
APPLICATION OF SCHEMA MATCHING METHODS
TO

SEMANTIC WEB SERVICE DISCOVERY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

FUNDA KARAGÖZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. Ayşe Kiper

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Nihan K. Çiçekli
Supervisor

Examining Committee Members

Dr. Ayşenur Birtürk (METU, CENG) _____________________

Assoc. Prof. Dr. Nihan Kesim Çiçekli (METU, CENG) _____________________

Assoc. Dr. Ferda Nur Alpaslan (METU, CENG) _____________________

Assoc. Dr. Ali Hikmet Dogru (METU, CENG) ____________________

M.Sc. Yıldıray Kabak (METU, SRDC) _____________________

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name : Funda Karagöz

Signature: ____________________

 iv

ABSTRACT

APPLICATION OF SCHEMA MATCHING METHODS

TO

 SEMANTIC WEB SERVICE DISCOVERY

Karagöz, Funda

M.Sc., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Nihan Kesim Çiçekli

September 2006, 114 pages

The Web turns out to be a collection of services that interoperate through the

Internet. As the number of services increase, it is getting more and more diffucult for

users to find, filter and integrate these services depending on their requirements.

Automatic techniques are being developed to fulfill these tasks. The first step toward

automatic composition is the discovery of services needed. UDDI which is one of the

accepted web standards, provides a registry of web services. However representation

capabilities of UDDI are insufficient to search for services on the basis of what they

provide. Semantic web initiatives like OWL and OWL-S are promising for locating

exact services based on their capabilities. In this thesis, a new semantic service

discovery mechanism is implemented based on OWL-S service profiles. The service

 v

profiles of an advertisement and a request are matched based on OWL ontologies

describing them. In contrast to previous work on the subject, the ontologies of the

advertisement and the request are not assumed to be same. In case they are different,

schema matching algorithms are applied. Schema matching algorithms find the

mappings between the given schema models. A hybrid combination of semantic,

syntactic and structural schema matching algorithms are applied to match ontologies.

Keywords: Web Services, Semantic Web Service Discovery, Schema Matching,

Automated Web Service Composition

 vi

ÖZ

ŞEMA EŞLEŞTİRME YÖNTEMLERİNİN ANLAMBİLİMSEL WEB
HİZMETLERİNİN ARANMASINA UYGULANMASI

Karagöz, Funda

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Nihan Kesim Çiçekli

Eylül 2006, 114 sayfa

Web, Internet aracılığı ile birbirine bağlı olarak çalışan hizmetler derlemi olma

yolunda ilerlemektedir. Web hizmetlerinin sayısı arttıkça, kullanıcılar için,

ihtiyaçlarına cevap verecek servisleri bulmak, süzmek ve tümlemek gittikçe

zorlaşmaktadır. Bu işlemleri yapmak üzere otomatik teknikler geliştirilmektedir.

Servislerin otomatik olarak birleştirilmesinde ilk adım gerekli servislerin

bulunmasıdır. Kabul görmüş Web standartlarından biri olan UDDI, Web hizmetleri-

nin yayınlanmasını ve bulunmasını sağlar. Ancak UDDI’nın gösterim olanakları

hizmetlerin, ne sağladığına bağlı olarak aranabilmesi için yetersizdir. Anlambilimsel

Web teşebbüslerinden OWL ve OWL-S servislerin sağladıklarına göre aranmasını

vaadetmektedir. Bu tezde OWL-S hizmet belgilerine dayalı olarak yeni bir anlambi-

limsel hizmet arama mekanizması gerçekleştirilmiştir. Reklam edilen ve talep edilen

servis belgileri, onları tanımlayan OWL ontolojilerine göre eşleştirilmiştir. Önceki

 vii

çalışmaların aksine reklam ve isteğin ontolojilerinin aynı olduğu varsayılmamış, ayrı

oldukları durumda şema eşleme algoritmaları uygulanmıştır. Şema eşleme

algoritmaları verilen şemalarda birbirine karşılık gelen elemanları bulmaktadır.

Ontolojileri eşlemek için anlambilimsel, sözdizimsel ve yapısal şema eşleme

algoritmalarının bir karışımı kullanılmıştır.

Anahtar Kelimeler: Web Hizmetleri, Anlambilimsel Web Hizmeti Arama, Şema

Eşleştirme, Otomatik Web Hizmeti Birleştirme

 viii

ACKNOWLEDGEMENTS

Although only my name appears in the title, this is completely a team work.

Some members of the team spent their time to enable me to work, some forwent the

time which I had to spent for them. I am indebted to all the members of my family

which constitude the team, especially, to my parents who were with me whenever I

need, not only throughout this work, but also throughout all my life.

I am also indebted to my supervisor Assoc. Prof. Dr. Nihan Kesim Çiçekli

for her guidance, patience and compassion. I could not succeed without her support

and motivation.

I would like to thank Prof. Dr. Asuman Doğaç for providing me the test

data. Finally, I also would like to thank to all my friends, especially to Aynur Badur

and Asiye Saygı, for their encouragement throughout this work.

 ix

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ.. vi

ACKNOWLEDGEMENTS..viii

TABLE OF CONTENTS.. ix

LIST OF TABLES.. xii

LIST OF FIGURES.. xiii

CHAPTER

 1. INTRODUCTION..1

 1.1. Problem Domain...1

 1.2. Schema Matching Problem..3

 1.3. Scope of the Thesis...4

 1.4. Organization Of the Thesis...6

 2. BACKGROUND INFORMATION ON WEB SERVICES...........................7

 2.1. Semantic Web...8

2.1.1. RDF...8

2.1.2. RDF Schema...9

2.1.3. OWL...10

2.2. Web Services..15

2.3. Web Service Discovery..16

2.3.1. Web Service Description Languages..17

2.3.2. Web Service Discovery Methods...23

2.3.3. UDDI..25

2.3.4. Semantic Web Service Discovery Methods.......................................31

 x

2.4. Web Service Composition..36

2.4.1. Automated Web Service Composition Techniques............................37

2.4.2. Automated Composition using Event Calculus..................................39

3. BACKGROUND INFORMATION ON SCHEMA MATCHING..............44

3.1. Definition of Matching Problem..45

3.2. Architecture of a Generic Matching System..51

3.3. Classification of Matching Approaches………………………………….52

3.4. Current Proposals To Schema Matching Problem.....................................54

3.5. Ontology Matching...58

4. SEMANTIC SERVICE DISCOVERY WITH SCHEMA MATCHING....60

 4.1. Positioning of SSSM..60

4.2. SSSM System Architecture..62

4.3. SSSM Matching Approach...65

4.3.1. SSSM Similarity Scale...66

4.3.2. SSSM Matching Algorithm..68

4.4. Schema Matcher...72

4.4.1. Concept Directory...73

4.4.2. Matcher Library..74

4.4.3. Match Composer...84

4.5. SSSM System Integration with Event Calculus Executer..........................85

5. SYSTEM EVALUATION...88

 5.1. Test Data..88

 5.2. Test Results..90

 5.3. Discussion..93

6. CONCLUSION AND FUTURE WORK...95

REFERENCES...98

APPENDICES

 A.WSDL DESCRIPTION OF STOCK QUOTE SERVICE...............................105

 B. UDDI ELEMENTS FOR WSDL DESCRIPTIONS.......................................107

 xi

C. OWL-S SERVICE DESCRIPTIONS..111

 xii

LIST OF TABLES

Table 2.1 WSDL and OWL-S Correspondences...23

Table 2.2 Event Calculus Predicates..40

Table 4.1 Weights associated with contextual features...79

Table 5.1 Matcher Performances...90

Table 5.2 Leaf and Context matches with combination strategy Max......................93

 xiii

LIST OF FIGURES

Figure 1.1 Two ontlogies modelling similar real world entities.................................5

Figure 2.1 RDF representation of the sample sentence...9

Figure 2.2 Part of the concept hierarchy of travel ontology......................................11

Figure 2.3 Interaction between parties involved in the usage of a Web service.......16

Figure 2.4 Conceptual view of WSDL Component Model.......................................18

Figure 2.5 Upper level of OWL-S ontology..20

Figure 2.6 Service discovery methods..26

Figure 2.7 UML representation of UDDI data elements...27

Figure 2.8 Relationship between bindingTemplates and tModels............................29

Figure 2.9 WSDL usage with UDDI...31

Figure 2.10 Functionality ontology in travel domain...32

Figure 2.11 Translation of a Web service to an event..42

Figure 3.1 Different contexts for the same concepts...46

Figure 3.2 Examples of heterogeneities between schemas.......................................48

Figure 3.3 Examples of schema discrepancies..50

Figure 3.4 Architecture of a Matcher..51

Figure 3.5 Classification of matching approaches..53

Figure 4.1 SSSM position in recall/precision framework...61

Figure 4.2 SSSM System architecture...62

Figure 4.3 An advertisement and discovery request sample.....................................64

Figure 4.4 Processing of advertisement and discovery request.................................65

Figure 4.5 Discovery request exploiting a different ontology...................................68

Figure 4.6 Main control loop...69

 xiv

Figure 4.7 Algorithm for matching parameters...70

Figure 4.8 Calculation of the match degree..71

Figure 4.9 Schema Matcher architecture...72

Figure 4.10 SemanticMatcher for nouns...76

Figure 4.11 Algorithm for StringMatcher...78

Figure 4.12 Leaf Matcher algorithm...83

Figure 4.13 Overall System Architecture...87

Figure 5.1 The Generic Procedure for Trip Arrangement...89

Figure 5.2 Description of SearchHotel and One of the Advertisements91

 1

CHAPTER 1

INTRODUCTION

1.1. Problem Domain

Web is now more than a collection of pages. Web services promise to

change Web from a database of static documents to an e-business marketplace[62],

where partners colloborate and consumers are provided with the information and

services they require. However, as the usage of Web services become widespread,

new challenges arise. Web service composition problem, which is about integrating a

number of services in order to produce the desired ouputs and effects, is one of them.

Composition is needed when user request can not be satisfied with a single service.

Web service composition problem can be decomposed into three sub-

problems: composition planning, Web service discovery and composition execution.

The common opinion about Web service composition is that it is getting more and

more diffucult to be carried out manually [2, 64, 43, 69, 63]. One of the reasons of

this, is the upward trend in the number of services available on Web. Finding the

exact services will be very time consuming. The second is the dynamic nature of the

Web. The Web services can be out of service or can be updated or new services can

be created better fulfilling the desired task. The composer must always be aware of

the changes at run time and make decisions based on up to date information.

Therefore automated composition techniques which exploit AI or similar

technologies have been developed [2, 43, 69, 54, 42, 40].

 2

These proposals mostly focus on the planning phase. The Web service

discovery phase is often neglected or an existing method is adopted. However,

automated Web service discovery is the first step in the automation of the

composition. Three key requirements of the Web service discovery are: a common

way to describe the capabilities of the provided and requested services, a registry to

advertise the services and discovery methods to find the services that best satisfy the

user request. Currently, the Web Services Description Language (WSDL) [10],

which is for the specification and Universal Description, Discovery and Integration

(UDDI) [11], which is for advertising and discovery, are industry standards for Web

services. These standards, however, are mostly syntactic, poor in capturing semantics

of the services and their representation capabilities are insufficient for powerful

automation. In order to automate tasks, richer semantic specifications are needed.

Semantic Web is under way, to turn Web into a medium where data can be

shared, understood and processed by automated tools. This requires converting

HTML encoded information into a machine processible form, namely Resource

Description Framework (RDF) [37] and put semantics on it via an ontology

description language, namely Ontology Web Language (OWL) [41]. Ontology Web

Language for Services(OWL-S) [38], which is an OWL ontology, is an extension of

Semantic Web for web services. OWL-S, which is capable of addressing the

deficiency of WSDL in automation process, provides a rich set of constructs for

advertising and modelling services. On the other hand it exploits WSDL constructs

for accessing services. Web Service Modelling Ontology (WSMO) [58] is another

initiative which exploits semantic Web constructs for describing Web services.

Semantic Web service discovery methods operate on Web services whose

capabilities are semantically described. Two ways of sematically describing the

capabilities of a service are: using ontologies to describe the functionality of the

service and using ontologies to describe the state transformation produced by the

service. The semantic discovery methods proposed in [33, 18, 30] exploit the first

way. The OWL-S MatchMaker in [52, 53, 62] adopts the second way. It exploits a

 3

subset of the tranformations produced by the service. The overall similarity of two

descriptions depends on the similarity of the their input/output parameters. A discrete

scale is defined to rank the similarity between two parameters. The scale depends on

the semantic relation between the concepts that describe the parameters. The

discovery methods in [60] and [65] use both methods during discovery.

1.2. Schema Matching Problem

With the advances in information technology the user is now capable of

accessing different data sources and desires the integration of them for easy

processing. Schema matching is the first step of integrating different data sources.

Since these data sources are designed independently, most often to be self contained,

there might be different kinds of heterogeneities between them like naming conflicts,

representation conflicts and structural conflicts. Schema matching is the process of

finding a set of direct matches each of which binds a source schema element to a

target schema element, if they are semantically equivalent despite the heterogeneities

between them. Manually finding these matches is time consuming and error-prone.

Many methods are proposed for automating schema matching process.

These can be classified as individual and combined matchers. Individual matchers

use only one criterion to find matches. These criterion may either depend on the

schema or the content of the data source. Schema based solutions can be classified

into two: element level or structural matchers, where the former matchers compare

the schema elements syntactically or semantically and the latter matchers compare

the structures in a heuristic, formal or constraint-based fashion. Individual matchers

most often exploit external resources like thesaurus, domain ontologies or domain

specific rules.

Combined matchers exploit different number of individual matchers and

combine their results in a fixed or dynamic fashion.

Exploiting only one criterion during matching is not sufficient for achieving

satisfying results. In most of the recent studies on schema matching, hybrid or

 4

composite matchers are used and individual matchers are exploited as building

structures. Cupid [34], S-Match system [20], iMAP[14] and GLUE[16] are examples

of hybrid matchers where as COMA [15], COMA++ [1], Protoplasm [3] and H-

Match system [7] are composite matchers.

Ontology matching is a specialized version of schema matching where

input schemas are two ontologies which describe similar or overlapping domains, but

using different languages, conceptualizations, modelling styles and terms. Most of

the schema matching systems are capable of matching ontologies, besides relational

and XML schemas.

1.3. Scope of the Thesis

Semantic discovery methods, introduced in Section 1.1, exploit ontologies

for providing shared understanding. The problem with their usage is that they assume

the advertisements and requests share the same ontologies. OWL-S MatchMaker, for

instance, determines the match degree between two inputs or two outputs depending

on the subsumption relation between the concepts that describe them. However, due

to the de-centralized nature of the Web, most probably there will be an explosion in

the number of ontologies, most of them describing similar or overlapping domains,

but using different languages, conceptualizations, modelling styles and terms.

Consider the Activity ontology and Recreation ontology in Figure 1.1. Suppose there

exists an advertisement with output concept “Sports” in repository and a discovery

request comes with output concept “SportsContest”. MatchMaker can not match

them since no explicit semantic relation is defined between them or can be inferred.

However, they model the same real world entities and most probably the

advertisement satisfies the request.

 5

Figure 1. 1 Two ontlogies modelling similar real world entities

The aim of this thesis is to extend semantic discovery methods in a way to

handle the stated ontology differences. This increases the number of related items

retrieved during discovery.

The OWL-S Matchmaker’s matching approach is selected for extension since

it is exploited by several automated Web service composition systems and provides

integration with UDDI which is a widely accepted industry standard. The thesis

extends this approach in two ways:

- The similarity scale is extented to rank the similarity of not only the concepts

which have semantic relation, but also the concepts which have semantic

similarity between them.

- A schema matching component is added to compare two concepts and

calculate semantic similarity between them using the schema matching

algorithms. Different individual and hybrid matchers are adapted to the

problem domain and implemented to compare different aspects of the

concepts.

The new matching approach is named as Semantic Service Discovery with

Schema Matcher (SSSM).

 6

1.4. Organization Of the Thesis

 The organization of the thesis is as follows: In Chapter 2, the problem

domain is described in detail. The vision of Semantic Web and its components are

explained first. Following the definition of Web services, Web service composition

problem and its sub problems, Web service discovery and composition planning are

presented. Afterwards, the proposals for the automated Web service composition

problem and the contribution of semantic Web to them are discussed. In Chapter 3,

schema matching problem and the proposals to the solution of the problem are

discussed. Chapter 4, introduces the new matching approach, SSSM, which exploits

schema matching algorithms to improve Web service discovery results. In Chapter 5,

the results of the tests for system evaluation are discussed. Finally, Chapter 6

presents the conclusions and future work.

 7

CHAPTER 2

BACKGROUND INFORMATION

ON WEB SERVICES

Web services, due to their promising nature, gained much attention from both

industry and academia. Composition of services is one of the major topics of the

domain. The composition problem is composed of three sub-problems: service

discovery, planning, and execution. Service discovery requires languages to describe

services and methods operating on these descriptions. WSDL and OWL-S are

proposals for describing services. OWL-S is an application of Semantic Web

technologies in Web Services domain. Many discovery methods are proposed

operating on these languages. UDDI, which is a widely accepted industry standard

for discovery, and semantic discovery methods deserve more attention among the

others. The work on planning problem proposes manual, semi-automated and

automated solutions. Automated solutions exploit AI technologies.

This chapter is structured as follows: Section 2.1 gives detailed description

about Semantic Web and its components. Section 2.2 explains Web services and

parties involved in Web service processes. Section 2.3 defines Web service discovery

and presents current proposals on describing and discovering services. Finally,

Section 2.4 focuses on the composition problem and solution proposals for planning

and execution phases.

 8

2.1. Semantic Web

The Web can reach its full potential only if it becomes a place where data can

be shared and processed by machines as well as by people [23]. One of the major

obstacles to this is the structure of the current Web, which is primarily based on

documents written in Hyper Text Markup Language (HTML). HTML is a language

that is useful for describing, with an emphasis on visual presentation. It has no ability

to structure the documents and has no capability to provide the machine with the

semantics of the contents. For example as far as the machine is concerned, the

sentence “Turkey’ s capital is Ankara.” is just a plain text. It has neither a particular

structure nor a meaning for the machine.

The Semantic Web, which promises to address these shortcomings, is not a

separate Web, but an extension of the current one. In Semantic Web, information is

given well-defined meaning, better enabling computers and people to work in

cooperation. The answer of the question “how to give meaning?” is “by using

ontologies”. An ontolology defines the terms used to describe and represent an area

of knowledge using classes, properties of the classes and relationships between

classes.

The components of the semantic web are Resource Description Framework

(RDF), RDF Schema language and the Web Ontology Language (OWL). All these

components are built on the foundations of Universal Resource Identifiers (URIs),

Extensible Markup Language (XML) and XML namespaces.

2.1.1. RDF

The Resource Description Framework (RDF) is a language for representing

information about resources in the World Wide Web (WWW) [37]. RDF defines a

resource as any object that is uniquely identifiable by a Uniform Resource Identifier

(URI) [45]. Resources have properties and properties have values. In RDF,

everything about a resource is a statement, in the form of subject, predicate, object

 9

expression which is called a triple. Subject is the resource, predicate is a property of

the resource and object is the value of that property. The object can either be a literal

or another resource. The description of the sample sentence in RDF is given in figure

2.1.

Figure 2. 1 RDF representation of the sample sentence

2.1.2. RDF Schema

RDF Schema (RDFS)[5] puts some semantics on RDF. It is a vocabulary for

describing properties and classes of RDF resources, with a semantics for

generalization hierarchies of such properties and classes. It provides mechanisms for

describing groups of related resources and the relationships between these resources.

These make RDFS a simple ontology language, however, in order to provide

machines to perform useful reasoning on these documents, richer semantics are

needed.

 10

2.1.3. OWL

OWL [41], as the first layer on RDF in Semantic Web stack, has been

designed to meet the need for a Web Ontology Language that can formally describe

the meaning of the terminology used in web documents.

Three species of OWL are OWL Lite, OWL DL and OWL full. OWL Lite

provides constructs for classification hierarchy and simple constraints. OWL DL, on

the other hand supports all OWL constructs with some restrictions to provide

maximum expresiveness while retaining computational completeness (all con-

clusions are guaranteed to be computable) and decidability (all computations will

finish in finite time). OWL Full provides maximum expresiveness without

restrictions with no computational guarantees.

OWL Features

In order to illustrate the usage of OWL features, some examples drawn from

a travel ontology [66] are used. Part of the concept hierarchy from the ontology is

given in figure 2.2. In OWL ontologies, besides OWL features, some features from

RDF and RDFS are also exploited. These features are prefixed by rdf and rdfs,

respectively.

In an OWL ontology, concepts can be declared using “owl:Class” and can

be organized in a specification hierarchy using “rdfs:subClassOf”.Synonymous

classes can be stated using “owl:equivalentClass”, and classes may be stated to be

disjoint from each other using “owl:disjointWith”. The following OWL statements

define class “Hotel” as a subclass of “Accommodation”, with no common instances

with “BedAndBreakfast” and “Campground”.

<owl:Class rdf:ID="Hotel">

<owl:disjointWith>

<owl:Class rdf:about="#BedAndBreakfast"/>

</owl:disjointWith>

 11

<owl:disjointWith>

<owl:Class rdf:about="#Campground"/>

</owl:disjointWith>

<rdfs:subClassOf rdf:resource="#Accommodation"/>

 </owl:Class>

Figure 2.2 Part of the concept hierarchy of travel ontology

An instance of a class can be declared using “owl:Individual”. Two

individuals can be stated to be same using “owl:sameAs” or different using

“owl:differentFrom”. It is also possible to state that a number of individuals are

mutually distinct in one “owl:AllDifferent” statement. The following OWL statement

defines “FourSeasons” as a LuxuryHotel.

<LuxuryHotel rdf:ID="FourSeasons"/>

For declaring properties, “owl:ObjectProperty” is used for those that can

have only instances of classes as their values and “owl:DatatypeProperty” is used for

those that can have only instances of datatypes as their values. Property hierarchies

 12

can be constructed using “rdfs:subPropertyOf” and synonymous properties can be

stated using “owl:equivalentProperty”. To restrict the indivuduals which a property

can be applied to and may have as its value, “rdfs:domain” and “rdfs:range” are

used, respectively. The following OWL statement defines a proper-ty named

“hasRating” which can be applied to individuals of class “Accomodation” and can

have values only from individuals of “AccommodationRating”.

<owl:ObjectProperty rdf:ID="hasRating">

<rdfs:range rdf:resource="#AccommodationRating"/>

<rdfs:domain rdf:resource="#Accommodation"/>

</owl:ObjectProperty>

A property may be stated to be transitive (owl:TransitiveProperty),

symmetric (owl:SymmetricProperty) and functional (owl:FunctionalProperty). If a

property is a FunctionalProperty, then it has no more than one value for each

individual. One property may be stated to be the inverse of another property using

“owl:inverseOf”. The following OWL statement defines a datatype property

“hasEMail” which is a functional property, can be applied to individuals of

“Contact” and values of this property can only be of type String.

<owl:DatatypeProperty rdf:ID="hasEMail">

<rdfs:domain rdf:resource="#Contact"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/

>

</owl:DatatypeProperty>

 13

Restrictions may be placed on how properties can be used by instances of a

class. These can be type or cardinality restrictions which are used within the context

of an “owl:Restriction”. Type restrictions (owl:allValuesFrom, owl:someValues-From,

owl:hasValue) limit which values can be used, while cardinality

restrictions(“owl:minCardinality”, “owl:maxCardinality”, “owl:cardinality”) limit

how many values can be used. The following OWL statement declares

“Campground” as a class whose individuals can have only “OneStarRating” as the

value of their “hasRating” property.

<owl:Class rdf:ID="Campground">

<rdfs:subClassOf>

<owl:Restriction>

<owl:hasValue rdf:resource="#OneStarRating"/>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasRating"/>

 </owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

 </owl:Class>

It is possible to form classes using basic set operations, namely union,

intersection and complement using “owl:unionOf”, “owl:intersectionOf”, and

“owl:complementOf”, respectively. The following OWL statements define

“FamilyDestination” as a destination with at least one accommodation.

<owl:Class rdf:ID="FamilyDestination">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

 14

<owl:Class rdf:about="#Destination"/>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasAccommodation"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:minCardin

ality>

 </owl:Restriction>

 …

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

Additionally, Classes can be described by enumeration of the individuals

that make up the class using “owl:oneOf”. The following OWL statement defines

“AccommodationRating” which consist of exactly three individuals.

<owl:Class rdf:ID="AccommodationRating">

<owl:equivalentClass>

<owl:Class>

<owl:oneOf rdf:parseType="Collection">

<AccommodationRating

rdf:about="#OneStarRating"/>

<AccommodationRating

rdf:about="#TwoStarRating"/>

<AccommodationRating

rdf:about="#ThreeStarRating"/>

 15

</owl:oneOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

Detailed explanation about the features of OWL can be found in [41].

2.2. Web Services

 Web services are defined as modular, self-describing, self-contained appli-

cations that are accessible over the Internet [60]. They are provided by Service

Providers. They perform an action on behalf of the Service Requester depending on

the inputs given by the requester and produces an output. Although it seems that only

two parties are involved in this interaction, there is a need for a third party, since it is

difficult for a requester to find a suitable service in a medium like Web. The third

party is the service agency which provides registration and discovery of services. The

interaction between the parties are given in Figure 2.3.

In the first phase, the provider developes the service, describes it using a

common way and registers it to a service agency. In the second phase the requester

sends a query, which describes the needed service, to the agency. Using discovery

methods the agency finds services conforming to user request and sends them in the

third phase. Requester selects one among them and the interaction between requester

and provider starts.

The provided service can be simple (or primitive) like a service that returns

a postal code or returns the latitute-longitude of a given an address. Simple services

does not require much interaction. Requester provides the inputs and depending on

the inputs given, provider returns the output. Alternatively, the service can be

complex, composed of primitive processes which requires more conversation.

Besides providing information, the user can make choices and the primitive services

may be executed conditionally depending on the choices of the user .

 16

Figure 2. 3 Interaction between parties involved in the usage of a Web service

2.3. Web Service Discovery

A service must be discovered before it can be used [6]. However in a

medium like Web, services are distributed and heterogenous. They are offered by

different providers, developed using different technologies and executed under

different operating systems. Moreover similar services might have different

capabilities. How these services can be found and which one best conforms to user

request are questions that are answered by service discovery methods. Service

discovery can simply be defined as the act of finding a service that conforms to user

request. Three requirements for discovery are:

− A language to describe the capabilities of provided services and requests

− Advertisement of the services in a registry

− Discovery methods to locate the services that best satisfy user request among

others.

 17

2.3.1. Web Service Description Languages

Two common ways to describe services are Web Services Description

Language (WSDL) [9] and Ontology Web Language for Services (OWL-S)[38].

WSDL, which provides a syntactic description for services, is the widely accepted

industry standard. OWL-S, on the other hand is the most formal result of applying

Semantic Web technologies to Web services domain. It provides a semantic

description for services, which reveals out the capabilities of the services better.

2.3.1.1. WSDL

WSDL is a specification which defines how to describe web services in a

common XML grammar [27]. It is regulated by a group of companies and its latest

version [9] is a W3C candidate recommendation. WSDL describes four critical

pieces of data:

− Datatype information for all message requests and message responses.

− Interface information describing all publicly available functions.

− Binding information about the transport protocol to be used.

− Address information for locating the specified service.

In a WSDL specification, two types of components exist: type system

components and WSDL 2.0 components. The type system components define the data

types used by the exchanged messages. WSDL uses W3C XML Schema as its

preferred schema language.

WSDL 2.0 components are interfaces, bindings and services. In Figure 2.4 a

view of conceptual WSDL component model is given. WSDL enables to separate the

components that answer the questions what, how and where for the sake of

reusability.

Interface answers the question “what ?”. It defines the abstract interface of a

Web service as a set of abstract operations. Each operation represents a simple

interaction between the client and the service, specifies the types of messages that the

 18

service can send or receive as part of that operation and also specifies a message

exchange pattern. A message exchange pattern defines the sequence and cardinality

of the abstract messages in an operation.

Binding answers the question “how ?”. It specifies a specific set of encoding

and transport protocols such as SOAP, HTTP and MIME, that may be used to

communicate with an implementation of a particular WSDL interface. It specifies

these details for every operation defined in the interface.

Finally, the service answers the question “where ?” by pointing to a

concrete implementation. A service endpoint associates network address with a

binding and a service groups the endpoints that implement a common interface.

Figure 2.4 Conceptual view of WSDL Component Model

 19

A WSDL interface may be communicated with different sets of transport

protocols and encodings and may be implemented by different services. This is

achieved by defining multiple bindings and services for a single interface. A WSDL

binding can also be implemented by different services. This makes bindings abstract

since they do not refer to a concrete implementation.

An example WSDL document from [10] is converted to WSDL 2.0 and is

given in APPENDIX A. In the example a simple service providing stock quotes is

defined. The service supports a single operation called GetLastTradePrice, which is

deployed using the SOAP 1.1 protocol over HTTP. The request takes a ticker symbol

of type string, and returns the price as a float.

2.3.1.2. OWL-S

Ontology Web Language for services (OWL-S) [38] is an OWL ontology

developed by OWL-S coalition for describing services. It contains four main classes:

the first is Service which is the organizational point of reference for declaring Web

services and the rest are ServiceProfile, ServiceModel and Service Grounding which

are used to describe “what the service does”, “how the service works” and “how to

use the service”, respectively. The Service is associated to its profile, model and

grounding with the properties “presents”, “describedBy” and “supports”. The general

view of the upper level of the OWL-S ontology is given in Figure 2.5.

ServiceProfile

 ServiceProfile provides necessary information for a service requester to discover

the service. The profile is related to its service with the property “presentedBy” and

related to its service model with the property “hasModel”. The properties of the

profile are grouped into three categories:

- Properties intended for human consumption: The textual description of

the provided service, contact information and the service name are the

properties in this category.

 20

Figure 2. 5 Upper level of OWL-S ontology

- Properties for functional representation: OWL-S profile represents two

aspects of the functionality of the service: the information transformation

(represented with inputs and outputs) and the state change occurred with the

execution of the service (represented by preconditions and effects). For

example in order to complete online shopping, the inputs required for the

service are personal information of the customer (name, address, etc.), a

credit card number and its expiration date. The precondition of the service,

for a successful execution, is a valid credit card which is not overdrawn. The

output of the service is the receipt and the results are the transfer of the items

to customer’s address and charging the credit card account. Most often,

inputs, outputs, preconditions and effects (IOPEs) are defined in service

model and the profile just contains references to them. The IOPEs are defined

using properties “hasInput”, “hasOutput”, “hasPrecondition” and

“hasResult”, respectively.

- Properties of the profile: The non-functional properties of the service are

classified under this category. The quality guaranties of the service, possible

classification of the service (via “hasCategory”) and additional parameters

 21

(via “hasParameter”) are specified using these properties. The range of

“hasCategory” is ServiceCategory which describes categories of service on

the basis of some classification possibly outside OWL.

The profile provides these properties, but does not mandate any

representation of the service. It is possible to create specialized representations of

services by subclassing the ServiceProfile class.

ServiceModel

 The Service Model gives a detailed description of how the service works.

Each service is mapped to a Process. Each process has a set of IOPEs. Three types of

processes are Simple, Atomic and Composite:

- An Atomic Process represents a primitive service. It takes input parameters,

executes and returns the output in a single step. Each atomic process requires

a grounding which will be described described in the next section.

- A Composite Process represents a complex service. It is composed of a set of

atomic processes which are connected to each other with Control Constructs.

Control Constructs are Split, Split-Join, Sequence, Choice, If-Then-Else,

Iterate, Repeat-While, Repeat-Until and Any-Order which are subclasses of

ControlConstruct. The detailed descriptions of these constructs can be found

in [38].

- Simple processes are abstractions of atomic and composite processes for

planning purposes. They have no grounding associated.

The data transformation produced by the process is specified using

properties “hasInput” and “hasOutput” whose ranges are Input and

ConditionalOutput classes. Both classes have “parameterType” property which

shows the range of the values the parameter can take. An input or output may have

an XML data type or an OWL ontology concept as the parameter type. For example

in the online shopping service scenerio, the credit card number may be of type string

 22

where personal information of the user may be modeled by concept Person and the

second input may be of type Person.

Besides data transformation the process also produces a state transition. The

state transition is modeled using properties “hasPrecondition” and “hasEffect”

whose ranges are Precondition and ConditionalEffect, respectively.

The effects and outputs of the service may not be the same for every

execution. An output may be produced depending on a condition and an effect may

also occur depending on a condition. For example in the online shopping scenerio,

the receipt may be produced and the credit card may be charged if the credit card is

valid and not overdrawn. ConditionalOutput and ConditionalEffect classes represent

this requirement using conditions.

OWL-S does not provide any construct for expressing conditions, rather

supports the usage of a rule language and leaves the decision of which to use to the

modeler of the process. Semantic Web Rules Language (SWRL)[24] which is under

development of W3C is an option for this purpose. SWRL is a combination of OWL

Lite and OWL DL with Unary/Binary Datalog RuleML which is a subLanguage of

Rule Markup Language.

ServiceGrounding

Service Profile and Service Model are abstract definitions and do not

provide details about how to use a concrete service. Grounding, on the other hand,

deals with concrete level of specification and describes the access details like the

protocol to be used, message formats, addressing, serialization and transport.

WSDL’s concept of binding which is described in previous section seems

consistent with the OWL-S concept of grounding. The developers of OWL-S claim

in [38] that, complementary usage of these two languages has two advantages. The

first is exploiting powerful description capabilities of OWL-S process model and

OWL class typing mechanism. The second is the opportunity to reuse the extensive

 23

work done in WSDL and its underlying technologies like SOAP, HTTP and message

exchange softwares.

Due to the stated advantages, instead of creating a new specification for this

purpose, WSDL is exploited by binding atomic processes to WSDL operations.

Table 2.1 from [2] gives the mapping between two languages. WSDLGrounding

class serves to bind processes to their associated WSDL descriptions in OWL-S.

Table 2. 1 WSDL and OWL-S correspondences

OWL-S WSDL

Atomic Process Operation

Atomic Process with input then output Request-response operation

Atomic Process with input only One-way operation

Atomic Process with output only Notification operation

Atomic Process with output then input Solicit-response operation

Atomic process inputs Operation input message

Atomic Process outputs Operation output message

Atomic process input and output types Abstract types

2.3.2. Web Service Discovery Methods

Current Web service discovery methods are classified in [31] into four

groups: keyword-based discovery, table-based discovery, concept-based discovery

and deductive discovery. This classification is modified in this work as keyword-

based discovery, table-based discovery, semantic discovery and deductive discovery.

Semantic discovery actually covers a subset of table-based discovery and whole set

of concept-based discovery in the first classification, so it seems better to categorize

 24

them under semantic discovery. These methods will be explained after introducing

two metrics for evaluating their performance.

Web Service Discovery Metrics

Service discovery is closely related with information retrieval area. The

information retrieval paradigm is about a user (physical or not) having a need for

information, and a set of information objects from which this need has to be satisfied

[6]. In information retrieval two metrics are used to evaluate the quality of the

retrieval methods:

− Recall: The value obtained by dividing the number of relevant items

retrieved by the total number of relevant items in the collection. Recall

reaches to its highest value when all the relevant items are retrieved.

− Precision: The value obtained by dividing the number of related items

retrieved by the total number of items retrieved. Precision reaches its highest

value when all the items retrieved are relevant with user request.

The goal in information retrieval is similar to the one in service discovery.

Therefore most often recall and precision are used for evaluating the quality of the

retrieval methods [31, 6, 68]. These metrics will be used also in this work to evaluate

the method’s performance.

Keyword-Based Discovery

 In keyword-based approaches, discovery is based on the keywords that are

extracted from the request. These methods most often have low recall and precision

values since the keyword’s homonym may be contained in an irrelevant request or a

synonym keyword may be contained in a relevant request. Furthermore these

methods lack capturing the semantics of the request. In [31] UDDI, the proposals of

Salton, Magnini and Prieto-Diaz are classified under this category.

 25

Table-Based Discovery

 Table-based approaches define the properties of the request and the

advertisements in the form of attribute value pairs and match these pairs (e.g.

input=real,output=string). Table-based discovery methods capture some semantics,

however the problem of synonyms and homonyms still exists. In [31] UDDI/WSDL

and the proposal of Richard are classified under this category.

Semantic Discovery

 These methods exploit Semantic Web constructs somehow to describe and

discover Web services. These methods will be explained in detail in section 2.3.4.

Deductive Discovery

 In these methods service semantics are expressed formally using logic.

Discovery is done by deducing which advertisements achieves the functionality

described in the request. Although these methods have the highest recall and

precision values, due to the diffuculty of formally describe the services and the

complexity of matching algorithms, these methods are not suitable for practical

usage. [29] is an example to this class of methods.

Figure 2.6 shows the capabilities of methods in a recall/precision

framework.

2.3.3. UDDI

The Universal Description, Discovery, and Integration (UDDI) [11]

specification is a widely accepted industry standard that provides a standardized way

for publishing and discovering services over the Internet. UDDI discovery

mechanisms can be classified as both keyword and table-based. A UDDI server

provides:

 26

Figure 2.6 Service discovery methods

− White Pages where businesses are listed with their contacts, addresses,

telephone numbers.

− Yellow Pages where businesses register their services under different

categories.

− Green Pages where technical details of offered services are given.

In UDDI services offered can be anything from a telephone number to a

SOAP endpoint for a Web service.

Since UDDI is a sort of database, it has a data model. The core elements of

the model are businessEntity, businessService, bindingTemplate and tModel. The

UML representation of these elements with their relationships is given in Figure 2.7

from [32].

 27

Figure 2. 7 UML representation of UDDI data elements

businessEntity

 A physical company is represented by a businessEntity. Each business

entity is identified by a unique key and includes information about the company

such as name, address, contacts, categories under which the company can be listed,

identifiers that the company has, etc.

businessService

It represents a business service offered by a company. It includes the

business key of the owning company, name of the service, a text description, binding

templates and the categories the service belongs to.

bindingTemplate

It represents the way the business service is accessed. It includes the service

key to which it is related, an access point (which may be a URL, phone number or

 28

mail address), and an optional set of tModelInstanceInfo structure which contains a

tModelKey and a text description about the usage purpose of tModelKey in the

overall service description.

tModel

 The service descriptions are required to be meaningful enough for useful

searches and comprehensive enough to learn how to interact with them. This can be

accomplished by marking a description with information that designates how it

behaves, what conventions it follows, or what specifications or standards the service

is compliant with. Providing the ability to describe compliance with a specification,

concept, or even a shared design is one of the roles that the tModel structure fills

[57]. Two main uses of tModels are:

- Representing a technical specification such as OWL-S specification.

- Defining an organizational identity or a classification system such as NAICS

(North American Industry Classification System) which is an industry code

taxonomy or UNSPC (United Nations Standard Product and Services

Classification) which is a product and service category code taxonomy.

 All four of the data elements have relationships with tModels, but the

meaning of the tModel differs in each context. The categoryBag allows

businessEntity, businessService and tModels to be categorized according to any of

several available taxonomy based classification schemes. The identifierBag allows

businessEntity or tModel structures to include information about common forms of

identification such as tax identifiers. Both are lists of keyedReferences. A

keyedReference, which is a triple in the form (tModelKey, keyName, keyValue),

provides a name-value pair within the scope of the taxonomy or identifier system

referred to by its tModelKey. In the case of bindingTemplates, tModels are used to

refer to technical specifications. Figure 2.8 shows how bindingTemplates are related

to tModels in detail.

 29

Figure 2. 8 Relationship between bindingTemplates and tModels

Usage of WSDL with UDDI

WSDL provides a specification for a Web service. However, this

specification must be advertised somehow in a UDDI compliant server in order to be

discovered and used. The usage of WSDL with UDDI is best described in [12] and

summarized in Figure 2.9.

When advertising a WSDL service specification via UDDI, abstract parts of

the specification are converted to UDDI tModels. Thus, a tModel is created for both

interface and binding descriptions of the service. These tModels are classified as

WSDL interface and WSDL binding in categoryBags using keyedReferences. This

implies that the overviewDocs within the tModels contain a URL pointing to the

WSDL document describing the interface and binding of the Web service. The

binding tModel is related to the interface tModel via a keyedReference. The WSDL

services are converted to businessServices and classified as WSDL services. Each

endPoint of the service is converted to the bindingTemplate of the corresponding

 30

businessService. The bindingTemplates provide access to the technical information

required to consume the service.

In order to describe a WSDL specification in terms of UDDI data elements a

set of predefined UDDI tModels are used to represent WSDL metadata and

relationships. A detailed description of the models are given in [12]. In APPENDIX

B, necessary UDDI data elements needed to advertise the sample WSDL

specification given in section 2.1.1, are listed. In Listing 1, a tModel is defined to

represent the WSDL interface of the StockQuoteService. Listing 2 gives the tModel

created for the StockQuoteBinding. In Listing 3, businessEntity for company Cape

Clear Software, which owns the StockQuoteService, is given. The company is

categorized as “Software Publishers” according to NAICS and “US” according to

geography (via ISO 3166). Finally, Listing 4 documents the necessary UDDI

businessService entry for StockQuoteService.

Search Capabilities of UDDI

 UDDI inquiry API [11] allows for searching a Web service based on a

keyword, category, tModel and provider. Also it allows for searching the providers

based on a keyword, a category or a tModel and tModels based on a keyword or a

category. So when WSDL is used with UDDI as explained above, it is possible to :

- Search for services that are described by a WSDL definition.

- Search for services that implement a specific binding.

- Search for services that implement a specific interface.

- Search for services that support a specific protocol.

UDDI, when used alone is classified under keyword-based discovery

methods. However when used with WSDL as described above, it provides table-

based discovery capability.

 31

Figure 2.9 WSDL usage with UDDI

2.3.4. Semantic Web Service Discovery Methods

Semantic Web service discovery methods exploit Semantic Web

technologies to describe capabilities of Web services. Capabilities correspond to

functionalities provided by Web services. Two ways to represent capabilities are:

- Providing a comprehensive functionality ontology and classifying services

using this ontology. For example in Figure 2.10, a part of functionality

ontology in travel domain developed in SATINE Project [18] is given. Using

this ontology TempoAirBooking service of Tempo Tourism is defined as an

instance of AirBookingServices class, since this class represents its

functionality.

 32

- Providing a generic description of services in terms of state transformation

that it produces. For example Tempo may specify a service which requests

passenger information, seat class, flight number, a valid credit card number

and delivery address and produces a state transition where flight tickets are

delivered to address, credit card is charged and number of available seats on

flight is decreased.

Figure 2.10 Functionality ontology in travel domain

The use of an explicit ontology of functionalities facilitates discovery

process since the matching process is reduced to subsumption relation between

concepts in the function ontology. However development and maintenance of such a

comprehensive function ontology, even for restricted domains is diffucult. Moreover,

there may be different function ontologies developed by different parties in the same

domain. OWL-S supports this option since it enables subclassing ServiceProfile

 33

class. Matching algorithms in [18], [33] and [30] use this approach for the discovery

of services. [18] provides an OWL functionality ontology in tourism domain by

subclassing ServiceProfile and assumes the service profiles are created as instances

of the service classes which represent their functionality in this ontology. [33]

assumes the availability of a functionality ontology and matches DAML-S based

service ontologies using Description Logic reasoner.

 [30] depends on MIT Process Handbook Project[MIT] in which a process

knowledge repository is under development. The Handbook is highly focuced on

business processes. It models a process using six aspects: attributes, ports,

decomposition, dependencies, exceptions and specialization. Process attributes

correspond to both nonfunctional and human consumable properties of OWL-S

Service Profile. Decomposition and dependencies correspond to OWL-S process

model where a process is modeled as a collection of sub-activities and resource flow

and coordination between activities are managed by dependencies. Ports describe

inputs and outputs of the process. Exceptions describe failure situations and handling

these situations. Finally, specialization indexes the processes and their attributes by

mapping them to concepts in taxonomies for later retrieval.

When capabilities are represented by describing state transitions, discovery

process becomes more complex. An advertisement is accepted if its state transitions

are matched with the request’s. OWL-S also supports this option with the functional

properties provided with ServiceProfile. OWL-S Matchmaker in [52, 53, 62], which

is also basis for this thesis, uses this representation with its matching algorithm.

The OWL-S Matchmaker is a matching engine based on OWL-S. The

service capabilities are presented using ServiceProfile class and the advertisements

and requests are matched based on their profiles. The algorithm matches an adver-

tisement with a request when all the outputs of the request are matched by the

outputs of the advertisement, and all the inputs of the advertisement are matched by

the inputs of the request. This guarantees that the advertised service satisfies all the

 34

needs of request and the request provides all the inputs needed by advertised service

to operate correctly.

The degree of match between two inputs or two outputs depends on the

relation between the concepts represented by them in their OWL ontologies. These

ontologies are assumed to be same and preloaded to the ontology database when

registering the advertisement. If OutR represents the concepts of an output of a

request, and OutA that of an advertisement, four degrees of match is recognized by

the algorithm:

− Exact: If OutR and OutA are same or OutR is an immediate subclass of

OutA. Exact is of certainly the best level match.

− Plug in: If OutA subsumes OutR, then OutA can be plugged instead of

OutR. Plug in is the next level best match since the output returned can be

used instead of what the requester expects.

− Subsume: If OutR subsumes OutA, then the provider may or may not

completely satify the requester. This makes subsume the third level match.

− Fail: There is no subsumption relation between OutA and OutR.

The worst level among the match levels between outputs / inputs are

selected as the global match level between the outputs / inputs of the advertisement

and the request. The advertisements are sorted by the highest score in the outputs.

Input matching is used only when equally scoring outputs exist.

The Matchmaker pre-computes the subsumption relation between the

concepts represented by inputs and outputs of an advertisement and the concepts in

the ontology database during registration. When a request comes, the matching

engine just looks up for the subsumption relation between the concepts of

outputs/inputs of advertisements and requests. No inference is required during the

query phase.

The problem with Matchmaker is that it exploits only a subset of the state

transitions produced by the service. Using only inputs and outputs for matching

 35

services causes the retrieval of services that have similar signatures, but different

purposes.

The proposed methods in [65] and [60] use both options to increase the

precision and recall values. The former describes advertisements and requests as

RDF graphs . Each advertisement is an instance of a service type and is the root of

the graph. The properties (inputs, outputs, etc.) of the service are the other nodes in

the graph. The matching algorithm matches two graphs, if the service types are equal

or one is subtype of the other and their properties match.

In [60], WSDL is enriched using DAML+OIL ontologies and the

descriptions are kept in UDDI in such a way that they enable inquiries based on

ontology elements. Existing WSDL constructs are related to DAML+OIL ontologies

via extensibility in elements and attributes supported by WSDL specification version

1.2. Both operations and message parts which are input and output parameters are

mapped to ontological concepts. Moreover new tags are added for preconditions and

effects.

These semantic annotations are kept in existing structures of UDDI and an

interface is provided to enable queries using semantic annotations. Four different

tModels are created in UDDI registry: one for representing functional taxonomy of

operations in a specific domain, one for the input concepts, one for the output

concepts and finally one for grouping operations with their inputs and outputs into

keyedReferenceGroups.

The semantic matching algorithm, in the work, requires the specification of

the user request in terms of ontological concepts. Afterwards, this specification is

converted into a UDDI query. The algorithm first finds the services that are classified

under user specified functionality concept and then matches input and output

concepts and finally, as an optional step, matches precondition and effect concepts.

This approach enriches existing industrial standards with semantics without requiring

comprehensive modifications and additions.

 36

Semantic discovery methods operate on descriptions based on shared

understanding. This decreases synonyms and homonyms problems that occur in

keyword-based and table-based methods and increases recall and precision values.

All the semantic discovery methods exploit ontologies somehow. The problem with

their usage is that they always assume the advertisements and requests share the

same ontologies. This assumption is unrealistic in a huge domain like Web. In this

work, a solution is proposed to this problem.

2.4. Web Service Composition

Most often a business process or a user requirement can not be carried out

by a single Web service and therefore composition of different services based on user

requirements and constraints, is needed. The composition problem is defined in [2]

as finding an integrated schema of atomic Web service operations such that when

executed, the desired effect is produced. The composition problem can be reduced to

three subproblems[64]:

− Composition planning: Given a user request, the first step is to make a

plan that describes how Web services interact and how the functionality

they offer can be integrated to provide a solution which satifies the request.

− Web service discovery: Following the plan generated in the first phase, it

is necessary to find the Web services that perform the tasks required.

− Web service execution: Given a plan and a set of Web services that

perform the tasks in the plan, the third problem is to execute the services

and manage the interaction with them.

Service composition problem has been actively studied by database and

agent communities. Manual, semi-automated and automated solutions are proposed

to the problem. In manual solutions, the user generates the workflow, finds the

services and sends them to the execution engine. However due to the increase on the

number of services it becomes more and more diffucult for users to deal with

 37

locating the exact services and integrating them. Semi-automated techniques,

facilitates user tasks by making suggestions for service selection, however the user is

still responsible for constructing the workflow and making service selection from a

short list. Automatic techniques are explained in detail in the next section.

2.4.1. Automated Web Service Composition Techniques

Automated composition aims to perform all the phases in composition life

cycle without human intervention. This includes discovery, planning and execution

phases. Automated discovery involves the automatic location of the services that

have a particular capability and that adhere to requested constraints[38]. This

requires formally self described (having semantics in the desription itself) and

machine processible web services and algorithms that match these services.

Keyword and table-based discovery methods like UDDI and UDDI with WSDL are

not suitable for this purpose since they are mostly syntactic and have low precision

and recall values. Semantic discovery algorithms well suit these requirements since

they are capable of operating on self described data and have greater precision and

recall values. From this point of view, deductive methods are most suitable for

automation, however due to the efficiency problems, semantic methods are

preferable.

For the automation of the planning and execution phases, AI or similar

technologies are exploited. The automation techniques are classified into two

categories in [2]: rule-based composition techniques and planning-based composition

techniques.

2.4.1.1. Rule Based Composition Tecniques

These techniques are based on a static set of rules to determine whether two

services can be composed or not. If the properties of two services match according to

the rules they are added to the composition. One example is [43] in which the

request is described using CSSL (Composite Service Specification Language).

 38

Afterwards, composition plans that satify the request are generated using the

composability rules. If more than one plan is generated, the requester chooses one of

them in the selection phase. Finally, the detailed description of composite process is

presented to the requester. SWORD [54] is another example to rule based approaches

in which requester specifies the initial and final states of composite service and then

the plan is generated using a rule-based expert system.

2.4.1.2. Planning Based Composition Tecniques

AI planning techniques are mostly used techniques for automated web

service composition due to the resemblance of two problems. Given an initial and

final state, both seek an ordered set of operations that would lead to the final state

from the initial state.

Different planners are applied to the problem. The major approaches are

using PDDL, situation calculus and Hierarchial Task Network (HTN) planning and a

new approach uses event calculus for planning purposes.

In HTN planning, a set of primitive tasks is found by recursively

decomposing the given initial composite task into subtasks until primitive tasks are

reached. Finally a plan is generated which is an execution order of primitive tasks

that are elements of this set. This method is applied in SHOP2 [69] .

Situation calculus, which is a first order logical system of actions and

situations, models the dynamically changing world. The actions, when executed,

either changes the domain knowledge or changes the current state. The work in [42]

extends and uses GOLOG, which is a logical programming language built on top of

situation calculus, for solving the service composition problem. In the system, the

user request which is in the form of a generic procedure and the user constraints are

coded in situation calculus. The web services are conceived as actions which can be

either primitive or complex. The preconditions and effects of the service are also

coded in situation calculus. The system uses GOLOG solver to execute the generic

 39

procedure and generate the aimed effect. The output of this process is a running

application which satisfies user request is built.

PDDL is widely recognized as a standardized input for the state-of-the-art

planners [63]. DAML-S (earlier version of OWL-s) has been strongly influenced by

PDDL language. This facilitates mapping from one representation to another. During

planning DAML-S descriptions can be translated to PDDL format and then different

planners can be exploited for solving the problem. The work in [40] is an example to

Web service composition methods based on PDDL.

More information for composition techniques can be found in [2] and [63].

2.4.2. Automated Composition using Event Calculus

 Event Calculus, which is another logical formalism in basic theory, is applied to

Web service composition problem in [2]. Two usage purposes of the formalism

related with composition problem are :

- Finding a final situation for a theory that is composed of Event Calculus

rules, axioms and initial state.

- Finding a narrative which is a series of events, through abduction that

satisfies the theory and the goal state.

The formalism is used in this work for both purposes.

2.4.2.1. Event Calculus

Event calculus is suitable for domains where events dyamically affect and

change the state of the world. These changes are captured in fluents of the world.

Similar to variables, fluents change their valuations as a result of affecting events.

Events can be simple or compound. Compound events contain simple or compound

events in their time frames. The events and fluent valuations are relativized with

respect to time.

 40

In order to define the theory of a problem domain some predicates are used.

The event calculus predicates are given in Table 2.2 (taken from [2]). Each event

calculus theory is composed of:

- Default axioms of Event Calculus

- Axioms that are specific to problem domain

o Initial state axioms

o Effect axioms

o Unique names axioms

Table 2.2 Event Calculus predicates

Predicate Meaning

T1<T2 Time point T1 precedes time point T2 in the time line.
Happens(E, T1, T2) Event E happens during time frame between T1 and T2 where

T1<T2.

Happens(E, T) Instantaneous Event E happened at T defined as

Happens(E, T, T).

HoldsAt(F, T) Fluent F holds at time T.
Initially(F) HoldsAt(F, T0) where T0 is the time of the initial state.
Initiates(E, F, T) HoldsAt(F, T) when Happens(E, T, TA).
Terminates(E, F, T) HoldsAt(¬F, T) when Happens(E, T, TA).
Releases(E, F, T) Valuation of Fluent F is released, removing the inertial

constraints on it.

Clipped(T1, F , T2) HoldsAt(F, T) where T1< T <T2
Declipped(T1, F , T2) HoldsAt(¬F, T) where T1< T <T2

In order to demonstrate the formalism, the example taken from [2] is given

below. The theory is “If there is a turkey in the world and if a pointed gun is fired

than the turkey dies.”

 41

The initial state axioms are:

Initially(alive(Turkey)) (2.1)

 Initially(¬loaded(Gun)) (2.2)

The effect axioms are:

 Initiates(load(Gun), loaded(Gun), T) ←

 HoldsAt(¬loaded(Gun),T) (2.3)

 Terminates(fire(Gun), alive(Turkey), T) ←

HoldsAt(loaded(Gun), T) ∧ HoldsAt(alive(Turkey), T) (2.4)

 Terminates(fire(Gun), loaded(Gun), T) ←

 HoldsAt(loaded(Gun), T) (2.5)

Unique names axioms

 fire ≠ load (2.6)

The narrative which satisfies the theory :

 Happens(load(Gun), T1) (2.7)

 Happens(fire(Gun), T2) (2.8)

 T1<T3 (2.9)

 T2<T3 (2.10)

The theory which is composed of default axioms and domain specific

axioms (2.1-2.6) together with the narrative (2.7-2.10) leads to

HoldsAt(¬loaded(Gun), T3) and HoldsAt(¬alive(Turkey), T3).

2.4.2.2. Composition with Abductive Planning

In the first part of the work in [2], the Event Calculus is used for planning

purposes. The Web services are bound to theory by modeling Web services as events

with parameters and external Web service calls as predicates with parameters. The

corresponding event of a Web service which finds the availability of a flight between

two locations is given in Figure 2.11.

 42

Figure 2.11 Translation of a Web service to an event

Planning in this work is done by using abduction with the Event Calculus.

Abduction is a technique used with theorem solvers for planning. The main idea in

abduction is to start from the goal and find the axioms that might result in satifying

the goal. An abductive theorem prover is extended to cover issues related with

service composition.

2.4.2.3. Web Service Execution with the Event Calculus

In the second part of the work, the Event Calculus is used for executing

OWL-S composite processes. This requires the conversion of OWL-S process model

constructs to event calculus constructs. Atomic processes for instance are converted

to simple events with parameters. The translation of composite procceses which

contain control constructs are done by using compound events. Details about the

conversion can be found in [2]. The work also provides an algorithm for the

conversion.

Assuming the Web services that correspond to external Web service calls

are pre-discovered, in the second part of the work a given generic procedure

expressed in OWL-S is executed.

 43

2.4.2.4. Results of Using Event Calculus in Web Service Composition

The work in [2] showed that both composition planning and execution can

be accomplished within the Event Calculus framework. This formalism is especially

suitable for modelling concurrent and ordered events using time frames.

The proposal in [2] neglects the discovery phase and assumes that the Web

services are pre-discovered. The discovery approach implemented in this thesis will

be integrated to this work to complete the missing piece of the solution.

 44

CHAPTER 3

BACKGROUND INFORMATION

ON SCHEMA MATCHING

Advances in information technology have lead to an explosion in the number of

data sources accessible to a user. Many new database applications have arisen over time,

which require semantic integration of these data sources. Schema integration, data

warehousing, data integration systems, e-commerce and semantic query processing are

examples of such application domains [17]. Since the data sources, to be integrated, are

generally designed independently, most often to be self-contained, there might be

several kinds of semantic and structural heterogeneities between them. So in all of these

application domains, schema matching is the key operation before going further. In data

integration systems, for instance, the users are provided with a uniform query interface

(called mediated schema) to a multitude of data sources and the user query is

constructed based on the mediated schema [36]. However before posting the query to

data sources, it must be reconstructed to conform to the schemas of the data sources. So

the mediated schema and the source schemas are matched first and then the query is

rewritten depending on the matching results. Manual schema matching is tedious, error-

prone and clearly not possible in the scale of the application domains. This has led to

development of the automated techniques for the matching process.

 45

This chapter is structured as follows: in Section 3.1, the matching problem is

defined with illustrations. Section 3.2 describes the architecture of a matching system

and Section 3.3 gives the classification of matching techniques. Section 3.4 presents

the current proposals to matching problem. Finally, Section 3.5 focuses on ontology

matching.

3.1. Definition of Matching Problem

Schema matching is the process of finding semantic correspondence between

the two given schemas. Semantic correspondence is defined as a set of direct

matches each of which binds a source schema element to a target schema element, if

two schema elements are semantically equivalent [70].

Semantic equivalence is based on both the concept denoted by the schema

element and the context in which the element is defined. In Figure 3.1, independent

from the contexts, the real world concept denoted by label “France” in both parts,

corresponds to “a country in western Europe”. However, when contexts are

considered, the element labeled with “France” on the right-hand side corresponds to

landscape paintings from France in the real world.

Two schema elements might be semantically similar despite some schematic

heterogeneity. The matcher must be capable of handling them and finding

corresponding elements despite them. Different classifications for these

heterogeneities are given in [13, 28]. Before listing them, two simple schemas, given

in figure 3.2, will be introduced for illustrative purposes. The semantically equivalent

concepts “Instructor” and “Teacher” are modeled in the first and second schemas,

respectively. Besides, “HomeAddress” which is range of “homeAddress” attribute is

modeled in both schemas.

Four types of heterogeneties are attribute definition incompatibilities, concept

definition incompatibilities, abstraction level incompatibilities and finally, schematic

discrepancies.

 46

Figure 3.1 Different contexts for the same concepts

Attribute Definition Incompatibilities

These incompatibilities arise when two attributes that are

semantically alike are modeled in different ways. These differences can be

classified into five categories:

- Naming conflicts: The similar attributes might have different names, which

are synonyms like the attributes “firstName” in the first schema and

“givenName” in the second.

- Data Representation Conflicts: The similar attributes might have different

data types or representations. The attribute “ID” in the first schema may be

represented as a 10-digit integer, where in the second as 12-character string.

- Data Scaling/Precision Conflicts: The similar attributes might be

represented using different units, measures or precision. The attribute salary

might have values in $ where the wage in YTL, or salary might have values

which are multiples of 1000.

 47

- Default value Conflicts: The similar attributes might have different default

values. The default value of “gender” might be “male” in the first and

“female” in the second.

- Constraint Conflicts: The similar attributes might have different constraints.

The “salary” might have values in [1000, 5000] interval, where the “wage”

might have values in [750, 3500] interval.

- Temporal Conflicts: The similar attributes might have temporal differences

as in current “salary” vs. past “wages”.

Concept Definition Incompatibilities

These incompatibilities arise when two semantically alike concepts are

modeled differently and are classified into three:

- Naming conflicts: Similar to attributes, the concepts might have synonymous

names as in “Instructor” and “Teacher” case.

- Attribute number-precision Conflicts: An attribute of one concept may be

more preciously represented than the other. In the first schema, the

“Instructor” has just “phone” attribute, where in the second, this attribute is

detailed as “mobile” and “home” phone. In addition, there might be absence-

presence differences between attributes specified.

- Missing data item Conflicts: These conflicts arise when one of the concepts

has a missing attribute, which can be deduced using an inference mechanism.

For example, “Math Instructor” in the first schema corresponds to “Teacher”

in the second, whose “type” attribute always has value “Math”.

Abstraction Level Incompatibilities

Two semantically similar entities, which can be either concepts or attributes,

might be represented using different levels of abstraction. Two kinds of abstraction

level incompatibility are:

 48

Figure 3. 2 Examples of heterogeneities between schemas

 49

- Generalization-Specialization conflicts: These conflicts reflect

classification differences in the subclass hierarchy. Three types are:

o Location based differences: Two similar entities might be located at

different levels in their hierarchies. In the first schema, “Home

Address” is specialized from “Address”, in the second it is specialized

from “Postal Address” which is specialized from “Location”.

o Criteria-based differences: Two similar concepts might be specialized

based on different criteria. In the first schema, “Instructor” is

specialized depending on what the instructor teaches. However, in the

second, “Teacher” is specialized based on where the teacher teaches.

o Specialization kind differences: Two similar concepts might be

specialized in different ways. The “Instructor” is specialized by

course type in the first schema. In the second, the course type is listed

for each “Teacher”.

- Aggregation conflicts: These conflicts arise when an aggregation is used in

one schema to represent a set of entities in the other. The attribute

“addressString” of “Address” in the first schema aggregates “Street”, “City”

and “Country” attributes of “PostalAddress” in the second. The aggregation

can also be in the form of n-to-m where two or more attributes in one schema

aggregate two or more attributes in the second.

Schematic Discrepancies

 These conflicts arise when data value, attribute and concept are used

interchangeably in different schemas. To illustrate them, three different schemas are

given in Figure 3.3. The first schema consists of a single “Schedule” relation that has

a tuple per “instructor” per “class” with “dayTime” information, which shows when

the instructor meets that class. The second schema has also one “Schedule” relation

that has a tuple, which consists of an instructor and an attribute for each class that

 50

shows daytime information. Finally, the third schema has one relation per class each

consist of an instructor and daytime information.

Figure 3. 3 Examples of schema discrepancies

 Three different schema discrepancies are:

- Data value attribute conflict: This conflict can be defined as the usage of a

data value of an attribute in one schema as an attribute in the other. The

values of “class” attribute in the first schema correspond to attributes in the

second schema.

- Attribute concept conflict: This conflict can be defined as the usage of an

attribute in one schema as a concept in the second. The attribute “C8A”, for

instance, corresponds to relation “C8A” in the second.

- Data value concept conflict: This conflict can be defined as the usage of a

data value of an attribute in one schema as a concept in the second as in

 51

Schema I and Schema III where the data value “C8C” corresponds to relation

“C8C”.

 3.2. Architecture of a Generic Matching System

 Given two or more schemas, a schema matching system outputs the matches

between the input schema models. A simplified overview of a matching system is

given in Figure 3.3. Inputs to the system are schemas, user feedback and external

knowledge, whereas the outputs are matches between schema elements.

In order to implement a generic solution, different schema models (ontology,

XML document, relational schema, etc.) are converted to an internal representation.

The internal representation may be a tree [34, 15] or directed labeled graph [44].

Figure 3. 4 Architecture of a Matcher

Frequently, the schema information or the data instance in hand is not enough

for accurate matching. So in most of the schema matching approaches external

 52

knowledge is exploited to improve the quality of the results. External knowledge

may be domain specific rules [49], domain knowledge in the form of ontology,

precompiled thesaurus or general purpose lexicons like WordNet [46]. Knowledge

gained from previous matches can also be an input to the matching system. For

instance, in [35], they use a mapping knowledge base, which contains a classifier for

each of the schema element seen in the past. Also in [15] and [1], the results of

previous matches are stored and used during new matches.

The output of the system is a set of matches. However schema matching is

inherently subjective and schemas may not completely capture the semantics of the

data they describe. There may be several plausible or completely false mappings. So

user intervention is essential in order to accept, modify or reject mappings found by

the system. Several iterations may be done based on user feedback to improve the

quality of matches as in [1].

 3.3. Classification of Matching Approaches

Database community has been studying the problem of automating schema

matching for a long time. A classification of matching approaches is proposed in

[55]. A slight variation of this classification is given in Figure 3.5. The approaches

are classified mainly as individual and combined matchers. Individual matchers are

early solutions to the problem and find matches using only a single criterion.

Combined matchers, in contrast, find matches based on multiple criterions, by using

individual matchers as building blocks. Hybrid matchers combine the individual

matchers in a fixed manner, where as composite matchers allow dynamic

combination of both individual and hybrid matchers depending on schema

characteristics, application domain and even results of previous matches [59].

Instance-based solutions depend on data content and most of them use

information retrieval or learning techniques to extract mapping information from

instance data. In contrast, schema-level matchers consider only schema information

such as structures (data types, classes, attributes) as well as properties of schema

 53

elements like name, type, etc. Schema level matching can be done either at element

level, where only element relevant information is considered or at structure level,

where the context in which the element is located is also taken into consideration.

Element level matching can be done with syntactic, semantic or constraint

based methods. In syntactic matching schema elements with the same or similar

names are matched. The similarity is determined by using syntax driven techniques

such as prefix-suffix (affix) matching, edit distance, n-gram or synonym-hyponym

relations. Exploiting synonym-hyponym relations requires using external resources:

domain, enterprise-specific or general purpose dictionaries, global namespaces,

thesaurus or is-a taxonomies containing common names, synonyms and descriptions

of schema elements, abbreviations, etc. Most of the time, the matching result is

presented to the user with similarity coefficient, which is a value in the interval [0,1]

and shows the degree of system's confidence about the mapping.

Figure 3.5 Classification of matching approaches

 54

Semantic matching, tries to map the concepts denoted by the element names.

Finding concepts requires the usage of external resources such as domain ontology or

lexical databases. The mapping is presented with a similarity relation that holds

between the concepts denoted by the element names. Similarity relation may be

equivalence, more/less general, mismatch and overlapping [20]. Equivalence is the

strongest semantic relation. More general and less general implies that one of the

concepts is the specialization of the other. Mismatch tells two concepts are disjoint

which means the first concept has containment relation with the negation of the

second or vice versa. Finally, overlapping implies there exists neither a containment

nor a mismatch relation between the concepts. In some works [48, 39], these

relations are converted to coefficients.

Constraint based methods, take into account the type similarity, key

properties, referential integrity relations, etc.

Structural matching can be done using heuristic, formal or constraint based

solutions. In heuristic methods, all the names along a path in the schema hierarchy

are concatenated. Similarity is searched between the concatenated names using string

comparison methods. Alternatively, external taxonomic structures are used to

compare the paths taken from schemas with these structures and identify similar

terms. In formal methods, the general approach is to translate the matching problem,

which is composed of the two schemas and possible matches, into propositional

formula and then to check it for its validity via SAT decider. A SAT decider is a

correct and complete decision procedure for propositional satisfiability [20].

3.4. Current Proposals To Schema Matching Problem

In most of the recent studies on schema matching, hybrid or composite

matchers are used and individual matchers are exploited as building structures. Cupid

[34] and S-Match system [20] are implemented as hybrid matchers where as COMA

[15], COMA++ [1], Protoplasm [3] and H-Match system [7] are composite matchers.

They all use different kinds of individual matchers.

 55

Cupid is a hybrid of a heuristic structural matcher and several syntactic

element level matchers. It provides a generic and schema based solution. In order to

provide a generic solution, all input schema models are converted to tree structures.

The main flow of the system consists of three phases: syntactic matching, structural

matching and match selection. The first phase computes a syntactic similarity

coefficient between the names (labels) of schema elements. The syntactic

comparison includes morphologically normalizing and categorizing element names

and comparing them using synonym-hyponym relation by using a pre-compiled

thesaurus. If no relation is found, affix matchers are used. In the second phase, with a

bottom-up approach weighted similarity is calculated for each pair of nodes based on

both structural and syntactic similarity coefficients. Structural similarity coefficient

is calculated based on data type compatibility of for leaf nodes. For non-leaf nodes,

structural similarity between two nodes is based on the number of leaf node pairs

whose weighted similarity exceeds a given threshold. Thus the similarity of two non-

leaf nodes mostly depends on the similarity of their leaf nodes. The aim of this

approach is to decrease the effect of differences in abstraction levels.

S-Match system [20, 21] is a hybrid of a formal structural matcher and

several syntactic and semantic element level matchers. Syntactic matchers are similar

to the element level matchers used in Cupid and COMA, except that the comparison

is done between concepts denoted by the schema elements instead of labels and

result of the comparison is a semantic relation instead of a similarity coefficient.

Semantic matchers exploit the senses and glosses of the concepts found from

WordNet. The first sense based matcher return the semantic relation, which is

provided by WordNet, between two senses. The second measures distance between

two senses in the WordNet hierarchy. Gloss based matchers, exploit NLP techniques

on glosses of the senses. One of them, for instance, extracts labels of the first sense

and counts the number of their usage in the gloss of the second. If the number

exceeds a threshold, it returns less-general relation. Using these element level

matchers, S-Match system takes two schemas converted to tree structure and

 56

computes the strongest semantic relation holding between the concepts of the nodes

from two trees. The concept of a node is computed as the intersection of the concept

denoted by the label at that node and the concepts denoted by the labels of ancestor

nodes. The concepts are expressed in logical propositional language. The atomic

concepts are atomic formulas. Complex concepts are obtained by combining atomic

concepts using connectives of the set theory. For each pair of node, a context, which

is the conjunction of all relations holding between concepts of labels mentioned in

two nodes, is computed. Finally the strongest relation between the two nodes is

found by testing satisfiability of each semantic relation (starting from the strongest)

against the context via SAT decider.

COMA [15], conforms to composite matchers in matcher hierarchy. It

provides an extensible library of algorithms which consists of individual matchers

which are schema-based and syntactic, hybrid matchers, which are composed of

individual and structural matchers, and a completely novel one, a reuse-oriented

matcher, which exploits previously obtained results for the new matching requests.

The library can be extended with new matchers as well. A distinct feature of COMA

is its support to user interaction. The user can construct the matching strategy, select

the matchers, determine the combination strategy of the matchers’ results,

approve/disapprove the results and re-iterate the matching task to gradually refine

and improve the accuracy of the results. COMA++ [1] extends COMA with major

improvements. A comprehensive graphical user interface and a new matcher for

ontology matching are implemented. Problems related to matching of large schemas

are reduced. Based on the fragment-based matching approach that was proposed in

[56], the large schemas are divided into fragments, matches between the fragments

are found and their results are combined later on.

Protoplasm [3] is inspired by COMA and tries to provide an industrial-

strength schema matcher, one that avoids fragility problems, is customizable for use

in practical applications, and extends the range of matching solutions being offered.

 57

H-Match system is devoted to matching ontologies. Similar to previous

works, it converts the input ontologies to a language independent model, which is

called H-Model. It provides three individual matchers, one of which is a linguistic

matcher, and four structural matchers, which address different levels of richness in

ontology descriptions. The linguistic matcher names an ontology element name as

basic term if there exists an entry for that name. Otherwise it is named as compound

term, which is composed of several basic terms. The basic term appearing on the left

side of the compound term is assumed to denote the specification of the meaning of

the term appearing on the left side and semantic relations between names are

determined based on this assumption. Four structural matchers are surface, shallow,

deep and intensive. Surface matcher considers just linguistic features of concepts and

suitable for poorly structured ontologies. Shallow matcher considers the concept

names and properties. Deep matcher takes into account the semantic relations of the

concept besides its properties. Finally, intensive matcher, in addition to the deep

matcher, considers property values during matching.

All of the works that are described above deal with one-to-one matches where

two individual object sets in different schemas are matched. 'address'='location',

'lecturer'='teacher' are examples to one-to-one matches. While these matches are

common, correspondences between real world schemas also include one-to-n, n-to-

one or n-to-m matches, which are named as complex matches. A complex match

specifies that a combination of elements in one schema may correspond to another

combination in the second schema (aggregation conflicts). Schema matching

approaches can further be classified depending on the cardinality they handle. Most

of the work on schema matching deals with one-to-one matches. There have been

only a few works on complex matching. [13], [16] and [70] and [22] are known

works that handle complex matches which are all instance-based, hybrid matchers.

Finding complex matches is fundamentally harder than one-to-one matches

since the number of candidate one-to-one matches between a pair of schemas is

bounded (by the product of sizes of two schemas), but the number of candidate

 58

complex matches is unbounded. The iMAP system in [13] employs a set of searchers

each of which considers a meaningful subset of the candidate space, corresponding to

specific types of attribute combinations. It exploits domain knowledge both in match

generation and match selection phases. A mechanism for explaining decisions made

by the system is also included which enables users ask some questions on matching

results and make corrections according to the answers.

The work in [70] makes use of domain ontology. Three types of matches are

defined: merged/split values, superset/subset values and object set name as value.

The limitation to the approach is the need to manually construct application specific

domain ontology.

The GLUE system in [16] handles simple and complex mappings between

ontologies. A similarity definition is constructed from the joint probability

distribution of the concepts involved. The system deals with only concepts. The

properties of the concepts are not taken into account. Machine learning techniques

and multi-strategy learning are used for computing concept similarities. Available

domain constraints and heuristic knowledge are exploited to improve the matching

accuracy. For complex matching two kinds of operators are used: union and

difference. The mapping candidates that are built on these two operators are

considered only.

Given a set of web interfaces in the same domain, DCM framework in [22]

solves the problem of discovering matches among those interfaces. In contrast to

previous works, which handle two schemas at the same time, it matches all the

schemas at the same time by using data mining techniques.

3.5. Ontology Matching

 The Semantic Web vision, as described in the previous chapter, can only be

realized with the use of ontologies. Ontologies provide the shared-understanding

required for converting Web content from human-consumable form into machine-

 59

consumable form, which leads to automation, integration and reuse of data across

various applications. However, due to the de-centralized nature of the Web, most

probably there will be an explosion in the number of ontologies, most of them

describing similar or overlapping domains, but using different languages,

conceptualizations, modelling styles and terms. In order to process data from

disparate ontologies, semantic correspodences between their elements must be found

first [16, 7, 67]. This requirement is similar to schema matching problem. This

similarity has led to the extention of schema matching systems to cover ontologies as

well [1, 20]. In addition, new approaches are proposed which focus on just

ontologies as in [16, 7] .

In this thesis, a subset of these approaches will be adapted to overcome the

ontology difference problem in semantic Web service discovery.

 60

CHAPTER 4

SEMANTIC SERVICE DISCOVERY WITH SCHEMA

MATCHING

Service discovery methods and the issues that limit the quality of them are

discussed in the second chapter. Semantic Service Discovery with Schema Matching

(SSSM) approach addresses an untouched issue in semantic service discovery. It

proposes an extension to the semantic discovery methods to cope with different

ontologies that model the same or similar domains. This chapter introduces SSSM

approach. Section 4.1 positions it among other discovery approaches. Section 4.2

describes the system architecture. The service matching approach is explained in

Section 4.3. The Schema Matcher extension is presented in Section 4.4. Section 4.5

describes the SSSM integration with Event Calculus executer presented in Chapter 2.

4.1. Positioning of SSSM

Semantic service discovery methods exploit ontologies to provide a shared

understanding between advertiser and requester. This improves discovery results by

capturing semantics of the request better and addressing the problems related to

synonyms and homonyms. Three usage types of ontologies during discovery are:

− Providing a common functionality ontology to classify services and retrieve

services conforming to requested functionality by using subsumption

relations.

 61

− Describing the state tranformation produced by the service using ontologies

and matching the state transitions.

− Exploiting both.

SSSM uses the second approach and extends it by incorporating a schema

matcher component. This extension can be integrated with other usage methods, as

well. The method increases the recall value by retrieving services that are rejected by

other semantic matchers due to the ontology differences. Figure 4.1 shows the

positioning of SSSM in the recall/precision framework. When the advertisement and

the request share the same ontology, SSSM behaves similar to other semantic

methods. The intersection area in the figure shows the discovery results under these

conditions. The rest of the area shows the cases in which different ontologies are

used.

Figure 4.1 SSSM position in recall/precision framework

 62

4.2. SSSM System Architecture

The general view of the SSSM system is given in Figure 4.2. The main

components of the system are: Repository Manager (RM), Service Base Manager

(SBM), KnowledgeBase Manager (KBM), Matching Engine (ME) and Schema

Matcher (SM).

Figure 4.2 SSSM System Architecture

Repository manager accepts the requests and orchestrates other components.

SBM processes advertisements and keeps the parts of the service descriptions that

are needed for later comparison in a database table. MySQL [50] is used as the

database management system. KBM manages OWL ontologies and evalutes the

 63

semantic relation between two concepts using an external OWL reasoner. Pellet [47],

which is a sound and complete OWL-DL reasoner, is used. The OWL ontologies are

processed using Jena API [26] . The ontologies are saved in a database. The ME,

matches the request with a set of advertisements. SM finds the semantic similarity

degree between two concepts using schema matching algorithms.

Repository Manager receives requests from the external world via

communication module. Two kinds of requests are:

- Service Advertisement Request with which the provider registers the

service it offers.

- Service Discovery Request with which the requester describes the service it

needs and searches for the services that conform this description.

Both the advertisement and discovery requests point to OWL-S Profiles. In

the former, the OWL-S profile describes the capabilities of the service to be

advertised. In the latter, the service with the needed capabilities is described. In this

work, similar to [52] description of capability is reduced to describing inputs and

outputs. The preconditions and effects are omitted. Figure 4.3 shows an

advertisement and a discovery request with the ontologies that describe their

parameters. The advertisement finds the sports activities available in a city during a

time frame. The discovery request, on the other hand, requests all the social activities

available in a city during a time frame. The descriptions of the advertisement and

discovery requests in OWL-S are given in Appendix C. The OWL-S files are

processed using OWL-S API [47].

Depending on the request, Repository Manager starts an interaction between

other components. Figure 4.4 shows the interactions between components required to

fullfil the requests. When the request is an advertisement, the service profile is

delivered to ServiceBase at first. ServiceBase manager keeps the aspects of the

service needed for comparison. In [52], information retrieval methods are used to

filter unrelated advertisements and comparison is done between the request and a set

 64

of related advertisements. Such an initial filtering mechanism is out of the scope of

this work, so it is not implemented. The only filtering criteria is the number of inputs

and outputs. The services, whose number of outputs equal to or greater than the

request’s number of outputs and number of inputs is equal to or smaller than the

request’s number of inputs, are selected initially. The rationale behind this filtering

will be described in the next section. For the purpose of this work, only input/output

related information is kept in the ServiceBase for later retrieval. The SBM registers

the service and returns a set of concepts, which are used to describe input/output

parameters, with their ontologies. The ontologies are added to the ontology database

via KBM and the concepts are processed by Schema Matcher.

Figure 4.3 An advertisement and discovery request sample

 65

When the request is for discovery, the profile, which descibes the required

capabilities, is retrieved to SBM first. Depending on the number of input/output

parameters, SBM returns a list of candidate advertisements. The Matching Engine

compares the request with the advertisements and returns the ones that satify the

request with input match degree, output match degree and a list of input/output

matches. During comparison, Matching Engine refers to either KBM or the Schema

Matcher to find the semantic similarity between two concepts. KBM computes the

degree of match between them using subsumption relations. Schema Matcher

computes the similarity using schema matching methods.

Figure 4.4 Processing of advertisement and discovery request

4.3. SSSM Matching Approach

During service discovery, the goal is to retrieve the services which are

sufficiently similar to the request. A restriction of “sufficiently similar” to “exactly

the same” most probably leads to an empty result set. The main idea that SSSM

based on is to retrieve the services which can somehow fullfil the described request.

 66

In [52], a softer definition is adapted for “sufficiently similar” by defining a discrete

scale to rank the similarity. SSSM is based on this definition and extends it.

Since the capability matching of two services is reduced to input/output

matching in SSSM, a request is said to be “sufficiently similar” to an advertisement

if and only if all outputs of a request are matched by the outputs of the advertisement

and all the inputs of the advertisement are matched by the inputs of the request. So

the matching algorithm compares the input/output parameters to determine the

similarity degree.

In this section, the SSSM similarity scale is introduced, first. The matching

algorithm is presented, next.

4.3.1. SSSM Similarity Scale

Two outputs or two inputs are matched if there exists a semantic relation or

a semantic similarity between the concepts that describe them. The scale used in the

first case is based on the subsumption relation between concepts. It consists of four

match degrees: exact, plug in, subsumes and fail, where exact is the most preferable,

plug in is the next and subsumes is the third best level. The closeness of relationship

determines where to map the relation in the scale. These degrees are defined in

Chapter 2. To sum up here; suppose outR and outA are the concepts that describe the

outputs of the request and the advertisement, respectively. The match degree between

outR and outA is :

- “exact” if outR and outA are equivalent or outR is an immediate subclass of

outA

- “plug in” if outR is sublass of outA but not an immediate one

- “subsumes” if outA is a subclass of outR

- “fail” if there exists no subsumption relation between them.

Consider the advertisement given in Figure 4.3 whose outA=Sports. If a

request, whose outR is equal to Sports or Team is received, the match degree will be

“exact”. If a request whose outR is equal to Football Match is received, the match

 67

degree will be “plug in”. If a request with outR equals to Activity is received, the

match degree will be “subsume”. If a request looks for a service which lists

sightseeing activities, the match degree will be “fail”. All these match degrees are

defined under the assumption that outA and outR are members of the same ontology.

In the second case, no explicit semantic relation is defined or can be inferred

between outR and outA. However, they model similar real world entities in different

ontologies. The match degree depends on the semantic similarity degree of them in

this case. Semantic similarity degree is calculated by comparing both the labels

denoted by the concepts and the contexts in which they appear. In order to provide

uniformity, semantic similarity degree, which is in interval [0,1], has to be mapped to

the scale described above. Two ways for mapping are :

- Calculating the similarity degree of outR and outA and mapping it to “exact”

or “fail” depending on whether it exceeds a specified threshold or not.

- Finding the concept which has the highest similarity degree with outR

(providing that it exceeds a specified threshold) among the concepts,

including outA, its ancestors and descendents and identifying the result as

“exact”, “plug in” or “subsume”, depending on the concepts relative location

to outA.

Although the second way maps the semantic similarity degree more

precisely, it requires more comparison. Since the comparison of two concepts is an

expensive operation, the first method is adopted.

Consider the discovery request given in Figure 4.5 , which looks for a

service that displays sports contests held within a city. The result of comparing the

advertisement in Figure 4.3 with this request is exact since the semantic similarity

degree between “SportsContest” and “Sports” is calculated as 0.76 which is

sufficiently high to map it to match degree “exact”.

 68

Figure 4.5 Discovery request exploiting a different ontology

4.3.2. SSSM Matching Algorithm

The main control loop of the algorithm is shown in Figure 4.6. The request

is compared with a list of advertisements stored in the repository. Whenever the

match degree is greater than fail, the advertisement is appended to the result set.

Finally, the result set is sorted in order to present the advertisements, which produce

the requested output with the highest match degrees, to the user, firstly. Consider two

advertisements, namely Adv1 and Adv2, the scoring rules used to sort them are as

follows:

- If OMD1 > OMD2 then Adv1>Adv2

- If OMD1 = OMD2 & If IMD1 > IMD2 then Adv1>Adv2

- If OMD1 = OMD2 & If IMD1 = IMD2 then Adv1>Adv2

 69

where OMD stands for output match degree, IMD stands for input match degree.

They are equal to lowest match degrees among match degrees of output and input

parameters, respectively.

Figure 4.6 Main control loop

When matching a request with an advertisement, the output parameters are

compared first. If all the output parameters of the request are matched by output

parameters of the advertisement, then the inputs are compared. If all the input

parameters of the advertisement are matched by the input parameters of the request

then the advertisement is accepted to satisfy the request somehow and added to the

result set. The algorithm for comparing parameters is given in Figure 4.7. A matrix

of match degrees is constructed by calculating the degree of match for each pair (a,b)

where a and b are elements of the first and second parameter list. If one of the

parameters in the first list can not be matched by any of the parameters in the second,

the overall match will fail. Otherwise, a parameter assignment list, which shows one-

to-one mappings of parameters, is constructed.

A parameter in the first list can be matched with more than one parameter in

the second. Choosing the one with the highest degree for assignment can, sometimes,

cause the overall matching to fail. Consider the match degree matrix given below:

 70

Figure 4.7 Algorithm for matching parameters

a1 matches b1 and b2 with degrees “exact” and “plugin”. However, choosing the

parameter with degree “exact” for assignment causes the overall match to fail, since

no parameters are left for a2. So, the parameter assignment method must find the best

assingment set providing no parameter is left unmatched. This problem is an instance

of assignment problem, which is about matching things that belong in two separate

sets in a way that maximizes (or minimizes) the sum of some quantities. These

quantities represent the benefits (or costs) associated to each matching. Each object

in one set can be matched with only one object from the other set. Hungarian

(Munkres’) assignment algorithm is one of many algorithms that solves the

assignment problem. Since it reduces the complexity of the problem which is O(n!)

to O(n3), an implementation of Hungarian algorithm, taken from [51], is used in this

work.

 71

Two outputs of the algorithm in Figure 4.7 are the parameter assignment list

and the match degree which is the smallest match degree among the ones associated

to the matchings in the assignment list. This match degree corresponds to output

match degree when comparing outputs and input match degree when comparing

inputs.

The algorithm for calculating the degree of match between two parameters is

given in Figure 4.8. A parameter type can either be a simple data type (integer,

string, etc.) or an ontology concept. When both are data types, the similarity degree

between two types is calculated by DataTypeMatcher of the Schema Matcher which

will be explained in the next section. When both are concepts, the subsumption

relation between them is found in case they belong to the same ontology. Otherwise,

semantic similarity degree is calculated. In case a parameter in the first list matches

two parameters in the second due to type similarity, parameter names are compared

to distinguish the closer one from the other.

Figure 4.8 Calculation of the match degree

 72

4.4. Schema Matcher

Schema matcher compares two ontology classes and calculates the semantic

similarity degree of them in the interval [0,1]. It consists of the matcher library, the

match composer and the concept directory. The architecture of the Schema Matcher

component is given in Figure 4.9. Concept Directory keeps the concepts that describe

the input/output parameters of the services. Matcher Library consists of a set of

matchers, which are used to compare different aspects of the concepts. Finally, the

Match Composer executes matchers and combines their results based on a given

policy.

Figure 4.9 Schema Matcher architecture

 73

4.4.1. Concept Directory

The concepts that describe service parameters are kept in Concept Directory

with their contexts. When matching two concepts, not only the labels denoted by the

concepts but also the contextual features of the concepts constitute an important

source of information. In most of the schema matching works, all or a subset of the

contextual features are used [34, 15, 20, 7]. Contextual features refer to the properties

and the other concepts that the concept has a semantic relation with. The context of a

concept c is defined as:

() () ()Ctx c P c C c= ∪ (4.1)

P(c) is the set of properties appearing in property constraints related to

concept c. Each p ∈ P(c) is a 4-tuple of the form p=(np, vp, kp, tp) , where np is the

name, vp is the value, kp ∈ {0,1} is the minimal cardinality and tp ∈ {dt, ob} is the

type of the property . dt stands for data type property and ob stands for object type

property. When tp=dt, vp is one of the data types listed in [61] or a user defined data

type. When tp=ob, vp is another concept. The properties with kp =0 are called weak

properties and kp =1 are called strong properties.

C(c) is the set of concepts c has semantic relation with. This includes all

ancestors and successors of c, derived recursively from the concept hierarchy of the

ontology, and the declared equivalent classes.

When adding a concept to the concept directory, the schema fragment that

contains the concept and its context is converted to the internal model. During

conversion, similar to H-Model [7], OWL class declarations are abstracted into

concept vertices, OWL data type and object property restrictions are abstracted into

property vertices, and OWL class relations and operators, that are permitted by

OWL-Lite, are abstracted into semantic links. Semantic links provided are eqClass

and subclass that correspond to EquivalentClass and subClassOf relations of OWL-

Lite. In addition, the intersectionOf operator is abstracted by means of subClass

 74

relation. For example A ≡ B ∩ C is converted into two semantic links A subClass B

and A subClass C.

4.4.2. Matcher Library

 The results of the works in schema matching domain showed that a single

approach to schema matching problem is not enough for a complete solution. This

has led to the usage of different combinations of algorithms exploiting different

techniques on different parts of the schemas. The same approach is adopted in this

thesis and a matcher library composed of different kind of matchers is implemented.

4.4.2.1. Simple Matchers

 Concept and property names are important sources of information when

calculating similarity between concepts. Names can be compared syntactically or

semantically. Three approximate string matching techniques; affix, n-gram and edit

distance are implemented for syntactically matching names. SemanticMatcher, on

the other hand compares concepts based on their meanings.

Data types are another source of information especially when comparing data

type properties of the concepts. DataTypeMatcher deals with types.

SemanticMatcher

The semantic matcher finds a similarity degree depending on the meanings of

the concepts. To capture the meanings of the concepts, an external thesaurus that

consists of terms and terminological relations among them is needed. In this work

WordNet [46], which is a lexical database providing a large repository (nearly

75.000 concepts) of English lexical items, is used as the external thesaurus. WordNet

is accessed using JWNL(Java WordNet Library)[25].

In WordNet, minimum set of the related concepts is ‘synonym set’ or

‘synset’. This set contains the definitions of the word sense, an example sentence and

all the word forms that can refer to the same concept[19]. The synsets are organized

into tree-like structures where nodes are linked by semantic relations between them.

 75

Hypernym (generalization of), hyponym (kind of), troponym(way to) and meronym (

part/substance/member of) are some examples of semantic relations. A full table of

relations is included in [19]. There are nine main hierarchies for nouns, 628 for verbs

in WordNet.

There are many methods for determining similarity between two concepts. In

[19], these methods are explained in detail and a comparison of them is given. The

test results of the work showed that Wu and Palmer’s conceptual similarity when

used with tagged sense approach gives better results.

Wu and Palmer’s method is a distance based similarity method. Distance

based similarity methods depend on counting edges in a tree or graph based

ontology. Wu and Palmer’s method uses IS-A hierarchy. The formula of the method

is:

1 2

1 2 1 1 2 2 1 2

2 ((,))

((,)) (, (,)) (, (,))

depth lso c c
WuAndPalmer

depth lso c c len c lso c c len c lso c c

•
=

+ +

 1 2(,)len c c

where lso(c1,c2) is the lowest super-ordinate of synset c1 and synset c2, len(c1,c2) is

the length of the shortest path from synset c1 to synset c2 and depth(c) is the depth of

synset c, in other words length of shortest path from synset c to root.

When comparing two words, the similarity can be evaluated for combinations

of either all senses or a subset of them. WordNet evaluates the frequencies of the

senses depending on a corpus and tags the senses. Using only tagged senses for

evaluation not only increases performance but also improves the accuracy of the

results.

Wu and Palmer with tagged senses approach is adopted and used for nouns in

this work. The algorithm is given in Figure 4.10. For verbs, adjectives and adverbs

only synonym relation is used. Since there are many verb hierarchies, no exact paths

between verb concepts exist [19].

 76

Figure 4. 10 SemanticMatcher for nouns

Affix

Affix looks for common prefixes and suffixes. If one of the strings starts or

ends with the other, it returns a degree of exact match, otherwise returns fail.

n-Gram

n-Gram divides both of the strings into their n-grams (sequences of n

characters) first. For example, trigrams for the word computer are com, omp, mpu,

put, ute, ter. Then counts the number of common ones. The similarity degree is

calculated by dividing the obtained number with max(numberOfNgrams(str1),

numberOf-Ngrams(str2)).

EditDistance

EditDistance calculates the edit distance measure between two strings. It

calculates the number of operations (delete, insert and replace) needed to convert one

string into the other. The similarity degree is calculated by dividing the obtained

number with max(len(str1),len(str2)).

 77

DataTypeMatcher

DataTypeMatcher looks up a data type similarity matrix for the similarity of

two data types. The data type similarity matrix gives similarity degree between data

types that are listed in [61]. Similarity degrees in the table are determined using the

type hierarchy given in [4].

4.4.2.2. Hybrid Matchers

Hybrid matchers find similarity degree by combining one or more simple

matchers. Five hybrid matchers are implemented namely StringMatcher,

ChildrenMatcher, AncestorMatcher, ContextMatcher and Leaf Matcher. The first

deals with string matching and the rest deal with a subset of the context whose

definition is given in (4.1) (See section 4.4.1).

StringMatcher

StringMatcher finds the similarity degree between two concepts or property

names by using semantic and syntactic matchers (Figure 4.11). The names may be

basic or compound. The basic ones represent one concept in the thesaurus, where

compound names are composed of more than one basic concept and have to be

decomposed. The tokenizer parses the compound names into tokens using

punctuation, digits, special symbols and upper cases, omits common words and if an

acronym finder is attached, expands abbreviations and acronyms. StringMatcher

compares each token of the first name with the tokens of the second and finds the

maximum similarity degree for each. It first looks for a semantic similarity between

two strings. A return value of “fail” results with a search in syntactic aspects. The

results of the syntactic matchers are combined using the combination strategy

selected among the ones explained in section 4.4.3. The final similarity degree is the

average of the similarity degrees of the tokens.

 78

Figure 4. 11 Algorithm for String Matcher

ContextMatcher

ContextMatcher implements the intensive matching model given in [7].

This model is defined to consider concept names and a subset of the context whose

definition is given in (4.1)(See section 4.4.1). The sub-context is defined as:

() () ()ssCtx c P c C c= ∪ (4.2)

where Cs(c) is the set of adjacent concepts that the concept has semantic relation

with.

In the model, a weight Wsr is given to each semantic relation to denote the

strength of the connection expressed by the relation on the involved concepts. The

greater the weight associated, the higher the strength of the semantic connection

between concepts. Moreover weak and strong properties are also assigned weights to

capture the importance of the property in characterizing the concept. Since strong

properties are mandatory, they have higher weight. The weights used are listed in

Table 4.1.

 79

Table 4. 1 Weights associated with contextual features

Context Element Weight

EqClass 1.0
subclass,superClass 0.8

strong property 1
weak property 0.7

The weights of the contextual features are considered using property and relation

closeness function C(e1, e2) → [0,1] which calculates a measure of distance between

two elements of context (two properties, two semantic relations or one property and

one semantic relation). The formula of the function is given as:

1 2 e1 e2C(e , e) =1-|W -W | (4.3)

The model considers concept names, the whole context of concept and also property

values. The similarity degree of two names is as follows in this implementation:

1 2 1 2(,) (,)A n n StringMatcher n n= (4.4)

Each element ei ∈ sCtx(c1) is compared against all elements ej ∈ sCtx(c2) using (4.3)

and (4.4) and the best matching value m(ei) is defined as below:

i ei ej i j j 2m(e)=max{A(n ,n) C(e ,e)}, e ()sCtx c• ∀ ∈ (4.5)

In addition to the features given above, the model takes the value of the properties

into account and calculates a matching value k(pi) for each property pi ∈ P(c). The

matching value k(pi) is defined as:

 80

j 2

j 2

max{ (,) (,)}, p ()
()

max{ (,) (,)}, p ()

pi pj i j pi

i

pi pj vpi vpj pi

A n n T v v P c iff t dt
k p

A n n A n n P c iff t ob

• ∀ ∈ = 
=  

• ∀ ∈ = 
 (4.6)

T(nvi,nvj) is the similarity of two types and defined as below in this implementation:

1 2 1 2(,) (,)T t t DataTypeMatcher t t= (4.7)

Given two concepts c1 and c2, the model calculates the semantic similarity degree

(SSDctx) as the weighted sum of name similarity calculated using (4.4) and

contextual similarity which is the average of (4.5) and (4.6):

1 2

| ()| | ()|
() ()

1 1
(1, 2) (,) (1)

| () | | () |

i j

ctx l c c

sCtx c P c
m e k p

i j
SSD c c W A n n W

sCtx c P c

+∑ ∑
= =

= • + − •
+

 (4.8)

AncestorMatcher

The schema matcher component, as stated above is responsible for

calculating a similarity degree between two concepts that denote service input/output

parameters. It is assumed that a concept, which denotes a parameter, is most

probably closer to leaves rather than root in class hierarchy. AncestorMatcher,

specific to this domain, depends on this assumption and claims that: “a concept,

besides the label that denotes it, is defined by its ancestors and the properties, that it

owns and it inherits”. So given two concepts c1 and c2, the algorithm calculates the

semantic similarity degree(SSDanc) as the weighted sum of name similarity calculated

using (4.4) and structural similarity which is the average of (4.10) and (4.6):

1 2

| ()| | ()|
() ()

1 1
(1, 2) (,) (1)

| () | | () |

all

i j

anc l c c

all

Anc c P c
m a v p

i j
SSD c c W A n n W

Anc c P c

+∑ ∑
= =

= • + − •
+

 (4.9)

 81

where Anc(c) is the set of all ancestors derived recursively by traversing concept

hierarchy and Pall(c) is the set of all properties concept c owns and inherits. Each

element ai ∈ Anc(c1) is compared against all elements aj ∈ Anc(c2) using (4) and the

best matching value m(ai) is defined as below:

2() max{ (,)}, ()i ai aj jm a A n n a Anc c= ∀ ∈ (4.10)

ChildrenMatcher

ChildrenMatcher, inspired from [15], determines the similarity between two

concepts based on the combined similarity between their child elements, which in

turn can be another concept or a property. The similarity between child elements

depends on the type of the element. If both are property, either (4.4) and (4.7) or just

(4.4) are used depending on the type of the first property. If one of them is property

and the other is concept, the similarity is the product of (4.3) and (4.4). If both are

concept, the similarity needs to be computed recursively. The similarity of two child

elements is defined as:

1 2

1 2

1 2

(,) () ()

(,) (,) () ()
(,)

(,) (,) () ()

(,) (,) (

chd i j i j

i j i j i j

i j

i j chi chj i j chi

i j vchi vchj i

SSD ch ch iff ch S c and ch S c

A ch ch C ch ch iff ch P c and ch S c or vice versa
cSim ch ch

A ch ch T v v iff ch P c and ch P c and t dt

A ch ch A n n iff ch P

∈ ∈

• ∈ ∈
=

• ∈ ∈ =

• ∈ 1 2) ()j chic and ch P c and t ob

 
 
 
 
 
 ∈ = 

 (4.11)

where chi ∈ Chd(c1), chj ∈ Chd(c2) and Chd(c) is the union of P(c) and S(c), which is

the set of all adjacent subclasses of concept c.

Each element chi ∈ Chd(c1) is compared against all elements chj ∈ Chd(c2)

using (11) and the best matching value m(chi) is defined as below:

j 2() max{ (,)}, ()i i jm ch cSim ch ch ch Chd c= ∀ ∈ (4.12)

 82

Finally, given two concepts c1 and c2, the algorithm calculates the semantic similarity

degree(SSDchd) as the weighted sum of name similarity calculated using (4.4) and

children similarity which is the average of (4.12):

1 2 1 2

| ()|
()

1(,) (,) (1)
| () |

i

chd l c c l

Chd c
m ch

iSD c c W A n n W
Chd c

∑
=

= • + − • (4.13)

Leaf Matcher

Leaf matcher, which is adopted from [34], determines the similarity of two

concepts mostly based on their leaf similarity. The rationale behind this approach is

to match concepts which have moderate structural differences (e.g. nesting elements)

but have the same data content (similar leaves). However in order not to neglect the

extreme differences and strong similarities in the concept structures, the similarity

degree of upper layers is reflected to the leaves somehow. In Figure 4.12, the

algorithm of the matcher is given.

The algorithm compares two trees, T(c1) and T(c2) which are rooted at c1 and

c2. T(c) is composed of the concept c, its property vertices and all the subtrees rooted

by concepts which are linked to object properties of concept c.

Initially, the structural similarity degrees between the leaves of both trees are

calculated. A leaf node can be either a data property node or a concept node with no

properties. The initial similarity degree between two leaves is defined as:

1 2

1 2 1

1 2

1 2

2

1 ,

0 ,
(,)

(,) ,l l

l l are concepts

l is concept l is property
LFSIM l l

or vice versa

T v v l l are properties

 
 
 

=  
 
  

 83

Figure 4. 12 Leaf Matcher algorithm

The definition of T(vl1, vl2) is given in (7). Afterwards, for each node in both trees

structural similarity degree is calculated. The structural similarity between two nodes

is defined as:

(,) ,

(,) ,
(,)

() / () 2,

0

LFSIM s t if s t are leaves

NLFSIM s t if s t are non leaf
SSD s t

and leaves s leaves t or vice versa

otherwise

 
 

− 
=  

≤ 
  

where NLFSIM(s,t) corresponds to non-leaf structural similarity. When a leaf node

in the one tree has a weighted similarity degree (wsim) above a threshold with a leaf

node in the other, it is said that the first node has strong link to the second. The

structural similarity of two non-leaf nodes depend on the number of leaves which

have at least one strong link to some leaf in the other tree and defined as:

 84

{ | () (), (,)}

{ | () (), (,)}

() ()

x x leaves s y leaves t stronglink x y

x x leaves t y leaves s stronglink y x
NLFSIM

leaves s leaves t

∈ ∧ ∃ ∈

∪ ∈ ∧ ∃ ∈
=

∪

The weighted similarity of two nodes is the weighted sum of the linguistic

similarity of the node names and the structural similarity of the nodes. If this value

exceeds a threshold, the structural similarity of their leaves are increased, otherwise

decreased. Finally, the weighted similarity of c1 and c2 is calculated again after

reflecting structural similarity degrees of the non-leaf nodes to the leaves.

 4.4.3. Match Composer

When finding similarity degree between two concepts, which syntactic and

structural matchers will be used and how the execution results will be combined

depends on the user specified policy. The policy consists of a set of syntactic and

structural matchers, their combination strategies, linguistic weight (Wl) and a

threshold value. Each matcher has a state value →{on,off}, which states whether the

matcher will be used during similarity calculations and a weight value →(0,1).

 The combination strategy can be one of max, min, average or weighted. When

max is selected, maximum similarity value, when min is selected, minimum

similarity value among the results of matchers is returned. Weighted provides the

user with the opportunity to give weights to matchers depending on their

performance and returns weighted sum of the results. Finally, average returns the

average similarity over all matchers.

Given two objects to be matched, a set of matchers and a combination

strategy, match composer executes matchers on the objects in turn and combines the

results depending on the strategy. The objects can be either two strings or two

concepts.

 85

4.5. SSSM System Integration with Event Calculus Executer

In [2], Event Calculus is used for executing OWL-S composite processes as

described in Chapter 2. The discovery of the Web services that carry out the atomic

tasks in the composite processes is assumed to be pre-discovered. As a future work,

SSSM will be integrated with the Event Calculus executer in order to provide a

complete solution. The final system will execute generic procedures which fulfill

user requests based on the user’s preferences and constraints. The generic procedures

are expressed as OWL-S composite procedures whose atomic processes has no

associated grounding.

The overall system architecture is given in Figure 4.13. The system provides

a set of generic procedures which are assumed to be pre-generated either manually or

by the Event Calculus planner using domain ontologies that are kept in the system.

The user selects one of them for execution via the User Interface. The constraints

and preferences can either be stated by the user explicitly or can be derived from user

profile. The name of generic procedure is passed to the Controller which manages

other modules. The Controller passes the generic procedure name to the Requester

for discovery at first. The Requester decomposes the composite processes in the

procedure into atomic processes recursively and generates an OWL-S profile

definition for each. Afterwards, the discovery phase starts in which each profile

definition is sent to SSSM system. SSSM system sends the services conforming to

the request described in each profile, with the parameter assignments and match

degrees. This information is kept for later selection and execution. After the

completion of discovery phase, the Controller invokes the Event Calculus Executer.

The Event Calculus Executer executes the generic procedure based on user

preferences and contraints. During execution, whenever an external service call is

required, it refers to Service Caller. The Service Caller selects the service with the

highest match degree among the ones discovered before and the interaction with the

concrete service begins. In case of a failure, the next highest ranked service is

 86

chosen. The Service Caller must have the capability to map the concepts that

describe the parameters of the request and advertisement if they are not same but

semantically similar.

In this thesis, besides the SSSM system, a simple command driven user

interface and the Requester module are implemented for evaluating the performance

of the SSSM system. The rest are left as future work.

 87

Figure 4. 13 Overall System Architecture

 88

CHAPTER 5

SYSTEM EVALUATION

 The main goal of this thesis was to improve semantic Web service discovery

methods by proposing a schema matcher extension. In order to conclude whether the

goal is achieved or not, the system must be evaluated. During evaluations, the Web

service composition system depicted in Figure 4.13 is used as the service requester.

This chapter presents the results of the evaluation. It is organized as follows: Section

5.1 describes the test data. Section 5.2 presents the test results. Finally, Section 5.3

discusses whether the goal is reached or not.

5.1. Test Data

 The composition system is assumed to make travel arrangements on behalf

of the user based on user preferences and constraints. It contains a set of generic

procedures for trip arrangements. The procedure given in Figure 5.1 is used to

arrange a personal trip for the user. It first makes a hotel reservation and depending

on the result of the reservation, makes flight arrangements and rents a car. Finally, it

finds the entertainment activities that will be held in the destination city during the

vacation period.

The Requester decomposes the whole generic procedure into seven atomic

processes namely SearchHotel, SearchFlight, SearchCar, ReserveFlight, BookHotel,

 89

RentCar and FindEntertainment. It generates OWL-S profile descriptions for each. In

order to describe the needed capabilities, OTA Hotel Message Ontology and OTA

Air Message Ontology from SATINE project are used for hotel and flight

arrangement services, respectively. These ontologies are mostly flat, no class

hierarchy exists. For describing car arrangement and entertainment search services,

Transportation Ontology and Activity Ontology, which are developed for this thesis,

are used. These ontologies have a more layered structure.

Figure 5.1 The Generic Procedure for Trip Arrangement

The SSSM service base contains 24 services. The advertisements for

SearchHotel, SearchFlight, SearchCar and ReserveFlight are provided by the

SATINE Project [15] and all the generated requests for these services use different

ontologies. Four of the six advertisements provided for SearchCar and RentCar use

different ontology from the request where the last two share the same ontology with

 90

the request. Finally, the advertisements provided for FindEntertainment and the

request all share the same ontology.

In Figure 5.2, the profile description generated for SearchHotel and one of

the advertisements provided for searching available hotels are given with the

ontology fragments used to describe them, as an example. The semantic similarity

degrees calculated by the Schema Matcher for the input and output parameters of the

request and advertisement are 0.77 and 0.82, respectively.

During tests the threshold value is set to 0.6 which is the value usually chosen

in schema matching proposals. The combination strategy chosen is Max, which

selects the highest similarity degree among the ones calculated by different matchers.

5.2. Test Results

The test results are shown in Table 5.1. The table gives the recall and

precision values for each matcher and combination of several matchers.

Table 5.1 Matcher Performances

Matcher
Number of
Relevant
Services

Number of
Services

Retrieved

Number of
Relevant
Services

Retrieved

Recall
(%)

Precision
(%)

Ancestor 20 18 14 70 77,78

Child 20 9 9 45 100

Context 20 10 10 50 100

Leaf 20 14 13 65 92,86

Leaf-Context 20 16 15 75 93,75

Leaf-Ancestor 20 21 17 85 80,95

Leaf-Ancestor-Context 20 21 17 85 80,95

OWL-S MatchMaker 20 4 4 20 100

 91

Figure 5. 2 Description of SearchHotel and One of the Advertisements

 92

At the last row, the test results for the MatchMakers approach are given.

Since Matchmaker is extended in this work and the closest system to SSSM, the

SSSM system is just compared to it.

The Context matcher gives the best precision value, however it can retrieve

only the half of the related items. Leaf-Ancestor and Leaf-Ancestor-Context

combination, on the other hand, give the highest recall value, but their precision

value is far from acceptable for automation. Leaf-Context combination is the most

preferable among them since it can retrieve 75% of the related items and its precision

value is near to acceptable.

The OWL-S MatchMaker approach can retrieve only the 20% of the

relevant services which share the same ontology with the request.

Table 5.2 gives recall and precision values of the Leaf-Context combination

for each atomic service. When the execution of the system and the test data is

inspected closely, four major reasons are found, two for low recall and two for low

precision values. The first is the Semantic Matcher whose capability directly depends

on the WordNet. Since WordNet is a general purpose lexical database, it is

insufficient in capturing domain specific semantic relations. For instance, “origin -

departure” and “destination - arrival” are used interchangeably in advertisements and

request. However, Semantic Matcher calculates the similarity degree as 0.44 for the

former and 0.15 for the latter. When a domain specific synonym finder is attached

which contains an entry like “pickup - start”, the results get better as in services

related to the arrangement of car rental.

The second reason is the data content in which property names are led by

codes that relate the property to the concept. For instance, when comparing

“name_MAR” with “name”, the first is tokenized as “name” and “MAR”. Each

token is compared to “name”. Since MAR has no correspondent the final similarity

degree is calculated as 0.5, where it must be 1. The match results are more successful

in comparisons where these codes are not used.

 93

The first reason for low precision values is inherited from the approach

which the SSSM is based on. Since the approach reduces the capability matching to

input/output matching, the services with similar parameters but different

functionalities are sometimes retrieved.

The second reason is related with the String Matcher which tokenizes the

compound words in a straightforward manner, depending on capital letters, digits,

etc. Such a tokenization sometimes can not capture the semantic relation between

words that constitute the compound word. For instance, firstName is a specialization

of name. However when comparing “name” to “firstName” , the result is calculated

as 1 which must be a smaller value.

Table 5.2 Leaf and Context matches with combination strategy Max

Service Request
Number of
Relevant
Services

Number of
Services

Retrieved

Number of
Relevant
Services

Retrieved

Recall
(%)

Precision
(%)

SearchHotel 3 2 2 66,67 100

BookHotel 3 3 3 100 100

SearchFlight 3 1 1 33,33 100

ReserveFlight 3 2 1 33,33 50

SearchCar 3 3 3 100 100

RentCar 3 3 3 100 100

FindEntertainment 2 2 2 100 100

TOTAL 20 16 15 75 93,75

5.3. Discussion

The goal of the SSSM approach is to improve the recall values of the

semantic discovery methods. However, since the requester of the system is an

 94

automated Web service composition system, a higher precision value is as important

as a higher recall value for the system to produce the proper results. So it is important

to improve the recall value without worsening the precision value. The test results

showed that despite a decrease in precision values, number of relevant services

retrieved increases 55%.

Besides recall and precision, the total time spent for discovery is also

important. In this thesis, performance considerations are neglected. However, before

using the SSSM system in a real environment, these problems must be addressed.

The first problem is the time spent for string comparison. Schema matching mainly

depends on comparison of concept and property names. For comparing two strings,

semantic name matcher, which depends on WordNet, and the syntactic matchers are

used in turn. The semantic name matcher spends 30 ms for the best case, where two

strings are equal and 120 ms for the worst case where there exists no relation

between the strings in WordNet. Even the best case value is too high, since the

comparison of a concept, which has three properties, with itself takes at least 1380

ms (under the assumption that all the names are atomic). Exploiting previous

comparison results via a cache reduces WordNet references for previously compared

strings, however the total time spend is still too high.

Another problem is using Schema Matcher for every concept that belong to

two different ontologies. This sometimes leads to comparison of totally unrelated

concepts and causes waste of time.

Although not at the desired level, it is shown that the initial goal for

implementing SSSM system is achieved. The reasons for the failure points are listed

in previous section. Before using the system in a real environment, it must be

improved to handle these failures and its performance problems must be addressed.

 95

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Web services provide businesses an efficient and faster way of reaching

consumers, and conducting business with other partners. WSDL and UDDI, which

are current industry standards, provide a standard way of describing, advertising and

discovering services. With the widespread usage of the Web services, the user or

business requirements get more complex and can be handled only by composing

several services in a way that produces the desired effect. However, the increase in

the number of available services and the dynamic nature of the Web and user

requirements, it is getting harder to manually locate the services and integrate them.

In the literature, several solutions, which exploit AI planning algorithms, are

proposed to automate the composition process.

Web service discovery, is the most essential phase of the composition

process to automate. Automated discovery requires semantically described, machine

processible Web services and semantic matching algorithms that are capable of

processing these descriptions. WSDL lacks the constructs that reveals out the

capabilities of the services and UDDI can not fully capture the semantics of the

descriptions. OWL-S, which is the application of Semantic Web constructs to Web

services domain, addresses the semantic specification requirement. In the literature,

there are several semantic Web service discovery methods, which process

semantically enriched descriptions. These proposals exploit ontologies to describe

 96

the capabilities of services in different ways, however they all assume that the

relevant advertisements and the requests share the same ontology.

In this thesis, an extension is proposed to the matching approach used in

OWL-S MatchMaker in order to handle ontology differences. OWL-S MatchMaker

exploits ontologies to describe the input/output parameters of the services and

reduces the capability matching to input/output matching. It proposes a discrete scale

to rank the similarity of two parameters, and where to map the similarity depends on

the subsumption relation between the concepts that describes the parameters. This

work extends this scale to cover not only the concepts which have subsumption

relation but also the ones that have semantic similarity, since they describe similar

real world entities. In addition, a schema matcher component, which exploits

different schema matching algorithms to calculate the semantic similarity between

two components, is proposed. The new approach is called Semantic Service

Discovery with Schema Matcher (SSSM).

It is shown that SSSM achieves the initial goal: It retrieves the services

which OWL-S MatchMaker fails to and increases the recall value. However, the

precision value falls due to some mismatches. The first of the two reasons for the

deficiency, related with the SSSM system, itself, is the usage of a general purpose

thesaurus like WordNet, which is incapable of capturing domain specific semantic

relations. The second reason is the String Matcher which lacks capturing the

semantic relation between the words that constitute a compound word.

 As a future work, the String Matcher may be improved using NLP

techniques to match concept and property names better.

The performance considerations are neglected in this work. However,

schema matching is a very expensive process and must be held as efficiently as

possible. Therefore, another future work may focus on improving the performance of

the system. One improvement may be implementing ontology classification system

and integrating it to SSSM, in order to avoid comparing extremely different

concepts. The advertisement ontologies can be classified during registry and

 97

comparison can be done only between two concepts that are classified under the

same category. Another improvement may be, dynamically selecting a matcher based

on the structure of concepts instead of executing the matchers in a fixed manner and

avoiding executing several matchers. Exploiting smaller domain ontologies instead

of WordNet, which is a huge general purpose ontology for string comparison may

also improve performance results.

Another future work is the integration of this system to the Event Calculus

planner implemented in [2] which lacks web service discovery mechanisms. The

integration is described in Section 4.5 in detail and the general view of the resulting

system is given in Figure 4.13. In [2], the generic procedures are assumed to be pre-

discovered. An improvement to the system may be using the Event Calculus planner

to generate a procedure corresponding to user request expressed in a high level way.

 98

REFERENCES

1 Aumueller, D., Do, H., Massmann, S. & Rahm, E. (2005). Schema and ontology

matching with COMA++. Proceedings of the ACM SIGMOD International

Conference on Management of Data (906-908). Baltimore, Maryland, USA.

2 Aydin, O. (2005). Automated Web service composition with event calculus.

Unpublished master thesis, Middle East Technical University, Turkey.

3 Bernstein, P.A., Melnik, S., Petropoulos, M. & Quix, C. (2004). Industrial-

strength schema matching. SIGMOD Record, 33(4), 38-43.

4 Biron, P.V., Permanente, K. & Malhotra, A. (2004). XML schema part 2:

datatypes second edition. W3C Web site: http://www.w3.org/-TR/2004/REC-
xmlschema-2-20041028/, visited on April 2005.

5 Brickley, D. &Guha, R.V. (2004). RDF vocabulary description language 1.0:

RDF Schema. W3C Web site: http://www.w3.-org/TR/rdf-schema/, visited on
December, 2005.

6 Broens, T. (2004). Context-aware, ontology based, semantic service discovery.

Unpublished master thesis, University of Twente, Enschede, The Netherlands.

7 Castano, S., Ferrara, A. & Montanelli, S. (2003). H-MATCH: an algorithm for

dynamically matching ontologies in peerbased systems. Paper presented at the
1st International Workshop on Semantic Web and Databases (SWDB). Berlin,
Germany.

8 Castano, S., Ferrara, A., Montanelli, S. & Racca, G. (2004, August). From

surface to intensive matching of semantic Web ontologies. Paper presented at the
3rd DEXA International Workshop on Web Semantics, IEEE Computer Society,
Zaragoza, Spain.

9 Chinnici, R., Moreau, J.J., Ryman, A. & Weerawarana S. (2006). Web services

description language (WSDL) version 2.0 Part 1, core language. W3C Web site:
http://www.w3.org/TR/2006/CR-wsdl20-20060327, visited on April, 2006.

 99

10 Christensen, E., Curbera, F., Meredith, G. & Weerawarana, S. (2001). Web

services description language (WSDL) 1.1. W3C Web site:
http://www.w3.org/TR/2001/-NOTE-wsdl-20010315, visited on September,
2005.

11 Clement, L., Hately, A., Riegen, C.V., Rogers, T. (2004). UDDI Spec Technical

Committee Draft. UDDI Web site http://uddi.-org/pubs/uddi-v3.0.2-
20041019.htm, visited on September, 2005.

12 Colgrave, J., Januszewski, K. (2004). Using WSDL in a UDDI registry, version

2.0.2 - Technical Note. OASIS Web site: http://www.oasisopen.org/commit-
tees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm, visited on
January 2006.

13 David, G. (2005). Understanding structural and semantic heterogeneity in the

context of database schema integration. Journal of Computing@UCLan, 4, 29-
44.

14 Dhamankar, R., Lee, Y., Doan, A., Halevy, A. & Domingos, P. (2004, June).

iMAP: Discovering complex matches between database schemas. Proceedings

of ACM SIGMOD International Conference on Management of Data (383-394).
Paris, France.

15 Do, H. & Rahm, E. (2002). Coma: A system for flexible combination of schema

matching approaches. Proceedings of 28th Conference on Very Large Databases

(VLDB) (610-621). Hong Kong, China.

16 Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., & Halevy, A. (2003).

Learning to match ontologies on the semantic Web. VLDB Journal, 12, 303-319.

17 Doan, A., Halevy, A. (2005 Spring). Semantic integration research in the

database community: A brief survey. AI Magazine, 26(1), Special Issue On

Semantic Integration, 83-94.

18 Dogac, A., Kabak, Y., Laleci, G., Sinir, S., Yildiz, A., Kirbas, S., et al. (2004).

Semantically enriched Web services for the travel industry, ACM Sigmod

Record, 33(3), 21-27.

19 Erozel, G. (2005). Natural language interface on a video data model.

Unpublished masters dissertation, Middle East Technical University, Turkey.

 100

20 Giunchiglia, F., Shvaiko, P. & Yatskevich, M. (2004, May). S-Match: An
algorithm and implementation of semantic matching. Proceedings of First

European Semantic Web Symposium, 61-75.

21 Giunchiglia, F. & Yatskevich, M. (2004, November). Element level semantic

matching. Paper presented at the Third International Semantic Web Conference
(ISWC) on Meaning Coordination and Negotiation Workshop . Hiroshima,
Japan.

22 He, B., Chang, K.C.C. & Han, J. (2004). Discovering complex matchings across

Web query interfaces: A correlation mining approach. Proceedings of Tenth
ACM SIGKDD Conference (KDD) (148-157). Seattle, Washington, USA.

23 Herman, I. (2006, May). Semantic Web activity statement. Presented at the W3C

advisory committee meeting, Edinburgh, Scotland, UK.

24 Horrocks, I. Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B. & Dean, M.

(2004). SWRL: A semantic Web rule language combining OWL and RuleML.
W3C Web Site: http://www.w3.org/Submission/SWRL/, visited on June, 2006.

25 Java WordNet Library. SourceForge Net Web Site: http://sourceforge.net/-

projects/jwordnet, visited on March, 2006.

26 Jena Web site: http://jena.sourceforge.net/, visited on October 2005

27 Jerami, E. (2002). Web services essentials. CA, USA: O’Reilly Press.

28 Kashyap, V. & Sheth, A. (1996). Semantic and schematic similarities between

database objects: a context based approach. The VLDB Journal, 5, 276-304.

29 Kifer, M., Lara, R., Polleres, A., Zhao, C., Keller, U., Lausen, H. &Fensel,

D.(2004). A logical framework for Web service discovery. Paper presented at the
3rd International Semantic Web Conference (ISWC2004). Hiroshima, Japan.

30 Klein, M. & Bernstein, A. (2001, July). Searching for services on the semantic

Web using process ontologies. Paper presented at the First Semantic Web
Working Symposium (SWWS-1) Stanford, CA, USA.

31 Klein, M. & Bernstein, A. (2004). Towards high-precision service retrieval.

IEEE Internet Computing,8(1), 30-36.

 101

32 Komatineni S. (2002). Understanding UDDI and JAXR. O’Reilly Web Site:
http://www.onjava.com/pub/a/onjava/2002/02/27/uddi.html, visited on Septem-
ber, 2005.

33 Li, L. & Horrocks, I. (2004). A software framework for matchmaking based on
semantic Web technology. International Journal of Electronic Commerce

(IJEC), 8(4), 39-60.

34 Madhavan, J., Bernstein, P. & Rahm, E. (2001, September). Generic schema

matching with Cupid. Proceedings of the 27th International Conference on Very

Large Data Bases , 49-58. Rome, Italy.

35 Madhavan, J., Bernstein, P., Chen, K., Halevy, A. & Shenoy, P. (2005). Corpus-

based schema matching. Paper presented at the International Conference on
Data Engineering (ICDE). Tokyo, Japan.

36 Mandreoli, F., Martoglia, R. & Tiberio, P. (2004). Approximate query answering

for a heterogeneous XML document base. Paper presented at the Fifth
International Conference on Web Information Systems Engineering (WISE
2004), Brisbane, Australia.

37 Manola, F. & Miller, E. (2004). RDF primer. W3C Web site:

http://www.w3.org/TR/rdf-primer/, visited on December 2005.

38 Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., et

al. (2004). OWL-S: Semantic markup for Web services. W3C member

submission. W3C Web site: http://www.w3.org/-Submission/OWL-S/, visited on
January 2006.

39 Masood, N. (2004). A schema comparison approach to determine semantic

similarity among schema elements. Information Technology Journal 3(1), 57-68.

40 McDermott, D. (2002, April). Estimated-regression planning for interactions

with Web services. Paper presented at the 6th international conference on AI
Planning and Scheduling, Toulouse, France.

41 McGuinness, D.L. & Harmelen, F.V. (2004). OWL Web ontology language

overview. W3C Web site: http://www.w3.org/-TR/owl-features/, visited on
January, 2006.

42 McIlraith, S. & Son, T.C. (2002, April), Adapting GOLOG for composition of

semantic Web services. Paper presented at the 8th international conference on
Knowledge Representation and Reasoning (KR2002), Toulouse, France.

 102

43 Medjahed, B., Bouguettaya, A., Elmagarmid, A. K. (2003). Composing Web
services on the semantic Web. The VLDB Journal, 12(4), 333-351.

44 Melnik S., Molina-Garcia, H. & Rahm E. (2002). Similarity flooding: a versatile

graph matching algorithm. Paper presented at the International Conference on
Data Engineering (ICDE). San Jose CA.

45 Miller, E. (1998 May 26). An introduction to the resource description

framework. D-Lib Magazine Web Site: http://www.dlib.org/dlib/may98/miller/-
05miller.html, visited on December, 2005.

46 Miller, G.A. (1995). WordNet: A lexical database for english. Communications

of the ACM (CACM), 38(11), 39–41.

47 MINDSWAP Web site: http://www.mindswap.org, visited on December 2005.

48 Mirbel, I. (1995). Semantic integration of conceptual schemes. Paper presented

at the first international workshop on applications of natural language to data
bases, NLDB'95, Versailles, France.

49 Mitra, P., Wiederhold, G. & Jannink, J. (1999). Semi-automatic integration of

knowledge sources. Paper presented at the 2nd International Conference on
Information FUSION. Sunnyvale, USA.

50 MySQL Web site: www.mysql.com, visited on December, 2005.

51 Nedas, K.A. Munkres' (Hungarian) algorithm. Retrieved February, 2006, from

http://www.spatial.maine.-edu/~kostas/dev/soft/munkres.htm.

52 Paolucci, M., Kawamura, T., Payne, T. & Sycara, K. (2002, June). Semantic

matching of Web services capabilities. Paper presented at the 1st international
semantic Web conference (ISWC), 333-347.

53 Paolucci, M., Kawamura, T., Payne, T. & Sycara, K. (2002). Importing the

semantic Web in UDDI. Paper presented at the Web Services, e-Business and
Semantic Web Workshop.

54 Ponnekanti, S.R. & Fox, A. (2002, May). SWORD: A developer toolkit for Web

service composition. Paper presented at the 11th worldwide Web conference,
Honolulu, HI, USA.

55 Rahm, E. & Bernstein, P. (2001). On matching schemas automatically. VLDB

Journal 10(4), 334-350.

 103

56 Rahm, E., Do, H.H. & Massmann, S. (2004). Matching large XML schemas.

SIGMOD Record, 33(4), 26-31.

57 Riegen, C.V. (2002). UDDI version 2.03 data structure reference. UDDI Web

Site: http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm, visited
on January, 2006.

58 Roman, D., Keller, U., Lausen, H., Bruijn, J., Lara, R., Stollberg, M., et al.

(2005).: Web service modeling ontology, Applied Ontology, 1(1), 77-106.

59 Saake, G., Sattler, K. & Conrad, S. (2005). Rule-based schema matching for

ontology-based mediators. Journal of Applied Logic, 3, 253-270.

60 Sivashanmugam, K., Verma, K., Sheth, A. & Miller, j.A. (2003, June). Adding

semantics to Web services standards. Paper presented at the First International
conference on Web services (ICWS'03), Las Vegas, Nevada.

61 Smith, M.K., Welty, C. & McGuinness, D.L. (2004). OWL Web ontology

language guide. W3C Web site: http://www.w3.org/TR/-2004/REC-owl-guide-
20040210/, visited on September, 2005.

62 Srinivasan, N., Paolucci, M. & Sycara, K. (2004, July). Adding OWL S to UDDI,

implementation and throughput. Paper presented at the First International
Workshop on Semantic Web Services and Web Process Composition, San
Diego, USA.

63 Su, X. & Rao, J. (2004, July). A survey of automated Web service composition

methods. Paper presented at the first international workshop on Semantic Web
Services and Web Process Composition, San Diego, California, USA.

64 Sycara, K., Paolucci, M., Ankolekar, A. & Srinivasan, N. (2003). Automated

discovery, interaction and composition of semantic Web services. Journal of

Web Semantics, 1(1), 27-46.

65 Trastour, D., Bartolini, C. & Castillo, J.G. (2001, August), A semantic Web

approach to service description for matchmaking of services. Paper presented at
the First Semantic Web Working Symposium. California, USA.

66 Travel Ontology. Web site of Stanford University: http://protege.stanford.edu/-

plugins/owl/owl-library/travel.owl, visited on April, 2006.

 104

67 Uschold, M. (2003). Where are the semantics in the semantic Web?. AI

Magazine, 24(3), 25-36.

68 Wang, Y., Stroulia, E. (2003, December). Flexible interface matching for Web

service discovery. Proceedings of Fourth International Conference on Web

Information Systems Engineering (147-156). Roma, Italy.

69 Wu, D., Sirin, E., Hendler, J., Nau, D., & Parsia, B. (2003, June). Automatic

Web services composition using SHOP2. Paper presented at the workshop on
Planning for Web Services, Trento, Italy.

70 Xu, L. & Embley, D. (2003). Using domain ontologies to discover direct and

indirect matches for schema elements. Paper presented at the Semantic
Integration Workshop collocated with the Second International Semantic Web
conference (ISWC-03), Sanibel Island, Florida.

 105

APPENDIX A

WSDL DESCRIPTION OF STOCK QUOTE SERVICE

<?xml version="1.0" encoding="utf-8"?>
<description

targetNamespace="http://example.com/stockquote/"
 xmlns:tns="http://example.com/stockquote/"

xmlns:ghns = "http://example.com/stockquote/"
xmlns:wsoap= "http://www.w3.org/2006/01/wsdl/soap"
xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsdlx= http://www.w3.org/2006/01/wsdl-extensions
xmlns="http://www.w3.org/2006/01/wsdl">

<types>
<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://example.com/stockquote/schema/"
xmlns="http://example.com/stockquote/schema/">

<xs:element name=" TradePriceRequest" type="xs:string"/>
<xs:element name=" TradePrice" type="xs:float"/>
<xs:element name="invalidSymbolError" type="xs:string"/>

</xs:schema>
</types>
<interface name = " StockQuoteInterface" >

<fault name = "invalidSymbolFault"
element = "ghns:invalidSymbolError"/>

<operation name=" GetLastTradePrice"
pattern="http://www.w3.org/2006/01/wsdl/in-out"
style="http://www.w3.org/2006/01/wsdl/style/iri"
wsdlx:safe = "true">

<input messageLabel="In"
element="ghns: TradePriceRequest " />

<output messageLabel="Out"
element="ghns: TradePrice" />

<outfault ref="tns:invalidSymbolFault" messageLabel="Out"/>

 106

</operation></interface>
<binding name="StockQuoteSoapBinding"

type="http://www.w3.org/2006/01/wsdl/soap"
interface="tns: StockQuoteInterface"
wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP">

<fault ref="tns:invalidSymbolFault" wsoap:code="soap:Sender"/>
<operation ref="tns: GetLastTradePrice"

wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response"/>
</binding

 107

APPENDIX B

 UDDI ELEMENTS FOR WSDL DESCRIPTIONS

Listing 1: tModel definition for StockQuoteInterface

<tModel tModelKey="uuid:e8cf1163-8234-4b35-865f-94a7322e40c3" >

<name>
StockQuoteInterface

</name>
<overviewDoc>

<overviewURL>
http://location/sample.wsdl

<overviewURL>
<overviewDoc>
<categoryBag>

<keyedReference
tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"

keyName="interface namespace"
keyValue="http://example.com/stockquote/" />

<keyedReference
tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"
keyName="WSDL type"
keyValue="interface" />

</categoryBag>
</tModel>

Listing 2: tModel definition for StockQuoteBinding

<tModel tModelKey="uuid:49662926-f4a5-4ba5-b8d0-32ab388dadda">

<name>
StockQuoteSoapBinding

</name>
<overviewDoc>

<overviewURL>
http://location/sample.wsdl

</overviewURL>

 108

</overviewDoc>
<categoryBag>

<keyedReference
tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"
keyName="binding namespace"
keyValue="http://example.com/stockquote/" />

<keyedReference
tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"
keyName="WSDL type"
keyValue="binding" />

<keyedReference
tModelKey="uuid:082b0851-25d8-303c-b332-f24a6d53e38e"
keyName="interface reference"
keyValue="uuid:e8cf1163-8234-4b35-865f-94a7322e40c3" />

<keyedReference
tModelKey="uuid:4dc74177-7806-34d9-aecd-33c57dc3a865"
keyName="SOAP protocol"
keyValue= "uuid:aa254698-93de-3870-8df3-a5c075d64a0e" />

<keyedReference
tModelKey="uuid:e5c43936-86e4-37bf-8196-1d04b35c0099"
keyName="HTTP transport"
keyValue=" uuid:68DE9E80-AD09-469D-8A37-088422BFBC36"/>

<keyedReference
tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"
keyName="uddi-org:types"
keyValue="wsdlSpec" />

</categoryBag>
</tModel>

Listing 3: businessEntity definition

<businessEntity

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="urn:uddi-org:api"
businessKey="5E4B4CDA-3448-4B88-ACE1-8584D43B7703"
operator="Microsoft Corporation"
authorizedName="Andy Grove"> ...
<name>Cape Clear Software</name>

...
<categoryBag>

 <keyedReference

 109

tModelKey="uuid:c0b9fe13-179f-413d-8a5b-5004db8e5bb2"
keyName="Software Publishers"
keyValue="5112" />

<keyedReference

tModelKey="uuid:4e49a8d6-d5a2-4fc2-93a0-0411d8d19e88"
keyName="United States"
keyValue="US" />

</categoryBag>
</businessEntity>

Listing 4: businessService definition for StockQuoteService

<businessService

serviceKey="102b114a-52e0-4af4-a292-02700da543d4"
businessKey="5E4B4CDA-3448-4B88-ACE1-8584D43B7703">
<name>Stock Quote Service</name>
<bindingTemplates>

<bindingTemplate
bindingKey="f793c521-0daf-434c-8700-0e32da232e74"
serviceKey="102b114a-52e0-4af4-a292-02700da543d4">
<accessPoint URLType="http">

http://location/sample
</accessPoint>
<tModelInstanceDetails>

<tModelInstanceInfo
tModelKey="uuid:49662926-f4a5-4ba5-b8d0-32ab388dadda">
<description xml:lang="en">

The wsdl:binding that this wsdl:endPoint implements. The
instanceParms specifies the endPoint local name.

</description>
<instanceDetails>

<instanceParms>
StockQuoteEndPoint

</instanceParms>
</instanceDetails>

</tModelInstanceInfo>
<tModelInstanceInfo

tModelKey="uuid:e8cf1163-8234-4b35-865f-94a7322e40c3">
<description xml:lang="en">

The wsdl:Interface that this wsdl:endPoint implements.
</description>

</tModelInstanceInfo>

 110

</tModelInstanceDetails>1
</bindingTemplate>

</bindingTemplates>
<categoryBag>

<keyedReference
tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"
keyName="WSDL type"
keyValue="service" />

<keyedReference
tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"
keyName="service namespace"

keyValue="http://example.com/stockquote/" />
<keyedReference

tModelKey="uuid:2ec65201-9109-3919-9bec-c9dbefcaccf6"
keyName="service local name"
keyValue="StockQuoteService" />

</categoryBag>
</businessService>

 111

APPENDIX C

 OWL-S SERVICE DESCRIPTIONS

Listing 1: Advertisement
<?xml version="1.0"?>
<rdf:RDF
 xmlns:service="http://www.daml.org/services/owl-s/1.2/Service.owl#"
 xmlns:profile="http://www.daml.org/services/owl-s/1.2/Profile.owl#"
 xmlns:process="http://www.daml.org/services/owl-s/1.2/Process.owl#"
 xmlns:grounding="http://www.daml.org/services/owl-s/1.2/Grounding.owl#"
 xmlns="http://www.tez.metu.edu.tr/services/FindSportsActivity#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:activity="http://www.tez.metu.edu.tr/ontologies/Activity.owl#"
 xmlns:location="http://www.tez.metu.edu.tr/ontologies/Location.owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xml:base="http://www.tez.metu.edu.tr/services/FindSportsActivity">
 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.2/Profile.owl

"/>
<owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.2/Process.owl"
/>

 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.2/Service.owl"
/>

 <owl:imports df:resource="http://www.tez.metu.edu.tr/ontologies/Location.owl"/>
 <owl:imports rdf:resource="http://www.tez.metu.edu.tr/ontologies/Activity.owl"/>
 </owl:Ontology>
 <process:AtomicProcess rdf:ID="FindSportsActivityProcess">
 <process:hasInput>
 <process:Input rdf:ID="city">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/ XMLSchema#

anyURI"> http://www.tez.metu.edu.tr/ontologies/Location.owl#City
</process:parameterType>

 </process:Input>
 </process:hasInput>
 <process:hasInput>

 112

 <process:Input rdf:ID="endDate">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#

anyURI">http://www.w3.org/2001/XMLSchema#date
</process:parameterType>

 </process:Input>
 </process:hasInput>
 <process:hasInput>
 <process:Input rdf:ID="startDate">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#

anyURI">http://www.w3.org/2001/XMLSchema#date
</process:parameterType>

 </process:Input>
 </process:hasInput>
 <process:hasOutput>
 <process:Output rdf:ID="activity">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#

anyURI">http://www.tez.metu.edu.tr/ontologies/Activity.owl#Sports
</process:parameterType>

 </process:Output>
 </process:hasOutput>
 </process:AtomicProcess>
 <profile:Profile rdf:ID="FindSportsActivityProfile">
 <profile:hasInput rdf:resource="#startDate"/>
 <profile:hasInput rdf:resource="#city"/>
 <profile:hasInput rdf:resource="#endDate"/>
 <profile:hasOutput rdf:resource="#activity"/>

<profile:serviceName rdf:datatype="http://www.w3.org/2001/XMLSchema#
string">FindSportsActivityService</profile:serviceName>

 <service:presentedBy>
<service:Service rdf:ID="FindSportsActivityService">

 <service:presents rdf:resource="#FindSportsActivityProfile"/>
 </service:Service>
 </service:presentedBy>
 <profile:textDescription rdf:datatype="http://www.w3.org/2001/XMLSchema#

string">Searches for activities held in a city during a time frame
</profile:textDescription>

 </profile:Profile>
</rdf:RDF>

<!-- Created with Protege (with OWL Plugin 2.2, Build 320) http://protege.stan-
ford.edu -->

 113

Listing 2: Request

<?xml version="1.0"?>
<rdf:RDF
 xmlns:service="http://www.daml.org/services/owl-s/1.2/Service.owl#"
 xmlns:profile="http://www.daml.org/services/owl-s/1.2/Profile.owl#"
 xmlns:process="http://www.daml.org/services/owl-s/1.2/Process.owl#"
 xmlns:grounding="http://www.daml.org/services/owl-s/1.2/Grounding.owl#"
 xmlns="http://www.tez.metu.edu.tr/services/FindActivity#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:activity="http://www.tez.metu.edu.tr/ontologies/Activity.owl#"
 xmlns:location="http://www.tez.metu.edu.tr/ontologies/Location.owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xml:base="http://www.tez.metu.edu.tr/services/FindActivity">
 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.2/Profile.owl"
 />

<owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.2/Process.owl"
/>

 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.2/Service.owl"
/>

 <owl:imports df:resource="http://www.tez.metu.edu.tr/ontologies/Location.owl"/>
 <owl:imports rdf:resource="http://www.tez.metu.edu.tr/ontologies/Activity.owl"/>
 </owl:Ontology>
 <process:AtomicProcess rdf:ID="FindActivityProcess">
 <process:hasInput>
 <process:Input rdf:ID="city">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/ XMLSchema#

anyURI"> http://www.tez.metu.edu.tr/ontologies/Location.owl#City
</process:parameterType>

 </process:Input>
 </process:hasInput>
 <process:hasInput>
 <process:Input rdf:ID="endDate">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#

anyURI">http://www.w3.org/2001/XMLSchema#date
</process:parameterType>

 </process:Input>
 </process:hasInput>
 <process:hasInput>
 <process:Input rdf:ID="startDate">

 114

 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#
anyURI">http://www.w3.org/2001/XMLSchema#date

</process:parameterType>
 </process:Input>
 </process:hasInput>
 <process:hasOutput>
 <process:Output rdf:ID="activity">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#

anyURI">http://www.tez.metu.edu.tr/ontologies/Activity.owl#Activity
</process:parameterType>

 </process:Output>
 </process:hasOutput>
 </process:AtomicProcess>
 <profile:Profile rdf:ID="FindActivityProfile">
 <profile:hasInput rdf:resource="#startDate"/>
 <profile:hasInput rdf:resource="#city"/>
 <profile:hasInput rdf:resource="#endDate"/>
 <profile:hasOutput rdf:resource="#activity"/>

<profile:serviceName rdf:datatype="http://www.w3.org/2001/XMLSchema#
string">FindActivityService</profile:serviceName>

 <service:presentedBy>
<service:Service rdf:ID="FindActivityService">

 <service:presents rdf:resource="#FindActivityProfile"/>
 </service:Service>
 </service:presentedBy>
 <profile:textDescription rdf:datatype="http://www.w3.org/2001/XMLSchema#

string">Searches for activities held in a city during a time frame
</profile:textDescription>

 </profile:Profile>
</rdf:RDF>

