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ABSTRACT 

A NEW STACK ARCHITECTURE FOR SENSOR NETWORKS 

 

 

 

EROĞLU, Muammer 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Semih BİLGEN 

 

 

September 2006, 80 pages 

 

In this thesis, a new stack architecture for sensor networks is proposed. 

The stack consists of the following layers: application, query, aggregation, 

network, MAC and physical. Various algorithms are implemented using this 

stack and it is shown that this stack is modular. 

 

Following an overview of sensor networks, the previous protocol stack 

suggestions for sensor networks are examined. Sensor network algorithms that 

can be classified as sensor data management systems are surveyed and compared 

with each other. Four of the surveyed algorithms, namely, TAG, Synopsis 

Diffusion, Tributary-Delta and Directed Diffusion are implemented using the 

introduced stack. The implementation is performed using a sensor network model 

developed with OMNeT++ simulator. The simulation results are compared to the 
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original results of these algorithms. Obtaining similar results, the stack and 

algorithm implementations are validated, moreover, it is shown that the stack 

does not induce any performance degradation. 

 

Using the implementation details of the algorithms, the modularity of the 

suggested stack is demonstrated. Finally, additional benefits of the stack are 

discussed. 

  

Keywords: Sensor networks, protocol stack 
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ÖZ 

ALGILAYICI AĞLARI İÇİN YENİ BİR YIĞIT MİMARİSİ 

 

 

 

EROĞLU, Muammer 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Semih BİLGEN 

 

 

Eylül 2006, 80 sayfa 

 

Bu tezde algılayıcı ağları için yeni bir yığıt mimarisi önerilmiştir. Bu yığıt; 

uygulama, sorgu, birleştirme, ağ, bağlantı ve fiziksel katmanlar olmak üzere altı 

katmandan oluşmaktadır. Bu katman yapısı farklı senaryolarda denenmiş ve 

modüler olduğu gösterilmiştir. 

 

Algılayıcı ağları hakkında verilen özet bilgiden sonra önceki yığıt önerileri 

incelenmiştir. Algılayıcı veri yönetimi sistemleri adı altında sınıflandırılabilecek 

algoritmalar ayrı ayrı incelenerek karşılaştırılmıştır. Sunulan yığıt mimarisini 

içeren bir algılayıcı ağı modeli geliştirilmiş ve bu yapıyla incelenen 

algoritmalardan dört tanesi uygulanmıştır. Benzetimlerden elde edilen sonuçlar 

ile uygulanan algoritmaların yayınlarındaki sonuçlar karşılaştırılmıştır. 

Sonuçların benzerliği sayesinde önerilen yığıt mimarisi ve algoritma 
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uygulamaları doğrulanmış, ayrıca bu yığıtın performans kaybına yol açmadığı 

gösterilmiştir. 

 

Algoritmaların uygulama detayları kullanılarak bu tezde önerilen yığıt 

mimarisinin modülaritesi doğrulanmıştır. Son olarak önerilen yapının diğer 

getirileri tartışılmıştır. 

 

Anahtar kelimeler: Algılayıcı ağları, protokol yığıtı 
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CHAPTER I 

INTRODUCTION 

Developments in micro sensor technology and low power analog and 

digital electronics have made possible to build distributed and wireless networks 

of sensor devices, called sensor networks. These sensor devices, also called 

sensor nodes, are capable of sensing a particular subject of interest, such as 

sound, wind, temperature, or a visual object. They are powered with their own 

batteries and they communicate through wireless medium. Sensor nodes have 

their own processor, memory and radio modules, and they are expected to be low 

cost, small sized and robust devices. 

Sensor nodes are to be deployed densely and in large amounts, hundreds 

to thousands of nodes in one network. They will organize themselves in an ad-

hoc fashion and will run as a distributed network. They will be able to operate 

unattended and in harsh environmental conditions. The data of the sensed subject 

is transferred from the nodes to a sink node, which is responsible to relay this 

data to a control center.  

Some of the key application areas of sensor networks are the following 

subjects: environmental monitoring, military surveillance and intelligence [1], 

and patient health care. In these applications, the nodes may have to operate in 

harsh environmental conditions, such as rain, cold, or radiation. The nodes may 

not be recollected after the distribution and could be disposed after the mission is 

completed. 
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The biggest obstacle of the sensor networks is the limited battery energy 

of the nodes. Since the radio is the most power draining module of a node, using 

the radio less often lengthens the life of the nodes. With this idea in mind, instead 

of using long distance end-to-end routing, it is more energy efficient to use short-

distance hop by hop routing while transferring data. Moreover, sensor nodes 

should keep their radios turned off when not used.  

Another efficient method to conserve power is on-board processing. The 

power usage of a processor is very little compared to the radio [1]; therefore, 

processing the raw data inside the nodes and transmitting the processed result 

having fewer bytes decreases power consumption.  

Since the incoming data of a node travels through other nodes on its path 

to sink, merging data in certain nodes proves useful to conserve energy by 

eliminating redundancies and minimizing the number of transmissions [20]. This 

is called data aggregation, where the sink requests the aggregate value of the 

sensed data, instead of the particular readings of the sensors. The aggregate 

requested by the sink could be the minimum or average value of the readings, or 

it might be the most frequent reading. 

Sensor networks are used in various applications, and unification is very 

difficult. However, recently, it is proposed that they can be thought as distributed 

databases producing a continuous streaming data [2,3,4]. A typical operation of 

this system would be as follows: the sink distributes a query for the required 

information and the response is collected back from the network, either directly 

or by data aggregation inside the nodes. The algorithms working in this manner 

are called data-centric sensor network algorithms, and they are studied in detail in 

Section 2.4.  

Four of these data centric algorithms are implemented in this thesis. 

They are Tiny Aggregation Service (TAG) [2], Directed Diffusion [4], Synopsis 

Diffusion [9] and Tributary-Delta [11].  

TAG and Directed Diffusion are widely known algorithms which are 

also implemented in real life. TAG is an algorithm that queries a data where all of 

the nodes in the network can contribute. It uses a routing tree rooted at sink node 
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and constructed hierarchically as the query propagates through the network. The 

readings of the nodes are aggregated at every node and sent to sink using this 

routing tree backwards. Every node keeps the address of its parent. After 

receiving the results from the child nodes, the nodes aggregate these results with 

their own readings and send the new aggregate to their parents.  

Directed Diffusion is an algorithm which requests data generated by 

only some of the nodes inside the network. It basically uses flooding to distribute 

a query to the network. Whenever the node having the required data is found, it is 

transmitted back to the sink using the reverse path of the query. Then, upon 

arrival of data from different sources, the sink node selects one of them and 

enforces it by sending a new query using the direct path to the node. 

Synopsis Diffusion and Tributary-Delta are recent and advanced 

techniques that try to improve fault tolerance of tree based sensor networks 

algorithms, such as TAG. Synopsis Diffusion uses multi-path routing and 

duplicate-insensitive summaries, which are called synopses. Synopsis Diffusion 

uses rings topology, where the sink is at the center and nodes reside in one of the 

rings according to their distance to the sink in number of hops. When the 

synopsis generated in a node is broadcasted, all the nodes at the inner ring that 

can hear this message process it, realizing multi-path routing. The disadvantages 

of SD are; synopses have larger size compared to the TAG aggregates and they 

have a fixed approximation error. 

Tributary-Delta combines Synopsis Diffusion and TAG by using them in 

different parts of the network. The central part around the sink is called delta 

region and Synopsis Diffusion is performed. The outer parts are called tributary 

region and TAG is performed. Since the central regions are more critical to 

errors, multi-path routing is used. In order to minimize transmission and lower 

approximation errors, TAG is used at the outer parts of the network, where a link 

error does not cut off a large tree branch. Moreover, Tributary-Delta algorithm 

adapts the tributary and delta regions according to the network contribution rate. 

It is claimed that traditional TCP/IP protocol stack does not fit well to 

sensor networks because of their novel requirements [1, 8]. There have been 
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complete sensor network protocol stack suggestions in the literature by Akyıldız 

et.al. [1] and Kumar et.al. [8]. Akyıldız et.al. extend the TCP/IP stack by 

appending three vertical planes that can operate in every layer. They are 

responsible for power, mobility and task management functions. Kumar et.al. 

introduce a data fusion layer under the application layer, and also information 

exchange and helper service layers. The details of these stacks are given in 

Section 2.3. 

The objective of this thesis study is to propose a modular protocol stack 

for sensor networks and implement various sensor network algorithms using this 

architecture. Modularity is defined as the property of system modules being 

cohesive inside and minimally coupled with each other. In this sense, the 

introduced stack will be a modular stack architecture for sensor networks. The 

stack will be used in the implementation of four different algorithms, namely, 

TAG, Synopsis Diffusion, Tributary Delta and Directed Diffusion by making 

simulations using the sensor network model developed with OMNeT++ simulator 

[16]. The results of the simulations will be compared with the original results of 

these algorithms. By the help of these comparisons, it will be shown that the 

proposed stack is applicable and does not induce any performance degradation to 

the sensor network algorithms. Using the implementation details, the modularity, 

reusability, implementation and maintenance advantages will be demonstrated. 

Moreover, it will be shown that this protocol stack has the potential to be a 

framework in order to classify and compare different algorithms. The proposed 

stack diagram is shown in Figure-1. 
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Figure-1 The sensor network stack proposed in this thesis 

The main differences from the traditional TCP/IP stack are the 

introduction of the query layer, the aggregation layer, and the notification board 

service, replacing the transport layer. Query and aggregation layers can directly 

communicate with the network layer. All of the layers can communicate with the 

notification board through publish and subscribe methods, thereby realizing 

cross-layer communication. Similar to [8], transport layer is omitted from the 

stack, because the flow control of transport layer is not a generic requirement for 

all sensor network applications. 

Yao & Gehrke [6] also suggested a query layer to be used under the 

application layer of TCP/IP. The proposed query layer in this thesis is similar to 

their suggestion, since both of them are responsible for all query optimization and 

distribution tasks. However, their work is based on TCP/IP and does not have 

special layers for data aggregation and cross layer communication. 

Kumar et.al.’s SensorStack architecture [8] offers a data fusion layer 

placed under the application layer. This layer is responsible for in-network data 

fusion operations. While this idea was innovative for the aggregation layer in this 

thesis, SensorStack’s data fusion layer only handles data aggregation tasks at 

Application Layer 

Query Layer 

Aggregation Layer 

Network Layer 

MAC Layer 

Physical Layer 

Notification Board 
Service 
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specific nodes, and when there is no data fusion requirement, this layer is not 

used at all (e.g., Directed Diffusion). This thesis suggests that the aggregation 

layer should be responsible for data aggregation, but it should also perform data 

collection and transmission tasks. Thus the entire query response process will be 

performed in this layer. 

The network layer in this thesis will be able to filter packets based on the 

addresses of sensor nodes. A query distribution will be coordinated by the query 

layer communicating directly with the network layer, and data collection will be 

coordinated by the aggregation layer again communicating with the network 

layer. Releasing the network layer from the query distribution and data collection 

route control gives us the opportunity to add actual routing decisions using a 

routing table similar to TCP/IP. This table might be based on geographical 

information, or the kind of sensed data. Consequently, it is possible to implement 

query-informed routing, which is also proposed in SensorStack. 

The cross layer communication will be performed by the notification 

board service, which is quite similar to information exchange service in 

SensorStack. Notification board service will serve all of the layers and other 

possible services using publish and subscribe functions for a particular data.  

Using this service, layers will be able to communicate directly, and also they will 

be able to receive information from other services, for example, the battery and 

radio conditions, or the location of a node. 

The remainder of this thesis is organized as follows. The background of 

the thesis is established along with the literature review in Chapter 2. The 

suggested protocol stack is explained in detail in Chapter 3 along with the 

implementation details of the simulated algorithms and simulation results. 

Discussions, conclusions and future work are given in Chapter 4. 
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CHAPTER II 

LITERATURE SURVEY 

2.1 SENSOR NETWORKS 

Sensor networks are composed of low-cost electronic devices called 

sensor nodes. These nodes are mostly battery powered and small sized devices 

and they have sensing, processing and communication capabilities. A sensor 

network has the purpose of collecting information about some observable 

phenomenon and relaying this information to a data center. Usually, the required 

information is difficult or costly to obtain by normal means. Using sensor nodes, 

it is possible to lower the cost and simplify the task of collecting information, 

since sensor nodes are cheap, robust, easily deployed and scalable. [1], [13], [14], 

[20], [21], [22] 
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Figure-2 Sensor network diagram [1] 

Sensor networks can be used in many different application areas, since 

the network and applications can be tuned to the purpose. Environmental 

monitoring, military applications and biomedical research are the outstanding 

subjects of today. In the future, it is envisioned that sensor networks will find far 

more application areas in our lives. 

Sensor nodes have limited power, computation and communication 

capabilities since they should be low-cost and small-sized. Therefore, these 

limited capabilities should be optimized using efficient strategies. 

A basic sensor node should have the following components; a sensing 

unit, a processing unit, a transceiver unit and a power unit. For a complex sensor 

node, additional components such as a location finding system, solar cells or a 

mobilizer can also be included. The block diagram of a sensor node is shown in 

Figure-3. 
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Figure-3 Block diagram of a sensor node [1] 

The sensing unit is composed of an analog sensor and an analog to 

digital converter (ADC). This unit is used to sense the desired phenomena and 

deliver it to the processing unit. The processing unit is usually a processor with a 

small storage. The algorithms and procedures operating in different layers of the 

network are processed here. The transceiver unit handles the communication of 

the nodes using the wireless media. Most commonly an RF device is used, but it 

can also be a passive or active optical device. The power unit is mostly small 

sized batteries. 

The battery of a sensor node is the critical factor for the life of an 

individual node and the overall network. There are many studies on sensor 

networks trying to minimize energy consumption in various phases of operation. 

The main energy consuming device in a sensor node is the antenna, and it uses up 

the highest energy while transmitting data. Therefore, it is crucial for the nodes to 

minimize data transmission for higher energy efficiency. 

Computation in a sensor node requires much less energy than data 

communication. Transmitting a 1Kb of data may require the same energy as 

executing 3 million instructions on the processor [1]. Therefore, in order to 
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minimize power consumption, local data processing at the nodes should be used 

as much as possible instead of making more wireless transmissions.  

Data aggregation replaces transmission with data processing by 

aggregating the data received from many nodes into one summary result, called 

aggregate, and transmitting this aggregate instead of all the data produced by the 

nodes. Since the required data from a sensor network is usually an aggregate 

value, such as min, max or average, performing data aggregation inside the 

network nodes increases energy efficiency of the network greatly. 

A sensor network might have hundreds to thousand of nodes and they 

are deployed densely, possibly as high as 20 nodes / m3 [1]. Moreover, the 

network is subject to frequent topology changes because of the following reasons: 

 

• Nodes may deplete their energy or break off. 

• Nodes might change their position using mobilizers or due to the 

environmental effects. 

• Nodes might lose communication ability due to obstacles, noise or 

jamming. 

• Additional nodes could be deployed to the original network. 

 

All of these reasons show that topology maintenance also has a high 

importance in sensor networks. In order the network to be more reliable, 

adaptable routing mechanisms are required. 

2.2 NETWORK STACK ARCHITECTURE 

Layered network stack architecture has been the preferred method for 

computer networks since it helps to organize the system into logically distinct 

modules, such that the service of one layer is based on the service of the lower 

layer. This modularity helps different protocols to work together, easier 
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maintenance and transparent protocol changes. However, the traditional TCP/IP 

stack is not very suitable to sensor networks because of the following reasons [8]: 

 

• The traditional TCP/IP network stack is designed for end-to-end 

networking requirements. However, most sensor networks work 

hop-by-hop routing. 

• TCP/IP stack has services that are generally not required in sensor 

networks, such as flow control at the transport layer, node fairness at 

MAC layer and error control at both of these layers.  

• Sensor Networks introduce new service requirements such as 

location awareness, time synchronization or node addressing.  

• Sensor networks needs to optimize energy at every layer, since 

energy is a very critical factor for sensor nodes. 

 

There has been some work in the literature proposing new sensor 

network stack architectures, or making modifications to the original stack. These 

are summarized in the following paragraphs. 

The sensor network protocol stack proposed by Akyıldız et.al [1] is 

similar to TCP/IP stack, however, there are additional planes which are 

responsible for power management, mobility management and task management 

functions (Figure-4). These additional planes are able to operate in all of the 

layers, thus they are called planes. 
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Figure-4 Sensor network protocol stack of Akyıldız et.al.[1] 

The power management plane tries to increase power efficiency of a 

node. Since energy requirements are very strict for a sensor node, optimizing it at 

every layer would increase overall efficiency. Mobility management plane detects 

the movements of a node and keeps the location information of the node. Task 

management plane schedules and tries to balance tasks given to specific region. 

Kumar et al. [8] introduces a new sensor network protocol stack, called 

SensorStack, which is designed considering the unique characteristics of sensor 

networks. Stack layout can be seen in Figure-5. The functions of these layers are 

explained in the following paragraphs. 
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Figure-5 SensorStack layers [8] 

Since radio is the mostly used physical medium for sensor networks, it is 

the physical layer of SensorStack. Medium access layer (MAC) is also similar to 

the TCP/IP such that it provides medium access for hop-to-hop data transfer and 

controls channel errors. MAC layer also controls the on-off schedule of antenna, 

thus, it can optimize energy efficiency by communicating with helper services 

and maintaining the node’s wake-up/sleep schedule through the information 

exchange system (IES). 

Data service layer provides dissemination of data to neighbors and 

reception of data packets, similar to network layer in TCP/IP. Moreover, this 

layer supports logical naming of the nodes instead of IP addresses. With logical 

naming, query or data packets will be filtered at this stage and unnecessary 

distribution will be blocked. 

Data fusion layer is responsible for data aggregation inside the nodes. 

With this layer, data fusion becomes a part of the stack and packets will not have 

to reach up to application layer at every intermediate node. Moreover, providing 

the fusion logic as a separate module would make application development more 

modular, since same fusion code would be used for multiple applications. This 

layer can make fusion at every node or only at the selected nodes. The fusion 
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functions of this layer can be programmed by the application layer to be run in 

kernel space of the operating system. 

IES service realizes communication of relevant information between 

different layers using a publish-subscribe functions. Using this service, cross 

layer optimization will be possible. 

Application layer captures data and presents it at the sink node; 

programs fusion channels at the specified nodes and provides helper services for 

application specific demand.  

Helper services layer is used to extend the stack by defining application 

specific services such as location awareness or time synchronization. These 

services can be executed either in user space or kernel space of the operating 

system. 

SensorStack does not have a transport layer, but it is proposed that a 

middleware can be used for future applications that may need a transport service. 

Yao and Gehrke [6] proposed the usage of a new query layer, which 

resides between application and network layers. This new layer provides cross-

layer interaction between the routing protocol and distributed query protocol. The 

purpose of this layer is to abstract functionality of a large class of applications 

into a common interface of declarative queries. 

There are also research projects that use modified versions of traditional 

stack. WINS [13] project discards transport layer, and uses other layers of TCP/IP 

stack. Smart Dust [14] project uses only the application, MAC and physical 

layers. TinyOS [15], which is the operating system for Berkeley motes, contains 

only the MAC and physical layer services. 

2.3 SENSOR DATA MANAGEMENT SYSTEMS 

Sensor networks generate a continuous information stream, and the 

applications are trying to retrieve data obtained using some part of this stream. 
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This resembles database systems, in which there is a huge data set and the 

required data is obtained using some part of this set. 

Recently, it is proposed that database technology should be integrated 

with sensor network technology [2, 3, 4], so that the management of data 

produced by sensor networks would be improved. However, this integration is 

not simple, since traditional database technology deal with finite and static data, 

while sensor networks produce continuous and possibly infinite streams of data. 

Furthermore, traditional databases are stored in some persistent and always 

accessible repository, whereas the information in a sensor network is dispersed in 

all of the sensor nodes and changes in real-time. These factors show that new 

query languages, processing and optimization methods should be found for 

sensor network database systems. 

Some recent publications define algorithms for sensor networks, and 

because of the methods they use, they can be classified as sensor data 

management systems [2,3,4,5,6,7,8]. These studies propose query languages to 

interact with the user; methods to request data from the sensor nodes and to 

collect the generated information from the nodes. Both of the querying and data 

collection phases involve routing and local data processing to be performed in 

sensor nodes. These systems usually define the algorithm as a whole and do not 

make exact distinctions of protocol layers. 

The general attributes of sensor data management systems can be 

summarized as follows: 

 

• The user of the system communicates with the system using the sink 

node, makes the query and retrieves the results through this node. 

• The query is distributed throughout the network by routing the query 

hop-by-hop over the sensor nodes. 

• Nodes receiving the query prepare and send the desired information 

to the sink node, again routing the data hop-by-hop over the nodes. 
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• If data aggregation is to be performed, all or some of the nodes 

along the routing path process and combine the results of previous 

and neighbor nodes; and transmit only the aggregated result. 

• According to the query type, information flow might be continuous, 

time limited, periodic, or one-shot. 

 

In the following subsections, the widely known algorithms in this area 

are explained briefly and compared according their query distribution methods, 

query types, data fusion and collection methods. 

2.3.1  ALGORITHMS 

Tiny Aggregation Service [2], abbreviated as TAG, is a generic 

aggregation service developed for TinyOS. TinyOS is the operating system for 

the sensor network nodes, also called motes, developed in Berkeley University. 

TAG is used to retrieve the aggregate value of the information generated by many 

nodes by making in-network aggregation at every node. 

Aquisitional Query Processing System, also known as TinyDB, [3] is 

published by the same authors of TAG. It is based on the previous algorithm, but 

contains many enhancements in querying and data collection. TinyDB is also 

used to retrieve aggregates, but it can also make single node queries. 

Directed Diffusion [4] is as a data-centric system for sensor networks. 

Data is generated and queried using attribute-value pairs. Directed Diffusion is 

used to retrieve information from one of the nodes which hold the information, 

and to select the best path to retrieve it. 

Active Query Forwarding or Acquire [5] is also a data-centric querying 

mechanism, which is mostly suited for one shot, complex queries for replicated 

data. 

Cougar [6] is a data management system which proposes a query 

processing layer between the application and network layers. All of the query 
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operations are done inside this layer. Cougar can make aggregate or single shot 

queries. 

TinyDBD [7] is a system built by merging TinyDB with Directed 

Diffusion. The routing mechanism of Directed Diffusion and querying 

mechanism of TinyDB is used together. Therefore, TinyDBD shows the 

properties of both methods. 

Synopsis Diffusion [9] and Approximate Aggregation [10] are two 

parallel studies, both of which are devised to overcome link errors in a tree-based 

sensor network topology. These solutions offer multi-path routing to reduce the 

errors introduced by node failures on the routing path. They define duplicate 

insensitive aggregation methods to get rid of duplicate information resulting from 

multi-path routing. 

Tributary-Delta [11], builds on top of Synopsis Diffusion and proposes a 

new routing and aggregation method to decrease the message traffic in the overall 

network, and to achieve higher energy efficiency. This study suggests to use 

multi-path routing at the center of the network, and to use trees at the leaves of 

the network. 

2.3.2  COMPARISON OF THE ALGORITHMS 

2.3.2.1  QUERY DISTRIBUTION AND ROUTING 

TAG algorithm uses a routing tree to distribute queries and collect 

results from the network. This routing tree can be set up separately from the 

query distribution, or they can be performed together. Routing tree construction is 

started by the sink node by broadcasting a message. Nodes hearing this message 

for the first time assign the sender node as their parent node, record their tree 

level and rebroadcast the message. Thus, the tree is constructed hierarchically. If 

this message is mixed with the query message, the tree would be refreshed for 

every query distribution. A sample routing tree is shown on Figure-6. 
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Figure-6 TAG routing tree [3] 

TinyDB uses the same routing tree as TAG to distribute the queries. 

Moreover, TinyDB introduces Semantic Routing Trees (SRT) to achieve query 

informed routing. An SRT is a routing tree based on a specific sensor data. It is 

built similar to the actual routing tree; however, additionally every node keeps 

information about their children whether they have the required data or a path to 

it. Thus, unlike TAG, it would be possible to distribute a query submitted to the 

network only to the relevant nodes or paths to them. 

Directed Diffusion constructs the routing topology for every new type of 

query, since the route is dynamically created while the query searches and finds a 

reply. In order to make a query, the sink node sends out an interest which 

contains the specifications of the requested data. (Figure-7a) This interest is 

called exploratory and it propagates in the network by flooding, constrained 

flooding or directional propagation. Nodes receiving this interest cache it along 

with the source node, called gradient of the interest. When a node has the 

requested data, it sends the data along the gradients up to the sink node. (Figure-

7b) The sink node then reinforces one of the incoming replies; selection may be 

based on latency or consistency. Reinforcement is done by resending the same 

query along this selected neighbor with a higher data reception rate. The actual 
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routing path will be completed when the new query arrives to the node having the 

data. (Figure-7c) 

 

Figure-7 Directed Diffusion - (a) Interest propagation. (b) Initial gradients 
setup. (c) Data delivery along reinforced path. [4] 

Similar to Directed Diffusion, Acquire also generates a routing path for 

each new query. It uses gossiping algorithm and flooding with a restricted radius 

to route the query. After the query packet is inserted into the network, it follows a 

random, predetermined or adaptive trajectory. When the query arrives at a node, 

that node obtains information from its neighbor nodes using flooding (Figure-8). 

The level of neighborhood is determined in the query by a number of hops, and it 

is called the look-ahead parameter. The node can also keep a cache of the 

neighbor nodes’ values and it can use this cache until it becomes obsolete. If the 

query is solved at a particular node, the query becomes a completed response and 

it is returned back to the sink along the query path. If it is not solved, query 

continues its path.  
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Figure-8 Acquire algorithm’s routing diagram [5] 

The size of the look-ahead hop number affects a trade-off between the 

information obtained and the cost of obtaining it. As the look-ahead hop number 

becomes larger, Acquire resembles flooding based queries. The downside of 

Acquire is that its average latency is much more than tree based or flooding based 

approaches.  

Synopsis Diffusion and Approximate Aggregation techniques use a 

multi-path routing topology called rings. With this topology, every node will 

have multiple parents from the previous ring, and the wireless medium will be 

used optimally because nodes will process all of the messages they hear. 

The rings topology is constructed while the query is distributed to the 

network. The sink node starts the query by broadcasting the query message. As 

seen in Figure-9, the sink node is in ring R0, and any node hearing the sink 

becomes in R1. The query is rebroadcast along the rings, and nodes hearing the 

query from ring i for the first time record their ring number as i+1. 



 
 

21 

 

Figure-9 Rings topology [9] 

Figure-9 also depicts link failures (crossed lines) and node failures 

(crossed circle) that can occur while data is collected from the nodes. The 

behavior of Synopsis Diffusion algorithm in these error conditions is explained in 

Section 2.3.2.4. 

Multi-path routing with rings topology and duplicate insensitive 

aggregation used in Synopsis Diffusion and Approximate Aggregation has two 

main drawbacks. First, these techniques provide an approximation to the answer, 

thus they produce results with a bounded approximation error. Second, the 

message size is longer than the ordinary tree approach used in TAG or TinyDB, 

since the message in multi-path schemes contains duplicate insensitive aggregate 

data. With longer bytes, nodes will spend more energy to transmit it. 

Tributary-Delta (TD) algorithm merges the tree topology with the multi-

path topology. The tree topology is known for its low or zero approximation 

error, and its short message size. Multi-path approach is preferred when the loss 

rates become higher, since the multi-path routing has a loss-tolerant and robust 

nature. As seen in Figure-10, TD algorithm uses multi-path topology around the 

sink node, called Delta Region, where a link loss is very critical and would cause 

to lose the results of many lower tree levels. It uses tree topologies at the 

branches, called Tributary Region, since a link loss here in not as critical as the 

center.  
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Figure-10 Tributary-Delta topology [11] 

2.3.2.2 QUERY TYPES 

TAG can work with aggregation queries only, and does not retrieve 

single queries for a particular node. Moreover, TAG distributes a query to all of 

the nodes in the network. Therefore, TAG is used most efficiently when all the 

sensor network nodes have same kind of sensors. 

TinyDB can work with aggregation queries like TAG, but it can also 

work with events and single node queries. Events can be used to decrease 

network traffic and power consumption effectively by triggering the transmission 

of data upon the occurrence of an event. 

Contrary to TAG, TinyDB sends the query to only those nodes that can 

participate in the query execution using Semantic Routing Trees. Moreover, 

TinyDB can make single node queries, whereas TAG cannot. Thus, TinyDB can 

be used in multi-purpose sensor networks, in which different kind of sensors are 

used in different nodes.  

Directed Diffusion makes queries for a particular kind of data that can be 

answered by single nodes. It cannot make aggregate queries, whereas TAG and 

TinyDB can. Thus, Directed Diffusion can also be used efficiently in a multi-

purpose sensor network. 
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In Directed Diffusion, more than one sink can make queries and receive 

data at the same time, which is not the case for other algorithms. Therefore, this 

algorithm can handle simultaneous and distinct queries inside a single network. 

Similar to TinyDB, Directed Diffusion can make query aggregations in 

every sensor node and it can also work with events.  

ACQUIRE is well suited to one shot and replicated data queries and can 

be found in many nodes. For example, it can query whether the current 

temperature is over 40°C. Answer to this query can be found in many nodes and 

it is not necessary to distribute the query to the whole network. On the contrary, 

Directed Diffusion is suited for continuous and non-replicated data queries; for 

example, number of vehicles detected in a region. Moreover, TAG and TinyDB 

are well suited for continuous and aggregate queries; e.g. maximum value of the 

temperature. 

Synopsis Diffusion, Approximate Aggregation and Tributary-Delta 

algorithms are based on TAG, so they show similar properties to TAG in making 

aggregation queries. 

2.3.2.3 DATA COLLECTION AND FUSION 

In TAG and TinyDB; the epoch, or the period for a single aggregate 

produced by the network, is divided into the maximum level of the tree. All of the 

nodes are loosely synchronized with this epoch, and they allocate a time period in 

every epoch according to their tree levels. At this specified period of time the 

nodes at the same level wake up, take their sensor readings, receive their child 

nodes’ results if available, aggregate them with own readings, send the aggregate 

result to their parents and go back to sleep. This process starts at the leaf nodes 

and when the epoch ends, the aggregation result would arrive at the sink node. 

Since the epoch is divided into the tree levels, and there should be a minimum 

time interval for every node level, the maximum data rate that can be obtained 
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from the network is limited by the tree level and minimum time interval for a 

single node operation. 

In Directed Diffusion, the query result is received from a single node 

along the gradients of the reinforced gradient path. Directed Diffusion does not 

define any data aggregation scheme, since it is specially designed for single node 

queries; contrary to TAG, TinyDB, SD and TD. 

ACQUIRE method retrieves the query results from the return path of the 

query, similar to Directed Diffusion. Again, ACQUIRE does not define any data 

aggregation scheme. 

In Synopsis Diffusion and Approximate Aggregation, the query 

aggregation period is divided into epochs and at each epoch one aggregate is 

provided, similar to TAG. These algorithms generate the same optimal number of 

messages compared to the tree based approaches like TAG and TinyDB, but 

robustness is greatly enhanced. 

Synopsis Diffusion and Approximate Aggregation algorithms use a 

bitmap of data at every node instead of the actual partial results. This bitmap is 

called synopsis by Synopsis Diffusion, and sketch by Approximate Aggregation, 

and it is based on the Flajolet and Martin’s Probabilistic Count algorithm [12]. 

These synopses are used for duplicate insensitivity, so that even if duplicate 

readings arrive at a node, it will not change the value of the synopsis. A more 

detailed description of this algorithm is given below in Section 3.4.2.2. 

At the beginning of each epoch, each node in the outermost ring 

generates its synopsis and broadcasts it. The nodes in ring Ri wake up at its 

specified time, generate local synopsis and receives from all the neighbors heard 

in ring Ri+1. It updates its local synopsis and at the end of its allocated time, 

broadcasts the updated result. 

It is important to note that using synopses often introduce approximation 

errors in the exact aggregate result. This approximation error is the result of 

representing too much information in a limited size synopsis. However, for 

realistic packet loss rates, i.e. 5-30%, the errors from missing nodes are far more 
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than approximation errors. Furthermore, by increasing the length of the synopsis 

message, the relative error can be decreased. 

Tributary-Delta approach merges tree and multi-path schemes together, 

and therefore the standard aggregation technique of TAG is used for the tree 

topologies and Synopsis Diffusion technique is used for the multi-path topology. 

However, a conversion function is required to convert a partial result generated 

by the tree algorithm to a synopsis that can be used by the multi-path algorithm. 

This conversion function will be used at the boundary nodes, which are the root 

nodes of the tree topology, and the leaf nodes of the delta-region.  

2.3.2.4 FAULT TOLERANCE 

In standard tree-based systems such as TAG, when a single node on the 

routing path fails, the entire sub-tree of values is lost; thereby introducing a large 

error to the final result.  

TAG proposes to split the accumulated aggregation value to more than 

one parent. If the aggregate value is v, every node will send v/k value to each of 

its k number of parents. While this approach reduces the error for a link failure 

from v to v/k, the expected aggregation error is still the same as ordinary tree 

approach [9]. 

In TAG and TinyDB algorithms, the routing tree used can be refreshed 

frequently in order to adapt the network changes. Moreover, lost nodes can get a 

parent node to themselves, by snooping over other nodes’ messages. 

TinyDB can maintain the SRT in the case of lost nodes or link quality 

changes. SRT performance depends on the quality of the clustering of children 

beneath parents. 

In Directed Diffusion, the initial interest contains a low data rate, and the 

actual query contains the desired data rate. However, the initial query message 

still causes other nodes to send data in a low frequency, and these alternative 

gradient paths are also kept at the nodes for reliability. When the main link fails, 
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the data transfer might continue from one of the alternative gradient paths, by 

reinforcing the new path and suppressing the old one. 

Approximate Aggregation and Synopsis Diffusion are fault-tolerant 

algorithms that use duplicate insensitive synopses and multi-path routing to 

overcome the high error rates resulting from path failures in tree topologies. It is 

shown that using these algorithms results in enhanced robustness and 

significantly low error rates compared to TAG. However, these synopses are 

larger in size compared to TAG partial results and they require more energy to be 

transferred. Even considering the approximation errors caused by using synopses, 

it is shown that these algorithms result in enhanced robustness and significantly 

low error rates compared to TAG. 

Figure-9 shows link and node failure examples for a sensor network 

operating with Synopsis Diffusion algorithm. As seen in this figure, node A has 

two parents, one of which has a node failure (crossed circle) and the other node 

has a link failure with sink node (crossed line). Since all the paths from node A to 

sink is blocked, node A’s data cannot reach to sink. In the same figure, node B 

has three parents, two of which face link failures. However, there is still a path 

from node B to the sink, thus data of node B can be transmitted to the sink. 

Tributary-Delta algorithm uses synopses at the delta region, where the 

error rate is critical. This way, the approximation error and overall transmitted 

data will be reduced, while keeping the link errors under control. Tributary-Delta 

also executes dynamic adaptation algorithms to adjust the boundary point 

between the tributary and delta regions, according to the current message loss 

rates in various regions.  
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CHAPTER III  

DEFINITION AND IMPLEMENTATION 

3.1 THE PROPOSED SENSOR NETWORK STACK ARCHITECTURE 

The proposed stack architecture consists of the following layers: 

application, query, aggregation, network, MAC and physical (Figure-11). In 

addition, there is a notification board service, which is responsible for cross layer 

communication. This stack will be implemented in all the nodes of a sensor 

network. 

 

Figure-11 The new sensor network protocol stack 
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Sensor networks have similarities with distributed database systems, and 

there are many database oriented algorithms introduced for sensor networks 

[2..11] as explained in section 2.3. This stack architecture also builds on top of 

this idea. The two crucial layers of this stack, which are query and aggregation 

layers, try to utilize the distributed database notion for sensor networks. 

Basically; query layer will request data from the sensor network, and 

aggregation layer will collect and aggregate data inside the network. Network 

layer will deal with routing and addressing; and application layer will perform 

higher level application operations. Mostly, the core of the sensor network 

algorithm will be executed by query, aggregation and network layers. In the 

following paragraphs, the operations of these layers will be explained in detail. 

Application layer will communicate with the control center and receive 

the details of the sensor network tasks. Afterwards, this layer will prepare query 

requests and send them down to query layer. After receiving the results of a 

query, this layer will send them back to the control center. Other high level 

application related tasks can also be executed here. 

Query layer is responsible for all query related operations. First of all, 

this layer will receive query requests from the application layer and prepare the 

query packets accordingly. If required, it will make query optimizations or merge 

queries with previous ones. Then, it will start a query by distributing a query 

packet inside the network. Furthermore, it will filter incoming queries, and 

receive query results from the aggregation layer whenever the response is 

available. This layer is also responsible to define events, such that when one of 

these events occurs, the node receiving this event will initiate a data transfer to 

the sink node. Network-wide query adaptations will also be directed and 

performed via this layer. 

Query layer requires a connection with the network layer, since it will 

define the network route of a query and has to learn network address of an 

incoming query. After setting up the address of the outgoing query packet, it will 

be sent to network layer to be transferred to its destination. Moreover, this layer 

should also have a connection with the aggregation layer, in order to send 



 
 

29 

information about the incoming query, to receive results of a query, or for the 

case of an event definition. 

Aggregation layer has to perform data response and aggregation 

processes inside the nodes for the whole sensor network. This layer will start 

functioning whenever a query has arrived or a predefined event has occurred. 

Depending on the algorithm, it will define data transmission and reception 

periods so that sensor node will be able to sleep for the rest of time. This layer 

will acquire the reading of its own sensor and store it. Moreover, data coming 

from neighbor nodes will also be received and stored by this layer. Data 

aggregation is the essential task of this layer, thus, the gathered data will be 

aggregated here. Query layer will be informed of this aggregate result. Finally, 

the results will be transmitted to the network. 

Aggregation layer has to have a connection with the query layer in order 

to receive information about incoming queries, or to send back the query 

response. Similar to query layer, this layer also requires a connection to the 

network layer, because aggregation layer will define the route of an outgoing 

packet, and it might require the address of an incoming packet.  

Network layer of this stack will have the same functions as the network 

layer of TCP/IP. However, since the addressing is confined for a particular 

network, there is no need to use IP addresses. The indexes of the nodes can also 

be used as their addresses. Nevertheless, better addressing schemes for sensor 

networks can be applied inside this layer. Network layer will have connections to 

both query and aggregation layers and will route both data and query packets to 

their appropriate addresses. This layer can realize different routing algorithms, 

such as geographical routing or a hierarchical routing. It is also possible to 

execute query informed routing, by receiving the query information from the 

query layer. 

In this structure, query layer and aggregation layer will be able to keep 

information about next-hop neighbors. For example, they can keep the address of 

the parent query node, or the previous data sending node. By the help of the 

network layer, this next hop can also be a far away node which will be reached 
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after some routes. Thus, sensor network would be scalable. Moreover, using 

query informed routing; this layer will increase energy conservation, since the 

packets will only be sent to appropriate nodes instead of being broadcast to the 

entire network. 

The MAC layer of our stack arranges the access to the wireless medium 

and tries to avoid collisions. It can be realized by using one of the MAC layer 

algorithms defined for wireless networks. In our simulations for this thesis, we 

used IEEE 802.11 MAC layer protocol. 

The physical layer is used to actually transmit data between different 

nodes. Since sensor networks operate on wireless medium, this layer is mostly 

radio, as the case for our simulations. 

3.2 SIMULATION STUDY 

In this thesis, four different sensor network algorithms will be 

implemented using the stack architecture defined in 3.1. These algorithms are 

Tiny Aggregation [2], Synopsis Diffusion [9], Tributary-Delta [11] and Directed 

Diffusion [4].  

 

TAG and Directed Diffusion are widely known algorithms of sensor 

network systems and they are referenced in many studies. They are also 

physically implemented and tested algorithms for real life sensor networks. 

Moreover, these two algorithms have a critical difference; TAG is designed to 

retrieve data aggregates from the whole network, whereas Directed Diffusion is 

used to retrieve data from single nodes. Simulating these two algorithms would 

show that our stack is reliable and can be used in a wide range. 

 

Synopsis Diffusion and Tributary Delta are new algorithms, and they 

have both similarities and differences to TAG. To sum up, they are designed to 

increase the efficiency of TAG when a link failure occurs. Synopsis Diffusion 
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makes in-network aggregation similar to TAG, but does not use tree based 

routing. Instead, it tries to overcome the problem of link failure by using multi-

path routing and duplicate insensitive data, called synopses. Tributary-Delta 

algorithm merges Synopsis Diffusion and TAG by using these two algorithms in 

different parts of the network and adapts the regions dynamically. In order to 

show the modularity and extensibility of the stack, it is helpful to simulate these 

algorithms. 

The graphical results obtained from the simulations will be compared to 

the original results of these algorithms obtained in their respective studies. With 

this comparison, it will be possible to show that algorithms implemented with the 

proposed stack behave the same and do not cause performance degradation. As a 

second benefit, implementing these four algorithms would move the stack from 

concept into reality and will show that the stack is applicable. Last of all, by 

examining the implementation details of these algorithms, it will be possible to 

show the modularity and extensibility of the proposed architecture. 

3.3 SIMULATION ENVIRONMENT 

The simulations are done using OMNeT++ simulation environment 

[16,17] and INET framework [18,19] developed for OMNeT++. 

OMNeT++ is an object oriented discrete event network simulator. It is 

freely available for academic and non-profit use. The simulator, user interfaces 

and the tools are portable on different operating systems; they can work with 

Windows or Unix platforms using various C++ compilers. [17] 

OMNeT++ simulations have different execution types for different 

purposes; it can be used for debugging, fast execution or demonstration. The user 

interface helps to debug and demonstrate the simulation, by visually showing 

how the model works, or letting the user modify the variables inside the model. 

An OMNeT++ model consists of hierarchically nested modules that can 

have unlimited depth. These modules have their own parameters which are used 



 
 

32 

to customize module behavior. Module communication is accomplished by 

passing messages between two modules, using the predefined gates or a sending 

the message directly to the module. The messages can contain any object that is 

known by both modules. The gates are used to transmit one way messages 

between two modules. These gates can be defined as network communication 

lines, or just an instantaneous communication path. 

OMNeT++ uses NED files to define the simulation topology. A NED 

file is a textual declaration that defines the modules, parameters, gates, and 

module hierarchy. NED files are written is a specific language called NED 

language. 

Every module in a simulation is either a simple module or a compound 

module. Simple modules are at the lowest level of the hierarchy, and they cannot 

encapsulate another module. Simple modules are programmed in C++ as a class 

derived from the cSimpleModule base class of OMNeT++.  The actions required 

for the simulation are defined in these classes. Every simple module has also a 

NED file associated with it. In this NED file, the parameters and gates of the 

module are defined. The module class can use these parameters and gates defined 

in the NED file with the help of OMNeT++ simulation library. 

Compound modules may contain simple modules or other compound 

modules. These modules do not have an associated C++ class; they are only 

defined in a NED file. This NED file contains definitions for the nested modules, 

own module parameters, and gates. Using this file, the parameters of a nested 

module are set or associated with the parameters of the compound module. 

Moreover, the gate connections between the nested modules and the compound 

module are defined. 

A sample wireless sensor network simulation interface of 50 nodes in a 

400x400 region is shown in Figure-12. The nodes are shown as square icons 

having blue circles inside. The wide circles around the nodes show the wireless 

communication region. The sun icon is the channel control module, which serves 

as the controller for the wireless communication. 
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Figure-12 OMNeT++ sensor network simulation example 

The simulation model of this thesis uses modules borrowed from INET 

framework. The INET framework is an open-source communication networks 

simulation package, written for the OMNeT++ simulation system. The INET 

framework contains models for several Internet protocols like TCP, UDP, IP, 

Ethernet or 802.11 [19]. The modules that are extracted from the INET 

framework are as follows: 

 

• ChannelControl: This simple module gets location and movement 

information about the nodes of the network. Then, it determines 

which nodes are within communication or interference range of 

another. This information is used by radio interfaces, like Nic80211 

module.  
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• NotificationBoard: Notification board simple module enables the 

modules to communicate directly using event firing and subscription 

to these events. This module is used to realize a cross-layer 

communication framework in this thesis. 

• InterfaceTable: This simple module contains the network interface 

table for a sensor node. This module is required for Nic80211 

module to work properly. 

• Nic80211: This compound module implements a network interface 

card that uses 802.11 wireless MAC layer protocol. It is used as the 

MAC layer and physical layer combination. It contains MAC80211, 

Decider80211 and SnrEval80211 modules. 

• Mac80211: This simple module implements 802.11 MAC layer 

protocol. This module supports ad-hoc mode only, that is, it does not 

generate or handle management frames.  

• Decider80211: This simple module is the decider module for the 

physical layer implementation of 802.11 network interface card. 

• SnrEval80211: This simple module is the signal to noise ratio 

evaluator for the physical layer implementation of 802.11 network 

interface card. Along with Decider80211 module, this module 

makes up the physical layer. 

• BasicMobility: This simple module is a prototype module for 

mobility modules, and it is required for channel control module to 

determine the locations of the nodes. It does not contain any 

mobility algorithm. 

 

The following modules have been developed within the scope of this 

study for the sensor network simulation model: 

 

• SensorNet: This compound module is the top level module and it 

models the simulated sensor network. It contains the channel control 
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module from INET framework, and the sensor node array as seen in 

Figure-13. 

 

Figure-13 SensorNet module 

• SensorNode: This compound module models a sensor node. It 

contains the QueryLayer, AggLayer and NetworkLayer modules; as 

well as NotificationBoard, InterfaceTable, BasicMobility, and 

Nic80211 modules from INET framework. The model is shown in 

Figure-14. 
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Figure-14 SensorNode module 

• QueryLayer: This simple module defines and implements the query 

layer of our protocol stack. 

• AggregationLayer: This simple module defines and implements the 

aggregation layer of our protocol stack. 

• NetworkLayer: This simple module defines and implements the 

network layer of our protocol stack. 

3.4 PROTOCOL IMPLEMENTATIONS 

In the following subsections, the protocol implementations of query, 

aggregation and network layers for TAG, Synopsis Diffusion, Tributary Delta 

and Directed Diffusion algorithms will be explained. In these simulations, simple 

queries are executed using the query layer of the sink directly, without using an 

application layer. 
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3.4.1 TAG 

3.4.1.1 QUERY LAYER 

Query layer of TAG uses a packet structure to communicate with the 

query layer of another node. This packet is distributed through the entire network 

by broadcasting. The contents of this packet are shown in Figure-15. 

 

Figure-15 Query layer packet structure for TAG 

In this packet, query start time field is the starting time of a query set at 

the sink node. This will be used as an identification of a particular query inside 

the whole network. Query type defines the type of information requested from the 

network. This can be the number of birds detected, temperature, or node count. 

Aggregate type defines the type of aggregation that will be applied at every node 

inside the network. Typical examples are average, sum, min and max. 

Epoch duration is the period of a single aggregate result. At every epoch, 

the sink node will receive a single aggregate result from the network .Inside an 

epoch, the nodes at a specific tree level will awake, make their sensor readings, 

receive the results from the previous level nodes, aggregate the data, send their 

results and go back to sleep for the next epoch. Because of the time required to 

perform these actions, epoch duration has a lower limit and cannot go below that 

value for correct network operation. 

Query duration is the total time of the query requested. For a particular 

query, there will be (query duration / epoch duration) times of aggregate result 

will be generated by the network and consumed at the sink node. Tree level 
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defines the distance of a node from the sink node defined as the number of hops. 

This is updated at every node that rebroadcasts the query. 

The following pseudocode shows the query layer operation for TAG 

algorithm. 

 

 

if (sink node) 
{ 
 prepare query packet; 
 broadcast it using network layer; 
} 
 
if (query packet arrived) 
{ 
 if (not received before) 
 { 
  record query information; 
  update tree level and parent node; 
  Send query notification to aggregation layer; 
  prepare new query packet; 
  broadcast it using network layer; 
 } 
 else 
  discard query packet; 
} 
 
if (query result notification arrived) 
 if (sink node) 
  record query result; 

 

Figure-16 Query layer operation of TAG 

The sink node will set the values required for the query packet at the 

start of a query. Tree level will be zero and the parent node will be null. This 

packet will be broadcasted to the network by sending it to the network layer. 

Query layers of other nodes that hear this broadcast will first check 

whether they already received this query before, using the query start time field 

of the received query packet. The packet will be dropped if the query already 

arrived to that node. Otherwise, the query will be processed as follows. 
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The contents of the query packet will be extracted and stored inside the 

query layer. The tree level of the query will be updated by increasing the tree 

level by one. The parent node of this query will also be stored, using the network 

address of the node that sent the incoming query. This address will be taken from 

the network control packet of network layer. Afterwards, query layer will inform 

the aggregation layer about the incoming query using the notification board. 

Query layer will send the received query packet contents and parent node 

address. Finally, the query will be broadcasted to the network by preparing a new 

query packet using the updated information. 

3.4.1.2 AGGREGATION LAYER 

Aggregation layer of TAG uses the following packet structure to 

communicate with another aggregation layer. 

 

Figure-17 Aggregation layer packet structure for TAG 

Similar to query layer, query start time and query type is used to identify 

the query that is being replied. Aggregate result is the obtained result after the 

aggregation is performed over the received results. 

Aggregation layer implementation for the TAG algorithm is summarized 

in the following pseudocode. 
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if (query notification arrived) 
{ 
 store query information; 
 set next epoch_start, epoch_end, query_end timers; 
 query_available = true; 
} 
 
if (epoch_start timer) 
{ 
 read and store own sensor data; 
 inside_epoch = true; 
} 

 

if (packet arrived from lower layer) 
{ 
 if (not an aggregate packet) 
  send it to query layer; 
 else 
 { 
  if (inside_epoch) 
   store aggregate result; 
  else 
   discard packet; 
 } 
}  
 
if (epoch_end timer) 
{ 
 inside_epoch = false; 
 aggregate all stored results; 
 send aggregate result to query layer; 
 
 if (query_available) 
  set next epoch_start, epoch_end timers; 
   
 if (not sink node) 
 { 
  prepare aggregation packet; 
  send it to the parent node; 
 } 
} 
 
if (query_end timer) 
{ 
 query_available = false; 
} 

 

Figure-18 Aggregation layer operation of TAG 
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The aggregation layer protocol starts operation whenever query layer 

informs about a new query by sending the query information. Aggregation layer 

stores the contents of this query information. According to the epoch duration, 

query duration and tree level information of this query, aggregation layer sets the 

epoch_start, epoch_end and query_end timers and lets the node sleep until the 

epoch start timer fires. 

When an epoch starts, aggregation layer gets its own node’s sensor 

reading. Then it starts to listen for aggregation packets that come from other 

nodes. Whenever a packet is received from a child node, the packet is checked for 

the query start time and query type. If they match, the aggregate result is added to 

the results array. As soon as the epoch ends, the node stops listening for other 

aggregation packets. 

Afterwards, aggregation layer performs aggregation by running the 

requested aggregation function over the received results and its own reading, and 

obtains an aggregate result. This result is sent to the query layer by firing an event 

through the notification board. If the node is not the sink node, this aggregate 

result is sent to the parent node by setting the address in the network control 

packet. 

If the query duration has ended, the aggregation layer will suspend the 

node operation and let it sleep. If not, the timers will be set for the next epoch and 

the operation will restart. 

3.4.1.3 NETWORK LAYER 

Network layer protocol implementation is the same for all of the 

algorithms. It uses the following packet structure to communicate with another 

network layer. 
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Figure-19 Network packet structure 

Figure-20 Network layer packet structure 

Source address is the address of the node that sends the packet. It is set 

at the network layer. Destination address is the address of the node that will 

receive the packet. The data sent by query and aggregation layers are 

encapsulated and inserted into this packet. 

The Network control packet is used to communicate the network layer 

and query and aggregation layers. The structure is the same as network packet 

structure.  

 

Figure-21 Network control packet structure 

The query and aggregation layers use this packet to send data to the 

network. They set the destination address and encapsulate data, then send it to the 

network layer. This packet is also used to send data coming from the lower MAC 

layer to upper aggregation layer. The network packet received from the network 

is copied to a network control packet and sent to upper layer. The operation of 

this layer is explained as follows. 

Encapsulated 
Data 

Destination 
Address 

Source 
Address 

Encapsulated 
Data 

Destination 
Address 

Source 
Address 



 
 

43 

 

if (packet arrived from upper layer) 
{ 
 prepare a network packet; 
 broadcast it using MAC layer; 
} 
 
if (packet arrived from lower layer) 
{ 
 if (destination == own address) 
 { 
  prepare a network control packet; 
  send it to aggregation layer; 
 } 
 else 
  discard packet; 
} 

 

Figure-22 Network layer operation 

Query and aggregation layers send network control packets to network 

layer. When they arrive at network layer, the contents are copied to a network 

packet and sent to MAC layer for broadcasting. Whenever a network packet 

arrives from the MAC layer, first, the destination address field is checked against 

the address of the node. If it is the same, a network control packet is prepared 

according to the address and data fields and sent to aggregation layer. If it is not 

the destination node, the packet is discarded. 

3.4.2 SYNOPSIS DIFFUSION 

3.4.2.1 QUERY LAYER 

Query layer implementation of Synopsis Diffusion is the same as TAG, 

explained in section 3.4.1.1. 
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3.4.2.2 AGGREGATION LAYER 

Aggregation layer of SD uses the following packet structure to 

communicate with another aggregation layer. 

 

Figure-23 Aggregation layer packet structure for SD 

It is similar to the aggregation packet of TAG except that the aggregate 

result field contains the synopses instead of the raw aggregate obtained. These 

synopses are stored inside a 32 bit integer array having 20 elements.  

The operation of aggregation layer protocol for Synopsis Diffusion is 

summarized in Figure-24. It is similar to TAG but has some modifications as 

follows. 

When an epoch starts, TAG obtains its own sensor reading and stores it 

directly. However, SD has to convert this value to a synopsis using a synopsis 

generation function. This function produces specified number of synopses from 

the sensor reading and stores them in an array. This function works briefly as 

follows. At first, all bits of the synopsis is set to 0. In order to insert the value “1” 

to the synopsis, a probability of 0.5 is evaluated repeatedly in a loop using a 

random number generator. If the probability evaluation is true, the bit in turn is 

set to 1 and the loop is broken. The final value of the synopsis is the result of this 

function. This operation is repeated n times in a loop in order to insert the value 

of n to the synopsis, moreover, a higher level loop is used to produce more than 

one synopses. This operation can be seen in the pseudocode given in Figure-24.  
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Query Type Synopses 
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for each (synopsis in synopses_array) 
{ 
 set all bits of synopsis to 0; 
 randomize; 
  
 while (i < number_to_insert) 
 { 
  while (j < 32) // max. 32 bit synopsis 
  { 
   generate random number x; 
   if (x > 0.5) 
   { 
    set bit i of synopsis to 1; 
    break; 
   } 
  } 
 } 
} 

 

Figure-24 Synopses generation function of SD 

The number of synopses directly affects the approximate error of SD 

such that increasing the number of synopses decreases the approximate error. The 

synopsis generation function is implemented according to the definitions given in 

[9], [10] and [12]. The probabilistic operations in this function are implemented 

using the random number generators of C++ and OMNeT++. 

The second difference is that, when data received from another node, 

TAG stores it directly to the received data array. However, SD does not store it, 

and it directly aggregates the result to its own synopsis array using a binary sum 

operation. Therefore, the aggregate result is always up to date. 

At the sink node, instead of sending the raw aggregate result directly to 

the query layer, the synopses are evaluated and converted to the real aggregate 

data and this value is sent to query layer. The synopsis evaluation function is also 

implemented according to the definitions given in [9], [10] and [12]. 
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if (query notification arrived) 
{ 
 store query information; 
 set next epoch_start, epoch_end, query_end timers; 
 query_available = true; 
} 
 
if (epoch_start timer) 
{ 
 read own sensor data; 
 generate synopses; 
 inside_epoch = true; 
} 

 

if (packet arrived from lower layer) 
{ 
 if (not an aggregate packet) 
  send it to query layer; 
 else 
 { 
  if (inside_epoch) 
   aggregate synopses; 
  else 
   discard packet; 
 } 
}  
 
if (epoch_end timer) 
{ 
 inside_epoch = false; 
 evaluate synopses; 
 send aggregation result to query layer; 
 
 if (query_available) 
  set next epoch_start, epoch_end timers; 
   
 if (not sink node) 
 { 
  prepare aggregation packet using synopes; 
  broadcast it using network layer; 
 } 
} 
 
if (query_end timer) 
{ 
 query_available = false; 
} 

 

Figure-25 Aggregation layer operation of SD 
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3.4.2.3 NETWORK LAYER 

Network layer implementation of SD is the same as TAG, explained in 

3.4.1.3. 

3.4.3 TRIBUTARY DELTA 

Two different versions of the Tributary-Delta algorithm are implemented 

in this thesis. They are TD-Coarse and TD-Fine. TD-Coarse algorithm is 

implemented as defined in [11]. It adapts the network when link errors occur by 

broadcasting a network-wide message. Using this message, TD-Coarse algorithm 

varies the tributary and delta regions of the entire network, assuming a network-

wide packet loss.  

In [11], along with TD-Coarse, another version of Tributary Delta is 

defined and it is named TD. Contrary to TD-Coarse, this version makes 

adaptations to the network only in the regions where link errors occur. In order to 

achieve this, every node at the boundary of two regions sends the number of child 

nodes that didn’t contribute up to the sink. These boundary nodes are the top 

level nodes of the TAG sub-trees, thus they can define the erroneous regions. 

According to these data, sink node broadcasts a message which will make the 

required adaptations in erroneous regions of the network. This message will 

switch the boundary nodes to TAG or the child nodes of the boundary nodes to 

SD. 

In this thesis, as an extension to TD algorithm of [11], another version of 

Tributary Delta is developed and named as TD-Fine. Just like TD, TD-Fine 

makes adaptations only in the regions where the errors occur. However, contrary 

to TD, node contribution information is directly processed by the boundary nodes 

instead of sending them to the centralized sink. Moreover, adaptation is not 

performed using a network-wide message broadcast. Instead, the boundary nodes 
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send a message to their first level child nodes to switch them to SD or they 

directly switch themselves to TAG.  

TD-Coarse algorithm is simple and can deal with global errors. TD-Fine 

is more complex; however, it achieves better results with regional errors. The 

only changing layer for these two algorithms is the query layer. Both of their 

query layers are explained in the following sections. 

3.4.3.1 QUERY LAYER OF TD-COARSE 

This algorithm adds a new field, called TD boundary, to the query 

packet structure of TAG as seen in Figure-26. This TD boundary field will 

determine the tree level boundary between the delta region, in which SD 

algorithm is used, and the tributary region, in which TAG algorithm is used. This 

information will be distributed to the network along with the query.  

 

Figure-26 Query packet structure for TD 

For TD-Coarse algorithm, query layer at the sink will make network 

adaptations by changing the TD boundary according to the number of nodes 

participating to the query. The boundary change will be distributed to the network 

by using the boundary change packet having the following structure. 

 

Figure-27 Boundary change packet of TD 
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Query start time field is be used to identify the query. New TD boundary 

field is used to announce the new boundary of the previously distributed query. 

This new boundary will be determined by sink node by measuring and comparing 

the node participation ratio to some predefined value.  

This algorithm tries to keep the number of participants to a query over a 

threshold. Moreover, it also tries to increase TAG regions if the error rate is low. 

Hence, if the measured participation ratio goes down below the lower a limit, SD 

region will be extended so that more nodes will participate to the query. If the 

participation ratio goes over the upper limit, TAG region will be extended so that 

fewer packets will be transferred and approximate error will be reduced. Changes 

will be reflected by increasing or decreasing the current TD boundary value and 

distributing this new value to the network using boundary change packet. The 

measurement will be performed by making a count query with a predefined 

frequency. 

The operation of the query layer of TD-Coarse algorithm is explained in 

the following pseudocode. 
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if (sink node) 
{ 
 prepare measurement query packet; 
 broadcast it using network layer; 
 
 prepare actual query packet; 
 broadcast it using network layer; 
} 
if (query packet arrived) 
{ 
 if (not received before) 
 { 
  record query information; 
  update tree level and parent node; 
  Send query notification to aggregation layer; 
  prepare new query packet; 
  broadcast it using network layer; 
 } 
 else 
  discard query packet; 
} 
 
if (query result notification arrived) 
{ 
 if (sink node) 
 { 
  if (measurement query) 
  { 
   compare contribution ratio; 
   if (below lower limit) 
   { 
    increase td boundary by one; 
    notify aggregation layer; 
    broadcast new boundary to network; 
   } 
   if (over upper limit) 
   { 
    Decrease td boundary by one; 
    notify aggregation layer; 
    broadcast new boundary to network; 
   } 
  } 
  else 
   record query result; 
 } 
} 
 
 

 

Figure-28 Query layer operation of TD-Coarse 
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if (td boundary packet arrived) 
{ 
 if (query start times match) 
 { 
  change boundary of the present query; 
  notify aggregation layer; 
  rebroadcast boundary change packet; 
 } 

} 

 

Figure-28 Cont’d 

 

The measurement of the contribution ratio is performed by distributing a 

count query before the actual query is started. The query duration will be same as 

the real query but epoch duration will be different. This epoch duration will 

determine the network adaptation frequency. When the result of this count query 

arrives, the query layer will determine whether an adaptation will be performed 

or not, by comparing it to the limits. If it is beyond the limits, a boundary change 

message will be prepared and broadcasted to the network. 

Other nodes that receive this boundary change message will first check 

the start time field of the incoming message and the current query’s start time. If 

they match, they will check whether the new boundary is different than the 

current boundary. If it is different, they will set their TD boundary information 

with the new one and inform aggregation layer about this change using the 

notification board. Afterwards, they will rebroadcast the boundary change 

message. 

3.4.3.2 QUERY LAYER OF TD-FINE 

TD-Fine algorithm uses the same query packet as TD-Coarse. However, 

the boundary change packet of TD-Fine has only the query start time field, since 

the tree level is not used to determine the boundary. 
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The key difference of this algorithm from TD-Coarse is that, every node 

residing at the boundary of tributary (TAG) and delta (SD) regions has to make 

adaptations to their sub nodes. These nodes can be thought as sinks of sub-trees. 

They collect the TAG aggregate of their sub-trees, translate it into a synopsis 

value, and send it to the sink using SD. According to the aggregate results, they 

decide whether to switch their child nodes to SD by sending a message, or switch 

themselves to TAG. 

The query starts with every node working in the delta region, since the 

initial measurement is used to evaluate future measurements. In the regions where 

there are little or no link errors, the nodes would start to switch tributary region. 

The operation of this layer is summarized in the following pseudocode. 
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if (sink node) 
{ 
 prepare measurement query packet; 
 broadcast it using network layer; 
 prepare actual query packet; 
 broadcast it using network layer; 
} 
if (query packet arrived) 
{ 
 if (not received before) 
 { 
  record query information; 
  update tree level and parent node; 
  Send query notification to aggregation layer; 
  prepare new query packet; 
  broadcast it using network layer; 
 } 
 else 
  discard query packet; 
} 
if (query result notification arrived) 
{ 
 if ((boundary node) and (measurement query)) 
 { 
  if (first measurement) 
   store contribution ratio; 
  else 
  { 
   compare contrib. ratio to previous value; 
   if (below lower limit) 
    broadcast boundary packet; 
 
   if (over upper limit) 
   { 
    switch itself to TAG; 
    notify aggregation layer; 
   } 
  } 
 }  
 if ((sink node) and (not measurement query))  
  record query results;     
} 
if (boundary packet arrived) 
{ 
 if (query start times match) 
 { 
  switch itself to SD; 
  notify aggregation layer; 
 } 
} 

 

Figure-29 Query layer operation of TD-Fine 
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Similar to TD-Coarse, the network adaptation will be performed at every 

epoch of the measurement query initiated from the sink node. The results of this 

query will be evaluated at every boundary node. These nodes will compare the 

count results of their sub-trees with the previous results. If the contribution rate 

has decreased below the lower limit, they will broadcast a Boundary Change 

message. The nodes hearing this message and working with TAG algorithm will 

switch from TAG to SD, and they will become the new boundary nodes.  The 

message will not be broadcasted again. If the contribution rate has increased 

beyond the upper limit, the nodes at the boundary will not send a message; they 

will just switch themselves from SD to TAG, and start sending the aggregate 

values to their previous parents. 

3.4.3.3 AGGREGATION LAYER 

TD algorithm uses both of the aggregation layer packets of SD and 

TAG. TAG packets will be used in the tributary regions and SD packets will be 

used in delta regions. Since this algorithm is a combination of SD and TAG 

algorithms, the operation is also a mix of two. However, there are two additions 

to these algorithms as follows. 

The node that resides at the boundary, that is, nodes whose tree level is 

the same as TD boundary will receive TAG packets but will broadcast SD 

packets. Therefore, these nodes have to convert the TAG aggregate result to SD 

synopses at the end of each epoch. 

Second addition is that, when the query layer informs about a boundary 

change, aggregation layer will act accordingly, and will update its boundary 

information. 

The operation of TD aggregation layer is summarized in the following 

pseudocode. 
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if (query notification arrived) 
{ 
 store query information; 
 set next epoch_start, epoch_end, query_end timers; 
 query_available = true; 
} 
 
if (epoch_start timer) 
{ 
 read own sensor data; 
  
 if (inside SD region) 
  generate synopses; 
 else 
  store own sensor data; 
 
 inside_epoch = true; 
} 

 

if (packet arrived from lower layer) 
{ 
 if (not an aggregate packet) 
  send it to query layer; 
 else 
 { 
  if (inside_epoch) 
  { 
   if (inside SD region) 
    aggregate synopses; 
   else 
    store aggregate value; 
  } 
  else 
   discard packet; 
 } 
}  

 

Figure-30 Aggregation layer operation of TD 
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if (epoch_end timer) 
{ 
 inside_epoch = false;  
 if (inside SD region) 
  evaluate synopses; 
 else 
  aggregate all stored readings; 
 
 send aggregation result to query layer; 
 
 if (query_available) 
  set next epoch_start, epoch_end timers; 
   
 if (not sink node) 
 { 
  if (at the boundary) 
   generate new synopses; 
 
  if ((inside SD region) or (at the boundary)) 
  { 
   prepare aggr. packet using synopses; 
   broadcast it using network layer; 
  } 
  else 
  { 
   prepare aggr. packet using the result; 
   send it to parent node; 
  }  
 } 
} 
 
if (query_end timer) 
{ 
 query_available = false; 
} 

 

Figure-30 Cont’d 



 
 

57 

3.4.3.4 NETWORK LAYER 

Network layer implementation of TD is the same as TAG, explained in 

3.4.1.3. 

3.4.4  DIRECTED DIFFUSION 

3.4.4.1 QUERY LAYER 

Directed Diffusion algorithm uses a query packet similar to TAG to 

distribute the query into the network. The following figure shows the structure of 

this packet. 

 

Figure-31 Query layer packet structure for Directed Diffusion 

The difference of this packet from TAG’s query packet is the sink node 

field. This field contains the address of the sink node that makes the query. It is 

important for Directed Diffusion algorithm, since there can be more than one sink 

working in the same sensor network. 

The following pseudocode shows the query layer operation of Directed 

Diffusion. 
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if (sink node) 
{ 
 prepare query packet; 
 broadcast it using network layer; 
} 
 
if (query packet arrived from aggregation layer) 
{ 
 if (not received before) 
 { 
  update parent node; 
  send query notification to aggregation layer; 
  rebroadcast query packet; 
 } 
 else 
 { 
  if (epoch and duration are different) 
  { 
   update query information; 
   send reinforcement notification to aggr. layer; 
    
   if (not source node) 
    resend the packet to prev. response node; 
  } 
 }   
} 
 
if (response notification arrived) 
{ 
 record address of the previous response node; 
  
 if (sink node) 
 { 
  if (own query answered) 
  { 
   if (initial query) 
   { 
    prepare the reinforced query packet; 
    send it to the previous response node; 
   } 
   else 
   { 
    record query answer; 
   } 
  } 
 } 
} 

 

Figure-32 Query layer operation of Directed Diffusion 
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Every sink node starts their initial query by broadcasting a query 

message. Query layers of the nodes that hear this message rebroadcast it and send 

query information to their aggregation layers using the notification board. 

Whenever this query reaches a node that has the requested information, the 

aggregation layer of that node starts sending the required data back to the sink 

node. As the query reply routes back to the sink via aggregation layers, query 

layers of these nodes are also informed of the incoming reply and the address of 

the sender. When the first response reaches sink node, it will reinforce this path 

by sending a reinforced query packet, which contains increased epoch time and 

duration compared to the initial query. Since every query layer keeps track of the 

previous responses, this packet will travel along the reverse path of the incoming 

reply via query layers of the nodes on the path.  

3.4.4.2 AGGREGATION LAYER 

Directed Diffusion uses the following query response packet to deliver a 

query reply to the sink node. 

 

Figure-33 Aggregation layer packet structure for Directed Diffusion 

Query start time and sink node fields are used to identify the query that 

is answered. Source node field is used to identify the query response while it is 

being reinforced. 

The aggregation layer operation of Directed Diffusion is summarized as 

follows. 
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if (query notification arrived) 
{ 
 record query information; 
 if (data available) 
  setup response timer; 
} 
 
if (response timer) 
{ 
 read sensor value; 
 prepare query response packet; 
 send it to parent query node; 
 setup next response timer; 
} 
 
if (packet arrived from lower layer) 
{ 
 if (response packet) 
 { 
  send response notification to query layer; 
   
  if (not sink node) 
   resend the packet to previous query node; 
 } 
 else 
  send to upper layer; 
} 
 
if (reinforcement notification arrived) 
{ 
 update query epoch and duration; 
} 

 

Figure-34 Aggregation layer operation of Directed Diffusion 
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Query layer of a node sends the notification of incoming query to the 

aggregation layer. Aggregation layer records the query information, and if it has 

the requested data, it sets up the response timer according to the query epoch and 

duration. When the timer starts, aggregation layer reads the sensor value, prepares 

the response packet and sends it to the parent node that sent the query. 

Afterwards, it sets up the next response timer. The node that receives this packet 

notifies its query layer about the incoming data and the sender address. If the 

node is not the sink, the packet is routed to the previous query sender. Thus, 

response packet reaches to the sink node using the reverse path of the query. 

Lastly, whenever the node is reinforced, the new query values are updated by the 

help of the reinforcement notification. 

3.4.4.3 NETWORK LAYER 

Network layer implementation of Directed Diffusion is the same as 

TAG, explained in 3.4.1.3. 

3.4.5  SIMULATION RESULTS 

In order to test and verify the proposed sensor network architecture, 

several sensor network algorithms are simulated with this approach. The 

simulated algorithms are TAG, Synopsis Diffusion, Tributary-Delta Coarse, 

Tributary-Delta Fine and Directed Diffusion. The simulations are done using 

OMNeT++ [16] as explained in section 3.3. Detailed explanations of the 

simulated algorithms are given in section 3.4. 

The first simulation compares TAG and SD algorithms according to 

their network contribution percentages for different error probabilities. This 

contribution percentage is measured as follows. Sink node sends a count query, 

and the other nodes reply this query by generating 1 and summing all the results. 

Finally, the result reaching to the sink node is divided to actual number of nodes 
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in the network. The simulation results are compared with Figure-7a of the study 

on Synopsis Diffusion by Nath et.al. [9]. In order to have a similar environment, 

the simulation parameters are adjusted according to [9]. Considering one pixel as 

one centimeter, the simulation parameters are selected as shown in the following 

table. 

 

 

Table-1.  Simulation parameters for node contribution rate comparison of TAG 
and SD 

 Synopsis Diffusion Study [9] This Simulation 

Number of nodes 600 600 

Simulation region 20ft x 20ft 610 x 610 pixels 

SD Synopses 20 synopses, 32 bit 20 synopses, 32 bit 

Transmission Range (*) 69 pixels 

Number of readings 
for every error level 

500 1000 

 

 

The link error probability is the probability for a node to drop an 

incoming packet, or link failure probability explained in 2.3.2.4. For every error 

probability, SD and TAG simulations are executed for 1000 times, and the 

average of all the readings is taken. The results of this simulation are shown in 

Figure-35 along with the simulation results of [9] for comparison. As seen in this 

figure, our simulations results are compatible with the original simulation results 

of SD and TAG. 

 

 
(*) In [9], a realistic channel model which consists of 6 different error probabilities for different 

transmission ranges is defined. However, instead of this realistic model, they have used a simpler 

model for simulations, and the transmission range of this simple model is not specified. In this 

simulation, the average range of that realistic model (2.28ft = 69 cm) is used as the transmission 

range. 
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Figure-35 Node contribution rates of TAG and SD for different error 
probabilities 

The second simulation is performed using the same simulation 

parameters as the previous case. This time, the RMS errors produced by TAG and 

SD are compared using the sum aggregate. The results are compared with Figure-

7b in [9].   

For both of the algorithms, every node generates a constant reading 

value of 20. The summation of these values, that is, sum aggregate is queried by 

the sink node. The RMS error is calculated using the following formula: 

∑
=

−
T

t

t TVV
V 1

2 /)(
1

  (1) 

In this formula, V is the actual value, Vt values are the individual epoch 

readings, and T is the total number of epochs, that is, 1000. In each epoch, nodes 

take a single reading and transmit it; hence, a single aggregate result is generated 
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from the sensor network. The results of this simulation and the results of obtained 

in [9] are shown in Figure-36. This figure also shows that our SD and TAG 

simulations match well with the results of [9]. 
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Figure-36 RMS error rate comparison of TAG and SD for different error 
probabilities 

The next simulation performs RMS error comparison for TAG, SD and 

TD-Coarse algorithms. The aim is to achieve a graph similar to Figure-2 and 

Figure-5a of the study on Tributary-Delta by Manjhi et.al. [11], where TD-Coarse 

algorithm is applied for a global error scenario. The simulation parameters are 

matched to the simulation of [11] as follows: 
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Table-2.  Simulation parameters for RMS Error comparison of TAG, SD and TD 

 Tributary-Delta Study 
[11] 

This Simulation 

Number of nodes 600 600 

Simulation region 20ft x 20ft 610 x 610 pixels 

SD Synopses 40 synopses, 32 bit 40 synopses, 32 bit 

Number of readings 
for every error level 

100 1000 

 

 

The simulation results of TAG and SD are shown in Figure-37, and TD-

Coarse is shown in Figure-38. Both of these graphs include the results of [11].  
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Figure-37 RMS error comparison for TAG and SD 
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Figure-38 RMS error comparison for TD-Coarse 

TAG, SD and TD-Coarse results in Figure-37 and Figure-38 are similar 

to their counterparts in [11]. TAG and SD were already verified in the previous 

simulation. The differences in the graphs are caused by using different random 

number generators and using different topologies. Since there is no specific 

random number generator defined for the simulations in [11], random number 

generators of C and OMNeT++ are used in this study. Moreover, the simulation 

topologies are not defined in [11] either, thus they are selected randomly for our 

simulations.  

The last TD simulation compares the TD-Fine with SD for regional 

errors. The regional error is produced in the lower left quarter of the simulation 

region (0;0 – 305;305), while the other parts of the network are error free. The 

sink node is placed at the center (305;305). The other parameters are selected the 

same as in Table-2. As seen in Figure 39, TD-Fine shows better performance to 

SD for all regional error ranges, since TD-Fine switches only the erroneous 

region to SD, but error-free regions still work as TAG. This graph does not have 

a counterpart in Tributary-Delta study [11]. 
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Figure-39 RMS error comparison for SD and TD-Fine for regional errors, no 
global loss probability 

The last simulation is the Directed Diffusion implementation. In this 

simulation, the data delivery cost for all the nodes is calculated according to 

network size. Data delivery cost is calculated by summing all of the packets 

transmitted and received by the MAC layer for all the nodes in the network [4]. 

The simulation parameters are selected to match with the simulations of [4]. 

5 sinks and 5 sources are used in all of the simulations. The sinks are 

randomly selected inside the lower 100 pixel rectangle of the simulation region, 

and the sources are randomly selected from the top 100 pixel rectangle. The 

density of the nodes is kept constant at 3200 px2/node for all network sizes. The 

exploratory query duration is for one epoch only, and it is distributed to the 

network through flooding. The first incoming data is reinforced and data coming 

from other nodes is discarded. The reinforced query duration is for 9 epochs. The 

results are obtained by taking the mean of 10 different simulations with different 

topologies and using a 95% confidence interval. 
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The first graph of this simulation shown in Figure-40 is drawn by 

omitting the initial query flooding and reinforcement phase, so the data delivery 

paths are already established. This graph shows that, as the network size 

increases, the cost of retrieving a query value per network size decreases 

exponentially. This is the expected result of directed diffusion, since, the network 

size increases geometrically while the path that delivers information from source 

to the sink increases linearly. This graph is consistent with the analytical results 

obtained in the Directed Diffusion study by Intanagonwiwat et.al. [4]. The y-axis 

values for data delivery cost are comparable but they don’t have the same values 

as Figure-6c of [4]; since their results are analytical, they are using an ideal 

square-grid topology, and they consider data delivery cost per distinct data unit. 

Our simulation uses total data delivery cost in the network, moreover, nodes are 

distributed randomly. 
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Figure-40 Directed Diffusion data delivery cost vs network size, without 
initial query flood 
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The graph in Figure-41 also shows the data delivery cost per network 

size; but it includes all of the cost generated by the simulation. This graph can be 

thought as a measure of average dissipated energy per node, since most of the 

energy is used for transmission and reception. In Directed Diffusion study [4], 

they performed simulations for average energy dissipation for different 

configurations. Since we do not apply suppression in the network, our results are 

consistent with the average dissipated energy without suppression graph shown in 

Figure 9-b of [4]. The simulations of [4] calculates the energy loss by using real 

power values for the antenna transmission, reception and idle states, so our y-axis 

values are different from their graph. 
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Figure-41 Directed Diffusion data delivery cost vs network size 
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CHAPTER IV  

DISCUSSION AND CONCLUSION 

In this thesis, a modular sensor network protocol stack is presented, 

defined and implemented using several sensor network algorithms. The 

implementations are realized using OMNeT++ simulation environment. 

Simulation results are compared with the original results of these algorithms. 

The simulation results presented in Section 3.4.5 proves that the protocol 

stack suggested in this study is applicable to sensor networks. It is observed that 

the new layer stack proposed in this study has a similar performance to previous 

work and does not result in performance degradation. TAG and SD simulation 

results were similar to the results in [9] and TD result was similar to [11]. 

Directed Diffusion simulation results were as expected and similar to the results 

in [4].  

As explained in Section 2.2, Akyıldız et.al. [1] and Kumar at.al. [8] have 

also proposed layered protocol stacks for sensor networks; yet applications of 

these stacks to real sensor network algorithms are not widely and generally 

available. In this thesis, along with proposing a new stack architecture for sensor 

networks, various sensor network algorithms are also implemented using the 

suggested stack. Furthermore, this architecture offers the following features; 

modularity, reusability and the ability to be used as a framework for sensor 

networks. 



 
 

71 

In the following section, these benefits are discussed in detail. In section 

4.2, shortcomings and possible future work of this thesis are given. 

4.1 BENEFITS OF THE PROPOSED ARCHITECTURE 

The definition of modularity is the property of system modules being 

cohesive inside and less coupled with each other. Both the TCP/IP and OSI 

reference layered stack architectures aim to increase modularity by encapsulating 

related tasks in one layer. With the modularity of layers, upper level layers will 

be able to access lower-level functions transparently. Moreover, every layer can 

be supported by different vendors, and can be implemented in different hardware 

platforms. Modularity also leads to simplicity: every layer concentrates on its 

specific task and the complexities of lower layers are hidden from it.  

The most important advancement of the stack proposed in this study is 

its modular architecture designed specifically for sensor networks. With this stack 

design, algorithms can be directly and easily divided into query and aggregation 

layers, without interfering with the tasks of application and network layers. These 

layers are coupled minimally; the required communication between query and 

aggregation layers is basically the notification of the incoming query downwards 

and the aggregate result upwards. They are also cohesive; such that query layer is 

concentrated with query optimization and distribution, while aggregation layer 

focuses on data collection and aggregation. 

The previous stack suggestions in [1] and [8] do not define the 

implementation details for a particular algorithm. Consequently, the comparison 

of our stack with the previous stacks is based on the implementations we 

performed in this thesis. In the following paragraphs, TCP/IP, other stack 

proposals and our approach are compared briefly. 

If the traditional TCP/IP stack is to be used for the data-centric 

algorithms implemented in this thesis, the actual algorithm designs will have to 

be placed inside the application layer. On top of its normal assignment, 
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implementing the whole algorithm in one layer would make the design more 

complex and less modular. Moreover, transport layer is not required for these 

algorithms, thus this layer would become essentially null. 

The stack proposed by Akyıldız et.al. [1] has three vertical planes 

defined over the TCP/IP stack. These planes are power, mobility and task 

management planes. The simulated algorithms do not require mobility 

management, since they are oriented for stationary operations. The power 

management is intertwined with the query and data collection algorithms, such as 

sleep-wake up schedules of TAG and SD, or path enforcement of Directed 

Diffusion. Thus, it is not easy to separate these procedures to place inside another 

layer. The task management plane schedules and balances tasks for a specific 

region. Scheduling algorithm could be applied to TAG; however, it would again 

be difficult to separate from the original algorithm. 

The stack suggested by Kumar et.al. [8] has a data fusion layer and it can 

be used for the aggregation tasks of TAG, SD and TD algorithms. Nevertheless, 

query and data collection operations would again have to be performed by the 

application layer, just like TCP/IP. Moreover, algorithms that do not make data 

fusion, e.g. Directed Diffusion, would always work in the application layer. 

On the other hand, if our protocol stack is used, application and network 

layers would continue to perform their usual tasks, and for all algorithms, the 

core sensor network operations will be performed in query and aggregation 

layers. With the help of these layers, the implementation of the algorithms would 

be modular. In comparison to the structures in [1] and [8], our stack seems to 

provide simplicity of implementation. 

In Table-3, the sensor network algorithms simulated in this thesis are 

classified according to the operations performed in the different layers of the 

proposed stack structure. By examining the implementation details for these 

algorithms, the modularity of this stack architecture can be observed. 
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Table-3.  Algorithm comparison based on the operations performed in the different layers of the proposed stack 

 TAG SD TD-Coarse TD-Fine Directed Diffusion 

Query Layer Sink Node: 

• Prepare query packet 
• Broadcast query 
• Receive and evaluate query 

results 
 

Other Nodes: 

• Receive query  
• Update query info 
• Inform aggregation layer 
• Rebroadcast query 

Same as TAG TAG and: 

 

Sink Node: 

• Send count query 
• Receive and evaluate count 

response 
• If required, broadcast a TD 

adaptation message to the 
network 

TAG and: 

 

Sink Node: 

• Send count query 
 

Nodes at TD Boundary: 

• Receive and evaluate the 
count response 

• If required, send TD 
adaptation message to 
child nodes 

TAG and: 

 

Sink Node: 

• Reinforce first arriving 
response by sending an 
updated query along that 
path 

Aggregation 

Layer 

• Receive query information 
from query layer 

• Wait for own epoch 
• Read own sensor data 
• Receive responses from 

child nodes 
• Aggregate all incoming and 

own reading 
• Send aggregated value to 

parent node 

• Receive query information 
• Wait for own epoch 
• Read own sensor data 
• Generate synopsis 
• Receive and merge 

incoming responses from the 
outer ring levels 

• Send resulting synopsis to 
the inner ring level 

• If the node is in Tributary 
section, act similar to TAG 

• If the node is in Delta 
section, act similar to SD 

• If the node is at the 
boundary, 

• Collect and aggregate data 
as TAG 

• Generate synopsis and send 
to inner ring 

Same as TD-Coarse • Receive query information 
• If data is available, send own 

data to the previous hop 
along the query path 

• Send the data of other nodes 
to previous hop along the 
query path 

Network 

Layer 

• Send a network packet to a 
destined node using node 
address 

• Filter incoming packets 
according to own address 

• Interface with MAC 

Same as TAG Same as TAG Same as TAG Same as TAG 
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Another advantage of this stack is reusability. It is possible that different 

algorithms use the same layer design, while altering other layers slightly or 

completely. As seen in Table-3, TAG and SD algorithms can use the same query 

layer, and they have different aggregation function implementations in 

aggregation layer. TD algorithm combines the aggregation layers of TAG and 

SD, and it adds adaptation logic into their query layer. Directed Diffusion also 

extends the query layer of TAG by including a query enforcement process. 

In addition to reusability, this modular sensor stack leads to simplified 

refactoring. Since the algorithm is divided into separate functional parts, it will be 

easier to refactor the design of a single layer, and implement it transparently 

without disturbing other layers. 

The last benefit of this architecture is that it can be used as a framework 

for sensor network algorithms. This framework will be useful in classifying and 

comparing different algorithms based on the operations performed on different 

layers. It will be possible to point out differences and similarities of sensor 

network algorithms; understanding and analyzing an algorithm will also be less 

complicated. 

Table-3 shows that our stack architecture is quite convenient to classify 

and compare algorithms. For these implementations; network layers of all 

algorithms, query layers of TAG and SD, and aggregation layers of TD-Coarse 

and TD-Fine are completely the same. The difference between TAG and SD is at 

the aggregation layer, the way they process and send data. The difference of TD-

Coarse and TD-Fine is at the query layer, the first one makes network adaptations 

initiated from the sink node, while the second one makes adaptations initiated 

from the nodes at the TD-boundary. Aggregation layers of TD algorithms 

combine TAG and SD aggregation layers, and include a data merging procedure 

for the nodes at the boundary. Directed Diffusion has extensions to the query 

layer of TAG; it contains procedures to enforce the minimum delay data path. 

Contrary to TAG, aggregation layer of Directed Diffusion does not wait to send 

data, or make data aggregation; it just sends its own data, or routes received data 

to previous query node. 
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4.2 SHORTCOMINGS AND FUTURE WORK 

The other major stack structures proposed by Akyıldız et.al. [1] and 

Kumar et.al. [8] have not been used in implementing the algorithms considered 

within the scope of this study. This is because, it has not been possible to access 

specific implementation details based on those structures in the literature. 

Therefore, in this study, it has not been possible to claim that the structure 

proposed here is in any way superior to those others. It remains as a future work 

to examine whether different structures lead to concrete advantages over one 

another in terms of efficiency and effectiveness. 

The layered stack structure explained in this thesis is the basis for a 

generalized, modular and applicable sensor network protocol architecture. In 

order to improve this structure and to strengthen the claim of being a generalized 

stack for sensor networks, more sensor network systems should be implemented 

and tested with this protocol stack. Likewise, the interface definitions of the 

layers are specified considering the simulated algorithms. These interfaces should 

be improved by generalizing them and making them applicable to any sensor 

network system. 

This study has concentrated mostly on query and aggregation layer 

operations. The simulations did not consist of complex routing tasks for network 

layer. As a future work, sensor network systems that require intense routing 

operations should be investigated. In this sense, semantic routing trees of TinyDB 

[3] explained in Section 2.3.2.1 could be implemented using the network layer 

more effectively. Another subject could be to examine and implement query 

informed routing using the network and query layers in conjunction. 

Query layer and aggregation layer keep the addresses of one hop 

neighbors, since they are directly related to query and data response tasks. It 

should be examined whether keeping the addresses inside network layer and 

feeding the data using query and aggregation layers will improve modularity or 

not. 
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APPENDIX 

SOURCE CODES AND EXECUTABLE FILES OF THE SIMULATIONS 

The source codes and executable files of the simulations performed in this study 

are given in the CD attached at the back cover of this thesis. 


