
 

 

ON OPTIMAL RESOURCE ALLOCATION IN PHASED ARRAY RADAR 
SYSTEMS 

 

 

 

 

 

 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

 

 

 

BY 
 

AYHAN IRCI 
 

 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR 

THE DEGREE OF MASTER OF SCIENCE 
IN 

ELECTRICAL AND ELECTRONICS ENGINEERING 
 

 

 

 

SEPTEMBER 2006 



Approval of the Graduate School of Natural and Applied Sciences 

 

____________________ 

Prof. Dr. Canan ÖZGEN 

Director 

 

 

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of 

Science. 

_____________________ 

Prof. Dr. İsmet ERKMEN 

Head of Department 

 

 

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in 

scope and quality, as a thesis for the degree of Master of Science. 

 

_________________________    __________________________ 

Prof. Dr. Buyurman BAYKAL    Asst. Prof. Dr. Afşar SARANLI 

Co-Supervisor      Supervisor 

 

 

Examining Committee Members 

 

Prof. Dr. Kemal LEBLEBİCİOĞLU (METU, EE)   _______________ 

 

Asst. Prof. Dr. Afşar SARANLI  (METU, EE)   _______________ 

 

Prof. Dr. Buyurman BAYKAL  (METU, EE)   _______________ 

 

Assoc. Prof. Dr. T. Engin TUNCER (METU, EE)   _______________ 

 

Asst. Prof. Dr. Yakup S. ÖZKAZANÇ (Hacettepe University, EE) _______________ 



 iii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and presented 

in accordance with academic rules and ethical conduct. I also declare that, as required 

by these rules and conduct, I have fully cited and referenced all material and results 

that are not original to this work. 

 

 

Name, Last Name: Ayhan IRCI 

Signature    : 

 



 iv

ABSTRACT 

 

ON OPTIMAL RESOURCE ALLOCATION IN PHASED ARRAY RADAR SYSTEMS 

 

Ircı, Ayhan 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Asst. Prof. Dr. Afşar Saranlı 

Co-Supervisor: Prof. Dr. Buyurman Baykal 

 

September 2006, 106 pages 

 

In this thesis, the problem of optimal resource allocation in real-time systems is studied. A 

recently proposed resource allocation approach called Q-RAM (Quality of Service based 

Resource Allocation Model) is investigated in detail. The goal of the Q-RAM based 

approaches is to minimize the execution speed in real-time systems while meeting resource 

constraints and maximizing total utility. Phased array radar system is an example of a system 

in which multiple tasks contend for multiple resources in order to satisfy their requirements. 

In this system, multiple targets are tracked (each a separate task) by the radar system 

simultaneously requiring processor and energy resources of the radar system. Phased array 

radar system is considered as an illustrative application area in order to comparatively 

evaluate the resource allocation approaches. For the problem of optimal resource allocation 

with single resource type, the Q-RAM algorithm appears incompletely specified, namely it 

does not have a termination criteria set that can terminate the algorithm in all possible cases. 

In the present study, first, the Q-RAM solution approach to the radar resource allocation 

problem with single resource type is extended to give a global optimal solution in all 

possible termination cases. For the case of multiple resource types, the Q-RAM approach can 

only generate near-optimal results. In this thesis, for the formulated radar resource allocation 

problem with multiple resource types, the Methods of Feasible Directions are considered as 

an alternative solution approach. For the multiple resource type case, the performances of 

both the Q-RAM approach and the Methods of Feasible Directions are investigated in terms 

of optimality and convergence speed with the help of Monte-Carlo simulations. It is 

observed from the results of the simulation experiments that the Gradient Projection Method 

produce results outperforming the Q-RAM approach in closeness to optimality with 

comparable execution times. 

Keywords: Optimal Resource Allocation, Real-time Systems, Phased Array Radar, Q-RAM, 

Methods of Feasible Directions



 v

 

ÖZ 

 

FAZ DİZİLİ RADAR SİSTEMİNDE OPTİMAL KAYNAK PAYLAŞIMI 

 

Ircı, Ayhan 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği 

Tez Danışmanı:  Yrd. Doç. Dr. Afşar Saranlı 

Ortak Tez Danışmanı: Prof. Dr. Buyurman Baykal 

 

Eylül 2006, 106 sayfa 

 

Bu çalışmada, gerçek-zamanlı sistemlerde optimal kaynak paylaşımı problemi üzerinde 

durulmuştur. Yakın bir dönemde önerilmiş bir kaynak paylaştırma modeli olan Q-RAM 

(Quality of Service based Resource Allocation Model) yaklaşımı incelenmiştir. Q-RAM 

yaklaşımında amaç, gerçek-zamanlı sistemlerde, kaynak kısıtlarına uygun ve toplam kaliteyi 

maksimize edecek şekilde çalışma zamanını minimize etmektir. Faz dizili radar sistemi, 

birden fazla uygulamanın sistem kaynaklarına gereksinim duyduğu bir sisteme örnektir. Bu 

sistemde birden fazla hedef, radar sistemi tarafından aynı anda takip edilmekte ve takip 

görevleri radar sisteminin işlemci ve enerji kaynaklarını kullanmaktadır. Bu çalışmada, 

kaynak paylaşımı yaklaşımlarını değerlendirmek amacıyla faz dizili radar sisteminde kaynak 

paylaşımı problemi incelenmiştir. Sadece bir kaynak tipinin değişken olarak incelendiği 

kaynak paylaşımı problemlerinde, Q-RAM yaklaşımında bazı olası durumlar için belirli bir 

bitiş kriteri önerilmemektedir. Bu çalışmada, öncelikle, tek değişkenli radar kaynak 

paylaşımı probleminde Q-RAM çözüm yaklaşımı bütün olası durumlar için optimal çüzümü 

verecek şekilde geliştirilmiştir. Birden fazla kaynak tipinin değişken olarak incelendiği 

kaynak paylaşımı problemleri için Q-RAM çözümü yaklaşık optimal sonuçlar üretmektedir. 

Bu çalışmada, birden fazla kaynak tipinin değişken olarak incelendiği radar kaynak 

paylaşımı problemi için Q-RAM yaklaşımının yanısıra verimli yönler yöntemleri çözüm 

yaklaşımı olarak incelenmiştir. Q-RAM ve verimli yönler yöntemlerinin performansları, 

Monte-Carlo simülasyon tekniğinden yararlanarak çözüme ulaşma hızı ve çözümün optimale 

yakınlığı bakımından karşılaştırılmıştır. Yapılan simülasyonlar sonucunda verimli yönler 

yöntemlerinin, Q-RAM yaklaşımı ile yaklaşık aynı çalışma zamanlarında daha iyi sonuçlar 

verdiği gözlenmiştir. 

Anahtar Kelimeler: Optimal Kaynak Paylaşımı, Gerçek-zamanlı Sistemler, Faz Dizili Radar, 

Q-RAM 
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CHAPTER 1 

 
 

   INTRODUCTION 

 
 
 
1.1 Overview 

The problem of resource allocation in real-time systems, in which there exists multiple 

applications contending for the same resources, has been recently an active research topic 

area. In general, it is accepted that service qualities of the applications, where service quality 

is the degree of satisfaction of the end-user, increase with the increase of the amount of 

resource allocated to that application. During the resource allocation process, the intention is 

to allocate resources to applications such that the overall service quality obtained from the 

collection of these applications (i.e., the overall performance of the system for the intended 

task domain) is maximized. It should be clear that it is not possible to allocate arbitrary 

amount of resources to applications without any constraint. There exist some limitations on 

the resources of the system and the problem can be formulated under the formalism of 

constrained optimization. 

 

A phased array radar system can be considered as a system with multiple applications 

and multiple resources. In this system multiple targets can be concurrently tracked. In order 

for the radar system to track all the targets successfully, processor and energy resources of 

the system should be allocated to individual tracking tasks in an appropriate manner. 

Recently in a series of work including [16], [18] [19], [22] and [24], this problem is 

investigated and a family of solution approaches based on a model called Quality of Service 

based Resource Allocation Model (Q-RAM), are presented. In this thesis, the solution 

approaches proposed therein for the radar resource allocation problem are further studied and 

proposals are made to improve the solution approaches in terms of optimality and real-time 

performance. These proposals are validated by means of simulation studies complying with a 

radar resource model from the literature [16], [18] and [19]. 
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The Q-RAM approach is first presented by Rajkumar et al. [6]. In [6], a system with 

multiple concurrent applications is considered. Rajkumar et al. [6] proposed to maximize the 

total service quality and presented a resource allocation algorithm for the case of single 

resource type and single QoS (Quality of service) dimension. In [8], they make an attempt to 

improve the solution approach in [6] to handle the case with multiple resource type with the 

assumption that the utility functions are min-linear-max (i.e. The min-linear-max function is 

a function which is linear from the minimum resource requirement to the maximum resource 

requirement beyond which it becomes flat). In [7], Lee et al. proposed to support discrete 

QoS operating points and in order to measure the QoS quantitatively a QoS management 

system is developed in which a numerical mapping is developed for the quality dimensions 

that are non-numeric. Also, no assumptions about the concavity of the utility functions are 

made in [7] and the problem of maximizing system utility by allocating a single finite 

resource to satisfy the QoS requirements of multiple applications is investigated. 

 

In [10], an improvement is proposed to the approach of [7] by extending to the 

problem of apportioning multiple finite resources to satisfy the QoS needs of multiple 

applications and the optimization problem for the case of discrete QoS operating points is 

considered. An algorithm that yields near-optimal results but can execute at potentially much 

higher speeds is presented. The approach of the presented algorithm is similar to the 

approach of Lee et al. [7]. The so called ‘resource vector approach’ is proposed as a new 

approach in order to handle the discrete QoS and multiple resource case. 

 

In [16], Lee et al. proposes to solve a radar resource allocation problem by using the 

Q-RAM approach developed in the previous studies [6] [8] [7] [10]. In [16], radar resource 

allocation problem for the case of two resource types (computation time (Ck) and sampling 

frequency (fk)) is considered and a Q-RAM based near-optimal algorithm is presented. In 

subsequent work of [18], [19], [22] and [24], the Q-RAM based solution of [16] is proposed 

to be extended to the radar resource management problem for the case of general multiple 

resource type. In [18], [19] and [22], radar heat constraints on radar antennas and the global 

energy resource and computational resource from the radar processor are investigated as 

resources in the radar system. The resource vector approach presented by Lee et al. [10] is 

used in [18], [19] and [22]. Each scalar element of the resource vector represents the demand 

on a particular resource. Therefore, each resource vector defines a discrete operating point 

for each task in the radar system. 
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Similar to [18], [19] and [22], computational and energy resources of the radar system 

are considered in [24]. The sampling frequency (fk), computation time (Ck) and average 

power of the transmitted radar signal (Pk) of a radar tracking task (which are explained in 

detail in subsection 2.1) are investigated as optimization variables of the radar resource 

allocation problem. A Q-RAM based resource allocation approach similar to the approaches 

of [18] and [19] is proposed as a solution to the formulated radar resource allocation problem 

in [24]. 

 

In the present work, we identify, as a result of the analysis of the Q-RAM based 

resource allocation approaches; that the theoretical background of the Q-RAM approach for 

the case of both single resource type and multiple resource type has deficiencies and propose 

to alleviate some of these deficiencies. In the next subsection, the contribution of the thesis 

along these lines is presented. 

 

1.2 Contribution of the Thesis 

The contributions of the thesis can be stated as follows: 

 

• As a theoretical contribution, the Q-RAM algorithmic approach for the 

case of single resource type [6] is improved in order to generate optimal 

results in all of the possible termination cases. 

• Performance of the Q-RAM approach for the multiple resource type case is 

compared with the Methods of Feasible Directions in terms of closeness to 

optimal and speed of reaching a solution by means of systematic 

simulation experiments. 

• It is shown, through experimental study, that for the case of multiple 

resource type, the considered constrained optimization methods belonging 

to the Methods of Feasible Directions category from the well established 

optimization literature result in optimal solution with convergence speed 

matching the Q-RAM approach while the latter is a non-optimal 

optimization approach and does not provide a well founded mathematical 

background. 

 

As it is explained in Chapter 3, for both of the single and multiple resource type cases, 

the Q-RAM based approaches do not have a well formulated theoretical background. For the 

case of resource allocation problem with single resource type, the algorithm is incompletely 
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specified. In some of the possible cases encountered during the execution of the algorithm, 

the Q-RAM algorithm does not specify the required steps for the continuation of the 

optimization algorithm [6]. If the algorithm is directly terminated in these cases, this leads to 

non-optimal solutions. In the present thesis, for the radar resource allocation problem 

formulated in subsection 3.3; Q-RAM based single resource type resource allocation 

algorithm of is modified and an optimal resource allocation approach to the radar resource 

allocation problem is proposed. 

 

The goal of the Q-RAM based approaches is to minimize the execution speed in real-

time systems while meeting resource constraints and maximizing total utility [18], [19], [22] 

and [24]. In the Q-RAM algorithmic approach for the case of multiple resource type, 

sufficient conditions for optimality are not considered and near-optimal algorithms are 

presented for the resource allocation. In order to obtain a theoretically sound and optimal 

resource allocation approach for the radar resource allocation problem, a family of 

algorithms called Methods of Feasible Directions, which propose optimization algorithms for 

the constrained optimization problems with non-linear objective functions, are considered in 

this thesis. It is shown that by using the Methods of Feasible Directions, it is possible to 

reach an optimal solution with convergence speed closely matching the Q-RAM approach 

while guaranteeing an optimal solution. It is also observed that the sub-optimal solution of 

Q-RAM degrades significantly with the growth of the problem size (number of targets being 

tracked by the radar system) leading to a quantifiable advantage of the proposed approaches 

based on Methods of Feasible Directions for the considered task domain. 

 

1.3 Outline of the Thesis 

Chapter 2 introduces the phased array radar system in which the resource allocation problem 

is considered. The resources of the radar system as well as the constraints on these resources 

are explained. The radar resource allocation problem, for which the Q-RAM based approach 

and the considered algorithms from the Methods of Feasible Directions category are applied, 

is formulated and the objective function of the optimization problem is presented. 

 

In Chapter 3, a literature survey on Q-RAM approach is presented and the limited theoretical 

background of the model is introduced. In this chapter, first, the resource allocation approach 

for the case of single resource type is investigated and the improvement on the approach for 

the radar resource allocation problem is explained. Second, the resource allocation approach 

for the multiple resource type case is presented and drawbacks of the Q-RAM approach are 

described 
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In Chapter 4, the algorithms in the literature of the Methods of Feasible Directions [4], which 

are investigated as alternate solutions to the radar resource allocation problem in this thesis, 

are presented. Based mainly on [4], the theoretical background of these algorithms are 

briefly described. The optimization algorithms investigated in this chapter are: 

 

• Zoutendijk Algorithm 

• Gradient Projection Algorithm 

• Convex-Simplex Algorithm 

 

In Chapter 5, the experimental methodology that is used in order to make systematic 

comparative simulations on Q-RAM and the Methods of Feasible directions for the radar 

resource allocation problem is explained. The simulated radar target tracking scenario, which 

can be considered as an input database for the simulations, is presented and the performance 

measures related to 

 

• Closeness to the Optimal Solution 

• Speed of Reaching a Solution 

 

are explained. In the same chapter, performance results of the optimization approaches are 

also presented. 

 

Finally in Chapter 6, the conclusions of the thesis and proposals for the improvements on the 

present study, which can be investigated as a future work, are presented. 



 
 

CHAPTER 2 

 
 

RESOURCE ALLOCATION IN PHASED ARRAY RADAR SYSTEM 

 
 
 

A phased array radar system is composed of two parts. These are the radar processor 

and the radar antenna. Radar commands are generated in the radar processor. According to 

these commands antenna part transmits energy at assigned angles and with assigned 

waveforms. Based on the results of the processing operations on the echo signals; radar 

processor declares new detections, initiates tracks and maintains tracks on assigned targets 

[16]. 

 

 

 

 

Figure 1.3.1 Radar System. A radar system is composed of two parts; radar 
antenna transmits the radar signals to the targets with command of the 
radar processor. Radar processors schedules radar tasks, processes echo 
signals, decides detections, initiates tracks and maintains tracks on 
assigned targets. 

 

 

 

The antenna in a phased-array radar system can have multiple beams and 

electronically steer the beams in desired directions. By this way, the phased array radar 

system can simultaneously track multiple targets depending on distance, acceleration, and 

other characteristics of targets such as speed, acceleration etc. [16]. The main tasks of the 
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radar system are search and tracking of targets. Usually, there are multiple search tasks that 

cover the entire angular range of the radar. There is one tracking task corresponding to each 

target of interest. 

 

 

 

 

Figure 1.3.2 Phased Array Radar 

 

 

 

The search task periodically scans the entire surveillance space to detect the appearance of 

new targets. Once a new target is detected, a confirmation task is created to identify the type 

of target. When it is identified, a track task is created and starts tracking the target until it 

leaves the field of view of the radar system or is destroyed [16]. After the creation of the 

track task to track a target object, radar system periodically samples the target location and 

estimates the next location with a particular sampling frequency. Figure 1.3.3 illustrates the 

periodic transmission and return processing of radar pulses for a tracking task. 
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Figure 1.3.3 Tracking Operation. Radar signals are transmitted to the target 
that is being tracked and estimation algorithms are applied on the echo 
signals to estimate the next location of the target. 

 

 

 

A single period of the process of tracking a particular target consists of sending a radar 

signal consisting of a series of pulses and receiving the echo of those pulses. This period is 

known as a dwell [16]. In order to appropriately track a target, the dwell needs to have a 

sufficient number of pulses with a sufficient amount of power on the pulses to traverse 

through the air, illuminate the target and return back after reflection. The power output of the 

radar system is limited depending on the power output capability of the energy source. 

Based on the received pulses and type of the target that is being tracked, an appropriate 

estimation algorithm must be used in order to properly estimate the next position of the 

target. There are many tracking algorithms used in radar systems. Different estimation 

algorithms result in different tracking performances for different types of targets. Some of 

the estimation algorithms provide better results than other algorithms in noisy environments 

and some of the estimation algorithms generate more accurate tracking performance than 

other algorithms for maneuverable targets [16]. They also have different computational 

requirements. The execution times of the estimation algorithms on the radar processor vary 

depending on the computational requirements of the algorithms. 

Since a target can maneuver to avoid being tracked, the estimates are valid only for a 

particular period of time. Based on the processing operations on the echo signals, the time-

instant of the next dwell for the tracking task must be determined. Therefore, the tracking 

task needs to be repeated periodically with a smaller period providing better estimates. For a 

large sampling period, the estimation error can be so large that the dwell may miss the target. 

On the other hand, a small sampling period will require higher resource utilization. 

As it is explained in the previous paragraphs, radar system requires computational and 

RF-energy resources in order to maintain an image of selected parts of the air, sea and land 
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activities. Without sufficient amount of computational and RF-energy resources, radar 

system can not create detections and tracks and can not present the tactical image to the user 

on a monitor accurately. In the following subsections, the resources of the radar system and 

constraints on the resources are elaborated. In subsection 2.2 the objective function defined 

for the resource allocation optimization approach is presented. Then in subsection 2.3, the 

radar resource allocation problem is formulated based on the explained resources, constraints 

and the objective function. 

 

2.1 Radar Resource Model 

In this thesis, energy and computational resources of the radar system are investigated. 

In the following subsections, first the constraints on the aforementioned parameters are 

investigated. Section 2.1.1 considers the computational resources of the radar system and the 

schedulability condition for the tasks in order to derive the constraint on computational 

resources of the radar system. Later, the subsequent subsection explains the radar power 

constraint. 

 

2.1.1 Radar Timing Constraints and Schedulability 

A particular target tracking task is accomplished by sending a radar signal consisting 

of a series of high frequency pulses, receiving the echoes of those pulses and applying 

appropriate signal-processing algorithms in order to properly estimate the next position of 

the target. This process is repeated periodically until the tracked target leaves the field of 

view of the radar system or is destroyed. 

 

 

 

 

Figure 2.1.1 Radar Dwell. Sending radar 
signals to a particular target [18]. 
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Assume a tactical environment consisting of N targets which are being tracked by the radar 

system. In Figure 2.1.1 illustrates the radar dwell for the ith tracking task. The radar dwell is 

characterized in terms of a transmit power Ak, a transmission time txk, a wait time twk and a 

receive time trk. Tk is the sampling period. We define fk as the sampling frequency which is 

equal to 1/Tk. 

In the sampling period interval, estimation algorithms are applied on the echo signals 

by the radar processor. Let Ck denote the total execution time of the estimation algorithm for 

the kth tracking task in a particular sampling period. In the sampling period interval (Tk), the 

ratio of the computation time (Ck) of a tracking task to the sampling period interval gives the 

utilization of the radar processor for that particular tracking task (i.e. for the kth task). The 

utilization of the radar processor for kth tracking task (Uk) ( [ ]1 ,0∈kU ) can be written as 

follows: 

 

Uk = Ck ×  fk     (2.1.1) 

In order for the radar tasks to be scheduled in the radar processor the total utilization of the 

radar processor should not exceed %100 [16]. Radar timing and schedulability constraint 

regarding the utilization of the radar processor is: 

 

1
1

≤∑
=

N

k
kU      (2.1.2) 

 

which can be written as 

 

1
1

≤∑
=

N

k
kk fC      (2.1.3) 

 

where N is the number of tracking tasks processed by the radar processor. 

 

2.1.2 Radar Power Constraints 

In addition to timing constraints, radar system also has power constraints. Power of the 

transmitted radar signal is limited with the power output capability of the energy source. In 
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[18], the power utilization of the radar system for a set of N tasks in a particular sampling 

period interval (Tk) is defined as follows: 

 

∑
=

=
N

k k

xk
k

P

T
tA

P
U

1max

1         (2.1.4) 

 

where Pmax is the maximum average power that can be supplied by the radar system without 

leading any overheating and damage condition. Here, it is considered that the average power 

is given by the fraction of time each task is transmitting, multiplied by the transmit power for 

that task. In the expression above, Ak(txk/Tk) is the average power of the transmitted radar 

signal in the sampling period Tk for kth tracking task. Let’s denote the average power of the 

transmitted radar signal in the sampling period with Pk for the kth tracking task. 

 

)/( kxkkk TtAP =     (2.1.5) 

 

The total power utilization value of the radar system can not exceed %100 in order for the 

radar system to operate safely [18]. The power constraint of the radar system can be 

expressed as follows: 

 

max
1

PP
N

k
k ≤∑

=

     (2.1.6) 

 

2.1.3 Minimum Resource Requirements 

Position, heading, speed records of the targets which are being tracked are updated at 

each sampling period. In order for the records of the tracks to be accurate, the sampling 

period interval should be sufficiently short, i.e. the sampling frequency should be sufficiently 

high. Minimum sampling frequency requirement of each target changes according to 

maneuverability, speed, position of the target relative to the ownship where ownship is the 

platform on which the considered phased array radar system is mounted [16]. Minimum 

sampling frequency constraint of kth tracking task can be expressed as follows: 

 

fk ≥  fk,min     (2.1.7) 
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where fk,min is the minimum sampling frequency requirement for the kth tracking task. 

In order to appropriately track a target, the transmitted radar signal should have a 

sufficient amount of power on the pulses to traverse through the air, illuminate the target and 

return back after reflection. Larger Pk provides better tracking information. The value of Pk 

required to adequately track a target is proportional to the 4th power of distance between the 

target and the radar [13]. For each target type and different position and speed of a specific 

target relative to the ownship, there exist minimum average transmitted power requirements 

[18]. Minimum requirement on the average power of the transmitted signal of kth tracking 

task is: 

 

Pk ≥  Pk,min     (2.1.8) 

where Pk,min is the minimum requirement on the average power of the transmitted radar 

signal for the kth tracking task. 

 

2.2 The Objective Function 

In [5] and [16] the control system performance variation due to the sampling 

frequency variation is modeled as an exponential function; Lee et al. [16] use this approach 

to model the tracking performance variation of the radar system with the sampling frequency 

variation as an exponential function. As it is explained in [16], in a radar system, the system 

keeps a record (track) of each target and remembers its current position, heading, speed, etc. 

as the target moves. The records are updated periodically at sufficiently high frequencies in 

order to maintain a specified level of confidence in their accuracy. In the exponential model, 

the accuracy of the record increases with increase of the update frequency. The accuracy 

improvement by increasing the update frequency is significant at the beginning but becomes 

only marginal once the accuracy is saturated with a high enough frequency. This exponential 

behavior is illustrated in Figure 2.2.1. 

 

 

 



 

Figure 2.2.1 Tracking Quality Variation with the 
Sampling Frequency Variation. 

 

 

 

The probability of detection can be written as an exponential function of transmission 

power when noise power and probability of false alarm are in some pre-defined ranges 

(Refer to the appendix of this thesis for further analysis). Tracking quality is a measure of 

estimating the next location of the target correctly and we have investigated tracking quality 

as linearly proportional with the probability of detection. In this thesis, similar to the 

handling method of change of performance of the system with sampling frequency in [16], 

[5] and [18]; radar tracking performance depending on the average power of the transmitted 

radar signal is also investigated as an exponential function. The strength of the echo signal 

increases with increase of amount of power of the transmitted radar signal. Increase in power 

of the echo signal provides better signal-to-noise ratio and hence probability of detection of 

targets increases [13]. Performance increase due to average power of the transmitted radar 

signal increase is expected to exhibit a saturation characteristic, i.e., the tracking 

performance increase will gradually saturate after a certain amount of power resource is 

allocated to that tracking task [19]. The tracking performance, also called tracking quality, 

for kth tracking task can be defined with the following form of exponential function: 

 

)1( kkkk Pf
kk emV βα −−−=         (2.2.1) 

 

where Vk is the tracking quality function of the kth tracking task depending on sampling 

frequency (fk) average power of the transmitted radar signal (Pk). This function is illustrated 

in Figure 2.2.3. In this formulation, αk and βk are the sensitivity of the tracking quality to the 

sampling frequency and average power of the transmitted radar signal change respectively. 

The parameters αk and βk ideally take different values depending on the speed, 
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maneuverability, distance of the target that is being tracked. The parameter mk, specify the 

control value of minimum achievable performance (mk ≤ 1) [16]. These parameters can be 

approximated by observing the average behavior of the radar system in practice runs. Look-

up tables of this data can be created and later used. 

 

 

 

 

Figure 2.2.2 Division of the Surveillance Space into Regions (Similar to the 
Figure in [16]). As the shade of the region becomes darker, the region becomes 
more critical. The distance of the target affects the required sampling frequency 
and average power of the transmitted radar signal in order to achieve a certain 
tracking quality. 

 

 

 

As shown in the Figure 2.2.2, for a particular target, different αk and βk parameter 

values can be selected in the tracking quality function of the tracking task, according to the 

region of the target relative to the ownship. For example in the Figure 2.2.2, if the target 

leaves the region with radius r3 where d3 > r3 > d2 and passes to the region with radius r2 

where d2 > r2 > d1, the tracking quality function of the target should be adapted to the new 

relative position of the target, i.e. the tracking task in the region with radius r3 should be 

removed from the task list of the radar system and a new tracking task in the region with 

radius r2 should be added to the task list of the radar system with new αk and βk parameter 

values. Intuitively we expect that as the distance of the target to the ownship decreases, the 
 14



sensitivity of the tracking quality to the change of average power of the transmitted radar 

signal (βk) decreases while sensitivity of the tracking quality to the change of sampling 

frequency (αk) increases because the change of position of the target relative to the ownship 

in unit time increases. 

Along with the position of the target relative to the ownship, speed and 

maneuverability plays important role in determination of the αk and βk parameter values in 

the tracking quality function of the target. A target with high speed or maneuvering 

capability requires higher sampling frequency in order to be tracked accurately; this 

condition leads to the sensitivity of the tracking quality to the sampling frequency change 

(αk) to be higher. 

 

 

 

 

Figure 2.2.3 Tracking Quality Functions. Functions 02, 03 and 04 are obtained with 
relative changes to 01. In tracking quality function 02, αk is higher than in 01 with all 
other parameters the same. In tracking quality function 03, βk is higher than in 01 with all 
other parameters the same. And in tracking quality function 04, both of the sensitivity 
parameter values are higher than in 01 with all other parameters the same. 
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In Figure 2.2.3, different tracking quality functions are shown for different types of 

tracking tasks. In the second figure, tracking quality function of a tracking task having higher 



αk parameter value; in the third figure, tracking quality function of a tracking task having 

higher βk parameter value and in the fourth figure, tracking quality function of a tracking task 

having both higher αk and βk parameter values compared to the tracking quality function of 

the first figure are shown. These figures are not plotted using real parameter values, the 

parameter values in these figures are selected for illustrative purposes. 

 

In [16] the tracking quality functions for different tracking tasks are also considered as 

discrete functions and Q-RAM is proposed to be applied to the radar resource allocation 

problem with discrete tracking quality functions. In the present study, for the experimental 

evaluation of the Q-RAM approach, discrete tracking quality functions are also considered. 

 

2.3 Formulation of the Radar Resource Allocation Problem 

The goal of the radar system is to utilize its finite energy and time resources to 

maximize the quality of tracking. A radar system must make two sets of decisions. First, it 

must decide what fraction of resources (energy and time) to spend on each target. It must 

then schedule the radar antenna(s) to allocate the beams and transmit the selected amount of 

energy through each beam and receive the return echoes in a non-preemptive fashion. Since 

targets in the sky are continually moving, resource allocation and scheduling decisions must 

be made on a frequent basis. The radar resource allocation problem which is studied in this 

thesis can thus be formulated as follows, 

 

Maximize 

 

) , ..., , , , ,( 2211 NN PfPfPfJ  = ∑  = ∑   (2.3.1) 
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Subject to 

 

1
1

≤∑
=

N

k
kk fC      (2.3.2) 
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1

PP
N

k
k ≤∑

=

     (2.3.3) 
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fk ≥  fk,min, k = 1, 2, …, N.    (2.3.4) 

 

Pk ≥  Pk,min, k = 1, 2, …, N.    (2.3.5) 

 

where N is the number of targets that are being tracked, Ck denote the total execution time of 

the estimation algorithm for the kth tracking task, Pmax is the maximum average power that 

can be supplied by the radar system, fk,min is the minimum sampling frequency requirement 

for the kth tracking task, Pk,min is the minimum average power of the transmitted radar signal 

requirement for the kth tracking task. 

The objective function of the radar resource allocation problem formulated above is 

continuous, differentiable and concave. The constraints are linear. These properties enable us 

to use methods of feasible directions, which will be briefly explained in the subsequent 

chapters, in solving the formulated constrained optimization problem. 
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CHAPTER 3 

 
 

RESOURCE ALLOCATION WITH Q-RAM BASED METHODS 

 
 
 

In this chapter, QoS-based Resource Allocation Model (Q-RAM) based solutions to 

the radar resource allocation problem are presented and the model is investigated in detail. 

Q-RAM assumes a system with multiple concurrent applications, each of which can operate 

at different levels of quality based on the system resources available to it. The goal of the 

model is to be able to allocate resources to the various applications such that the overall 

system utility is maximized under the constraint that each application can meet its minimum 

needs. In the first subsection, a literature survey of Q-RAM approach is presented and then 

in the subsequent subsections, the definition and objective of Q-RAM are explained and Q-

RAM based algorithmic solution approaches to the radar resource allocation problem and 

drawbacks of the model are introduced. 

 

3.1 A Literature Survey of Q-RAM Approach 

Q-RAM is first presented by Rajkumar et al. [6]. In [6], a system with multiple 

concurrent applications is assumed and two main constraints are considered: resource 

consumption can not exceed an upper bound and each application can meet its minimum 

needs. Based on these constraints, the total system utility is proposed to be maximized and a 

resource allocation algorithm is presented for the case of single resource type and single QoS 

(Quality of service) dimension. Rajkumar et al. assumed that the utility functions of each 

application are nondecreasing, concave and have two continuous derivatives. In [8], they 

considered the problem of apportioning multiple resources to satisfy a single QoS dimension 

different from their previous work in [6]. In [8], the utility functions are assumed to be min-

linear-max. The optimization problem is defined in a way such that the cost function and 

constraints becomes linear. It is proposed to apply standard optimization techniques for 

mixed integer programming in order to obtain optimal solution. 
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In [6] and [8], Rajkumar et al. assumed continuous QoS dimensions and the utility 

gained by improvements along a QoS dimension are representable by concave functions. In 

[7], Lee et al. relax both assumptions. They support discrete QoS operating points. In order 

to measure the QoS quantitatively a QoS management system is developed. In this structure, 

a numerical mapping is developed for the quality dimensions that are non-numeric. 

Therefore the Quality Index is introduced, which maps qualities to indices in order of 

increasing quality. By analytically planning and allocating resources to multiple applications, 

it is proposed to maximize the net utility acquired by the end-users. They also make no 

assumptions about the concavity of the utility functions. Using these as the basis, they tackle 

the problem of maximizing system utility by allocating a single finite resource to satisfy the 

QoS requirements of multiple applications. 

 

In [7] Lee et al. studied the problem of maximizing system utility by allocating a 

single finite resource to satisfy discrete QoS requirements of multiple applications. This 

study is proposed to be improved in [10]. In [10], Lee et al. focus on the problem of 

apportioning multiple finite resources to satisfy the QoS needs of multiple applications and 

deal with the optimization problem for the case of discrete QoS settings. An algorithm that 

yields near-optimal results but can execute at potentially much higher speeds is presented. 

The approach of the presented algorithm is similar to the approach of Lee et al. [7]. Resource 

vector approach is newly proposed in order to handle the discrete QoS and multiple resource 

case. 

 

In [16], Lee et al. proposed to solve a radar resource allocation problem, where 

computation time (Ck) and sampling frequency (fk) are variables of the resource allocation 

problem, by using the Q-RAM approach [6] [8] [7] [10]. In [16], first the computation time 

(Ck) is assumed to be fixed and only the sampling frequency (fk) is assumed to be adjustable. 

Lee et al. [16] also assumed that the tracking quality function is defined as a continuous 

convex function and proposed to solve the radar resource allocation problem with these 

assumptions by using the approach in [5]. After in [16], the computation time (Ck) is also 

considered as adjustable and assumption about continuity and convexity of the tracking 

quality function is relaxed; and a near-optimal algorithm based on Q-RAM approach is 

presented in order to solve the radar resource allocation problem. 

 

In [19], an optimization algorithm for a radar tracking application, based on Q-RAM 

is presented. Radar heat constraints on radar antennas and global energy source and 

computational resource from the radar processor are investigated as resources in the radar 
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system. Resource vector approach presented by Lee et al. [10] is used in [19]. Each scalar 

element of the resource vector represents the demand on a particular resource. Therefore, 

each resource vector defines a discrete operating point. A resource vector of a task is mapped 

to a value representing the overall demand on the system for a particular set of resource 

requirements and tracking quality is investigated as QoS dimension in [19]. 

 

In [24] and [20], the Q-RAM based solution of [16], which solves the radar resource 

allocation with two variables for each tracking task (sampling frequency and computation 

time), is proposed to be improved and it is proposed to consider not only sampling frequency 

and computation time but also the average power of the transmitted signal of the radar 

system for each tracking task as an adjustable parameter. A near-optimal Q-RAM based 

resource allocation approach is presented in [24] and [20]. 

 

3.2 The Definition and Objective of Q-RAM Approach 

In this section the mathematical formulation, assumptions and objective of the Quality 

of Service based Resource Allocation Model (Q-RAM) is presented. Based on the works in 

[6], [8], [7] and [10], the definition of Q-RAM is presented in the next subsection. 

 

3.2.1 The Definition of the Model 

Q-RAM is based on a system in which multiple applications may require access to 

multiple resource types in order to satisfy requirements. In this system, also an application 

requires a certain minimum resource allocation to perform acceptably. An application may 

also improve its performance with larger resource allocations. This improvement in 

performance is measured by a utility function in Q-RAM. ‘Q-RAM is a model in which 

resources can be allocated to individual applications with the goal of maximizing a global 

objective’ [6]. In Q-RAM, it is proposed to satisfy the simultaneous requirements of multiple 

applications and allow applications access to multiple resources [8]. The characteristics of 

the considered applications and system in Q-RAM are as follows [8]: 

 

• Each application may have a minimum and/or a maximum need along each QoS 

dimension. 

• An application may require access to multiple resource types. 

• Each resource allocation adds some utility to the application and the system, with 

utility monotonically increasing with resource allocation. 



• System resources are limited so that the maximal demands of all applications often 

cannot be satisfied simultaneously. 

 

Q-RAM is defined as follows. The system consists of n applications {K1, K2, …, Kn}, 

n ≥ 1, and m resources {R1, R2, …, Rm}, m ≥ 1. Each resource Rj has a finite capacity and 

can be shared. The portion of resource Rj allocated to application Ki be denoted by Ri,j. It is 

enforced that  [6]. j

n

i
jiR R≤∑

=1
,

 

The following definitions are introduced: 

 

• The application utility, Si, of an application Ki is defined to be the value that is 

accrued by the system when Ki is allocated Ri = (Ri,1, Ri,j, …, Ri,m). In other words, Si 

= Si(Ri). Si is referred to as the utility function of Ki. This utility function defines a 

surface along which the application can operate based on the resources allocated to 

it. 

• Each application Ki has a relative importance specified by a weight wi, 1 ≤ i ≤ n. 

• The total system utility S(R1, …, Rn) is defined to be the sum of the weighted 

application utility of the applications, i.e. . ∑
=

=
n

i

i
ii

n Sw
1

1 )(  ) ..., ,( RRRS

• Each application Ki needs to satisfy requirements along d QoS dimensions, d ≥ 1. 

• An application, Ki, has minimal resource requirements. These minimal requirements 

are denoted by Ri
min = {Ri,1

min, Ri,2
min, …, Ri,m

min} where Ri,j
min ≥ 0, 0 ≤ j ≤ m. An 

application, Ki, is said to be feasible if it is allocated a minimum set of resources. 

 

In this thesis, we assume that d = 1, i.e. only a single QoS dimension, which is 

tracking quality, is considered. In the following subsections assumptions and objective of the 

Q-RAM are provided. 

 

3.2.2 The Assumptions of the Model 

The assumptions of Q-RAM are as follows [6]: 

 

• The applications are independent of one another. 

• The available system resources are sufficient to meet the minimal resource 

requirements of each application, Ri
min, 1 ≤ i ≤ n. 
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• The utility functions Si are nondecreasing in each of their arguments. And it is 

assumed that these functions are concave and have two continuous derivatives. 

• Each application, Ki, has a weight wi denoting its relative importance. 

 

If the second assumption does not hold, then the minimal resource requirements 

cannot be met. If these requirements are not met, then some of the applications must be 

dropped. Different techniques can be used in order to determine which of the applications 

should be dropped, or some applications could be allowed to have less than their minimal 

resource allocations [6]. Although this is a very important issue, it is beyond the scope of this 

thesis. 

In view of the 4th assumption, a weighted utility function for an application as wiSi can 

be defined and then the resource allocation problem for those weighted utility functions can 

be solved. Thus, the weights can be removed from the allocation problem. In this study, 

these weighted utilities are used and the weights are dropped. 

 

3.2.3 The Objective of the Model 

Based on the definitions and assumptions given in the subsections, the objective of Q-

RAM is to make resource allocations to each application such that the total system utility is 

maximized under the constraint that every application is feasible. In other words, {Ri,j, 1 ≤ i 

≤ n, 1≤ j ≤ m} should be determined such that Ri,j ≥ Ri,j
min, amount of allocated resources to 

the applications are not greater than the upper limit value of the system resources and S is 

maximum [6]. 

 

As it is explained in section 3.1, first a resource allocation problem with single 

resource type is investigated [6] and then it is proposed to extend the solution to the resource 

allocation problems with multiple resource types in Q-RAM literature [8], [7], [10]. In the 

following subsections first the case with single resource type is examined and then the case 

with multiple resource types is investigated subsequently. 

 

3.3 Approach for the Case with Single Resource Type 

The case of making resource allocation decisions when there is only a single resource 

type and a single QoS dimension is considered first in Q-RAM approach [6]. Since there is a 

single resource, the subscripts associated with the resource types are dropped. For this case, 

the utility functions of the applications become Si = Si(Ri), 1 ≤ i ≤ n, where Ri is the amount 

of resource allocated to the application Ki. The minimum resource allocation needed to 



satisfy Ki is Ri
min. As it is indicated in section 3.2.2, all minimal application resource requests 

can be met; Rajkumar et al. [6] focus on the allocation of the excess resources available. 

In the analysis conducted in [6], it is assumed that Ri
min = 0, i = 1to n and the 

quantity of available resources is reduced by that amount. The goal is to determine the values 

of R

∀

1, R2, …, Rn such that the total system utility, , is maximized subject to the 

constraint . In [6], the following theorem, which provides a necessary condition 

for an allocation to be optimal, is presented. 

∑
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Theorem A necessary condition for a resource allocation to be optimal is ∀ i, 1 ≤ i ≤ n, Ri = 

0 or for any {i, j} with Ri > 0 and Rj > 0, )()( jjii RSRS ′=′  [6]. 

 

)(RS ′  is the derivative of S with respect to R. The proof this theorem, which is provided in 

[6], is as follows: 

 

‘Proof The result is a standard conclusion of the Kuhn Tucker theorem [4]. To understand 

the intuition behind the results, suppose that for some i ≠ j, let Ri > 0, Rj > 0 and 

. Since R)()( jjii RSRS ′=′
j > 0, an infinitesimal amount of R can be subtracted from 

application Kj and added to application Ki. Since )()( jjii RSRS ′>′ , the total system utility 

will increase. This contradicts the assumption that the allocation was optimal.’ [6]. 

 

Rajkumar et al. [6] proposed the following algorithm to determine the optimal resource 

allocation Ri for each application to obtain maximum utilization. It is assumed that each 

application has already been allocated its minimum resource requirement. By the 

assumptions in section 3.2.2; sufficient resources should be available for this allocation. The 

optimal additional allocation to each application, Ri ≥ 0; 1 ≤ i ≤ n, subject to  is 

proposed to be determined as follows: 

∑
=

≤
n

i
i RR

1

 

Q-RAM Procedure for Single Resource Type: 
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1. Let the current allocation of the resource to Ki be Ri, 1 ≤ i ≤ n. Let the 

unallocated quantity of the available resource be Rl. Compute 

. ))(..., ),(( 11 nn RSRS ′′

2. Identify 

i. the subcollection of applications with largest value of , )( ii RS ′

ii. the number of applications in that subcollection (denoted by p), 

iii. the application (denoted by j) with the second largest value of 

this quantity if any such application exists. 

3. If the largest value of )( ii RS ′  is 0, then stop. No further allocation will 

increase system utility and spare resources are available. 

4. Otherwise, increase Ri for each of the members of the subcollection so 

that their values of )( ii RS ′  decrease but continue to be equal until one of 

the following is satisfied, 

i. this value becomes equal to the second largest value or, 

ii. the additional resources added to this subcollection equal Rl. 

5. If (ii) is satisfied, stop as all resources have been optimally allocated. 

6. If (i) is satisfied, one or more new applications should be added to the 

subcollection. Return to step 1. 

For the considered maximization problem which is ‘Maximize  such that 

 and R

∑
=

n

i
ii RS

1
)(

RR
n

i
i ≤∑

=1
i ≥ Ri

min, i = 1, 2, …, n’, the Karesh-Kuhn-Tucker (KKT) conditions are as 

follows, 
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       (3.3.2) 

 

    (3.3.3) 

 

      (3.3.4) 
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i
i ≤∑

=1

niRR ii  ..., 2, ,1     ,min =≥

0)(
1
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=

RR
n

i
iλ

n     (3.3.5) iRR iii  ..., 2, ,1     0,)-( min ==µ

 

0≥λ       (3.3.6) 

 

nii  ..., 2, ,1     0, =≥µ        (3.3.7) 

 

where λ, µ1, µ2, …, µn are Lagrangian multipliers [4]. If the objective function and the 

constraints are convex, the KKT optimality conditions are sufficient conditions for 

optimality of a solution [4]. In the optimization problem considered for illustration of the Q-

RAM approach, both the objective function and the constraints are convex. Therefore, for 

blem above, a solution satisfying the KKT optimality conditions is 

the optim

inate the 

 for these cases, lead to a sub-optimal solution. These cases are summarized below 

and are routin

 

• Case 1: Suppose that resource allocation is done to all of the applications, slopes of 

the utility functions of the applications (

the resource allocation pro

al solution. 

 

The described Q-RAM algorithm, as reported in [6], does not have a termination 

criteria set that can terminate the algorithm in all possible cases. Certain possible cases exist 

for which the algorithm does not have a termination criterion at all. To term

algorithm

ely possible during the execution of the algorithm. 

)( ii RS ′ , i = 1, 2, …, n) are all equal to λ, λ 

> 0, and there is still excess resources i.e. RR
n

i <∑ . 
i=1
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• 

ility fu

the second largest slope value, slopes of the utility functions of the applications 

, i = 1, 2, …, n) are all equal to λ, λ > 0, and there is still excess resources 

Case 2: Suppose that resource allocation is done to k applications out of n (0 < k < 

n) and amount of unallocated resources is not enough to make the slopes of the 

ut nctions of the applications, which are allocated resources, to make equal to 

( S ′ )( ii R

i.e. RR
n

i
i <∑

=

• 

he utility functions of which have the highest 

value, to make equal to the second largest slope value and there is still excess 

resources i.e. <∑

1
. 

Case 3: Remember that it is assumed that amount of resources is enough to make 

minimum resource requirement allocation to all of the applications. Suppose that 

amount of unallocated resources is not enough to make the slopes of the utility 

functions of the applications, slopes of t

RR
n

i
i

=

. 

n and constraints are convex the KKT 

onditions are sufficient for optimality; therefore terminating the algorithm in the cases listed 

above

location algorithm of Q-RAM is modified and an optimal resource allocation 

pproach to the radar resource allocation problem that is explained in the next paragraph is 

 

3.3.1 

signal (energy resource), is explained. In [23], for the illustrative purposes of the 

1

 

The cases listed above are possible cases which can be encountered during the 

execution of the algorithm and no suggestions are proposed in the occurrence of these cases 

in the Q-RAM approach for single resource type case. In these cases if the algorithm is 

terminated this leads to non-optimal solutions as the condition 3.3.4 is not satisfied. As it is 

mentioned previously, because the objective functio

c

 as all of the KKT conditions are not fulfilled. 

 

In order to terminate the Q-RAM procedure in the case of Case 1, Case 2 and Case 3 

while satisfying all of the KKT conditions, a modification should be done on the algorithm. 

By this way, optimal results can be obtained by applying the algorithm. In [23], radar 

resource allocation problem that is described in Chapter 2 is considered; single resource type 

resource al

a

presented. 

Application of the Approach to the Radar Resource Allocation Problem 

In Chapter 2, radar resource allocation problem with two resource types, which are 

sampling frequency (computational resource) and average power of the transmitted radar 
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pling frequency, is considered. 

he radar resource allocation problem in [23] is as follows: 

 

Maximize 

 

 

Subject to 

 

 

fk ≥ fk,min, k = 1, 2, …, N. 

inimum 

mpling frequency requirement of the kth tracking task as explained in Chapter 2. 

he KKT optimality conditions for the radar resource allocation problem are as follows: 

 

  (3.3.8) 

 

modification algorithm on Q-RAM approach for the single resource case, radar resource 

allocation problem with single resource type, which is sam
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As it is explained in section 2.2, the tracking performance of the radar system depending on 

the sampling frequency (fk) can be formulated with an exponential function. In [5], Seto et al. 

modeled the control performance of a system depending on sampling frequency with an 

exponential function and in [16] Lee et al. used this approach and formulated the tracking 

quality of the radar system with the exponential function which appears in the problem 

formulation above. In this formulation, N is the number of tracking tasks, αk is the sensitivity 

to the sampling frequency change, Ck is the computation time and fk,min is the m

sa
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       (3.3.9) 
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0≥λ    

 

  (3.3.13) 

Nkk  ..., 2, ,1     0, =≥µ    (3.3.14) 

Because the sam f ) have C ’s as multipliers in the constraint 1≤∑
N

fC , pling frequencies ( k k
=k

kk

the expression 

1

kk f

k

kk e
C

m αα −

on of the k

, which is obtained by dividing the minus derivative of tracking 

quality functi th tracking task to the computation time C , is used instead of slopes. k

Let’s call kk f

k

kk e
C

m αα −  as Mk. Mk’s are defined as marginal return in [12]. The condition in 

3.3.8 requires the Mk values of the tracking tasks, whose sampling frequencies are increased, 

to be equal to each other. When the Q-RAM approach is applied; as a result of the algorithm, 

pling frequency of p out of N applications (0 ≤ p ≤ N) are increased from 

the minimum sampling frequency values (fk,min, k = 1, 2, …, N) and the following condition is 

satisfied: 

 

suppose that sam

λ
ααα ααα ==== −−− pp f

pCCC 21

  (3.3.15) 

 

ppff e
m
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sks are arranged in decre

 above, i.e. the tasks from

In this arrangement of the tracking tasks, ta asing marginal return 

order as it is indicated in the algorithm  1 to p have the highest 

marginal utility value. As a result of the algorithm, suppose that the utilization of the radar 

processor does not reach to % 100, i.e. 1
1

<∑
=

ual to N and the utilization of 

e radar processor is not % 100. In both of the cases the KKT condition in 3.3.11 is not 

 conditions, 

e following modification is done on the Q-RAM procedure, 

 

From 3.3.15, the sampling frequency value of kth tracking

 

N

k
kk fC , but remaining utilization is not enough 

to make the marginal returns of the tracking tasks with the highest marginal return value, to 

be equal to the second largest marginal return value. Or p is eq

th

satisfied. In [23], to satisfy the considered condition along with the other KKT

th

 task can be written as 

)ln()1( k
k

Cf
αkkk m

λ
α
−

= .    (3.3.16) 

 

One can now substitute expression 3.3.16 in place of fk in 3.3.11 in

 

 order to obtain 

1)ln( ,+
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k

p
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+== pkkkk k m
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By solving the equation in 3.3.17, ln(λ) can be obtained as 
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Again by substituting ln(λ) expression in 3.3.18 into the expression 3.3.16, the required 

sampling frequency can finally be obtained as 
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If the utilization of the radar processor did not reach %100 after applying the Q-RAM 

rocedure, sampling frequencies of the tracking tasks, whose sampling frequency values are 

ure by iteratively making the marginal returns of the tasks equal to 

ach other beginning from the task(s) with the highest marginal return and increasing the 

sam e second 

largest m n value as describe in the algorithmic procedure above. 

 

Therefore, for the single resource case, one can define proposed optimal Q-RAM by the 

following p d

 

1. Let

N. Com

2. Identify

any

 using the expression 3.3.19 and 

3. If the la lue  is 0, then stop. 

4. Oth

that the

followin

i. lue comes equal to the second largest marginal return 

value, , or, 

p

increased in the Q-RAM procedure, can be found from the formula in 3.3.19. Here p can be 

found in Q-RAM proced

e

pling frequency of the task(s) until the marginal utility becomes equal to th

arginal retur d 

seu o-code: 

 the current sampling frequency of the kth tracking task be fk, 1 ≤ k ≤ 

pute )..., , ,( 21 NMMM . 

 

kM , i. the subcollection of tasks with largest value of 

ii. the number of tasks in that subcollection (denoted by p), 

iii. the task (denoted by j) with the second largest value of this 

quantity if  such task exists, else find the sampling 

frequencies of all of the tasks by

terminate the algorithm. 

rgest va  of M k

erwise, increase fk for each of the members of the subcollection so 

ir values of kM  decrease but continue to be equal until one of the 

g is satisfied, 

this va be

jM



ii. the utility of the radar processor reaches %100 utilization when 

the marginal returns, kM  k = 1, 2, …, p, of the tasks in the 

subcollection become equal to the second largest marginal return 

value, , jM

 31

ore 

6. ling frequencies of all of the tasks in the 

subcollection (k = 1, 2, …, p) by using the expression 3.3.19 and the 

With the modification on the Q-RAM procedure for single resource type, optimal 

opera

ce a continuous quality function in single resource dimension can not be defined 

r each application for the multiple resource type case, the modified Q-RAM procedure can 

r-optimal Q-RAM based approaches 

and methods of feasible direction are investigated in order to handle multiple resource type 

case. 

e input data shown in Table 3.3.1 is used. Detailed explanations regarding the 

mulation technique and selection of simulation scenarios are provided in Chapter 5 for 

ultiple resource type case; for single resource type case also the same simulation technique 

iii. the utility of the radar processor reaches %100 utilization bef

the marginal returns of the tasks in the subcollection, kM  k = 1, 

2, …, p, become equal to the second largest marginal return 

value, jM . 

5. If (ii) is satisfied, stop as all resources have been optimally allocated. 

If (ii) is satisfied, find the samp

sampling frequencies of the other tasks (k = p+1, 2, …, N) by using the 

expression 3.3.20 and terminate the algorithm. 

7. If (i) is satisfied, one or more new tasks should be added to the 

subcollection. Return to step 1. 

 

ting points can be obtained. As it is indicated in [16], [6], [19], [8], [7] and [10], main 

objective of Q-RAM based approaches are to reach to a solution point, which is closest to the 

optimal point, in real-time systems. As it is shown in [23] and Table 3.3.2, Q-RAM approach 

with the modification described above reaches optimal point in below one millisecond. 

 

Sin

fo

not be applied in multiple resource type. Therefore, nea

Near-optimal Q-RAM base approach is explained in following subsections of this 

chapter. 

 

3.3.2 Simulations for Run Time Measurement 

In order to measure the run time of the modified Q-RAM approach for single resource 

type case th

si

m
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 used. The parameters mk, Ck, αk and fk,min is selected in order to provide various simulation 

condit ario 

condit

 

 

 

Table 3.3.1 Input Data for Run Time Measurement of Modified Q-RAM for 
Single Resource Type Case. 

Task T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 

is

ions which enables performing simulations that are unbiased from the specific scen

ions. 

mk 0.8 0.9 0.75 0.85 0.95 0.7 0.9 0.8 0.95 0.85 
Ck (ms.) 5 6 7 8 7 6 5 6 7 8 
αk 0.060 0.065 0.065 0.060 0.055 0.050 0.050 0.055 0.060 0.065

fk,min 70 50 55 50 60 65 60 75 50 70 
 

 

 

N is the number of tracking tasks included in the simulation scenario. N tasks are 

lected from the task list of Table 3.3.1 for each simulation scenario. Multiple simulations 

re performed for each N and execution time of the optimization algorithm is measured for 

each of the simulatio easured in different 

simulation scenarios 

 

 

 

Table 3.3.2 Mean un Tim d Q-RAM 
for Single Resource Type Case for Different 
Number of Tracking Tasks Included in the 
Simulation Scenario. 

Nu er 
of Tasks (N)

se

a

ns. In Table 3.3.2 average of the run time values m

for different N’s are presented. 

 R e of Modifie

mb Mean Run 
Time (sec.) 

1 0.00006406
2 0.00010438
3 0.00011549
4 0.00011868
5 0.00012171
6 0.00012500
7 0.00012839
8 0.00013194
9 0.00013438
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s it is presented in Table 3.3.2, the execution time of the optimal Q-RAM based solution 

pproach to the radar resource allocation approach is in the order of 1e-4 second, when the 

umber of tracking tasks included in the scenario changes from 1 to 9. In Table 3.3.3, the 

number of tracking ta mbers of tasks are 

varied from 20 to 200

 

 

 

Table 3.3.3 Run Tim  of the Modified Q-RAM 
Approach. ra included in 
the scenario increases fro  with a step 
of 20. For each number of tracking task level, 100 
simulations are performed of the 100 
simulations for  differ presented in 
this table. 

N r 
of Tasks (N)

Mean Run 
T

A

a

n

sks included in the scenario is increased and the nu

 with a step of 20. 

e
umber of N t cking tasks 

m 20 to 200

and averages 
each ent N are 

umbe
ime (sec.)

20 0.001625 
40 0.015625 
60 0.025 
80 0.046875 

100 0.078125 
120 0.12188 
140 0.17188 
160 0.225 
180 0.24531 
200 0.25469 

 

 

 

The optimal solution approach provides global optimum results with a convergence time 

below one second even if the number of tasks included in the scenario is increased to 200 

which can be considered as a dense scenario environment. In real-time systems, it is 

portant to improve the performance by re-allocating the resources adapting to dynamic 

rce re-allocation with 

negligible overhead is important for these systems. Hence, based on the results presented 

above

im

situations [16]. Therefore, changing task parameters for resou

, it can be concluded that the solution approach can be considered for the real-time 

applications. 
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vious section can be applied to the resource allocation 

proble

pproach of section 3.3 is favorable. This solution approach is 

ttempted to be extended to the multiple resource type case but an appropriate result can not 

llocation approaches in 

literature [16], [18], [19] and [10] for the multiple resource type case. In this section these 

appro

n the next subsection, 

is approach is investigated. 

 

.4.1 Extension to the Specific Two Resource Type Case 

Lee et al. [16] assumed that each tracking task, k (k = 1, 2, …, N), have a discrete 

acking quality function, Qk(fk), depending on sampling frequency and defined for different 

tracking filter algorithms (algorithm1, algorithm 2, etc.) as shown in Figure 3.4.1 and 

onsidered the radar resource allocation problem formulated to below: 

 

Maximize 

Q
1

3.4  Approach for the Case with Multiple Resource Type 

The solution obtained in the pre

ms including single resource type and whose objective functions and constraints are 

suitable with the assumptions in subsection 3.2.2. And as it can be observed from the 

simulation results and [23], for the specific radar resource allocation case, real-time 

performance of the solution a

a

be obtained. There exist near-optimal Q-RAM based resource a

aches are investigated in detail. 

In [16], Lee et al. extended the Q-RAM approach for single resource type and 

proposed a near-optimal for the radar resource allocation algorithms in which sampling 

frequency (fk) and computation time (Ck) are considered as resources. I

th

3

tr

c

 

∑
=

N

k
k  

 

Subject to 

 

1
1

≤∑
=

fk ≥ fk,min, k = 1, 2, …, N. 

s it is explained in the previous subsection, Q-RAM approach for the single resource type 

case processes single utility function depending on single variable for each application. In 

N

k
kk fC  

 

 

A
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order to handle two variable case (sampling frequency and computation time depending on 

tracking filter algorithm complexity), Lee et al. merged the tracking quality functions 

defined for different tracking filter algorithms as shown Figure 3.4.2 which shows the two 

algorithm case. 

 

 

 

 

Figure 3.4.1 Discrete Tracking Quality Functions Depending on 
Sampling Frequency (fk) and Defined for Different Tracking 
Algorithms. Lee et al. [16] assumed computation time (Ck) of the first 
algorithm is 2 ms and that of the second algorithm is 3 ms for 
illustrative purposes. 

 

 

 

In order to obtain a single tracking quality function, discrete tracking quality functions are 

btained for each tracking task, depending on utility of the radar processor Uk, by using the 

relation Uk = fk × Ck. After this variable transformation, the tracking quality function 

depending on the utilization of the radar processor, Qk(Uk), can be obtained by taking the 

maximum of the two functions (the thick line in Figure 3.4.2). And after this point Lee et al. 

investigated Uk as resource. Associated with each Uk there exists (fk, Ck) pairs. 

 

 

 

o



 

Figure 3.4.2 Merged Tracking Quality Function. The tracking quality 
functions in the previous figure are re-plotted depending on the 
utilization of the radar processor which is Uk = fk × Ck. The maximum of 
the figures on the same utilization points are taken and one tracking 
quality function is obtained for each tracking task. 

 

 

 

Lee et al. [16] constructed convex hulls of the merged tracking quality function of each 

tracking task as shown in Figure 3.4.3 and obtained the final tracking quality functions, 

Qk(Uk), k = 1, 2, …, N. 
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F Hull of ction. 
The green line in this figure shows the convex hull of the merged 

 

 

 

igure 3.4.3 Convex the Merged Tracking Quality Fun

tracking quality function. 
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On the f proach, 

which is bas ing in a 

total trackin h,  is the unit 

tracking qua ting point. 

1. Calculate 

inal tracking quality functions, Lee et al. applied the following algorithmic ap

ed on Q-RAM procedure, in order to obtain a resource allocation result

g quality which is closest to the optimal. In this approac  )( kk UQ′

lity difference between the current operating point and the next opera

))( ..., ),( ),(( 2211 N UQUQUQ N
′′′  and sort the tracking quality 

tasks in decreasing )( kk UQ ′  order at current operating points. 

ng the highest  value, 

In this approach, tracking quality functions of the tracking tasks are taken as discrete 

functi

.3, the logic behind 

the approach of Lee et al. [16] is same with the Q-RAM procedure. In [16] the considered 

objec

)( kk UQ ′2. Evaluate the subcollection of tasks havi

let’s call this set H. 

3. Test whether the utilization of the radar processor exceed %100 or not 

if the next operating point following the current operating point on the 

convex hull curves is selected for each task in the set H. 

a. If full utilization is not exceeded, pass to the next operating 

point following the current operating point on the convex hull 

curves for each task in the set H 

b. If full utilization is exceeded, terminate the procedure. 

4. Return to step 1. 

 

ons, Qk; in these functions tracking quality changes with sampling frequency and 

computation time pairs. In the algorithmic approach above, operating point represents the 

sampling frequency and computation time pair, (fk, Ck), for each tracking task as the goal of 

the algorithm is to find the best operating point, i.e. sampling frequency (fk) and computation 

time (Ck) value for each task. In Q-RAM procedure in subsection 3.3 searches are conducted 

in one dimension for each application because there is single resource type. When resources 

more that one type are considered, in order to conduct the Q-RAM approach the search 

dimension is demoted to one dimension by considering the sampling frequency and 

computation time in the one axis in the approach of [16] which is described above. 

 

When compared with the Q-RAM procedure described in section 3

tive functions are discrete functions and some approximations are made in order to 

obtain convex hull of the discrete functions. The near-optimal algorithm of [16] considers 

only the computational resources of the radar system. In order to consider the energy 

resource of the radar system along with the computational resources, Q-RAM based 

approaches presented in [18], [19], [10] and [24], which considers the general case of 
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In [10] Lee et al. proposed resource vectors, which include the different types of 

resou

The radar resource allocation problem formulated in subsection 2.3 is restated below. 

But in this case the tracking quality functions are assumed to be discrete different than the 

revious formulation; Qk is the tracking quality function of the kth tracking task (k = 1, 2, …, 

N). And, the tracking quality functions are dependent on sampling frequency (fk), average 

power of the transmitted radar signal (Pk) and also com tation time (Ck). Computation time 

 also considered as an optimization variable besides sampling frequency and power. In [16] 

it is assume ing a target with more sophisticated algorithms will require more 

rocessor resource but produce better tracking quality. Therefore, for the radar resource 

allocation problem formulated below, it is assumed that tracking quality increases with 

increase of the computation time (Ck). 

Maximize 

 

Subject to 

=

N

k

multiple resource case, can be examined. In the next subsection general extension of the Q-

RAM to the multiple resource type case is investigated. 

 

3.4.2 Extension to the General Multiple Resource Type Case 

rces as scalar components, to handle the multiple resource type case and enable the 

search in one dimension for each application as the Q-RAM procedure makes search in one 

dimension for each application. The objective functions of the applications are assumed to be 

discrete in [10]. In [18], [19] and [24], the approach of [10] is used and Q-RAM based 

resource allocation approaches are presented for specific problems. In [19] and [24], radar 

resource allocation problem is considered; in [18], network applications and resource 

management in phased array radar systems are investigated. In the following paragraphs, Q-

RAM based resource allocation procedure of [18], [19], [10] and [24] for general multiple 

resource type case is explained on the radar resource allocation problem. 

 

p

pu

is

d that track

p

 

∑
=

N

k
kkkk PCfQ

1
),,(  

 

 

1≤∑ kk fC  
1



 

max
1
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N

k
k ≤∑
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fk ≥ fk,min, k = 1, 2, …, N. 

 

Pk ≥ Pk,min, k = 1, 2, …, N. 

 

The discrete tracking quality functions are shown in Figure 3.4.4. 

 

 

 

 

Figure 3.4.4 Discrete Tracking Quality Functions for kth Tracking Task (Qk) for 
the Case of two (Pk, Ck) Options. The first curve is valid for the average power of 
the transmitted radar signal level (Pk) of Pk1 and computation time Ck1 and the 
second curve is valid for the average power of the transmitted radar signal level 
(Pk) of Pk2 and computation time Ck1. These two curves define the discrete 
tracking quality function (Qk). If there exist some other Pk and Ck options, the 
number of curves can be increase in order to define the Qk function completely. 

 

 

 

The Figure 3.4.4(a) is valid for the average power of the transmitted radar signal level (Pk) of 

Pk1 and computation time Ck1 and the Figure 3.4.4(b) is valid for the average power of the 

transmitted radar signal level (Pk) of Pk2 and computation time Ck1. These two curves define 

the discrete tracking quality function (Qk). If there exist some other Pk and Ck options, the 

number of curves can be increase in order to define the Qk function completely. 
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In order to apply Q-RAM approach in multiple resource type case, it is intended to 

btain a tracking quality function in one dimension in [18], [19], [10] and [24]. In order to 

btain a single tracking quality function for each tracking task sampling frequency (fk), 

computation time (Ck) and average transmitted power (Pk) parameters are merged in a 

resource vector, Ok = [fk  Ck  Pk]T (k = 1, 2, …, N), where each resource vector represents an 

operating point as shown in Figure 3.4.6 and for each vector there exists a corresponding 

quality value in the tracking quality curves. Hence, a resource vector-tracking quality 

function can be obtained for each tracking task by arranging the quality vectors in increasing 

quality value order. For the two curves in Figure 3.4.4(a) and Figure 3.4.4(b), the resultant 

resource vector-tracking quality function is shown in Figure 3.4.5. 

 

 

 

o

o

 

Figure 3.4.5 Tracking Quality Function Depending on Resource 
Vector (Ok). The discrete operating points in Figure 3.4.4(a) and 
Figure 3.4.4(b) are arranged in the increasing tracking quality order. 
As the discrete operating points define the resource vectors, the 
tracking quality function depending on resource vector is obtained. 

 

 

 



 

y Function. As shown in the figure 
n  defines an operating point for a tra  

task. In this figure for the jth tracking task numerical examples for an 
operating point is given. In this example tracking algorithm for the 

Figure 3.4.6 Discrete Tracking Qualit
each discrete point on the fu ction cking

specified operating point is shown as Kalman whose computation time is 

 

 

 

B

These f ilar to the approach 

of [ ,

shown RAM approach, the 

llowing iterative approach can be applied on the resultant resource vector-tracking quality 

assumed to be 1 ms for this specific track. Also, the convex hull of the 
discrete quality function is shown in this figure. 

y this way, a single resource-tracking quality function is obtained for each task. 

unctions are discrete and may not be concave. At this point, sim

16]  convex hull of each tracking quality function is obtained, by using the approach 

in Figure 3.4.3. Based on the optimization procedure of the Q-

fo

functions, Qk, (k = 1, 2, …, N). In this algorithmic approach, ′
kQ  denotes the unit tracking 

quality difference between the next operating point and the current operating point divided; 

i.e. rQQQ ckkrckkk /))()(( ,, OO −=′ + , ck ,O  is the current operating point and rck +,O  is the 

next operating point on the convex hull of the tracking quality function of the kth task. 

 

1. Let the current allocated resource to kth tracking task be Ok, 1 ≤ k ≤ N. Compute and 

2.

sort ))( ..., ),(( 11 NNQQ OO ′′ . 

 Identify the first task in the sorted list of step 1. Pass to the next resource vector 

(discrete operating point) on the convex hull of the resource vector-tracking quality 

curve obtained prior to the step 1 of the identified task. If resources are not sufficient 

for the specified allocation, then stop. Else, make the allocation. 
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of multiple resource 

pe, the approach is similar to the case with single resource type case except the objective 

functi

llocation approach for the 

ultiple resource type case are explained. 

.5 Drawbacks of the Approaches for Multiple Resource Type Case 

As it is mentioned previously, the goal of the Q-RAM based approaches for the 

multiple resource type case is to reach a solution, which is closest to the optimal solution, in 

real-time systems. In this algorithmic approach, the convex hulls of the objective functions 

of the tasks are fed as input to the algorithm. The reason for consideration of the convex hull 

functions for each task is to obtain the highest quality increase per resource increase for each 

task at each iteration. In the iterations of the algorithm, the operating point following the 

current operating point on the tracking quality curve and giving the highest quality increase 

per resource increase is selected as the next operating point for each task. This operating 

point selection procedure results in convex hull functions for each task. 

 

In the vex hull of 

he tasks some operating points are not taken into consideration in 

 point process as shown in Figure 3.5.1. 

3. After allocating resources to the specified task; if there are unallocated resources, 

return to step 1. If there are no unallocated resources, then stop. 

 

As it can be observed from the Q-RAM based algorithm for the case 

ty

ons in multiple resource type case are discrete and some approximations are made in 

order to obtain a resource-quality function in single dimension. In the next subsection the 

approximations and drawbacks of the Q-RAM based resource a

m

 

3

approach described in previous subsection, in order to obtain the con

the objective functions of t

the search of the solution

 

 

 



 

Figure 3.5.1 Obtaining Convex Hull of a Discrete Function. The 
discrete point having gray color is discarded in order to obtain the 
convex hull function. 

 

 

 

Neglecting some of the operating points, as shown in Figure 3.5.1, in the search process may 

lead to non-optimal results as the optimal result may contain the neglected operating points 

for some of the tasks. 

 

In the case of single resource type, it is assumed that the objective functions of the 

applications are twice differentiable and constraints are convex in Q-RAM approach and an 

algorithm is presented in order to obtain results satisfying the KKT optimality conditions. 

Along with the assumptions obtaining a solution satisfying KKT conditions enables to reach 

optimal results. But in the case of multiple resource type, the Q-RAM resource allocation 

approach does not have a convincing theoretical background in the view of optimality. The 

approach for the multiple resource type is similar to the approach the single resource type 

case as in both of the procedures; the resources of the tasks having the highest marginal 

returns are increased at each iteration. But, the Q-RAM procedure for the multiple resource 

type case does not provide necessary and sufficient conditions for the optimality. 

 

In order to obtain a theoretically convincing and optimal resource allocation approach 

for the radar resource allocation problem, the Methods of Feasible Directions, which propose 

optimization algorithms for the constrained optimization problems with non-linear objective 

functions, are considered. The considered algorithms in the literature of the Methods of 

Feasible Directions are Zoutendijk Algorithm with Topkis-Veinott’s Modification, Gradient 

Projection Algorithm and Convex-Simplex Algorithm. The outputs of these algorithms 
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tisfy the KKT optimality conditions in the case of convergence of the algorithms. When 

e objective function and constraints are convex, the outputs of the considered algorithms 

are optimal as KKT conditions are su lity. As the constraint in Eq. 2.3.2 is 

not convex when both fk and Ck are considered as optimization variables, computation time 

k) is not considered as an optimization variable and the radar resource allocation problem 

defined in subsection 2.3 is considered when the Methods of Feasible Directions are used for 

resou also 

implemented for resource allocation n 2.3 and Q-RAM and Methods of 

Feasible direction are compared in terms of optimality and execution time in Chapter 5. 

sa

th

fficient for optima

(C

rce allocation. The Q-RAM based approach for multiple resource type case is 

problem of subsectio
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CHAPTER 4 

RESOURCE ALLOCATION WITH METHODS OF FEASIBLE 

DIRECTIONS 

As it is mentioned in the previous chapter, Q-RAM approach generates near-optimal 

ource allocation problem and the theoretical background of the model does 

not co

hich 

ave been applied to the resource allocation problem in network applications [21] and [26], 

n problem formulated in subsection 2.3 is a constrained optimization problem with 

an

 

4.1 

 Theory 

In the Method of Zo , an improving feasible direction is generated and a search 

is conducted on the generated direction at each iteration [4]. The definition of improving 

feasible direction is: 

‘Consider the problem t (x) s

 
 

 
 
 

results to the res

nsider the sufficiency conditions for optimality as a whole. In this thesis, it is proposed 

to obtain a solution, which provides a well founded mathematical background and generates 

optimal results as fast as the Q-RAM approach, to the resource allocation problem with 

multiple resource type. In order to achieve this, the Methods of Feasible Directions, w

h

is first proposed to be applied to the radar resource allocation problem. The radar resource 

allocatio

linear constraints. In this section, the algorithms considered in the Methods of Feasible 

Directions literature and that can generate optimal results to the optimization problems with 

convex objective function d linear constraints, are investigated. The performances of the 

algorithms are compared with Q-RAM on the radar resource allocation problem of 

subsection 2.3. 

 

Zoutendijk Algorithm 

In this section, the theory of the Method of Zoutendijk and the modification of Topkis 
and Veinott [1967] on the Method of Zoutendijk is introduced. 
 
4.1.1

utendijk

o minimize f ubject to s∈x , where f:En E1 and S is a 

onempty set in En. A nonzero vector d is called ible direction at  if there exists a a feas s∈xn
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δ > 0 such that x + λd s∈  for all λ∈(0, δ). Furthermore, d is called an improving feasible 

direction at s∈x  if there exists δ > 0 such that f(x + λd) < f(x) and x + λd s∈  for all λ∈(0, 

δ)’ [4]. 

In [4], the optimization problem with linear constraints provided below is considered 

in order to describe the theory of the algorithm. 

 

Minimize f(x) 

subject to Ax ≤ b 

Ex = e 

And the lemma is presented: 

Lemma

an

nto (b1 , ). Then, a nonzero vector d is a f  direction at x 

 and onl ≤ 0 and Ed = 0. If 

 

 following 

 4.1.1.1 

‘Consider the problem to minimize f(x) subject to Ax ≤ b and Ex = e. Let x be a 

feasible solution, and suppose that A1x = b1 d A2x < b2, where At is decomposed into (A1
t, 

A2
t) and bt is decomposed i t b2

t easible

∇ fy if A1d if (x)td < 0, then d is an improving direction’ [4]. 

Based on the lemma above, generating an improving feasible direction is explained as 

below

or d is an im  

asible direction if (x)td < 0, A1d ≤ 0 and Ed = 0. A natural method for generating such 

 and Ed = 0. Note, 

owever, if a d such that x)td < 0, A1d ≤ 0 and Ed = 0 exists, then the optimal objective 

valu f

 

; 

‘Given a feasible point x, as shown in Lemma 4.1.1.1, a nonzero vect proving

 ∇ ffe

a direction is to minimize ∇ f(x)td < 0 subject to the constraints A1d ≤ 0

∇ f(h

e o  the foregoing problem is ∞−  by considering λd, where λ is arbitrarily large. Th

aint that bounds the vector d or the objective function must be presented’ [4]. 

 [4], three problems, each problem

us, 

a constr

In  using a different normalization constraint 

exp e esis 

the follo rder to generate an improving feasible direction: 

Probl

Ex = e 

-1 ≤ dj ≤ 1 for j = 1, …, n 

 

lain d above, for generating an improving feasible direction is presented. In this th

wing problem is used in o

 

em D: 

Minimize ∇ f(x)td 

subject to A1x ≤ b 
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This problem can be solved by th od. Since d = 0 is a feasible to the 

bove problem, and since its objective value is zero, the optimal objective value of the above 

n is generated. It is 

roved in [4] that if the minimal objective function value of the above problem is zero, then 

nt. 

It is proposed to solve the following line search problem after determination of the 

improv dijk Algorithm [4]. 

 

Problem M: 

Minimize (xk + λdk) 

ty. Determination of λmax is explained in detail in [4], refer to [4] for 

 of 

linear c  = e is provided below [4]. 

 

Initializ tion x1. Let k = 1 and go to the step 1. 

t t t t t t

ptimal solution to the problem D. If (xk) d = 0, stop; 

xk is a KKT point. Else, go to step 2. 

2.

. The considered 

roblem is: 

 

Minimize f(x) 

e simplex meth

a

problem can not be positive. If the minimum objective function value of the problem above 

is negative, then, by the Lemma 4.1.1.1, an improving feasible directio

p

x is a KKT poi

ing feasible direction, which is stated below, in Zouten

∇ f

subject to 0 ≤ λ ≤ λmax

 

where xk is the current vector, dk is the improving feasible direction and (0, λmax) is the 

interval of uncertain

determination of λmax. 

 

4.1.2 Algorithmic Approach 

The Method of Zoutendijk for minimizing a differentiable function f in the presence

onstraints of the form Ax ≤ b and Ex

ation: Find a feasible solu

 

1. A  and b  are decomposed into (A1 , A2 ) and (b1 , b2 ) such that A1xk = b1 and 

A2xk < b2. Let dk be an o t∇ f

 Let λk is an optimal solution to the problem M. Let xk+1 = xk + λkdk. Replace k 

by k+1 and repeat step 1. 

 

In [4], it is shown that the algorithmic map of Zoutendijk’s method is not closed and 

convergence is not generally guaranteed. A modification of Zoutendijk’s method is proposed 

by Topkis and Veinott which guarantees a solution to a KKT point [4]

p
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 i = 1, …, m 

 

in To

i

-1 ≤ dj ≤ 1  for j = 1, …, n 

b ng and nonbinding constraints play a role in determining the feasible 

direct

ent. For determination of the uncertainty 

terval refer to [4]. 

he algorithmic procedure of Topkis-Veinott’s Modification Algorithm is as follows. 

 

Initiali  a fe lution x1. Let k = 1 and go to the step 1. 

 

1. Let (zk, dk) be an optimal solution to the problem DF. If zk = 0, stop; xk is a KKT 

k 

The convergence of Topkis-Veinott’s Algorithm is proved in [4]. Refer to [4] for proof and 

hm

As it can be observed from the simulation results of the algorithm presented in Chapter 

time of the algorithm is higher than the other possible alternatives when the 

algori

, w

subject to gi(x) ≤ 0 for

pkis-Veinott’s Modification Algorithm. In order to generate a feasible direction the 

following direction finding problem is considered instead of problem P. 

 

Problem DF: 

Minimize z 

subject to ∇ f(x)td - z ≤ 0 

∇ g (x)td - z ≤ - gi(x) for i = 1, …, m 

 

Here, oth bindi

ion [4]. The line search problem is same as problem M in Zoutendijk’s method except 

the determination of uncertainty interval is differ

in

T

zation: Find asible so

point. Else, zk < 0 and go to step 2. 

2. Let λk is an optimal solution to the problem M. Let xk+1 = xk + λkdk. Replace 

by k+1 and repeat step 1. 

 

further details of the algorit . 

 

5, the execution 

thm is considered in real-time applications. Alternative algorithms are also investigated 

in the Methods of Feasible Directions literature in order obtain favorable results in terms of 

real-time performance. In the next subsection, the theoretical background of the Gradient 

Projection Algorithm hich is one of the alternatives, is briefly presented. 
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ithm 

of constrained minimization problems, 

oving along the steepest descent direction may lead violation of the constraints. In the 

Gradient Projection Method of Rosen the aim is to project the negative gradient in such a 

way that the 

multiplied by a projection matrix P in this method. The definition of 

 

.2.1 Theory 

In this section the theoretical background of the 

sented on the following optimization problem, 

Minimize f(x) 

Ex = e 

r

 a feasible point. Movin

4.2 Gradient Projection Algor

When minimizing a function without constraints, the direction of steepest descent is 

that of the negative gradient. However, in the case 

m

direction is feasible and the objective function is improved [4]. The direction of 

steepest descent is 

projection matrix is ‘An n ×  n matrix P is called a projection matrix if P = Pt and PP = P’ 

[4]. 

 

4

Gradient Projection Algorithm is 

pre

 

 

subject to Ax ≤ b 

 

where A is an m × n mat ix, E is an l × n matrix, b is an m vector, e is an l vector, and f: En 

→ El is a differentiable function. Assume that x is g along -∇ f(x) 

he direction of steepest descent) may destroy feasibility. In Gradient Projection Method, in 

ord

(t

er to maintain feasibility, -∇ f(x) is multiplied with a suitable projection matr , P, an

d = -P∇ f(x), is obtained [4]. The following lemma, which provides the 

4  

 4.2.1.1 

ix d a 

feasible direction, 

form of a suitable projection matrix P, is presented in [ ]

 

Lemma

‘Consider the problem to minimize f(x) subject to Ax ≤ b and Ex = e. Let x be a 

feas d bt = (b1
t, b2

t). 

urthermore, suppose that f is differentiable at x. If P is a projection matrix such that P

ible point such that A1x = b1 and A2x < b2, where At = (A1
t, A2

t) an

F ∇ f(x) 

≠ 0, and P (x) ving direction of f at x. Furthermore, if Mt = (A1
t, Et) 

has full rank, and if P i  P = I – Mt(MMt)-1M, then d is an improving feasible 

irection’ [4]. 

 

 then d = -  is an impro∇ f

s of the form

d
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For proo

 

As it is shown in the Lemma 4.2.1.1 if P

f of the lemma refer to [4]. 

∇ f(x) ≠ 0, then d = -P (x) is an improving 

feasib

∇ f

le direction. Suppose that P∇ f(x) = 0. Then, 

 

0 = P∇ f(x) = [I – Mt(MMt)-1M]∇ f(x) = ∇ f(x) + Mtw = ∇ f(x) + A1
tu + Etv 

 

where w = -(MMt)-1M (x) and wt = (ut, vt). If u ≥ 0, then the point x satisfies the KKT ∇ f

conditions [4]. If u  0, the following projection matrix, P̂ , provides an improving feasible 

direction [4]. 

 

MMMMIP ˆ)ˆˆ(ˆˆ tt−=      (4.

f u 

2.1) 

0 

where, i  0, let u e a negative component of ),ˆ(ˆ
1

ttt EAM = , 1Â  is obtained fromj b u  

A1 by deleting the row of A  corresponding to u  [4]. 

 

4.2.2 

The algorith ethod is presented below. 
 

itialization: A point x1 with Ax ≤ b and Ex = e is selected. At and bt are decomposed into 

(A1
t, A2

t) and (b1
t, b2

t) such that A1x = b1 and A2x < b2. Let k = 1 and go to step 1. 

 

1. Evaluate Mt = (A1
t, Et). If M is vacuous, stop if 

, 

1 j

Algorithmic Approach 

mic approach of Gradient Projection M

In

∇ f(xk) = 0, let dk = (xk), 

and proceed to step 2. Else, let P = I – Mt(MMt)-1M and set dk = -P (xk). If dk 

≠ k pute w = -(MMt)-1M

-∇ f

∇ f

∇ f 0, go to step 2. If d  = 0, com (x) and let wt = (ut, vt). If 

u ≥ 0, stop; x  is a KKT point. If u  0, choose a negative component of u, say, 

k

k

uj. Update A1 by deleting the row corresponding to uj and repeat step 1. 

 

2. Find the optimal solution, λ , to the following line search problem: 

 

Minimize (x∇ f k + λdk) 

subject to 0 ≤ λ ≤ λmax

 



where λmax is obtained same as it is evaluated in the Method of Zoutendijk. Let 

xk+1 = xk + λkdk. Replace k by k+1 and repeat step 1. 
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It is shown that the direction finding map of Gradient Projection Algorithm is not 

to convergence, and a direction finding routine for a 

convergent variant of the Gradient Projection Method, which is provided below, is presented 

in [4]

tep 1 of the algorithmic procedure presented above is proposed to be modified as follows in 

ection finding routine for a convergent algorithm in [4], 

 

1. ‘Let M  = (A1 , E ). If M is vacuous, then stop if 

closed, which causes the algorithm not 

. 

 

S

order to obtain dir

t t t ∇ f(xk) = 0, let dk = (xk), 

and 2. Otherwise, let P = I – Mt(MMt)-1M and set  = -

P  w = -(MMt)-1M

-∇ f

proceed to step I
kd

∇ ∇ ff(xk). Also, compute (x) and let wt = (ut, vt). If u ≥ 0, 

then herwise, put dk = ≠ 0 and proceed to step 2. On the  stop if  = 0; otI
kd I

kd  

other hand, if u  0, let uh = minimumj {uj} < 0, let ),1 , where 1

is obtained from A

ˆ(ˆ ttt EAM = Â  

1 by deleting the row of A1 corresponding to uh, construct the 

projection matrix MMMMIP ˆ)ˆˆ(ˆˆ tt−= , and define II
kd  = -P∇ f(xk). Now, 

based on some scalar constant c > 0, let 

 

⎪⎭
⎬

⎪⎩
⎨

otherwise     II
k

k
d

d     (4.2.2) ⎪⎫⎪⎧ >
=

 if     II
hkk cudd

i ojection Algorithm either terminates with a 

KKT 

algori e mod ided in [4], for further details of 

4]. 

 

The Gradient Projection Algorithm is applied to the radar resource allocation problem 

of subsection 2.3 as in the case of the 

odification that is described in previous subsection. Execution time performance of the 

Gradient Projection Algorithm better than that of the Zo

 

and proceed to step 2’ [4]. 

 

W th the modification above the Gradient Pr

solution, or else, generates an improving feasible direction [4]. The proof that the 

thm with the abov ification is convergent is prov

the algorithm refer to [

Zoutendijk Algorithm with Topkis-Veinott’s 

M

 is utendijk Algorithm with Topkis-
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einott’s Modification as it can be observed from the simulation results presented in Chapter 

5. In 

Metho

.3 Convex-Simplex Algorithm 

The Convex-Simplex Method is proposed to minimize a convex objective function 

subject to linear constraints. T

4.3.1 Theory 

The following optimization problem is considered in Convex-Simplex Algorithm, 

 

Minimize f(x) 

subject to Ax = b 

  x ≥ 0. 

In this algorithm, the basic variables are modified while 

method is similar to the Simplex Method for problems with linear objective function and 

onstraints [4]. For the theoretical background of the algorithm refer to [1] and [4]. In the 

next subsection, the algorithmic approach of the method is presented. 

 

.3.2 Algorithmic Approach 

Based on [4], the algorithmic procedure of the convex-simplex algorithm can be 
introduced a

itialization: Begin with a point x1 satisfying the constraints Ax1 = b and x1 ≥ 0. Let k = 1 
o the  

1. Compute Ik, B, N and r as follows: 
 

where A is decomposed as [B, N] (B and N are given in  e pressio  4.3.2)
decomposed as  such that Ad = BdB + NdN. 

 

 

 

V

the next subsection, the Convex-Simplex Algorithm, which is also considered in the 

ds of Feasible Direction literature, is briefly explained. 

 

4

he method is proposed by Zangwill [1]. 

 

 

maintaining feasibility, therefore the 

c

4

s follows: 
 
In
and go t
 

 step 1.

the x n  and dt is 
[ t

N
t
B dd , ]

Ik = index set of the m largest components of xk  (4.3.1)

B = {aj: j∈Ik} N = {aj: j∉Ik}    (4.3.2) 

rt =     (4.3.3) 

 

ABxx 1)()( −∇−∇ t
kB

t
k ff
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consider the expressions provided below. If α = β = 0, stop; xk is a KKT point [4]. If α 

    (4.3.8) 

 

> β, compute dN from 4.3.6 and 4.3.8. If α < β, compute dN from 4.3.7 and 4.3.9. If α = 
β ≠ 0, compute dN either from 4.3.6 and 4.3.8 or else from 4.3.7 and 4.3.9. In all cases, 
dB is computed from 4.3.10. And then, go to step 2. 

 
 

α = maximum {-rj: rj ≤ 0}    (4.3.4) 

 

β = maximum {xjrj: rj ≥ 0}    (4.3.5) 

 

v = an index such that α = -rv    (4.3.6) 

 

v = an index such that β = -xjrv    (4.3.7) 

 

⎭
⎬
⎫

⎩
⎨
⎧

=∉
≠∉

=
vjIj
vjIj

d
k

k
j , if     1

, if     0

 

⎭
⎬
⎫

⎩
⎨
⎧

=∉−
≠∉

=
vjIj
vjIj

d
k

k
j , if     1

, if     0  
    (4.3.9) 

 

NB NdBd 1−−=              (4.3.10) 

 
2. Solve t rch problem: 

 
Minimize f(xk + λdk) 
subject to  0 ≤ λ ≤ λmax

 

he following line sea
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       (4.3.11) 

 
xjk, djk th c ents of xk and dk, respectively. Let λk be an optimal solution, 
and le k + eplace k by k+1 and go to step 1. 

 are the j ompon
t xk+1 = x λkdk. R

 
Refer to [4] for verification of the convergence of the Convex-Simplex Method. 
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ms, also termed as primal methods, to the problem of resource 

llocation have been limited to the studies [21] and [26]. In [21], Gradient Projection 

urces. Similarly in 

[26], the Gradient Projection Algorithm is studied for optimized bandwidth allocation in ad 

hoc n

orm, 

 objective function in the 

4.4 Application of the Methods to the Radar Resource Allocation Problem 

To the best of our knowledge, the application of this well established family of 

optimization algorith

a

Algorithm is investigated in the problem of allocation of network reso

etworks under overload situations and the convergence properties and performance 

measured in terms of accumulated utility are investigated. In both of the studies, the research 

domain is network applications. In this thesis, we apply the Methods of Feasible directions to 

the radar resource allocation problem and collectively abbreviate our Feasible Directions 

based solutions to the radar Resource Allocation problem as FDRA. Later in the following 

section, a discrete version of this approach for the case with discrete operating points will be 

presented and termed as FDRA-D with the suffix for Discrete. 

 

The methods described in the previous subsections are for the optimization problems 

with twice differentiable objective functions and linear constraints [4]. As the objective 

function is twice differentiable and the constraints are linear in the radar resource allocation 

problem, which is formulated in the subsection 2.3, the problem can be solved by employing 

one of the methods described in the previous subsections. The problem can be written in the 

following f

 

Minimize f(x) 

subject to Ax ≤ b 

Ex = e 

 

for the Zoutendijk Algorithm with Topkis-Veinott’s Modification and the Gradient 

Projection Algorithm. And the considered problem can also be formulated in the following 

form, 

 

Minimize f(x) 

subject to Ax = b 

  x ≥ 0. 

 

for the Convex-Simplex Algorithm. In the last formulation, the variables fk and Pk (k = 1, 2, 

…, N) can be changed to fk - fk,min and Pk - Pk,min (k = 1, 2, …, N) and the minimum resource 

requirement constraints can be written in the form x ≥ 0. And as the
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dar resource allocation problem is convex, the optimal result to the problem exist in the 

constraint boundary of the timing and energy constraints formulated in the subsections 2.1.1 

and 2.1.2, therefore the timing and energy constraints can be written in the form Ax = b for 

the last formulation. 

 

4.5 Approach for the Case with Discrete Objective Functions 

As it is explained in the Chapter 3, Q-RAM approach is extended to the multiple 

source type case by considering the objective functions for each of the applications of the 

resou

In this subsection, the proposed approach is explained on the radar resource allocation 

problem of subsection 2.3 in which sampling frequency (fk) and average power of the 

transmitted radar signal (Pk) of the tasks are investigated as variables of the resource 

allocation problem except the tracking quality functions of the tasks are assumed to be 

discrete functions. It is proposed to obtain exponential functions of the form of Eq. 2.2.1 best 

fitting to the discrete tracking quality functions of the tasks by using the least squares method 

[25]. 

 

Assume that there exists s discrete sampling frequency (fki, i = 1, …, s) and t average 

power of the transmitted radar signal (Pkj, j = 1, …, t) level options for k’th task. qkij denotes 

the tracking quality obtained from the k’th tracking task when the sampling frequency and 

average power of the transmitted radar signal of the task are fki and Pkj, respectively, for the 

discrete tracking quality function of the kth task. After application of the least squares 

method, the αk, βk and mk values of the exponential function (Eq. 2.2.1) best fitting to the 

discrete tracking quality function of the k’th task can be written as 

ra

re

rce allocation problem as discrete functions. In Chapter 5, the performance of the Q-

RAM approach for the multiple resource type case is compared with performance of the 

algorithms, which are briefly explained in this chapter, on the radar resource allocation 

problem formulated in subsection 2.3. The continuous objective functions defined in the 

subsection 2.2 are considered for the Methods of Feasible Directions and discrete objective 

functions, which are obtained by sampling the continuous objective functions of subsection 

2.2 on discrete points, are considered for the Q-RAM approach. In order to obtain an 

approach with better performance and theoretical background relative to the Q-RAM 

approach for the multiple resource type case with discrete objective functions option, the 

methods of feasible directions are proposed to be applied to the continuous objective 

functions, which are obtained by applying a curve fitting approach to the discrete objective 

functions. 
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After finding the αk, βk and mk parameters of the continuous tracking quality functions, 

which
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 are obtained by using Eq. 4.4.1, it is proposed to apply the algorithms presented in the 

previous subsections. Since, the value, derived from the algorithm, drops into a range which 

is defined within discrete operating points (fki, Pkj; i = 1, …, s , j = 1, …, t), the nearest point 

supposed to be selected. The chosen nearest operating point should be the lowest discrete 

operating point within the range. As an example, assume that the sampling frequency value 

of a task, which is generated by one of the Methods of Feasible Directions that is applied on 

the best fitting exponential curves to the discrete tracking quality functions, is 76.7 Hz and 

the discrete sampling frequency options are 10, 20, 30, …, 100 Hz, in this case the discrete 

sampling frequency value to be chosen is 70 Hz. The described resource allocation approach 

is called as FDRA-D (Feasible Directions based Resource Allocation approach for Discrete 

objective function case) in rest of the thesis. 
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 have considered are Q-RAM based 

ethods and the Methods of Feasible Directions, in particular the Zoutendijk Algorithm with 

ance metrics for each 

lgorithm: 

performance measures used to compare and contrast these 

lgorithms. We do not claim to present a fully realistic radar tracking scenario, however, we 

 

CHAPTER 5 

 
 

EXPERIMENTAL EVALUATION 

 
 
 

In this chapter, the resource allocation problem with multiple resource type is 

considered and the evaluation and comparison of the considered approaches are presented. 

The simulation environment in this thesis is MATLAB 7.0.1. Our experimental evaluation is 

intended to quantify the performance of resource allocation algorithms as applied to the radar 

target tracking problem. We also focus on comparing the performance of the contribution in 

the present study with those evaluated from the literature. As discussed in a theoretical 

framework in the preceding chapters; the methods we

m

Topkis-Veinott’s Modification, the Gradient Projection Algorithm and the Convex-Simplex 

Algorithm. We evaluate these algorithms in this chapter in terms of closeness to optimality 

and total execution time. We focus on measuring two main perform

a

 

• The global tracking quality obtained by the resource optimization and its closeness 

to the global optimum solution. 

• The total execution time. 

 

A proper evaluation of the algorithms considered require the selection of a reasonable 

simulation scenario, acceptably realistic simulation conditions and parameters as well as a 

formal definition for the 

a

believe that the scenario considered is sufficiently illustrative and useful such that when 

uniformly applied to all algorithms considered, gives us a good indication of relative 

performance differences. 
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 the simulation scenario which is used in quantifying and comparing the 

erformances of the resource allocation approaches is presented. In subsection 5.2, the 

nario and the uniform selection 

procedure of tasks from the task set are explained in detail. As it is explained in Chapter 3, 

the Q

us objective functions. In subsection 5.4, the simulations with continuous 

bjective functions are described and simulation results are presented. 

As previously discussed in Chapter 3, the Q-RAM approach for the multiple resource type 

case i

lgorithm, 

nce it has the best convergence speed according to the simulation results presented in 

bsection 5.4. The last step is to discretize back the solution point. The performance of the 

5.1 Outline of the Chapter 

In this chapter, first

p

parameter values of the tracking tasks in the simulation sce

-RAM approach for the multiple resource type case requires discrete objective 

functions. In subsection 5.2, the generation of discrete objective functions for the simulations 

as well as the Monte-Carlo Simulation technique utilized is also explained. 

 

In subsection 5.3, the performance measures for the considered resource allocation 

approaches are explained and the necessary definitions are presented. Some practical 

difficulties are encountered for the termination of the Methods of Feasible Directions in 

implementation. Since the speed of reaching a solution, which is one of the performance 

measures for the resource allocation approaches, is dependent on the termination criterion of 

the algorithms, the determination of the termination criterion is deemed important and its 

selection is discussed and explained in subsection 5.3. 

 

The performances of the considered resource allocation approaches are evaluated first by 

using continuo

o

 

s a discrete optimization approach. The objective functions of the Q-RAM approach 

are discrete functions for the case of multiple resource type. These consist of performance 

measure samples taken from the radar system operation at different operating points. With 

the motivation of obtaining an improvement over the Q-RAM approach in terms of closeness 

to the global optimal and speed of convergence, the Methods of Feasible Direction are 

proposed to be applied to the resource allocation problem with multiple resource type and 

discrete objective function. 

 

In order to achieve this, the following approach is proposed: first, one obtains continuous 

objective functions from the discrete function samples by curve fitting. Then, a chosen 

continuous optimization method is applied to obtain a continuous globally optimal solution. 

The optimization algorithm chosen for our experiments is the Gradient Projection A

si

su
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roposed alternative approach is compared with the Q-RAM approach. In subsection 5.5 of 

this chapter, the s tive functions are 

described in de

 

5.2 A Simulated Radar Ta

It is im re i e  aver behavio  the system over 

a range of mulation 

environment n of a target g rio. is scenario, a given number 

of targets are d iew e radar sys his v le target profile is a selected 

combination f  of targets. As it is ned ction 2 e parameters αk 

and βk in th  different values for different tracking tasks. The 

maneuverabil , nce he s gets being tracked lead to 

different αk a a  va in j function of the radar target tracking 

roblem. The initial condition parameter values fk,min, Pk,min and the control value of minimum 

chievable performance (mk) also play role in the characterization of the tracking tasks. 

ased on the selection of the values of the parameters αk, βk, fk,min, Pk,min and mk in the 

nume

 Based on the literature, we observe the 

follow

ined [16]. 

Comp

p

imulations performed for the case of discrete objec

tail. 

rget Tracking Scenario 

portant to note that we a nterest d in an age r of

possible target-radar interactions. The first step in setting up si

is the defi ition trackin  scena In th

in the fiel  of v  of th tem. T isib

rom a spectrum  explai in se .2, th

e objective function take

ity, speed dista  to t radar ystem of the tar

nd βk par meter lues the ob ective 

p

a

B

rical ranges of interest; different target-radar interaction conditions can be obtained. In 

the following subsections, the construction of the total target spectrum and the visible sub-set 

are described. 

 

5.2.1 Target Spectrum 

In order to generate a statistically meaningful performance estimate for the algorithms, 

simulations are conducted over randomly constructed target scenarios. These scenarios are 

extracted from a pre-generated 15 target spectrum which is given in Table 5.2.1. We 

generated this table with the primary aim of uniformly sampling all parameter ranges of 

interest affecting the target-radar interaction.

ing: Lee et al. selected minimum sampling frequency (fk) and sensitivity to the 

sampling frequency (αk) values in the order of 10-20 Hz and 0.01-0.1 respectively in 

evaluating their optimization approach to the radar problem they have exam

utation time parameter (Ck) is also selected in the order of 2-3 ms by Lee et al. in the 

experimental evaluation part of [16]. In this study, the minimum sampling frequency (fk,min), 

sensitivity to the sampling frequency (αk) and computation time (Ck) values are selected 

consistent with the experimental parameter values of [16] as shown in Table 5.2.1. 
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the Simulations Performed 

 

Table 5.2.1 Input Data for 

Task mk Ck (ms) αk βk fk,min (Hz) Pk,min (W) 
Task 01 0.8 2 0.080 0.075 15 20 
Task 02 0.75 1.9 0.085 0.070 16 21 
Task 03 0.9 1.8 0.090 0.065 17 22 
Task 04 0.85 1.7 0.085 0.060 18 24 
Task 05 0.7 1.8 0.080 0.055 19 25 
Task 06 0.95 1.9 0.075 0.060 20 26 
Task 07 0.9 2 0.070 0.065 21 25 
Task 08 0.95 2.1 0.065 0.070 22 24 
Task 09 0.8 2.2 0.060 0.075 24 22 
Task 10 0.85 2.4 0.055 0.080 22 21 
Task 11 0.75 2.5 0.060 0.085 21 20 
Task 12 0.7 2.6 0.065 0.090 20 19 
Task 13 0.9 2.5 0.070 0.085 19 18 
Task 14 0.8 2.4 0.075 0.080 18 17 
Task 15 0.7 2.2 0.080 0.075 17 18 

 

 

 

Minimum average transmitted power values (Pk,min) and sensitivity to the average 

transmitted power (βk) are selected in the order of 15-25 W and 0.05-0.1 respectively for 

experimental evaluation of the performance of the optimization approaches described 

previously to the radar resource allocation problem defined in this study. Sensitivity to the 

mpling frequency (αk) and sensitivity to the average power of the transmitted signal (βk) 

alues of the tracking tasks in Table 5.2.1 is varied in order to obtain different cases for the 

mulation scenarios. The variation of αk and βk parameter values provides different scenario 

conditions.  In the simulation scenarios, different initial conditions that are obtained by 

selecting differen Table 5.2.1 also 

provides various simulatio s wh rming simulations that are 

unbiased from the specific i

The control value o h k) is selected in the range 

0.5-1.The range 0.5-1 for the control value of minim hievable performance parameter is 

selected in order to provide num al examples for the comparative simulations. 

It can be argued that a set of 15 alternativ  is too small to span the entire 

parameter space created by the set of parameters considered. However, the aim of the study 

is not to provide an estimate of absolute performance but a comparative evaluation of 

different alternatives against ea efor believed that the target spectrum 

chosen is reasonably diverse and hence provides a promising ground for comparison of 

erformance. 

sa

v

si

t fk,min and Pk,min parameter values from the task list of 

n condition

scenario cond

f mini um ac

ich enables perfo

tions. 

ievable per mance (mm for

um ac

eric

e targets

ch other. Ther e it is 

p
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.2.2 Target Sub-selection 

The primary aim of generating different scenarios having the same number of tasks is 

 obtain an averaged performance figure for a given number of tasks on-scene. For this 

purpose, we obtain performance figures for each such scenario and obtain estimates for the 

first order statistics, namely the sample mean and samp

such experiments. We wish to pick K large enough to have statistically meaningful 

erformance while dealing with realizable experimental (simulation) time. Hence, we have 

chose

nction of number of targets on scene. N denotes the number of tracking tasks in the 

scenario and MN denotes the number of total combination of simulation cases that can be 

obtain

mbinations for Different 
Number of Tasks 

 

5

to

le variance figures computed over K 

p

n K in the following manner. 

 

For the comparative simulations, scenarios containing different number of tasks are 

considered. The number of tasks contained in the scenarios is varied from 1 to 11 while 

performance measures considered are evaluated for each algorithm considered. These tasks 

are chosen from the set of M=15 tasks given in Table 5.2.1. The spectrum of 15 different 

targets allows us to construct different combinations of targets, each with the same number 

of targets on scene. For example, one can construct a total number of 3003 target scenarios, 

each with 5 targets on scene. The total numbers of possible scenarios are given in Table 5.2.2 

as a fu

ed from the task set of Table 5.2.1 when there are N tasks in the scenario. 

 

 

 

Table 5.2.2 Numbers of Total Co

Number of Number of Total 
Tasks in the Combination of Different 
Scenario (N) Simulation Cases (MN) 

1 15 
2 105 
3 455 
4 1365 
5 3003 
6 5005 
7 6435 
8 6435 
9 5005 

10 3003 
11 1365 
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N can be obtained using the following equation: 

 

 

 

M

 

!)!(
!

NNM
MM N −

=      (5.2.1) 

 

As it can be observed from Table 5.2.2, the number of different simulation cases (MN) 

is not equal for different number of tasks included in the simulation scenario (N). Equal 

numbers of different simulation cases for different number of tasks in the simulation scenario 

are considered in order to make comparative simulations on the behaviors of the algorithms 

when the number of tracking tasks in the simulation scenario changes. 400 simulation cases 

re selected out of MN simulation cases for N ≥ 3; for N ≤ 2 there is not enough different 

mulation cases for obtaining 400 different simulation scenarios. 15 and 105 different 

enarios that are obtained from the task set of Table 5.2.1 is used for N = 1 and N = 2 cases 

respectively. We expect that this will introduce some deteriorated variance for these two 

cases. 

 

400 simulation cases are selected randomly out of MN simulation cases for each N (N = 

3, 4, …, 11). Uniformly distributed random selection is accomplished by applying the rand 

function in MATLAB. The rand function generates arrays of random numbers whose 

elements are uniformly distributed in the interval (0, 1). 400 simulation cases are selected by 

using the following algorithmic approach: 

 
Scenario_Set = Generate_Scenario_Set(M_N_Scenario_Set) 
1. Scenario_Set = {}; 
2. Divide (0, 1) interval into equal MN slices; 
3. 
4
5

b. Else add kth scenario of MN scenarios to the 
Scenario_Set, 

6. If number of scenarios in the Scenario_Set is equal to 400 
a. Then stop, 
b. Else return to step 3. 

a

si

sc

Generate a random number in the interval (0, 1) → x=rand; 
. Find in which slice x is located (say kth slice); 
. If kth scenario of MN scenarios is in Scenario_Set 

a. Then return to step 3, 

 

In this algorithmic approach, M_N_Scenario_Set is the input scenario set where 

scenarios are obtained from a task set of M tasks and each scenario contains N tracking tasks. 
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 3, Q-RAM based algorithms are discrete in nature for the case 

of mu pe and have need for discrete variables to operate. In order to have a 

basis for comparison, we need the same tracking quality functions to be used for evaluation 

of the considered approaches. Theref

taking samples of the continuous tracking quality functions described in section 2.2. For a 

contin

There are MN different scenarios in the M_N_Scenario_Set. Scenario_Set is the set 

containing 400 different scenarios selected from the M_N_Scenario_Set. 

 

5.2.3 Discrete Profile Generation 

As discussed in Chapter

ltiple resource ty

ore, discrete tracking quality functions are generated by 

uous tracking quality function for which frequency changes in the range 25 - 165 Hz, 

power changes in the range 25 - 165 W, mk is equal to 1, αk is equal to 0.01, βk is equal to 

0.015 and that is shown in Figure 5.2.1, discrete tracking quality curve is obtained as shown 

in Figure 5.2.2. 

 

 

 

 

Figure 5.2.1 Continuous Tracking Quality Function. For this plot, the parameters mk 

is equal to 1, αk is equal to 0.01, βk is equal to 0.015 in the tracking quality function. 

 

 

 

eases 

om 25 Hz to 165 Hz with step of 10 Hz, power increases from 25 W to 165 W with step of 

0 W. 15 different frequency levels are considered for the frequency axis and for the power 

In the discrete tracking quality function shown in Figure 5.2.2, frequency incr

fr

1
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xis also 15 different power levels are considered. From these selections, for a tracking task 

there 

e number of tasks included in the scenario and D is the total number of 

iscrete points to be searched for a task, the total number of discrete points to be searched for 

e global optimal solution (DTOTAL) is: 

 

 (5.2.2) 

 

For all of the scen ations , 15 discrete frequency 

levels and 15 discrete power els are considered for the discrete tracking quality functions 

that will be fed to the Q-RAM Algorithm. Discre  frequency and average power 

of the transmitted signal levels are selected beginning from the minimum power 

requirements of the tracking tasks. Each discrete nt is feasible when minimum 

resource requirements of the tasks are considered o containing N tracking tasks 

there are 225N discrete operating points that can b

 

 

a

are 15 × 15 = 225 discrete operating points that can be selected. If the number of tasks 

included in the scenario increases, the number of discrete operating point to be searched also 

increases. If N is th

d

th

DTOTAL = DN    

ario combin  obtained from Table 5.2.1

lev

te sampling

 operating poi

. For a scenari

e selected. 

 

 

Figure 5.2.2 Discrete Tracking Qualit
function is generat

y Function. The discrete tracking quality 
ed by taking samples on the continuous tracking quality 

function of Figure 5.2.1. 
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The number of discrete operating points depe

 when there exists 225 discrete operating points for 

one tracking task. 

 

 

Table 5.2.3 Number of Discrete Operating Points 
Depending on Number of Tasks 

Number of Total Number of Discrete 
rating Points 

nding on the number of tasks included in 

the scenario is presented in Table 5.2.3

 

Tasks Ope
1 225 
2 50625 
3 11390625 
4 2.5629e+009 
5 5.7665e+011 
6 1.2975e+014 
7 2.9193e+016 
8 6.5684e+018 
9 1.4779e+021 

10 3.3253e+023 
11 7.4818e+025 

 

 

 

llowing definitions. 

Standard deviation s and mean 

5.2.4 Monte-Carlo Simulations 

As partly discussed in the previous section, in our performance evaluation, the aim is 

to illustrate the expected behavior for a scenario with known number of visible targets. It is 

also known that the particular set of visible targets can be selected from the total available 

target spectrum in more than one way since there are MN combinations of N targets out of 15. 

The expected or average behavior for a given number of targets can be estimated by 

performing simulations with a large number of possible selections from the available 

spectrum where each selection having the same fixed number of visible targets N. This 

estimate can be derived by averaging the performance data over this set of multiple 

simulations and the standard deviation can be used as a basic measure of the confidence to 

the results. The sample average and the sample standard deviation are computed according to 

the fo

 

x  of data vector x is [3]: 
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n is the number of samples in the result set. 

5.3 Performance Measures 

e total tracking quality obtained from the result of the 

algorithm relative to the minimum resource requirement point and TQopt denotes the tracking 

qualit

OP = ( TQ / TQ  ) × 100   (5.3.1) 

n

i
i xx

n
s            (5.2.4) 

 

 

As it is indicated at the beginning of the chapter, the performance measures for the 

observed optimization approaches are closeness of the solution to global the optimal and the 

speed of reaching a solution. In the following subsections the performance measures are 

elaborated. 

 

5.3.1 Closeness to the Optimal 

In order to evaluate the performance of the algorithms in terms of the closeness to the 

optimal, the measure called ‘optimality percentage’ (OP) is introduced as discussed below. 

Optimality is assessed over the objective function which is the total tracking quality. In the 

definition below, TQ denotes th

y obtained from the global optimum operating point relative to the minimum resource 

requirement point. Because the cost function and constraints defined in the optimization 

problem in subsection 2.3 are continuous and convex, the results of the Zoutendijk 

Algorithm with Topkis-Veinott’s Modification, Gradient Projection and Convex-Simplex 

Algorithms ensure the necessary and sufficient conditions for global optimality [4]. So the 

optimality percentage of Zoutendijk Algorithm with Topkis-Veinott’s Modification, 

Gradient Projection and Convex-Simplex Algorithms are %100; that is, the ratio of the 

tracking quality obtained by using these algorithms to the global optimal tracking quality is 

one. 

 

opt
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However in the case of the implementation of the Q-RAM based approach, it not 

guara

 based approach experimentally in terms of optimality. Our 

rimary aim here is thus to see what is the compromise between speed and optimality for all 

ese algorithms considered. 

5.3.2 Speed of Reaching a Solution 

For the resource allocation approaches to be applied in real-time applications, it is 

important for the algorithms to reach the final solution in the shortest amount of time. For 

radar resource allocation problem, targets arrive and leave the field of view of the radar 

system dynamically. The tracking task list of the radar system changes with arrival and 

departure of the targets in the environment of the radar system. Radar system should also 

reconfigure the operating parameters considered in the radar resource allocation problem (fk, 

Pk) of a target when the speed and distance of the target changes. The reconfiguration of the 

fk and Pk parameters of the tracking tasks in the real-time environments requires the resource 

allocation algorithms to be applied under the real-time timing constraints. Although the 

absolute hm will 

sually mean better applicability. 

 

In the present study, we do not have a computational complexity analysis of the formal 

algori

LAB is presented. When the optimization algorithms, 

hich are presented in Chapter 4, are implemented in MATLAB, some practical difficulties 

are e on phase of the algorithms. Termination criterion of an 

algo e 

ncountered difficulties regarding the termination of the algorithms and the proposed 

termination approach are explained in subsection 5.3.2.2. 

 

 

nteed that the total tracking quality obtained from the resultant point of the algorithm is 

equal to the global optimum value. As it is mentioned in Chapter 3, the main objective of the 

Q-RAM model is to reach a solution that is closest to the optimal with a high convergence 

speed which can enable the model to be applied in real-time applications. The distance to the 

global optimal value of the performance measure makes it possible to evaluate the 

performance of the Q-RAM

p

th

 

requirements for the speed will vary between systems, a faster algorit

u

thms considered. Furthermore, iterative algorithms rely on a termination criterion to 

reach a solution. Instead, we opted for measuring execution time with the rationale that this 

will give an objective ground for comparison when all algorithms are executed on the same 

computational platform. In the following subsection, the measurement of the execution times 

of the optimization approaches in MAT

w

ncountered on the terminati

rithm is important in order to measure the execution time of the algorithm exactly. Th

e
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ion methods intended to solve 

e previously defined radar target tracking problem, MATLAB is used as the simulation 

tool. Simulations are performed on MATLAB 7.0.1 that is running on a computer with AMD 

4  XP Operating System. For CPU time 

calcul

5.3.2.1 Measurement of the Execution Time 

In order to compare the performances of the optimizat

th

Athlon 6  3200 processor, 1 GB RAM and Windows

ation, the execution priority of the MATLAB is made ‘Real-Time’ to avoid CPU being 

used by other applications. 

 

 

 

 

Figure 5.3.1 Making MATLAB a Real-Time Application in Windows OS 

 

 

 

MATLAB function cputime is used to measure the total execution time of an 

algorithm. The function cputime returns the total CPU time (in seconds) used by MATLAB 

from the time it was started. For example, the following code is used to measure the total 

execution time of the Gradient Projection Algorithm for a specific input scenario 

Input_Scenario and power limit Pmax. 

 
CurrentTime=cputime; 
[OP,No_of_Iterations]=GradientProjection(Input_Scenario,Pmax); 
ElapsedTime=cputime-CurrentTime; 
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 total execution time of the algorithm. 

5.3.2. the Algorithms 

ich the algorithm is 

onverged, is a KKT point as it is described in section 4.1.2 and in [4]. However, in most of 

the ca

 some cases it 

onverges to values in the neighborhood of -1e-10, in some other cases it converges to 

value tc. The value to which the ‘z’ parameter converges, 

chang

criterion should be determined and applied in the practical implementations of the algorithm. 

 

t Projection Algorithm: 

In this code OP is the output resultant operating point, No_of_Iterations is the total number 

of iterations performed by the algorithm in order to reach the final resultant operating point 

and ElapsedTime is the

 

2 Termination Criterion of 

Some difficulties regarding termination of the algorithms are encountered in 

implementation of the Zoutendijk Algorithm with Topkis-Veinott’s Modification, Gradient 

Projection and Convex-Simplex Algorithms in MATLAB. In the following paragraphs the 

encountered difficulties are explained and solutions utilized are discussed: 

 

Zoutendijk Algorithm with Topkis-Veinott’s Modification: 

In Zoutendijk Algorithm Topkis-Veinott’s Modification, the algorithm is terminated 

when the parameter ‘z’ becomes zero since the operating point, to wh

c

ses the parameter ‘z’ never becomes zero; there is no uniform convergence to zero but 

to a value near zero with a bias in practical implementations. For example, in

c

s in neighborhood of -1e-15, e

es according to the different scenarios used. Any threshold value of ‘z’ parameter that 

can be used for the termination of the algorithm can not be determined because in some 

scenarios the operating points converge at a specified ‘z’ value, in some other scenarios the 

operating points converge at another specified ‘z’ value. As a result, some other termination 

Gradien

Similar situation occurs in the case of implementation of the Gradient Projection 

algorithm. When the direction vector (d) becomes zero and also the vector (MMT)-1M∇ f(xk) 

is greater than or equal to zero, the algorithm is terminated as the point to which the 

lgorithm converged is a KKT point as it is explained in section 4.2.2 and in [4]. But, similar 

to the situation explained in the previous paragraph, in most of the cases the magnitude of 

the direction vector never becomes zero when the algorithm is implemented. The magnitude 

of the direction vector converges to values very near to zero; in some scenarios the value 

considered converges to a value in the neighborhood of 1e-15, in some other scenarios it 

converges to a value in the neighborhood of 1e-20, etc. The value, to which the magnitude of 

the direction vector converges, changes according to the different scenarios. Similar to the 

a
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Zoutendijk Algorithm with Topkis-Veinott’s Modification, some other termination criterion 

should be determined and applied in the practical implementations also for the Gradient 

Projection algorithm. 

 

Convex-Simplex Algorithm: 

From [4] and section 4 he Convex-Simplex Algorithm

case α = β = 0 occurs. But, similar to the cases encountered in Zoutendijk Algorithm with 

Topkis-Veinott’s Modification and Gradient Projection Algorithms explained in previous 

two paragraphs, the parameters α and β of the Convex-Simplex Algorithm never become 

zero in practical implementation of the algorithm. At some of the iterations of the algorithm 

 specified parameters (α, β) are very near to zero, the operating point vector 

(remember th

4]. This will be illustrated in the following paragraphs. 

.3.2, t  is terminated when the 

in which the

at the scalar components of the operating point vector are parameters of the 

optimization problem) changes considerably. Therefore, closeness to zero of α and β can not 

be used as a termination criterion for the algorithm in none of the cases. 

 

The following approach [4] is used as termination criterion for the algorithms of the 

method of feasible directions, which are presented in Chapter 4, in this thesis. 

 

Terminating the Algorithms: 

In order to overcome the explained practical difficulties encountered in the 

implementation of the algorithms, one can use uniformly the difference between successive 

operating points as the algorithms converges instead of the different specific convergence 

criteria of the three algorithms[

 

Let Ok denote the operating point vector in the kth iteration, which is defined as 

follows: Ok= [ ]TkNkNkkkk PfPfPf ,,,2,2,1,1   ...     for N targets, where fn,k and Pn,k are the 

sampling frequency and the average power of transmitted signal allocated to nth target (n = 1, 

, …, N) at kth iteration, respectively. The normalized difference vector (Nk) between the 

ccessive iterations is defined as follows: 

2

su
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    (5.3.2) 

 

The Euclidian norm and infinity norm (maximum scalar component of the vector) of 

the N  

objec e 

objec ly 

ld expect that the objective function value reaches a 

 state as the norm of the change in the operating point vector approaches zero. The ‘z’ 

eter in the Zoutendijk Algorithm with Topkis-Veinott’s Modification, the direction 

vector 

k vector can be used as a termination criterion for the considered algorithms. The

tive function is a function of the operating point vector by definition. Provided that th

tive function obeys a certain smoothness (which is the case of our exponential

constructed objective function), one wou

steady

param

d in the Gradient Projection algorithm and the parameters α and β in Convex-Simplex 

Algorithm are directly calculated from the operating point vector (Ok). Similar to the 

objective function, when the change in the Ok between successive iterations is very small, 

the change in the considered parameters is also negligible. 

 

In order to determine a threshold value on the norm of the Nk vector, some examples 

are considered and amount of change in the optimization variables with the amount of 

change in the norm of the Nk vector is investigated. In the following paragraphs, an example 

illustrating the determination of the termination criterion of the algorithms is described. 

 

 

 



 

Figure 5.3.2 Variation of the norm of Nk vector with iterations of the Zoutendijk 
Algorithm with Topkis-Veinott’s Modification, in Logarithmic Scale. The 
numerical values presented in Table 5.3.1 are used for the optimization problem 
parameters for this example. 

 

 

 

The scenario used in the simulations contains five targets and tracking quality function 

parameters of the targets are provided in Table 5.3.1. The mk parameters of all of the tracking 

functions are selected as mk = 1 in these simulations. As it is shown in Table 5.3.1, five 

tracking tasks are considered in the simulation scenario. The variations of the optimization 

variables (fk, Pk) of Task 01 with algorithm iterations are presented in Figure 5.3.5, Figure 

5.3.6 and Figure 5.3.7 respectively for the Zoutendijk Algorithm with Topkis-Veinott’s 

Mod an 

be o es 

at ar r the Zoutendijk Algorithm with Topkis-Veinott’s Modification, 

5th iteration for the Gradient Projection Algorithm and 150th iteration for the Convex-

implex Algorithm. The average power of the transmitted radar signal parameter of Task 01 

onverges respectively at around 60th, 60th and 160th iterations for the same three algorithms 

consid

ification, the Gradient Projection Algorithm and the Convex-Simplex Algorithm. It c

bserved from these figures that the sampling frequency parameter of Task 01 converg

ound 60th iteration fo

5

S

c

ered. Similar convergence figures can also be observed for other tracking tasks in the 

simulation scenario. Since the presented figures of Task 01 are considered adequate to 

provide an opinion about the convergence behaviors of the algorithms, the variation of 

optimization variables for other tasks are not presented on individual figures and rather, only 

the convergence iterations for these cases are presented in Table 5.3.2. 
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Table 5.3.1 Parameters of the Simulation Scenario for 
Determining the Termination Criterion. 

Task Ck (ms) αk βk fk,min (Hz) Pk,min (W) 
Task 01 5 0.08 0,06 25 45 
Task 02 6 0.07 0,05 41 25 
Task 03 5 0.06 0,07 29 25 
Task 04 6 0.09 0,05 20 50 
Task 05 5 0.07 0,06 25 41 

 

 

 

 

Figure 5.3.3 Variation of the norm of Nk vector with iterations of the Gradient 
Projection Algorithm presented in Logarithmic Scale. The numerical values 
presented in Table 5.3.1 are used for the optimization problem parameters for this 
example. 

 

 

 

 

ith Topkis-Veinott’s Modification and Table 5.3.2 are observed, it can be concluded that 

e algorithm converges at around 60th iteration; this is also true for the Gradient Projection 

lgorithm after observation of the Figure 5.3.6 and Table 5.3.2. As it is shown in Figure 5.3.7 

the optimization variables of Task 01 reaches steady state at around 160th iteration. Table 

When the variation of optimization variables of Task 01 for the Zoutendijk Algorithm

w

th

a
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5.3.2 

 Figure 5.3.2 and Figure 5.3.3 respectively for the Zoutendijk Algorithm with 

opkis-Veinott’s Modification and Gradient Projection Algorithms. For the Convex-Simplex 

lgorithm, both Euclidian norm and infinity norm of the normalized difference vector (Nk) 

ecreases to values in the neighborhood of 1e-4 at around 160th iteration as shown in the 

Figure 5.3.4. 

It appears this change can reliably be used as a termination criterion for the algorithms. 

When the magnitude of Nk takes values in the neighborhood of 1e-4 or below in the 

successive iterations, the change in the cost function and operating parameters of the targets 

are very close to zero. 

 

 

 

also illustrates that 160 is also the highest convergence iteration value of the 

optimization variables for all the other tasks; therefore it can be concluded that the Convex-

Simplex Algorithm converges at 160th iteration. 

At around 60th iteration, both Euclidian norm and infinity norm of the normalized 

difference vector (Nk) decreases to values in the neighborhood of 1e-4. This fact can be 

observed in

T

A

d

 

Figure 5.3.4 Variation of the norm of Nk vector with iterations of the Convex-
Simplex Algorithm, in Logarithmic Scale. The numerical values presented in Table 
5.3.1 are used for the optimization problem parameters for this example. 
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In the following figure, variations of sampling frequency (fk) and average power of the 

transmitted signal (Pk) values of Task 01 with iterations of the Zoutendijk Algorithm with 

Topkis-Veinott’s Modification for the tracking tasks of Table 5.3.1 are presented. Both the 

power and the frequency of the Task 01 converge at around 60th iteration when the 

Zoutendijk Algorithm with Topkis-Veinott’s Modification is employed for the resource 

allocation. 

 

 

 

 

Figure 5.3.5 Variation of Optimization Variables of Task 01 for the 
Zoutendijk Algorithm with Topkis-Veinott’s Modification. Both the power 
and the frequency of the Task 01 converge at around 60th iteration when the 
Topkis-Veinott’s Modification Algorithm is employed for the resource 
allocation. 

 

 

 

Figure 5.3.6 shows variations of sampling frequency (fk) and average power of the 

transmitted signal (Pk) values of Task 01 with iterations of the Gradient Projection Algorithm 

for the tracking tasks of Table 5.3.1. 

 

 

 



 

Figure 5.3.6 Variation of Optimization Variables of Task 01 for the Gradient 
Projection Algorithm. Both the frequency of the Task 01 converge at around 
55th iteration and the power of Task 01 converge at around 60th iteration when 
the Gradient Projection Algorithm is employed for the resource allocation. 

Va ignal (Pk) 

values of g tasks of 

Table 5.3

 

 

 

 

 

 

riations of sampling frequency (fk) and average power of the transmitted s

 Task 01 with iterations of the Convex-Simplex Algorithm for the trackin

.1 are presented in Figure 5.3.7. 
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Figure 5.3.7 Variation of Optimization Variables of Task 01 for the Convex-
Simplex Algorithm. Both the power and the frequency of the Task 01 
converge at around 150th iteration when the Convex-Simplex Algorithm is 
employed for the resource allocation. 

 

 

 

Table 5.3.2 Convergence Iterations Optimization Variables of Task 02, 
Task 03, Task 04 and Task 05 of Table 5.2.1. The Zoutendijk Algorithm 
with Topkis-Veinott’s Modification and the Gradient Projection Method 
converge at around 60th iteration and the Convex-Simplex Method 
converges at around 160th iteration. At around these iterations, the norm 
of Nk falls under 1e-4 for the considered algorithms. 

Convergence Iteration 
Optimization 

Variable 
Zoutendijk Algorithm 

Topkis-Veinott’s 
Modification 

Gradient Projection 
Algorithm 

Convex-Simplex 
Algorithm 

f1 60 55 150 
P1 60 60 150 
f2 34 22 115 
P2 60 28 150 
f3 18 5 15 
P3 55 20 150 
f4 55 60 140 
P4 55 60 150 
f5 18 15 125 
P5 60 28 160 
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One c e used as a 

re atio id

prac ficulties en  in the termi these algorithm actical 

implem tations. As it i  the figures presented above, along with the decrease of 

values of the vector Nk to the order of 1e-4, all t tion parameters appear to have 

converged. Simulations with different scenarios w tain different nu targets 

are also performed and also support this observati refore, we pick in dy, the 

decrease of the norm o tor to below a termination c for the 

investigated Methods of F irections. 

 

.4 Comparative Simulations with Continuous Objective Functions 

In the following subsections, the performances of the optimization approaches 

proposed to the radar resource allocation problem are presented based on the simulated radar 

target tracking scenario and the performance measures explained in the previous subsections. 

In these simulations, continuous tracking quality functions of the form Eq. 2.2.1 for each 

tracking task are used and discrete functions are generated from the continuous tracking 

quality functions for the simulations performed using Q-RAM. 

 

5.4.1 Results of the Zoutendijk Algorithm with Topkis-Veinott’s Modification 

The experimental results for the Topkis-Veinott’s Modification Algorithm are 

presented in Table 5.4.1 and Figure 5.4.1. In the results shown in Table 5.4.1, different 

scenarios are used as inputs for each simulation and minimum, mean and maximum run 

times of these simulations are presented. As it can be observed from Table 5.4.1, all run time 

values incre  task, two 

ptimization parameters (sampling frequency (fk), average power of the transmitted radar 

gnal (Pk)) are found as explained in the previous sections. The number of such optimization 

arameters is 2N for each tracking radar problem containing N tracking tasks. It is expected 

for ru

an conclude from these results that the norm values of Nk can b

liable termin

tica dif

n criterion for the cons ered algorithms. The considered norm avoids the 

l countered nation of s in pr

en s shown in

he optimiza

hich con mber of 

on. The  this stu

f Nk vec 1e-4 as riterion 

easible D

5

ases with increase of number of tasks as expected. For each

o

si

p

n time of the algorithm to increase with increase of the tracking tasks in the scenario. 

 

 

 

 

 

 



 79

Table hm 

Number of 
Targets 

Worst Run Time Value 
(sec.) 

 5.4.1 Run Time of Topkis-Veinott’s Modification Algorit

Best Run Time Value Mean Run Time Value 
(sec.) (sec.) 

1 06562 0.39063 0.03125 0. 5 
2 5 384 0.046875 0.01562 0.0 37 
3 0.03125 0.044375 0.046875 
4 0. 5 0.3675 0.54688 04687
5 0.1875 0.93387 1.4219 
6 0.32813 1.293 1.625 
7 0.34375 1.0851 1.3438 
8 0.60938 2.3752 3.5938 
9 1.1094 4.1363 6.9844 

10 2.2656 13.677 22.625 
11 3.2344 23.564 28.844 

 

 

 

 

Figure 5.4.1 Run Time of Topkis-Veinott’s Modification Algorithm 

 

 

tandard deviation of the run time 

om the experiments. The figure makes it clear that the mean run time increases with 

xponential characteristic with increase of number of tasks in the scenario. 

 

Figure 5.4.1 shows the variation of mean run time with number of tasks included in the 

simulation scenario. Bars at mean run time values show s

fr

e
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N Number of 
Iteration
(Average

 Time Per 
ation (sec.) 

Table 5.4.2 Number of Iterations of Topkis-Veinott’s 
Modification Algorithm

umber of 
Targets s Run

) Iter

1 4.2 0,015625 
2 4.1 ,0093749 0
3 4 1094 0,01
4 29.7 2374 0,01
5 70.5 3246 0,01
6 81.1 5943 0,01
7 80.6 3463 0,01
8 141.6 6774 0,01
9 227.7 0,018166 

10 619.4 0,022081 
11 1011.9 0,023287 

 

 

 

 

Simulation results of the Gradient Projection Algorithm are presented in Table 5.4.3, 

igure 5.4.2 and Table 5.4.4. Similar to the results of the Topkis-Veinott’s Modification 

algorithm, run time of the Gradient Projection Algorithm increases with increase of number 

of tasks included in the scenarios as shown in Table 5.4.3. 

 

 

 

 

 

When Table 3.3.1 is observed, it can be concluded that number of iterations and run time of 

the algorithm per iteration increases as the number of tracking tasks increases. With increase 

of the number of tracking tasks in the simulation scenario, the number of optimization 

parameters that are processed at each iteration of the algorithm increases. A linear 

programming problem is solved at each step of the algorithm in order to determine the best 

improving feasible direction. With increase of the number of tasks in the simulation scenario, 

variables of the linear programming problem increases. More computation time is required 

for solving the direction finding problem with more parameters. Therefore, run time per 

iteration of the algorithm increases with increase of the number of tasks. 

 

5.4.2 Results of the Gradient Projection Algorithm 

F
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Table 5.4.3 Run Time of Gradient Projection Algorithm 

Number of 
Targets 

Best Run Time Value 
(sec.) 

Mean Run Time Value 
(sec.) 

Worst Run Time Value 
(sec.) 

1 0.0045312 0.0046146 0.005 
2 0.015625 0.014687 0.015625 
3 0.03125 0.055 0.0625 
4 0.046875 0.070703 0.078125 
5 0.046875 0.069141 0.078125 
6 0.03125 0.071484 0.078125 
7 0.015625 0.068633 0.078125 
8 0.015625 0.072734 0.078125 
9 0.046875 0.080352 0.09375 

10 0.015625 0.086836 0.10938 
11 0.03125 0.10492 0.125 

 

 

 

Figure 5.4.2 shows variation of mean run time for N = 1 to N = 14. The variation of 

n time of the Gradient Projection Method exhibits an exponential characteristic in the 

terval 4 ≤ N ≤ 11. In order to see whether the exponential increase characteristic of run 

time, 

ient Projection 

lgorithm has better execution times than the Method of Zoutendijk with Topkis-Veinott’s 

odification. Because of the exponential versus linear behavior, the difference between run 

mes of the Gradient Projection and Topkis-Veinott’s Modification Algorithms becomes 

more distinct with

 

 

 

ru

in

the number of tasks included in the scenario is increased and averaged performance of 

the Gradient Projection Method is evaluated for the cases of N = 12, 13 14. Although the 

behavior is not as clear as the previous case, it can be concluded within the standard 

deviations that the mean run time of the Gradient Projection Algorithm increases almost 

linearly with increase of number of tasks included in the scenario. The Grad

A

m

ti

 the increase in the number of tasks. 



 

F  

 

 

 

Table 5.4.4 shows average number of iterati erage run time f ration 

of Gra nt Projection A m ks included in the scenario leads 

to increase of number of calculations at each iteration. As shown in Table 5.4.4 average run 

time per iteration increases. Run time per iteratio le 5.4.4 is obtain ividing 

mean run time value in T the mean iteration value in Table 5.4.4. 

) 

igure 5.4.2 Run Time of Gradient Projection Algorithm

ons and av or each ite

die lgorithm. Increase of nu ber of tas

n in Tab ed  d by

able 5.4.3 to 

 

 

 

Table 5.4.4 Number of Iterations of Gradient Projection 
Algorithm 

Number of 
Targets 

Number of 
Iterations 
(Average) 

Run Time Per 
Iteration (sec.

1 6 0.0007691 
2 13.76 0.0010674 
3 46.48 0.0011833 
4 56.145 0.0012593 
5 53.72 0.0012871 
6 53.915 0.0013259 
7 52.102 0.0013173 
8 52.915 0.0013745 
9 56.7 0.0014171 

10 59.138 0.0014684 
11 68.028 0.0015423 
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5.4.3 Results of the Convex-Simplex Algorithm 

Table 5.4.5, Figure 5.4.3 and Table 5.4.6 shows the simulation results of the Convex-

Simplex Algorithm. It observed from the presented results of Table 5.4.5 that similar to the 

simulation results of the algorithms previously presented, run time of the Convex-Simplex 

algorithm also increases with increase of the number of tasks as expected. 

 

 

 

Number of 
Targets 

Best Run Time Value 
(sec.) 

Mean Run Time Value 
(sec.) 

Worst Run Time Value 
(sec.) 

Table 5.4.5 Run Time of Convex-Simplex Algorithm 

1 0.00015625 0.00025 0.0003125 
2 0.00015625 0.00016875 0.0003125 
3 0.00015625 0.00015625 0.00015625 
4 0.0625 0.098828 0.10938 
5 0.34375 0.55297 0.65625 
6 0.64063 0.91027 1.0313 
7 0.64063 0.94781 1.0781 
8 0.875 1.2624 1.4063 
9 1 1.3557 1.5 

10 1.2031 1.7225 1.9063 
11 1.1875 1.8709 2.1406 

 

 

 

Figure 5.4.3 provides a plot of the mean run time and its standard deviation as error 

bars for the case of Convex-Simplex Algorithm for N = 1 to N = 11. Run time of Convex-

Simplex Algorithm shows almost a linearly increasing characteristic with increasing number 

of tasks included in the scenario as shown in Figure 5.4.3. 

 

 

 



 

Figure 5.4.3 Run Time of Convex-Simplex Algorithm 

 

 

 

The results suggest that the Convex-Simples algorithm is very advantageous over Topkis-

Veinott’s Modification and Gradient Projection Algorithms for the case of N ≤ 3. This 

relatively better performance of Convex-Simplex Algorithm is not however observed for the 

case N ≥ 4. Comparing Table 5.4.3 with Table 5.4.5, the Gradient Projection Algorithm 

appears more favorable as compared with the Convex-Simplex Algorithm for the scenarios 

with N ≥ 4. The comparative plot in Figure 5.4.4 better illustrates the explained behavior. 
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Figure 5.4.4 Comparison of Run Times of the Gradient 
Projection Algorithm and the Convex-Simplex Algorithm. 

 

 

 

In the Table 5.4.6 below, average number of iterations and average run time per 

iteration values of the Convex-Simplex Algorithm is presented. Run time per iteration of 

Convex-Simplex Algorithm, which is increasing with increasing N as expected, is higher 

than that of the Gradient Projection Algorithm. Convex-Simplex Algorithm converges to the 

final operating point in one iteration and run time for the convergence of the algorithm is 

better than the Gradient Projection Algorithm when compared with results presented in 

Table 5.4.4 for the case of N ≤ 3 as shown in the table below. But with increase of the 

number of tasks, number of iterations and computations at each iteration of the Convex-

implex Algorithm becomes much higher. 

umber of Iterations of Convex-Simplex 
Algorithm 

Targets (Average) 

Run Time Per 
Iteration (sec.) 

S

 

 

 

Table 5.4.6 N

Number of Number of 
Iterations 

1 1 0.00025 
2 1 0.00016875 
3 1 0.00015625 
4 36.97 0.0026732 
5 197.27 0.0028031 
6 299.66 0.0030377 
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Table 5.4.6 Continued 
7 289.13 0.0032781 
8 360.37 0.0035031 
9 362.26 0.0037423 

10 434.48 0.0039645 
11 444.94 0.0042048 

 

 

The Gradient Projection Method has better time among the rnative 

algorithms considere ethods of Feasible Directions. In the Meth tendijk 

with Topkis-Veinot ation, a linear ng sub-problem t each 

step in order to find the best improving fe ction. However radient 

Proj ion Method, oving feasible d found by projecting the negative 

gra t of the cost to the nullspace ding constraints. T ation of 

e direction vector is simpler in the Gradient Projection Method. 

 the Convex-Simplex Method, after evaluation procedure of the reduced gradient vector, 

which

 the Convex-Simplex Method than that of 

e Gradient-Projection Method. 

fter determination of the direction vector, the line search phase is same in the considered 

algorithms of the Methods of Feasible Directions. Therefore, the Gradient Projection 

Algorithm has better execution time when compared with the other alternatives in the 

Methods of Feasible Directions. 

 

5.4.4 Results of the Q-RAM Based Approach 

Simulation results of the Q-RAM Algorithm are provided in Table 5.4.7, Figure 5.4.5, 

Table 5.4.8 and Table 5.4.9. Mean run time of Q-RAM Algorithm increases with increase of 

N and it is comparable with mean run time of Gradient projection Algorithm as it can be 

observed from Table 5.4.3 and Table 5.4.7. 

 

execution  other alte

d in the M od of Zou

t’s modific programmi is solved a

asible dire in the G

ect the impr irection is 

dien function on  of the bin he evalu

th

 

In

 is similar to the direction finding phase of the Gradient Projection Method, 

comparisons are performed on the scalar components of the nonbasic part of the reduced 

gradient vector in order to determine the nonbasic component of the direction vector that 

best improves the objective function. The basic component of the direction vector is 

computed from the nonbasic component by multiplying it with nonbasic and inverse of the 

basic components of the constraint matrix. Hence, there are more comparative computations 

in the evaluation of the direction vector phase of

th

 

A
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Table 5.4.7 Run Time of Q-RAM Algorithm 

Number 
of Targets 

Best Run Time Value 
(sec.) 

Mean Run Time Value 
(sec.) 

Worst Run Time Value 
(sec.) 

1 0.0079688 0.0081563 0.0084375 
2 0.015625 0.018304 0.046875 
3 0.015625 0.028228 0.046875 
4 0.015625 0.036756 0.0625 
5 0.03125 0.046989 0.078125 
6 0.046875 0.057084 0.078125 
7 0.046875 0.065873 375 0.09
8 0.046875 0.077195 0.40625 
9 0. 0.10938 0625 0.089376 

10 0.078125 0.098183 0.125 
11 0.09375 0.11176 0.14063 

 

 

 

 

Figure 5.4.5 shows change of mean run time of Q-RAM algorithm for N increasing 

from 1 to 11. We verify that in agreement with the behavior specified in [6] run time of the 

Q-RAM Algorithm increases linearly with increase of tasks included in the simulation 

scenario. When compared with the simulation results of the Zoutendijk with Topkis-

Veinott’s Modification, Gradient Projection and Convex-Simplex Algorithms, Q-RAM 

Algorithm together with the Gradient Projection Algorithm seems favorable to the remaining 

two alternatives from the run time point of view. 

 

 



 

Figure 5.4.5 Run Time of Q-RAM Algorithm 

 

he 

rmer behavior can be explained by the execution of the algorithm. When the number of 

sks in the scenario increases, unallocated resource amount that will be allocated to the tasks 

y using Q-RAM approach in order to obtain an optimal resource allocation will decrease 

with assignment of leads to the distance 

between the current traint boundary to decrease. This in turn leads to 

the decrease of the n s with increase of the 

number of tasks included in the simulation scenario. 

 

Increase of N requires Q-RAM Algorithm to ore tasks for the best resource 

allocation in every iteration. Number of calculations at every iteration increases for this 

reason and run time per iteration increase with increas

 

 

 

 

Number of iterations and average run time of one iteration of Q-RAM Algorithm is 

shown in Table 5.4.8. Number of iterations decreases with increase of tasks as shown in the 

table. On the other hand, the table also shows the run time per iteration to increase. T

fo

ta

b

minimum resource requirements to the tasks. This 

operating point and cons

umber of iteration of the Q-RAM Algorithm 

search m

e of N. 
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Table 5.4.8 Number of Iterations of Q-RAM Algorithm 

Number of 
Targets 

Number of 
Iterations 
(Average) 

Run Time 
Per Iteration 

(sec.) 
1 21 0.0003884 
2 40 0.0004576 
3 28.193 0.0010012 
4 19.077 0.0019267 
5 17.8 0.0026398 
6 15.802 0.0036125 
7 13.935 0.0047272 
8 12.791 0.0060351 
9 12.594 0.0070967 

10 12.325 0.0079662 
11 11.986 0.0093242 

 

 

 

In the Table 5.4.9, the optimality percentage of the Q-RAM Algorithm is presented. 

As shown in the table, the distance of the result of the Q-RAM Algorithm to the global 

optimal resource allocation increases with increase of the number of tasks included in the 

scenario. This decrease is not significant however. As will be illustrated later, the loss of 

performance becomes much worse when the number of tasks becomes significantly large. 

 

 

 

Number of Targets Tracking Quality Ratio (%) 

Table 5.4.9 Optimality Percentage of the Result of 
the Q-RAM Algorithm 

1 100 
2 100 
3 99.939 
4 99.513 
5 99.129 
6 98.772 
7 98.516 
8 98.342 
9 98.265 

10 98.219 
11 98.183 
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ure 5.4.6 show

e N = 1 to N = 11. In the next subsection, a detailed analysis for the 

cases, in which N is much more higher than 11, is presented. 

 

The comparative plot presented in Fig s that the Q-RAM approach and 

the Gradient Projection Method have similar execution times. The Gradient Projection 

Method results in optimal solutions, however the Q-RAM approach has near-optimal results. 

Therefore, the Gradient Projection Method appears to be advantageous over Q-RAM in 

terms of closeness to optimal. However, when the results presented in Table 5.4.9 are 

observed, the distance of the results of the Q-RAM approach to the global optimum solution 

can be ignored for the cas

 

 

 

Figure 5.4.6 Comparison of Run Times of the Q-RAM 
Approach and the Gradient Projection Algorithm. 

 

 

 

5.5 Comparative Simulations with Discrete Objective Functions 

The Q-RAM algorithm can directly be applied in this case since it is inherently a 

discrete algorithm. However, Feasible Directions based algorithms are continuous in nature 

and their application in the discrete objective function case requires some adaptation to be 

incorporated. This adaptation is named in this study as FDRA-D. Due to its favorable 

performance, we have selected the Gradient Projection method from this group to be 

compa ssed 

in mo after 

red with the Q-RAM approach for the discrete objective function case. As discu

re detail in subsection 4.5, this algorithm can be applied to the discrete case 
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finding ality 

functions of tracking tasks. The result of the continuous optimization thus obtained is 

discretized back by finding the discrete operating point closest to the continuous result. 

FDRA-D searches for the closest discrete value towards to the decreasing resource direction 

in order to guarantee the feasibility of the operating point. It should be noted that the 

descr

tter results with the execution time 

comp able with that of the Q-RAM approach to the resource allocation problem whose 

objec

 the best fitting exponential curves ( kkkk Pf
k em βα −−−1 ) to the discrete tracking qu

ibed method forms a complete discrete algorithm where an inner loop is based on 

continuous optimization. 

 

In these simulations, the tracking quality functions of tracking tasks are taken as 

discrete functions and for a simulation scenario containing N targets, there are 225N discrete 

operating points to be searched for the optimal operating point. As it can be observed from 

Table 5.4.9 that the optimality percentage of the Q-RAM approach is in the neighborhood of 

% 98 - % 100 for the scenarios with N ranging from 1 to 11; the aim of the simulations 

performed in this subsection is to observe the performance of the Q-RAM approach when 

the number of targets in the scenario (N) is increased to numbers considerably larger than 11 

and to see whether the FDRA-D can generate be

ar

tive function is discrete. 

 

 

 

 

Figure 5.5.1 Generation of Discrete Tracking Quality Functions. For the 
simulations performed for comparative performance evaluation for the case of 
discrete objective functions, the input discrete functions are generated by 
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adding noise to the continuous functions. In this figure, noise is added to the 
function  for which αk = 0.008, βk = 0.006 and mk = 0.9. 

 

 

 

In these simulations, discrete quality functions are first generated by sampling the 

continuous quality functions. On the discrete quality functions, quality differences of each 

point with their four neighbor points are evaluated separately. A random number is generated 

in the interval [0, 1] by using the rand function in MATLAB. The interval [0, 1] is divided 

into four equal intervals (i.e. [0, 0.25), [0.25, 0.5), [0.5, 0.75) and [0.75, 1]). Depending on 

the interval in which the generated number lies in, the quality value of the discrete point is 

increased or decreased by the quality difference between one of the four neighbor points 

multiplied by a re-generated random number with the function rand. In order to decide 

whether to increase or decrease the quality at the considered point an other random n ber 

is generated with rand function and if the generated number is greater than 0.5 the quality 

Feasible 

ance of the FDRA-D is compared with the 

the radar resource allocation problem. The reason for using the Gradient 

 can be seen from the simulation results presented in the previous 

subsection. In these results, it can be obser

kkkk Pf
k em βα −−−1

um

value is increased else the quality value is decreased. 

 

In this subsection, Gradient Projection Algorithm is used in the Methods of 

Directions phase of the FDRA-D and the perform

Q-RAM on 

Projection Algorithm

ved that the execution time of the Gradient 

Projection Algorithm is much better than the other two algorithms (Zoutendijk Algorithm 

with Topkis-Veinott’s Modification and Convex-Simplex Algorithm) and comparable with 

the execution time of the Q-RAM approach. 

 

 

 



 

Figure 5.5.2 Change of Optimality Percentage with Increase of Number of Targets for 
ifferent Resource Allocation Approaches. Number of targets included in the simulation 

scena
appro

RA-D approach are closer 

 the optimal results than the results of the Q-RAM approach. Note that the discretized 

versio

 

The table below presents the average run time of the FDRA-D and Q-RAM 

pproaches with change of the number of tracking tasks included in the scenario. For the 

comparative simulati enari hese scenarios, the 

number of tracking tasks ( s from 20 to 200 with an increment of 20. These tasks are 

chosen from a set of 400 tasks. Total combination of 10 different simulation cases are 

considered for different num ario. Table 5.5.1 provides 

average of the ru  value. 

 

D
rio is increased from 20 to 200 for this simulation. The results of the FDRA-D 
ach is closer to the optimal than the results of the Q-RAM approach. 

 

 

 

As it can be observed from Figure 5.5.2 the results of the FD

to

n of the feasible directions based methods (in this case the Gradient Projection 

method) is no longer globally optimal when compared to the continuous global optimum 

point. Unfortunately, it is not feasible, even with off-line exhaustive search to determine the 

exact global optimum point of the discrete problem as a reference, hence our use of the 

continuous global optimum (%100 point). 

a

ons, a number of sc os are considered. In all of t

N) range

ber of targets included in the scen

n time values for 10 different simulation scenarios for each N
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Table 5.5.1 Run Time of FDRA-D and Q-RAM Approaches. As the number of 
targets included in the scenario is increased, the run times of both of the 
approaches increase; run time of the FDRA-D approach is comparable with 
that of the Q-RAM approach. 

Number of Tasks (N) Run Time of FDRA-D (sec.) Run Time of Q-RAM (sec.)
20 0.35822 0.30938 
40 1.2689 1.0297 
60 2.7755 2.5485 
80 5.0018 4.7391 

100 8.222 7.1219 
120 9.2 9.9969 
140 13.917 12.87 
160 18.494 16.172 
180 21.737 19.355 
200 27.038 22.824 

 

 

 

As it is explained in subsection 4.5, the result of the feasible direction method (scalar 

omponents of the operating point vector) is rounded to the nearest lower discrete operating 

point 

) 

c

in order to guarantee the feasibility. Due to this rounding process the optimality 

percentage of the FDRA-D approach decreases with increase of the number of tracking tasks 

included in the simulation scenario as it is shown in Figure 5.5.2. 

 

Root-mean-square (rms) of the noise added to the discrete function that is obtained by 

sampling the continuous function at discrete points is 0.017 for the simulations results shown 

in Figure 5.5.2 and Table 5.5.1. When rms of the noise added to the input function is 

increased the optimality percentage of the FDRA-D approach decreases as it is shown in 

Table 5.5.2. In Table 5.5.2, simulations results for 200 tracking task case are shown. 

 

 

 

RMS of the Noise Optimality Percentage (%
0.0085 89 
0.0171 87.9 
0.0342 87.1 
0.0685 85.2 

Table 5.5.2 Variation of Optimality Percentage with 
Variation of RMS of Noise. In these simulations there 
exist 200 tasks in the simulation scenario. 10 different 
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 proposes to find best fitting continuous curve to the objective 

function and apply optimal continuous optimization techniques. For the radar resource 

allocation problem, in which fk and Pk are investigated as optimization variables and the 

tracking quality functions of the tracking tasks are discrete functions, we have obtained best 

fitting exponential curves to the tracking quality functions and applied the Methods of 

Feasible Directions. The proposed FDRA-D approach provides results outperforming the Q-

RAM approach to the radar resource allocation problem with comparable run times. This can 

be observed from Figure 5.5.2 and Table 5.5.1. Since the theoretical background of the 

FDRA-D approach is well founded and the approach is advantageous over the Q-RAM 

approach in terms of convergence and closeness to the global optimal solution, it is our 

belief that it is a better alternative than the Q-RAM approach for the resource allocation 

problems with multiple resource type and discrete objective functions. 

 

5.6 Summary 

In this chapter, the performances of the Methods of Feasible Directions and the Q-RAM 

approach are evaluated and compared on the radar resource allocation problem. The 

simulations are performed for each different rms value 
and averages of these simulations are presented in this 
table. 

 

 

 

When the simulation results presented in subsection 5.4 are observed, it can be 

concluded that when the tracking quality functions of the tracking tasks are modeled as 

continuous functions, the Methods of Feasible Directions can be used in order to solve the 

radar resource allocation problem, which can be formulated as a constrained optimization 

problem. The execution time of the Gradient Projection Algorithm is comparable with the Q-

approach, which was [6] proposed to be applied in the real-time applications. This RAM 

implies that we are effectively proposing a theoretically well founded and optimal resource 

allocation approach to resource allocation problems with multiple resource type and 

continuous objective functions with results comparing favorably to those of the Q-RAM 

approach. The Gradient Projection Method, which have comparable execution time with the 

Q-RAM approach, appear to be a better alternative than the Q-RAM approach for resource 

allocation problems with multiple resource type and continuous objective functions. 

 

For the resource allocation problems with multiple resource type and discrete objective 

functions, the presented study
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mpling frequency (fk) and average power of the transmitted radar signal (Pk) are 

vestigated as optimization variables. In subsection 5.4, the case with continuous objective 

functions is considered and the objec mulated in subsection 2.2 are used. 

Subsection 2.2 also discusses that the exponential tracking quality functions can be obtained 

r different tracking quality tasks with different speed, distance to the radar system and 

maneuverability properties in practical applications. Hence such exponential functions are 

utilized in our simulatio proach is applied 

based on discrete objective functions obtained by sampling the continuous objective 

nctions on discrete operating points. Our simulation results show that the Gradient 

rojection Method proves to be advantageous over the Q-RAM approach in terms of 

closeness to optim

sa

in

tive functions for

fo

n experiments. In these simulations, the Q-RAM ap

fu

P

al with comparable execution times with the Q-RAM approach. 

 

As it is mentioned in subsection 2.2, the tracking quality functions for different tracking 

tasks are also considered as discrete functions and Q-RAM is proposed to be applied to the 

radar resource allocation problem [16]. In the present study, an alternative resource 

allocation approach to the Q-RAM called FDRA-D is proposed to be applied to the radar 

resource allocation problem for discrete case of the resource allocation problem. The 

simulation results of subsection 5.5 show that the proposed FDRA-D approach is 

advantageous over the Q-RAM approach in terms of closeness to optimal while maintaining 

comparable speed. This approach is also solidly founded on optimization theory as opposed 

to the Q-RAM approach. 
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The contributions of the present study can be outlined as follows: 

The following paragraphs will briefly elaborate on these contributions: 

CHAPTER 6 

 
 

CONCLUSION AND FUTURE WORK 

 
 
 

In this thesis, the resource allocation problem in real-time systems is investigated and a 

phased array radar system is considered as an illustrative area in order to comparatively 

evaluate the resource allocation approaches. A detailed investigation of a recently proposed 

resource allocation approach called Q-RAM is presented in two different cases: single 

resource type case and multiple resource type case. For the multiple resource type case, we 

propose to apply the Methods of Feasible Directions to the radar resource allocation 

problem. The performances of both the Q-RAM and the Methods of Feasible Directions 

based approaches are investigated in terms of optimality and convergence speed with the 

help of Monte-Carlo simulations. In the following subsections, first, the contributions of the 

thesis are outlined and second, the future work that can improve the present study is 

presented. 

 

6.1 Contributions 

 

• The Q-RAM approach, when applied to the radar resource allocation problem, is 

evaluated and shortcomings of the approach are identified. 

• The Q-RAM approach to the radar resource allocation problem with single resource 

type is extended to give a global optimal solution. 

• Algorithms from the well established Methods of Feasible Directions are proposed 

and applied to the radar resource allocation problem with multiple resource type 

with promising results. 

• A comparative evaluation of algorithms investigated for the cases with continuous 

objective function and discrete objective, is presented. 
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a well 

unded mathematical background. With the motivation of using a theoretically well 

ropose algorithms based on Methods of Feasible Directions. To the 

best of our knowledge, we present the first application of this family of methods to the radar 

the form of minimization problem. Therefore, the results 

enerated by the Methods of Feasible Directions to the radar resource allocation problem are 

 

For the case of single resource type, the Q-RAM algorithmic approach is improved in 

order to generate optimal results in all of the possible termination cases when the radar 

resource allocation problem formulated in subsection 3.3.1 is considered. In this solution 

approach, since the objective function in the minimization problem is twice differentiable 

and convex together with the convex constraints, the KKT optimality conditions are 

proposed to be satisfied completely as a result of the algorithm. As it is shown in the 

simulation results presented in 3.3.2, the proposed optimal resource allocation have minimal 

execution times, hence is still suitable for real-time applications. 

 

As it is explained in subsection 3.4, the goal of the Q-RAM based approaches for the 

multiple resource type case is to reach a solution, which is closest to the optimal solution, in 

real-time systems. The emphasis is on a fast approximate solution. For this case, the Q-RAM 

based solution approach is a near-optimal optimization approach and does not provide 

fo

founded method, we p

resource allocation problem. The results obtained reveal, in particular for the Gradient 

Projection Method that globally optimum solutions are possible with comparable 

computational speed. In order to overcome the practical difficulties encountered in 

determination of termination of the algorithms of the Methods of Feasible Directions in 

practical implementations, the norm values of Nk is used in this thesis as it is explained in the 

subsection 5.3.2.2. 

 

It is proved in [4]; the Methods of Feasible Directions generate optimal results to the 

minimization problems with twice differentiable and convex objective functions and convex 

constraints. The objective function in the radar resource allocation problem formulated in 

subsection 2.3 has twice differentiable and convex objective function and convex constraints 

when it is re-formulated in 

g

optimal. As it can be observed from the simulation results presented in subsection 5.4, the 

convergence speed of the Gradient Projection Algorithm is comparable with that of the Q-

RAM approach. Hence, an optimal solution, which is as fast as the Q-RAM approach and 

has a comparable mathematical background, for the radar resource allocation problem in this 

thesis. 
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tly on the discrete objective 

functions for the resource allocation problem. In this approach, it is proposed to fit 

exponential curves to the discrete tracking quality functions of the tracking tasks for the 

radar resource allocation problem and applying one of the Methods of Feasible Directions on 

the continuous exponential curves. The resultant operating point, derived from the algorithm, 

drops into a range defined within discrete operating points. The nearest point, which is the 

lowest discrete operating point within the range, is selected. As it can be observed from the 

simulation results presented in subsection 5.5, the FDRA-D approach generates favorable 

results than the Q-RAM approach with execution times comparable with the Q-RAM. 

 

6.2 Future Work 

In this thesis, sampling frequency (fk) is investigated as computational resource while 

average power of the transmitted radar signal (Pk) is investigated as the energy resource of 

the radar system. By considering these parameters as optimization variables, an optimization 

problem with convex objective function and convex constraints can be formulated. When the 

computation time (Ck) of the tracking algorithms is also considered as an optimization 

parameter along with the sampling frequency and average power of the transmitted radar 

signal, the constraints of the optimization problem become non-convex. In this case, solving 

the formulated optimization problem with the Methods of Feasible Directions does not 

provide sufficient conditions for the global optimality of the results. As an ongoing work, it 

is proposed to solve the radar resource allocation problem by considering also the 

computation time as an optimization variable in order to obtain global optimum results with 

maximal convergence speed. 

 

After determination of the tracking parameters for the tracking tasks, the tracking tasks 

should be scheduled in the radar processor. In dense tactical environments in which all of the 

targets in the environment can not be tracked simultaneously by the radar system, the 

determination of which tracking tasks to drop from the task list and how to schedule the 

tasks in the radar processor is important. In the future studies, it is proposed to consider the 

problem of optimal scheduling of the radar tasks in the radar processor. 

 

As it is explained in Chapter 3, the Q-RAM approach is applied on the discrete 

objective functions for the resource allocation problem with multiple resource type. For the 

comparative simulations whose results are presented in subsection 5.4, discrete samples are 

taken on the continuous objective functions in order to generate simulation inputs to the Q-

RAM approach. In this thesis, an approach called FDRA-D is proposed in order to obtain an 

improved method over the Q-RAM approach executing direc
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 the present study, resource allocation in one radar system is considered. Resource 

llocation in a system containing multiple radar systems tracking a set of targets is planned 

to be considered in the future stu ies.  target is tracked by exactly one 

radar system and responsibility for targets from one radar system can be transferred to 

nother as the targets move. A resource manager allocates resources to the tasks of the radar 

In

a

d  In this system, each

a

systems in order to achieve a globally optimal tracking quality. 
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 APPENDIX 

 

.1 Convexity 

 

 
A

A set S in En is said to be convex if, for each x1, x2 ∈ S, the line segment λx1 + (1 – λ)x2 for λ 

∈ [0, 1] belongs to S. 

 

 

 

 
 

Figure A.1.1 Illustration of convexity 

 

 

et S be nonempty convex set in En. The function f : S → E1 is said to be convex on S if 

r each x1, x2 S and for each λ 

 

L

 

f[λx1 + (1 – λ)x2] ≤ λf(x1) + (1 – λ)f(x2) 

 

∈ ∈fo  [0, 1]. The function f is said to be concave if –f is 

convex. 

 

.2 KKT Optimality Conditions 

Problem P:  Minimize f(x) 

   subject to gi(x) ≤ 0 for i = 1, …, m 

     hi(x) = 0 for i = 1, …, l 

      

A

Consider the following problem: 

x ∈ X 

here f, gi, hi : En → E1 and X is a nonempty open set in En. The KKT necessary optimality 

conditions are as follows. If x is a local optimum solution to Problem P, and under a suitable 

constraint qualification, there exists a vector (u, v) such that 

w
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.3 Relation between Probability of Detection and Transmission Power 

he probability of detection equation in radar systems is provided below [13]: 

 

hv )( =∇ 0x

miu
migu

 

ui and vi are the Lagrange multipliers associated with the constraints gi(x) ≤ 0 and hi(x) = 0, 

respectively. When objective function and constraints of the minimization problem are 

convex, the KKT conditions are sufficient for optimality. 

 

A

T

BABANS 7.112.0/ ++=     (A.3.1) 

 

In this equation, S is the power of transmitted radar signal and N is noise power and 

 

)/62.0ln( faPA =      (A.3.2) 

 

[ ])1/(ln dd PPB −=      (A.3.3) 

 

In the equations A.3.1 and A.3.2, Pd is the probability of detection and Pfa is probability of 

false alarm. When the probability of detection equation is re-arranged, it can be written in the 

following form. 

 

1
11−=dP

2
1 +SKeK

     (A.3.4) 

 

K1 and K2 in the above equation are provided in the below equations, 

 

7.1)62.0ln(12.0

)62.0ln(

1

+
−

= fa

fa

P

P

eK      (A.3.5) 
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7.1)62.0ln(12.0

1

2

+
=

faP

NK     (A.3.6) 

 

When the probability of false alarm and noise power are selected in the shaded region of the 

figure shown below, the probability of detection can be written as an exponential function of 

transmission power from equation A.3.1. In this region, 1 can be ignored in the denominator 

of the second term and probability of detection can be written as in A.3.6. 

 

 

 

 
 

Figure A.3.1 Probability of detection for a sinewave in noise 
as a function of the signal-to-noise (power) ratio and the 
probability of false alarm [13] 
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