created contains information about the tasks and their communication. 

Each node of the graph represents a task that is assigned to a host. Each edge repre-

sents the data dependence between two vertices. The weight of the node represents 

the CPU load of the task and the weight of the edge represents communication load 

of the two tasks. This graph is called Task Interaction Graph (TIG). Actually RAL-

BANN contains a modified version of TIG. It is modified in a way to store informa-

tion about the hosts, too (Figure 22). The information stored for hosts is external 

load, total load and CPU power of the hosts. This information is used to map the par-

titions to the hosts considering which resources are more suitable for which parti-

tions. For example, the partitions which need considerable CPU power must be 

matched with hosts which have high external load or low CPU load. Therefore one of 

the aims of RALBANN is to distribute partitions to hosts in a resource aware scheme 

preventing bottlenecks and overloads. 
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Figure 22 - Modified TIG that is used in RALBANN 

 

After task interaction graph is created, it is partitioned by a graph partitioning mod-

ule so that intercommunication between the partitions is minimized and the total 

computational load of the tasks in each partition is nearly equal. This module uses 

multilevel graph partitioning algorithms because of its efficiency and quality among 

other graph partitioning algorithms. 

After TIG is partitioned, the TIG graph and partitioning information is encoded into 

a vector. The vector is optimized and is used to train an artificial neural network 

whose task is to partition the graph. The output of this ANN (the partitions) is given 

to another artificial neural network whose job is to learn how to map the partitions to 

the hosts. The partitions are mapped to the hosts by taking the computational load of 

the partitions, host external load, host CPU power and memory size into considera-

tion. 

As described above, the load balancing task is divided into 2 steps in RALBANN. 

This division makes the training of ANNs easier by shortening the training time by 

reducing the complexity of the inputs. Another benefit is that the weights of the host 

ANN are stored and loaded independently from the weights of the task partitioner 

ANN, making training more efficient. The reason of this efficiency is as following: 

RALBANN can be trained to learn different applications on a specific distributed 

system. Further RALBANN can save the weights and some parameters of the parti-
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tioner and mapper ANNs into text files. These text files can later be loaded if RAL-

BANN detects that the application is learnt before. When RALBANN is run, it 

automatically loads (if it exists) the weight file for the running distributed applica-

tion. Especially, the weight file of mapper ANN is important. The reason is that only 

mapper needs to concern about the properties of the hosts. The existence of this 

weight file means that RALBANN has been trained with this distributed system be-

fore and has knowledge about how a given partition is mapped to one of the hosts. 

When a totally new application is run on this distributed system, the mapper ANN 

may not be trained again, if it was trained enough before. In this case, it is enough to 

train only the partitioner ANN which must know about the application. This partial 

loading mechanism provides a very efficient training time for RALBANN. 

Figure 23 shows the architecture of RALBANN. It is mainly comprised of the fol-

lowing components: 

 

 

Figure 23 - Architecture of RALBANN 
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RALBANN (main module): This module is the main module containing the load 

balancing decision making and learning mechanism of RALBANN. The decision 

making process is accomplished using 2 artificial neural networks. These artificial 

neural networks are responsible for learning the 2 different stages of the load balanc-

ing:  

1. Partitioning TIG graph to minimize the communication load of the tasks (the 

partitioner ANN) 

2. Mapping the partitions to the hosts to minimize average execution time of the 

application (the mapper ANN) 

The ANNs learn these 2 steps using the input data provided by the Teacher module. 

The graphs, which are generated by Graph Generator module, are encoded to 2 vec-

tors by the Teacher. The first ANN, called the partitioner ANN, is trained to learn 

how to partition the task interaction graph and therefore it is trained with the task 

communication data. 

 

 

Figure 24 - The task of the partitioner ANN 

 

The second one, called the mapper ANN, is trained to learn how to map partitions to 

hosts. Therefore it is trained with total processor usage of each partition and the proc-

essor power of each host. Given this data, it tries to find the best host for each parti-

tion. 
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Figure 25 - The task of the mapper ANN 

 

The aim of this separation is to make the job of ANNs easier by simplifying the input 

vectors. Another benefit of this separation is that the mapper ANN doesn’t need to be 

trained again and again for different distributed applications that are run on the same 

distributed network. As its main responsibility is to learn the network (hardware 

properties of hosts) specific data, once it is trained enough, its weights are saved to a 

file and loaded again at the initialization phase of the RALBANN. For different dis-

tributed applications, it is enough to train only the partitioner ANN. For different 

distribute application environments, both the mapper and partitioner graph must be 

trained. 

Graph Generator: This module is responsible for generating graph model of the 

distributed network. The graph is a kind of task interaction graph (TIG) and created 

from a well-defined XML file which is in turn generated by the XML trace file con-

version driver. 
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Figure 26 - Conversion XML to TIG 

 

The graph generated contains information about: 

• Message communication patterns of tasks 

• Processor usage of tasks 

• Processor power of hosts 

Generic XML Interface: This interface is used to convert the format of monitoring 

information coming from the monitoring tool of the distributed environment to a 

well-defined XML format. The reason for this conversion is to make graph generator 

module generic as much as possible. This provides RALBANN to work with other 

distributed computing environment with minimal modification. Actually, the only 

thing needed to adapt RALBANN to other environments is to code the necessary 

class that converts the specific monitoring information to well-defined XML inter-

face. 

Graph Partitioner (Teacher): This module is responsible for providing the neces-

sary input to train the artificial neural networks. Its main task is to partition the TIG 

graph and produce the 2 input vectors per TIG graph which is then used to train 

ANNs. This module performs its work in 2 steps. In the first step, it partitions the 

TIG graph into different partitions using graph partitioning algorithms. Then it con-

verts the partitioning information into a vector encoding the partitioning related in-

formation, which is used to train the partitioner ANN in RALBANN main module. In 

the second step, it maps the partitions produced to the hosts in a resource aware 
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scheme. To train the mapper ANN, it creates the second vector encoding the CPU 

and memory loads of the partitions and CPU power and memory size hosts. 

RALBANN’s operation can be broken into phases of information collection, graph 

generation, neural mapping, learning and decision making. 

 

 

Figure 27 - Operation of RALBANN 

 

3.2.1. Information Collection 

RALBANN collects the following monitoring information from the distributed envi-

ronment: 

• communication pattern of the tasks 

• computational loads of the tasks (processor loads) 

• computational power of the hosts (processor power) 

• external loads of hosts 

The tools that are used collect load balancing information form the environment is 

called monitoring tool. RALBANN must connect such a tool to collect the necessary 

information. To make the usage of RALBANN with all distributed environments 

easier, the interface of the graph generator is fixed to a well-defined XML format. 
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The data sent by monitoring tools must be converted this XML format. Our purpose 

for using XML is to make it easier to integrate with distributed platforms other than 

P-GRADE. The XML generated must conform to the following DTD: 

 

 

Figure 28 - RALBANN XML DTD 

 

Once collected, this information is used to generate the graph model which will then 

be used for both training and decision making. 
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Figure 29 - Example XML File 

 

3.2.2. Graph Generation 

The XML file created in Information Collection phase is converted to TIG graph in 

this phase. Four different types of data about the distributed application and the exe-

cution environment are monitored: 

• For each host k, the total computational load of tasks and external load of 

the hosts can be calculated. 

• For each task i, its CPU usage (cp(i)): This type gives information about 

the load of each task. 

• For each pair of processes (i; j), the number and total size (in bytes) of 

messages sent from i to j 

In the created graph, each node represents a task that is assigned to a host. Each edge 

represents the data dependence between two vertices. The weight of the node repre-

sents the CPU load of the task and the weight of the edge represents communication 

load of the two tasks. RALBANN extends this graph to store information about the 
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hosts, too. The information stored for hosts is external load, total load and CPU 

power of the hosts. 

The graph is represented with an instance LBGraph class. LBGraph is the class that 

provides the necessary functionalities to manipulate and create TIG graph. It contains 

an array of hosts, an array of processes and two dimensional array of messages. 

Each node of the LBGraph is an instance of LBGraphProcess class. Each instance 

contains the CPU and memory load of the process and points to an array which con-

tains the messages sent to/received from the other tasks. The so-called neighbor tasks 

can be derived from this structure. The messages are stored as instances of 

LBGraphMessage class. This class contains the message count and message size in 

bytes. The message array provides the communication information patterns of the 

tasks. 

 

 

Figure 30 - LBGraph structure 

 

3.2.3. Graph Partitioner (Teacher) 

In this phase, the graph created in “Information Collection” phase is partitioned. 

RALBANN uses graph partitioning algorithms to train the ANNs how to do load 
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balancing. The reason for using graph partitioning algorithms is that they produce the 

highest quality partitioning results over all other load balancing algorithms. However 

they have one big disadvantage: inefficient usage of memory and processor. In this 

thesis, multilevel graph partitioning algorithm is chosen because of its better parti-

tioning quality and efficiency. 

Multilevel partitioning algorithms are analogous to multigrid methods [9,39-41]. 

These methods construct a coarsened version of the original problem. The solution is 

generated on the coarsened problem. Then this solution is refined until the original 

problem is found. In graph partitioning context, this can be explained as creating a 

simplified (lesser edges and vertices) graph, partition it and then propagate the parti-

tioned graph to the original graph by refining at each level. This technique is efficient 

because partitioning smaller graph is easy and produces good results if the refine-

ment is done with a good algorithm. Multilevel partitioning algorithm has 3 phases 

[17,19-21]: 

1. Coarsening Phase: Given the input graph G, construct a series of increasingly 

smaller graphs G1, G2 ,..., Gm each of which retains some sense of G's global 

structure. 

2. Partitioning Phase: Partition the coarsest graph, Gm, using a standard algo-

rithm. 

3. Uncoarsening Phase: Propagate the solution for Gm up to the finer graphs, re-

fining it at each level. 

Coarsening Phase: 

Coarsening phase is comprised of several phases. At each phase, RALBANN coars-

ens the graph to smaller graphs by combining some vertices into single vertices 

called multinodes. The new graph Gi+1 is constructed from Gi  by combining a set of 

vertices Vi
v to create vertex v in Gi+1. The set of vertices are selected according to 

matching concept. A matching of a graph is defined as the set of edges in which no 

two edges are incident on the same vertex. That is, a matching contains edge pairs 

none of which are incident. The next level coarser graph Gi+1 is constructed from Gi 

by combining the edges in the matching of Gi. The unmatched vertices are simply 
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copied over to Gi+1. Since the goal of collapsing vertices using matchings is to de-

crease the size of the graph Gi, the matching should contain a large number of edges. 

For this reason, maximal matchings are used to obtain the successively coarse 

graphs. A matching is maximal if any edge in the graph that is not in the matching 

has at least one of its endpoints matched. 

Here the important thing which determines the vertices in the partitions that will be 

created at the end is the how the matchings are determined at each level. In RAL-

BANN, 2 important conditions are applied while constructing the matchings. The 

aim of both conditions is to create task partitions having approximately equal compu-

tational load and containing highly communicating the tasks: 

1. The vertex with the smallest load is selected as the initial vertex for each pair 

of edges in the matching. The aim is to combine the vertices with small loads 

with other vertices to increase the possibility of constructing more balanced 

partitions in the partitioning phase.  

2. The total edge-weight of the coarser graph is reduced by the weight of the 

matching. Hence, by selecting a maximal matching whose edges have a large 

weight, the edge-weight of the coarser graph can be decreased by a greater 

amount. Since the coarser graph has smaller edge-weight, it also has a smaller 

edge-cut. Therefore the matching vertex with the highest communication size 

(edge weight) is selected. The aim of this selection is to bring together the 

vertices which highly communicate with each other by minimizing the edge-

cut. 

In figure, T1 and T6 are combined to form new vertex T1:T6. The CPU loads and 

memory loads of T1 and T6 are summed up in T1:T6. Then  
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Figure 31 - Coarsening Phase 

 

Partitioning Phase: 

Coarsening phase continues until no more matches are possible or the weights of all 

remaining edges are under the average edge-weight size. The average edge-size is a 

quantity which is calculated as the arithmetic mean of the sizes of all messages. 

RALBANN continues coarsening the graph only if there exist edges whose weights 

are above the average message size. This makes it possible to discard the messages 

(edges) with low weights and helps to detect highly communicating partitions. 

 

 

Figure 32 - Partitioning Phase 

 

Uncoarsening Phase: 

During the uncoarsening phase, RALBANN projects the partition Pm of the coarser 

graph Gm back to the original graph, by going through the graphs Gm-1, Gm-2,…, G1. 

Since each vertex of Gi+1 contains a distinct subset of vertices of Gi, obtaining Pi 

from Pi+1 is done by simply assigning the set of vertices Vi
v collapsed to v ∈ Gi+1 to 

the partition Pi+1[v]. 
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Even though Pi+1 is a local minimum partition of Gi+1, the projected partition Pi may 

not be at a local minimum with respect to Gi. Since Gi is finer, it has more degrees of 

freedom that can be used to improve Pi, and decrease the edge-cut. Hence, it may still 

be possible to improve the projected partition of Gi-1 by local refinement heuristics. 

For this reason, after projecting a partition, a partition refinement algorithm is used. 

The basic purpose of a partition refinement algorithm is to select two subsets of ver-

tices, one from each part such that when swapped the resulting partition has a smaller 

edge-cut. 

 

 

Figure 33 - Refinement Phase 

 

To refine the partitions, Kernighan-Lin Heuristic [18] is used in RALBANN. The 

Kernighan-Lin (KL) algorithm is based on the gain concept, which is used to show 

the benefit of moving a vertex from one subset to the other. In KL, a vertex's gain is 

simply the total edge weight connecting it to the other subset minus that which con-

nects it to its own, which is the reduction on the edge-cut: 
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Figure 34 - Gain formula in KL algorithm 

 

KL algorithm repeatedly selects a vertex and calculates its gain. If gain is positive, 

then by moving v to the other partition the edge-cut decreases by gain; whereas if 

gain is negative, the edge-cut increases by the same amount. 

For each vertex v for graph Gi, the neighborhood of the v is defined as N(v), the un-

ion of partitions that the vertices adjacent to v belongs to: N(v) = Uu∈adj(v)Pi[u], where 

Pi is the partitioning vector of Gi. During refinement, v can move to any of the parti-

tions in N(v). For each vertex v, the gain of moving v to one of its neighbor partitions 

is computed. In particular, for every b∈N(v), ED[v]b is computed as the sum of the 

weights of the edges (v, u) such that Pi[u]=b. ED[v]b is called external degree of ver-

tex v for partition b. Then ID[v] is computed as the sum of the weights of the edges 

(v, u) such that Pi[u]=Pi[v]. ID[v] is called internal degree of vertex v. The gain of 

moving vertex v to partition b is defined as ED[v]b - ID[v]. Negative gain means, if 

this vertex is moved to the partition b, then edge-cut will be increased and since the 

aim is to decrease it, the vertex is not moved. If the gain is positive, the vertex can be 

moved provided that it doesn’t create an unbalanced partition.  
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Figure 35 - Refinement of Task 2 using KL. T2 is moved from one partition to another neighbor 
partition (this movement provides better edge cut) 

 

Therefore before moving the vertex, the following conditions must be checked: 

1. Wi[b] + w(v) <= Wmax 

2. Wi[a] – w(v) >= Wmin  

where: 

- Wi[b] is the total weight of the vertices in partition b for graph Gi  containing 

k partitions,  

- w(v) is the weight of vertex v, 

- Wmax = A*|Wall|/k for A>=1.0, 

- Wmin = B*|Wall|/k for B<=0.9, 

- Wall is the total weight of all vertices. 

The first condition ensures that movement of vertex does not make the weight of the 

target partition higher than Wmax. The second condition ensures the load of partitions 

is not too small. By adjusting the value of A and B, the imbalance of partitions can 

be varied. For RALBANN, the experiments show that B=0.2 and A = 3 produce 

good load balancing results. 

After the partitions are created according to the rules above, the partitions are 

mapped to hosts according to their CPU power and external load. This mapping al-
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lows RALBANN to place the partitions to hosts without causing any potential over-

loading or bottleneck problems: 

• By taking external load into account, RALBANN can learn to make the total 

load (external load + load due to distributed application) of every hosts equal. 

• By taking CPU power and memory size of the hosts in to account, RAL-

BANN prevents any bottlenecks due to CPU overloading and insufficient 

memory. 

The mapping is done according to the load parameter values of all hosts and parti-

tions. The load parameter is a parameter that shows how good a host can deal with an 

upcoming partition of tasks. This parameter is calculated using the following for-

mula: 

 

where Hi
cpu is the CPU power of host i, Hi

ext is the external load of host i and W(v) is 

the cpu load of task which is represented by vertex v belonging to partition P in the 

graph model. C is the adjustment parameter which can be used to increase or de-

crease the effect of external load of the host. After the load parameter is calculated 

for all hosts for partition P, the host with the highest parameter value is chosen for 

partitions P. For the second partition, the load parameter of the host with which the 

previous partition is mapped, is calculated again. This continues until all partitions 

are mapped one host. 

3.2.4. Artificial Neural Networks and Neural Mapping 

After partitions are produced and mapped to hosts by the graph partitioning (teacher) 

module, the next step is the training of ANNs to learn the task of load partitioning 

task. To accomplish this, the graph model and task partitions are converted to vectors 

as inputs to artificial neural networks in such way that one can decipher a solution for 

balancing the loads from outputs of the neurons. Neural networks are generally used 

as a model of the computation for solving a variety of problems in fields like com-

puter vision, pattern recognition. In RALBANN, another field namely load balancing 
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and graph partitioning is aimed as a computational model for ANNs. Therefore spe-

cial attention is paid on artificial neural networks and encoding the graph partitioning 

and load balancing task into vectors, which are then used to train ANNs. 

 

 

Figure 36 - Neural Mapping 

 

The partitioner ANN is given only the task communication and CPU load informa-

tion. Therefore the encoded vector contains (CPU load) + (message sizes with other 

tasks) information for each task in its input part. In the output part, the partitioning 

data which was produced by graph partitioning module is encoded. There exists one 

integer for each task, which represents the partition number to which the task is as-

signed. Using this training data, the partitioner ANN is trained to learn how to parti-

tion the vertices of the graph whose topological structure is encoded in the input part. 

Since in RALBANN the graph is partitioned by graph partitioner module using mul-

tilevel algorithms, (if trained enough) the partitioner module imitates multilevel par-

titioning algorithm in the way implemented. 
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Figure 37 - Input vector for partitioner ANN 

 

The mapper ANN, on the other hand, is given as input the computational load and 

power of the hosts and computational loads of the partitions produced. The computa-

tional loads of the partitions are the summation of the computational loads of the 

individual tasks that belongs to the partition. 

 

 

Figure 38 - Input vector for mapper ANN 
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RALBANN can work both in offline and online mode. In online mode, the data com-

ing from distributed environment is directly converted to graph model, partitioned, 

converted to vectors and send to artificial neural networks for training. On the other 

hand, in offline mode RALBANN can train itself by creating random graphs using 

random graph generator module. This module is responsible for generating random 

graphs for a given number of hosts and number of tasks. An example usage of RAL-

BANN with offline learning is “ralbann -offline 2 5”. With this call, RALBANN 

creates random graphs containing 2 hosts and 5 tasks with random communication 

and computation loads, convert them to vectors and train neural networks. Later, the 

trained networks can be used to balance a network with 2 hosts and 5 tasks. 

After the number of vectors created reaches a predefined number, they are optimized 

so that the neural networks converge and learn better and the learning phase begins 

which continues until the finish criteria is accomplished. The finish criteria can be 

one of the followings: 

• RALBANN predicts the partitions of at least, for example, 80% of the 

graphs given. 

• The network error of the neural network is less than some predefined er-

ror constant. 

In RALBANN, multilayered feed forward artificial network architecture is used. 

There are a number of reasons for using feed forward networks to implement learn-

ing of load balancing task. The most important is the following: When the output of 

each unit of a feed-forward network is given by the sigmoidal function of its net in-

put, then a network having the feed forward architecture can approximate any func-

tion with arbitrary accuracy, provided that the network has sufficiently many units in 

the hidden layer. In RALBANN, the number of hidden layers is 2, since it provided 

more accurate results. 

A second important reason for using feed-forward neural network is the availability 

and success of supervised learning algorithms; given the actual and desired outputs 
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for a feed-forward neural network, these methods can determine the appropriate 

modifications for the weights of that network and make them converge to the desired 

results. The most popular learning algorithm which is also used in RALBANN is the 

back-propagation algorithm. 

 

 

Figure 39 - Training of ANN 

 

Back-propagation algorithm consists of 2 phases. In the first phase, using the input, 

the erroneous output is the calculated. In the second phase, the weights are adjusted 

using the error between predicted outputs and actual outputs. The purpose is to tune 

the network to more accurately predict the input in the future. Similar to the way for 

progressing forward through the neural network layer by layer to calculate the pre-

dicted output, the weights are adjusted by running backwards through the network 

layer by layer. To do this, first the error term for each neuron is calculated as: δk = 

ok(1 − ok)(yk − ok) (ok is the calculated output and yk is the actual output) for output 

neurons and δj = oj(1 − oj)Σkwjkδk for hidden neurons. The new value of each weight 

wjk of the connection from neuron j to neuron k is given by: wnew
jk = woldjk +ηojδk. 

η is an important tuning parameter that is chosen by trial and error by repeated runs 

on the training data. Typical values for η are in the range 0.1 to 0.9. Low values give 

slow but steady learning; high values give erratic learning and may lead to an unsta-

ble network. For RALBANN, this value is set to 0.3. 
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Typically, the training data has to be scanned several times before the error is rea-

sonably small. A single scan of all training data is called an epoch. The aim is to find 

the weights that minimize the error function of the output network which is calcu-

lated as: 

 for each output neuron k 

However, it is not always possible to find the correct the optimum weights to mini-

mize error. The algorithm can be caught at a local minima when the input contains 

very complicated data. Another weakness of back-propagation is the overfitting 

problem, causing the error rate to be small for only training data but very big for 

other data. In this case, the network can not do generalization. This is caused when 

the network is overtrained. 

 

 

Figure 40 - Local minima 

 

To prevent these situations, the following methods are applied in RALBANN: 

• The order of training data is randomized before each epoch. 

• The tuning parameter η is decreased as the number of epochs increases and 

the network error doesn’t decrease. This is useful because it avoids overfit-

ting that is more likely to occur at later epochs than earlier ones. 
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• A momentum term is used in the weight adjustment formula. This term 

causes the algorithm to jump over small minimas and find the correct global 

minima. This resembles to the affect of speed over the physical objects. 

3.3. Integration with P-GRADE 

3.3.1. P-GRADE 

P-GRADE (Parallel Grid Run-Time and Application Development Environment) is a 

parallel application development environment for Grid, clusters and supercomputers 

that provides both run-time and application development environment [42,43]. It 

provides several facilities for the user to develop parallel applications quickly using 

the visualized components of P-GRADE using application development environ-

ment. The run-time system, on the other hand, provides the facilities necessary to run 

the developed application on Grid and dedicated resources, like load balancer and 

monitoring tool.  

Application development environment is comprised of several graphical user inter-

faces: 

• GRED: a graphical user interface environment to construct parallel applica-

tions and workflows  

• a mapping tool to assign tasks of a parallel program to processors of a cluster 

or to assign components of a workflow to sites of a Grid 

• DIWIDE: a distributed debugger GUI to animate, watch and control the exe-

cution of parallel programs on a desktop or cluster 

• PROVE: a visualization tool to visualize program execution 

• GRP2C: a compiler to generate C code with PVM or MPI library calls 

In the run time system, P-GRADE uses Globus, Condor-G and MPICH-G2 as grid-

aware middleware to execute applications. P-GRADE uses GRAPNEL language to 

create and manage workflows in Grid environment. GRAPNEL allows a programmer 

to set a workflow of objects/library calls. Special tool GRED is used to generate MPI 

code from a GRAPNEL program. P-GRADE workflow is used to compose jobs con-

sisting of MPI (MPI-CH2), Condor, and executables. The workflow produces events 
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that can be visualized to show workflow history. The run time system provides the 

following facilities: 

• a mapping facility to map processes or workflow components to resources 

• DIWIDE: a distributed debugger to debug parallel and distributed applica-

tions 

• GRM: a distributed monitoring infrastructure to collect run-time trace infor-

mation on application execution both in desktop and dedicated cluster envi-

ronments (In non-dedicated cluster or Grid environments a real Grid monitor 

support is needed. Such a Grid monitor is Mercury.) 

• a checkpoint system to checkpoint PVM programs developed by P-GRADE 

• a migration unit to automatically migrate processes of P-GRADE programs 

inside a cluster or among sites of a Grid 

• a load-balancer unit to provide well balanced execution of the parallel pro-

gram among the nodes of a cluster 

• a workflow engine that controls the workflow execution and takes care of the 

necessary file transfers. 

 

 

Figure 41 - P-GRADE Application window 
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The separation of P-GRADE Application Development Environment (GUI) and 

Run-Time system (RS) lets the user to separately install these components in differ-

ent computers. Installation of RS on different computers gives rise to creation of dif-

ferent clusters on different computers. A cluster can be dedicated or non-dedicated. 

Dedicated cluster means that the whole cluster or several nodes of the cluster are 

dedicated to the execution of the parallel program. Non-dedicated cluster means that 

several users' application jobs can simultaneously run on the cluster and typically a 

local job manager (such as Condor, SGE, PBS, etc.) takes care of queuing and 

launching user jobs (Figure 42). The desktop on which the GUI is installed is used to 

edit, compile, submit and visualize the application. The actual execution is per-

formed on the clusters. The user can debug and monitor the program in the cluster 

environment. The P-GRADE load-balancer can be used. The P-GRADE checkpoint 

and migration unit can be used to migrate processes of PVM programs (developed by 

P-GRADE) among the nodes of the cluster according to the decisions coming from 

the load balancer. The parallel program monitoring is done by GRM and execution 

visualization is provided by PROVE. Even the migration and load-balancing activi-

ties can be visualized using PROVE. 

 

 

Figure 42 - General P-GRADE usage 

 



 64 

P-GRADE includes a centralized load balancer unit. The load balancer continuously 

collects information about the system using the monitoring tool of P-GRADE called 

GRM. Based on the coming information, if LB concludes that there is a problem 

with the current mapping, it reorganizes the process-host mapping using the migra-

tion unit. This load balancer is centralized which means it runs on the desktop host 

and it uses Simulated Annealing algorithm. 

3.3.2. Integration of RALBANN with P-GRADE 

RALBANN is designed to run with any distributed environments since it is designed 

as a separate application with generic interfaces. Specifically, RALBANN is inte-

grated and tested on P-GRADE environment. It is invoked by P-GRADE and collects 

the system information from GRM module. After finding an optimal mapping of 

processes and hosts, the new mapping is applied to the distributed system using the 

migration tool. The integration of RALBANN to any P-GRADE version is done 

straightforwardly by executing the following batch file provided in the context of our 

application for the sake of full integration: 

#!/bin/sh 

if [ -n "$1" ] && [ -n "$2" ];  

then 

sed 's/GRADE_LB_EXE="$SCRIPTDIR\/$SYSARCH\/lb $GRM_HOST $GRM_PORT $CHKPT_LB_PERIOD 

$OBJDIR\/$APPLNAME.map"/GRADE_LB_EXE="'$1' $GRM_HOST $GRM_PORT $CHKPT_LB_PERIOD 

$OBJDIR\/$APPLNAME.map $APPLNAME -learning"/' $2/bin/start-appl > /tmp/start-appl && mv -f /tmp/start-

appl $2/bin/start-appl 

else 

echo "Usage: patch.sh <LB_EXECUTABLE> <PGRADE_HOME>" 

echo "CAUTION: Escape / characters in <LB_EXECUTABLE>" 

fi 

3.4. Usage with other Distributed Environments 

In this section, the steps necessary to use RALBANN with other distributed envi-

ronments other than P-GRADE are described. RALBANN is designed to run as a 

separate application. When it is run, it can periodically connect to the monitoring tool 

and collect information about the system. It is invoked in online mode using the fol-

lowing command: 

ralbann HOSTNAME PORT LB_PERIOD APPLNAME -learning{nonlearning} 
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HOSTNAME and PORT: Hostname and port on which the monitoring tool 

running 

LB_PERIOD: The period in seconds that RALBANN collects data and in-

vokes its balancing procedure. 

APPLNAME: Name of the application currently running in the distributed 

environment. 

To integrate RALBANN with other distributed system, the only thing needed is a 

class that connects to remote monitoring tool, collects the monitoring information 

(trace data) and converts it to RALBANN’s XML trace format. This class must in-

herit DataMonitoring abstract class and implement the following virtual functions: 

� DataMonitoring(char *hostname, int port): This is the constructor of the 

DataMonitoring interface. hostname is the hostname of the monitoring tool 

and port is the port number on which the monitoring tool is running. 

� virtual void connect(): This function must abstract the connection protocol of 

the monitoring tool that listens on the remote server. The socket number of 

the connection socket is reserved in a variable m_sock. 

� virtual char *readBlockData(int byteCount): This function must abstract to 

read byteCount number of characters from the monitoring tool. It must im-

plement the necessary protocol to read the data. If no more data is available it 

must return NULL. 

� void retrieveTraceData(): This function is already implemented and is used 

to read data from monitoring tool continuously. 

� virtual convertTraceDataToRALBANNXMLFormat(string filename): This 

function is the most important function to be implemented. It converts the in-

formation collected from monitoring tool, which has an environment specific 

format to well-defined RALBANN XML format. 

� void migrate(string hostname, int pid): This function abstracts the migration 

process. It contacts the migration tool of the distributed environment to mi-

grate a process to another host. 
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3.5. Usage with other Graph Partitioners 

RALBANN can run with any graph partitioning algorithm provided that the graph 

partitioner module inherits IGraphPartitioner interface and implements its only func-

tion: 

� int *getPartitions(LBGraph *graph): This function gets a pointer to an 

LBGraph object and returns an array containing the partition id of each task 

in the graph. 
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CHAPTER 4  

 

EXPERIMENTAL STUDY 

 

 

To evaluate the load balancing results of RALBANN, a test platform using random 

graph generator module is prepared. This random graph generator generates random 

graphs with various task and host configurations as if they are generated from real 

distributed systems. The graphs are converted to input vectors, and these vectors are 

used to train the artificial neural networks. 

The benefit of using ANNs reaches to the peak when the network is trained enough, 

since in this case, RALBANN can provide the most accurate results with a very effi-

cient CPU and memory usage. In online training mode, RALBANN can both adapt 

the system and do load balancing. Therefore the using RALBANN in this mode may 

create some overhead. In a case where RALBANN’s overhead exceeds its load bal-

ancing advantages, RALBANN can be trained in offline mode using random graph 

generator. In offline mode, prior to real time execution, RALBANN is trained with 

several random graphs which resemble the real application’s graph structure. In this 

case, RALBANN’s adaptation is much faster. 

The potential benefit of resource-aware load balancing is at maximum if the system 

is heterogeneous. If the execution environment is homogeneous, very little can be 

gained by accounting for heterogeneity. In such a situation, the overhead may even 

slow down the computation slightly. Therefore, the most appropriate systems for 

RALBANN are heterogeneous systems. 
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4.1. Experiment 1: Communication Pattern 

The aim of this set of experiments is to test how successfully RALBANN can learn 

to distribute the tasks to partitions according to their communication pattern. In the 

graphs that are produced randomly for this experiment, the tasks are running on 3 

hosts and a variable number of tasks. All hosts have the same configurational proper-

ties. 

The following table shows the results of this experiment. The values show how suc-

cessfully RALBANN can distribute the tasks to partitions compared with multilevel 

partitioning algorithm. In all experiments, RALBANN is trained until it can success-

fully partition 90% of all graphs given. 

 

Table 2 - Success rates of the Partitioner ANN using several tasks on 3 hosts  
compared with multi-level load balancer 

Number of 

Graphs 

Trained 

5 Tasks 10 Tasks 15 Tasks 20 Tasks 25 Tasks 30 Tasks 

200 70 % 54 % 45 % 38 % 34 % 29 % 

400 83 % 75 % 66 % 44 % 42 % 31 % 

600 97 % 89 % 72 % 59 % 45 % 38 % 

800 99 % 95 % 81 % 68 % 52 % 46 % 

1000 100 % 99 % 85 % 81 % 69 % 63 % 

 

As seen in the table, RALBANN show a superior success in partitioning the TIG 

graphs. When trained enough, it can predict the partitions as good as multilevel parti-

tioning algorithms in a more efficient way using artificial neural networks. As the 

number of random graphs used for training increases, the success rate increases natu-

rally since RALBANN is more experienced with various different graphs. However, 

as the number of tasks increases, RALBANN must be trained with more graphs to 

increase the success rate to achieve better results. 
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Increase in the number of hosts doesn’t affect the results of this experiment because 

the ANN (partitioner ANN) is fed with only communication pattern of the tasks 

which has nothing to do with hosts.  

These experiments are done with 2 hidden layers having 20 neurons. Since 2 hidden 

layers were sufficient for successful results, experiments are not repeated more hid-

den layers. 

4.2. Experiment 2: Heterogeneous Hosts 

The aim of this experiment is to evaluate the success of RALBANN in mapping the 

task partitions to the hosts which have configurational heterogeneity. The experiment 

is done with a variable number of tasks over 3 hosts, which have processors with 512 

MHz, 1024 MHz and 2048 MHz clock speed respectively. 

The following table shows the results of this experiment. The values show how suc-

cessfully RALBANN can distribute the partitions to hosts according the computation 

loads of the partitions and hosts. In all experiments, RALBANN is trained until it can 

successfully predict 70% of the mappings given. The results are compared with the 

mapper of RALBANN. 

 

Table 3 - Success rates of the Mapper ANN using several tasks on 3 hosts 
compared with multi-level load balancer 

Number of Graphs 

Trained 

5 Tasks 10 Tasks 15 Tasks 20 Tasks 

200 30 % 25 % 23 % 21 % 

400 33 % 27 % 26 % 21 % 

600 33 % 28 % 26 % 22 % 

800 37 % 30 % 27 % 24 % 

1000 40 % 33 % 29 % 25 % 
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As seen in the table, RALBANN can not show the same perfect performance for the 

learning of mapping problem. The complexity of the mapping algorithm used in 

RALBANN prevents neural networks to do a generalization although it can work 

very well for the training inputs. However it is clear that a simpler algorithm would 

cause much better results. As the number of hosts increases, the training rates drop 

slightly since the input vectors become more complex. The following table shows the 

same experiment with 6 hosts: 

 

Table 4 -  Success rates of the Mapper ANN using several tasks on 6 hosts 
compared with multi-level load balancer 

Number of Graphs 

Trained 

5 Tasks 10 Tasks 15 Tasks 20 Tasks 

200 25 % 21 % 21 % 20 % 

400 26 % 24 % 21 % 19 % 

600 28 % 24 % 23 % 22 % 

800 32 % 27 % 26 % 23 % 

1000 37 % 30 % 26 % 25 % 

 

The experiments are repeated with both 1 hidden layer having 20 neurons and 2 hid-

den layers having 20 neurons each. However the results with 2 hidden layers were 

slightly better than the results of the results with 1 hidden layer. 

The importance of this experiment is that RALBANN was able to detect non-

dedicated hosts. That is, RALBANN distributed the task partitions to the hosts ac-

cording to hosts’ external loads. This proved resource aware load balancing skills of 

RALBANN. 
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4.3. Experiment 3: Comparison with Graph Partitioning based 

Load Balancer 

This set of experiments is performed to compare the performance of RALBANN 

with graph partitioner in terms of CPU usage while RALBANN is running in non-

learning mode. The comparisons are done using the graph partitioner of RALBANN 

which is implemented using multilevel graph partitioning algorithms. In multi-level 

algorithms [3,4], in the first phase (coarsening phase), heavy edge matching is used. 

In heavy edge matching, the vertices are visited in random order. A vertex u is 

matched with one of its adjacent unmatched vertex v such that the weight of the edge 

(u, v) is maximum over all valid incident edges (heavier edge). The complexity of 

computing a maximal matching is O(v*e), where v is the number of vertices and e is 

the number of edges. Since this phase runs until the number of multi-nodes is suffi-

ciently small, the stop criteria of coarsening phase is the equality of the number of 

multi-nodes to the number of hosts. Therefore, this phase runs v times at the worst 

case, making the overall complexity of this phase O(v2*e). The second phase is the 

partitioning phase and the coarsened graph is partitioned into k partitions. Since the 

graph is coarsened until it has only k multi-node vertices, the partitioning phase has 

the complexity O(1). In third phase (uncoarsening phase), the coarsened graph is 

propagated back to the initial graph with the partitioning information. In this phase, 

each vertex is visited and moved to another partition if some conditions are valid. 

Therefore the complexity of this phase is O(v). Considering all 3 phases, the overall 

complexity of the algorithm is O(v2*e). 

For a feed-forward ANN, the complexity for producing an output directly depends on 

the number of neurons and the size of the input vector. The number of hidden and 

output neurons is generally constant and determined for the quality and accuracy of 

the output. On the other hand, the number of input neurons and therefore the number 

of calculations between the weights of the hidden neurons in the first layer and the 

output of input neurons depends on the size of input vector. Therefore the complexity 

of generating an output from an input vector of size n is O(n). In RALBANN the 

input vectors are created from TIG graphs. For mapper ANN, the size of input vector 

is determined by the number of hosts and therefore the complexity is O(h*k), where 
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h is the number of hosts and k is the number of partitions, which can be the number 

of tasks (v) at the worst case. For partitioner, the input vector is constructed from the 

tasks and task communications and therefore the complexity is O(v2) where v is the 

number of tasks (vertices). The overall complexity is O(v2) since O(v2) overrides 

O(h*k). 

From the complexity calculations, it is evident that RALBANN run faster and uses 

less memory than the multilevel graph partitioner in theory.  

The following table shows the results of CPU usage for RALBANN and multilevel 

graph partitioner for a network with 3 hosts and a variable number of tasks which is 

specified in left-most column. 

 

Table 5 - Comparison of the execution times of multi-level load balancer  
and RALBANN 

Number of Tasks CPU Usage in ms (Multi Level) CPU Usage in ms (ANN) 

10 6 4 

20 32 14 

100 290 78 

200 710 172 

500 1901 381 

 

These results show that RALBANN’s performance is superior to the performance of 

graph partitioner. Provided that RALBANN is trained well enough, its load balanc-

ing decisions will be as successful as the decisions of graph partitioner. 

4.4. Comparison with P-GRADE Load Balancer 

P-GRADE has its own centralized load balancer. This load balancer is based on 

simulated annealing algorithm. This load balancer uses the following cost function 

[44] which replaces the Hamiltonian function in simulated annealing method [22]: 
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Figure 43 - P-GRADE Load Function 

 

where, 

� L(i) = ΣM(j)=il(j) and Lavg = 1/mΣiL(i) and l(i) is the computation demand of 

process i on its host.  

� lCPU(i) is CPU usage of task i. 

� nCPU denotes the number of CPUs on the hosts.  

� Processes are numbered 1...n and hosts are numbered 1…m.  

� M is a random mapping of the tasks to hosts.  

� c(i,j) is the communication load of process i and j.  

� wul and wcomm are the constants that are chosen between the interval [0,1]. 

� And lastly F(M) is the cost function and IB(i) is the weighted imbalance of 

process i. 

Although simulated annealing is a good method which can find the best load balanc-

ing decisions, it has the following disadvantages over RALBANN; To ensure a bal-

anced state [45], special care must be taken to decide the correct set of changes and 

choose the correct sequences of the temperature values. Otherwise, the balancer will 

not be able to find the correct optima. Another problem of simulated annealing is that 

it may not find the optimal solution at the early steps of the algorithm since the cost 

function calculates the cost for a random mapping at each iteration. 

On the other hand, RALBANN uses graph partitioning methods which takes care of 

the global system data and therefore can find the best or a nearly best solution only in 
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one step. Combining the success of graph partitioners with artificial neural networks, 

RALBANN is a successful and efficient load balancer. 

The following table shows the comparison of the execution times of P-GRADE load 

balancer and RALBANN in non-learning mode. RALBANN runs much faster than 

simulated annealing based load balancer. 

 

Table 6 - Comparison of the execution times of P-GRADE LB and RALBANN 

Number of Tasks CPU Usage in ms (P-GRADE) CPU Usage in ms (ANN) 

10 110 4 

20 156 14 

100 397 78 

200 603 172 

500 1211 381 

 

4.5. Training Time 

The most important disadvantage of RALBANN is its training time. The time to train 

RALBANN for getting load balancing decisions with sufficient quality is much 

longer than the time to get the decision itself. However, once trained, RALBANN 

can very efficiently make load balancing decisions since its uses artificial neural 

networks. 

In RALBANN, there are 2 neural networks, namely: partitioner and mapper ANNs, 

each having 40 hidden neurons separated into 2 hidden layers. For partitioner ANN, 

the size of the input vector is in the order of O(n2), where n is the number of tasks. 

On the other hand, for mapper ANN, the size of the input vector is in the order of 

O(n*m), where n is the number of tasks and m is the number of hosts. Since n2 sup-

presses n*m, the overall complexity of RALBANN for taking a load balancing deci-

sion is O(n2). This assumption is true only if n>m. 
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However, calculating the complexity of training algorithm for an ANN is not 

straightforward. Because training time depends on the size of the input vector, the 

number of input vectors and mostly the complexity of the process that must be learnt. 

The training algorithm terminates when the network error of the ANN is sufficiently 

small for all input vectors. Therefore, if the process to be learnt is complex, the net-

work error decreases slowly and training takes more time. Figure 44 shows the train-

ing time of partitioner ANN: 
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Figure 44 - Training time of Partitioner ANN with n*40 input graphs,  
where n is the number of tasks 

 

Figure 45 shows the training time of mapper ANN: 
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Training of Mapper ANN
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Figure 45 - Training time of Mapper ANN with n*40 input graphs,  
where n is the number of tasks 

 

As seen in the figures, the training time of mapper ANN consumes much more time 

than the partitioner ANN. The reason for this is the complex mapping algorithm. If a 

simpler algorithm were to be used, it would have a better training time. 
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CHAPTER 5  

 

CONCLUSION AND FUTURE WORK 

 

 

In this thesis, a resource aware load balancing model entitled as RALBANN is de-

scribed. The main goal of RALBANN is the learning of graph partitioning based 

load balancing using feed-forward neural networks. Graph partitioner based load 

balancers models the distributed system using graphs and thus load balancing prob-

lem is reduced to graph partitioning problem. Therefore, load balancing problem can 

be described as creating task partitions which has minimum edge cut which means 

minimizing communication load between the partitions. Although graph partitioners 

are counted among the most successful load balancers, they have a major disadvan-

tage; they are inefficient in terms of CPU usage and memory. RALBANN is de-

signed as a solution to the drawbacks of the graph partitioners by bringing together 

the successful results of graph partitioners with efficient decision making mecha-

nisms of feed-forward neural networks. In other words, RALBANN learns load bal-

ancing using feed-forwards neural networks. There are 2 neural networks which are 

charged to learn the 2 steps of load balancing: partitioner ANN whose job is to learn 

how to partition the graph and mapper ANN whose job is to learn how to map the 

partitions to hosts. Resource awareness is accomplished by mapping the task parti-

tions to the computing resources according to the capabilities of the computing re-

sources producing a resource aware load balancing scheme. 

RALBANN can train itself offline using its random graph generator module, which 

produces random TIG graphs for a specific configuration. After trained enough, 

RALBANN saves the weights of the neural networks into files which can then be 

loaded and used again. This self-training process speeds up training process very 
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much. One of the good aspects is that RALBANN differentiates between the parti-

tioning and mapping tasks, which are the basic tasks of graph partitioning based load 

balancing algorithms, by assigning each phase to a different artificial neural network. 

The weights of the partitioner and mapper ANNs are saved to different files. This 

separation speeds up the training process when the same host configuration is used 

repeatedly for different distributed applications. The reason for this speed up is that 

the task of partitioner ANN is only to partition the tasks into groups according tasks’ 

computational loads. Therefore it has nothing to do with the configuration of the 

hosts. On the other hand, the task of mapper ANN is to map the partitions to hosts 

according to computational load of the partitions, computational power and external 

load of the hosts. 

One of the good results of RALBANN software which has been produced as a result 

of the research within the scope of this thesis is that it is a self-sufficient tool that can 

be used with any existing load balancing algorithms and any distributed environ-

ments with only small changes. RALBANN has simple interfaces that must be im-

plemented to adapt to any distributed systems. In this context, it is very clear that our 

model has advantages when compared to similar same-goal efforts that generally 

propose tools that are tightly-coupled to the specific distributed environments. In this 

thesis, RALBANN is fully integrated with P-GRADE. RALBANN can periodically 

poll the monitoring tool of P-GRADE to upload the necessary data. Then it is used 

for both training and producing load balancing decisions. The decisions are then sent 

to migration unit of the specific distributed environment. 

Since ANNs are trained to learn the partitioning and mapping problem as a function 

of several parameters (that is, not only specific cases), RALBANN can react any 

changes in the atrributes of the hosts or tasks , such as CPU load and CPU power and 

produce the right load balancing decisions. However, RALBANN has limitations for 

the dynamic changes in the size of hosts and tasks. One of the main limitations of 

RALBANN is that dynamic computational models are not supported. Therefore, for 

the applications in which the number of tasks change dynamically during run-time, 

RALBANN doesn’t provide any mechanisms to adapt the changes. If the number of 

hosts changes, RALBANN has no mechanisms to adapt the changes, either. How-



 79 

ever, since the host data, which is learnt by mapper ANN, is separately learnt and 

saved, RALBANN can be re-run to load the new weight file for the new resource 

situation. This shows the benefit of separating and saving the weights of mapper and 

separator ANNs in different files and for different configurations. 

The results obtained from RALBANN are very promising. The experiments show 

that RALBANN can perform as successful as multilevel graph partitioners which are 

among the most successful load balancers. RALBANN’s major advantage over graph 

partitioners is that it runs much faster than graph partitioning methods because of the 

efficient run time of neural networks. Training time is the major disadvantage of 

RALBANN. However, this can be compensated by training RALBANN for the most 

commonly used distributed applications and saving the weight values for later usage. 
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Future Work 

In terms of the tasks partitions produced, RALBANN shows very good performance, 

while it can not produce the same successful results for the mapping task. A certain 

improvement could be achieved if a simpler mapping algorithm were used. One of 

the necessary future works is to improve the performance of mapper ANN by doing 

the necessary modifications to the learning process and learning algorithm. 

It is necessary to include the memory factor, too. The load balancing results are ef-

fected very much by the memory usage of the tasks and memory size of the hosts. 

Currently RALBANN doesn’t care this factor. 

Another improvement is to change Kernighan-Lin algorithm to consider the compu-

tational power and external loads of the hosts while creating the partitions. In this 

case, the conditions which are checked before the movement of vertices must be 

changed to include also the relevant properties of the hosts. Instead of creating 

equally balanced partitions in terms of CPU usage, the algorithm will create imbal-

anced partitions in terms of CPU usage but balanced when the conditions of the hosts 

are considered. 

Considering the dynamic computational models is another planned future work for 

RALBANN. In this case, RALBANN will consider and provide solutions for the 

dynamic changes in the number of tasks. 
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APPENDIX A 

 

DEVELOPER’S MANUAL 

 

 

In this appendix, the important data structures implemented in the RALBANN soft-

ware is described. RALBANN is an application which is composed of 5 important 

components as depicted in the following diagram: 

 

Teacher

Graph Partitioner Graph Model

Data Monitoring
Artificial Neural 

Network

 

Figure 46 - Component Diagram of RALBANN 

 

In the following sections, the classes and functions used in each component are de-

scribed in short detail. 
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Graph Model Component: 

LBGraph

+ createLBGraphFromTRData ( [in] trdata : tr_main * ) ...

+ resetHEMFlag (  ) : void

+ setApplName ( [in] applName : string ) : void

+ getApplName (  ) : string

+ resetPartition (  ) : void

+ clone (  ) : LBGraph *

+ updatePartitionNeighbourhood (  ) : void

+ printPartitionNeighbourhood (  ) : void

+ getPartitionCount (  ) : int

+ getCPULoadOfPartition ( [in] pIndex : int ) : int

+ getMaxCPULoadOfPartitions (  ) : int

+ setUserName ( [in] un : string ) : void

...

LBGraphHost

+ clone ( [in] newHost : LBGraph...

+ deleteProcess ( [in] process : L...

+ deleteAllProcesses (  )

+ setMemoryLoad ( [in] m : unsig...

+ getMemoryLoad (  ) : unsigned int

+ setMemorySize ( [in] m : unsig...

+ setMemorySize (  )

+ getMemorySize (  ) : unsigned int

+ setCpuPower ( [in] m : unsigne...
...

LBGraphMessage

+ clone ( [in] newMessage : LBGraphMessage * )

+ setMessageCount ( [in] messageCount : int )

+ getMessageCount (  ) : int

+ setTotalS ize ( [in] totalS ize : long )

+ getTotalS ize (  ) : long

+ setValid ( [in] v : bool )

+ getValid (  ) : bool

+ printMessage (  )

+ getSourceProcessIndex (  ) : int

+ getDestProcessIndex (  ) : int

+ setSourceProcessIndex ( [in] index : int )

+ setDestProcessIndex ( [in] index : int )

LBGraphProcess

+ setHEMFlag ( [in] f : int )

+ getHEMFlag (  ) : int

+ setPartition ( [in] i : int )

+ getPartition (  ) : int

+ updatePartitionNeighbourhood (  )

+ getPartitionNeighbourhood (  ) : int *

+ setGraph ( [in] graph : LBGraph * )

+ setTid ( [in] t : int )

+ getTid (  ) : int

+ getHostIndex (  ) ...  

Figure 47 - Class Diagram of Graph Model 

 

This component is responsible for representing the TIG graphs. The graph is created 

from an XML file containing the host and task information necessary to do load bal-

ancing. The most important class is LBGraph class. This class provides all functions 

needed to create a TIG Graph. LBGraphHost represents a host and abtracts the host 

information. LBGraph Process abtracts the processes (tasks) running on the hosts and 

lastly LBGraphMessage class represents the messages sent from one process to an-

other. 

1. LBGraph Class: 

− createLBGraphFromTRData: This static function is used to create LBGraph 

object from P-GRADE trace file. 
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− createLBGraphFromXMLFile: When this static function is called it creates 

and returns an LBGraph object from an XML file which contains load balancing 

data. 

− setApplName: Sets the name of the distributed application. This name is used 

for searching, loading and saving the weights of the neurons. 

− resetPartition: Resets the partitioning data which is created after running graph 

partitioner. 

− clone: Creates a clone of the graph. 

− getPartitionCount: Returns the partition count created after running graph parti-

tioner. 

− addHost: Add a new host to the graph and returns its index in the host array. 

− getHostCount: Returns the host count added to the graph. 

− getHosts: Returns a LBGraphHost array containing ter host data. 

− getHost: Searchs and returns the host at the specified index or name given. 

− addProcessToHost: Adds a new task (process) to a host. Processes are hold in 

an array. 

− getProcessCount: Returns task (process) count. 

− deleteProcess: Deletes a previously added task (process) from the graph. 

− addMessageToProcess: Add a new communication message to a process. Mes-

sages are hold in a 2 dimensional array. Each of the elements of the array is a 

LBGraphMessage object. 
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ANN Component: 

NeuralNetwork

+ loadNetworkDataFromFile ( [in] file : FILE * ) : Neural...

+ loadNetworkDataFromFile ( [in] fileName : char * ) : ...

+ loadTrainingDataFromFile ( [in] fileName : char * , [in...

+ getExamplarLength (  ) : int

+ loadTrainingDataFromFile ( [in] file : FILE * , [in] exa...

+ deleteExamplars (  ) : void

+ loadTrainingDataFromFile ( [in] file : char *  ) : void

+ loadTrainingDataFromFile ( [in] file : FILE * ) : void

+ addNewExamplars ( [in] fileName : char * ) : void

+ addNewExamplars ( [in] file : FILE *  ) : void

+ setExamplars ( [in] examplarCount : int , [in] exampla...

+ getLayerCount (  ) : int
...

Neuron

+ linearAdder ( [in] input : double * ) : d...

+ activationFunction ( [in] sum : double )...

+ init ( [in] inputLength : int , [in] neuron...

+ getOutput (  ) : double

+ getOutput ( [in] input : double * ) : do...

+ updateWeights (  ) : void

+ printNeuron (  ) : void

+ getInputLength (  ) : int

+ setBiasValue ( [in] bias : double ) : void

+ setTunningParameter ( [in] tp : double...

+ getTunningParameter (  ) : double

+ getErrorTerm (  ) : double

+ setErrorTerm ( [in] errorTerm : doubl...

+ getWeight ( [in] index : int ) : double

+ getNeuronType (  ) : int
...  

Figure 48 - Class Diagram of Artificial Neural Network 

 

This component is used to construct a feed forward artificial neural network. Neu-

ralNetwork class provides methods for constructing ANN’s with several hidden lay-

ers using Neuron objects. The parameters susch as tunning parameter, adjustment 

parameter, bias values can be configured from configuration file. The configuration 

file can contain the following values: 

InputLength: Input length of the ANN. 

HiddenLayers: Number of hidden layers and number of neurons in each hid-

den layer is given with this attribute 
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OutputType: This can be FINDBIGGEST or EXACTMATCH. In EX-

ACTMATCH, ANN tries to learn the output exactly. But for FINDBIG-

GEST, ANN learns to classify the input vectors and highlights one of the 

classes for each input data. 

OutputLength: Length of output vector and number of output neurons. 

TunningParameter: The initial value for tunning parameter. This parameter 

is weaved continosly so that ANN doesn’t drop into a local minima/maxima. 

BiasValue: The bias value for the neurons. 

NumberOfEpochs: The number of epochs that ANN will train itself. 

NumberOfScans: The number of scans that ANN will go in each epoch. 

When trainNetwork() function is called, ANN begins to train itself until success con-

dition is reached, which can be network error or succes rate for the examplars. The 

weights and the parameters are saved to a file periodically so that it can be loaded 

again later and continue training. 

1. Neuron Class:  

− init: This method reconstructs the data structures used inside the Neuron class. 

− getOutput: Given an input vector, this method returns the output of neuron with 

the current weights. 

− updateWeights: This method updates the weights of the neuron according to the 

tunning parameter, error term for the given input and output. 

− linearAdder: This function calculates the sum of multiplication of each input 

and weight. 

− activationFunction: This method abstracts the activation function which is equal 

to sigmoid function in RALBANN. 

− printNeuron: Prints the neuron data in a human readable form. 

− getInputLength: Returns the input length. 

− setBiasValue: This function sets the bias value for this neuron. 
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− setTunningParameter: This function sets the tunning parameter. 

− setErrorTerm/getErrorTerm: This function sets/gets the error term. Error term 

is equal to (desired_output-calculated_output). 

− getNeuronType: Returns neuron type. It may be OUTPUT or HIDDEN neuron. 

− copyWeights: Gets a copy of the weights. The copies are used during back-

propogation algorithm. 

− restoreWeights: The weights previously copied are restored again. 

− getBiasValue: Returns the bias value. 

− setWeight/getWeight: Sets/Gets the weights of the neuron. 

2. NeuralNetwork Class: 

− setStopCondititon: This sets the stop condition. It can be NETWORK_ERROR 

or SUCCESS_RATE. If it is set to NETWORK_ERROR, the exemplars are 

trained until the network error is smaller then the error value which is set using 

setNetworkErrorLimit() function. Otherwise (SUCCESS_RATE) the examplars 

are trained until ANN guesses a high percent (for example 90%) of the exam-

plars. The success rate is set using setSuccessRateLimit() function. 

− setNetworkErrorLimit: Sets the error limit that ANN must give at most for the 

registered examplars. 

− setSuccessRateLimit: Sets the success rate limit. This must be set if stop condi-

tion is SUCCESS_RATE. 

− getOutputForSingleCaseWithNormalization:  

− setSaveFileName: Sets the file name in which the weights and configuration 

information will be saved. 

− setTunningParameter: Sets the tunning parameter. 

− trainNetwork: Start training the given examplars. 

− loadNetworkDataFromFile: ANN parameters and weights are loaded from file. 

− setParameters: Tunning parameter, tunning adjustment value, bias value are set 

using this function. 

− saveToFile: The parameters and weights are saved to file. 

− loadTrainingDataFromFile: Training examplars are loaded from file. 
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− addNewExamplar: Adds a new training examplar. 

− normalizeExamplars: The input vectors (examplars) are normalized to values 

between 0.0 and 0.9 for faster training. 

− copyWeights: The weights are copied to internal structures. This is needed for 

back- propagation learning algorithm. 

− restoreWeights: The weights copied previously are restored again. This is 

needed for back- propagation learning algorithm. 
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Graph Partitioner: 

 

Figure 49 - Class Diagram of Graph Partitioner 

 

This component is used by Teacher module for partitioning the TIG graphs to train 

artificial neural networks. RALBAAN uses IGraphPartitioner interface which pro-

vides the necessary functions for graph partitioning. Therefore any graph partitioning 

algorithm implementing this interface can be used with RALBANN. In RALBANN, 

multi level graph partitioner is implemented specifically. 

1. IGraphPartitioner Interface:  

− getPartitions: This function gets a LBGraph object and return an array which 

contains the partition ids for each task (process). 

IGraphPartitioner

+ getPartitions( graph:LBGraph * ):  int * 

KernighanLinBalancer

+ checkBalanceCondition ( [in] process : LBGraph...

+ start (  ) 
+ printPartitions (  ) 
+ createPartitions (  ) 
+ calculateLoads (  )

MultiLevelMain

+ start (  ) 
+ addNewMatching ( [in] coarsenLevel : int , [in] v1 :... 
+ applyMatchingsToGraph ( [in] coarsenLevel : int ) 
+ coarsenGraph (  )

+ partitionGraph (  )

+ uncoarsenGraph (  )

Partition 

+ printPartition (  )

+ addProcess ( [in] process : LBGraphProcess * ) 
+ setMaxProcessCount ( [in] max : int )

+ getProcessCount (  ) : int 
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Data Monitoring: 

 

Figure 50 - Class Diagram of Data Monitoring 

 

The data monitoring component is the interface of RALBANN to the distributed en-

vironment. RALBANN can be integrated with any environment provided that the 

necessary class implementing IDataMonitoring interface is coded. RALBANN uses 

this interface to comminucate with the distributed environment. This interface pro-

vides the following methods: 

− retrieveTraceData: This function connects to the monitoring tool of the dis-

tributed environment and collects the load balancing data. The data is saved 

in a file which is then given convertTraceDataToRALBANNXMLFor-

mat() function so that it is converted to special XML format. 

− convertTraceDataToRALBANNXMLFormat: The trace file containing 

load balancing information is converted to a XML file. 

− migrate: This function contacts the migration tool of the distributed envi-

ronment to migrate a process to a host. 

PGRADEDataMonitoring

+ connect (  )

+ readBlockData ( [in] byteCount : int ) : char * 
+ retrieveTraceData (  )

+ convertTraceDataToRALBANNXMLFormat ( [in] file... 
+ migrate ( [in] processId : int , [in] hostName : stri... 

«interface» 
IDataMonitoring

+ retrieveTraceData ( ) 
+ convertTraceDataToRALBANNXMLFormat ( [in] filename : string ) 
+ migrate ( [in] processId : int , [in] hostName : string ) : void 
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Teacher: 

NeuralNetwork

+ loadNetworkDataFromFile ( [in] fil...

+ loadNetworkDataFromFile ( [in] fil...

+ loadTrainingDataFromFile ( [in] fil...

+ getExamplarLength (  ) : int

+ loadTrainingDataFromFile ( [in] fil...
+ deleteExamplars (  ) : void

+ loadTrainingDataFromFile ( [in] fil...

+ loadTrainingDataFromFile ( [in] fil......

Teacher

+ getProcessANNInputLength ( [in] graph : L...

+ getHostANNInputLength ( [in] graph : LBGr...

+ getProcessExamplarLength ( [in] graph : L...

+ getHostExamplarLength ( [in] graph : LBGr...

+ checkForHostChanges ( [in] graph : LBGra...

+ checkForProcessChanges ( [in] graph : LB...
...

RandomGraphGenerator

+ randomizeProcessJiffies (  )

+ createDataFileForTypeRandom (  )

+ createDataFileForTypeDiffSet (  )

+ createDataFileForTypeCentralized (  )

+ createDataFile ( [in] type : int )

«interface»

IDataMonitoring

+ connect (  )

+ readBlockData ( [in] byteCount : int ) : ...

+ retrieveTraceData (  )

+ convertTraceDataToRALBANNXMLForm...

+ migrate ( [in] processId : int , [in] host...

LBGraph

+ createLBGraphFromTRData ( [in] trdata : tr_mai...

+ resetHEMFlag (  ) : void

+ setApplName ( [in] applName : string ) : void

+ getApplName (  ) : string

+ resetPartition (  ) : void
+ clone (  ) : LBGraph *

+ updatePartitionNeighbourhood (  ) : void

+ printPartitionNeighbourhood (  ) : void

...

IGraphPartitioner

+ start (  )

+ addNewMatching ( [in] coarsenLev...

+ applyMatchingsToGraph ( [in] coar...

+ coarsenGraph (  )

+ partitionGraph (  )

+ uncoarsenGraph (  )

 

Figure 51 - Class Diagram of Teacher 

 

The Teacher uses all other modules to train the artificial neural networks. Teacher 

can used the load balancing information collected using Data Monitoring compo-

nent, or it can generate random TIG graphs using RandomGraphGenerator class. The 

random graphs are then converted to input vectors which are used to train the ANNs. 

Using random graph makes training process faster. The weights of trained ANNs can 

be saved and later loaded again to be used with real load balancing data. 


