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ABSTRACT 
 
 

IMPROVEMENT OF RADAR DETECTION  
BY DOPPLER PATTERN MATCHING 

 
 
 

ÇELEB�, Duygu 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mete SEVERCAN 

 

September 2006, 86 pages 
 
 

 
 

In this thesis, improvement of Cell Averaging Constant False Alarm Rate (CA 

CFAR) radar processors is studied. A new improvement method is proposed that 

will reduce probability of false alarm while keeping probability of detection at good 

values.  This method makes use of Doppler spreading patterns that appear after 

Doppler processing. Therefore this method is called Doppler Pattern Matching 

(DPM). 

 

Performance of the algorithm has been investigated by Monte Carlo simulations. In 

order to evaluate the performance, improvement factor is calculated which is the 

ratio of the probability of false alarm of original detector to the false alarm of 

improved detector. It is observed that improvement factor changes depending on 

the simulation scenario. Almost in every case, good improvement factor can be 

obtained. Moreover, in most of the cases, there has been no reduction in probability 

of detection after DPM is applied to CA CFAR detector. 

 

Keywords: CA CFAR, Doppler pattern matching 
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ÖZ 
 
 

RADAR TESP�T�N�N DOPPLER ÖRÜNTÜ E�LEMES� 
YOLUYLA �Y�LE�T�R�LMES�  

 
 
 

ÇELEB�, Duygu 

Yüksek Lisans, Elektrik ve Elektronik Mühendisli�i Bölümü 

Tez Yöneticisi: Prof. Dr. Mete SEVERCAN 

 

Eylül 2006, 86 sayfa 

 
 

 
 

Bu tezde Hücre Ortalamalı Sabit Yanlı� Alarm Oranı (CA CFAR) radar 

i�lemcilerinin iyile�tirilmesi incelenmi�tir. Yanlı� alarm olasılı�ını dü�üren ve aynı 

zamanda tespit olasılı�ını iyi seviyelerde tutan bir iyile�tirme metodu önerilmi�tir. 

Bu metot, Doppler i�leme sonrasında gözlenen Doppler’de yayılma örüntülerinden 

faydalanmaktadır. Bu yüzden bu metoda Doppler Örüntü ��leme(DPM) denmi�tir. 

 

Algoritmanın performansı Monte-Carlo bilgisayar benzetimleriyle incelenmi�tir. 

Performansı de�erlendirmek için iyile�tirme faktörü hesaplanmı�tır. �yile�tirme 

faktörü, iyile�tirme öncesi yanlı� alarm olasılı�ının iyile�tirme sonrası yanlı� alarm 

olasılı�ına oranıdır. �yile�tirme oranının bilgisayar benzetimlerinde kullanılan 

senaryoya göre de�i�ti�i gözlenmi�tir. Birçok durumda, iyi bir iyile�tirme oranı 

elde edilmi�tir. Bundan ba�ka, DPM uygulandıktan sonra hemen hemen her 

durumda tespit olasılı�ında bir dü�ü� olmamı�tır. 

 

Anahtar kelimeler: CA CFAR, Doppler örüntü e�lemesi 
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CHAPTER 1  
 
 

INTRODUCTION 
 

 

Fundamental purpose of radar is to detect targets. In order to achieve this, target 

echoes must be separated from interference echoes using radar signal processing 

algorithms. There are generic signal processing blocks common in radars. 

 

First block that signal is passed through is Pulse Compression block. This block is 

simply a matched filter that maximizes Signal to Noise Ratio (SNR) for the pulse 

shape used in transmitted waveform.  

 

After that, signal is passed through Doppler Processor block. At this block, there 

may be a single filter or a bank of filters, depending on the type of Doppler 

processor, in order to suppress clutter and noise echoes. Moving Target Indicator 

(MTI) is composed of a single filter which has a high pass response suppressing 

stationary clutter. Pulsed Doppler processor, on the other hand, is a bank of 

bandpass filters that passes certain parts of Doppler spectrum. It requires more 

pulses and processing power. However, it gives more idea about target, like target’s 

radial velocity and number of targets. There is a method called Moving Target 

Detector (MTD) that uses both MTI and pulsed Doppler processing by making use 

of the digital signal processing technology. 

 

Finally, data at the output of Doppler processor is compared with a predetermined 

threshold. If interference level is known and constant, this threshold may be set 

constant to keep probability of false alarm ( FAP ) constant. However, usual case is 

that interference level is unknown and varying. Therefore, threshold should be 
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determined adaptively on runtime according to received signal. This way, FAP  can 

be kept constant. This is why; this type of detection is called CFAR detection.  

 

If interference is independent, identically Gaussian distributed CA CFAR threshold 

achieves constant FAP . CA CFAR uses the average of adjacent range cell signal 

level to estimate interference level and determine the threshold of a cell under test. 

In order to determine the threshold properly, interference level of adjacent cells 

should be the same with the interference level of the cell under test. Moreover, 

there should not be a target in these range cells. However, there are situations 

violating these conditions. Interference level can change abruptly on clutter edges; 

or two targets can be close to each other. At clutter edges, false alarms may 

increase at high level clutter region. In two target case, target with lower SNR can 

be masked with the threshold that is increased by target echo with higher SNR.  

 

In order to compensate the performance degradation of CA CFAR at mentioned 

situations, extensions are brought to CA CFAR which are smallest of cell averaging 

(SOCA) CFAR and greatest of cell averaging (GOCA) CFAR. SOCA CFAR, 

calculates the average of adjacent range cells’ signal level on two sides of the test 

cell separately and chooses the smaller one as the estimate of interference level. 

This way, target masking can be prevented but FAP  will increase. On the other 

hand, GOCA CFAR calculates the average of adjacent range cells’ signal level on 

two sides of test cell separately like SOCA CFAR, but chooses the greater one as 

the estimate of interference level. This way, false alarms will reduce around clutter 

edges, but the rate of target masking will increase. 

 

In [20], another CFAR method is proposed that functions well in mentioned 

exceptional situations. In this method, which is called ordered statistics (OS) 

CFAR, adjacent range cell data are rank ordered. Specific order of this sequence is 

selected as the estimate of interference. The trade off for the success of this 

algorithm is its algorithmic complexity. It requires much more processing power 

compared to CA CFAR. 
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The mentioned algorithms make use of the assumption that interference is Gaussian 

distributed. However, this is usually not the case, especially in high resolution 

radars. Therefore, non-Gaussian clutter models are proposed like K-distribution and 

Weibull distribution. Moreover, new processing algorithms are developed to 

function well in this type of interference. Generalized likelihood ratio test – linear 

quadratic (GLRT-LQ) detector, which assumes K-distributed interference, can be 

an example to such algorithms. GLRT-LQ includes both Doppler processing and 

threshold detection in its structure.  

 

One problem that threshold detection algorithms suffer is ghosts. Ghost is a 

detection that results from target but at a point where there is no target. There are 

two main sources of ghosts. First one is the pulse compression which produces time 

sidelobes.  If target echo is strong enough, sidelobes appear above noise floor. This 

may cause false detections at the transition regions of noise level and target side 

lobes. Doppler spreading is another source of ghosts. Because of the filter response 

of the Doppler filters, peaks may arise at the output of Doppler filters around target 

Doppler, which may cause ghosts.  

 

In this thesis, a Doppler pattern matching (DPM) method is proposed to improve 

the performance of CA CFAR detection processor. This method makes use of 

Doppler spreading patterns that appears after Doppler processing. It is claimed that 

this method will reduce the false alarm and eliminate the ghosts resulting from 

Doppler spreading. On the other hand, it is not expected that ghosts resulting from 

pulse compression would be eliminated by this method. 

 

This thesis is organized as follows. Chapter 2 is an overview of the mentioned radar 

signal processing algorithms. First, classical radar signal processing algorithms are 

described which are grouped into three as Pulse Compression, Doppler Processing 

and Threshold Detection. In the section about Doppler Processing, MTI, Pulsed 

Doppler Processing and MTD processor are explained. In the section on  Threshold  
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Detection, CA CFAR, its extensions SOCA CFAR and GOCA CFAR and finally 

OS CFAR detection processors are handled. In the second part, two non-Gaussian 

interference distributions, which are Weibull distribution and K-distribution, are 

explained. Then, GLRT-LQ detector is investigated. 

 

In Chapter 3, DPM is explained in details. There are comments on the situations 

where the algorithm works successfully.   

 

In Chapter 4, there are simulations results that demonstrate the performance of 

DPM. Results are grouped into three; Simulations without Target, Simulations with 

Single Target and Simulations with Two Targets. In the section on  “Simulations 

without Target”, false alarm reducing performance of DPM is investigated. In 

sections on  “Simulations with Single Target” and “Simulations with Two Targets”, 

ghost and false alarm reducing performance of DPM is investigated in single target 

case and two target case respectively. 

 

Chapter 5 includes some concluding remarks. 
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CHAPTER 2 
 
 

BASICS OF RADAR SIGNAL PROCESSING 
 

 

Radars radiate electromagnetic energy into space and receive echoes reflected from 

environment. Main objective of radar is detecting targets in echo signal and 

estimating some parameters of these targets like range and velocity. There are 

generic signal processing algorithms common in radars to achieve this purpose 

which can be seen in Figure 2.1. 

 

 

 
 

Figure 2.1 Block Diagram of Generic Radar Signal Processing Algorithms 
 

 

In this thesis, two kinds of processing algorithms are investigated. First type of 

algorithms makes use of the assumption that clutter and noise are Gaussian 

distributed. These algorithms can be called classical radar signal processing 

algorithms. However, in some cases distribution deviates from Gaussian and 

classical methods fail. Therefore new methods are developed that will work 

successfully in environments with non Gaussian distributed clutter. In second part 

of this chapter, non-Gaussian distributions will be studied. Then, GLRT-LQ 

detector, which is designed to have a good performance in non-Gaussian distributed 

clutter, will be examined. 
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2.1 Classical Radar Signal Processing Algorithms  

2.1.1 Pulse Compression 

 

High range resolution is a desired property in radar. In order to achieve this, short 

pulses should be used which implies the use of large spectral bandwidth. It is 

advantageous to use short pulses in Signal to Clutter Ratio (SCR) sense since 

clutter power reduces in echo signal as pulse shortens. However, high peak power 

is necessary to achieve short-duration pulses. It is practically difficult to obtain high 

peak powers especially in high resolution cases. A long pulse can have same 

spectral bandwidth as a short pulse if the long pulse is modulated in frequency or 

phase [1]. This technique is called pulse compression. 

 

Range resolution in radar is 

 

2
cT

R =∆  (2.1) 

 

where T is the pulse duration and c is the speed of light( sm /103 8× ). If pulse 

compression method is used range resolution becomes  

 

2
τc

 (2.2) 

 

where τ  is the chip length or in other words compressed pulse length. τ/T  is the 

pulse  compression ratio. Since signal bandwidth is approximately equal to 1/�, then 

pulse compression ratio becomes time bandwidth product. 

 

Pulse compression is carried out by filtering the echo of the transmitted signal that 

is composed of modulated pulses with duration T. Filter used at the receiver is a 

special filter that is called matched filter. Matched Filter is a linear filter that 

maximizes SNR at the output of filter for the pulse shape used.  If we call pulse 
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shape function p(n) and it’s length N, matched filter is time reversed pulse shape 

under additive white Gaussian noise assumption, i.e. 

 

)()( nNpnh −=  (2.3) 

 

There are some other applications that use techniques like inverse filter, but those 

are not considered in this thesis. 

 

There are two main figures of merit that characterizes the compressed signal [7]: 

 

� Peak Sidelobe Level(PSL) = 10log(maximum sidelobe power/ peak power) 

� Integrated Sidelobe Level(ISL) = 10log(total power in the sidelobes/ peak 

power) 

 

Barker codes are common examples to binary phase modulated pulse shapes. 

Length 13 Barker Code is [7]: 

 

[1,1,1,1,1,-1,-1,1,1,-1,1,-1,1]. (2.4) 

 

Its PSL is -22.3 dB, ISL is -11.5 dB and has an autocorrelation function as shown in 

Figure 2.2. 
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Figure 2.2 Autocorrelation Function of Length 13 Barker Code 

 

 

2.1.2 Doppler Processing  

 

The Doppler effect is a shift in the frequency of a wave radiated, reflected, or 

received by an object in motion [9]. It can be derived from rate of change of the 

phase. A received echo signal contains reflections from clutter, targets and noise. 

Each of these reflections has different Doppler characteristics. Clutter and noise 

signals have zero or little Doppler frequency compared to target signal.  

 

Calling target range R and transmitted wavelength �, total phase change in the two 

way propagation path is then 

 

λπ
λ

πφ /4
2

2 R
R =×=  

                                           

(2.5) 
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Differentiating Eq.(2.5) with respect to time gives the rate of change  of phase, 

which   is the angular frequency: 

 

d
r

d f
dt
dR

dt
d π

λ
πν

λ
πφω 2

44 ====  (2.6) 

 

From the Eq.(2.6), Doppler frequency  df  can be extracted, which is [1]: 

 

c
f

f rtr
d

ν
λ
ν 22

==  (2.7) 

 

Target detection can be achieved by means of Doppler effect. MTI is an older and 

simpler method to achieve this, whereas Pulsed Doppler Processing is a more 

complicated method but it provides more information about target. Finally, MTD is 

a technique that combines both MTI and Pulsed Doppler Processing. 

 

2.1.2.1 MTI  

 

Aim of Doppler Processing is basically separating stationary signals from Doppler 

shifted signals. Since stationary signals are considered to be constant from pulse to 

pulse, this can be simply be achieved by subtracting echoes from pairs of pulses. As 

a result stationary signals would cancel out and target signal would not since it has 

phase changes. This process, in fact, is a linear high pass filter rejecting signals 

around zero frequency, whose transfer function, for a two pulse canceller is [1]: 

 

)sin(2)( pfTfH π=  (2.8) 

 

Double delay line canceller is another frequently used MTI filter which is formed 

by cascading 2 single delay line cancellers whose transfer function is [1]: 

 

)(sin4)( 2
pfTfH π=  (2.9) 
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Frequency response of these MTI filters can be seen in Figure 2.3. Both two pulse 

canceller and three pulse canceller filters out most of the clutter signal. The three 

pulse canceller improves the null breadth in the vicinity of zero Doppler, but it does 

not improve the consistency response to moving targets at different Doppler shifts 

away from zero Doppler [2]. That is to say, the only information that can be 

acquired from the data at output of the MTI is the existence of target. MTI fails in 

providing knowledge about number of detected targets or Doppler frequency of 

targets. In spite of this, MTI is a very simple algorithm to implement.  
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Figure 2.3 MTI filter response and clutter spectra [14] 

 

 

There are two basic figures of merit for MTI [1]: 

 

1. Clutter Attenuation  

2.  Improvement factor. 

 

Clutter Attenuation is the ratio of the input clutter power to the output clutter 

power, which is defined as )/( oi CCCA= , is equal to  
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�

�
∞

∞

=

0

2

0

)()(

)(

dffHfW

dffW
CA  (2.10) 

 

where W(f) is PSD of the clutter and H(f) is the frequency response of the MTI 

filter. When this formula is derived for two pulse canceller, assuming that the 

clutter is Gaussian distributed, it reduces to: 

 

)2exp(1
5.0

222
cpT σπ−−

 (2.11) 

 

where pT  is the pulse repetition interval and, cσ  is the standard deviation of the 

clutter spectral width. If the exponent term 12 222 <<cpT σπ , using xe x −≈− 1 [14]: 

 

22

2

4 c

pf
CA

σπ
≈  (2.12) 

 

If a similar derivation is done for three pulse canceller, Clutter Attenuation 

becomes [14]: 

 

44

4

48 c

pf
CA

σπ
≈  (2.13) 

 

Clutter attenuation can be increased by using higher order delay line filters but at 

the expense of desired signal power [8]. 
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2.1.2.2 Pulsed Doppler Processing 

 

Pulse Doppler processing is a complex processing method compared to delay line 

cancellers. It is composed of bank of filters rather than a single filter. Each filter is a 

band pass filter that passes a certain frequency spectrum parts of the input signals.  

 

To minimize the loss in SNR occurring when adjacent filters straddle a target’s 

frequency, the center frequencies of the filters are spaced so the passbands overlap 

[6]. Frequency response of a filter bank composed of 8 filters can be an example to 

this property, which can be seen in Figure 2.4. 
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Figure 2.4 An example of 8 pulse frequency response Doppler filter bank 

 

 

What is obtained at the output of filter bank is a range versus Doppler frequency 

matrix. Each point of matrix is compared with a threshold in order to detect targets. 

Complexity of pulsed Doppler processing brings some advantages. Multiple targets  
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can be resolved if they have different Doppler frequencies, because they will appear 

at the output of different filters. Moreover, the filter at which target is detected 

gives an idea about the radial velocity of target. Furthermore, because Doppler 

filters are narrowband compared to delay line cancellers, they are better at noise 

exclusion.  

 

It is common to use Discrete Fourier Transform (DFT) as Pulsed Doppler Processor 

since they sample input signals in frequency domain. DFT is carried out by Fast 

Fourier Transform (FFT), which is a fast computing algorithm compared to original 

DFT calculation.   

 

DFT is a processor that samples the signal in frequency domain using finite number 

of time samples. Moreover, no weighting is applied to these time samples, in other 

words, rectangular window is used.  As a result of using finite number samples, 

spectral leakage occurs, where a signal having a single frequency shows up in more 

than one spectral bin [15]. In Figure 2.5 magnitude response of the DFT of a target 

with a nonzero Doppler frequency can be seen.  
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Figure 2.5 Magnitude of the DTFT of an ideal moving target data sequence with 

FD = PRF/4 and 20 pulses, without window [2] 

 

 

Its mainlobe is narrow, which is a good property. However sidelobes are high, in 

other words spectral leakage is high. The rectangular window has the narrowest 

mainlobe for a given length, but it has the largest sidelobe of all commonly used 

windows [10]. This is because rectangular window simply turns the signal on and 

shut it off. More abruptly the time signal’s amplitude changes, the higher spectral 

leakage [15]. In order to reduce sidelobes, windows other than rectangular, such as 

Hamming, Kaiser or Bartlett windows can be used, magnitude response of the DFT 

weighted with Hamming window can be observed in Figure 2.6. 
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Figure 2.6 Magnitude of the DTFT of an ideal moving target data sequence with 

FD = PRF/4 and 20 pulses, with Hamming window [2] 

 

 

As observed from the Figure 2.5 and Figure 2.6, mainlobe gets wider, peak 

magnitude reduces by 5.4dB but sidelobe level reduces by about 10dB. 

Consequently, there is a tradeoff between low sidelobe and mainlobe width. 

 

Properties of some common windows can be observed in Table 2.1. The data in this 

table is taken from [22]. 
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Table 2.1 Properties of Some Common Data Windows [22] 

 

Window Mainlobe width 

Peak gain 

(dB) 

Peak side lobe, 

dB 

SNR loss, 

dB 

Rectangular 1.0 0.0 -13 0 

Hann 1.62 -6.0 -32 -1.76 

Hamming 1.46 -5.4 -43 -1.35 

Kaiser, � = 2.0 1.61 -6.2 -46 -1.76 

Kaiser, � = 2.5 1.76 -8.1 -57 -2.17 

Dolph-Chebyshev 

(50-dB equiripple) 
1.49 -5.5 -50 -1.43 

Dolph-Chebyshev 

(70-dB equiripple) 
1.74 -6.9 -70 -2.10 

 

 

2.1.2.3 Moving Target Detector MTD 
 
With the usage of digital signal processor in radars, it became possible to 

implement complex processing algorithms compared to those that can be 

accomplished with analog processors. Moving Target Detector is an algorithm that 

takes the advantage of digital signal processors and combines both MTI and Pulsed 

Doppler Processing techniques. Original MTD was designed in MIT Lincoln 

Library for ASR-8 Air Surveillance Radar [1]. Its block diagram can be seen in 

Figure 2.7. 
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Figure 2.7 MTD Signal Processor [1] 

 

 

Three pulse canceller was used to remove stationary clutter contribution to echo 

signal, so that  signal at the output of  MTI block would be mainly composed of 

moving target and moving clutter echoes and noise at the output of MTI block. 

After the MTI block, multiple moving targets and moving clutter could be resolved 

by 8 pulse FFT block if they appeared at different Dopplers. In order to reduce the 

sidelobes of FFT, weighting is applied to the output of Doppler-filter block. Finally, 

threshold detection is performed to decide existence of target. 

 

After the original MTD, more complicated MTD processors were designed as the 

technology improved. FFT were replaced with Finite Impulse Response (FIR) 

banks. FIR filter banks had lower sidelobes and provided flexibility in design since 

each filter in the bank could have desired frequency response. Moreover, bit depth 

of the filters were increased which is another factor that reduces sidelobes. 

Furthermore, different numbers of pulses were used for different pulse repetition 

intervals to cover similar Doppler spaces at different Pulse Repetition Intervals 

(PRI). 

 

2.1.3 Threshold Detection 

In a common detection processor like that shown in Figure 2.8, data at the output of 

the Doppler processor is first passed through a square law, linear or log detector. 
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Then this data is compared to a threshold to decide existence of a target. This 

threshold may be constant or may be adaptive. 

 

 

 
Figure 2.8 Generic detection processor [2] 

 

 

In constant threshold case, it is assumed that interference level is known and 

threshold is fixed according to that level and required FAP . However, in radars 

interference level is usually unknown and variable. Therefore, FAP  would be 

unpredictable which is an undesirable case. In order to achieve stable performance, 

FAP  is preferred to be constant. To achieve this, the actual interference power must 

be estimated from data in real time, so that the detector threshold can be adjusted to 

maintain desired probability of false alarm [2]. This kind of detector is called 

(constant false alarm rate) CFAR detector. In this thesis, two types of CFAR 

detector, namely Cell Averaging CFAR (CA CFAR) and Order Statistics CFAR 

(OS CFAR) algorithms are studied. 

 

2.1.3.1 CA CFAR 

 

After Doppler processing block, a range versus Doppler data matrix is obtained. For 

each data in the matrix, a threshold should be determined according to the estimated 

interference power. CA-CFAR uses adjacent range data to achieve this with the 

following assumptions [2]: 

� The neighboring cells contain interference with the same statistics as the cell 

under test, so that they are representative of the interference that is competing with  
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the potential target. 

� The neighboring cells do not contain any targets; they contain only 

interference. 

� Interference is independent and identically distributed. This distribution is 

Gaussian distribution. 

 

With further assumption that asquare law detector being used, using maximum 

likelihood estimation interference power 2β  would be: 

 

�
=

=
N

i
ix

N 1

2 1β̂  (2.14) 

 

where  ix  is the power of signal since square law detector is used. 

 

The required threshold is then estimated as a multiple of the estimated interference 

power, where � is the scale factor [2]: 

 

2ˆˆ βα=T  (2.15) 

 

Combining the equations (2.14) and (2.15) estimation of the required threshold 

becomes the average of N neighboring range cells, scaled with �: 
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i
ix

N 1

2ˆ αβ  (2.16) 

 

The purpose of using adaptive threshold is to have a predictable performance. Since 

interference is a random variable, an analytical formula for the estimate of 

FAP ( FAP ) can be obtained. Scale factor � and number of averaged cells N are the 

parameters that are effecting FAP .  For the square law case, it is[2]: 
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A formula for the estimate of probability of detection ( DP ) can be obtained that 

depends also on SNR  where SNR is denoted by � [2]: 
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Sometimes target echo may spread to a few range cells. In this case it would be 

inappropriate to use these cells to estimate the interference. Therefore a few range 

cells that are closest to the test cell is discarded. These cells are called guard cells.  

 

2.1.3.1.1 CFAR Loss 

 

The greater the number of reference cells in the CA CFAR the better is the estimate 

of the background clutter [1]. However, there is a practical limit to this number; 

signal processor can process a limited amount of data. So, there is loss resulting 

from using finite number data. This loss is called CFAR loss.  

 

When N cells are used to estimate the interference, required SNR with 

predetermined probabilities is [2] 
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When infinitely many samples are used, it is [2] 
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CFAR loss is formulated as the ratio of SNR required with finite number of 

samples to the SNR required with infinitely many samples, which is [2]: 

 

CFAR loss =
∞χ

χ N  (2.21) 

 

2.1.3.1.2 Disadvantages of CA CFAR 

 

In Section 2.4.1, it was stated that CA CFAR has two main assumptions. First one 

was that there is no target in the cells that are used to estimate interference power. 

Second one was that the interference is independent and identically distributed. CA 

CFAR fails in some cases because of these assumptions.  

 

In Figure 2.9, failure of CA CFAR due to the first assumption can be observed. 

Interference level is 20dB, the target in range bin 50 has an SNR of 15 dB, and the 

threshold is computed using 20 range cells and a desired FAP of 10-3.  However, a 

second target with an SNR of 20dB in range bin 58 elevates the estimated 

interference power when the first target is in the test cell. This increase in threshold 

is sufficient to prevent detection of the first target in this case. On the other hand, 

the 15dB target does not affect the threshold enough to prevent the detection of the 

second, stronger target [12]. Shortly to say, first target is masked by the second 

target. 
 

 



 

22 

 
Figure 2.9 Illustration of target masking [2] 

 

 

In Figure 2.10, failure of CA CFAR because of the second assumption can be    

observed. In the first 100 bins, interference level is about 20 dB. Around range bin 

100, there is a sharp increase of about 10dB in interference level. Therefore, 

threshold determinations around range cell 110 are not appropriate and detection at 

range cell 113 is affected. Because of low level data at the beginning of CFAR 

window, interference level is estimated lower compared to actual case. So, a false 

alarm occurred at range cell 113.  
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Figure 2.10 False alarm at clutter edge [2] 

 

2.1.3.1.3 Extensions to CA CFAR 

 

Some extensions are brought to CA CFAR technique, in order to compensate 

performance reduction of this technique. In this thesis, GOCA(Greatest of Cell 

Averaging)  CFAR and SOCA(Smallest of Cell Averaging) CFAR extensions are 

studied. 

 

In CA CFAR technique, range cells on either side of test cell are averaged. In 

GOCA CFAR and SOCA CFAR techniques, the average of data on either side is 

calculated separately. SOCA CFAR selects the smaller of these two averages to 

determine the threshold whereas GOCA CFAR selects the greater of these two 

averages, then multiplies it with a scale factor, to determine the threshold [12]:  

 

( )2
2

2
1

ˆ,ˆmaxˆ ββα GOGOT =  (2.22) 

 



 

24 

( )2
2

2
1

ˆ,ˆminˆ ββα SOSOT =  (2.23) 

 

GOα  is the scale factor of GOCA CFAR and SOα  is the scale factor of SOCA 

CFAR. 2
1̂β  and 2

2β̂ are lagging and leading averages respectively. 

 

SOCA CFAR is a preferred technique to prevent misses resulting from target 

masking. This can be observed in Figure 2.11.  Second target is below CA CFAR 

threshold, but it stays above SOCA CFAR threshold. The price paid for this 

detection is the increase in the FAP , especially around clutter crossing. Therefore, 

this method is appropriate to use in homogeneous environments. 

 

 

 
Figure 2.11 Comparison of CA CFAR and SOCA CFAR with multiple targets and 

a clutter edge [2] 
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An expression for the estimate of FAP  as a function of N and � for SOCA CFAR 

has been obtained as [16] 
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GOCA CFAR, on the other hand, is method that compensates performance 

degradation resulting from the assumption that interference is independent and 

identically distributed. As stated above, this will cause false alarms around clutter 

edges in CA CFAR technique. On the other hand, GOCA CFAR would choose the 

estimation with the higher value, so that false alarms would not occur. This 

behavior can be observed in Figure 2.12. The drawback of this technique is that it 

has a target masking behavior worse than CA CFAR. It is expected, since GOCA 

CFAR’s threshold is larger than CA CFAR’s threshold.  
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Figure 2.12 Comparison of CA CFAR and GOCA CFAR with multiple targets and 

a clutter edge [2] 

 

 

An equation for the estimate of FAP  can be obtained for GOCA CFAR also that has 

dependency on N and � [16]: 
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2.1.3.2 OS CFAR 

 

CA CFAR detectors use average of adjacent cells to estimate interference power.  

There is another detector called OS CFAR that uses another way to estimate  
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interference power. OS CFAR selects a window of length N, which are adjacent to 

the range cell of interest, as in the case of CA CFAR. The data in this window are 

rank ordered and a sequence is formed like{ }Nxxx ,...,, 21 . kth order of this sequence, 

xk is used as the estimate of interference and the threshold is set to a multiple of this 

value: 

 

kOS xT α=ˆ  (2.26) 

 

where OSα  is the scale factor [2]. 

 

Motivation of this algorithm comes from the rank-order operators that are used for 

image filtering. The sliding window of the radar CFAR system corresponds to the 

local operator as used in image processing. The calculation of a threshold value 

individually for every test cell is identical to generation of a threshold image with 

the dimensions and the resolution of the input image. In image processing, the local 

operator is called a rank-order operator if it outputs a preselected value from the 

ordered statistic [20]. 

 

In order to be called CFAR, FAP  of a detector should be independent of interference 

power. FAP  for OS CFAR detector is given by  

 

[ ]kOSFA xYPP α≥= 0  (2.27) 

 

where Y0 is a noise sample with exponential distribution [20]. 

 

Probability density function of the kth value of the ordered statistic for 

exponentially distributed random variable with mean value � is [20] 
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Then FAP  can be obtained as  
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FAP  is independent of clutter parameters, therefore OS method satisfies CFAR 

property. 

 

The choice of N and k determines the performance of OS-CFAR. A value of k 

greater than N/2 should be used in order to avoid false alarms at clutter edges. 

Typically, k is on the order of 0.75N [21]. In Figure 2.13, the performance of CA 

CFAR is compared with OS CFAR. N = 20 and k = 15th order statistics is used. The 

use of the ordered statistic instead of a mean estimate makes the detector almost 

completely insensitive to masking by closely spaced targets so long as the number 

of cells contaminated by interfering targets does not exceed N-k. In this example, 

both closely spaced targets are detected [2].  
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Figure 2.13 Comparison of CA CFAR and OS CFAR with multiple targets and a 

clutter edge [2] 

 

 

In practical CA CFAR application, guard cells are used for separating the cell under 

test from the reference area in order to prevent target returns from falsifying the 

clutter level estimation. In OS CFAR processing these guard cells become 

unnecessary since small number of target amplitudes occurring within the reference 

area have almost no influence on the clutter level estimation by quantiles [20]. 

 

Despite the advantages, OS CFAR is a computationally heavy algorithm compared 

to CA CFAR. OS CFAR’s computational complexity is )log()( nnnOOS =  at the 

best case, whereas CA CFAR’s computational complexity is nnOCA =)( . 

Fortunately, with the improvement of digital technology, OS CFAR can practically 

be used. 
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2.2 Non Gaussian Distributions and GLRT-LQ Detector 

 

Clutter is used to be modeled as Gaussian distributed random variable. However, 

clutter deviates from Gaussian especially in high resolution radars. Weibull 

distribution and K-distribution are two main distributions that clutter is assumed to 

have.  These distributions are explained in Section 2.2.1. 

 

GLRT-LQ detector is a detector that is designed to have a good performance both 

in Gaussian and non Gaussian distributed clutter. It comprises both Doppler 

processing and threshold detection in its structure. This detector is investigated in 

Section 2.2.2. 

 

2.2.1 Non Gaussian Distributions 

 

In this section non-Gaussian distributions K distribution and Weibull distributions 

will be explained. 

 

The cumulative distribution function of the K-distribution is given by  
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where 	 is the Gamma function and K� is the modified Bessel function of second 

kind of order 
. The parameter 
 is the shape parameter of K-distribution and 1/d is 

a scale parameter [26]. 

 

The Weibull probability density function for the normalized amplitude mn vvv =  is 

 

[ ] 0)2(lnexp)2(ln)( 1 ≥−= −
nnnn vvvvp ααα  (2.31) 
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where � is a parameter that relates to skewness of the distribution, and vm is the 

median value of the distribution. When � is equal to 2, Weibull takes the form of 

Rayleigh distribution and when � is equal to 1 it is equal to exponential probability 

distribution function [1]. 

 

In [26] it is stated that, Weibull statistics usually provide better fits to the clutter 

amplitude distributions than K-distribution. Moreover, it is analytically simpler and 

more tractable than K- distribution. 

 

2.2.2 GLRT-LQ Detector 

 

GLRT-LQ detector assumes the disturbance to be a mixture of K-distributed clutter 

and Gaussian Clutter in [19]  

 

nccd G ++=  (2.32) 

 

Vectors d, c, Gc and n are m-dimensional vectors where m is the number of 

transmitted pulse. n represents the Gaussian distributed thermal noise; Gc  

represents the Gaussian distributed clutter; c represents the non-Gaussian 

distributed clutter and finally d represents the whole disturbance. If it is assumed 

that noise power is much lower than the clutter power than disturbance vector 

reduces to [17]: 

 

Gccd +=  (2.33) 

 

Non-Gaussian part of the clutter can be modeled as K-distributed random variable 

 

xc �=  (2.34) 
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where x is an m-dimensional complex Gaussian circular random vector, usually 

named speckle, that represents the properties of the coherent radar sensor. The in 

phase (xIi) and quadrature (xQi) components are zero mean real random variables 

with unit variance and covariance matrix Mx [17]: 

 

{ } { } { } X
T
QQ

T
II

H EEE Mxxxxxx 222 ===  (2.35) 

 

The variable �, usually referred as texture, represents the local power of the clutter. 

It is assumed to be Gamma distributed, with mean value � and order parameter � 

since clutter is modeled as K-distributed [18]: 
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The order parameter � demonstrates the spikiness property of the clutter. For small 

� values like 0.2, the clutter is very spiky. As � tends to infinity, K- distribution 

approaches to Gaussian. At value of 4.5, distribution is almost Gaussian [17]. 

 

The clutter term Gc  is characterized by a complex Gaussian circular PDF whose 

components are zero mean with variance 22 G�  and normalized covariance matrix 

GM . Given a specific �, conditional covariance matrix of disturbance vector d is 

given by [17]:  
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It may be assumed that GM  is equal to xM , M = xM = GM . This assumption 

reduces computational effort; meanwhile it has a physical justification. While the 

texture variable represents the characteristics of the observed scene, the speckle 

takes into account coherent sensor effects. In these terms the correlation structure of 
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the speckle is independent of texture distribution. The two matrices are generated 

by the same phenomenon, the antenna rotation, so they are almost identical [19]. 

 

With the assumption stated above, the unconditional PDF of d is obtained by 

averaging )( ττ dpd  with respect to texture distribution )(ττp  [17]: 
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Under Neyman-Pearson criterion, optimum detection procedure is carried out by 

comparing the likelihood ratio of two hypotheses H0 and H1 with a predetermined 

threshold � according to desired FAP . In hypotheses H0, data is composed of only 

disturbance and the PDF is given by )()( 0 zpHzp dZ = . In hypotheses H1, data is 

composed of disturbance and signal ps α= , where � is a complex parameter that 

can be known or unknown and p is a perfectly known vector with components 
Tifj

i
Dep π2= , T being the PRI and Df  is the target Doppler frequency. Resulting 

PDF is )()( 1 szz −= dZ pHp . If signal assumed to be perfectly known, then the 

resulting optimum strategy is [17]: 
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where 

 

zMzz 1
0 ˆ)( −= Hq  (2.40 a) 

{ } sMszMszszMszz 11
0

1
1 Re2)()()(ˆ)( −−− +−=−−= HHH qq  (2.40 b) 
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If the disturbance is completely Gaussian then the optimum detection strategy 

would be whitening matched filter compared to a fixed threshold which is called 

Optimum Gaussian Detector (OGD) [17]. 

 

In a more realistic case, signal can not be perfectly known, then it would be proper 

to model � as a random variable.   If  � is assumed to be Gaussian random variable 

with zero mean and variance 22 Aσ , then the optimum detection (OD) structure 

would be the same as in Eq (2.39) but )(1 zq  should be replaced with )(2 zq , which 

is [17]: 
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In both cases, where signal is perfectly known and it is assumed to be fluctuating, 

knowledge of the clutter parameters, �, 
 and 2
Gσ  is required. 

 

In this situation a new sub-optimum approach is developed in [17]; maximum 

likelihood (ML) estimate of the texture component of K-distributed clutter will be 

used in the likelihood ratio test. For perfectly known signal, the detector structure 

would be: 

 

caq ηηη −+− )(2)()1( 0 zz  (2.42) 

 

where { }zMsz 1HReˆ)( −=a , whitening matched filter, and { }sMs 1HReˆ −=c . The 

equation involves )(0 zq , which is quadratic statistics of input vector z, so this 

GLRT detector structure is a linear quadratic system. Therefore it is called GLRT-

LQ detector. It is much simpler than the optimum detector structure and does not 

depend on clutter parameters, �, 2
Gσ  and 
 [17]. 
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In a realistic scenario, signal amplitude θα jAe=  would fluctuate, where A can be 

modeled as Rayleigh distributed and phase � is modeled as uniformly distributed in 

[0, 2]. With some mathematical manipulations, using ML estimates of � and �, 

suboptimum receiver structure will reduce to [17]: 
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This expression can be converted to another form 
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The term on the left hand side can be considered as a classical detector. M-1 

transformation applies MTI clutter suppression to signal. pH multiplication is the 

classical DFT Doppler processor [6]. Finally, magnitude square of the output signal 

is calculated which is similar to a square law detector. The term on the left hand 

side, is data dependent adaptive threshold. Adaptive property of the detector comes 

from the ( )zMz 1−H  term. This detection technique performs as the classical cell 

averaging CFAR detector operating in the Gaussian environment. The only 

difference is that GLRT-LQ detector estimates the clutter power by means of time 

samples from the range cell under test, while the CA CFAR detector usually 

utilizes spatial samples from adjacent range cells [17]. 

 

The performance of GLRT-LQ detector is almost equal to that of optimum receiver, 

particularly when the K-distributed clutter component predominates over the 

Gaussian component [17]. This can be observed in Figure 2.14 and Figure 2.15. 
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Figure 2.14 PD against SCR of GLRT-LQ and OGD detectors for fluctuating 

signal [17] 
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Figure 2.15 PD against SCR of GLRT-LQ, OGD and OD detectors for perfectly 

known signal [17] 
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CHAPTER 3 

 
 

PROPOSED ALGORITHM 
 

 

CA CFAR methods are optimum in Gaussian distributed clutter. However, in non-

Gaussian distributed clutter, like K-distributed clutter or Weibull distributed clutter, 

performance of these detectors decreases considerably as they deviate from 

Gaussian. Moreover these detectors suffer from ghosts. Ghost is a detection that 

results from target but at a point where there is no target. There are two main 

sources of ghosts. First one is the pulse compression which produces time 

sidelobes.  If target echo is strong enough, sidelobes appear above noise floor. This 

may cause false detections, in other words ghosts, at the transition regions of noise 

level and target side lobes. Doppler spreading is another source of ghosts. Because 

of the filter response of the Doppler filters, peaks may arise at the output of Doppler 

processor around target Doppler, which causes ghosts.  

 

In this thesis, a method is proposed in order to improve the performance of CA 

CFAR. There are two main purposes of this algorithm. First one is  reducing false 

alarms and ghosts that appear after CA CFAR. Second one is keeping the DP  value 

of original CA CFAR. This method makes use of Doppler spreading behaviors that 

appear as the result of Doppler processing. Therefore it is called Doppler Pattern 

Matching. 

 

DPM is tightly related to Doppler Processing method that is used. Therefore, before 

the description of it, Doppler processing method that is used in analysis will be 

explained. After that, Doppler spreading concept will be described. Finally, DPM 

will be explained in details. 
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3.1 Doppler Processing Method Used in Analysis 

 

In Section 2.2.2, it was stated that zMp 1−H term in the GLRT-LQ detector can be 

treated as a regular Doppler processor. 1−M  transformation applies MTI clutter 

suppression to signal and Hp  multiplication is the classical DFT Doppler processor. 

In this thesis, this method is used as Doppler processor. In order to identify the 

performance of this detector, some studies have been done that compares original 

MTI followed by DFT with this method which will be demonstrated in Section 

3.1.2.  

 

In this study, formation of interference covariance matrix M has a critical 

importance. In Section 2.2.2, analysis results were demonstrated that uses matrix M 

with the elements ji
ijm −= ρ , ),...,2,1,( Kji =  where ρ  is the one lag correlation 

coefficient and K is the number of processed pulse . In [18], [19], [23], [24] also M 

is formed in this way.  In this thesis, M is formed in a different fashion. 

 

3.1.1 Obtaining Interference Covariance Matrix 

 

 

In this thesis, to model radar system from transmitter phase code generator to the 

pulse compression filter output, discrete time system model that is explained in [12] 

is used. The block diagram which is discretized at the chip rate is shown in Figure 

3.1. 

 

  

 

 

 

Figure 3.1 Baseband discrete-time equivalent system model[12] 
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In this model, output of the pulse compression filter can be written as  

 

[ ] 10)()()()()()( 0 −≤≤++Ψ≅ −
Ω KkkekNAkhkpky nRn

kj
ndnn ηδω  (3.1) 

 

where  

 )(kyn   is the pulse compression output for the k’th pulse and n’th sample of the  

k’th observation 

)(kpn  is the value of the discrete-time baseband equivalent carrier for the k’th 

pulse and n’th sample of the k’th observation, 

nΨ  is  the autocorrelation of  the phase code sequence nu  , 

nh  represents the clutter return process, 

N is the number of chips in the pulse, 

A denotes the target echo signal amplitude including phase noise, 

��
�

�
��
�

�
=Ω

c

vT
f p2

2 0π  is the phase accumulation from the target due to its velocity 

from a pulse to the next,  

c

r
d R

f
c
v 02

2πω =   is the discrete-time Doppler frequency shift due to target’s radial 

velocity, 

nη  is a white Gaussian sequence with variance 2σN . 

 

By dropping the fast index n, Eq (3.2) becomes 

 

[ ] 10)()()()()()( 0 −≤≤++Ψ≅ Ω KkkekNAkhkpky kj
d ηω  (3.2) 

 

According to this model, interference covariance matrix M is equal to sum of 

clutter autocorrelation matrix and noise autocorrelation matrix: 

 

M = RC + RN (3.3) 

 



 

41 

Elements of the noise autocorrelation matrix RN is equal to  

 

   nkN

N
knR −= δ

2
),( 0

 (3.4) 

 

where N0 is the power spectral density of noise. 

 

Elements of the clutter autocorrelation matrix RC is equal to [5]  

[ ]� −+−+−−−=
i

cpdhnC LinRELinRknRknRknRknR )())(;()()(),( 11  (3.5) 

 

hnR  is the is the normalized auto correlation function accounting for antenna 

scanning modulation with elements 

 

)),(2ln2exp(),( 22
BWhn knknR φφ∆−=  (3.6) 

 

where BWφ  is the antenna beam width and φ∆  represents the difference of the angle 

of antenna at pulses n and k[5]. 

 

pR  is the matrix formed from the phase noise autocorrelation function where 

 

{ }

�
�

=
≠−−

==−
nk

nkTkn
kpnpETknR pP

pp 1
)|)((|1

)()();(
2

* σ
 (3.7) 

              

 pT  is the chip width. )(2 TPσ  is the local oscillator phase variance at time spacing 

T, and is given by 

 

22 )(1)( TRT pP −=σ ,   �
∞

∞−

= dfefSTR Tfj
pp

π2)()(  (3.8) 
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)( fS p  is the PSD of the carrier, which is translated to baseband. Power spectral 

density must be normalized so that the carrier power is unity, i.e., 1)0( =pR [13]. 

 

L is the number of range bins in a PRI. 1R  is equal to modulus of range R after 

division by L where R is the range bin of the processed cell.   

 

)(rEc  denotes the average energy return from the clutter at range r and is equal 

to[1] 

 

)cos()4(
)( 32

0

ϕπ
θσ

R
RAGGE

rE eBRTT
C

∆
=  (3.9) 

 

where ET denotes the transmitted energy, GT is transmit gain, GR is receive gain, �0 

is the surface back scattering coefficient, �R is the range resolution, Ae is the 

antenna effective aperture, �B is the 3dB azimuthal beamwidth and � is the grazing 

angle. 

3.1.2 Comparison of GLRT-LQ Doppler Processor with MTI-DFT  

 

Performance of GLRT-LQ Doppler processor can be compared with MTI-DFT 

using their filter responses. In Figure 3.2, response of a single filter for both 

processors can be observed in a scenario where 8 process pulses are used. 

Frequency selectivity of MTI-DFT filter is better than GLRT-LQ Doppler filter. 

However, GLRT-LQ Doppler filter achieves 5 dB more SNR than MTI-DFT filter. 

This behavior can also be observed from the Figure 3.3, which demonstrates 

maximum of responses of 8 pulse filter bank both for two types of processors. 
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Figure 3.2 Response of one MTI+DFT filter and GLRT-LQ Doppler Filter 

 

 

 
Figure 3.3 Maximum of responses for MTI+DFT and GLRT-LQ Doppler Filter 

 



 

44 

As a result, GLRT LQ Doppler processor considered being a better Doppler 

processor and it is used in the analysis of this thesis. 

 

3.2 Doppler Spreading Concept 

 

Target signal spreads on Doppler after Doppler processing. This behavior is also 

valid for GLRT-LQ Doppler processor. The Doppler vs. range matrix at the output 

of GLRT-LQ Doppler processor demonstrates this property.  In Figure 3.4 there is 

an example Doppler vs. range matrix, where number of process pulses is 8 and 

number of range cells in a PRI is 1500. In this matrix, there is a target is on 5th 

Doppler bin and 1000th range bin. However, peaks can be observed on Doppler bins 

other than target’s Doppler bin. 
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Figure 3.4 An example of 8 pulse 1500 range bin Doppler processing output 

Doppler-Range matrix 

 

 

After investigating Doppler spreading behavior of targets with different Doppler 

frequencies, it is observed that this behavior is characteristic to Doppler frequency 

of the target. This can be demonstrated using an example. In a scenario, where 8 

processed pulses are used, there are seven main Doppler bins that targets can show 

up successfully; the signal on first Doppler bin is mainly composed of noise and 

clutter echoes. Target signals with seven different Doppler frequencies, each 

matching with a Doppler bin, are produced. These signals are passed through a 

pulse compression filter, then Doppler processor and finally linear law detector in 

order to obtain range versus Doppler matrix. Doppler samples at target range cell 

are taken and vectors with size 8x1 are formed for each Doppler frequency case. 

These vectors are scaled to set the maximum value in the vector to 1 and plotted in 
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Figure 3.5 Doppler spreading vectors 

 

 

In Figure 3.5, it can be observed that each Doppler frequency produces patterns 

with different shapes. In addition to this, patterns produced by target signals will be 

different than pattern produced by disturbance signal. This is expected since 

moving target signals have different Doppler characteristics than disturbance signal. 

 

Using Doppler spreading behavior, Doppler patterns are obtained. The function of 

these Doppler patterns in DPM and the way to obtain these patterns will be 

described in the following section. 

 

3.3 Description of DPM 

 

Working principle of DPM can basically be gathered from the data flow diagram in 

Figure 3.6. Main input to DPM block is the detections results of CA CFAR. 

Doppler-Range matrix at the output of linear law detector and predetermined 
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Doppler patterns are auxiliary inputs. In the DPM block, some of the detections are 

eliminated and marked as false alarm. Meanwhile, it is possible for some real 

detection to be eliminated. As a result, detections that stay after elimination will be 

obtained. 

 

 

 

Figure 3.6 Data flow diagram of DPM 

 

 

Operation steps of DPM are as follows: 

 

1. Range bin, Doppler bin and amplitude of the detections at the output of CA 

CFAR are passed to DPM block. 

2. Doppler bin of the detection determines the Doppler pattern that will be 

used in matching, among all of the Doppler patterns. 

3. The similarity of the Doppler pattern detected at the range cell of interest to 

the expected Doppler pattern at each Doppler bin is computed.  Doppler-

Range matrix is used in this step. Elements of the column at detection range 

bin are necessary to achieve mentioned Doppler pattern matching check. As 

a result of this step, a numerical value is obtained, which denotes how 

much the mentioned patterns are different from each other. This value is 

called difference factor. 

4. Finally, the difference factor is compared with a threshold to decide 

whether CA CFAR detection is actually detection or not. This threshold is a 

predetermined constant value that denotes the maximum difference factor 

to decide that detection is a real one. This threshold is called as secondary 

threshold since it is the second threshold applied to data after CA CFAR 

threshold. 
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In the following section, algorithm will be explained in details. 

 

3.3.1 Details of the Algorithm 

 

In Section 3.3.1.1, the way to obtain the Doppler patterns will be explained. In 

Section 3.3.1.2, the flow of algorithm will be given in details. 

 

3.3.1.1 Obtaining Doppler Patterns 

 

One of the key points of the algorithm is the Doppler patterns that are auxiliary 

inputs to DPM block. In this chapter, the way to obtain these Doppler patterns will 

be explained.  

 

There are M-1 main Doppler frequencies, excluding the zero Doppler frequency, 

that a target may have in a scenario where there is M process pulses. To have better 

explanation, a specific scenario will be handled which is the scenario used in 

Section 3.2. In this scenario there are 8 process pulses so there are 7 main Doppler 

frequencies a target may take. For each case, a different Doppler pattern appears at 

the output of Doppler processor which can be seen in Figure 3.4. Since the zero 

Doppler filter output will mainly be constituted of clutter and noise and the Doppler 

contribution to the zero Doppler response of the moving targets will be quite small, 

the zero Doppler response will not be included in the Doppler pattern. As a result, 

Doppler patterns of this scenario are formed using last 7 elements whose maximum 

element is 1. They can be seen in 
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Figure 3.7 Doppler patterns 

 

 

In a system that uses DPM, there should be a set of Doppler patterns for each set of 

Doppler filter bank. Each Doppler pattern set will be composed of M-1 Doppler 

patterns, where M is the number of process pulses. 

 

The methodology to form Doppler patterns is given below: 

 

1. Swerling 0 target signal vector ds  is formed for every possible Doppler bin 

whose components are  

 

M
idj

d eMis
π2

1)( ×=  (3.10) 

   

 and d is equal to Doppler bin number. 
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2. Doppler filtering applied to each signal vector and resulting vector for each 

signal vector with Doppler d is called dr . 

 

3. First element of dr  that is negiligible is taken out from the vector. 

Remaining elements of the vector are scaled in a way that the maximum 

value of an element is vector will be 1. Resulting vector is the Doppler 

pattern corresponding to Doppler d, which is called dV . 

 

3.3.1.2 Flow of Algorithm 

 

Flow of DPM is given in steps below: 

 

1. Detection result with Doppler bin d, range bin r and signal amplitude level � 

is passed from CA CFAR block to improvement block. 

 

2. rth column vector of the Doppler-Range matrix at the output of the linear 

law detector is taken. The first element of this column vector, which is the 

zero Doppler element, is taken out of this vector and resulting vector is 

called S.  S is vector with length M-1 where M is the number of processed 

pulses; dth element of S is equal to �, α=dS .  

 

3. It can be observed in Figure 3.7 that every Doppler pattern has a triangular 

shape with a peak point. DPM assumes that CA CFAR detection is 

detection of a target whose Doppler pattern’s peak point is at detection 

Doppler bin. If it is the case, shapes of vector S and dth Doppler pattern 

vector dV  should be alike. The difference of two vectors can give idea of 

much they are alike. However, their order of magnitude is different. 

Maximum value of dV  is 1 whereas the maximum value of S is �.  

Therefore, S should be scaled with 1/ � in order to have 1 as maximum 
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value. Resulting vector is called T and its maximum element is 1. 

 

ST ×= α1  (3.11) 

 

4. Difference vector of the vectors T and dV  is calculated and then the 

absolute value of the elements of Y is summed up. In other words, L1 norm 

is used. It is possible to use higher order norms. 

 

 dVTY −=  (3.12) 

 

�
−

=
1

1

M

iYδ  (3.13) 

                                                                 

The resulting value � is, in a way, numerical expression of how much the 

shape of dth Doppler pattern is different from the shape of Doppler pattern at 

detection range cell r, which was called difference factor in Section 3.3.  

 

However, there are cases where more than one pattern may have Doppler 

bin d as peak point. In this case � value will be calculated for all of these 

patterns.  

 

nkVTY kdk ,...,2,1;)( =−=  (3.14) 

 

�
−

=
1

1
,

M

ikk Yδ  (3.15) 

 

                                                   

where )(kdV  denotes the kth Doppler pattern whose maximum element is on 

Doppler bin d and n is the number of patterns whose maximum element on 

Doppler bin d. 
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Minimum of the �k values will be chosen to use in the next step: 

 

),...,,min( 21 nδδδδ =  (3.16) 

 

Furthermore, there are cases where a Doppler bin is not a peak point for any 

Doppler pattern. In this case, it is tried to match the Doppler patterns of 

adjacent Doppler bins. � value is calculated for adjacent Doppler patterns 

and smaller of them is chosen to be used in next step. 

 

),min( 21 δδδ =  (3.17) 

 

5. Final step is comparing � with a predetermined threshold value �. � is 

secondary threshold value that was mentioned in Section 3.3. If � is less 

than �, then it will be decided that there is a target with Doppler frequency 

corresponding to Doppler bin d at range cell r. In other case, this would 

mean that the shape of dth Doppler pattern is different from the shape of 

Doppler pattern. Therefore CA CFAR detection will be canceled. 

 

ηδ

1

0

H

H

<
>  (3.18) 

 

It is obvious that as threshold value � increases, DP  decreases and FAP  increases. 

There is not a closed form expression that relates � to DP  and FAP  . Therefore 

Monte-Carlo simulations are done to determine � to be used in analysis. 
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3.4 Comments on Proposed Algorithm 

Doppler pattern searching is expected to improve CA CFAR  by eliminating false 

detections produced by  

 

• ghosts 

• clutter edges  

 

If there is a target, signal will spread on Doppler at target range cell. At target range 

cell, it is highly probable that more than one detection will occur at target range cell 

which are called ghost.  DPM will question if detection’s Doppler bin matches 

appropriate Doppler pattern.  If SNR is high enough, only the appropriate Doppler 

pattern will match and ghosts will be eliminated. 

 

In case of a false alarm occurs because of clutter edges, DPM will check if the 

pattern of    detection Doppler matches with the pattern on the detection range cell. 

Patterns will not match with a high probability. As a result, this kind of false alarms 

will be eliminated. 

 

Although it is advantageous to use DPM in two cases explained above, there is not 

any use of this method in cases where ghost occur because of sidelobes of pulse 

compression autocorrelation function, especially if SNR is high. This is because; 

sidelobes’ Doppler frequency is almost equal to target’s Doppler frequency. 

 

One can benefit from mentioned DPM to prevent target masking which is a 

drawback of CA CFAR. For this purpose, SOCA CFAR method was proposed. 

However, in this case SOCA CFAR suffers from high FAP .  DPM can be used as an 

improvement method for SOCA to prevent FAP  from increasing. This approach can 

be useful for CA CFAR and GOCA CFAR too. CA CFAR’s or GOCA CFAR’s 

threshold can be reduced enough to resolve two targets for a required scenario. 

Then DPM can be used to reduce the number of false alarms.  
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CHAPTER 4 

 
 

SIMULATIONS 
 

 

In order to investigate the performance of DPM, Monte-Carlo Simulation Method 

is used since it is not possible to obtain an analytical formula of DP  and FDP . In 

Section 4.1, the method that is used to obtain simulation data will be explained. In 

Section 4.2 simulation results are shown, which compare original CA CFAR 

detector with CA CFAR detector after applying DPM. Moreover, results are also 

compared with OS CFAR which is considered to be successful in the cases where 

CA CFAR fails. 

 

4.1 Simulation Information 

 

Monte-Carlo simulations are carried out in MATLAB environment. Necessary 

simulation data is the input data to the pulse compression block. Once the input 

signal to the pulse compression block is obtained, it is easy to produce the output. 

Input data to pulse compression block is obtained using Radar Data Simulator in 

[27]. This tool will be explained in Section 4.1.1. 

 

In this thesis, 100.000 data sets are used in simulations. This number is enough to 

have accurate results. Moreover, data sets above this number are very hard to 

achieve with today’s computers in a reasonable time. 
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4.1.1 Radar Data Simulator 

 

Radar Simulator is a very powerful tool, since almost every parameter of signal can 

be adjusted according to desired scenario. Monte-Carlo simulations are carried out 

with the following data parameters: 

 

• Transmit power is set to 5000W. 

 

• Radar operating band is X band. 

 

• Number of pulses is set to 10. Eight of pulses are used as processed pulse 

and 2 pulses are used as fill pulse. 

 

• Pulse Repetition Frequency (PRF) is set to 10 kHz. In this case maximum 

unambiguous range is : 

 

 kmeePRFcR 10)12/(3)2/( 48
max =×=×=   

 

and radial velocity corresponding to this PRF is: 
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• Chip width is set to 66.67 �s. Therefore range resolution is 10 m. Moreover, 

with the used PRF value, there are 1500 range bins in each Pulse Repetition 

Interval (PRI). 

 

• System noise figure is set to 3.5 dB. 

 

• Two way loss is set to 2 dB. 
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• Azimuth beam width is set to 2 degrees and elevation beam width is set to 3 

degrees. 

 

• Grazing angle is set to zero degrees. 

 

• Clutter parameters: 

o Clutter is modeled as Weibull distributed with shape parameter set 

to 0.8. 

o Clutter cross section per unit area, namely 0σ is set to -20. 

 

• Radar antenna rotation rate is set to 30 revolution per minute (rpm). 

 

• Several terrain shapes can be chosen in this simulator in order to produce 

clutter signal. In this thesis Babada� terrain is used, whose shape is plotted 

in 
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Figure 4.1 Shape of Babada� Terrain 
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4.1.2 Processing Parameters 

 

There are three main processing blocks before applying DPM, which are Pulse 

Compression, Doppler Processing, Linear Law Detector and CA CFAR block. 

There are some parameters that should be adjusted in these blocks. They are given 

below: 

 

� A binary phase, length 32 pulse compression code that is published in [7] is 

used: 

 

[1,1,1, 1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1] 

 

Its ISL is -8.95 dB and PSL is -20.56 dB.  Autocorrelation of this code can 

be seen in 
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Figure 4.2 Autocorrelation function of pulse compression code that is used 
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� Scale factor of threshold is set the same for all types of CFAR processors: 

dB13===== OSSOCAGOCACA ααααα  

This value is adjusted iteratively by Monte Carlo simulations since there is 

not a simple closed form equation for obtaining FAP  or DP  for the Weibull 

distributed clutter. 

 

� It is decided to equate threshold � to 1 with some preliminary simulation 

results. 

 

4.2 Simulation Results 

 

In order to evaluate the performance of DPM, new definitions are made. First one is 

“Number of False Detections” which is the sum of false alarms and ghost. Related 

to this definition, “Probability of False Detections”, FDP , is defined, which is equal 

to sum of probability of ghost ( GP ) and FAP . Final definition is the “Improvement 

Factor” which is a criterion to evaluate the performance. It is calculated as  

 

CFAR) CA improved of detections false of (Number                                     

/ CFAR) CA original of detections false of (Number  FactortImprovemen =
 (4.1) 

 

There are three main types of simulations that are carried out. In the first one, a 

scenario without target is used. Purpose of this simulation is to observe the change 

in FAP . In second type of simulation, a scenario with a single target is used. In this 

simulation, change of performance with respect to Doppler and range is observed. 

These results are also compared with OS CFAR results. In final simulations, a 

scenario with two targets is used in order to observe target masking behaviors. 
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4.2.1 Simulations without Target 

 

This type of simulations is carried out to observe the change in FAP . Results of CA 

CFAR, SOCA CFAR and GOCA CFAR can be observed in Table 4.1. OS CFAR 

result is also obtained for comparison. 

 
 

Table 4.1 Simulation result of the scenario without target 

 

Type of Detector 
FAP  of  

Original CFAR 

FAP  of  

Improved CFAR 

Improvement 

Factor 

SOCA 1.27e-4 2.51e-05 5,08 

GOCA 4.27e-07 6.76e-08 6,30 

CA 1.63e-06 3.54e-07 4,61 

OS CFAR 1.23e-07   

 

 

FAP  values are calculated using 100.000 data sets. There are 10.500 data in each 

set. Totally, there are 1.05x109 data samples. Assuming that each of these data sets 

is equally probable overall FAP  is calculated by averaging FAP  of each data set. 

 

Considering the original detectors, OS CFAR is the one that achieves the 

lowest FAP . However, considering all of the results, improved GOCA CFAR is the 

best. Improvement factors are close to each other. FAP  of every detector is 

decreased around five times. 

 

4.2.2 Simulations with Single Target 

Two types of simulations are carried out in order to analyze the change in FDP  and 

DP  in single target case. In first case, dependency on range is analyzed. In second  
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case, dependency on Doppler frequency is analyzed. 

 

4.2.2.1 Range Analysis 

 

Target parameters that are kept constant in the simulations are: 

 

� Velocity: 78.95 m/s, 4th Doppler bin 

� Radar Cross Section : 3 m2 

� Swerling type: 0 

 

Target’s range is varied from 10km to 40 km. 

 

4.2.2.1.1 CA CFAR Range Analysis 

 

CA CFAR simulation results are given in Table 4.2. 
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Table 4.2 CA CFAR simulation result of the scenario with a single target* 

 

*In this table PD  and PFD values are detection rates and false detection rates respectively obtained at the 

result of simulations. 

 

 

Range(km) 10 13.3 16.67 20 23.3 26.67 33.3 36.67 40 

SNR(dB) 26.51 26.41 26.23 25.89 25.36 24.71 22.98 21.98 20.91 

PD 1 1 1 1 1 1 1 1 1 

Average Number of 
False Detections 
per beam of 
original CA CFAR 

6.016 6.017 6.017 6.017 6.018 6.016 6.016 6.014 5.914 

Average Number of 
False Detections 
per beam of CA 
CFAR after DPM 

0.0034 0.0036 0.0034 0.0036 0.004 0.0034 0.0032 0.0039 0.0036 

PFD of original CA 
CFAR 

5.73x10-4 5.73x10-4 5.73x10-4 5.73x10-4 5.73x10-4 5.73x10-4 5.73x10-4 5.73x10-4 5.63x10-4 

PFD of CA CFAR 
after DPM 

3.19x10-7 3.45x10-7 3.28x10-7 3.44x10-7 3.78x10-7 3.24x10-7 3.07x10-7 3.75x10-7 3.45x10-7 

Improvement 
Factor 1796 1662 1749 1667 1516 1770 1868 1526 1634 
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DP  is 1 both for improved CFAR and original CFAR. However, there is a huge 

difference in the number of false detections. Considering the original CA-CFAR, 

there is six plus a little percentage of false detections for each beam. Six false 

alarms are in fact ghosts; remaining percentage part stands for the false alarms that 

result from clutter and noise. However, it can be observed from the results that 

ghosts are eliminated by DPM and FDP  reduces to 3e-7which is a value close to FAP  

of CA CFAR after DPM in Table 4.1. Moreover, Improvement Factor gives an idea 

about reduction in FDP . Number of false detections is reduced 1526 times at worst 

case and 1868 at best case. 

 

In order to make a fair comparison, threshold scale factor of CA CFAR, CAα , is 

adjusted for each range value so that number of false alarms plus number of ghosts 

are set almost to number of false detections in the improved CA CFAR case; and 

DP  is investigated. The result of this simulation can be seen in  

 

 

Table 4.3 Simulation result of the scenario with a single target 

 
Range(km) 10 13.3 16.67 20 23.3 26.67 33.3 36.67 40 

PD 0.002 0.005 0.022 0.060 0.169 0.307 0.578 0.673 0.614 

Number of false 

detections per 

beam 

0.004 0.003 0.004 0.004 0.004 0.003 0.004 0.005 0.003 

 
 
 

DP  values are smaller than the ones in Table 4.2. The largest value 0.6 is not a 

tolerable value. In Table 4.3, DP  decreases as the range increases. Originally, 

reverse of it is expected since SNR decreases as the range increases. However, in 

this case it is normal because number of ghosts increases as the SNR increases 

since target signal is the source of ghost. Keeping FDP  constant will make DP  

decrease as the range increases. 
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4.2.2.1.2 SOCA CFAR Range Analysis 

 

Result of range analysis of SOCA CFAR is given in Table 4.4 FDP  is very large 

both for original SOCA CFAR and improved SOCA CFAR when compared to CA 

CFAR results. Moreover, Improvement Factor is much smaller than CA CFAR’s 

Improvement Factor. The smallest FDP  achieved is approximately 2.5e-5 which is 

almost 100 times larger than CA CFAR’s FDP . Even though it is a tolerable value, 

for close targets FDP value reaches 1e-3, which is not useful. As a result, it can be 

said that DPM is not successful for SOCA CFAR and small Improvement Factor is 

the proof of it. 
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Table 4.4 SOCA CFAR simulation result of the scenario with a single target* 

 

 

*In this table PD  and PFD values are detection rates and false detection rates respectively obtained at the result of 

simulations. 

 

 

Range(km) 10 13.3 16.67 20 23.3 26.67 33.3 36.67 40 

SNR(dB) 26.51 26.41 26.23 25.89 25.36 24.71 22.98 21.98 20.91 

PD 1 1 1 1 1 1 1 1 1 

Average Number of 
False Detections per 
beam of original 
SOCA CFAR 

50.697 22.378 11.468 8.252 7.518 7.386 7.342 7.338 7.288 

Average Number of 
False Detections per 
beam  SOCA CFAR 
after DPM 

10.804 6.635 3079.000 0.962 0.399 0.299 0.266 0.265 0.264 

PFD of original SOCA 
CFAR 4.83x10-3 2.13x10-3 1.09x10-3 7.86x10-4 7.16x10-4 7.03x10-4 6.99x10-4 6.99x10-4 6.94x10-4 

PFD of SOCA CFAR 
after DPM 1.03x10-3 6.32x10-4 2.93x10-4 9.16x10-5 3.80x10-5 2.85x10-5 2.53x10-5 2.52x10-5 2.51x10-5 

Improvement 
Factor 5 3 4 9 19 25 28 28 28 
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4.2.2.1.3 GOCA CFAR Range Analysis 

 

Result of range analysis of GOCA CFAR is given in Table 4.5. FDP  value of 

original GOCA CFAR is close to original CA CFAR’s FDP  value. On the other 

hand, FDP  value of improved GOCA CFAR is approximately six times better than 

improved CA CFAR’s FDP  value on the average. FDP  is 4e-8 at best case and 8e-8 at 

worst case which are successful results with a DP  of 1. Likewise, Improvement 

Factor is 6 times better compared to CA CFAR. As a result, DPM’s performance is 

better than its performance in CA CFAR, even the best in all three cell averaging 

type CFAR detectors when there is a single target.  

 



 

66 

Table 4.5 GOCA CFAR simulation result of the scenario with a single target* 

 

 

*In this table PD  and PFD values are detection rates and false detection rates respectively obtained at the result 

of simulations. 

  

 

Range(km) 10 13.3 16.67 20 23.3 26.67 33.3 36.67 40 

SNR(dB) 26.51 26.41 26.23 25.89 25.36 24.71 22.98 21.98 20,91 

Pd 1 1 1 1 1 1 1 1 1 

Average Number of 
False Detections per 
beam of original 
GOCA CFAR 

6.004 6.004 6.004 6.004 6.004 6.004 6.005 5.993 5.753 

Average Number of 
False Detections per 
beam  GOCA CFAR 
after DPM 

0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

PFD of original GOCA 
CFAR 5.72x10-4 5.72x10-4 5.72x10-4 5.72x10-4 5.72x10-4 5.72x10-4 5.72x10-4 5.71x10-4 5.48x10-4 

PFD of GOCA CFAR 
after DPM 4.00x10-8 6.76x10-8 5.33x10-8 6.76x10-8 6.76x10-8 6.10x10-8 6.76x10-8 8.00x10-8 5.81x10-8 

Improvement 
Factor 14295 8457 10721 8457 8457 9382 8457 7134 9431 
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4.2.2.1.4 OS CFAR Range Analysis 

 

Range analysis result of OS CFAR is given in Table 4.6 in order to compare with 

the improved cell averaging type CFAR detectors. OS CFAR also suffers from 

ghosts for higher SNR cases, as can be understood from FDP . After range of 33.3 

km, FDP  decreases significantly. However, DP  decreases drastically with 

decreasing FDP ; it is almost impossible to detect targets. Therefore, it can be said 

that for OS CFAR cannot compete with improved detectors especially for low SNR 

cases. 
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Table 4.6 OS CFAR simulation result of the scenario with a single target* 

 

 

*In this table PD  and PFD values are detection rates and false detection rates respectively obtained at the result of simulations. 

 

Range(km) 10 13.3 16.67 20 23.3 26.67 33.3 36.67 40 

SNR(dB) 26.51 26.41 26.23 25.89 25.36 24.71 22.98 21.98 20.91 

PD 1 1 1 1 0.995 0.823 0.11 2.63x10-2 8.27x10-3 

Average Number of False 

Detections per beam 
6.01 6.00 5.81 3.33 1.25 0.288 1.70x10-2 7.16x10-3 5.60x10-3 

PFD 5.72x10-4 5.72x10-4 5.54x10-4 3.17x10-4 1.19x10-4 2.74x10-5 1.62x10-6 6.82x10-7 5.33x10-7 
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4.2.2.2 Doppler Analysis 

 

Target parameters that are kept constant in the simulation are: 

 

� Range: 40 km 

� Radar Cross Section : 3 m2 

� Swerling type: 0 

 

Only CA CFAR is handled in this simulation. Target’s Doppler frequency is varied 

from 0.13xPRF to 0.94xPRF. Simulations are carried out on 29 equally spaced 

Doppler frequency samples. SNR values at these Doppler frequencies are given in 

Figure 4.3. Since there is finite number of Doppler filters, ripples are observed. 

 
 

 

 

Figure 4.3 SNR values 
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DP  results of the analysis are given in Figure 4.4 and Figure 4.5. In these figures, 

Doppler frequencies of target do not perfectly match with Doppler bins.  These 

Doppler frequencies fall between two adjacent Doppler bins. Therefore, two 

different DP  values are demonstrated. Figure 4.4 demonstrates DP  values at 

Doppler bin that is close to target frequency and Figure 4.5 demonstrates DP  values 

at Doppler bin that is far to target frequency. 

 

Considering original CA CFAR, DP  values are close to 1 at almost every Doppler 

frequency both for nearby Doppler bin and far Doppler bin. After DPM, DP  values 

at close Doppler bin decreases considerably for some Doppler frequencies whereas 

it stays the same for most of the Doppler frequencies. The Doppler frequencies 

where DP  decreases are those that are close to zero Doppler. On the other hand, DP  

values at far Doppler bin decreases considerably at almost every Doppler 

frequency. As a result, it can be said that DPM chooses the close Doppler bin for 

most of the Doppler frequencies. 

 

By looking at the Figure 4.4, it can be observed that most of the Doppler 

frequencies where DP  decreases are those that are close to zero Doppler. Other than 

those, there are three Doppler frequencies where DP  decreases. Doppler bin 

numbers corresponding to these Doppler frequencies are 2.40, 4.50 and 5.67. By 

looking at the Figure 4.5, another property of these frequencies can be extracted. 

DP  of far Doppler bin at these frequencies do not decrease considerably. At these 

Doppler frequencies DPM fails in choosing the close Doppler bin, it chooses the far 

Doppler bin. This is because; these Doppler frequencies are close to the middle of 

two Doppler bins. On the other hand, same kind of behavior can be observed for the 

Doppler frequencies around the middle of 3rd and 4th Doppler bin can be observed. 

DPM achieves high DP  at close Doppler bin. However, DP  at far Doppler bin is not 

small enough. 
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Overall behavior of change in DP  can be summarized as follows: 

� DP  decreases considerably after DPM for those frequencies close to zero 

Doppler frequencies, both for close Doppler bin and far Doppler bin. 

� DPM chooses close Doppler bin as the target’s Doppler bin for those 

Doppler frequencies that exactly matches with Doppler bins. 

� DPM fails in choosing close Doppler bin as the target’s Doppler bin for 

those Doppler frequencies close to Doppler frequencies that are close to 

middle of Doppler bins. It may choose the far Doppler bin as the Doppler 

bin of the target’s Doppler frequency.   

 

 

 

 

Figure 4.4 PD values at close Doppler bin 
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Figure 4.5 PD values at far Doppler bin before and after DPM 

 

  

FDP  results of the analysis can be observed in Figure 4.6 and Figure 4.7. For most 

of the frequencies, DPM achieves reducing FDP  and making it almost equal to FAP  

of CFAR after DPM found in Section 4.2.1. For a few Doppler frequencies, DPM 

has poor performance compared to other Doppler frequencies. Overall FDP  

performance of DPM can be observed in Figure 4.7. For the 90 percent of Doppler 

frequencies, DPM achieves 102 and more improvement in FDP . For the 52 percent 

of Doppler frequencies, DPM achieves 103 and more improvement in FDP . As a 

result, DPM has a good performance in reducing FDP . 
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Figure 4.6 PFD values before and after DPM 
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Figure 4.7 Base 10 logarithm of Improvement Factor 

 

 

4.2.3 Simulations with Two Targets 

 

Several two target scenarios have been handled in order to understand how the 

DPM affects the target masking properties of cell averaging type of filters. In these 

simulations, CA CFAR and GOCA CFAR analysis are done. SOCA CFAR 

analyses are not done because it has been shown that the DPM could not be 

successful in SOCA CFAR. Moreover, OS CFAR analyses are also not done. This 

is because; in the simulations scenarios targets are around 40 km in range and OS 

CFAR fails in detecting target at this range as it is shown in Section 4.2.2.1.4. 
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4.2.3.1 Scenario 1 

 

Properties of the targets in the simulations are given in Table 4.7. In this scenario, 

there are two targets that are close in range and have the same SNR value and 

Doppler frequency. 

 

 

Table 4.7 Properties of target in the Scenario 1 

 
  Target 1 Target 2 

Range(km) 39.96 40 

Radial Velocity(m/s) 78.95 78.95 

Accurate Doppler bin 4 4 

SNR (dB) 20.95 20.91 

 

 

Results of the simulations are given in Table 4.8. Both improved CA CFAR and 

GOCA CFAR achieves DP  of 1 which means that there is no reduction in DP  after 

applying DPM to these detectors. On the other hand, change in the FDP  value is 

different for two detectors. FDP  of GOCA CFAR is approximately six times smaller 

than CA CFAR’s FDP . Therefore, one can say that it is advantageous to apply DPM 

to GOCA CFAR in the cases where there are two targets with same SNR, same 

Doppler and close range. 
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Table 4.8 Simulation results of Scenario 1* 

 
 CA GOCA 

PD of target 1 1 1 

PD of target 2 1 1 

PFD before DPM 1.13x10-3 9.43x10-4 

PFD after DPM 3.70x10-7 5.81x10-8 

Improvement Factor 3041 16300 

 
*In this table PD  and PFD values are detection rates and false detection rates 

respectively obtained at the result of simulations. 

 

4.2.3.2 Scenario 2 

 

Properties of the targets in the simulations are given in Table 4.9. In this scenario 

there are two targets that are very close in range, close in Doppler. Their SNR value 

is almost the same. 

 

 

Table 4.9 Properties of target in the Scenario 2 

 
 Target 1 Target 2 

Range(km) 39.96 40 

Radial Velocity(m/s) 78.95 86.85 

Accurate Doppler bin 4 4.5 

SNR (dB) 20.91 19.93 

 
*In this table PD  and PFD values are detection rates and false detection rates 

respectively obtained at the result of simulations. 
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Results of the simulation are given in Table 4.10.  DP  of both two targets for the 

original CA CFAR and GOCA CFAR is equal to 1. DP  of first target is equal to 1 

for the improved detector too. However DP  of the second target reduces to  

0.99774; this is still a high probability of detection.  Since the second target’s 

Doppler frequency does not match with a Doppler bin, it shows up at two Doppler 

bins. For the original detectors  DP  of second target at second Doppler in is equal to 

1. It reduces to 0.75383 after applying. Reduction in DP  is a considerable amount 

in this case. Since DP  of this target at other Doppler bin is high enough, this is not a 

problem that will prevent the target to be detected. On the other hand, improvement 

in FDP  is pretty good when compared to reduction in DP . For the CA CFAR, 

improvement factor is equal to 283. It is even better for GOCA CFAR, which is 

equal to 1196. As a result, it can be said that it is advantageous to use DPM in 

GOCA CFAR since it keeps DP  high enough with the smallest FDP . 
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Table 4.10 Simulation results of Scenario 2* 

 
 CA GOCA 

PD of target 1 before 
DPM 1 1 

PD of target 1 after 
DPM 1 1 

PD of target 2 at 4. 
Doppler bin 
before DPM 

1 1 

PD of target 2 at 4. 
Doppler bin 
after DPM 

0.99774 0.99774 

PD of target 2  
at 5. Doppler bin 
before DPM 

0.99221 0.94468 

PD of target 2  
at 5. Doppler bin 
after DPM 

0.75383 0.75383 

PFD before DPM 1.08x10-4 9.00x10-5 

PFD after 3.82x10-7 7.52x10-8 

Improvement Factor 283 1197 
 

*In this table PD  and PFD values are detection rates and false detection rates 

respectively obtained at the result of simulations. 

 

4.2.3.3 Scenario 3 

 

Properties of the targets in the simulation are given in Table 4.11. In this scenario, 

there are two targets in scenario that are close in range. There is 8.5 dB difference 

in their SNR and they are on adjacent Doppler bins. 
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Table 4.11 Properties of target in the Scenario 3 

 
 Target 1 Target 2 

Range(km) 39.96 40 

Radial Velocity(m/s) 78.95 86.85 

Accurate Doppler bin 5 4 

SNR (dB) 25.51 17.07 

 
 
 
Results of the simulation are given in Table 4.12.  DP of target-1 stays the same 

both  for two types of detectors, after DPM is applied. However, DP of target-2 is 

different for CA CFAR and GOCA CFAR after DPM. DP  CA CFAR is an 

acceptable value while DP  GOCA CFAR is not. Therefore, it can be said that DPM 

fails in GOCA CFAR detectors in the cases where there are two targets with 

different SNR. On the other hand, it is appropriate to use DPM in CA CFAR in 

such cases. 

 

 

Table 4.12 Simulation results of Scenario 3* 

 
 CA GOCA 

PD of target 1 before 
DPM 1 1 

PD of target 1 after 
DPM 1 1 

PD of target 2 before 
DPM 0.97694 0.76217 

PD of target 2 after 
DPM 0.97694 0.76217 

PFD before DPM 0.000718 0.000662 

PFD after DPM 3.96x10-6 3.67x10-6 

Improvement Factor 1813 1802 

 
*In this table PD  and PFD values are detection rates and false detection rates 

respectively obtained at the result of simulations. 
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CHAPTER 5 

 
 

CONCLUSIONS 

 

 
In this thesis, an improvement method for CA CFAR is proposed. The aim of this 

method is reducing false alarm rate while keeping the value of probability of 

detection. This method makes use of Doppler spreading behaviors that appear after 

Doppler processing. It tries to match the Doppler spreading pattern of CA CFAR 

detections to the appropriate predetermined Doppler spreading patterns. If 

successful pattern matching occurs, then CA CFAR detection is approved. On the 

other hand, if a pattern matching cannot be achieved, then CA CFAR detection is 

eliminated. Therefore, this method is called Doppler Pattern Matching. 

 

In this thesis, a new definition is made which is “probability of false detection”, 

FDP . It equals to sum of  FAP  and GP  where GP  denotes “probability of ghost”. 

Ghost is a detection resulting from target energy at a point where there is no target. 

There are two main sources of ghost. First one is pulse compression. Second one is 

the Doppler spreading of target signal at the output of Doppler processing block. 

Doppler pattern matching method is expected to eliminate the ghosts produced by 

Doppler spreading. However, it is not expected that it will eliminate ghosts 

resulting from pulse compression. 

 

In order to analyze the performance of the algorithm, Monte-Carlo simulations are 

carried out. 105 data sets are used in each simulation to have valid results.  In order 

to produce simulation data, Radar Data Simulator given in reference [27] is used. 

 

In these simulations, a criterion called improvement factor is defined to evaluate the 

performance of DPM. It is equal to the ratio of the original FDP  to the FDP  after 
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applying DPM. Three types of simulations are carried out; Simulations without 

target, simulations with single target and simulations with two targets. 

  

Simulations without target are done to observe only the change in FAP  since there is 

no ghost without target. Doppler pattern matching method is applied to CA CFAR, 

SOCA CFAR and GOCA CFAR. Moreover, OS CFAR simulations are also done 

for comparison. Improvement factor of detectors are close to each other where 

GOCA CFAR has the best result. Considering the original detectors OS CFAR is 

the best. However, when overall results are considered improved GOCA CFAR is 

the best.  

 

Simulations with Single Target are divided into two. First one is done to analyze 

the way the performance changes with the range of target. DPM is applied to CA 

CFAR, SOCA CFAR and GOCA CFAR. Moreover, OS CFAR simulations are also 

done for comparison also in this analysis. It has been observed that in original 

detectors false detections are mainly composed of ghosts. DPM is capable of 

eliminating them for GOCA CFAR and CA CFAR. Therefore, for these detectors 

very high improvement factors could be obtained. Moreover, DP  value does not 

reduce after DPM. However, DPM fails in improving SOCA CFAR. Very low 

improvement factor is obtained for this detector. OS CFAR detector achieves good 

DP  values at close ranges but FDP  value is as high as the original CA CFAR 

detector. As the range increases FDP  decreases but DP  value reduces below the 

tolerable values. As a result, it is observed that CA CFAR detector has a better 

performance compared to OS CFAR after DPM is applied.  

 

In order to make a fair comparison, threshold scale factor CAα  of CA CFAR is set 

to a value to obtain a FDP  value equal to FDP  of CA CFAR detector after DPM is  

applied. Then DP  values of these two detectors are compared. DP  values of original 

CFAR detector are below 0.614 which are not practically acceptable. On the other 
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hand, DP  values of CA CFAR detector after DPM are 1 which is the highest value 

that can be achieved. 

 

Second type of simulation that is done with one target analyzes the way the 

performance changes with the Doppler frequency of target. This analysis is done 

only for CA CFAR. In these analyses, Doppler frequencies do not perfectly match 

with Doppler bins. These frequencies correspond to the frequencies between two 

adjacent Doppler bins.  Therefore, change in DP  at both close Doppler bin and far 

Doppler bin is investigated. As a result of the simulations, for almost every Doppler 

frequency, DPM achieves reducing FDP  102 times. Moreover, for half of the 

Doppler frequencies FDP  is reduced 103 times. Therefore, it can be said that first 

aim of DPM is achieved which is reducing FDP . However, it is not the case for the 

second aim of DPM which is keeping DP  of original CA CFAR. For the Doppler 

frequencies close to zero Doppler, DP  reduces below the acceptable values.  For the 

Doppler frequencies close to Doppler bins, DPM is capable of keeping DP  of close 

Doppler bin and reducing DP  of far Doppler bin. As a result target will only show 

up at the Doppler bin which is close to its Doppler frequency with high probability. 

For the Doppler frequencies around the middle of the adjacent Doppler bin, DPM 

may reduce DP  of close Doppler bin while keeping DP  of far Doppler bin. In this 

case, far Doppler bin is chosen as the Doppler bin of the target’s Doppler 

frequency. 

 

In simulations with two targets, target masking behaviors are investigated. Three 

types of scenarios are investigated for GOCA CFAR and CA CFAR detectors. 

SOCA CFAR detector is not handled since it has been seen that Doppler pattern 

method fails in this type of detector. Moreover, OS CFAR detector is not handled 

because it fails at range of target’s range used in simulation. In the cases where SIR  

values of two targets are close to each other, DPM is successful both for GOCA 

CFAR and SOCA CFAR. DP  values do not decrease considerably while FDP  

values decreases dramatically. On the other hand, when SNR of two targets are 
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different from each other, DPM is successful for CA CFAR but it fails in GOCA 

CFAR. DPM achieves reducing FDP  but it also reduces DP  of the target with 

smaller SIR. 

 

Finally, it can be said that DPM achieves its first aim which is reducing FDP . 

However, it is capable of keeping DP  of original CFAR at Doppler frequencies 

close to Doppler bins. At Doppler frequencies around the middle of two adjacent 

Doppler bins, DPM fails in choosing the correct Doppler bins. Moreover, another 

result that can be extracted from improvement factors is that DPM is successful in 

improving CA CFAR and GOCA CFAR but not in improving SOCA CFAR. 

 

As a future work, number of Doppler patterns may be increased to improve the 

performance of DPM. Doppler patterns of the frequencies that are in the middle of 

two adjacent Doppler bins can also be formed and used. This way, performance of 

DPM at Doppler frequencies around the middle of two Doppler bins can be 

improved. 
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