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ABSTRACT

ON OPTIMAL RESOURCE ALLOCATION IN PHASED ARRAY RADAR SYSTEMS

Irc1, Ayhan
M.Sc., Department of Electrical and Electronics Engineering
Supervisor: Asst. Prof. Dr. Afsar Saranl
Co-Supervisor: Prof. Dr. Buyurman Baykal

September 2006, 106 pages

In this thesis, the problem of optimal resource allocation in real-time systems is studied. A
recently proposed resource allocation approach called Q-RAM (Quality of Service based
Resource Allocation Model) is investigated in detail. The goal of the Q-RAM based
approaches is to minimize the execution speed in real-time systems while meeting resource
constraints and maximizing total utility. Phased array radar system is an example of a system
in which multiple tasks contend for multiple resources in order to satisfy their requirements.
In this system, multiple targets are tracked (each a separate task) by the radar system
simultaneously requiring processor and energy resources of the radar system. Phased array
radar system is considered as an illustrative application area in order to comparatively
evaluate the resource allocation approaches. For the problem of optimal resource allocation
with single resource type, the Q-RAM algorithm appears incompletely specified, namely it
does not have a termination criteria set that can terminate the algorithm in all possible cases.
In the present study, first, the Q-RAM solution approach to the radar resource allocation
problem with single resource type is extended to give a global optimal solution in all
possible termination cases. For the case of multiple resource types, the Q-RAM approach can
only generate near-optimal results. In this thesis, for the formulated radar resource allocation
problem with multiple resource types, the Methods of Feasible Directions are considered as
an alternative solution approach. For the multiple resource type case, the performances of
both the Q-RAM approach and the Methods of Feasible Directions are investigated in terms
of optimality and convergence speed with the help of Monte-Carlo simulations. It is
observed from the results of the simulation experiments that the Gradient Projection Method
produce results outperforming the Q-RAM approach in closeness to optimality with
comparable execution times.

Keywords: Optimal Resource Allocation, Real-time Systems, Phased Array Radar, Q-RAM,
Methods of Feasible Directions
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FAZ DIZiLI RADAR SISTEMINDE OPTIMAL KAYNAK PAYLASIMI

Irc1, Ayhan
Yiiksek Lisans, Elektrik-Elektronik Miihendisligi
Tez Danigsmani: Yrd. Dog. Dr. Afsar Saranlt
Ortak Tez Danigsmant: Prof. Dr. Buyurman Baykal

Eyliil 2006, 106 sayfa

Bu calismada, gercek-zamanli sistemlerde optimal kaynak paylasimi problemi {izerinde
durulmustur. Yakin bir donemde onerilmis bir kaynak paylastirma modeli olan Q-RAM
(Quality of Service based Resource Allocation Model) yaklasimi incelenmistir. Q-RAM
yaklagiminda amag, gergek-zamanli sistemlerde, kaynak kisitlarina uygun ve toplam kaliteyi
maksimize edecek sekilde c¢alisma zamanini minimize etmektir. Faz dizili radar sistemi,
birden fazla uygulamanin sistem kaynaklaria gereksinim duydugu bir sisteme ornektir. Bu
sistemde birden fazla hedef, radar sistemi tarafindan ayni anda takip edilmekte ve takip
gorevleri radar sisteminin islemci ve enerji kaynaklarimi kullanmaktadir. Bu galismada,
kaynak paylasimi yaklagimlarini degerlendirmek amaciyla faz dizili radar sisteminde kaynak
paylasimi problemi incelenmistir. Sadece bir kaynak tipinin degisken olarak incelendigi
kaynak paylagimi problemlerinde, Q-RAM yaklagiminda bazi olasi durumlar icin belirli bir
bitis kriteri Onerilmemektedir. Bu ¢aligmada, oncelikle, tek degiskenli radar kaynak
paylasimi probleminde Q-RAM ¢6ziim yaklagimi biitiin olast durumlar i¢in optimal ¢iiziimii
verecek sekilde gelistirilmigtir. Birden fazla kaynak tipinin degisken olarak incelendigi
kaynak paylagimi problemleri igin Q-RAM ¢6ziimii yaklagik optimal sonuglar iiretmektedir.
Bu calismada, birden fazla kaynak tipinin degisken olarak incelendigi radar kaynak
paylasimi problemi i¢in Q-RAM yaklagiminin yanisira verimli yonler yontemleri ¢oziim
yaklasimi olarak incelenmistir. Q-RAM ve verimli yonler yontemlerinin performanslari,
Monte-Carlo simiilasyon tekniginden yararlanarak ¢6ziime ulasma hizi ve ¢6zlimiin optimale
yakinligi bakimindan karsilastirilmistir. Yapilan simiilasyonlar sonucunda verimli ydnler
yontemlerinin, Q-RAM yaklasimi ile yaklagik ayni ¢alisma zamanlarinda daha iyi sonuglar
verdigi gozlenmistir.

Anahtar Kelimeler: Optimal Kaynak Paylasimi, Ger¢ek-zamanli Sistemler, Faz Dizili Radar,
Q-RAM
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CHAPTER 1

INTRODUCTION

1.1 Overview

The problem of resource allocation in real-time systems, in which there exists multiple
applications contending for the same resources, has been recently an active research topic
area. In general, it is accepted that service qualities of the applications, where service quality
is the degree of satisfaction of the end-user, increase with the increase of the amount of
resource allocated to that application. During the resource allocation process, the intention is
to allocate resources to applications such that the overall service quality obtained from the
collection of these applications (i.e., the overall performance of the system for the intended
task domain) is maximized. It should be clear that it is not possible to allocate arbitrary
amount of resources to applications without any constraint. There exist some limitations on
the resources of the system and the problem can be formulated under the formalism of

constrained optimization.

A phased array radar system can be considered as a system with multiple applications
and multiple resources. In this system multiple targets can be concurrently tracked. In order
for the radar system to track all the targets successfully, processor and energy resources of
the system should be allocated to individual tracking tasks in an appropriate manner.
Recently in a series of work including [16], [18] [19], [22] and [24], this problem is
investigated and a family of solution approaches based on a model called Quality of Service
based Resource Allocation Model (Q-RAM), are presented. In this thesis, the solution
approaches proposed therein for the radar resource allocation problem are further studied and
proposals are made to improve the solution approaches in terms of optimality and real-time
performance. These proposals are validated by means of simulation studies complying with a

radar resource model from the literature [16], [18] and [19].



The Q-RAM approach is first presented by Rajkumar et al. [6]. In [6], a system with
multiple concurrent applications is considered. Rajkumar et al. [6] proposed to maximize the
total service quality and presented a resource allocation algorithm for the case of single
resource type and single QoS (Quality of service) dimension. In [8], they make an attempt to
improve the solution approach in [6] to handle the case with multiple resource type with the
assumption that the utility functions are min-linear-max (i.e. The min-linear-max function is
a function which is linear from the minimum resource requirement to the maximum resource
requirement beyond which it becomes flat). In [7], Lee et al. proposed to support discrete
QoS operating points and in order to measure the QoS quantitatively a QoS management
system is developed in which a numerical mapping is developed for the quality dimensions
that are non-numeric. Also, no assumptions about the concavity of the utility functions are
made in [7] and the problem of maximizing system utility by allocating a single finite

resource to satisfy the QoS requirements of multiple applications is investigated.

In [10], an improvement is proposed to the approach of [7] by extending to the
problem of apportioning multiple finite resources to satisfy the QoS needs of multiple
applications and the optimization problem for the case of discrete QoS operating points is
considered. An algorithm that yields near-optimal results but can execute at potentially much
higher speeds is presented. The approach of the presented algorithm is similar to the
approach of Lee et al. [7]. The so called ‘resource vector approach’ is proposed as a new

approach in order to handle the discrete QoS and multiple resource case.

In [16], Lee et al. proposes to solve a radar resource allocation problem by using the
Q-RAM approach developed in the previous studies [6] [8] [7] [10]. In [16], radar resource
allocation problem for the case of two resource types (computation time (C;) and sampling
frequency (f;)) is considered and a Q-RAM based near-optimal algorithm is presented. In
subsequent work of [18], [19], [22] and [24], the Q-RAM based solution of [16] is proposed
to be extended to the radar resource management problem for the case of general multiple
resource type. In [18], [19] and [22], radar heat constraints on radar antennas and the global
energy resource and computational resource from the radar processor are investigated as
resources in the radar system. The resource vector approach presented by Lee et al. [10] is
used in [18], [19] and [22]. Each scalar element of the resource vector represents the demand
on a particular resource. Therefore, each resource vector defines a discrete operating point

for each task in the radar system.



Similar to [18], [19] and [22], computational and energy resources of the radar system
are considered in [24]. The sampling frequency (f;), computation time (C;) and average
power of the transmitted radar signal (P;) of a radar tracking task (which are explained in
detail in subsection 2.1) are investigated as optimization variables of the radar resource
allocation problem. A Q-RAM based resource allocation approach similar to the approaches

of [18] and [19] is proposed as a solution to the formulated radar resource allocation problem
in [24].

In the present work, we identify, as a result of the analysis of the Q-RAM based
resource allocation approaches; that the theoretical background of the Q-RAM approach for
the case of both single resource type and multiple resource type has deficiencies and propose
to alleviate some of these deficiencies. In the next subsection, the contribution of the thesis

along these lines is presented.

1.2 Contribution of the Thesis

The contributions of the thesis can be stated as follows:

e As a theoretical contribution, the Q-RAM algorithmic approach for the
case of single resource type [6] is improved in order to generate optimal
results in all of the possible termination cases.

e Performance of the Q-RAM approach for the multiple resource type case is
compared with the Methods of Feasible Directions in terms of closeness to
optimal and speed of reaching a solution by means of systematic
simulation experiments.

e It is shown, through experimental study, that for the case of multiple
resource type, the considered constrained optimization methods belonging
to the Methods of Feasible Directions category from the well established
optimization literature result in optimal solution with convergence speed
matching the Q-RAM approach while the latter is a non-optimal
optimization approach and does not provide a well founded mathematical

background.

As it is explained in Chapter 3, for both of the single and multiple resource type cases,
the Q-RAM based approaches do not have a well formulated theoretical background. For the

case of resource allocation problem with single resource type, the algorithm is incompletely



specified. In some of the possible cases encountered during the execution of the algorithm,
the Q-RAM algorithm does not specify the required steps for the continuation of the
optimization algorithm [6]. If the algorithm is directly terminated in these cases, this leads to
non-optimal solutions. In the present thesis, for the radar resource allocation problem
formulated in subsection 3.3; Q-RAM based single resource type resource allocation
algorithm of is modified and an optimal resource allocation approach to the radar resource

allocation problem is proposed.

The goal of the Q-RAM based approaches is to minimize the execution speed in real-
time systems while meeting resource constraints and maximizing total utility [18], [19], [22]
and [24]. In the Q-RAM algorithmic approach for the case of multiple resource type,
sufficient conditions for optimality are not considered and near-optimal algorithms are
presented for the resource allocation. In order to obtain a theoretically sound and optimal
resource allocation approach for the radar resource allocation problem, a family of
algorithms called Methods of Feasible Directions, which propose optimization algorithms for
the constrained optimization problems with non-linear objective functions, are considered in
this thesis. It is shown that by using the Methods of Feasible Directions, it is possible to
reach an optimal solution with convergence speed closely matching the Q-RAM approach
while guaranteeing an optimal solution. It is also observed that the sub-optimal solution of
Q-RAM degrades significantly with the growth of the problem size (number of targets being
tracked by the radar system) leading to a quantifiable advantage of the proposed approaches

based on Methods of Feasible Directions for the considered task domain.

1.3 Outline of the Thesis

Chapter 2 introduces the phased array radar system in which the resource allocation problem
is considered. The resources of the radar system as well as the constraints on these resources
are explained. The radar resource allocation problem, for which the Q-RAM based approach
and the considered algorithms from the Methods of Feasible Directions category are applied,

is formulated and the objective function of the optimization problem is presented.

In Chapter 3, a literature survey on Q-RAM approach is presented and the limited theoretical
background of the model is introduced. In this chapter, first, the resource allocation approach
for the case of single resource type is investigated and the improvement on the approach for
the radar resource allocation problem is explained. Second, the resource allocation approach
for the multiple resource type case is presented and drawbacks of the Q-RAM approach are

described



In Chapter 4, the algorithms in the literature of the Methods of Feasible Directions [4], which
are investigated as alternate solutions to the radar resource allocation problem in this thesis,
are presented. Based mainly on [4], the theoretical background of these algorithms are

briefly described. The optimization algorithms investigated in this chapter are:

e Zoutendijk Algorithm
e Gradient Projection Algorithm

e Convex-Simplex Algorithm

In Chapter 5, the experimental methodology that is used in order to make systematic
comparative simulations on Q-RAM and the Methods of Feasible directions for the radar
resource allocation problem is explained. The simulated radar target tracking scenario, which
can be considered as an input database for the simulations, is presented and the performance

measures related to

e Closeness to the Optimal Solution

e Speed of Reaching a Solution

are explained. In the same chapter, performance results of the optimization approaches are

also presented.

Finally in Chapter 6, the conclusions of the thesis and proposals for the improvements on the

present study, which can be investigated as a future work, are presented.



CHAPTER 2

RESOURCE ALLOCATION IN PHASED ARRAY RADAR SYSTEM

A phased array radar system is composed of two parts. These are the radar processor
and the radar antenna. Radar commands are generated in the radar processor. According to
these commands antenna part transmits energy at assigned angles and with assigned
waveforms. Based on the results of the processing operations on the echo signals; radar
processor declares new detections, initiates tracks and maintains tracks on assigned targets

[16].

Radar
Processor

1

Radar Antenna

Figure 1.3.1 Radar System. A radar system is composed of two parts; radar
antenna transmits the radar signals to the targets with command of the
radar processor. Radar processors schedules radar tasks, processes echo
signals, decides detections, initiates tracks and maintains tracks on
assigned targets.

The antenna in a phased-array radar system can have multiple beams and
electronically steer the beams in desired directions. By this way, the phased array radar
system can simultaneously track multiple targets depending on distance, acceleration, and
other characteristics of targets such as speed, acceleration etc. [16]. The main tasks of the

6



radar system are search and tracking of targets. Usually, there are multiple search tasks that
cover the entire angular range of the radar. There is one tracking task corresponding to each

target of interest.

—Track Beam

Search
Beams

Figure 1.3.2 Phased Array Radar

The search task periodically scans the entire surveillance space to detect the appearance of
new targets. Once a new target is detected, a confirmation task is created to identify the type
of target. When it is identified, a track task is created and starts tracking the target until it
leaves the field of view of the radar system or is destroyed [16]. After the creation of the
track task to track a target object, radar system periodically samples the target location and
estimates the next location with a particular sampling frequency. Figure 1.3.3 illustrates the

periodic transmission and return processing of radar pulses for a tracking task.
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Figure 1.3.3 Tracking Operation. Radar signals are transmitted to the target
that is being tracked and estimation algorithms are applied on the echo
signals to estimate the next location of the target.

A single period of the process of tracking a particular target consists of sending a radar
signal consisting of a series of pulses and receiving the echo of those pulses. This period is
known as a dwell [16]. In order to appropriately track a target, the dwell needs to have a
sufficient number of pulses with a sufficient amount of power on the pulses to traverse
through the air, illuminate the target and return back after reflection. The power output of the
radar system is limited depending on the power output capability of the energy source.

Based on the received pulses and type of the target that is being tracked, an appropriate
estimation algorithm must be used in order to properly estimate the next position of the
target. There are many tracking algorithms used in radar systems. Different estimation
algorithms result in different tracking performances for different types of targets. Some of
the estimation algorithms provide better results than other algorithms in noisy environments
and some of the estimation algorithms generate more accurate tracking performance than
other algorithms for maneuverable targets [16]. They also have different computational
requirements. The execution times of the estimation algorithms on the radar processor vary
depending on the computational requirements of the algorithms.

Since a target can maneuver to avoid being tracked, the estimates are valid only for a
particular period of time. Based on the processing operations on the echo signals, the time-
instant of the next dwell for the tracking task must be determined. Therefore, the tracking
task needs to be repeated periodically with a smaller period providing better estimates. For a
large sampling period, the estimation error can be so large that the dwell may miss the target.
On the other hand, a small sampling period will require higher resource utilization.

As it is explained in the previous paragraphs, radar system requires computational and

RF-energy resources in order to maintain an image of selected parts of the air, sea and land
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activities. Without sufficient amount of computational and RF-energy resources, radar
system can not create detections and tracks and can not present the tactical image to the user
on a monitor accurately. In the following subsections, the resources of the radar system and
constraints on the resources are elaborated. In subsection 2.2 the objective function defined
for the resource allocation optimization approach is presented. Then in subsection 2.3, the
radar resource allocation problem is formulated based on the explained resources, constraints

and the objective function.

2.1 Radar Resource Model

In this thesis, energy and computational resources of the radar system are investigated.
In the following subsections, first the constraints on the aforementioned parameters are
investigated. Section 2.1.1 considers the computational resources of the radar system and the
schedulability condition for the tasks in order to derive the constraint on computational
resources of the radar system. Later, the subsequent subsection explains the radar power

constraint.

2.1.1 Radar Timing Constraints and Schedulability

A particular target tracking task is accomplished by sending a radar signal consisting
of a series of high frequency pulses, receiving the echoes of those pulses and applying
appropriate signal-processing algorithms in order to properly estimate the next position of
the target. This process is repeated periodically until the tracked target leaves the field of

view of the radar system or is destroyed.

Y 2
MANAN

t

Figure 2.1.1 Radar Dwell. Sending radar
signals to a particular target [18].



Assume a tactical environment consisting of N targets which are being tracked by the radar
system. In Figure 2.1.1 illustrates the radar dwell for the ith tracking task. The radar dwell is
characterized in terms of a transmit power A, a transmission time #,, a wait time ¢, and a
receive time #,. T} is the sampling period. We define f; as the sampling frequency which is
equal to 1/7;.

In the sampling period interval, estimation algorithms are applied on the echo signals
by the radar processor. Let C, denote the total execution time of the estimation algorithm for
the kth tracking task in a particular sampling period. In the sampling period interval (7}), the
ratio of the computation time (Cy) of a tracking task to the sampling period interval gives the
utilization of the radar processor for that particular tracking task (i.e. for the kth task). The

utilization of the radar processor for kth tracking task (Uy) (U, € [0,1]) can be written as

follows:

Ur = Ci X fi (2.1.1)

In order for the radar tasks to be scheduled in the radar processor the total utilization of the
radar processor should not exceed %100 [16]. Radar timing and schedulability constraint

regarding the utilization of the radar processor is:

N
YU <1 (2.1.2)
k=1

which can be written as
N
D> Cf <1 (2.1.3)
k=1

where N is the number of tracking tasks processed by the radar processor.

2.1.2 Radar Power Constraints

In addition to timing constraints, radar system also has power constraints. Power of the

transmitted radar signal is limited with the power output capability of the energy source. In
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[18], the power utilization of the radar system for a set of N tasks in a particular sampling

period interval (7}) is defined as follows:

UhiLﬁAW (2.1.4)
_ s 1.
Rnax k=1 T, k

where Pp.x is the maximum average power that can be supplied by the radar system without
leading any overheating and damage condition. Here, it is considered that the average power
is given by the fraction of time each task is transmitting, multiplied by the transmit power for
that task. In the expression above, Ay(t4/T}) is the average power of the transmitted radar
signal in the sampling period 7} for kth tracking task. Let’s denote the average power of the

transmitted radar signal in the sampling period with P for the kth tracking task.

P =4ty /T,) (2.1.5)

The total power utilization value of the radar system can not exceed %100 in order for the
radar system to operate safely [18]. The power constraint of the radar system can be

expressed as follows:
N
> P <P (2.1.6)

2.1.3 Minimum Resource Requirements

Position, heading, speed records of the targets which are being tracked are updated at
each sampling period. In order for the records of the tracks to be accurate, the sampling
period interval should be sufficiently short, i.e. the sampling frequency should be sufficiently
high. Minimum sampling frequency requirement of each target changes according to
maneuverability, speed, position of the target relative to the ownship where ownship is the
platform on which the considered phased array radar system is mounted [16]. Minimum

sampling frequency constraint of ™ tracking task can be expressed as follows:

f/; = ﬁ,nﬁn (2 1 7)
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where f i, 1s the minimum sampling frequency requirement for the kth tracking task.

In order to appropriately track a target, the transmitted radar signal should have a
sufficient amount of power on the pulses to traverse through the air, illuminate the target and
return back after reflection. Larger P, provides better tracking information. The value of P;
required to adequately track a target is proportional to the 4™ power of distance between the
target and the radar [13]. For each target type and different position and speed of a specific
target relative to the ownship, there exist minimum average transmitted power requirements
[18]. Minimum requirement on the average power of the transmitted signal of kth tracking

task is:

PkZ Pk,min (218)

where Py i, 18 the minimum requirement on the average power of the transmitted radar

signal for the kth tracking task.

2.2 The Objective Function

In [5] and [16] the control system performance variation due to the sampling
frequency variation is modeled as an exponential function; Lee et al. [16] use this approach
to model the tracking performance variation of the radar system with the sampling frequency
variation as an exponential function. As it is explained in [16], in a radar system, the system
keeps a record (track) of each target and remembers its current position, heading, speed, etc.
as the target moves. The records are updated periodically at sufficiently high frequencies in
order to maintain a specified level of confidence in their accuracy. In the exponential model,
the accuracy of the record increases with increase of the update frequency. The accuracy
improvement by increasing the update frequency is significant at the beginning but becomes
only marginal once the accuracy is saturated with a high enough frequency. This exponential

behavior is illustrated in Figure 2.2.1.

12



Tracking
Quality
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Sampling Frequency

Figure 2.2.1 Tracking Quality Variation with the
Sampling Frequency Variation.

The probability of detection can be written as an exponential function of transmission
power when noise power and probability of false alarm are in some pre-defined ranges
(Refer to the appendix of this thesis for further analysis). Tracking quality is a measure of
estimating the next location of the target correctly and we have investigated tracking quality
as linearly proportional with the probability of detection. In this thesis, similar to the
handling method of change of performance of the system with sampling frequency in [16],
[5] and [18]; radar tracking performance depending on the average power of the transmitted
radar signal is also investigated as an exponential function. The strength of the echo signal
increases with increase of amount of power of the transmitted radar signal. Increase in power
of the echo signal provides better signal-to-noise ratio and hence probability of detection of
targets increases [13]. Performance increase due to average power of the transmitted radar
signal increase is expected to exhibit a saturation characteristic, i.e., the tracking
performance increase will gradually saturate after a certain amount of power resource is
allocated to that tracking task [19]. The tracking performance, also called tracking quality,

for kth tracking task can be defined with the following form of exponential function:

V, =(1—me /) (2.2.1)

where V} is the tracking quality function of the kth tracking task depending on sampling
frequency (f;) average power of the transmitted radar signal (Py). This function is illustrated
in Figure 2.2.3. In this formulation, a; and S are the sensitivity of the tracking quality to the
sampling frequency and average power of the transmitted radar signal change respectively.

The parameters «, and f; ideally take different values depending on the speed,
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maneuverability, distance of the target that is being tracked. The parameter m;, specify the
control value of minimum achievable performance (m; < 1) [16]. These parameters can be
approximated by observing the average behavior of the radar system in practice runs. Look-

up tables of this data can be created and later used.

Ownship

S
Target

Figure 2.2.2 Division of the Surveillance Space into Regions (Similar to the
Figure in [16]). As the shade of the region becomes darker, the region becomes
more critical. The distance of the target affects the required sampling frequency
and average power of the transmitted radar signal in order to achieve a certain
tracking quality.

As shown in the Figure 2.2.2, for a particular target, different o, and f; parameter
values can be selected in the tracking quality function of the tracking task, according to the
region of the target relative to the ownship. For example in the Figure 2.2.2, if the target
leaves the region with radius r; where d; > r; > d, and passes to the region with radius r,
where d, > 1, > d,, the tracking quality function of the target should be adapted to the new
relative position of the target, i.e. the tracking task in the region with radius r; should be
removed from the task list of the radar system and a new tracking task in the region with
radius 1, should be added to the task list of the radar system with new o, and f;, parameter

values. Intuitively we expect that as the distance of the target to the ownship decreases, the
14



sensitivity of the tracking quality to the change of average power of the transmitted radar
signal (f;) decreases while sensitivity of the tracking quality to the change of sampling
frequency (ay) increases because the change of position of the target relative to the ownship
in unit time increases.

Along with the position of the target relative to the ownship, speed and
maneuverability plays important role in determination of the a; and f; parameter values in
the tracking quality function of the target. A target with high speed or maneuvering
capability requires higher sampling frequency in order to be tracked accurately; this
condition leads to the sensitivity of the tracking quality to the sampling frequency change

(o) to be higher.

Tracking Quality Function 01 Tracking Quality Function 02

ottt i
“"‘:::::::::::::: c.-‘:::o:":::
Pt e
R XA
SR,
e
R

40

Power

Frequency Power Frequency

Tracking Quality Function 03 Tracking Quality Function 04

Fower Fragquency Fower Frequency

Figure 2.2.3 Tracking Quality Functions. Functions 02, 03 and 04 are obtained with
relative changes to 01. In tracking quality function 02, ¢4 is higher than in 01 with all
other parameters the same. In tracking quality function 03, S is higher than in 01 with all
other parameters the same. And in tracking quality function 04, both of the sensitivity
parameter values are higher than in 01 with all other parameters the same.

In Figure 2.2.3, different tracking quality functions are shown for different types of

tracking tasks. In the second figure, tracking quality function of a tracking task having higher
15



oy parameter value; in the third figure, tracking quality function of a tracking task having
higher f; parameter value and in the fourth figure, tracking quality function of a tracking task
having both higher o, and f; parameter values compared to the tracking quality function of
the first figure are shown. These figures are not plotted using real parameter values, the

parameter values in these figures are selected for illustrative purposes.

In [16] the tracking quality functions for different tracking tasks are also considered as
discrete functions and Q-RAM is proposed to be applied to the radar resource allocation
problem with discrete tracking quality functions. In the present study, for the experimental

evaluation of the Q-RAM approach, discrete tracking quality functions are also considered.

2.3 Formulation of the Radar Resource Allocation Problem

The goal of the radar system is to utilize its finite energy and time resources to
maximize the quality of tracking. A radar system must make two sets of decisions. First, it
must decide what fraction of resources (energy and time) to spend on each target. It must
then schedule the radar antenna(s) to allocate the beams and transmit the selected amount of
energy through each beam and receive the return echoes in a non-preemptive fashion. Since
targets in the sky are continually moving, resource allocation and scheduling decisions must
be made on a frequent basis. The radar resource allocation problem which is studied in this

thesis can thus be formulated as follows,

Maximize
N N
T B S Prvees S Py) = DV = D (1=mye” A0 (2.3.1)
k=1 k=1
Subject to

> Cf <1 (2.3.2)

N
> P <P (2.3.3)
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L= fomim k=1,2,...,N. (2.3.4)

sz Pk,mim k= 1, 2, ,N (235)

where N is the number of targets that are being tracked, C; denote the total execution time of
the estimation algorithm for the kth tracking task, Pp.x is the maximum average power that
can be supplied by the radar system, f; ., is the minimum sampling frequency requirement
for the kth tracking task, Py, is the minimum average power of the transmitted radar signal
requirement for the Ath tracking task.

The objective function of the radar resource allocation problem formulated above is
continuous, differentiable and concave. The constraints are linear. These properties enable us
to use methods of feasible directions, which will be briefly explained in the subsequent

chapters, in solving the formulated constrained optimization problem.
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CHAPTER 3

RESOURCE ALLOCATION WITH Q-RAM BASED METHODS

In this chapter, QoS-based Resource Allocation Model (Q-RAM) based solutions to
the radar resource allocation problem are presented and the model is investigated in detail.
Q-RAM assumes a system with multiple concurrent applications, each of which can operate
at different levels of quality based on the system resources available to it. The goal of the
model is to be able to allocate resources to the various applications such that the overall
system utility is maximized under the constraint that each application can meet its minimum
needs. In the first subsection, a literature survey of Q-RAM approach is presented and then
in the subsequent subsections, the definition and objective of Q-RAM are explained and Q-
RAM based algorithmic solution approaches to the radar resource allocation problem and

drawbacks of the model are introduced.

3.1 A Literature Survey of Q-RAM Approach

Q-RAM is first presented by Rajkumar et al. [6]. In [6], a system with multiple
concurrent applications is assumed and two main constraints are considered: resource
consumption can not exceed an upper bound and each application can meet its minimum
needs. Based on these constraints, the total system utility is proposed to be maximized and a
resource allocation algorithm is presented for the case of single resource type and single QoS
(Quality of service) dimension. Rajkumar et al. assumed that the utility functions of each
application are nondecreasing, concave and have two continuous derivatives. In [8], they
considered the problem of apportioning multiple resources to satisfy a single QoS dimension
different from their previous work in [6]. In [8], the utility functions are assumed to be min-
linear-max. The optimization problem is defined in a way such that the cost function and
constraints becomes linear. It is proposed to apply standard optimization techniques for

mixed integer programming in order to obtain optimal solution.
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In [6] and [8], Rajkumar et al. assumed continuous QoS dimensions and the utility
gained by improvements along a QoS dimension are representable by concave functions. In
[7], Lee et al. relax both assumptions. They support discrete QoS operating points. In order
to measure the QoS quantitatively a QoS management system is developed. In this structure,
a numerical mapping is developed for the quality dimensions that are non-numeric.
Therefore the Quality Index is introduced, which maps qualities to indices in order of
increasing quality. By analytically planning and allocating resources to multiple applications,
it is proposed to maximize the net utility acquired by the end-users. They also make no
assumptions about the concavity of the utility functions. Using these as the basis, they tackle
the problem of maximizing system utility by allocating a single finite resource to satisfy the

QoS requirements of multiple applications.

In [7] Lee et al. studied the problem of maximizing system utility by allocating a
single finite resource to satisfy discrete QoS requirements of multiple applications. This
study is proposed to be improved in [10]. In [10], Lee et al. focus on the problem of
apportioning multiple finite resources to satisfy the QoS needs of multiple applications and
deal with the optimization problem for the case of discrete QoS settings. An algorithm that
yields near-optimal results but can execute at potentially much higher speeds is presented.
The approach of the presented algorithm is similar to the approach of Lee et al. [7]. Resource
vector approach is newly proposed in order to handle the discrete QoS and multiple resource

casc.

In [16], Lee et al. proposed to solve a radar resource allocation problem, where
computation time (C;) and sampling frequency (f;) are variables of the resource allocation
problem, by using the Q-RAM approach [6] [8] [7] [10]. In [16], first the computation time
(Cy) 1s assumed to be fixed and only the sampling frequency (f;) is assumed to be adjustable.
Lee et al. [16] also assumed that the tracking quality function is defined as a continuous
convex function and proposed to solve the radar resource allocation problem with these
assumptions by using the approach in [5]. After in [16], the computation time (Cj) is also
considered as adjustable and assumption about continuity and convexity of the tracking
quality function is relaxed; and a near-optimal algorithm based on Q-RAM approach is

presented in order to solve the radar resource allocation problem.

In [19], an optimization algorithm for a radar tracking application, based on Q-RAM
is presented. Radar heat constraints on radar antennas and global energy source and

computational resource from the radar processor are investigated as resources in the radar
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system. Resource vector approach presented by Lee et al. [10] is used in [19]. Each scalar
element of the resource vector represents the demand on a particular resource. Therefore,
each resource vector defines a discrete operating point. A resource vector of a task is mapped
to a value representing the overall demand on the system for a particular set of resource

requirements and tracking quality is investigated as QoS dimension in [19].

In [24] and [20], the Q-RAM based solution of [16], which solves the radar resource
allocation with two variables for each tracking task (sampling frequency and computation
time), is proposed to be improved and it is proposed to consider not only sampling frequency
and computation time but also the average power of the transmitted signal of the radar
system for each tracking task as an adjustable parameter. A near-optimal Q-RAM based

resource allocation approach is presented in [24] and [20].

3.2 The Definition and Objective of Q-RAM Approach

In this section the mathematical formulation, assumptions and objective of the Quality
of Service based Resource Allocation Model (Q-RAM) is presented. Based on the works in
[6], [8], [7] and [10], the definition of Q-RAM is presented in the next subsection.

3.2.1 The Definition of the Model

Q-RAM is based on a system in which multiple applications may require access to
multiple resource types in order to satisfy requirements. In this system, also an application
requires a certain minimum resource allocation to perform acceptably. An application may
also improve its performance with larger resource allocations. This improvement in
performance is measured by a utility function in Q-RAM. ‘Q-RAM is a model in which
resources can be allocated to individual applications with the goal of maximizing a global
objective’ [6]. In Q-RAM, it is proposed to satisfy the simultaneous requirements of multiple
applications and allow applications access to multiple resources [8]. The characteristics of

the considered applications and system in Q-RAM are as follows [8]:

e Each application may have a minimum and/or a maximum need along each QoS
dimension.

e An application may require access to multiple resource types.

e Each resource allocation adds some utility to the application and the system, with

utility monotonically increasing with resource allocation.

20



e System resources are limited so that the maximal demands of all applications often

cannot be satisfied simultaneously.

Q-RAM is defined as follows. The system consists of n applications {Ki, K5, ..., K,},
n > 1, and m resources {Ry, Ry, ..., R,}, m > 1. Each resource R; has a finite capacity and
can be shared. The portion of resource R; allocated to application K; be denoted by R;;. It is

enforced that ZRA/ <R, [6].

i=1
The following definitions are introduced:

e The application utility, S;, of an application K; is defined to be the value that is
accrued by the system when K; is allocated R = (Ri1, Rij, ..., Rijn). In other words, S;
= S(R"). S; is referred to as the utility function of K;. This utility function defines a
surface along which the application can operate based on the resources allocated to
it.

e Each application X has a relative importance specified by a weight w;, 1 <i <n.

e The total system utility S(R', ..., R") is defined to be the sum of the weighted
application utility of the applications, i.e. S(R',..,R")= ZW;Si(Ri) .
i=1

e Each application K; needs to satisfy requirements along d QoS dimensions, d > 1.
e An application, K;, has minimal resource requirements. These minimal requirements
are denoted by R/ = {R;,\"", Ri,™", ..., Ri,"™"} where R; J'”i" >0,0<j<m An

application, K;, is said to be feasible if it is allocated a minimum set of resources.

In this thesis, we assume that d = 1, i.e. only a single QoS dimension, which is
tracking quality, is considered. In the following subsections assumptions and objective of the

Q-RAM are provided.

3.2.2  The Assumptions of the Model

The assumptions of Q-RAM are as follows [6]:

e The applications are independent of one another.
e The available system resources are sufficient to meet the minimal resource

requirements of each application, R"", 1 <i<n.

21



e The utility functions S; are nondecreasing in each of their arguments. And it is
assumed that these functions are concave and have two continuous derivatives.

e Each application, K;, has a weight w; denoting its relative importance.

If the second assumption does not hold, then the minimal resource requirements
cannot be met. If these requirements are not met, then some of the applications must be
dropped. Different techniques can be used in order to determine which of the applications
should be dropped, or some applications could be allowed to have less than their minimal
resource allocations [6]. Although this is a very important issue, it is beyond the scope of this
thesis.

In view of the 4th assumption, a weighted utility function for an application as w;S; can
be defined and then the resource allocation problem for those weighted utility functions can
be solved. Thus, the weights can be removed from the allocation problem. In this study,

these weighted utilities are used and the weights are dropped.

3.2.3 The Objective of the Model

Based on the definitions and assumptions given in the subsections, the objective of Q-
RAM is to make resource allocations to each application such that the total system utility is
maximized under the constraint that every application is feasible. In other words, {R;;, 1 <i
<n, 1<j < m} should be determined such that R;; > R;;"", amount of allocated resources to
the applications are not greater than the upper limit value of the system resources and S is

maximum [6].

As it is explained in section 3.1, first a resource allocation problem with single
resource type is investigated [6] and then it is proposed to extend the solution to the resource
allocation problems with multiple resource types in Q-RAM literature [8], [7], [10]. In the
following subsections first the case with single resource type is examined and then the case

with multiple resource types is investigated subsequently.

3.3 Approach for the Case with Single Resource Type

The case of making resource allocation decisions when there is only a single resource
type and a single QoS dimension is considered first in Q-RAM approach [6]. Since there is a
single resource, the subscripts associated with the resource types are dropped. For this case,
the utility functions of the applications become S; = Si(R;), 1 < i < n, where R; is the amount

of resource allocated to the application K;. The minimum resource allocation needed to
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satisfy K; is R/"". As it is indicated in section 3.2.2, all minimal application resource requests
can be met; Rajkumar et al. [6] focus on the allocation of the excess resources available.

In the analysis conducted in [6], it is assumed that R = 0, Vi = 1to n and the
quantity of available resources is reduced by that amount. The goal is to determine the values

of R;, Ry, ..., R, such that the total system utility, ZS,. (R,), is maximized subject to the
i=1

constraint ZRi < R . In [6], the following theorem, which provides a necessary condition
i=1

for an allocation to be optimal, is presented.

Theorem A necessary condition for a resource allocation to be optimal is Vi, 1 <i<n, R; =

0 or for any {7, j} with B> 0 and B> 0, S, (R) =S, (R,) [6].

S'(R) is the derivative of S with respect to R. The proof this theorem, which is provided in

[6], is as follows:

‘Proof The result is a standard conclusion of the Kuhn Tucker theorem [4]. To understand

the intuition behind the results, suppose that for some i # j, let R, > 0, R, > 0 and

! !

S, (R)=S, (R,). Since R; > 0, an infinitesimal amount of R can be subtracted from

application Kj; and added to application K;. Since S, (R;)>S; (R;), the total system utility

will increase. This contradicts the assumption that the allocation was optimal.’ [6].

Rajkumar et al. [6] proposed the following algorithm to determine the optimal resource
allocation R; for each application to obtain maximum utilization. It is assumed that each
application has already been allocated its minimum resource requirement. By the

assumptions in section 3.2.2; sufficient resources should be available for this allocation. The

optimal additional allocation to each application, R; > 0; 1 <i < n, subject to ZRi <R is
=1

proposed to be determined as follows:

Q-RAM Procedure for Single Resource Type:
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1. Let the current allocation of the resource to K; be R;, 1 < i < n. Let the

unallocated quantity of the available resource be R. Compute

(Sl (Rl)) "'5Sn (Rn )) .
2. Identify

!

i. the subcollection of applications with largest value of S, (R,),

ii. the number of applications in that subcollection (denoted by p),
iii. the application (denoted by ;) with the second largest value of

this quantity if any such application exists.

3. If the largest value of S, (R,) is 0, then stop. No further allocation will

increase system utility and spare resources are available.

4. Otherwise, increase R; for each of the members of the subcollection so

!

that their values of S, (R,) decrease but continue to be equal until one of

the following is satisfied,
i.  this value becomes equal to the second largest value or,
ii. the additional resources added to this subcollection equal R'.
5. If (ii) is satisfied, stop as all resources have been optimally allocated.
6. If (i) is satisfied, one or more new applications should be added to the

subcollection. Return to step 1.

For the considered maximization problem which is ‘Maximize ZS .(R.) such that
i=1

ZRi <R andR; >R, i=1,2, ..., n’, the Karesh-Kuhn-Tucker (KKT) conditions are as
i=1

follows,

=S8 (R) 1] 1] 0] (0]
_Sz (Rz) 1 0

+ A = | | —em | |=0 (3.3.1)
s,y L L -

24



R <R (3.3.2)

R>R™, i=12,..n (3.3.3)
A(ZR,. ~R)=0 (3.3.4)
w(R™-R)=0, i=12,..,n (3.3.5)
220 (3.3.6)

u, =20, i=12,.,n (3.3.7)

where A, uy, pz, ..., u, are Lagrangian multipliers [4]. If the objective function and the
constraints are convex, the KKT optimality conditions are sufficient conditions for
optimality of a solution [4]. In the optimization problem considered for illustration of the Q-
RAM approach, both the objective function and the constraints are convex. Therefore, for
the resource allocation problem above, a solution satisfying the KKT optimality conditions is

the optimal solution.

The described Q-RAM algorithm, as reported in [6], does not have a termination
criteria set that can terminate the algorithm in all possible cases. Certain possible cases exist
for which the algorithm does not have a termination criterion at all. To terminate the
algorithm for these cases, lead to a sub-optimal solution. These cases are summarized below

and are routinely possible during the execution of the algorithm.

e Case 1: Suppose that resource allocation is done to all of the applications, slopes of

the utility functions of the applications (S, (R,),i=1, 2, ..., n) are all equal to 4,

n
>0, and there is still excess resources i.e. ZRi <R.

i=1
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e Case 2: Suppose that resource allocation is done to k applications out of n (0 < k <
n) and amount of unallocated resources is not enough to make the slopes of the
utility functions of the applications, which are allocated resources, to make equal to

the second largest slope value, slopes of the utility functions of the applications

(S, (R),i=1,2, ..., n)are all equal to 4, A > 0, and there is still excess resources

ie. Zn:R[ <R.

i=1
e Case 3: Remember that it is assumed that amount of resources is enough to make
minimum resource requirement allocation to all of the applications. Suppose that
amount of unallocated resources is not enough to make the slopes of the utility
functions of the applications, slopes of the utility functions of which have the highest

value, to make equal to the second largest slope value and there is still excess

n
resources i.e. ZRi <R.

i=1

The cases listed above are possible cases which can be encountered during the
execution of the algorithm and no suggestions are proposed in the occurrence of these cases
in the Q-RAM approach for single resource type case. In these cases if the algorithm is
terminated this leads to non-optimal solutions as the condition 3.3.4 is not satisfied. As it is
mentioned previously, because the objective function and constraints are convex the KKT
conditions are sufficient for optimality; therefore terminating the algorithm in the cases listed

above as all of the KKT conditions are not fulfilled.

In order to terminate the Q-RAM procedure in the case of Case 1, Case 2 and Case 3
while satisfying all of the KKT conditions, a modification should be done on the algorithm.
By this way, optimal results can be obtained by applying the algorithm. In [23], radar
resource allocation problem that is described in Chapter 2 is considered; single resource type
resource allocation algorithm of Q-RAM is modified and an optimal resource allocation
approach to the radar resource allocation problem that is explained in the next paragraph is

presented.

3.3.1 Application of the Approach to the Radar Resource Allocation Problem

In Chapter 2, radar resource allocation problem with two resource types, which are
sampling frequency (computational resource) and average power of the transmitted radar

signal (energy resource), is explained. In [23], for the illustrative purposes of the
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modification algorithm on Q-RAM approach for the single resource case, radar resource
allocation problem with single resource type, which is sampling frequency, is considered.

The radar resource allocation problem in [23] is as follows:

Maximize

N 3
Z (1 _ mke*ak./k )
k=1

Subject to

szfk,min, k:1,2, .. N

As it is explained in section 2.2, the tracking performance of the radar system depending on
the sampling frequency (f;) can be formulated with an exponential function. In [5], Seto et al.
modeled the control performance of a system depending on sampling frequency with an
exponential function and in [16] Lee et al. used this approach and formulated the tracking
quality of the radar system with the exponential function which appears in the problem
formulation above. In this formulation, N is the number of tracking tasks, o is the sensitivity
to the sampling frequency change, C; is the computation time and f; u;, is the minimum

sampling frequency requirement of the kth tracking task as explained in Chapter 2.

The KKT optimality conditions for the radar resource allocation problem are as follows:

I —ma e | Ken (1] 0] (0]

—m,ya,e” " c, 0 1 0
+ A || =y = —p,| =0 (3.3.8)

|- mNaNe‘aNfN | _CN_ _0_ _O_ _1_
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N
> Cf <1 (3.3.9)
k=1

Ji 2 femin» k=L2,.,N (3.3.10)
N
2Q.Cofi ~1)=0 (3.3.11)
k=1
lle (fk,min _fk) = 05 k = 1, 2,---, N (3312)
A>0 (3.3.13)
420, k=L2,..,N (3.3.14)
N

Because the sampling frequencies (f;) have Cy’s as multipliers in the constraint ZC S <1,
k=1
. mdao, _,r
the expression ——k ¢~ %/s
k

, which is obtained by dividing the minus derivative of tracking

quality function of the kth tracking task to the computation time C;, is used instead of slopes.

mao, _ . o
Let’s call —k e /v ag M. My’s are defined as marginal return in [12]. The condition in
k

3.3.8 requires the M values of the tracking tasks, whose sampling frequencies are increased,
to be equal to each other. When the Q-RAM approach is applied; as a result of the algorithm,

suppose that sampling frequency of p out of N applications (0 < p < N) are increased from

the minimum sampling frequency values (fi uin, £ = 1, 2, ..., N) and the following condition is
satisfied:
M, _pr MO, _g mao, _,
PR e = 22 gl 2 = PP o 2 ) (3.3.15)
Cl CZ P
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In this arrangement of the tracking tasks, tasks are arranged in decreasing marginal return
order as it is indicated in the algorithm above, i.e. the tasks from 1 to p have the highest

marginal utility value. As a result of the algorithm, suppose that the utilization of the radar

N
processor does not reach to % 100, i.e. ZC . /i <1, but remaining utilization is not enough
k=1

to make the marginal returns of the tracking tasks with the highest marginal return value, to
be equal to the second largest marginal return value. Or p is equal to N and the utilization of
the radar processor is not % 100. In both of the cases the KKT condition in 3.3.11 is not
satisfied. In [23], to satisfy the considered condition along with the other KKT conditions,
the following modification is done on the Q-RAM procedure,

From 3.3.15, the sampling frequency value of kth tracking task can be written as

AC,

m, o,

£ =(Chm 2y, (33.16)
a,

One can now substitute expression 3.3.16 in place of f;in 3.3.11 in order to obtain

D N
z(hm%ﬂ+2q5mﬂ. (3.3.17)
k=

1O MmOy k=pu

By solving the equation in 3.3.17, In(1) can be obtained as

N L Co o C
1_ zckf}c,min +Zik1n( . )
In(A) = — ot 1% T (3.3.18)
> =5
[t

Again by substituting In(1) expression in 3.3.18 into the expression 3.3.16, the required

sampling frequency can finally be obtained as



1_ icift“,min +igln( C

—)
1 m.o i=p+1 -1 & m.Q,
=(—)| In(—=k)  — =2 = i
o= o Ine) c

i=1 a,‘

k=12,..,p  (33.19)

fi = fimn» k=p+1, ., N (3.3.20)

If the utilization of the radar processor did not reach %100 after applying the Q-RAM
procedure, sampling frequencies of the tracking tasks, whose sampling frequency values are
increased in the Q-RAM procedure, can be found from the formula in 3.3.19. Here p can be
found in Q-RAM procedure by iteratively making the marginal returns of the tasks equal to
each other beginning from the task(s) with the highest marginal return and increasing the
sampling frequency of the task(s) until the marginal utility becomes equal to the second

largest marginal return value as described in the algorithmic procedure above.

Therefore, for the single resource case, one can define proposed optimal Q-RAM by the

following pseudo-code:

1. Let the current sampling frequency of the kth tracking task be f;, 1 <k <
N. Compute (M, M,,....M,).
2. Identify
i. the subcollection of tasks with largest value of M, ,
ii. the number of tasks in that subcollection (denoted by p),
iii. the task (denoted by j) with the second largest value of this
quantity if any such task exists, else find the sampling

frequencies of all of the tasks by using the expression 3.3.19 and

terminate the algorithm.
3. If'the largest value of M, is 0, then stop.
4. Otherwise, increase f; for each of the members of the subcollection so
that their values of M, decrease but continue to be equal until one of the

following is satisfied,
i. this value becomes equal to the second largest marginal return

value, M ;> 0T,

30



ii. the utility of the radar processor reaches %100 utilization when

the marginal returns, M, k =1, 2, ..., p, of the tasks in the
subcollection become equal to the second largest marginal return
value, M i

iii. the utility of the radar processor reaches %100 utilization before

the marginal returns of the tasks in the subcollection, M, k=1,

2, ..., p, become equal to the second largest marginal return

value, M Iz

5. If (ii) is satisfied, stop as all resources have been optimally allocated.

6. If (ii) is satisfied, find the sampling frequencies of all of the tasks in the
subcollection (kK = 1, 2, ..., p) by using the expression 3.3.19 and the
sampling frequencies of the other tasks (k = p+1, 2, ..., N) by using the
expression 3.3.20 and terminate the algorithm.

7. If (i) is satisfied, one or more new tasks should be added to the

subcollection. Return to step 1.

With the modification on the Q-RAM procedure for single resource type, optimal
operating points can be obtained. As it is indicated in [16], [6], [19], [8], [7] and [10], main
objective of Q-RAM based approaches are to reach to a solution point, which is closest to the
optimal point, in real-time systems. As it is shown in [23] and Table 3.3.2, Q-RAM approach

with the modification described above reaches optimal point in below one millisecond.

Since a continuous quality function in single resource dimension can not be defined
for each application for the multiple resource type case, the modified Q-RAM procedure can
not be applied in multiple resource type. Therefore, near-optimal Q-RAM based approaches
and methods of feasible direction are investigated in order to handle multiple resource type
case. Near-optimal Q-RAM base approach is explained in following subsections of this

chapter.

3.3.2 Simulations for Run Time Measurement

In order to measure the run time of the modified Q-RAM approach for single resource
type case the input data shown in Table 3.3.1 is used. Detailed explanations regarding the
simulation technique and selection of simulation scenarios are provided in Chapter 5 for

multiple resource type case; for single resource type case also the same simulation technique
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is used. The parameters my, Cy, oy and f; ., is selected in order to provide various simulation

conditions which enables performing simulations that are unbiased from the specific scenario

conditions.

Table 3.3.1 Input Data for Run Time Measurement of Modified Q-RAM for
Single Resource Type Case.

Task | TO1 | T02 | TO3 | To4 | TO5 | TO6 | TO7 | TO8 | TO9 | TI10
my 08 | 09 [075]085]095] 07 | 09 | 0.8 | 095 | 0.85
Ci(ms)| 5 6 7 8 7 6 5 6 7 8
o 0.060 | 0.065 | 0.065 | 0.060 | 0.055 | 0.050 | 0.050 | 0.055 | 0.060 | 0.065
Simin 70 50 55 50 60 65 60 75 50 70

N is the number of tracking tasks included in the simulation scenario. N tasks are

selected from the task list of Table 3.3.1 for each simulation scenario. Multiple simulations

are performed for each N and execution time of the optimization algorithm is measured for

each of the simulations. In Table 3.3.2 average of the run time values measured in different

simulation scenarios for different N’s are presented.

Table 3.3.2 Mean Run Time of Modified Q-RAM
for Single Resource Type Case for Different
Number of Tracking Tasks Included in the
Simulation Scenario.

Number Mean Run
of Tasks (V) | Time (sec.)
1 0.00006406

2 0.00010438

3 0.00011549

4 0.00011868

5 0.00012171

6 0.00012500

7 0.00012839

8 0.00013194

9 0.00013438
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As it is presented in Table 3.3.2, the execution time of the optimal Q-RAM based solution
approach to the radar resource allocation approach is in the order of le-4 second, when the
number of tracking tasks included in the scenario changes from 1 to 9. In Table 3.3.3, the
number of tracking tasks included in the scenario is increased and the numbers of tasks are

varied from 20 to 200 with a step of 20.

Table 3.3.3 Run Time of the Modified Q-RAM
Approach. Number of tracking tasks included in
the scenario increases from 20 to 200 with a step
of 20. For each number of tracking task level, 100
simulations are performed and averages of the 100
simulations for each different N are presented in

this table.
Number Mean Run
of Tasks (V) | Time (sec.)
20 0.001625
40 0.015625
60 0.025
80 0.046875
100 0.078125
120 0.12188
140 0.17188
160 0.225
180 0.24531
200 0.25469

The optimal solution approach provides global optimum results with a convergence time
below one second even if the number of tasks included in the scenario is increased to 200
which can be considered as a dense scenario environment. In real-time systems, it is
important to improve the performance by re-allocating the resources adapting to dynamic
situations [16]. Therefore, changing task parameters for resource re-allocation with
negligible overhead is important for these systems. Hence, based on the results presented

above, it can be concluded that the solution approach can be considered for the real-time

applications.
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3.4 Approach for the Case with Multiple Resource Type

The solution obtained in the previous section can be applied to the resource allocation
problems including single resource type and whose objective functions and constraints are
suitable with the assumptions in subsection 3.2.2. And as it can be observed from the
simulation results and [23], for the specific radar resource allocation case, real-time
performance of the solution approach of section 3.3 is favorable. This solution approach is
attempted to be extended to the multiple resource type case but an appropriate result can not
be obtained. There exist near-optimal Q-RAM based resource allocation approaches in
literature [16], [18], [19] and [10] for the multiple resource type case. In this section these
approaches are investigated in detail.

In [16], Lee et al. extended the Q-RAM approach for single resource type and
proposed a near-optimal for the radar resource allocation algorithms in which sampling
frequency (f;) and computation time (Cy) are considered as resources. In the next subsection,

this approach is investigated.

3.4.1 Extension to the Specific Two Resource Type Case

Lee et al. [16] assumed that each tracking task, £ (k = 1, 2, ..., N), have a discrete
tracking quality function, Qi(f;), depending on sampling frequency and defined for different
tracking filter algorithms (algorithml, algorithm 2, etc.) as shown in Figure 3.4.1 and

considered the radar resource allocation problem formulated to below:

Maximize
N
e
k=1
Subject to

N

> C f <1

k=1

ﬁzﬁc.mina k:1,2, ,N

As it is explained in the previous subsection, Q-RAM approach for the single resource type

case processes single utility function depending on single variable for each application. In
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order to handle two variable case (sampling frequency and computation time depending on
tracking filter algorithm complexity), Lee et al. merged the tracking quality functions
defined for different tracking filter algorithms as shown Figure 3.4.2 which shows the two

algorithm case.

Tii T2 Trs Taa T

Figure 3.4.1 Discrete Tracking Quality Functions Depending on
Sampling Frequency (f;) and Defined for Different Tracking
Algorithms. Lee et al. [16] assumed computation time (Cj) of the first
algorithm is 2 ms and that of the second algorithm is 3 ms for
illustrative purposes.

In order to obtain a single tracking quality function, discrete tracking quality functions are
obtained for each tracking task, depending on utility of the radar processor U;, by using the
relation U; = f; x Cj. After this variable transformation, the tracking quality function
depending on the utilization of the radar processor, O,(U;), can be obtained by taking the
maximum of the two functions (the thick line in Figure 3.4.2). And after this point Lee et al.

investigated Uy as resource. Associated with each U there exists (f;, C;) pairs.
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Figure 3.4.2 Merged Tracking Quality Function. The tracking quality
functions in the previous figure are re-plotted depending on the
utilization of the radar processor which is U, = f; x C;. The maximum of
the figures on the same utilization points are taken and one tracking
quality function is obtained for each tracking task.

Lee et al. [16] constructed convex hulls of the merged tracking quality function of each
tracking task as shown in Figure 3.4.3 and obtained the final tracking quality functions,

oUY, k=1,2,...,N.

G @)

Figure 3.4.3 Convex Hull of the Merged Tracking Quality Function.
The green line in this figure shows the convex hull of the merged
tracking quality function.
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On the final tracking quality functions, Lee et al. applied the following algorithmic approach,
which is based on Q-RAM procedure, in order to obtain a resource allocation resulting in a

total tracking quality which is closest to the optimal. In this approach, Q,(U,) is the unit

tracking quality difference between the current operating point and the next operating point.

1. Calculate (QII(U D Qz/(U 2)seees QN,(U »)) and sort the tracking quality

!

tasks in decreasing O, (U, ) order at current operating points.

2. Evaluate the subcollection of tasks having the highest O, (U, ) value,

let’s call this set H.

3. Test whether the utilization of the radar processor exceed %100 or not
if the next operating point following the current operating point on the
convex hull curves is selected for each task in the set H.

a. If full utilization is not exceeded, pass to the next operating
point following the current operating point on the convex hull
curves for each task in the set H

b. If full utilization is exceeded, terminate the procedure.

4. Returnto step 1.

In this approach, tracking quality functions of the tracking tasks are taken as discrete
functions, Qy; in these functions tracking quality changes with sampling frequency and
computation time pairs. In the algorithmic approach above, operating point represents the
sampling frequency and computation time pair, (f;, Cy), for each tracking task as the goal of
the algorithm is to find the best operating point, i.e. sampling frequency (f;) and computation
time (Cy) value for each task. In Q-RAM procedure in subsection 3.3 searches are conducted
in one dimension for each application because there is single resource type. When resources
more that one type are considered, in order to conduct the Q-RAM approach the search
dimension is demoted to one dimension by considering the sampling frequency and

computation time in the one axis in the approach of [16] which is described above.

When compared with the Q-RAM procedure described in section 3.3, the logic behind
the approach of Lee et al. [16] is same with the Q-RAM procedure. In [16] the considered
objective functions are discrete functions and some approximations are made in order to
obtain convex hull of the discrete functions. The near-optimal algorithm of [16] considers
only the computational resources of the radar system. In order to consider the energy
resource of the radar system along with the computational resources, Q-RAM based

approaches presented in [18], [19], [10] and [24], which considers the general case of
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multiple resource case, can be examined. In the next subsection general extension of the Q-

RAM to the multiple resource type case is investigated.

3.4.2 Extension to the General Multiple Resource Type Case

In [10] Lee et al. proposed resource vectors, which include the different types of
resources as scalar components, to handle the multiple resource type case and enable the
search in one dimension for each application as the Q-RAM procedure makes search in one
dimension for each application. The objective functions of the applications are assumed to be
discrete in [10]. In [18], [19] and [24], the approach of [10] is used and Q-RAM based
resource allocation approaches are presented for specific problems. In [19] and [24], radar
resource allocation problem is considered; in [18], network applications and resource
management in phased array radar systems are investigated. In the following paragraphs, Q-
RAM based resource allocation procedure of [18], [19], [10] and [24] for general multiple

resource type case is explained on the radar resource allocation problem.

The radar resource allocation problem formulated in subsection 2.3 is restated below.
But in this case the tracking quality functions are assumed to be discrete different than the
previous formulation; QO is the tracking quality function of the kth tracking task (k=1, 2, ...,
N). And, the tracking quality functions are dependent on sampling frequency (f;), average
power of the transmitted radar signal (P;) and also computation time (C;). Computation time
is also considered as an optimization variable besides sampling frequency and power. In [16]
it is assumed that tracking a target with more sophisticated algorithms will require more
processor resource but produce better tracking quality. Therefore, for the radar resource
allocation problem formulated below, it is assumed that tracking quality increases with

increase of the computation time (Cy).

Maximize

N
2. 0.(fi,C . B)
=1

Subject to

Cofi =1

M-

38



ﬁfZJ[k,min, k= 1, 2, ,N

P> Pr i, k=1,2,...,N.

The discrete tracking quality functions are shown in Figure 3.4.4.

= (a) T T T T PA’II Crkl B (1]) T T T T JDA'IZ. Crkl
O o Cr I

T T T T NS R T R =l A

I T T S R I S T SO

A T ]
Fiv Jir Jis Trs Jis Jiv T2 Sz Jrs Tis

Figure 3.4.4 Discrete Tracking Quality Functions for kth Tracking Task (Qy) for
the Case of two (Py, Cy) Options. The first curve is valid for the average power of
the transmitted radar signal level (P;) of Py and computation time Cj; and the
second curve is valid for the average power of the transmitted radar signal level
(Py) of Py, and computation time Cj. These two curves define the discrete
tracking quality function (Q). If there exist some other P, and C; options, the
number of curves can be increase in order to define the O, function completely.

The Figure 3.4.4(a) is valid for the average power of the transmitted radar signal level (P;) of
Py and computation time C; and the Figure 3.4.4(b) is valid for the average power of the
transmitted radar signal level (P;) of Py, and computation time Cy;. These two curves define
the discrete tracking quality function (Qy). If there exist some other P; and C; options, the

number of curves can be increase in order to define the Oy function completely.
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In order to apply Q-RAM approach in multiple resource type case, it is intended to
obtain a tracking quality function in one dimension in [18], [19], [10] and [24]. In order to
obtain a single tracking quality function for each tracking task sampling frequency (f;),
computation time (C;) and average transmitted power (Pj) parameters are merged in a
resource vector, Oy = [f; Ci Pi]" (k=1, 2, ..., N), where each resource vector represents an
operating point as shown in Figure 3.4.6 and for each vector there exists a corresponding
quality value in the tracking quality curves. Hence, a resource vector-tracking quality
function can be obtained for each tracking task by arranging the quality vectors in increasing
quality value order. For the two curves in Figure 3.4.4(a) and Figure 3.4.4(b), the resultant

resource vector-tracking quality function is shown in Figure 3.4.5.
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Figure 3.4.5 Tracking Quality Function Depending on Resource
Vector (Oy). The discrete operating points in Figure 3.4.4(a) and
Figure 3.4.4(b) are arranged in the increasing tracking quality order.
As the discrete operating points define the resource vectors, the
tracking quality function depending on resource vector is obtained.
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Track j

Sampling Frequency: 20 Hz
Computation Time: 1ms
Power: 1 kW
Tracking Algorithm: Kalman

Resource Vector

Figure 3.4.6 Discrete Tracking Quality Function. As shown in the figure
each discrete point on the function defines an operating point for a tracking
task. In this figure for the jth tracking task numerical examples for an
operating point is given. In this example tracking algorithm for the
specified operating point is shown as Kalman whose computation time is
assumed to be 1 ms for this specific track. Also, the convex hull of the
discrete quality function is shown in this figure.

By this way, a single resource-tracking quality function is obtained for each task.
These functions are discrete and may not be concave. At this point, similar to the approach
of [16], convex hull of each tracking quality function is obtained, by using the approach
shown in Figure 3.4.3. Based on the optimization procedure of the Q-RAM approach, the

following iterative approach can be applied on the resultant resource vector-tracking quality

functions, Oy, (k =1, 2, ..., N). In this algorithmic approach, , denotes the unit tracking

quality difference between the next operating point and the current operating point divided;

ie. O =(0(0,.,.)-0,(0,.)/r, O, isthe current operating point and O is the

k,c+r

next operating point on the convex hull of the tracking quality function of the kth task.

1. Let the current allocated resource to kth tracking task be Oy, 1 <k < N. Compute and

sort (0, (0,), ., 0y (O,)).

2. Identify the first task in the sorted list of step 1. Pass to the next resource vector
(discrete operating point) on the convex hull of the resource vector-tracking quality
curve obtained prior to the step 1 of the identified task. If resources are not sufficient

for the specified allocation, then stop. Else, make the allocation.
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3. After allocating resources to the specified task; if there are unallocated resources,

return to step 1. If there are no unallocated resources, then stop.

As it can be observed from the Q-RAM based algorithm for the case of multiple resource
type, the approach is similar to the case with single resource type case except the objective
functions in multiple resource type case are discrete and some approximations are made in
order to obtain a resource-quality function in single dimension. In the next subsection the
approximations and drawbacks of the Q-RAM based resource allocation approach for the

multiple resource type case are explained.

3.5 Drawbacks of the Approaches for Multiple Resource Type Case

As it is mentioned previously, the goal of the Q-RAM based approaches for the
multiple resource type case is to reach a solution, which is closest to the optimal solution, in
real-time systems. In this algorithmic approach, the convex hulls of the objective functions
of the tasks are fed as input to the algorithm. The reason for consideration of the convex hull
functions for each task is to obtain the highest quality increase per resource increase for each
task at each iteration. In the iterations of the algorithm, the operating point following the
current operating point on the tracking quality curve and giving the highest quality increase
per resource increase is selected as the next operating point for each task. This operating

point selection procedure results in convex hull functions for each task.
In the approach described in previous subsection, in order to obtain the convex hull of

the objective functions of the tasks some operating points are not taken into consideration in

the search of the solution point process as shown in Figure 3.5.1.
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Figure 3.5.1 Obtaining Convex Hull of a Discrete Function. The
discrete point having gray color is discarded in order to obtain the
convex hull function.

Neglecting some of the operating points, as shown in Figure 3.5.1, in the search process may
lead to non-optimal results as the optimal result may contain the neglected operating points

for some of the tasks.

In the case of single resource type, it is assumed that the objective functions of the
applications are twice differentiable and constraints are convex in Q-RAM approach and an
algorithm is presented in order to obtain results satisfying the KKT optimality conditions.
Along with the assumptions obtaining a solution satisfying KKT conditions enables to reach
optimal results. But in the case of multiple resource type, the Q-RAM resource allocation
approach does not have a convincing theoretical background in the view of optimality. The
approach for the multiple resource type is similar to the approach the single resource type
case as in both of the procedures; the resources of the tasks having the highest marginal
returns are increased at each iteration. But, the Q-RAM procedure for the multiple resource

type case does not provide necessary and sufficient conditions for the optimality.

In order to obtain a theoretically convincing and optimal resource allocation approach
for the radar resource allocation problem, the Methods of Feasible Directions, which propose
optimization algorithms for the constrained optimization problems with non-linear objective
functions, are considered. The considered algorithms in the literature of the Methods of
Feasible Directions are Zoutendijk Algorithm with Topkis-Veinott’s Modification, Gradient
Projection Algorithm and Convex-Simplex Algorithm. The outputs of these algorithms
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satisfy the KKT optimality conditions in the case of convergence of the algorithms. When
the objective function and constraints are convex, the outputs of the considered algorithms
are optimal as KKT conditions are sufficient for optimality. As the constraint in Eq. 2.3.2 is
not convex when both f; and C; are considered as optimization variables, computation time
(Cy) is not considered as an optimization variable and the radar resource allocation problem
defined in subsection 2.3 is considered when the Methods of Feasible Directions are used for
resource allocation. The Q-RAM based approach for multiple resource type case is also
implemented for resource allocation problem of subsection 2.3 and Q-RAM and Methods of

Feasible direction are compared in terms of optimality and execution time in Chapter 5.
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CHAPTER 4

RESOURCE ALLOCATION WITH METHODS OF FEASIBLE
DIRECTIONS

As it is mentioned in the previous chapter, Q-RAM approach generates near-optimal
results to the resource allocation problem and the theoretical background of the model does
not consider the sufficiency conditions for optimality as a whole. In this thesis, it is proposed
to obtain a solution, which provides a well founded mathematical background and generates
optimal results as fast as the Q-RAM approach, to the resource allocation problem with
multiple resource type. In order to achieve this, the Methods of Feasible Directions, which
have been applied to the resource allocation problem in network applications [21] and [26],
is first proposed to be applied to the radar resource allocation problem. The radar resource
allocation problem formulated in subsection 2.3 is a constrained optimization problem with
linear constraints. In this section, the algorithms considered in the Methods of Feasible
Directions literature and that can generate optimal results to the optimization problems with
convex objective function and linear constraints, are investigated. The performances of the
algorithms are compared with Q-RAM on the radar resource allocation problem of

subsection 2.3.

4.1 Zoutendijk Algorithm

In this section, the theory of the Method of Zoutendijk and the modification of Topkis
and Veinott [1967] on the Method of Zoutendijk is introduced.

4.1.1 Theory

In the Method of Zoutendijk, an improving feasible direction is generated and a search
is conducted on the generated direction at each iteration [4]. The definition of improving
feasible direction is:

‘Consider the problem to minimize f{X) subject to X € s, where £E, = E; and S is a

nonempty set in £,. A nonzero vector d is called a feasible direction at X € s if there exists a
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& > 0 such that X + Ad € s for all L€ (0, §). Furthermore, d is called an improving feasible
direction at X € s if there exists & > 0 such that f{x + Ad) <f{x) and X + Ad € s for all L& (0,
d)’ [4].

In [4], the optimization problem with linear constraints provided below is considered

in order to describe the theory of the algorithm.

Minimize fX)
subject to Ax<Db
Ex=e

And the following lemma is presented:
Lemma4.1.1.1

‘Consider the problem to minimize f{X) subject to AX < b and Ex = e. Let X be a
feasible solution, and suppose that A;x = b; and A,x < b,, where A’ is decomposed into (A,
A;") and b’ is decomposed into (b,’, b,"). Then, a nonzero vector d is a feasible direction at X

if and only if A;d <0 and Ed = 0. If V A{x)'d <0, then d is an improving direction’ [4].

Based on the lemma above, generating an improving feasible direction is explained as
below;
‘Given a feasible point X, as shown in Lemma 4.1.1.1, a nonzero vector d is an improving
feasible direction if V f{x)'d < 0, A;d < 0 and Ed = 0. A natural method for generating such
a direction is to minimize V AX)'d < 0 subject to the constraints A;d <0 and Ed = 0. Note,
however, if a d such that V f{x)'d < 0, A;d <0 and Ed = 0 exists, then the optimal objective
value of the foregoing problem is —o0 by considering Ad, where A is arbitrarily large. Thus,
a constraint that bounds the vector d or the objective function must be presented’ [4].

In [4], three problems, each problem using a different normalization constraint
explained above, for generating an improving feasible direction is presented. In this thesis

the following problem is used in order to generate an improving feasible direction:

Problem D:
Minimize V fix)d
subject to Ax<b

Ex=¢e
-1<d;<1 forj=1,...,n
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This problem can be solved by the simplex method. Since d = 0 is a feasible to the
above problem, and since its objective value is zero, the optimal objective value of the above
problem can not be positive. If the minimum objective function value of the problem above
is negative, then, by the Lemma 4.1.1.1, an improving feasible direction is generated. It is
proved in [4] that if the minimal objective function value of the above problem is zero, then
x is a KKT point.

It is proposed to solve the following line search problem after determination of the

improving feasible direction, which is stated below, in Zoutendijk Algorithm [4].

Problem M:
Minimize V Ax + Ady)
subject to 0 <A < Amax

where X; is the current vector, d; is the improving feasible direction and (0, Any.x) is the
interval of uncertainty. Determination of A« is explained in detail in [4], refer to [4] for

determination of Ayay.

4.1.2 Algorithmic Approach

The Method of Zoutendijk for minimizing a differentiable function f'in the presence of

linear constraints of the form AX <b and EX = e is provided below [4].

Initialization: Find a feasible solution X;. Let k=1 and go to the step 1.

1. A’and b’ are decomposed into (A, A,") and (b/’, b,’) such that A;x, = b, and
AxX; < b,. Let d; be an optimal solution to the problem D. If V f{x;)'d = 0, stop;
X, is a KKT point. Else, go to step 2.

2. Let 24 is an optimal solution to the problem M. Let X+ = X; + Ad;. Replace &

by k+1 and repeat step 1.

In [4], it is shown that the algorithmic map of Zoutendijk’s method is not closed and
convergence is not generally guaranteed. A modification of Zoutendijk’s method is proposed
by Topkis and Veinott which guarantees a solution to a KKT point [4]. The considered

problem is:

Minimize fX)
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subject to 2i(xX)<0 fori=1,...,m

in Topkis-Veinott’s Modification Algorithm. In order to generate a feasible direction the

following direction finding problem is considered instead of problem P.

Problem DF:
Minimize z
subject to VAx)d-z<0

Vg(x)d-z<-g(x) fori=1,...,m
-1<d,<1 forj=1,..,n

Here, both binding and nonbinding constraints play a role in determining the feasible
direction [4]. The line search problem is same as problem M in Zoutendijk’s method except
the determination of uncertainty interval is different. For determination of the uncertainty
interval refer to [4].

The algorithmic procedure of Topkis-Veinott’s Modification Algorithm is as follows.

Initialization: Find a feasible solution X;. Let k=1 and go to the step 1.

1. Let (zi, d;) be an optimal solution to the problem DF. If z; = 0, stop; X; is a KKT
point. Else, z; < 0 and go to step 2.
2. Let Ay is an optimal solution to the problem M. Let X;+; = X; + Adi. Replace k&

by k+1 and repeat step 1.

The convergence of Topkis-Veinott’s Algorithm is proved in [4]. Refer to [4] for proof and
further details of the algorithm.

As it can be observed from the simulation results of the algorithm presented in Chapter
5, the execution time of the algorithm is higher than the other possible alternatives when the
algorithm is considered in real-time applications. Alternative algorithms are also investigated
in the Methods of Feasible Directions literature in order obtain favorable results in terms of
real-time performance. In the next subsection, the theoretical background of the Gradient

Projection Algorithm, which is one of the alternatives, is briefly presented.
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4.2 Gradient Projection Algorithm

When minimizing a function without constraints, the direction of steepest descent is
that of the negative gradient. However, in the case of constrained minimization problems,
moving along the steepest descent direction may lead violation of the constraints. In the
Gradient Projection Method of Rosen the aim is to project the negative gradient in such a
way that the direction is feasible and the objective function is improved [4]. The direction of
steepest descent is multiplied by a projection matrix P in this method. The definition of
projection matrix is ‘An n X n matrix P is called a projection matrix if P = P' and PP = P’

[4].

4.2.1 Theory

In this section the theoretical background of the Gradient Projection Algorithm is

presented on the following optimization problem,

Minimize AX)
subject to Ax<b
Ex=e

where A is an m X n matrix, E is an [/ x n matrix, b is an m vector, e is an [ vector, and f. E,
— E; is a differentiable function. Assume that X is a feasible point. Moving along -V f(X)
(the direction of steepest descent) may destroy feasibility. In Gradient Projection Method, in
order to maintain feasibility, - V f(X) is multiplied with a suitable projection matrix, P, and a
feasible direction, d = -P V f(X), is obtained [4]. The following lemma, which provides the

form of a suitable projection matrix P, is presented in [4]

Lemma4.2.1.1

‘Consider the problem to minimize f(X) subject to AX < b and EX = e. Let X be a
feasible point such that Ajx = b; and A;x < b,, where A’ = (A/, A,) and b’ = (b, b,").
Furthermore, suppose that fis differentiable at x. If P is a projection matrix such that PV f(X)
# 0, and then d = -P V f{X) is an improving direction of f'at X. Furthermore, if M’ = (A}, E")
has full rank, and if P is of the form P = | — M/(MM’)'M, then d is an improving feasible

direction’ [4].
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For proof of the lemma refer to [4].

As it is shown in the Lemma 4.2.1.1 if PV f(X) # 0, then d = -P V f{(X) is an improving
feasible direction. Suppose that PV f(x) = 0. Then,

0=PVAX) = [l - M(MM)'M]V £ix) = Vfix) + Mw = V fix) + A'u + E'v

where w = -(MM’)'MV fix) and W' = (U, V). If u > 0, then the point X satisfies the KKT

A

conditions [4]. If u & 0, the following projection matrix, P, provides an improving feasible

direction [4].

P=1-M{MMHM 4.2.1)
0
where, if U 2 0, let u; be a negative component of U, M’ = (Ai ,E"), Al is obtained from

A, by deleting the row of A, corresponding to u; [4].

4.2.2 Algorithmic Approach
The algorithmic approach of Gradient Projection Method is presented below.

Initialization: A point X; with Ax <b and Ex = e is selected. A’ and b’ are decomposed into
(A/, AY) and (b, by’) such that A;x = b, and A;x < b,. Let k=1 and go to step 1.

1. Evaluate M" = (A/, E"). If M is vacuous, stop if V f{x,) = 0, let d; = -V X)),
and proceed to step 2. Else, let P = 1 — M/(MM’)"'M and set d; = -P V f(x,). If d;
#0, go to step 2. If d; = 0, compute w = -(MM")'"MV f(x) and let W' = (U’, V). If
u >0, stop; X, is a KKT point. If u 2 0, choose a negative component of u, say,

u;. Update A, by deleting the row corresponding to u; and repeat step 1.
2. Find the optimal solution, A, to the following line search problem:

Minimize V A(x + Ady)

subject to 0 <A < Aax
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where A, 1S Obtained same as it is evaluated in the Method of Zoutendijk. Let

X1 = X + M di. Replace & by k+1 and repeat step 1.

It is shown that the direction finding map of Gradient Projection Algorithm is not
closed, which causes the algorithm not to convergence, and a direction finding routine for a
convergent variant of the Gradient Projection Method, which is provided below, is presented

in [4].

Step 1 of the algorithmic procedure presented above is proposed to be modified as follows in

order to obtain direction finding routine for a convergent algorithm in [4],

1. ‘Let M'=(A/, E"). If M is vacuous, then stop if V fix;) =0, let d; = -V f(Xp),
and proceed to step 2. Otherwise, let P = I — M{(MM")'M and set d, = -
PV fix,). Also, compute W = -(MM')'"MV f(x) and let W' = (u’, V'). If u > 0,
then stop if di = 0; otherwise, put d; = di # 0 and proceed to step 2. On the
other hand, if u 2 0, let u, = minimum; {u;} <0, let M = (At, Et) , where A1
is obtained from A, by deleting the row of A, corresponding to u;, construct the
projection matrix P=I- |\7|t(l\7ll\7lt)l\7| , and define df = -PV fix;). Now,

based on some scalar constant ¢ > 0, let

. - d if\\d;\\>|uh|c w22
d} otherwise

and proceed to step 2’ [4].

With the modification above the Gradient Projection Algorithm either terminates with a
KKT solution, or else, generates an improving feasible direction [4]. The proof that the
algorithm with the above modification is convergent is provided in [4], for further details of

the algorithm refer to [4].

The Gradient Projection Algorithm is applied to the radar resource allocation problem
of subsection 2.3 as in the case of the Zoutendijk Algorithm with Topkis-Veinott’s
Modification that is described in previous subsection. Execution time performance of the

Gradient Projection Algorithm is better than that of the Zoutendijk Algorithm with Topkis-
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Veinott’s Modification as it can be observed from the simulation results presented in Chapter
5. In the next subsection, the Convex-Simplex Algorithm, which is also considered in the

Methods of Feasible Direction literature, is briefly explained.

4.3 Convex-Simplex Algorithm

The Convex-Simplex Method is proposed to minimize a convex objective function

subject to linear constraints. The method is proposed by Zangwill [1].

4.3.1 Theory

The following optimization problem is considered in Convex-Simplex Algorithm,

Minimize £X)
subjectto Ax=Db

X >0.

In this algorithm, the basic variables are modified while maintaining feasibility, therefore the
method is similar to the Simplex Method for problems with linear objective function and
constraints [4]. For the theoretical background of the algorithm refer to [1] and [4]. In the

next subsection, the algorithmic approach of the method is presented.

4.3.2 Algorithmic Approach

Based on [4], the algorithmic procedure of the convex-simplex algorithm can be
introduced as follows:

Initialization: Begin with a point X; satisfying the constraints AX; = b and X; > 0. Let k= 1
and go to the step 1.

1. Compute /;, B, N and r as follows:

where A is decomposed as [B, N] (B and N are given in the expression 4.3.2) and d' is
decomposed as [ d’,d’; ] such that Ad = Bd + Ndy.

I = index set of the m largest components of X; (4.3.1)
B={a:jeli} N={a:j¢l} (4.3.2)
r'= VF(X,)' —V,f(x,)B™A (4.3.3)
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consider the expressions provided below. If a = = 0, stop; X, is a KKT point [4]. If a
> B3, compute dy from 4.3.6 and 4.3.8. If a. < B, compute dy from 4.3.7 and 4.3.9. If a. =
B # 0, compute dy either from 4.3.6 and 4.3.8 or else from 4.3.7 and 4.3.9. In all cases,

dp is computed from 4.3.10. And then, go to step 2.
o = maximum {-r;: 7; < 0}
B = maximum {x;7;: ;> 0}
v = an index such that o = -r,
v = an index such that = -x;7,

J

g0 el iy
1 ifjel,,j=v

g0 el ey
Tl-1 ifjel,,j=v
d,=-B"INd

B N

2. Solve the following line search problem:

Minimize SO+ Ady)
subject to 0 <X < hmax
where
o ifd, >0
I8 max s —-X Jk .
minimum <0 otherwise
jk

(4.3.4)

(4.3.5)

(4.3.6)

(4.3.7)

(4.3.8)

(4.3.9)

(4.3.10)

4.3.11)

X, dy are the jth components of X, and dy, respectively. Let A, be an optimal solution,

and let X;; = X, + A,d;. Replace £ by k+1 and go to step 1.

Refer to [4] for verification of the convergence of the Convex-Simplex Method.
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4.4  Application of the Methods to the Radar Resource Allocation Problem

To the best of our knowledge, the application of this well established family of
optimization algorithms, also termed as primal methods, to the problem of resource
allocation have been limited to the studies [21] and [26]. In [21], Gradient Projection
Algorithm is investigated in the problem of allocation of network resources. Similarly in
[26], the Gradient Projection Algorithm is studied for optimized bandwidth allocation in ad
hoc networks under overload situations and the convergence properties and performance
measured in terms of accumulated utility are investigated. In both of the studies, the research
domain is network applications. In this thesis, we apply the Methods of Feasible directions to
the radar resource allocation problem and collectively abbreviate our Feasible Directions
based solutions to the radar Resource Allocation problem as FDRA. Later in the following
section, a discrete version of this approach for the case with discrete operating points will be

presented and termed as FDRA-D with the suffix for Discrete.

The methods described in the previous subsections are for the optimization problems
with twice differentiable objective functions and linear constraints [4]. As the objective
function is twice differentiable and the constraints are linear in the radar resource allocation
problem, which is formulated in the subsection 2.3, the problem can be solved by employing
one of the methods described in the previous subsections. The problem can be written in the

following form,

Minimize AX)
subjectto Ax<b

Ex=¢e

for the Zoutendijk Algorithm with Topkis-Veinott’s Modification and the Gradient
Projection Algorithm. And the considered problem can also be formulated in the following

form,

Minimize f(X)
subjectto Ax=Db

x>0.

for the Convex-Simplex Algorithm. In the last formulation, the variables f; and P, (k= 1, 2,
..., N) can be changed to f; - fimin and Py - Py (k=1, 2, ..., N) and the minimum resource

requirement constraints can be written in the form X > 0. And as the objective function in the
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radar resource allocation problem is convex, the optimal result to the problem exist in the
constraint boundary of the timing and energy constraints formulated in the subsections 2.1.1
and 2.1.2, therefore the timing and energy constraints can be written in the form Ax = b for

the last formulation.

4.5 Approach for the Case with Discrete Objective Functions

As it is explained in the Chapter 3, Q-RAM approach is extended to the multiple
resource type case by considering the objective functions for each of the applications of the
resource allocation problem as discrete functions. In Chapter 5, the performance of the Q-
RAM approach for the multiple resource type case is compared with performance of the
algorithms, which are briefly explained in this chapter, on the radar resource allocation
problem formulated in subsection 2.3. The continuous objective functions defined in the
subsection 2.2 are considered for the Methods of Feasible Directions and discrete objective
functions, which are obtained by sampling the continuous objective functions of subsection
2.2 on discrete points, are considered for the Q-RAM approach. In order to obtain an
approach with better performance and theoretical background relative to the Q-RAM
approach for the multiple resource type case with discrete objective functions option, the
methods of feasible directions are proposed to be applied to the continuous objective
functions, which are obtained by applying a curve fitting approach to the discrete objective

functions.

In this subsection, the proposed approach is explained on the radar resource allocation
problem of subsection 2.3 in which sampling frequency (f;) and average power of the
transmitted radar signal (P;) of the tasks are investigated as variables of the resource
allocation problem except the tracking quality functions of the tasks are assumed to be
discrete functions. It is proposed to obtain exponential functions of the form of Eq. 2.2.1 best
fitting to the discrete tracking quality functions of the tasks by using the least squares method

[25].

Assume that there exists s discrete sampling frequency (fi;, i = 1, ..., s) and ¢ average
power of the transmitted radar signal (Py;, j = 1, ..., t) level options for £’th task. g; denotes
the tracking quality obtained from the £’th tracking task when the sampling frequency and
average power of the transmitted radar signal of the task are f;; and Py, respectively, for the
discrete tracking quality function of the kth task. After application of the least squares
method, the oy, f; and my values of the exponential function (Eq. 2.2.1) best fitting to the

discrete tracking quality function of the £’th task can be written as
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After finding the oy, f; and m; parameters of the continuous tracking quality functions,
which are obtained by using Eq. 4.4.1, it is proposed to apply the algorithms presented in the
previous subsections. Since, the value, derived from the algorithm, drops into a range which
is defined within discrete operating points (fx, Py; i =1, ..., s ,j =1, ..., ), the nearest point
supposed to be selected. The chosen nearest operating point should be the lowest discrete
operating point within the range. As an example, assume that the sampling frequency value
of a task, which is generated by one of the Methods of Feasible Directions that is applied on
the best fitting exponential curves to the discrete tracking quality functions, is 76.7 Hz and
the discrete sampling frequency options are 10, 20, 30, ..., 100 Hz, in this case the discrete
sampling frequency value to be chosen is 70 Hz. The described resource allocation approach
is called as FDRA-D (Feasible Directions based Resource Allocation approach for Discrete

objective function case) in rest of the thesis.
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CHAPTER 5

EXPERIMENTAL EVALUATION

In this chapter, the resource allocation problem with multiple resource type is
considered and the evaluation and comparison of the considered approaches are presented.
The simulation environment in this thesis is MATLAB 7.0.1. Our experimental evaluation is
intended to quantify the performance of resource allocation algorithms as applied to the radar
target tracking problem. We also focus on comparing the performance of the contribution in
the present study with those evaluated from the literature. As discussed in a theoretical
framework in the preceding chapters; the methods we have considered are Q-RAM based
methods and the Methods of Feasible Directions, in particular the Zoutendijk Algorithm with
Topkis-Veinott’s Modification, the Gradient Projection Algorithm and the Convex-Simplex
Algorithm. We evaluate these algorithms in this chapter in terms of closeness to optimality
and total execution time. We focus on measuring two main performance metrics for each

algorithm:

e The global tracking quality obtained by the resource optimization and its closeness
to the global optimum solution.

e The total execution time.

A proper evaluation of the algorithms considered require the selection of a reasonable
simulation scenario, acceptably realistic simulation conditions and parameters as well as a
formal definition for the performance measures used to compare and contrast these
algorithms. We do not claim to present a fully realistic radar tracking scenario, however, we
believe that the scenario considered is sufficiently illustrative and useful such that when
uniformly applied to all algorithms considered, gives us a good indication of relative

performance differences.
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5.1 Outline of the Chapter

In this chapter, first the simulation scenario which is used in quantifying and comparing the
performances of the resource allocation approaches is presented. In subsection 5.2, the
parameter values of the tracking tasks in the simulation scenario and the uniform selection
procedure of tasks from the task set are explained in detail. As it is explained in Chapter 3,
the Q-RAM approach for the multiple resource type case requires discrete objective
functions. In subsection 5.2, the generation of discrete objective functions for the simulations

as well as the Monte-Carlo Simulation technique utilized is also explained.

In subsection 5.3, the performance measures for the considered resource allocation
approaches are explained and the necessary definitions are presented. Some practical
difficulties are encountered for the termination of the Methods of Feasible Directions in
implementation. Since the speed of reaching a solution, which is one of the performance
measures for the resource allocation approaches, is dependent on the termination criterion of
the algorithms, the determination of the termination criterion is deemed important and its

selection is discussed and explained in subsection 5.3.

The performances of the considered resource allocation approaches are evaluated first by
using continuous objective functions. In subsection 5.4, the simulations with continuous

objective functions are described and simulation results are presented.

As previously discussed in Chapter 3, the Q-RAM approach for the multiple resource type
case is a discrete optimization approach. The objective functions of the Q-RAM approach
are discrete functions for the case of multiple resource type. These consist of performance
measure samples taken from the radar system operation at different operating points. With
the motivation of obtaining an improvement over the Q-RAM approach in terms of closeness
to the global optimal and speed of convergence, the Methods of Feasible Direction are
proposed to be applied to the resource allocation problem with multiple resource type and

discrete objective function.

In order to achieve this, the following approach is proposed: first, one obtains continuous
objective functions from the discrete function samples by curve fitting. Then, a chosen
continuous optimization method is applied to obtain a continuous globally optimal solution.
The optimization algorithm chosen for our experiments is the Gradient Projection Algorithm,
since it has the best convergence speed according to the simulation results presented in

subsection 5.4. The last step is to discretize back the solution point. The performance of the
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proposed alternative approach is compared with the Q-RAM approach. In subsection 5.5 of
this chapter, the simulations performed for the case of discrete objective functions are

described in detail.

5.2 A Simulated Radar Target Tracking Scenario

It is important to note that we are interested in an average behavior of the system over
a range of possible target-radar interactions. The first step in setting up simulation
environment is the definition of a target tracking scenario. In this scenario, a given number
of targets are in the field of view of the radar system. This visible target profile is a selected
combination from a spectrum of targets. As it is explained in section 2.2, the parameters oy
and S in the objective function take different values for different tracking tasks. The
maneuverability, speed, distance to the radar system of the targets being tracked lead to
different oy and f; parameter values in the objective function of the radar target tracking
problem. The initial condition parameter values f s, Prmin and the control value of minimum
achievable performance (m;) also play role in the characterization of the tracking tasks.
Based on the selection of the values of the parameters oy, Si, fimin» Prmin and my in the
numerical ranges of interest; different target-radar interaction conditions can be obtained. In
the following subsections, the construction of the total target spectrum and the visible sub-set

are described.

5.2.1 Target Spectrum

In order to generate a statistically meaningful performance estimate for the algorithms,
simulations are conducted over randomly constructed target scenarios. These scenarios are
extracted from a pre-generated 15 target spectrum which is given in Table 5.2.1. We
generated this table with the primary aim of uniformly sampling all parameter ranges of
interest affecting the target-radar interaction. Based on the literature, we observe the
following: Lee et al. selected minimum sampling frequency (f;) and sensitivity to the
sampling frequency (oy) values in the order of 10-20 Hz and 0.01-0.1 respectively in
evaluating their optimization approach to the radar problem they have examined [16].
Computation time parameter (Cy) is also selected in the order of 2-3 ms by Lee et al. in the
experimental evaluation part of [16]. In this study, the minimum sampling frequency (f; in),
sensitivity to the sampling frequency (@) and computation time (C;) values are selected

consistent with the experimental parameter values of [16] as shown in Table 5.2.1.
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Table 5.2.1 Input Data for the Simulations Performed

Task my Ck (ms) Oy ﬁk ﬁc,min (HZ) Pk,min (W)
Task 01 | 0.8 2 0.080 | 0.075 15 20
Task 02 | 0.75 1.9 0.085 | 0.070 16 21
Task 03 | 0.9 1.8 0.090 | 0.065 17 22
Task 04 | 0.85 1.7 0.085 | 0.060 18 24
Task 05 | 0.7 1.8 0.080 | 0.055 19 25
Task 06 | 0.95 1.9 0.075 | 0.060 20 26
Task 07 | 0.9 2 0.070 | 0.065 21 25
Task 08 | 0.95 2.1 0.065 | 0.070 22 24
Task 09 | 0.8 2.2 0.060 | 0.075 24 22
Task 10 | 0.85 2.4 0.055 | 0.080 22 21
Task 11 | 0.75 2.5 0.060 | 0.085 21 20
Task 12 | 0.7 2.6 0.065 | 0.090 20 19
Task 13 | 0.9 2.5 0.070 | 0.085 19 18
Task 14 | 0.8 2.4 0.075 | 0.080 18 17
Task 15 | 0.7 2.2 0.080 | 0.075 17 18

Minimum average transmitted power values (Py.;,) and sensitivity to the average
transmitted power (f;) are selected in the order of 15-25 W and 0.05-0.1 respectively for
experimental evaluation of the performance of the optimization approaches described
previously to the radar resource allocation problem defined in this study. Sensitivity to the
sampling frequency (a;) and sensitivity to the average power of the transmitted signal (5;)
values of the tracking tasks in Table 5.2.1 is varied in order to obtain different cases for the
simulation scenarios. The variation of a; and f; parameter values provides different scenario
conditions. In the simulation scenarios, different initial conditions that are obtained by
selecting different f; ,;, and Py, parameter values from the task list of Table 5.2.1 also
provides various simulation conditions which enables performing simulations that are
unbiased from the specific scenario conditions.

The control value of minimum achievable performance (m) is selected in the range
0.5-1.The range 0.5-1 for the control value of minimum achievable performance parameter is
selected in order to provide numerical examples for the comparative simulations.

It can be argued that a set of 15 alternative targets is too small to span the entire
parameter space created by the set of parameters considered. However, the aim of the study
is not to provide an estimate of absolute performance but a comparative evaluation of
different alternatives against each other. Therefore it is believed that the target spectrum
chosen is reasonably diverse and hence provides a promising ground for comparison of

performance.
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5.2.2 Target Sub-selection

The primary aim of generating different scenarios having the same number of tasks is
to obtain an averaged performance figure for a given number of tasks on-scene. For this
purpose, we obtain performance figures for each such scenario and obtain estimates for the
first order statistics, namely the sample mean and sample variance figures computed over K
such experiments. We wish to pick K large enough to have statistically meaningful
performance while dealing with realizable experimental (simulation) time. Hence, we have

chosen K in the following manner.

For the comparative simulations, scenarios containing different number of tasks are
considered. The number of tasks contained in the scenarios is varied from 1 to 11 while
performance measures considered are evaluated for each algorithm considered. These tasks
are chosen from the set of M=15 tasks given in Table 5.2.1. The spectrum of 15 different
targets allows us to construct different combinations of targets, each with the same number
of targets on scene. For example, one can construct a total number of 3003 target scenarios,
each with 5 targets on scene. The total numbers of possible scenarios are given in Table 5.2.2
as a function of number of targets on scene. N denotes the number of tracking tasks in the
scenario and My denotes the number of total combination of simulation cases that can be

obtained from the task set of Table 5.2.1 when there are N tasks in the scenario.

Table 5.2.2 Numbers of Total Combinations for Different

Number of Tasks
Number of Number of Total
Tasks in the |Combination of Different
Scenario (N) | Simulation Cases (My)
1 15
2 105
3 455
4 1365
5 3003
6 5005
7 6435
8 6435
9 5005
10 3003
11 1365
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My can be obtained using the following equation:

M!

-G (5.2.1)

N

As it can be observed from Table 5.2.2, the number of different simulation cases (My)
is not equal for different number of tasks included in the simulation scenario (N). Equal
numbers of different simulation cases for different number of tasks in the simulation scenario
are considered in order to make comparative simulations on the behaviors of the algorithms
when the number of tracking tasks in the simulation scenario changes. 400 simulation cases
are selected out of My simulation cases for N > 3; for N < 2 there is not enough different
simulation cases for obtaining 400 different simulation scenarios. 15 and 105 different
scenarios that are obtained from the task set of Table 5.2.1 is used for N = 1 and N = 2 cases
respectively. We expect that this will introduce some deteriorated variance for these two

cascs.

400 simulation cases are selected randomly out of M), simulation cases for each N (N =
3,4, ..., 11). Uniformly distributed random selection is accomplished by applying the rand
function in MATLAB. The rand function generates arrays of random numbers whose
elements are uniformly distributed in the interval (0, 1). 400 simulation cases are selected by

using the following algorithmic approach:

Scenario_Set = Generate Scenario Set (M_N_Scenario_Set)
Scenario_Set = {};
Divide (0, 1) interval into equal My slices;
Generate a random number in the interval (0, 1) — x=rand;
Find in which slice x is located (say K™ slice);
If k'™ scenario of My scenarios is in Scenario_Set
a. Then return to step 3,
b. Else add k'" scenario of My scenarios to the
Scenario_Set,
6. If number of scenarios in the Scenario_Set is equal to 400
a. Then stop,
b. Else return to step 3.

g w N

In this algorithmic approach, M N Scenario Set is the input scenario set where

scenarios are obtained from a task set of M tasks and each scenario contains N tracking tasks.
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There are M) different scenarios in the M N Scenario Set. Scenario Set is the set

containing 400 different scenarios selected from the M N Scenario Set.

5.2.3 Discrete Profile Generation

As discussed in Chapter 3, Q-RAM based algorithms are discrete in nature for the case
of multiple resource type and have need for discrete variables to operate. In order to have a
basis for comparison, we need the same tracking quality functions to be used for evaluation
of the considered approaches. Therefore, discrete tracking quality functions are generated by
taking samples of the continuous tracking quality functions described in section 2.2. For a
continuous tracking quality function for which frequency changes in the range 25 - 165 Hz,
power changes in the range 25 - 165 W, my is equal to 1, a4 is equal to 0.01, S is equal to
0.015 and that is shown in Figure 5.2.1, discrete tracking quality curve is obtained as shown

in Figure 5.2.2.

07

Tracking Quality
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0.4
180

Power

Freguency

Figure 5.2.1 Continuous Tracking Quality Function. For this plot, the parameters m;

is equal to 1, oy is equal to 0.01, S is equal to 0.015 in the tracking quality function.

In the discrete tracking quality function shown in Figure 5.2.2, frequency increases
from 25 Hz to 165 Hz with step of 10 Hz, power increases from 25 W to 165 W with step of

10 W. 15 different frequency levels are considered for the frequency axis and for the power
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axis also 15 different power levels are considered. From these selections, for a tracking task
there are 15 x 15 = 225 discrete operating points that can be selected. If the number of tasks
included in the scenario increases, the number of discrete operating point to be searched also
increases. If N is the number of tasks included in the scenario and D is the total number of
discrete points to be searched for a task, the total number of discrete points to be searched for

the global optimal solution (Drory;) is:

Drora, = D" (5.2.2)

For all of the scenario combinations obtained from Table 5.2.1, 15 discrete frequency
levels and 15 discrete power levels are considered for the discrete tracking quality functions
that will be fed to the Q-RAM Algorithm. Discrete sampling frequency and average power
of the transmitted signal levels are selected beginning from the minimum power
requirements of the tracking tasks. Each discrete operating point is feasible when minimum
resource requirements of the tasks are considered. For a scenario containing N tracking tasks

there are 225" discrete operating points that can be selected.

Tracking Quality

Power

Frequency

Figure 5.2.2 Discrete Tracking Quality Function. The discrete tracking quality
function is generated by taking samples on the continuous tracking quality
function of Figure 5.2.1.
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The number of discrete operating points depending on the number of tasks included in
the scenario is presented in Table 5.2.3 when there exists 225 discrete operating points for

one tracking task.

Table 5.2.3 Number of Discrete Operating Points
Depending on Number of Tasks

Number of Total Number of Discrete
Tasks Operating Points

1 225
2 50625
3 11390625
4 2.5629e+009
5 5.7665e+011
6 1.2975¢+014
7 2.9193e+016
8 6.5684e+018
9 1.4779¢+021
10 3.3253e+023
11 7.4818e+025

5.2.4 Monte-Carlo Simulations

As partly discussed in the previous section, in our performance evaluation, the aim is
to illustrate the expected behavior for a scenario with known number of visible targets. It is
also known that the particular set of visible targets can be selected from the total available
target spectrum in more than one way since there are My combinations of N targets out of 15.
The expected or average behavior for a given number of targets can be estimated by
performing simulations with a large number of possible selections from the available
spectrum where each selection having the same fixed number of visible targets N. This
estimate can be derived by averaging the performance data over this set of multiple
simulations and the standard deviation can be used as a basic measure of the confidence to
the results. The sample average and the sample standard deviation are computed according to

the following definitions.

Standard deviation s and mean X of data vector X is [3]:
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lein (5.2.3)

and

1

s :(li(xi —x)zjz (5.2.4)
nig

n is the number of samples in the result set.

5.3 Performance Measures

As it is indicated at the beginning of the chapter, the performance measures for the
observed optimization approaches are closeness of the solution to global the optimal and the
speed of reaching a solution. In the following subsections the performance measures are

elaborated.

5.3.1 Closeness to the Optimal

In order to evaluate the performance of the algorithms in terms of the closeness to the
optimal, the measure called ‘optimality percentage’ (OP) is introduced as discussed below.
Optimality is assessed over the objective function which is the total tracking quality. In the
definition below, 7Q denotes the total tracking quality obtained from the result of the
algorithm relative to the minimum resource requirement point and 70" denotes the tracking
quality obtained from the global optimum operating point relative to the minimum resource
requirement point. Because the cost function and constraints defined in the optimization
problem in subsection 2.3 are continuous and convex, the results of the Zoutendijk
Algorithm with Topkis-Veinott’s Modification, Gradient Projection and Convex-Simplex
Algorithms ensure the necessary and sufficient conditions for global optimality [4]. So the
optimality percentage of Zoutendijk Algorithm with Topkis-Veinott’s Modification,
Gradient Projection and Convex-Simplex Algorithms are %100; that is, the ratio of the
tracking quality obtained by using these algorithms to the global optimal tracking quality is

one.

OP=(TQ/TO™ ) x 100 (5.3.1)
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However in the case of the implementation of the Q-RAM based approach, it not
guaranteed that the total tracking quality obtained from the resultant point of the algorithm is
equal to the global optimum value. As it is mentioned in Chapter 3, the main objective of the
Q-RAM model is to reach a solution that is closest to the optimal with a high convergence
speed which can enable the model to be applied in real-time applications. The distance to the
global optimal value of the performance measure makes it possible to evaluate the
performance of the Q-RAM based approach experimentally in terms of optimality. Our
primary aim here is thus to see what is the compromise between speed and optimality for all

these algorithms considered.

5.3.2 Speed of Reaching a Solution

For the resource allocation approaches to be applied in real-time applications, it is
important for the algorithms to reach the final solution in the shortest amount of time. For
radar resource allocation problem, targets arrive and leave the field of view of the radar
system dynamically. The tracking task list of the radar system changes with arrival and
departure of the targets in the environment of the radar system. Radar system should also
reconfigure the operating parameters considered in the radar resource allocation problem (f;,
P;) of a target when the speed and distance of the target changes. The reconfiguration of the
fir and P, parameters of the tracking tasks in the real-time environments requires the resource
allocation algorithms to be applied under the real-time timing constraints. Although the
absolute requirements for the speed will vary between systems, a faster algorithm will

usually mean better applicability.

In the present study, we do not have a computational complexity analysis of the formal
algorithms considered. Furthermore, iterative algorithms rely on a termination criterion to
reach a solution. Instead, we opted for measuring execution time with the rationale that this
will give an objective ground for comparison when all algorithms are executed on the same
computational platform. In the following subsection, the measurement of the execution times
of the optimization approaches in MATLAB is presented. When the optimization algorithms,
which are presented in Chapter 4, are implemented in MATLAB, some practical difficulties
are encountered on the termination phase of the algorithms. Termination criterion of an
algorithm is important in order to measure the execution time of the algorithm exactly. The
encountered difficulties regarding the termination of the algorithms and the proposed

termination approach are explained in subsection 5.3.2.2.
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5.3.2.1 Measurement of the Execution Time

In order to compare the performances of the optimization methods intended to solve
the previously defined radar target tracking problem, MATLAB is used as the simulation
tool. Simulations are performed on MATLAB 7.0.1 that is running on a computer with AMD
Athlon 64 3200 processor, 1 GB RAM and Windows XP Operating System. For CPU time
calculation, the execution priority of the MATLAB is made ‘Real-Time’ to avoid CPU being
used by other applications.
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Figure 5.3.1 Making MATLAB a Real-Time Application in Windows OS

MATLAB function cputime is used to measure the total execution time of an
algorithm. The function cputime returns the total CPU time (in seconds) used by MATLAB
from the time it was started. For example, the following code is used to measure the total
execution time of the Gradient Projection Algorithm for a specific input scenario

Input_Scenario and power limit Pmax.

CurrentTime=cputime;
[OP,No_of Iterations]=GradientProjection (Input Scenario, Pmax);
ElapsedTime=cputime-CurrentTime;
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In this code OP is the output resultant operating point, No_of Iterations is the total number
of iterations performed by the algorithm in order to reach the final resultant operating point

and ElapsedTime is the total execution time of the algorithm.

5.3.2.2 Termination Criterion of the Algorithms

Some difficulties regarding termination of the algorithms are encountered in
implementation of the Zoutendijk Algorithm with Topkis-Veinott’s Modification, Gradient
Projection and Convex-Simplex Algorithms in MATLAB. In the following paragraphs the

encountered difficulties are explained and solutions utilized are discussed:

Zoutendijk Algorithm with Topkis-Veinott’s Modification:

In Zoutendijk Algorithm Topkis-Veinott’s Modification, the algorithm is terminated
when the parameter ‘z’ becomes zero since the operating point, to which the algorithm is
converged, is a KKT point as it is described in section 4.1.2 and in [4]. However, in most of
the cases the parameter ‘z’ never becomes zero; there is no uniform convergence to zero but
to a value near zero with a bias in practical implementations. For example, in some cases it
converges to values in the neighborhood of -le-10, in some other cases it converges to
values in neighborhood of -le-15, etc. The value to which the ‘z’ parameter converges,
changes according to the different scenarios used. Any threshold value of ‘z’ parameter that
can be used for the termination of the algorithm can not be determined because in some
scenarios the operating points converge at a specified ‘z’ value, in some other scenarios the
operating points converge at another specified ‘z’ value. As a result, some other termination

criterion should be determined and applied in the practical implementations of the algorithm.

Gradient Projection Algorithm:

Similar situation occurs in the case of implementation of the Gradient Projection
algorithm. When the direction vector (d) becomes zero and also the vector (MM')'MV fix,)
is greater than or equal to zero, the algorithm is terminated as the point to which the
algorithm converged is a KKT point as it is explained in section 4.2.2 and in [4]. But, similar
to the situation explained in the previous paragraph, in most of the cases the magnitude of
the direction vector never becomes zero when the algorithm is implemented. The magnitude
of the direction vector converges to values very near to zero; in some scenarios the value
considered converges to a value in the neighborhood of 1e-15, in some other scenarios it
converges to a value in the neighborhood of 1e-20, etc. The value, to which the magnitude of

the direction vector converges, changes according to the different scenarios. Similar to the
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Zoutendijk Algorithm with Topkis-Veinott’s Modification, some other termination criterion
should be determined and applied in the practical implementations also for the Gradient

Projection algorithm.

Convex-Simplex Algorithm:

From [4] and section 4.3.2, the Convex-Simplex Algorithm is terminated when the
case oo = B = 0 occurs. But, similar to the cases encountered in Zoutendijk Algorithm with
Topkis-Veinott’s Modification and Gradient Projection Algorithms explained in previous
two paragraphs, the parameters o and B of the Convex-Simplex Algorithm never become
zero in practical implementation of the algorithm. At some of the iterations of the algorithm
in which the specified parameters (o, ) are very near to zero, the operating point vector
(remember that the scalar components of the operating point vector are parameters of the
optimization problem) changes considerably. Therefore, closeness to zero of o and B can not

be used as a termination criterion for the algorithm in none of the cases.

The following approach [4] is used as termination criterion for the algorithms of the

method of feasible directions, which are presented in Chapter 4, in this thesis.

Terminating the Algorithms:

In order to overcome the explained practical difficulties encountered in the
implementation of the algorithms, one can use uniformly the difference between successive
operating points as the algorithms converges instead of the different specific convergence

criteria of the three algorithms[4]. This will be illustrated in the following paragraphs.

Let O, denote the operating point vector in the A™ iteration, which is defined as
follows: O= [flk By fox Pogo i PN’k]T for N targets, where f,, and P,; are the

sampling frequency and the average power of transmitted signal allocated to n™ target (n = 1,
2, ..., N) at k™ iteration, respectively. The normalized difference vector (N;) between the

successive iterations is defined as follows:
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s = Fia) Sra] |
(P = Py)/ Py
|(f2,k - fz,k—l)/fz,k—1|

Py = Pry)! Py
N= . (5.3.2)

(Fse = Faw)! Fsa]
(P =Py s)/ Py s

The Euclidian norm and infinity norm (maximum scalar component of the vector) of
the N, vector can be used as a termination criterion for the considered algorithms. The
objective function is a function of the operating point vector by definition. Provided that the
objective function obeys a certain smoothness (which is the case of our exponentially
constructed objective function), one would expect that the objective function value reaches a
steady state as the norm of the change in the operating point vector approaches zero. The ‘z’
parameter in the Zoutendijk Algorithm with Topkis-Veinott’s Modification, the direction
vector d in the Gradient Projection algorithm and the parameters a and § in Convex-Simplex
Algorithm are directly calculated from the operating point vector (Oy). Similar to the
objective function, when the change in the O, between successive iterations is very small,

the change in the considered parameters is also negligible.

In order to determine a threshold value on the norm of the N, vector, some examples
are considered and amount of change in the optimization variables with the amount of
change in the norm of the N, vector is investigated. In the following paragraphs, an example

illustrating the determination of the termination criterion of the algorithms is described.
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Figure 5.3.2 Variation of the norm of N, vector with iterations of the Zoutendijk
Algorithm with Topkis-Veinott’s Modification, in Logarithmic Scale. The
numerical values presented in Table 5.3.1 are used for the optimization problem
parameters for this example.

The scenario used in the simulations contains five targets and tracking quality function
parameters of the targets are provided in Table 5.3.1. The m, parameters of all of the tracking
functions are selected as m; = 1 in these simulations. As it is shown in Table 5.3.1, five
tracking tasks are considered in the simulation scenario. The variations of the optimization
variables (f;, Py) of Task 01 with algorithm iterations are presented in Figure 5.3.5, Figure
5.3.6 and Figure 5.3.7 respectively for the Zoutendijk Algorithm with Topkis-Veinott’s
Modification, the Gradient Projection Algorithm and the Convex-Simplex Algorithm. It can
be observed from these figures that the sampling frequency parameter of Task 01 converges
at around 60" iteration for the Zoutendijk Algorithm with Topkis-Veinott’s Modification,
55" jteration for the Gradient Projection Algorithm and 150" iteration for the Convex-
Simplex Algorithm. The average power of the transmitted radar signal parameter of Task 01
converges respectively at around 60", 60™ and 160" iterations for the same three algorithms
considered. Similar convergence figures can also be observed for other tracking tasks in the
simulation scenario. Since the presented figures of Task 01 are considered adequate to
provide an opinion about the convergence behaviors of the algorithms, the variation of
optimization variables for other tasks are not presented on individual figures and rather, only

the convergence iterations for these cases are presented in Table 5.3.2.
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Table 5.3.1 Parameters of the Simulation Scenario for
Determining the Termination Criterion.

Task | Ci(ms) | o B | fomin (HZ) | Prpin (W)
Task 01 5 0.08 | 0,06 25 45
Task 02 6 0.07 | 0,05 41 25
Task 03 5 0.06 | 0,07 29 25
Task 04 6 0.09 | 0,05 20 50
Task 05 5 0.07 | 0,06 25 41
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Figure 5.3.3 Variation of the norm of N, vector with iterations of the Gradient
Projection Algorithm presented in Logarithmic Scale. The numerical values
presented in Table 5.3.1 are used for the optimization problem parameters for this
example.

When the variation of optimization variables of Task 01 for the Zoutendijk Algorithm
with Topkis-Veinott’s Modification and Table 5.3.2 are observed, it can be concluded that
the algorithm converges at around 60" iteration; this is also true for the Gradient Projection
algorithm after observation of the Figure 5.3.6 and Table 5.3.2. As it is shown in Figure 5.3.7

the optimization variables of Task 01 reaches steady state at around 160" iteration. Table
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5.3.2 also illustrates that 160 is also the highest convergence iteration value of the
optimization variables for all the other tasks; therefore it can be concluded that the Convex-
Simplex Algorithm converges at 160" iteration.

At around 60" iteration, both Euclidian norm and infinity norm of the normalized
difference vector (N;) decreases to values in the neighborhood of le-4. This fact can be
observed in Figure 5.3.2 and Figure 5.3.3 respectively for the Zoutendijk Algorithm with
Topkis-Veinott’s Modification and Gradient Projection Algorithms. For the Convex-Simplex
Algorithm, both Euclidian norm and infinity norm of the normalized difference vector (Ny)
decreases to values in the neighborhood of le-4 at around 160™ iteration as shown in the
Figure 5.3.4.

It appears this change can reliably be used as a termination criterion for the algorithms.
When the magnitude of N, takes values in the neighborhood of le-4 or below in the
successive iterations, the change in the cost function and operating parameters of the targets

are very close to zero.
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Figure 5.3.4 Variation of the norm of N; vector with iterations of the Convex-
Simplex Algorithm, in Logarithmic Scale. The numerical values presented in Table
5.3.1 are used for the optimization problem parameters for this example.
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In the following figure, variations of sampling frequency (f;) and average power of the
transmitted signal (P;) values of Task 01 with iterations of the Zoutendijk Algorithm with
Topkis-Veinott’s Modification for the tracking tasks of Table 5.3.1 are presented. Both the
power and the frequency of the Task 01 converge at around 60" iteration when the
Zoutendijk Algorithm with Topkis-Veinott’s Modification is employed for the resource

allocation.

Change of parameters of Task 01 for Topkie-Veinot modification algorithm
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Figure 5.3.5 Variation of Optimization Variables of Task 01 for the
Zoutendijk Algorithm with Topkis-Veinott’s Modification. Both the power
and the frequency of the Task 01 converge at around 60™ iteration when the
Topkis-Veinott’s Modification Algorithm is employed for the resource
allocation.

Figure 5.3.6 shows variations of sampling frequency (f;) and average power of the
transmitted signal (Py) values of Task 01 with iterations of the Gradient Projection Algorithm

for the tracking tasks of Table 5.3.1.
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Figure 5.3.6 Variation of Optimization Variables of Task 01 for the Gradient
Projection Algorithm. Both the frequency of the Task 01 converge at around
55™ jteration and the power of Task 01 converge at around 60" iteration when
the Gradient Projection Algorithm is employed for the resource allocation.

Variations of sampling frequency (f;) and average power of the transmitted signal (Py)
values of Task 01 with iterations of the Convex-Simplex Algorithm for the tracking tasks of

Table 5.3.1 are presented in Figure 5.3.7.
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Figure 5.3.7 Variation of Optimization Variables of Task 01 for the Convex-
Simplex Algorithm. Both the power and the frequency of the Task 01
converge at around 150" iteration when the Convex-Simplex Algorithm is
employed for the resource allocation.

Table 5.3.2 Convergence Iterations Optimization Variables of Task 02,
Task 03, Task 04 and Task 05 of Table 5.2.1. The Zoutendijk Algorithm
with Topkis-Veinott’s Modification and the Gradient Projection Method
converge at around 60" iteration and the Convex-Simplex Method
converges at around 160™ iteration. At around these iterations, the norm
of N, falls under le-4 for the considered algorithms.

Convergence Iteration
Op\‘?m'lzatlon Zoutenc!ljk A.l gorl’t hm Gradient Projection Convex-Simplex
ariable Topkis-Veinott’s Aleorith Aleorith
Modification gorithim gorithim

h 60 55 150
P, 60 60 150
f 34 22 115
P, 60 28 150
f 18 5 15

P; 55 20 150
fa 55 60 140
Py 55 60 150
fs 18 15 125
Ps 60 28 160
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One can conclude from these results that the norm values of N; can be used as a
reliable termination criterion for the considered algorithms. The considered norm avoids the
practical difficulties encountered in the termination of these algorithms in practical
implementations. As it is shown in the figures presented above, along with the decrease of
values of the vector N, to the order of le-4, all the optimization parameters appear to have
converged. Simulations with different scenarios which contain different number of targets
are also performed and also support this observation. Therefore, we pick in this study, the
decrease of the norm of N, vector to below le-4 as a termination criterion for the

investigated Methods of Feasible Directions.

5.4 Comparative Simulations with Continuous Objective Functions

In the following subsections, the performances of the optimization approaches
proposed to the radar resource allocation problem are presented based on the simulated radar
target tracking scenario and the performance measures explained in the previous subsections.
In these simulations, continuous tracking quality functions of the form Eq. 2.2.1 for each
tracking task are used and discrete functions are generated from the continuous tracking

quality functions for the simulations performed using Q-RAM.

5.4.1 Results of the Zoutendijk Algorithm with Topkis-Veinott’s Modification

The experimental results for the Topkis-Veinott’s Modification Algorithm are
presented in Table 5.4.1 and Figure 5.4.1. In the results shown in Table 5.4.1, different
scenarios are used as inputs for each simulation and minimum, mean and maximum run
times of these simulations are presented. As it can be observed from Table 5.4.1, all run time
values increases with increase of number of tasks as expected. For each task, two
optimization parameters (sampling frequency (f;), average power of the transmitted radar
signal (P;)) are found as explained in the previous sections. The number of such optimization
parameters is 2N for each tracking radar problem containing N tracking tasks. It is expected

for run time of the algorithm to increase with increase of the tracking tasks in the scenario.
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Table 5.4.1 Run Time of Topkis-Veinott’s Modification Algorithm

Number of Best Run Time Value | Mean Run Time Value | Worst Run Time Value

Targets (sec.) (sec.) (sec.)
1 0.03125 0.065625 0.39063
2 0.015625 0.038437 0.046875
3 0.03125 0.044375 0.046875
4 0.046875 0.3675 0.54688
5 0.1875 0.93387 1.4219
6 0.32813 1.293 1.625
7 0.34375 1.0851 1.3438
8 0.60938 2.3752 3.5938
9 1.1094 4.1363 6.9844
10 2.2656 13.677 22.625
11 3.2344 23.564 28.844

Run Tirme of the Method of Zoutendijk
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Figure 5.4.1 Run Time of Topkis-Veinott’s Modification Algorithm

Figure 5.4.1 shows the variation of mean run time with number of tasks included in the
simulation scenario. Bars at mean run time values show standard deviation of the run time
from the experiments. The figure makes it clear that the mean run time increases with

exponential characteristic with increase of number of tasks in the scenario.
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Table 5.4.2 Number of Iterations of Topkis-Veinott’s
Modification Algorithm

Number of Numbe rof Run Time Per
Targets Iterations Iteration (sec.)
(Average)
1 4.2 0,015625
2 4.1 0,0093749
3 4 0,011094
4 29.7 0,012374
5 70.5 0,013246
6 81.1 0,015943
7 80.6 0,013463
8 141.6 0,016774
9 227.7 0,018166
10 619.4 0,022081
11 1011.9 0,023287

When Table 3.3.1 is observed, it can be concluded that number of iterations and run time of
the algorithm per iteration increases as the number of tracking tasks increases. With increase
of the number of tracking tasks in the simulation scenario, the number of optimization
parameters that are processed at each iteration of the algorithm increases. A linear
programming problem is solved at each step of the algorithm in order to determine the best
improving feasible direction. With increase of the number of tasks in the simulation scenario,
variables of the linear programming problem increases. More computation time is required
for solving the direction finding problem with more parameters. Therefore, run time per

iteration of the algorithm increases with increase of the number of tasks.

5.4.2 Results of the Gradient Projection Algorithm

Simulation results of the Gradient Projection Algorithm are presented in Table 5.4.3,
Figure 5.4.2 and Table 5.4.4. Similar to the results of the Topkis-Veinott’s Modification
algorithm, run time of the Gradient Projection Algorithm increases with increase of number

of tasks included in the scenarios as shown in Table 5.4.3.
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Table 5.4.3 Run Time of Gradient Projection Algorithm

Number of Best Run Time Value | Mean Run Time Value | Worst Run Time Value

Targets (sec.) (sec.) (sec.)
1 0.0045312 0.0046146 0.005
2 0.015625 0.014687 0.015625
3 0.03125 0.055 0.0625
4 0.046875 0.070703 0.078125
5 0.046875 0.069141 0.078125
6 0.03125 0.071484 0.078125
7 0.015625 0.068633 0.078125
8 0.015625 0.072734 0.078125
9 0.046875 0.080352 0.09375
10 0.015625 0.086836 0.10938
11 0.03125 0.10492 0.125

Figure 5.4.2 shows variation of mean run time for N = 1 to N = 14. The variation of
run time of the Gradient Projection Method exhibits an exponential characteristic in the
interval 4 < N < 11. In order to see whether the exponential increase characteristic of run
time, the number of tasks included in the scenario is increased and averaged performance of
the Gradient Projection Method is evaluated for the cases of N = 12, 13 14. Although the
behavior is not as clear as the previous case, it can be concluded within the standard
deviations that the mean run time of the Gradient Projection Algorithm increases almost
linearly with increase of number of tasks included in the scenario. The Gradient Projection
Algorithm has better execution times than the Method of Zoutendijk with Topkis-Veinott’s
modification. Because of the exponential versus linear behavior, the difference between run
times of the Gradient Projection and Topkis-Veinott’s Modification Algorithms becomes

more distinct with the increase in the number of tasks.
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Figure 5.4.2 Run Time of Gradient Projection Algorithm

Table 5.4.4 shows average number of iterations and average run time for each iteration
of Gradient Projection Algorithm. Increase of number of tasks included in the scenario leads
to increase of number of calculations at each iteration. As shown in Table 5.4.4 average run
time per iteration increases. Run time per iteration in Table 5.4.4 is obtained by dividing

mean run time value in Table 5.4.3 to the mean iteration value in Table 5.4.4.

Table 5.4.4 Number of Iterations of Gradient Projection

Algorithm
Number of Numb.e rof Run Time Per
Targets Iterations Iteration (sec.)
(Average)

1 6 0.0007691

2 13.76 0.0010674

3 46.48 0.0011833

4 56.145 0.0012593

5 53.72 0.0012871

6 53.915 0.0013259

7 52.102 0.0013173

8 52.915 0.0013745

9 56.7 0.0014171

10 59.138 0.0014684

11 68.028 0.0015423
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5.4.3 Results of the Convex-Simplex Algorithm

Table 5.4.5, Figure 5.4.3 and Table 5.4.6 shows the simulation results of the Convex-

Simplex Algorithm. It observed from the presented results of Table 5.4.5 that similar to the

simulation results of the algorithms previously presented, run time of the Convex-Simplex

algorithm also increases with increase of the number of tasks as expected.

Table 5.4.5 Run Time of Convex-Simplex Algorithm

Number of Best Run Time Value | Mean Run Time Value | Worst Run Time Value

Targets (sec.) (sec.) (sec.)
1 0.00015625 0.00025 0.0003125
2 0.00015625 0.00016875 0.0003125
3 0.00015625 0.00015625 0.00015625
4 0.0625 0.098828 0.10938
5 0.34375 0.55297 0.65625
6 0.64063 0.91027 1.0313
7 0.64063 0.94781 1.0781
8 0.875 1.2624 1.4063
9 1 1.3557 1.5
10 1.2031 1.7225 1.9063
11 1.1875 1.8709 2.1406

Figure 5.4.3 provides a plot of the mean run time and its standard deviation as error

bars for the case of Convex-Simplex Algorithm for N =1 to N = 11. Run time of Convex-

Simplex Algorithm shows almost a linearly increasing characteristic with increasing number

of tasks included in the scenario as shown in Figure 5.4.3.
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Figure 5.4.3 Run Time of Convex-Simplex Algorithm

The results suggest that the Convex-Simples algorithm is very advantageous over Topkis-
Veinott’s Modification and Gradient Projection Algorithms for the case of N < 3. This
relatively better performance of Convex-Simplex Algorithm is not however observed for the
case N > 4. Comparing Table 5.4.3 with Table 5.4.5, the Gradient Projection Algorithm
appears more favorable as compared with the Convex-Simplex Algorithm for the scenarios

with NV > 4. The comparative plot in Figure 5.4.4 better illustrates the explained behavior.
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Figure 5.4.4 Comparison of Run Times of the Gradient
Projection Algorithm and the Convex-Simplex Algorithm.

In the Table 5.4.6 below, average number of iterations and average run time per
iteration values of the Convex-Simplex Algorithm is presented. Run time per iteration of
Convex-Simplex Algorithm, which is increasing with increasing N as expected, is higher
than that of the Gradient Projection Algorithm. Convex-Simplex Algorithm converges to the
final operating point in one iteration and run time for the convergence of the algorithm is
better than the Gradient Projection Algorithm when compared with results presented in
Table 5.4.4 for the case of N < 3 as shown in the table below. But with increase of the
number of tasks, number of iterations and computations at each iteration of the Convex-

Simplex Algorithm becomes much higher.

Table 5.4.6 Number of Iterations of Convex-Simplex

Algorithm
Number of I;I::;I;l;iegnzf Run Time Per
Targets (Average) Iteration (sec.)

1 1 0.00025
2 1 0.00016875
3 1 0.00015625
4 36.97 0.0026732
5 197.27 0.0028031
6 299.66 0.0030377
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Table 5.4.6 Continued
7 289.13 0.0032781
8 360.37 0.0035031
9 362.26 0.0037423
10 434.48 0.0039645
11 444.94 0.0042048

The Gradient Projection Method has better execution time among the other alternative
algorithms considered in the Methods of Feasible Directions. In the Method of Zoutendijk
with Topkis-Veinott’s modification, a linear programming sub-problem is solved at each
step in order to find the best improving feasible direction. However in the Gradient
Projection Method, the improving feasible direction is found by projecting the negative
gradient of the cost function onto the nullspace of the binding constraints. The evaluation of

the direction vector is simpler in the Gradient Projection Method.

In the Convex-Simplex Method, after evaluation procedure of the reduced gradient vector,
which is similar to the direction finding phase of the Gradient Projection Method,
comparisons are performed on the scalar components of the nonbasic part of the reduced
gradient vector in order to determine the nonbasic component of the direction vector that
best improves the objective function. The basic component of the direction vector is
computed from the nonbasic component by multiplying it with nonbasic and inverse of the
basic components of the constraint matrix. Hence, there are more comparative computations
in the evaluation of the direction vector phase of the Convex-Simplex Method than that of

the Gradient-Projection Method.

After determination of the direction vector, the line search phase is same in the considered
algorithms of the Methods of Feasible Directions. Therefore, the Gradient Projection
Algorithm has better execution time when compared with the other alternatives in the

Methods of Feasible Directions.

5.4.4 Results of the Q-RAM Based Approach

Simulation results of the Q-RAM Algorithm are provided in Table 5.4.7, Figure 5.4.5,
Table 5.4.8 and Table 5.4.9. Mean run time of Q-RAM Algorithm increases with increase of
N and it is comparable with mean run time of Gradient projection Algorithm as it can be

observed from Table 5.4.3 and Table 5.4.7.

86



Table 5.4.7 Run Time of Q-RAM Algorithm

Number Best Run Time Value Mean Run Time Value Worst Run Time Value

of Targets (sec.) (sec.) (sec.)
1 0.0079688 0.0081563 0.0084375
2 0.015625 0.018304 0.046875
3 0.015625 0.028228 0.046875
4 0.015625 0.036756 0.0625
5 0.03125 0.046989 0.078125
6 0.046875 0.057084 0.078125
7 0.046875 0.065873 0.09375
8 0.046875 0.077195 0.40625
9 0.0625 0.089376 0.10938
10 0.078125 0.098183 0.125
11 0.09375 0.11176 0.14063

Figure 5.4.5 shows change of mean run time of Q-RAM algorithm for N increasing

from 1 to 11. We verify that in agreement with the behavior specified in [6] run time of the

Q-RAM Algorithm increases linearly with increase of tasks included in the simulation

scenario. When compared with the simulation results of the Zoutendijk with Topkis-

Veinott’s Modification, Gradient Projection and Convex-Simplex Algorithms, Q-RAM

Algorithm together with the Gradient Projection Algorithm seems favorable to the remaining

two alternatives from the run time point of view.
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Figure 5.4.5 Run Time of Q-RAM Algorithm

Number of iterations and average run time of one iteration of Q-RAM Algorithm is
shown in Table 5.4.8. Number of iterations decreases with increase of tasks as shown in the
table. On the other hand, the table also shows the run time per iteration to increase. The
former behavior can be explained by the execution of the algorithm. When the number of
tasks in the scenario increases, unallocated resource amount that will be allocated to the tasks
by using Q-RAM approach in order to obtain an optimal resource allocation will decrease
with assignment of minimum resource requirements to the tasks. This leads to the distance
between the current operating point and constraint boundary to decrease. This in turn leads to
the decrease of the number of iterations of the Q-RAM Algorithm with increase of the

number of tasks included in the simulation scenario.
Increase of N requires Q-RAM Algorithm to search more tasks for the best resource

allocation in every iteration. Number of calculations at every iteration increases for this

reason and run time per iteration increase with increase of M.
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Table 5.4.8 Number of Iterations of Q-RAM Algorithm

Number of Run Time
Number of . .
Targets Iterations Per Iteration

(Average) (sec.)
1 21 0.0003884
2 40 0.0004576
3 28.193 0.0010012
4 19.077 0.0019267
5 17.8 0.0026398
6 15.802 0.0036125
7 13.935 0.0047272
8 12.791 0.0060351
9 12.594 0.0070967
10 12.325 0.0079662
11 11.986 0.0093242

In the Table 5.4.9, the optimality percentage of the Q-RAM Algorithm is presented.
As shown in the table, the distance of the result of the Q-RAM Algorithm to the global
optimal resource allocation increases with increase of the number of tasks included in the
scenario. This decrease is not significant however. As will be illustrated later, the loss of

performance becomes much worse when the number of tasks becomes significantly large.

Table 5.4.9 Optimality Percentage of the Result of
the Q-RAM Algorithm

Number of Targets | Tracking Quality Ratio (%)
1 100
100
99.939
99.513
99.129
98.772
98.516
98.342
98.265
98.219
98.183
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The comparative plot presented in Figure 5.4.6 shows that the Q-RAM approach and
the Gradient Projection Method have similar execution times. The Gradient Projection
Method results in optimal solutions, however the Q-RAM approach has near-optimal results.
Therefore, the Gradient Projection Method appears to be advantageous over Q-RAM in
terms of closeness to optimal. However, when the results presented in Table 5.4.9 are
observed, the distance of the results of the Q-RAM approach to the global optimum solution
can be ignored for the case N =1 to N = 11. In the next subsection, a detailed analysis for the

cases, in which N is much more higher than 11, is presented.
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Figure 5.4.6 Comparison of Run Times of the Q-RAM
Approach and the Gradient Projection Algorithm.

5.5 Comparative Simulations with Discrete Objective Functions

The Q-RAM algorithm can directly be applied in this case since it is inherently a
discrete algorithm. However, Feasible Directions based algorithms are continuous in nature
and their application in the discrete objective function case requires some adaptation to be
incorporated. This adaptation is named in this study as FDRA-D. Due to its favorable
performance, we have selected the Gradient Projection method from this group to be
compared with the Q-RAM approach for the discrete objective function case. As discussed

in more detail in subsection 4.5, this algorithm can be applied to the discrete case after
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finding the best fitting exponential curves (1—m,e ) to the discrete tracking quality

functions of tracking tasks. The result of the continuous optimization thus obtained is
discretized back by finding the discrete operating point closest to the continuous result.
FDRA-D searches for the closest discrete value towards to the decreasing resource direction
in order to guarantee the feasibility of the operating point. It should be noted that the
described method forms a complete discrete algorithm where an inner loop is based on

continuous optimization.

In these simulations, the tracking quality functions of tracking tasks are taken as
discrete functions and for a simulation scenario containing N targets, there are 225" discrete
operating points to be searched for the optimal operating point. As it can be observed from
Table 5.4.9 that the optimality percentage of the Q-RAM approach is in the neighborhood of
% 98 - % 100 for the scenarios with N ranging from 1 to 11; the aim of the simulations
performed in this subsection is to observe the performance of the Q-RAM approach when
the number of targets in the scenario (V) is increased to numbers considerably larger than 11
and to see whether the FDRA-D can generate better results with the execution time
comparable with that of the Q-RAM approach to the resource allocation problem whose

objective function is discrete.

Tracking Quality

Powier

Frequency

Figure 5.5.1 Generation of Discrete Tracking Quality Functions. For the
simulations performed for comparative performance evaluation for the case of
discrete objective functions, the input discrete functions are generated by
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adding noise to the continuous functions. In this figure, noise is added to the
function 1— mke_ak/"_ﬂkp" for which a; = 0.008, B = 0.006 and m; = 0.9.

In these simulations, discrete quality functions are first generated by sampling the
continuous quality functions. On the discrete quality functions, quality differences of each
point with their four neighbor points are evaluated separately. A random number is generated
in the interval [0, 1] by using the rand function in MATLAB. The interval [0, 1] is divided
into four equal intervals (i.e. [0, 0.25), [0.25, 0.5), [0.5, 0.75) and [0.75, 1]). Depending on
the interval in which the generated number lies in, the quality value of the discrete point is
increased or decreased by the quality difference between one of the four neighbor points
multiplied by a re-generated random number with the function rand. In order to decide
whether to increase or decrease the quality at the considered point an other random number
is generated with rand function and if the generated number is greater than 0.5 the quality

value is increased else the quality value is decreased.

In this subsection, Gradient Projection Algorithm is used in the Methods of Feasible
Directions phase of the FDRA-D and the performance of the FDRA-D is compared with the
Q-RAM on the radar resource allocation problem. The reason for using the Gradient
Projection Algorithm can be seen from the simulation results presented in the previous
subsection. In these results, it can be observed that the execution time of the Gradient
Projection Algorithm is much better than the other two algorithms (Zoutendijk Algorithm
with Topkis-Veinott’s Modification and Convex-Simplex Algorithm) and comparable with
the execution time of the Q-RAM approach.
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Figure 5.5.2 Change of Optimality Percentage with Increase of Number of Targets for
Different Resource Allocation Approaches. Number of targets included in the simulation
scenario is increased from 20 to 200 for this simulation. The results of the FDRA-D
approach is closer to the optimal than the results of the Q-RAM approach.

As it can be observed from Figure 5.5.2 the results of the FDRA-D approach are closer
to the optimal results than the results of the Q-RAM approach. Note that the discretized
version of the feasible directions based methods (in this case the Gradient Projection
method) is no longer globally optimal when compared to the continuous global optimum
point. Unfortunately, it is not feasible, even with off-line exhaustive search to determine the
exact global optimum point of the discrete problem as a reference, hence our use of the

continuous global optimum (%100 point).

The table below presents the average run time of the FDRA-D and Q-RAM
approaches with change of the number of tracking tasks included in the scenario. For the
comparative simulations, a number of scenarios are considered. In all of these scenarios, the
number of tracking tasks (N) ranges from 20 to 200 with an increment of 20. These tasks are
chosen from a set of 400 tasks. Total combination of 10 different simulation cases are
considered for different number of targets included in the scenario. Table 5.5.1 provides

average of the run time values for 10 different simulation scenarios for each N value.
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Table 5.5.1 Run Time of FDRA-D and Q-RAM Approaches. As the number of
targets included in the scenario is increased, the run times of both of the
approaches increase; run time of the FDRA-D approach is comparable with
that of the Q-RAM approach.

Number of Tasks (V) | Run Time of FDRA-D (sec.) | Run Time of Q-RAM (sec.)
20 0.35822 0.30938
40 1.2689 1.0297
60 2.7755 2.5485
80 5.0018 4.7391
100 8.222 7.1219
120 9.2 9.9969
140 13.917 12.87
160 18.494 16.172
180 21.737 19.355
200 27.038 22.824

As it is explained in subsection 4.5, the result of the feasible direction method (scalar
components of the operating point vector) is rounded to the nearest lower discrete operating
point in order to guarantee the feasibility. Due to this rounding process the optimality

percentage of the FDRA-D approach decreases with increase of the number of tracking tasks

included in the simulation scenario as it is shown in Figure 5.5.2.

Root-mean-square (rms) of the noise added to the discrete function that is obtained by
sampling the continuous function at discrete points is 0.017 for the simulations results shown
in Figure 5.5.2 and Table 5.5.1. When rms of the noise added to the input function is

increased the optimality percentage of the FDRA-D approach decreases as it is shown in

Table 5.5.2. In Table 5.5.2, simulations results for 200 tracking task case are shown.

RMS of the Noise Optimality Percentage (%)
0.0085 89
0.0171 87.9
0.0342 87.1
0.0685 85.2

Table 5.5.2 Variation of Optimality Percentage with
Variation of RMS of Noise. In these simulations there
exist 200 tasks in the simulation scenario. 10 different
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simulations are performed for each different rms value
and averages of these simulations are presented in this
table.

When the simulation results presented in subsection 5.4 are observed, it can be
concluded that when the tracking quality functions of the tracking tasks are modeled as
continuous functions, the Methods of Feasible Directions can be used in order to solve the
radar resource allocation problem, which can be formulated as a constrained optimization
problem. The execution time of the Gradient Projection Algorithm is comparable with the Q-
RAM approach, which was [6] proposed to be applied in the real-time applications. This
implies that we are effectively proposing a theoretically well founded and optimal resource
allocation approach to resource allocation problems with multiple resource type and
continuous objective functions with results comparing favorably to those of the Q-RAM
approach. The Gradient Projection Method, which have comparable execution time with the
Q-RAM approach, appear to be a better alternative than the Q-RAM approach for resource

allocation problems with multiple resource type and continuous objective functions.

For the resource allocation problems with multiple resource type and discrete objective
functions, the presented study proposes to find best fitting continuous curve to the objective
function and apply optimal continuous optimization techniques. For the radar resource
allocation problem, in which f; and P, are investigated as optimization variables and the
tracking quality functions of the tracking tasks are discrete functions, we have obtained best
fitting exponential curves to the tracking quality functions and applied the Methods of
Feasible Directions. The proposed FDRA-D approach provides results outperforming the Q-
RAM approach to the radar resource allocation problem with comparable run times. This can
be observed from Figure 5.5.2 and Table 5.5.1. Since the theoretical background of the
FDRA-D approach is well founded and the approach is advantageous over the Q-RAM
approach in terms of convergence and closeness to the global optimal solution, it is our
belief that it is a better alternative than the Q-RAM approach for the resource allocation

problems with multiple resource type and discrete objective functions.

5.6 Summary

In this chapter, the performances of the Methods of Feasible Directions and the Q-RAM

approach are evaluated and compared on the radar resource allocation problem. The
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sampling frequency (f;) and average power of the transmitted radar signal (Pj) are
investigated as optimization variables. In subsection 5.4, the case with continuous objective
functions is considered and the objective functions formulated in subsection 2.2 are used.
Subsection 2.2 also discusses that the exponential tracking quality functions can be obtained
for different tracking quality tasks with different speed, distance to the radar system and
maneuverability properties in practical applications. Hence such exponential functions are
utilized in our simulation experiments. In these simulations, the Q-RAM approach is applied
based on discrete objective functions obtained by sampling the continuous objective
functions on discrete operating points. Our simulation results show that the Gradient
Projection Method proves to be advantageous over the Q-RAM approach in terms of

closeness to optimal with comparable execution times with the Q-RAM approach.

As it is mentioned in subsection 2.2, the tracking quality functions for different tracking
tasks are also considered as discrete functions and Q-RAM is proposed to be applied to the
radar resource allocation problem [16]. In the present study, an alternative resource
allocation approach to the Q-RAM called FDRA-D is proposed to be applied to the radar
resource allocation problem for discrete case of the resource allocation problem. The
simulation results of subsection 5.5 show that the proposed FDRA-D approach is
advantageous over the Q-RAM approach in terms of closeness to optimal while maintaining
comparable speed. This approach is also solidly founded on optimization theory as opposed

to the Q-RAM approach.

96



CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, the resource allocation problem in real-time systems is investigated and a
phased array radar system is considered as an illustrative area in order to comparatively
evaluate the resource allocation approaches. A detailed investigation of a recently proposed
resource allocation approach called Q-RAM is presented in two different cases: single
resource type case and multiple resource type case. For the multiple resource type case, we
propose to apply the Methods of Feasible Directions to the radar resource allocation
problem. The performances of both the Q-RAM and the Methods of Feasible Directions
based approaches are investigated in terms of optimality and convergence speed with the
help of Monte-Carlo simulations. In the following subsections, first, the contributions of the
thesis are outlined and second, the future work that can improve the present study is

presented.

6.1 Contributions

The contributions of the present study can be outlined as follows:

e The Q-RAM approach, when applied to the radar resource allocation problem, is
evaluated and shortcomings of the approach are identified.

e The Q-RAM approach to the radar resource allocation problem with single resource
type is extended to give a global optimal solution.

e Algorithms from the well established Methods of Feasible Directions are proposed
and applied to the radar resource allocation problem with multiple resource type
with promising results.

e A comparative evaluation of algorithms investigated for the cases with continuous

objective function and discrete objective, is presented.

The following paragraphs will briefly elaborate on these contributions:
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For the case of single resource type, the Q-RAM algorithmic approach is improved in
order to generate optimal results in all of the possible termination cases when the radar
resource allocation problem formulated in subsection 3.3.1 is considered. In this solution
approach, since the objective function in the minimization problem is twice differentiable
and convex together with the convex constraints, the KKT optimality conditions are
proposed to be satisfied completely as a result of the algorithm. As it is shown in the
simulation results presented in 3.3.2, the proposed optimal resource allocation have minimal

execution times, hence is still suitable for real-time applications.

As it is explained in subsection 3.4, the goal of the Q-RAM based approaches for the
multiple resource type case is to reach a solution, which is closest to the optimal solution, in
real-time systems. The emphasis is on a fast approximate solution. For this case, the Q-RAM
based solution approach is a near-optimal optimization approach and does not provide a well
founded mathematical background. With the motivation of using a theoretically well
founded method, we propose algorithms based on Methods of Feasible Directions. To the
best of our knowledge, we present the first application of this family of methods to the radar
resource allocation problem. The results obtained reveal, in particular for the Gradient
Projection Method that globally optimum solutions are possible with comparable
computational speed. In order to overcome the practical difficulties encountered in
determination of termination of the algorithms of the Methods of Feasible Directions in
practical implementations, the norm values of N; is used in this thesis as it is explained in the

subsection 5.3.2.2.

It is proved in [4]; the Methods of Feasible Directions generate optimal results to the
minimization problems with twice differentiable and convex objective functions and convex
constraints. The objective function in the radar resource allocation problem formulated in
subsection 2.3 has twice differentiable and convex objective function and convex constraints
when it is re-formulated in the form of minimization problem. Therefore, the results
generated by the Methods of Feasible Directions to the radar resource allocation problem are
optimal. As it can be observed from the simulation results presented in subsection 5.4, the
convergence speed of the Gradient Projection Algorithm is comparable with that of the Q-
RAM approach. Hence, an optimal solution, which is as fast as the Q-RAM approach and
has a comparable mathematical background, for the radar resource allocation problem in this

thesis.
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As it is explained in Chapter 3, the Q-RAM approach is applied on the discrete
objective functions for the resource allocation problem with multiple resource type. For the
comparative simulations whose results are presented in subsection 5.4, discrete samples are
taken on the continuous objective functions in order to generate simulation inputs to the Q-
RAM approach. In this thesis, an approach called FDRA-D is proposed in order to obtain an
improved method over the Q-RAM approach executing directly on the discrete objective
functions for the resource allocation problem. In this approach, it is proposed to fit
exponential curves to the discrete tracking quality functions of the tracking tasks for the
radar resource allocation problem and applying one of the Methods of Feasible Directions on
the continuous exponential curves. The resultant operating point, derived from the algorithm,
drops into a range defined within discrete operating points. The nearest point, which is the
lowest discrete operating point within the range, is selected. As it can be observed from the
simulation results presented in subsection 5.5, the FDRA-D approach generates favorable

results than the Q-RAM approach with execution times comparable with the Q-RAM.

6.2 Future Work

In this thesis, sampling frequency (f;) is investigated as computational resource while
average power of the transmitted radar signal (Py) is investigated as the energy resource of
the radar system. By considering these parameters as optimization variables, an optimization
problem with convex objective function and convex constraints can be formulated. When the
computation time (C;) of the tracking algorithms is also considered as an optimization
parameter along with the sampling frequency and average power of the transmitted radar
signal, the constraints of the optimization problem become non-convex. In this case, solving
the formulated optimization problem with the Methods of Feasible Directions does not
provide sufficient conditions for the global optimality of the results. As an ongoing work, it
is proposed to solve the radar resource allocation problem by considering also the
computation time as an optimization variable in order to obtain global optimum results with

maximal convergence speed.

After determination of the tracking parameters for the tracking tasks, the tracking tasks
should be scheduled in the radar processor. In dense tactical environments in which all of the
targets in the environment can not be tracked simultaneously by the radar system, the
determination of which tracking tasks to drop from the task list and how to schedule the
tasks in the radar processor is important. In the future studies, it is proposed to consider the

problem of optimal scheduling of the radar tasks in the radar processor.
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In the present study, resource allocation in one radar system is considered. Resource
allocation in a system containing multiple radar systems tracking a set of targets is planned
to be considered in the future studies. In this system, each target is tracked by exactly one
radar system and responsibility for targets from one radar system can be transferred to
another as the targets move. A resource manager allocates resources to the tasks of the radar

systems in order to achieve a globally optimal tracking quality.
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APPENDIX

A.1 Convexity

A set S'in E,, is said to be convex if, for each X;, X, € S, the line segment AX; + (1 — X)X, for A
€ [0, 1] belongs to S.

N/

Convex Not convex

Figure A.1.1 Illustration of convexity

Let S be nonempty convex set in E,. The function f/: § — E| is said to be convex on § if
S+ (1= )%] M) + (1 - Mf(X)

for each x;, X, € § and for each A € [0, 1]. The function f is said to be concave if —f is

convex.

A.2 KKT Optimality Conditions
Consider the following problem:

Problem P: Minimize AX)

subject to g(x)<0 fori=1,...,m
h(x)=0 fori=1,...,!/
xeX

where f, g, h; : E, — E; and X is a nonempty open set in £,. The KKT necessary optimality
conditions are as follows. If x is a local optimum solution to Problem P, and under a suitable

constraint qualification, there exists a vector (U, V) such that
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VF(X) + f:u,Vg,. (X)+ ivthi (x)=0

u;g,(x)=0 fori=1,...m

u; 20 fori=1,...m

u; and v; are the Lagrange multipliers associated with the constraints g;(x) < 0 and 4,(x) = 0,
respectively. When objective function and constraints of the minimization problem are

convex, the KKT conditions are sufficient for optimality.

A.3 Relation between Probability of Detection and Transmission Power

The probability of detection equation in radar systems is provided below [13]:
S/N=A4+0.124B+1.7B (A3.1)
In this equation, S is the power of transmitted radar signal and N is noise power and

A=1n(0.62/P,) (A3.2)
B=n[P, /(1-P,)] (A.3.3)

In the equations A.3.1 and A.3.2, P, is the probability of detection and Py, is probability of
false alarm. When the probability of detection equation is re-arranged, it can be written in the

following form.

1

P=1-— (A.3.4)

T K™ 41

K, and K, in the above equation are provided in the below equations,
ln(0.62)
_ Jfa

0.121n(01'362)+1.7

K =e a (A.3.5)
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1

K, = 5\’62 (A.3.6)
0.12In(" %) +1.7

fa

When the probability of false alarm and noise power are selected in the shaded region of the
figure shown below, the probability of detection can be written as an exponential function of
transmission power from equation A.3.1. In this region, 1 can be ignored in the denominator

of the second term and probability of detection can be written as in A.3.6.

0.999 |
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1
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(S/N);, signal-to-noise ratio, dB

Probability of detection

Figure A.3.1 Probability of detection for a sinewave in noise
as a function of the signal-to-noise (power) ratio and the
probability of false alarm [13]
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