

A NEW STACK ARCHITECTURE FOR SENSOR NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUAMMER EROĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan ÖZGEN

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. İsmet ERKMEN

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Semih BİLGEN

Supervisor

Examining Committee Members

Asst. Prof. Dr. Cüneyt BAZLAMAÇCI (METU, EE) __________________

Prof. Dr. Semih BİLGEN (METU, EE) __________________

Prof. Dr. Hasan GÜRAN (METU, EE) __________________

Dr. Altan KOÇYİĞİT (METU, II) __________________

Dr. Şenan Ece SCHMIDT (METU, EE) __________________

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name :

 Signature :

iv

ABSTRACT

A NEW STACK ARCHITECTURE FOR SENSOR NETWORKS

EROĞLU, Muammer

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Semih BİLGEN

September 2006, 80 pages

In this thesis, a new stack architecture for sensor networks is proposed.

The stack consists of the following layers: application, query, aggregation,

network, MAC and physical. Various algorithms are implemented using this

stack and it is shown that this stack is modular.

Following an overview of sensor networks, the previous protocol stack

suggestions for sensor networks are examined. Sensor network algorithms that

can be classified as sensor data management systems are surveyed and compared

with each other. Four of the surveyed algorithms, namely, TAG, Synopsis

Diffusion, Tributary-Delta and Directed Diffusion are implemented using the

introduced stack. The implementation is performed using a sensor network model

developed with OMNeT++ simulator. The simulation results are compared to the

v

original results of these algorithms. Obtaining similar results, the stack and

algorithm implementations are validated, moreover, it is shown that the stack

does not induce any performance degradation.

Using the implementation details of the algorithms, the modularity of the

suggested stack is demonstrated. Finally, additional benefits of the stack are

discussed.

Keywords: Sensor networks, protocol stack

vi

ÖZ

ALGILAYICI AĞLARI İÇİN YENİ BİR YIĞIT MİMARİSİ

EROĞLU, Muammer

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Danışmanı: Prof. Dr. Semih BİLGEN

Eylül 2006, 80 sayfa

Bu tezde algılayıcı ağları için yeni bir yığıt mimarisi önerilmiştir. Bu yığıt;

uygulama, sorgu, birleştirme, ağ, bağlantı ve fiziksel katmanlar olmak üzere altı

katmandan oluşmaktadır. Bu katman yapısı farklı senaryolarda denenmiş ve

modüler olduğu gösterilmiştir.

Algılayıcı ağları hakkında verilen özet bilgiden sonra önceki yığıt önerileri

incelenmiştir. Algılayıcı veri yönetimi sistemleri adı altında sınıflandırılabilecek

algoritmalar ayrı ayrı incelenerek karşılaştırılmıştır. Sunulan yığıt mimarisini

içeren bir algılayıcı ağı modeli geliştirilmiş ve bu yapıyla incelenen

algoritmalardan dört tanesi uygulanmıştır. Benzetimlerden elde edilen sonuçlar

ile uygulanan algoritmaların yayınlarındaki sonuçlar karşılaştırılmıştır.

Sonuçların benzerliği sayesinde önerilen yığıt mimarisi ve algoritma

vii

uygulamaları doğrulanmış, ayrıca bu yığıtın performans kaybına yol açmadığı

gösterilmiştir.

Algoritmaların uygulama detayları kullanılarak bu tezde önerilen yığıt

mimarisinin modülaritesi doğrulanmıştır. Son olarak önerilen yapının diğer

getirileri tartışılmıştır.

Anahtar kelimeler: Algılayıcı ağları, protokol yığıtı

viii

ACKNOWLEDGMENTS

I would like to thank Prof. Semih Bilgen for his innovative ideas and valuable

supervision.

I wish to thank to my colleagues at ASELSAN Inc. for their continuous support.

I would also like to thank my family because of the encouragement they gave me

to complete this thesis.

ix

TABLE OF CONTENTS

PLAGIARISM ... iii

ABSTRACT.. iv

ÖZ ... vi

ACKNOWLEDGMENTS ... viii

TABLE OF CONTENTS .. ix

LIST OF FIGURES... xi

LIST OF ABBREVIATIONS ... xiii

CHAPTER

I. INTRODUCTION ... 1

II. LITERATURE SURVEY.. 7

2.1 SENSOR NETWORKS .. 7

2.2 NETWORK STACK ARCHITECTURE.. 10

2.3 SENSOR DATA MANAGEMENT SYSTEMS... 14

2.3.1 ALGORITHMS... 16

2.3.2 COMPARISON OF THE ALGORITHMS... 17

2.3.2.1 QUERY DISTRIBUTION AND ROUTING.. 17
2.3.2.2 QUERY TYPES.. 22
2.3.2.3 DATA COLLECTION AND FUSION... 23
2.3.2.4 FAULT TOLERANCE ... 25

III. DEFINITION AND IMPLEMENTATION ... 27

3.1 THE PROPOSED SENSOR NETWORK STACK ARCHITECTURE 27

3.2 SIMULATION STUDY.. 30

3.3 SIMULATION ENVIRONMENT.. 31

3.4 PROTOCOL IMPLEMENTATIONS ... 36

x

3.4.1 TAG... 37

3.4.1.1 QUERY LAYER... 37
3.4.1.2 AGGREGATION LAYER.. 39
3.4.1.3 NETWORK LAYER... 41

3.4.2 SYNOPSIS DIFFUSION... 43

3.4.2.1 QUERY LAYER... 43
3.4.2.2 AGGREGATION LAYER.. 44
3.4.2.3 NETWORK LAYER... 46

3.4.3 TRIBUTARY DELTA .. 47

3.4.3.1 QUERY LAYER OF TD-COARSE.. 48
3.4.3.2 QUERY LAYER OF TD-FINE .. 51
3.4.3.3 AGGREGATION LAYER.. 54
3.4.3.4 NETWORK LAYER... 56

3.4.4 DIRECTED DIFFUSION.. 57

3.4.4.1 QUERY LAYER... 57
3.4.4.2 AGGREGATION LAYER.. 59
3.4.4.3 NETWORK LAYER... 61

3.4.5 SIMULATION RESULTS .. 61

IV. DISCUSSION AND CONCLUSION .. 70

4.1 BENEFITS OF THE PROPOSED ARCHITECTURE....................................... 71

4.2 SHORTCOMINGS AND FUTURE WORK .. 75

REFERENCES ... 76

APPENDIX

SOURCE CODES AND EXECUTABLE FILES OF THE SIMULATIONS................ 80

xi

LIST OF FIGURES

Figure-1 The sensor network stack proposed in this thesis 5

Figure-2 Sensor network diagram [1] ... 8

Figure-3 Block diagram of a sensor node [1] ... 9

Figure-4 Sensor network protocol stack of Akyıldız et.al.[1]..................... 12

Figure-5 SensorStack layers [8] .. 13

Figure-6 TAG routing tree [3] .. 18

Figure-7 Directed Diffusion operation [4] .. 19

Figure-8 Acquire algorithm’s routing diagram [5] 20

Figure-9 Rings topology [9].. 21

Figure-10 Tributary-Delta topology [11].. 22

Figure-11 The new sensor network protocol stack 27

Figure-12 OMNeT++ sensor network simulation example 33

Figure-13 SensorNet module .. 35

Figure-14 SensorNode module ... 36

Figure-15 Query layer packet structure for TAG.. 37

Figure-16 Query layer operation of TAG ... 38

Figure-17 Aggregation layer packet structure for TAG................................ 39

Figure-18 Aggregation layer operation of TAG ... 40

Figure-19 Network packet structure ... 42

Figure-20 Network layer packet structure .. 42

Figure-21 Network control packet structure ... 42

Figure-22 Network layer operation... 43

Figure-23 Aggregation layer packet structure for SD................................... 44

xii

Figure-24 Synopses generation function of SD .. 45

Figure-25 Aggregation layer operation of SD .. 46

Figure-26 Query packet structure for TD ... 48

Figure-27 Boundary change packet of TD.. 48

Figure-28 Query layer operation of TD-Coarse.. 50

Figure-29 Query layer operation of TD-Fine.. 53

Figure-30 Aggregation layer operation of TD .. 55

Figure-31 Query layer packet structure for Directed Diffusion.................... 57

Figure-32 Query layer operation of Directed Diffusion 58

Figure-33 Aggregation layer packet structure for Directed Diffusion.......... 59

Figure-34 Aggregation layer operation of Directed Diffusion 60

Figure-35 Node contribution rates of TAG and SD...................................... 63

Figure-36 RMS error rate comparison of TAG and SD................................ 64

Figure-37 RMS error comparison for TAG and SD 65

Figure-38 RMS error comparison for TD-Coarse... 66

Figure-39 RMS error comparison for SD and TD-Fine for regional errors.. 67

Figure-40 Directed Diffusion data delivery cost, without initial flood......... 68

Figure-41 Directed Diffusion data delivery cost... 69

xiii

LIST OF ABBREVIATIONS

IP Internet Protocol
MAC Medium Access Control
NIC Network Interface Card
OMNeT++ Objective Modular Network Testbed in C++
OSI Open Systems Interconnection
SD Synopsis Diffusion
SRT Semantic Routing Tree
TAG Tiny Aggregation Service
TCP Transport Control Protocol
TD Tributary Delta
UDP User Datagram Protocol

1

CHAPTER I

INTRODUCTION

Developments in micro sensor technology and low power analog and

digital electronics have made possible to build distributed and wireless networks

of sensor devices, called sensor networks. These sensor devices, also called

sensor nodes, are capable of sensing a particular subject of interest, such as

sound, wind, temperature, or a visual object. They are powered with their own

batteries and they communicate through wireless medium. Sensor nodes have

their own processor, memory and radio modules, and they are expected to be low

cost, small sized and robust devices.

Sensor nodes are to be deployed densely and in large amounts, hundreds

to thousands of nodes in one network. They will organize themselves in an ad-

hoc fashion and will run as a distributed network. They will be able to operate

unattended and in harsh environmental conditions. The data of the sensed subject

is transferred from the nodes to a sink node, which is responsible to relay this

data to a control center.

Some of the key application areas of sensor networks are the following

subjects: environmental monitoring, military surveillance and intelligence [1],

and patient health care. In these applications, the nodes may have to operate in

harsh environmental conditions, such as rain, cold, or radiation. The nodes may

not be recollected after the distribution and could be disposed after the mission is

completed.

2

The biggest obstacle of the sensor networks is the limited battery energy

of the nodes. Since the radio is the most power draining module of a node, using

the radio less often lengthens the life of the nodes. With this idea in mind, instead

of using long distance end-to-end routing, it is more energy efficient to use short-

distance hop by hop routing while transferring data. Moreover, sensor nodes

should keep their radios turned off when not used.

Another efficient method to conserve power is on-board processing. The

power usage of a processor is very little compared to the radio [1]; therefore,

processing the raw data inside the nodes and transmitting the processed result

having fewer bytes decreases power consumption.

Since the incoming data of a node travels through other nodes on its path

to sink, merging data in certain nodes proves useful to conserve energy by

eliminating redundancies and minimizing the number of transmissions [20]. This

is called data aggregation, where the sink requests the aggregate value of the

sensed data, instead of the particular readings of the sensors. The aggregate

requested by the sink could be the minimum or average value of the readings, or

it might be the most frequent reading.

Sensor networks are used in various applications, and unification is very

difficult. However, recently, it is proposed that they can be thought as distributed

databases producing a continuous streaming data [2,3,4]. A typical operation of

this system would be as follows: the sink distributes a query for the required

information and the response is collected back from the network, either directly

or by data aggregation inside the nodes. The algorithms working in this manner

are called data-centric sensor network algorithms, and they are studied in detail in

Section 2.4.

Four of these data centric algorithms are implemented in this thesis.

They are Tiny Aggregation Service (TAG) [2], Directed Diffusion [4], Synopsis

Diffusion [9] and Tributary-Delta [11].

TAG and Directed Diffusion are widely known algorithms which are

also implemented in real life. TAG is an algorithm that queries a data where all of

the nodes in the network can contribute. It uses a routing tree rooted at sink node

3

and constructed hierarchically as the query propagates through the network. The

readings of the nodes are aggregated at every node and sent to sink using this

routing tree backwards. Every node keeps the address of its parent. After

receiving the results from the child nodes, the nodes aggregate these results with

their own readings and send the new aggregate to their parents.

Directed Diffusion is an algorithm which requests data generated by

only some of the nodes inside the network. It basically uses flooding to distribute

a query to the network. Whenever the node having the required data is found, it is

transmitted back to the sink using the reverse path of the query. Then, upon

arrival of data from different sources, the sink node selects one of them and

enforces it by sending a new query using the direct path to the node.

Synopsis Diffusion and Tributary-Delta are recent and advanced

techniques that try to improve fault tolerance of tree based sensor networks

algorithms, such as TAG. Synopsis Diffusion uses multi-path routing and

duplicate-insensitive summaries, which are called synopses. Synopsis Diffusion

uses rings topology, where the sink is at the center and nodes reside in one of the

rings according to their distance to the sink in number of hops. When the

synopsis generated in a node is broadcasted, all the nodes at the inner ring that

can hear this message process it, realizing multi-path routing. The disadvantages

of SD are; synopses have larger size compared to the TAG aggregates and they

have a fixed approximation error.

Tributary-Delta combines Synopsis Diffusion and TAG by using them in

different parts of the network. The central part around the sink is called delta

region and Synopsis Diffusion is performed. The outer parts are called tributary

region and TAG is performed. Since the central regions are more critical to

errors, multi-path routing is used. In order to minimize transmission and lower

approximation errors, TAG is used at the outer parts of the network, where a link

error does not cut off a large tree branch. Moreover, Tributary-Delta algorithm

adapts the tributary and delta regions according to the network contribution rate.

It is claimed that traditional TCP/IP protocol stack does not fit well to

sensor networks because of their novel requirements [1, 8]. There have been

4

complete sensor network protocol stack suggestions in the literature by Akyıldız

et.al. [1] and Kumar et.al. [8]. Akyıldız et.al. extend the TCP/IP stack by

appending three vertical planes that can operate in every layer. They are

responsible for power, mobility and task management functions. Kumar et.al.

introduce a data fusion layer under the application layer, and also information

exchange and helper service layers. The details of these stacks are given in

Section 2.3.

The objective of this thesis study is to propose a modular protocol stack

for sensor networks and implement various sensor network algorithms using this

architecture. Modularity is defined as the property of system modules being

cohesive inside and minimally coupled with each other. In this sense, the

introduced stack will be a modular stack architecture for sensor networks. The

stack will be used in the implementation of four different algorithms, namely,

TAG, Synopsis Diffusion, Tributary Delta and Directed Diffusion by making

simulations using the sensor network model developed with OMNeT++ simulator

[16]. The results of the simulations will be compared with the original results of

these algorithms. By the help of these comparisons, it will be shown that the

proposed stack is applicable and does not induce any performance degradation to

the sensor network algorithms. Using the implementation details, the modularity,

reusability, implementation and maintenance advantages will be demonstrated.

Moreover, it will be shown that this protocol stack has the potential to be a

framework in order to classify and compare different algorithms. The proposed

stack diagram is shown in Figure-1.

5

Figure-1 The sensor network stack proposed in this thesis

The main differences from the traditional TCP/IP stack are the

introduction of the query layer, the aggregation layer, and the notification board

service, replacing the transport layer. Query and aggregation layers can directly

communicate with the network layer. All of the layers can communicate with the

notification board through publish and subscribe methods, thereby realizing

cross-layer communication. Similar to [8], transport layer is omitted from the

stack, because the flow control of transport layer is not a generic requirement for

all sensor network applications.

Yao & Gehrke [6] also suggested a query layer to be used under the

application layer of TCP/IP. The proposed query layer in this thesis is similar to

their suggestion, since both of them are responsible for all query optimization and

distribution tasks. However, their work is based on TCP/IP and does not have

special layers for data aggregation and cross layer communication.

Kumar et.al.’s SensorStack architecture [8] offers a data fusion layer

placed under the application layer. This layer is responsible for in-network data

fusion operations. While this idea was innovative for the aggregation layer in this

thesis, SensorStack’s data fusion layer only handles data aggregation tasks at

Application Layer

Query Layer

Aggregation Layer

Network Layer

MAC Layer

Physical Layer

Notification Board
Service

6

specific nodes, and when there is no data fusion requirement, this layer is not

used at all (e.g., Directed Diffusion). This thesis suggests that the aggregation

layer should be responsible for data aggregation, but it should also perform data

collection and transmission tasks. Thus the entire query response process will be

performed in this layer.

The network layer in this thesis will be able to filter packets based on the

addresses of sensor nodes. A query distribution will be coordinated by the query

layer communicating directly with the network layer, and data collection will be

coordinated by the aggregation layer again communicating with the network

layer. Releasing the network layer from the query distribution and data collection

route control gives us the opportunity to add actual routing decisions using a

routing table similar to TCP/IP. This table might be based on geographical

information, or the kind of sensed data. Consequently, it is possible to implement

query-informed routing, which is also proposed in SensorStack.

The cross layer communication will be performed by the notification

board service, which is quite similar to information exchange service in

SensorStack. Notification board service will serve all of the layers and other

possible services using publish and subscribe functions for a particular data.

Using this service, layers will be able to communicate directly, and also they will

be able to receive information from other services, for example, the battery and

radio conditions, or the location of a node.

The remainder of this thesis is organized as follows. The background of

the thesis is established along with the literature review in Chapter 2. The

suggested protocol stack is explained in detail in Chapter 3 along with the

implementation details of the simulated algorithms and simulation results.

Discussions, conclusions and future work are given in Chapter 4.

7

CHAPTER II

LITERATURE SURVEY

2.1 SENSOR NETWORKS

Sensor networks are composed of low-cost electronic devices called

sensor nodes. These nodes are mostly battery powered and small sized devices

and they have sensing, processing and communication capabilities. A sensor

network has the purpose of collecting information about some observable

phenomenon and relaying this information to a data center. Usually, the required

information is difficult or costly to obtain by normal means. Using sensor nodes,

it is possible to lower the cost and simplify the task of collecting information,

since sensor nodes are cheap, robust, easily deployed and scalable. [1], [13], [14],

[20], [21], [22]

8

Figure-2 Sensor network diagram [1]

Sensor networks can be used in many different application areas, since

the network and applications can be tuned to the purpose. Environmental

monitoring, military applications and biomedical research are the outstanding

subjects of today. In the future, it is envisioned that sensor networks will find far

more application areas in our lives.

Sensor nodes have limited power, computation and communication

capabilities since they should be low-cost and small-sized. Therefore, these

limited capabilities should be optimized using efficient strategies.

A basic sensor node should have the following components; a sensing

unit, a processing unit, a transceiver unit and a power unit. For a complex sensor

node, additional components such as a location finding system, solar cells or a

mobilizer can also be included. The block diagram of a sensor node is shown in

Figure-3.

9

Figure-3 Block diagram of a sensor node [1]

The sensing unit is composed of an analog sensor and an analog to

digital converter (ADC). This unit is used to sense the desired phenomena and

deliver it to the processing unit. The processing unit is usually a processor with a

small storage. The algorithms and procedures operating in different layers of the

network are processed here. The transceiver unit handles the communication of

the nodes using the wireless media. Most commonly an RF device is used, but it

can also be a passive or active optical device. The power unit is mostly small

sized batteries.

The battery of a sensor node is the critical factor for the life of an

individual node and the overall network. There are many studies on sensor

networks trying to minimize energy consumption in various phases of operation.

The main energy consuming device in a sensor node is the antenna, and it uses up

the highest energy while transmitting data. Therefore, it is crucial for the nodes to

minimize data transmission for higher energy efficiency.

Computation in a sensor node requires much less energy than data

communication. Transmitting a 1Kb of data may require the same energy as

executing 3 million instructions on the processor [1]. Therefore, in order to

10

minimize power consumption, local data processing at the nodes should be used

as much as possible instead of making more wireless transmissions.

Data aggregation replaces transmission with data processing by

aggregating the data received from many nodes into one summary result, called

aggregate, and transmitting this aggregate instead of all the data produced by the

nodes. Since the required data from a sensor network is usually an aggregate

value, such as min, max or average, performing data aggregation inside the

network nodes increases energy efficiency of the network greatly.

A sensor network might have hundreds to thousand of nodes and they

are deployed densely, possibly as high as 20 nodes / m3 [1]. Moreover, the

network is subject to frequent topology changes because of the following reasons:

• Nodes may deplete their energy or break off.

• Nodes might change their position using mobilizers or due to the

environmental effects.

• Nodes might lose communication ability due to obstacles, noise or

jamming.

• Additional nodes could be deployed to the original network.

All of these reasons show that topology maintenance also has a high

importance in sensor networks. In order the network to be more reliable,

adaptable routing mechanisms are required.

2.2 NETWORK STACK ARCHITECTURE

Layered network stack architecture has been the preferred method for

computer networks since it helps to organize the system into logically distinct

modules, such that the service of one layer is based on the service of the lower

layer. This modularity helps different protocols to work together, easier

11

maintenance and transparent protocol changes. However, the traditional TCP/IP

stack is not very suitable to sensor networks because of the following reasons [8]:

• The traditional TCP/IP network stack is designed for end-to-end

networking requirements. However, most sensor networks work

hop-by-hop routing.

• TCP/IP stack has services that are generally not required in sensor

networks, such as flow control at the transport layer, node fairness at

MAC layer and error control at both of these layers.

• Sensor Networks introduce new service requirements such as

location awareness, time synchronization or node addressing.

• Sensor networks needs to optimize energy at every layer, since

energy is a very critical factor for sensor nodes.

There has been some work in the literature proposing new sensor

network stack architectures, or making modifications to the original stack. These

are summarized in the following paragraphs.

The sensor network protocol stack proposed by Akyıldız et.al [1] is

similar to TCP/IP stack, however, there are additional planes which are

responsible for power management, mobility management and task management

functions (Figure-4). These additional planes are able to operate in all of the

layers, thus they are called planes.

12

Figure-4 Sensor network protocol stack of Akyıldız et.al.[1]

The power management plane tries to increase power efficiency of a

node. Since energy requirements are very strict for a sensor node, optimizing it at

every layer would increase overall efficiency. Mobility management plane detects

the movements of a node and keeps the location information of the node. Task

management plane schedules and tries to balance tasks given to specific region.

Kumar et al. [8] introduces a new sensor network protocol stack, called

SensorStack, which is designed considering the unique characteristics of sensor

networks. Stack layout can be seen in Figure-5. The functions of these layers are

explained in the following paragraphs.

13

Figure-5 SensorStack layers [8]

Since radio is the mostly used physical medium for sensor networks, it is

the physical layer of SensorStack. Medium access layer (MAC) is also similar to

the TCP/IP such that it provides medium access for hop-to-hop data transfer and

controls channel errors. MAC layer also controls the on-off schedule of antenna,

thus, it can optimize energy efficiency by communicating with helper services

and maintaining the node’s wake-up/sleep schedule through the information

exchange system (IES).

Data service layer provides dissemination of data to neighbors and

reception of data packets, similar to network layer in TCP/IP. Moreover, this

layer supports logical naming of the nodes instead of IP addresses. With logical

naming, query or data packets will be filtered at this stage and unnecessary

distribution will be blocked.

Data fusion layer is responsible for data aggregation inside the nodes.

With this layer, data fusion becomes a part of the stack and packets will not have

to reach up to application layer at every intermediate node. Moreover, providing

the fusion logic as a separate module would make application development more

modular, since same fusion code would be used for multiple applications. This

layer can make fusion at every node or only at the selected nodes. The fusion

14

functions of this layer can be programmed by the application layer to be run in

kernel space of the operating system.

IES service realizes communication of relevant information between

different layers using a publish-subscribe functions. Using this service, cross

layer optimization will be possible.

Application layer captures data and presents it at the sink node;

programs fusion channels at the specified nodes and provides helper services for

application specific demand.

Helper services layer is used to extend the stack by defining application

specific services such as location awareness or time synchronization. These

services can be executed either in user space or kernel space of the operating

system.

SensorStack does not have a transport layer, but it is proposed that a

middleware can be used for future applications that may need a transport service.

Yao and Gehrke [6] proposed the usage of a new query layer, which

resides between application and network layers. This new layer provides cross-

layer interaction between the routing protocol and distributed query protocol. The

purpose of this layer is to abstract functionality of a large class of applications

into a common interface of declarative queries.

There are also research projects that use modified versions of traditional

stack. WINS [13] project discards transport layer, and uses other layers of TCP/IP

stack. Smart Dust [14] project uses only the application, MAC and physical

layers. TinyOS [15], which is the operating system for Berkeley motes, contains

only the MAC and physical layer services.

2.3 SENSOR DATA MANAGEMENT SYSTEMS

Sensor networks generate a continuous information stream, and the

applications are trying to retrieve data obtained using some part of this stream.

15

This resembles database systems, in which there is a huge data set and the

required data is obtained using some part of this set.

Recently, it is proposed that database technology should be integrated

with sensor network technology [2, 3, 4], so that the management of data

produced by sensor networks would be improved. However, this integration is

not simple, since traditional database technology deal with finite and static data,

while sensor networks produce continuous and possibly infinite streams of data.

Furthermore, traditional databases are stored in some persistent and always

accessible repository, whereas the information in a sensor network is dispersed in

all of the sensor nodes and changes in real-time. These factors show that new

query languages, processing and optimization methods should be found for

sensor network database systems.

Some recent publications define algorithms for sensor networks, and

because of the methods they use, they can be classified as sensor data

management systems [2,3,4,5,6,7,8]. These studies propose query languages to

interact with the user; methods to request data from the sensor nodes and to

collect the generated information from the nodes. Both of the querying and data

collection phases involve routing and local data processing to be performed in

sensor nodes. These systems usually define the algorithm as a whole and do not

make exact distinctions of protocol layers.

The general attributes of sensor data management systems can be

summarized as follows:

• The user of the system communicates with the system using the sink

node, makes the query and retrieves the results through this node.

• The query is distributed throughout the network by routing the query

hop-by-hop over the sensor nodes.

• Nodes receiving the query prepare and send the desired information

to the sink node, again routing the data hop-by-hop over the nodes.

16

• If data aggregation is to be performed, all or some of the nodes

along the routing path process and combine the results of previous

and neighbor nodes; and transmit only the aggregated result.

• According to the query type, information flow might be continuous,

time limited, periodic, or one-shot.

In the following subsections, the widely known algorithms in this area

are explained briefly and compared according their query distribution methods,

query types, data fusion and collection methods.

2.3.1 ALGORITHMS

Tiny Aggregation Service [2], abbreviated as TAG, is a generic

aggregation service developed for TinyOS. TinyOS is the operating system for

the sensor network nodes, also called motes, developed in Berkeley University.

TAG is used to retrieve the aggregate value of the information generated by many

nodes by making in-network aggregation at every node.

Aquisitional Query Processing System, also known as TinyDB, [3] is

published by the same authors of TAG. It is based on the previous algorithm, but

contains many enhancements in querying and data collection. TinyDB is also

used to retrieve aggregates, but it can also make single node queries.

Directed Diffusion [4] is as a data-centric system for sensor networks.

Data is generated and queried using attribute-value pairs. Directed Diffusion is

used to retrieve information from one of the nodes which hold the information,

and to select the best path to retrieve it.

Active Query Forwarding or Acquire [5] is also a data-centric querying

mechanism, which is mostly suited for one shot, complex queries for replicated

data.

Cougar [6] is a data management system which proposes a query

processing layer between the application and network layers. All of the query

17

operations are done inside this layer. Cougar can make aggregate or single shot

queries.

TinyDBD [7] is a system built by merging TinyDB with Directed

Diffusion. The routing mechanism of Directed Diffusion and querying

mechanism of TinyDB is used together. Therefore, TinyDBD shows the

properties of both methods.

Synopsis Diffusion [9] and Approximate Aggregation [10] are two

parallel studies, both of which are devised to overcome link errors in a tree-based

sensor network topology. These solutions offer multi-path routing to reduce the

errors introduced by node failures on the routing path. They define duplicate

insensitive aggregation methods to get rid of duplicate information resulting from

multi-path routing.

Tributary-Delta [11], builds on top of Synopsis Diffusion and proposes a

new routing and aggregation method to decrease the message traffic in the overall

network, and to achieve higher energy efficiency. This study suggests to use

multi-path routing at the center of the network, and to use trees at the leaves of

the network.

2.3.2 COMPARISON OF THE ALGORITHMS

2.3.2.1 QUERY DISTRIBUTION AND ROUTING

TAG algorithm uses a routing tree to distribute queries and collect

results from the network. This routing tree can be set up separately from the

query distribution, or they can be performed together. Routing tree construction is

started by the sink node by broadcasting a message. Nodes hearing this message

for the first time assign the sender node as their parent node, record their tree

level and rebroadcast the message. Thus, the tree is constructed hierarchically. If

this message is mixed with the query message, the tree would be refreshed for

every query distribution. A sample routing tree is shown on Figure-6.

18

Figure-6 TAG routing tree [3]

TinyDB uses the same routing tree as TAG to distribute the queries.

Moreover, TinyDB introduces Semantic Routing Trees (SRT) to achieve query

informed routing. An SRT is a routing tree based on a specific sensor data. It is

built similar to the actual routing tree; however, additionally every node keeps

information about their children whether they have the required data or a path to

it. Thus, unlike TAG, it would be possible to distribute a query submitted to the

network only to the relevant nodes or paths to them.

Directed Diffusion constructs the routing topology for every new type of

query, since the route is dynamically created while the query searches and finds a

reply. In order to make a query, the sink node sends out an interest which

contains the specifications of the requested data. (Figure-7a) This interest is

called exploratory and it propagates in the network by flooding, constrained

flooding or directional propagation. Nodes receiving this interest cache it along

with the source node, called gradient of the interest. When a node has the

requested data, it sends the data along the gradients up to the sink node. (Figure-

7b) The sink node then reinforces one of the incoming replies; selection may be

based on latency or consistency. Reinforcement is done by resending the same

query along this selected neighbor with a higher data reception rate. The actual

19

routing path will be completed when the new query arrives to the node having the

data. (Figure-7c)

Figure-7 Directed Diffusion - (a) Interest propagation. (b) Initial gradients
setup. (c) Data delivery along reinforced path. [4]

Similar to Directed Diffusion, Acquire also generates a routing path for

each new query. It uses gossiping algorithm and flooding with a restricted radius

to route the query. After the query packet is inserted into the network, it follows a

random, predetermined or adaptive trajectory. When the query arrives at a node,

that node obtains information from its neighbor nodes using flooding (Figure-8).

The level of neighborhood is determined in the query by a number of hops, and it

is called the look-ahead parameter. The node can also keep a cache of the

neighbor nodes’ values and it can use this cache until it becomes obsolete. If the

query is solved at a particular node, the query becomes a completed response and

it is returned back to the sink along the query path. If it is not solved, query

continues its path.

20

Figure-8 Acquire algorithm’s routing diagram [5]

The size of the look-ahead hop number affects a trade-off between the

information obtained and the cost of obtaining it. As the look-ahead hop number

becomes larger, Acquire resembles flooding based queries. The downside of

Acquire is that its average latency is much more than tree based or flooding based

approaches.

Synopsis Diffusion and Approximate Aggregation techniques use a

multi-path routing topology called rings. With this topology, every node will

have multiple parents from the previous ring, and the wireless medium will be

used optimally because nodes will process all of the messages they hear.

The rings topology is constructed while the query is distributed to the

network. The sink node starts the query by broadcasting the query message. As

seen in Figure-9, the sink node is in ring R0, and any node hearing the sink

becomes in R1. The query is rebroadcast along the rings, and nodes hearing the

query from ring i for the first time record their ring number as i+1.

21

Figure-9 Rings topology [9]

Figure-9 also depicts link failures (crossed lines) and node failures

(crossed circle) that can occur while data is collected from the nodes. The

behavior of Synopsis Diffusion algorithm in these error conditions is explained in

Section 2.3.2.4.

Multi-path routing with rings topology and duplicate insensitive

aggregation used in Synopsis Diffusion and Approximate Aggregation has two

main drawbacks. First, these techniques provide an approximation to the answer,

thus they produce results with a bounded approximation error. Second, the

message size is longer than the ordinary tree approach used in TAG or TinyDB,

since the message in multi-path schemes contains duplicate insensitive aggregate

data. With longer bytes, nodes will spend more energy to transmit it.

Tributary-Delta (TD) algorithm merges the tree topology with the multi-

path topology. The tree topology is known for its low or zero approximation

error, and its short message size. Multi-path approach is preferred when the loss

rates become higher, since the multi-path routing has a loss-tolerant and robust

nature. As seen in Figure-10, TD algorithm uses multi-path topology around the

sink node, called Delta Region, where a link loss is very critical and would cause

to lose the results of many lower tree levels. It uses tree topologies at the

branches, called Tributary Region, since a link loss here in not as critical as the

center.

22

Figure-10 Tributary-Delta topology [11]

2.3.2.2 QUERY TYPES

TAG can work with aggregation queries only, and does not retrieve

single queries for a particular node. Moreover, TAG distributes a query to all of

the nodes in the network. Therefore, TAG is used most efficiently when all the

sensor network nodes have same kind of sensors.

TinyDB can work with aggregation queries like TAG, but it can also

work with events and single node queries. Events can be used to decrease

network traffic and power consumption effectively by triggering the transmission

of data upon the occurrence of an event.

Contrary to TAG, TinyDB sends the query to only those nodes that can

participate in the query execution using Semantic Routing Trees. Moreover,

TinyDB can make single node queries, whereas TAG cannot. Thus, TinyDB can

be used in multi-purpose sensor networks, in which different kind of sensors are

used in different nodes.

Directed Diffusion makes queries for a particular kind of data that can be

answered by single nodes. It cannot make aggregate queries, whereas TAG and

TinyDB can. Thus, Directed Diffusion can also be used efficiently in a multi-

purpose sensor network.

23

In Directed Diffusion, more than one sink can make queries and receive

data at the same time, which is not the case for other algorithms. Therefore, this

algorithm can handle simultaneous and distinct queries inside a single network.

Similar to TinyDB, Directed Diffusion can make query aggregations in

every sensor node and it can also work with events.

ACQUIRE is well suited to one shot and replicated data queries and can

be found in many nodes. For example, it can query whether the current

temperature is over 40°C. Answer to this query can be found in many nodes and

it is not necessary to distribute the query to the whole network. On the contrary,

Directed Diffusion is suited for continuous and non-replicated data queries; for

example, number of vehicles detected in a region. Moreover, TAG and TinyDB

are well suited for continuous and aggregate queries; e.g. maximum value of the

temperature.

Synopsis Diffusion, Approximate Aggregation and Tributary-Delta

algorithms are based on TAG, so they show similar properties to TAG in making

aggregation queries.

2.3.2.3 DATA COLLECTION AND FUSION

In TAG and TinyDB; the epoch, or the period for a single aggregate

produced by the network, is divided into the maximum level of the tree. All of the

nodes are loosely synchronized with this epoch, and they allocate a time period in

every epoch according to their tree levels. At this specified period of time the

nodes at the same level wake up, take their sensor readings, receive their child

nodes’ results if available, aggregate them with own readings, send the aggregate

result to their parents and go back to sleep. This process starts at the leaf nodes

and when the epoch ends, the aggregation result would arrive at the sink node.

Since the epoch is divided into the tree levels, and there should be a minimum

time interval for every node level, the maximum data rate that can be obtained

24

from the network is limited by the tree level and minimum time interval for a

single node operation.

In Directed Diffusion, the query result is received from a single node

along the gradients of the reinforced gradient path. Directed Diffusion does not

define any data aggregation scheme, since it is specially designed for single node

queries; contrary to TAG, TinyDB, SD and TD.

ACQUIRE method retrieves the query results from the return path of the

query, similar to Directed Diffusion. Again, ACQUIRE does not define any data

aggregation scheme.

In Synopsis Diffusion and Approximate Aggregation, the query

aggregation period is divided into epochs and at each epoch one aggregate is

provided, similar to TAG. These algorithms generate the same optimal number of

messages compared to the tree based approaches like TAG and TinyDB, but

robustness is greatly enhanced.

Synopsis Diffusion and Approximate Aggregation algorithms use a

bitmap of data at every node instead of the actual partial results. This bitmap is

called synopsis by Synopsis Diffusion, and sketch by Approximate Aggregation,

and it is based on the Flajolet and Martin’s Probabilistic Count algorithm [12].

These synopses are used for duplicate insensitivity, so that even if duplicate

readings arrive at a node, it will not change the value of the synopsis. A more

detailed description of this algorithm is given below in Section 3.4.2.2.

At the beginning of each epoch, each node in the outermost ring

generates its synopsis and broadcasts it. The nodes in ring Ri wake up at its

specified time, generate local synopsis and receives from all the neighbors heard

in ring Ri+1. It updates its local synopsis and at the end of its allocated time,

broadcasts the updated result.

It is important to note that using synopses often introduce approximation

errors in the exact aggregate result. This approximation error is the result of

representing too much information in a limited size synopsis. However, for

realistic packet loss rates, i.e. 5-30%, the errors from missing nodes are far more

25

than approximation errors. Furthermore, by increasing the length of the synopsis

message, the relative error can be decreased.

Tributary-Delta approach merges tree and multi-path schemes together,

and therefore the standard aggregation technique of TAG is used for the tree

topologies and Synopsis Diffusion technique is used for the multi-path topology.

However, a conversion function is required to convert a partial result generated

by the tree algorithm to a synopsis that can be used by the multi-path algorithm.

This conversion function will be used at the boundary nodes, which are the root

nodes of the tree topology, and the leaf nodes of the delta-region.

2.3.2.4 FAULT TOLERANCE

In standard tree-based systems such as TAG, when a single node on the

routing path fails, the entire sub-tree of values is lost; thereby introducing a large

error to the final result.

TAG proposes to split the accumulated aggregation value to more than

one parent. If the aggregate value is v, every node will send v/k value to each of

its k number of parents. While this approach reduces the error for a link failure

from v to v/k, the expected aggregation error is still the same as ordinary tree

approach [9].

In TAG and TinyDB algorithms, the routing tree used can be refreshed

frequently in order to adapt the network changes. Moreover, lost nodes can get a

parent node to themselves, by snooping over other nodes’ messages.

TinyDB can maintain the SRT in the case of lost nodes or link quality

changes. SRT performance depends on the quality of the clustering of children

beneath parents.

In Directed Diffusion, the initial interest contains a low data rate, and the

actual query contains the desired data rate. However, the initial query message

still causes other nodes to send data in a low frequency, and these alternative

gradient paths are also kept at the nodes for reliability. When the main link fails,

26

the data transfer might continue from one of the alternative gradient paths, by

reinforcing the new path and suppressing the old one.

Approximate Aggregation and Synopsis Diffusion are fault-tolerant

algorithms that use duplicate insensitive synopses and multi-path routing to

overcome the high error rates resulting from path failures in tree topologies. It is

shown that using these algorithms results in enhanced robustness and

significantly low error rates compared to TAG. However, these synopses are

larger in size compared to TAG partial results and they require more energy to be

transferred. Even considering the approximation errors caused by using synopses,

it is shown that these algorithms result in enhanced robustness and significantly

low error rates compared to TAG.

Figure-9 shows link and node failure examples for a sensor network

operating with Synopsis Diffusion algorithm. As seen in this figure, node A has

two parents, one of which has a node failure (crossed circle) and the other node

has a link failure with sink node (crossed line). Since all the paths from node A to

sink is blocked, node A’s data cannot reach to sink. In the same figure, node B

has three parents, two of which face link failures. However, there is still a path

from node B to the sink, thus data of node B can be transmitted to the sink.

Tributary-Delta algorithm uses synopses at the delta region, where the

error rate is critical. This way, the approximation error and overall transmitted

data will be reduced, while keeping the link errors under control. Tributary-Delta

also executes dynamic adaptation algorithms to adjust the boundary point

between the tributary and delta regions, according to the current message loss

rates in various regions.

27

CHAPTER III

DEFINITION AND IMPLEMENTATION

3.1 THE PROPOSED SENSOR NETWORK STACK ARCHITECTURE

The proposed stack architecture consists of the following layers:

application, query, aggregation, network, MAC and physical (Figure-11). In

addition, there is a notification board service, which is responsible for cross layer

communication. This stack will be implemented in all the nodes of a sensor

network.

Figure-11 The new sensor network protocol stack

Application Layer

Query Layer

Aggregation Layer

Network Layer

MAC Layer

Physical Layer

Notification Board
Service

28

Sensor networks have similarities with distributed database systems, and

there are many database oriented algorithms introduced for sensor networks

[2..11] as explained in section 2.3. This stack architecture also builds on top of

this idea. The two crucial layers of this stack, which are query and aggregation

layers, try to utilize the distributed database notion for sensor networks.

Basically; query layer will request data from the sensor network, and

aggregation layer will collect and aggregate data inside the network. Network

layer will deal with routing and addressing; and application layer will perform

higher level application operations. Mostly, the core of the sensor network

algorithm will be executed by query, aggregation and network layers. In the

following paragraphs, the operations of these layers will be explained in detail.

Application layer will communicate with the control center and receive

the details of the sensor network tasks. Afterwards, this layer will prepare query

requests and send them down to query layer. After receiving the results of a

query, this layer will send them back to the control center. Other high level

application related tasks can also be executed here.

Query layer is responsible for all query related operations. First of all,

this layer will receive query requests from the application layer and prepare the

query packets accordingly. If required, it will make query optimizations or merge

queries with previous ones. Then, it will start a query by distributing a query

packet inside the network. Furthermore, it will filter incoming queries, and

receive query results from the aggregation layer whenever the response is

available. This layer is also responsible to define events, such that when one of

these events occurs, the node receiving this event will initiate a data transfer to

the sink node. Network-wide query adaptations will also be directed and

performed via this layer.

Query layer requires a connection with the network layer, since it will

define the network route of a query and has to learn network address of an

incoming query. After setting up the address of the outgoing query packet, it will

be sent to network layer to be transferred to its destination. Moreover, this layer

should also have a connection with the aggregation layer, in order to send

29

information about the incoming query, to receive results of a query, or for the

case of an event definition.

Aggregation layer has to perform data response and aggregation

processes inside the nodes for the whole sensor network. This layer will start

functioning whenever a query has arrived or a predefined event has occurred.

Depending on the algorithm, it will define data transmission and reception

periods so that sensor node will be able to sleep for the rest of time. This layer

will acquire the reading of its own sensor and store it. Moreover, data coming

from neighbor nodes will also be received and stored by this layer. Data

aggregation is the essential task of this layer, thus, the gathered data will be

aggregated here. Query layer will be informed of this aggregate result. Finally,

the results will be transmitted to the network.

Aggregation layer has to have a connection with the query layer in order

to receive information about incoming queries, or to send back the query

response. Similar to query layer, this layer also requires a connection to the

network layer, because aggregation layer will define the route of an outgoing

packet, and it might require the address of an incoming packet.

Network layer of this stack will have the same functions as the network

layer of TCP/IP. However, since the addressing is confined for a particular

network, there is no need to use IP addresses. The indexes of the nodes can also

be used as their addresses. Nevertheless, better addressing schemes for sensor

networks can be applied inside this layer. Network layer will have connections to

both query and aggregation layers and will route both data and query packets to

their appropriate addresses. This layer can realize different routing algorithms,

such as geographical routing or a hierarchical routing. It is also possible to

execute query informed routing, by receiving the query information from the

query layer.

In this structure, query layer and aggregation layer will be able to keep

information about next-hop neighbors. For example, they can keep the address of

the parent query node, or the previous data sending node. By the help of the

network layer, this next hop can also be a far away node which will be reached

30

after some routes. Thus, sensor network would be scalable. Moreover, using

query informed routing; this layer will increase energy conservation, since the

packets will only be sent to appropriate nodes instead of being broadcast to the

entire network.

The MAC layer of our stack arranges the access to the wireless medium

and tries to avoid collisions. It can be realized by using one of the MAC layer

algorithms defined for wireless networks. In our simulations for this thesis, we

used IEEE 802.11 MAC layer protocol.

The physical layer is used to actually transmit data between different

nodes. Since sensor networks operate on wireless medium, this layer is mostly

radio, as the case for our simulations.

3.2 SIMULATION STUDY

In this thesis, four different sensor network algorithms will be

implemented using the stack architecture defined in 3.1. These algorithms are

Tiny Aggregation [2], Synopsis Diffusion [9], Tributary-Delta [11] and Directed

Diffusion [4].

TAG and Directed Diffusion are widely known algorithms of sensor

network systems and they are referenced in many studies. They are also

physically implemented and tested algorithms for real life sensor networks.

Moreover, these two algorithms have a critical difference; TAG is designed to

retrieve data aggregates from the whole network, whereas Directed Diffusion is

used to retrieve data from single nodes. Simulating these two algorithms would

show that our stack is reliable and can be used in a wide range.

Synopsis Diffusion and Tributary Delta are new algorithms, and they

have both similarities and differences to TAG. To sum up, they are designed to

increase the efficiency of TAG when a link failure occurs. Synopsis Diffusion

31

makes in-network aggregation similar to TAG, but does not use tree based

routing. Instead, it tries to overcome the problem of link failure by using multi-

path routing and duplicate insensitive data, called synopses. Tributary-Delta

algorithm merges Synopsis Diffusion and TAG by using these two algorithms in

different parts of the network and adapts the regions dynamically. In order to

show the modularity and extensibility of the stack, it is helpful to simulate these

algorithms.

The graphical results obtained from the simulations will be compared to

the original results of these algorithms obtained in their respective studies. With

this comparison, it will be possible to show that algorithms implemented with the

proposed stack behave the same and do not cause performance degradation. As a

second benefit, implementing these four algorithms would move the stack from

concept into reality and will show that the stack is applicable. Last of all, by

examining the implementation details of these algorithms, it will be possible to

show the modularity and extensibility of the proposed architecture.

3.3 SIMULATION ENVIRONMENT

The simulations are done using OMNeT++ simulation environment

[16,17] and INET framework [18,19] developed for OMNeT++.

OMNeT++ is an object oriented discrete event network simulator. It is

freely available for academic and non-profit use. The simulator, user interfaces

and the tools are portable on different operating systems; they can work with

Windows or Unix platforms using various C++ compilers. [17]

OMNeT++ simulations have different execution types for different

purposes; it can be used for debugging, fast execution or demonstration. The user

interface helps to debug and demonstrate the simulation, by visually showing

how the model works, or letting the user modify the variables inside the model.

An OMNeT++ model consists of hierarchically nested modules that can

have unlimited depth. These modules have their own parameters which are used

32

to customize module behavior. Module communication is accomplished by

passing messages between two modules, using the predefined gates or a sending

the message directly to the module. The messages can contain any object that is

known by both modules. The gates are used to transmit one way messages

between two modules. These gates can be defined as network communication

lines, or just an instantaneous communication path.

OMNeT++ uses NED files to define the simulation topology. A NED

file is a textual declaration that defines the modules, parameters, gates, and

module hierarchy. NED files are written is a specific language called NED

language.

Every module in a simulation is either a simple module or a compound

module. Simple modules are at the lowest level of the hierarchy, and they cannot

encapsulate another module. Simple modules are programmed in C++ as a class

derived from the cSimpleModule base class of OMNeT++. The actions required

for the simulation are defined in these classes. Every simple module has also a

NED file associated with it. In this NED file, the parameters and gates of the

module are defined. The module class can use these parameters and gates defined

in the NED file with the help of OMNeT++ simulation library.

Compound modules may contain simple modules or other compound

modules. These modules do not have an associated C++ class; they are only

defined in a NED file. This NED file contains definitions for the nested modules,

own module parameters, and gates. Using this file, the parameters of a nested

module are set or associated with the parameters of the compound module.

Moreover, the gate connections between the nested modules and the compound

module are defined.

A sample wireless sensor network simulation interface of 50 nodes in a

400x400 region is shown in Figure-12. The nodes are shown as square icons

having blue circles inside. The wide circles around the nodes show the wireless

communication region. The sun icon is the channel control module, which serves

as the controller for the wireless communication.

33

Figure-12 OMNeT++ sensor network simulation example

The simulation model of this thesis uses modules borrowed from INET

framework. The INET framework is an open-source communication networks

simulation package, written for the OMNeT++ simulation system. The INET

framework contains models for several Internet protocols like TCP, UDP, IP,

Ethernet or 802.11 [19]. The modules that are extracted from the INET

framework are as follows:

• ChannelControl: This simple module gets location and movement

information about the nodes of the network. Then, it determines

which nodes are within communication or interference range of

another. This information is used by radio interfaces, like Nic80211

module.

34

• NotificationBoard: Notification board simple module enables the

modules to communicate directly using event firing and subscription

to these events. This module is used to realize a cross-layer

communication framework in this thesis.

• InterfaceTable: This simple module contains the network interface

table for a sensor node. This module is required for Nic80211

module to work properly.

• Nic80211: This compound module implements a network interface

card that uses 802.11 wireless MAC layer protocol. It is used as the

MAC layer and physical layer combination. It contains MAC80211,

Decider80211 and SnrEval80211 modules.

• Mac80211: This simple module implements 802.11 MAC layer

protocol. This module supports ad-hoc mode only, that is, it does not

generate or handle management frames.

• Decider80211: This simple module is the decider module for the

physical layer implementation of 802.11 network interface card.

• SnrEval80211: This simple module is the signal to noise ratio

evaluator for the physical layer implementation of 802.11 network

interface card. Along with Decider80211 module, this module

makes up the physical layer.

• BasicMobility: This simple module is a prototype module for

mobility modules, and it is required for channel control module to

determine the locations of the nodes. It does not contain any

mobility algorithm.

The following modules have been developed within the scope of this

study for the sensor network simulation model:

• SensorNet: This compound module is the top level module and it

models the simulated sensor network. It contains the channel control

35

module from INET framework, and the sensor node array as seen in

Figure-13.

Figure-13 SensorNet module

• SensorNode: This compound module models a sensor node. It

contains the QueryLayer, AggLayer and NetworkLayer modules; as

well as NotificationBoard, InterfaceTable, BasicMobility, and

Nic80211 modules from INET framework. The model is shown in

Figure-14.

36

Figure-14 SensorNode module

• QueryLayer: This simple module defines and implements the query

layer of our protocol stack.

• AggregationLayer: This simple module defines and implements the

aggregation layer of our protocol stack.

• NetworkLayer: This simple module defines and implements the

network layer of our protocol stack.

3.4 PROTOCOL IMPLEMENTATIONS

In the following subsections, the protocol implementations of query,

aggregation and network layers for TAG, Synopsis Diffusion, Tributary Delta

and Directed Diffusion algorithms will be explained. In these simulations, simple

queries are executed using the query layer of the sink directly, without using an

application layer.

37

3.4.1 TAG

3.4.1.1 QUERY LAYER

Query layer of TAG uses a packet structure to communicate with the

query layer of another node. This packet is distributed through the entire network

by broadcasting. The contents of this packet are shown in Figure-15.

Figure-15 Query layer packet structure for TAG

In this packet, query start time field is the starting time of a query set at

the sink node. This will be used as an identification of a particular query inside

the whole network. Query type defines the type of information requested from the

network. This can be the number of birds detected, temperature, or node count.

Aggregate type defines the type of aggregation that will be applied at every node

inside the network. Typical examples are average, sum, min and max.

Epoch duration is the period of a single aggregate result. At every epoch,

the sink node will receive a single aggregate result from the network .Inside an

epoch, the nodes at a specific tree level will awake, make their sensor readings,

receive the results from the previous level nodes, aggregate the data, send their

results and go back to sleep for the next epoch. Because of the time required to

perform these actions, epoch duration has a lower limit and cannot go below that

value for correct network operation.

Query duration is the total time of the query requested. For a particular

query, there will be (query duration / epoch duration) times of aggregate result

will be generated by the network and consumed at the sink node. Tree level

Query
Type

Aggregate
Type

Epoch
Duration

Query
Duration

Tree Level Query Start
Time

38

defines the distance of a node from the sink node defined as the number of hops.

This is updated at every node that rebroadcasts the query.

The following pseudocode shows the query layer operation for TAG

algorithm.

if (sink node)
{
 prepare query packet;
 broadcast it using network layer;
}

if (query packet arrived)
{
 if (not received before)
 {
 record query information;
 update tree level and parent node;
 Send query notification to aggregation layer;
 prepare new query packet;
 broadcast it using network layer;
 }
 else
 discard query packet;
}

if (query result notification arrived)
 if (sink node)
 record query result;

Figure-16 Query layer operation of TAG

The sink node will set the values required for the query packet at the

start of a query. Tree level will be zero and the parent node will be null. This

packet will be broadcasted to the network by sending it to the network layer.

Query layers of other nodes that hear this broadcast will first check

whether they already received this query before, using the query start time field

of the received query packet. The packet will be dropped if the query already

arrived to that node. Otherwise, the query will be processed as follows.

39

The contents of the query packet will be extracted and stored inside the

query layer. The tree level of the query will be updated by increasing the tree

level by one. The parent node of this query will also be stored, using the network

address of the node that sent the incoming query. This address will be taken from

the network control packet of network layer. Afterwards, query layer will inform

the aggregation layer about the incoming query using the notification board.

Query layer will send the received query packet contents and parent node

address. Finally, the query will be broadcasted to the network by preparing a new

query packet using the updated information.

3.4.1.2 AGGREGATION LAYER

Aggregation layer of TAG uses the following packet structure to

communicate with another aggregation layer.

Figure-17 Aggregation layer packet structure for TAG

Similar to query layer, query start time and query type is used to identify

the query that is being replied. Aggregate result is the obtained result after the

aggregation is performed over the received results.

Aggregation layer implementation for the TAG algorithm is summarized

in the following pseudocode.

Query Start
Time

Query Type Aggregate
Result

40

if (query notification arrived)
{
 store query information;
 set next epoch_start, epoch_end, query_end timers;
 query_available = true;
}

if (epoch_start timer)
{
 read and store own sensor data;
 inside_epoch = true;
}

if (packet arrived from lower layer)
{
 if (not an aggregate packet)
 send it to query layer;
 else
 {
 if (inside_epoch)
 store aggregate result;
 else
 discard packet;
 }
}

if (epoch_end timer)
{
 inside_epoch = false;
 aggregate all stored results;
 send aggregate result to query layer;

 if (query_available)
 set next epoch_start, epoch_end timers;

 if (not sink node)
 {
 prepare aggregation packet;
 send it to the parent node;
 }
}

if (query_end timer)
{
 query_available = false;
}

Figure-18 Aggregation layer operation of TAG

41

The aggregation layer protocol starts operation whenever query layer

informs about a new query by sending the query information. Aggregation layer

stores the contents of this query information. According to the epoch duration,

query duration and tree level information of this query, aggregation layer sets the

epoch_start, epoch_end and query_end timers and lets the node sleep until the

epoch start timer fires.

When an epoch starts, aggregation layer gets its own node’s sensor

reading. Then it starts to listen for aggregation packets that come from other

nodes. Whenever a packet is received from a child node, the packet is checked for

the query start time and query type. If they match, the aggregate result is added to

the results array. As soon as the epoch ends, the node stops listening for other

aggregation packets.

Afterwards, aggregation layer performs aggregation by running the

requested aggregation function over the received results and its own reading, and

obtains an aggregate result. This result is sent to the query layer by firing an event

through the notification board. If the node is not the sink node, this aggregate

result is sent to the parent node by setting the address in the network control

packet.

If the query duration has ended, the aggregation layer will suspend the

node operation and let it sleep. If not, the timers will be set for the next epoch and

the operation will restart.

3.4.1.3 NETWORK LAYER

Network layer protocol implementation is the same for all of the

algorithms. It uses the following packet structure to communicate with another

network layer.

42

Figure-19 Network packet structure

Figure-20 Network layer packet structure

Source address is the address of the node that sends the packet. It is set

at the network layer. Destination address is the address of the node that will

receive the packet. The data sent by query and aggregation layers are

encapsulated and inserted into this packet.

The Network control packet is used to communicate the network layer

and query and aggregation layers. The structure is the same as network packet

structure.

Figure-21 Network control packet structure

The query and aggregation layers use this packet to send data to the

network. They set the destination address and encapsulate data, then send it to the

network layer. This packet is also used to send data coming from the lower MAC

layer to upper aggregation layer. The network packet received from the network

is copied to a network control packet and sent to upper layer. The operation of

this layer is explained as follows.

Encapsulated
Data

Destination
Address

Source
Address

Encapsulated
Data

Destination
Address

Source
Address

43

if (packet arrived from upper layer)
{
 prepare a network packet;
 broadcast it using MAC layer;
}

if (packet arrived from lower layer)
{
 if (destination == own address)
 {
 prepare a network control packet;
 send it to aggregation layer;
 }
 else
 discard packet;
}

Figure-22 Network layer operation

Query and aggregation layers send network control packets to network

layer. When they arrive at network layer, the contents are copied to a network

packet and sent to MAC layer for broadcasting. Whenever a network packet

arrives from the MAC layer, first, the destination address field is checked against

the address of the node. If it is the same, a network control packet is prepared

according to the address and data fields and sent to aggregation layer. If it is not

the destination node, the packet is discarded.

3.4.2 SYNOPSIS DIFFUSION

3.4.2.1 QUERY LAYER

Query layer implementation of Synopsis Diffusion is the same as TAG,

explained in section 3.4.1.1.

44

3.4.2.2 AGGREGATION LAYER

Aggregation layer of SD uses the following packet structure to

communicate with another aggregation layer.

Figure-23 Aggregation layer packet structure for SD

It is similar to the aggregation packet of TAG except that the aggregate

result field contains the synopses instead of the raw aggregate obtained. These

synopses are stored inside a 32 bit integer array having 20 elements.

The operation of aggregation layer protocol for Synopsis Diffusion is

summarized in Figure-24. It is similar to TAG but has some modifications as

follows.

When an epoch starts, TAG obtains its own sensor reading and stores it

directly. However, SD has to convert this value to a synopsis using a synopsis

generation function. This function produces specified number of synopses from

the sensor reading and stores them in an array. This function works briefly as

follows. At first, all bits of the synopsis is set to 0. In order to insert the value “1”

to the synopsis, a probability of 0.5 is evaluated repeatedly in a loop using a

random number generator. If the probability evaluation is true, the bit in turn is

set to 1 and the loop is broken. The final value of the synopsis is the result of this

function. This operation is repeated n times in a loop in order to insert the value

of n to the synopsis, moreover, a higher level loop is used to produce more than

one synopses. This operation can be seen in the pseudocode given in Figure-24.

Query Start
Time

Query Type Synopses

45

for each (synopsis in synopses_array)
{
 set all bits of synopsis to 0;
 randomize;

 while (i < number_to_insert)
 {
 while (j < 32) // max. 32 bit synopsis
 {
 generate random number x;
 if (x > 0.5)
 {
 set bit i of synopsis to 1;
 break;
 }
 }
 }
}

Figure-24 Synopses generation function of SD

The number of synopses directly affects the approximate error of SD

such that increasing the number of synopses decreases the approximate error. The

synopsis generation function is implemented according to the definitions given in

[9], [10] and [12]. The probabilistic operations in this function are implemented

using the random number generators of C++ and OMNeT++.

The second difference is that, when data received from another node,

TAG stores it directly to the received data array. However, SD does not store it,

and it directly aggregates the result to its own synopsis array using a binary sum

operation. Therefore, the aggregate result is always up to date.

At the sink node, instead of sending the raw aggregate result directly to

the query layer, the synopses are evaluated and converted to the real aggregate

data and this value is sent to query layer. The synopsis evaluation function is also

implemented according to the definitions given in [9], [10] and [12].

46

if (query notification arrived)
{
 store query information;
 set next epoch_start, epoch_end, query_end timers;
 query_available = true;
}

if (epoch_start timer)
{
 read own sensor data;
 generate synopses;
 inside_epoch = true;
}

if (packet arrived from lower layer)
{
 if (not an aggregate packet)
 send it to query layer;
 else
 {
 if (inside_epoch)
 aggregate synopses;
 else
 discard packet;
 }
}

if (epoch_end timer)
{
 inside_epoch = false;
 evaluate synopses;
 send aggregation result to query layer;

 if (query_available)
 set next epoch_start, epoch_end timers;

 if (not sink node)
 {
 prepare aggregation packet using synopes;
 broadcast it using network layer;
 }
}

if (query_end timer)
{
 query_available = false;
}

Figure-25 Aggregation layer operation of SD

47

3.4.2.3 NETWORK LAYER

Network layer implementation of SD is the same as TAG, explained in

3.4.1.3.

3.4.3 TRIBUTARY DELTA

Two different versions of the Tributary-Delta algorithm are implemented

in this thesis. They are TD-Coarse and TD-Fine. TD-Coarse algorithm is

implemented as defined in [11]. It adapts the network when link errors occur by

broadcasting a network-wide message. Using this message, TD-Coarse algorithm

varies the tributary and delta regions of the entire network, assuming a network-

wide packet loss.

In [11], along with TD-Coarse, another version of Tributary Delta is

defined and it is named TD. Contrary to TD-Coarse, this version makes

adaptations to the network only in the regions where link errors occur. In order to

achieve this, every node at the boundary of two regions sends the number of child

nodes that didn’t contribute up to the sink. These boundary nodes are the top

level nodes of the TAG sub-trees, thus they can define the erroneous regions.

According to these data, sink node broadcasts a message which will make the

required adaptations in erroneous regions of the network. This message will

switch the boundary nodes to TAG or the child nodes of the boundary nodes to

SD.

In this thesis, as an extension to TD algorithm of [11], another version of

Tributary Delta is developed and named as TD-Fine. Just like TD, TD-Fine

makes adaptations only in the regions where the errors occur. However, contrary

to TD, node contribution information is directly processed by the boundary nodes

instead of sending them to the centralized sink. Moreover, adaptation is not

performed using a network-wide message broadcast. Instead, the boundary nodes

48

send a message to their first level child nodes to switch them to SD or they

directly switch themselves to TAG.

TD-Coarse algorithm is simple and can deal with global errors. TD-Fine

is more complex; however, it achieves better results with regional errors. The

only changing layer for these two algorithms is the query layer. Both of their

query layers are explained in the following sections.

3.4.3.1 QUERY LAYER OF TD-COARSE

This algorithm adds a new field, called TD boundary, to the query

packet structure of TAG as seen in Figure-26. This TD boundary field will

determine the tree level boundary between the delta region, in which SD

algorithm is used, and the tributary region, in which TAG algorithm is used. This

information will be distributed to the network along with the query.

Figure-26 Query packet structure for TD

For TD-Coarse algorithm, query layer at the sink will make network

adaptations by changing the TD boundary according to the number of nodes

participating to the query. The boundary change will be distributed to the network

by using the boundary change packet having the following structure.

Figure-27 Boundary change packet of TD

New TD
Boundary

Query Start
Time

Query
Type

Aggregate
Type

Epoch
Duration

Query
Duration

Tree Level Query Start
Time

TD
Boundary

49

Query start time field is be used to identify the query. New TD boundary

field is used to announce the new boundary of the previously distributed query.

This new boundary will be determined by sink node by measuring and comparing

the node participation ratio to some predefined value.

This algorithm tries to keep the number of participants to a query over a

threshold. Moreover, it also tries to increase TAG regions if the error rate is low.

Hence, if the measured participation ratio goes down below the lower a limit, SD

region will be extended so that more nodes will participate to the query. If the

participation ratio goes over the upper limit, TAG region will be extended so that

fewer packets will be transferred and approximate error will be reduced. Changes

will be reflected by increasing or decreasing the current TD boundary value and

distributing this new value to the network using boundary change packet. The

measurement will be performed by making a count query with a predefined

frequency.

The operation of the query layer of TD-Coarse algorithm is explained in

the following pseudocode.

50

if (sink node)
{
 prepare measurement query packet;
 broadcast it using network layer;

 prepare actual query packet;
 broadcast it using network layer;
}
if (query packet arrived)
{
 if (not received before)
 {
 record query information;
 update tree level and parent node;
 Send query notification to aggregation layer;
 prepare new query packet;
 broadcast it using network layer;
 }
 else
 discard query packet;
}

if (query result notification arrived)
{
 if (sink node)
 {
 if (measurement query)
 {
 compare contribution ratio;
 if (below lower limit)
 {
 increase td boundary by one;
 notify aggregation layer;
 broadcast new boundary to network;
 }
 if (over upper limit)
 {
 Decrease td boundary by one;
 notify aggregation layer;
 broadcast new boundary to network;
 }
 }
 else
 record query result;
 }
}

Figure-28 Query layer operation of TD-Coarse

51

if (td boundary packet arrived)
{
 if (query start times match)
 {
 change boundary of the present query;
 notify aggregation layer;
 rebroadcast boundary change packet;
 }

}

Figure-28 Cont’d

The measurement of the contribution ratio is performed by distributing a

count query before the actual query is started. The query duration will be same as

the real query but epoch duration will be different. This epoch duration will

determine the network adaptation frequency. When the result of this count query

arrives, the query layer will determine whether an adaptation will be performed

or not, by comparing it to the limits. If it is beyond the limits, a boundary change

message will be prepared and broadcasted to the network.

Other nodes that receive this boundary change message will first check

the start time field of the incoming message and the current query’s start time. If

they match, they will check whether the new boundary is different than the

current boundary. If it is different, they will set their TD boundary information

with the new one and inform aggregation layer about this change using the

notification board. Afterwards, they will rebroadcast the boundary change

message.

3.4.3.2 QUERY LAYER OF TD-FINE

TD-Fine algorithm uses the same query packet as TD-Coarse. However,

the boundary change packet of TD-Fine has only the query start time field, since

the tree level is not used to determine the boundary.

52

The key difference of this algorithm from TD-Coarse is that, every node

residing at the boundary of tributary (TAG) and delta (SD) regions has to make

adaptations to their sub nodes. These nodes can be thought as sinks of sub-trees.

They collect the TAG aggregate of their sub-trees, translate it into a synopsis

value, and send it to the sink using SD. According to the aggregate results, they

decide whether to switch their child nodes to SD by sending a message, or switch

themselves to TAG.

The query starts with every node working in the delta region, since the

initial measurement is used to evaluate future measurements. In the regions where

there are little or no link errors, the nodes would start to switch tributary region.

The operation of this layer is summarized in the following pseudocode.

53

if (sink node)
{
 prepare measurement query packet;
 broadcast it using network layer;
 prepare actual query packet;
 broadcast it using network layer;
}
if (query packet arrived)
{
 if (not received before)
 {
 record query information;
 update tree level and parent node;
 Send query notification to aggregation layer;
 prepare new query packet;
 broadcast it using network layer;
 }
 else
 discard query packet;
}
if (query result notification arrived)
{
 if ((boundary node) and (measurement query))
 {
 if (first measurement)
 store contribution ratio;
 else
 {
 compare contrib. ratio to previous value;
 if (below lower limit)
 broadcast boundary packet;

 if (over upper limit)
 {
 switch itself to TAG;
 notify aggregation layer;
 }
 }
 }
 if ((sink node) and (not measurement query))
 record query results;
}
if (boundary packet arrived)
{
 if (query start times match)
 {
 switch itself to SD;
 notify aggregation layer;
 }
}

Figure-29 Query layer operation of TD-Fine

54

Similar to TD-Coarse, the network adaptation will be performed at every

epoch of the measurement query initiated from the sink node. The results of this

query will be evaluated at every boundary node. These nodes will compare the

count results of their sub-trees with the previous results. If the contribution rate

has decreased below the lower limit, they will broadcast a Boundary Change

message. The nodes hearing this message and working with TAG algorithm will

switch from TAG to SD, and they will become the new boundary nodes. The

message will not be broadcasted again. If the contribution rate has increased

beyond the upper limit, the nodes at the boundary will not send a message; they

will just switch themselves from SD to TAG, and start sending the aggregate

values to their previous parents.

3.4.3.3 AGGREGATION LAYER

TD algorithm uses both of the aggregation layer packets of SD and

TAG. TAG packets will be used in the tributary regions and SD packets will be

used in delta regions. Since this algorithm is a combination of SD and TAG

algorithms, the operation is also a mix of two. However, there are two additions

to these algorithms as follows.

The node that resides at the boundary, that is, nodes whose tree level is

the same as TD boundary will receive TAG packets but will broadcast SD

packets. Therefore, these nodes have to convert the TAG aggregate result to SD

synopses at the end of each epoch.

Second addition is that, when the query layer informs about a boundary

change, aggregation layer will act accordingly, and will update its boundary

information.

The operation of TD aggregation layer is summarized in the following

pseudocode.

55

if (query notification arrived)
{
 store query information;
 set next epoch_start, epoch_end, query_end timers;
 query_available = true;
}

if (epoch_start timer)
{
 read own sensor data;

 if (inside SD region)
 generate synopses;
 else
 store own sensor data;

 inside_epoch = true;
}

if (packet arrived from lower layer)
{
 if (not an aggregate packet)
 send it to query layer;
 else
 {
 if (inside_epoch)
 {
 if (inside SD region)
 aggregate synopses;
 else
 store aggregate value;
 }
 else
 discard packet;
 }
}

Figure-30 Aggregation layer operation of TD

56

if (epoch_end timer)
{
 inside_epoch = false;
 if (inside SD region)
 evaluate synopses;
 else
 aggregate all stored readings;

 send aggregation result to query layer;

 if (query_available)
 set next epoch_start, epoch_end timers;

 if (not sink node)
 {
 if (at the boundary)
 generate new synopses;

 if ((inside SD region) or (at the boundary))
 {
 prepare aggr. packet using synopses;
 broadcast it using network layer;
 }
 else
 {
 prepare aggr. packet using the result;
 send it to parent node;
 }
 }
}

if (query_end timer)
{
 query_available = false;
}

Figure-30 Cont’d

57

3.4.3.4 NETWORK LAYER

Network layer implementation of TD is the same as TAG, explained in

3.4.1.3.

3.4.4 DIRECTED DIFFUSION

3.4.4.1 QUERY LAYER

Directed Diffusion algorithm uses a query packet similar to TAG to

distribute the query into the network. The following figure shows the structure of

this packet.

Figure-31 Query layer packet structure for Directed Diffusion

The difference of this packet from TAG’s query packet is the sink node

field. This field contains the address of the sink node that makes the query. It is

important for Directed Diffusion algorithm, since there can be more than one sink

working in the same sensor network.

The following pseudocode shows the query layer operation of Directed

Diffusion.

Query Start
Time

Sink Node Query
Type

Aggregate
Type

Epoch
Duration

Query
Duration

Tree Level

58

if (sink node)
{
 prepare query packet;
 broadcast it using network layer;
}

if (query packet arrived from aggregation layer)
{
 if (not received before)
 {
 update parent node;
 send query notification to aggregation layer;
 rebroadcast query packet;
 }
 else
 {
 if (epoch and duration are different)
 {
 update query information;
 send reinforcement notification to aggr. layer;

 if (not source node)
 resend the packet to prev. response node;
 }
 }
}

if (response notification arrived)
{
 record address of the previous response node;

 if (sink node)
 {
 if (own query answered)
 {
 if (initial query)
 {
 prepare the reinforced query packet;
 send it to the previous response node;
 }
 else
 {
 record query answer;
 }
 }
 }
}

Figure-32 Query layer operation of Directed Diffusion

59

Every sink node starts their initial query by broadcasting a query

message. Query layers of the nodes that hear this message rebroadcast it and send

query information to their aggregation layers using the notification board.

Whenever this query reaches a node that has the requested information, the

aggregation layer of that node starts sending the required data back to the sink

node. As the query reply routes back to the sink via aggregation layers, query

layers of these nodes are also informed of the incoming reply and the address of

the sender. When the first response reaches sink node, it will reinforce this path

by sending a reinforced query packet, which contains increased epoch time and

duration compared to the initial query. Since every query layer keeps track of the

previous responses, this packet will travel along the reverse path of the incoming

reply via query layers of the nodes on the path.

3.4.4.2 AGGREGATION LAYER

Directed Diffusion uses the following query response packet to deliver a

query reply to the sink node.

Figure-33 Aggregation layer packet structure for Directed Diffusion

Query start time and sink node fields are used to identify the query that

is answered. Source node field is used to identify the query response while it is

being reinforced.

The aggregation layer operation of Directed Diffusion is summarized as

follows.

Query Start
Time

Sink Node Answer Source
Node

60

if (query notification arrived)
{
 record query information;
 if (data available)
 setup response timer;
}

if (response timer)
{
 read sensor value;
 prepare query response packet;
 send it to parent query node;
 setup next response timer;
}

if (packet arrived from lower layer)
{
 if (response packet)
 {
 send response notification to query layer;

 if (not sink node)
 resend the packet to previous query node;
 }
 else
 send to upper layer;
}

if (reinforcement notification arrived)
{
 update query epoch and duration;
}

Figure-34 Aggregation layer operation of Directed Diffusion

61

Query layer of a node sends the notification of incoming query to the

aggregation layer. Aggregation layer records the query information, and if it has

the requested data, it sets up the response timer according to the query epoch and

duration. When the timer starts, aggregation layer reads the sensor value, prepares

the response packet and sends it to the parent node that sent the query.

Afterwards, it sets up the next response timer. The node that receives this packet

notifies its query layer about the incoming data and the sender address. If the

node is not the sink, the packet is routed to the previous query sender. Thus,

response packet reaches to the sink node using the reverse path of the query.

Lastly, whenever the node is reinforced, the new query values are updated by the

help of the reinforcement notification.

3.4.4.3 NETWORK LAYER

Network layer implementation of Directed Diffusion is the same as

TAG, explained in 3.4.1.3.

3.4.5 SIMULATION RESULTS

In order to test and verify the proposed sensor network architecture,

several sensor network algorithms are simulated with this approach. The

simulated algorithms are TAG, Synopsis Diffusion, Tributary-Delta Coarse,

Tributary-Delta Fine and Directed Diffusion. The simulations are done using

OMNeT++ [16] as explained in section 3.3. Detailed explanations of the

simulated algorithms are given in section 3.4.

The first simulation compares TAG and SD algorithms according to

their network contribution percentages for different error probabilities. This

contribution percentage is measured as follows. Sink node sends a count query,

and the other nodes reply this query by generating 1 and summing all the results.

Finally, the result reaching to the sink node is divided to actual number of nodes

62

in the network. The simulation results are compared with Figure-7a of the study

on Synopsis Diffusion by Nath et.al. [9]. In order to have a similar environment,

the simulation parameters are adjusted according to [9]. Considering one pixel as

one centimeter, the simulation parameters are selected as shown in the following

table.

Table-1. Simulation parameters for node contribution rate comparison of TAG
and SD

 Synopsis Diffusion Study [9] This Simulation

Number of nodes 600 600

Simulation region 20ft x 20ft 610 x 610 pixels

SD Synopses 20 synopses, 32 bit 20 synopses, 32 bit

Transmission Range (*) 69 pixels

Number of readings
for every error level

500 1000

The link error probability is the probability for a node to drop an

incoming packet, or link failure probability explained in 2.3.2.4. For every error

probability, SD and TAG simulations are executed for 1000 times, and the

average of all the readings is taken. The results of this simulation are shown in

Figure-35 along with the simulation results of [9] for comparison. As seen in this

figure, our simulations results are compatible with the original simulation results

of SD and TAG.

(*) In [9], a realistic channel model which consists of 6 different error probabilities for different

transmission ranges is defined. However, instead of this realistic model, they have used a simpler

model for simulations, and the transmission range of this simple model is not specified. In this

simulation, the average range of that realistic model (2.28ft = 69 cm) is used as the transmission

range.

63

0

10

20

30

40

50

60

70

80

90

100

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Link Error Probability

P
e
rc

e
n
ta

g
e
 o

f
C

o
n
tr

ib
u
ti
o
n

TAG [9]

SD [9]

TAG

SD

Figure-35 Node contribution rates of TAG and SD for different error
probabilities

The second simulation is performed using the same simulation

parameters as the previous case. This time, the RMS errors produced by TAG and

SD are compared using the sum aggregate. The results are compared with Figure-

7b in [9].

For both of the algorithms, every node generates a constant reading

value of 20. The summation of these values, that is, sum aggregate is queried by

the sink node. The RMS error is calculated using the following formula:

∑
=

−
T

t

t TVV
V 1

2 /)(
1

 (1)

In this formula, V is the actual value, Vt values are the individual epoch

readings, and T is the total number of epochs, that is, 1000. In each epoch, nodes

take a single reading and transmit it; hence, a single aggregate result is generated

64

from the sensor network. The results of this simulation and the results of obtained

in [9] are shown in Figure-36. This figure also shows that our SD and TAG

simulations match well with the results of [9].

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Link Error Probability

R
M

S
 E

rr
o
r TAG [9]

SD [9]

TAG

SD

Figure-36 RMS error rate comparison of TAG and SD for different error
probabilities

The next simulation performs RMS error comparison for TAG, SD and

TD-Coarse algorithms. The aim is to achieve a graph similar to Figure-2 and

Figure-5a of the study on Tributary-Delta by Manjhi et.al. [11], where TD-Coarse

algorithm is applied for a global error scenario. The simulation parameters are

matched to the simulation of [11] as follows:

65

Table-2. Simulation parameters for RMS Error comparison of TAG, SD and TD

 Tributary-Delta Study
[11]

This Simulation

Number of nodes 600 600

Simulation region 20ft x 20ft 610 x 610 pixels

SD Synopses 40 synopses, 32 bit 40 synopses, 32 bit

Number of readings
for every error level

100 1000

The simulation results of TAG and SD are shown in Figure-37, and TD-

Coarse is shown in Figure-38. Both of these graphs include the results of [11].

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Link Error Probability

R
M

S
 E

rr
o
r TAG [11]

SD [11]

TAG

SD

Figure-37 RMS error comparison for TAG and SD

66

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Link Error Probability

R
M

S
 E

rr
o
r

TD-Coarse [11]

TD-Coarse

Figure-38 RMS error comparison for TD-Coarse

TAG, SD and TD-Coarse results in Figure-37 and Figure-38 are similar

to their counterparts in [11]. TAG and SD were already verified in the previous

simulation. The differences in the graphs are caused by using different random

number generators and using different topologies. Since there is no specific

random number generator defined for the simulations in [11], random number

generators of C and OMNeT++ are used in this study. Moreover, the simulation

topologies are not defined in [11] either, thus they are selected randomly for our

simulations.

The last TD simulation compares the TD-Fine with SD for regional

errors. The regional error is produced in the lower left quarter of the simulation

region (0;0 – 305;305), while the other parts of the network are error free. The

sink node is placed at the center (305;305). The other parameters are selected the

same as in Table-2. As seen in Figure 39, TD-Fine shows better performance to

SD for all regional error ranges, since TD-Fine switches only the erroneous

region to SD, but error-free regions still work as TAG. This graph does not have

a counterpart in Tributary-Delta study [11].

67

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Regional Link Error Probability

R
M

S
 E

rr
o
r

SD

TD-Fine

Figure-39 RMS error comparison for SD and TD-Fine for regional errors, no
global loss probability

The last simulation is the Directed Diffusion implementation. In this

simulation, the data delivery cost for all the nodes is calculated according to

network size. Data delivery cost is calculated by summing all of the packets

transmitted and received by the MAC layer for all the nodes in the network [4].

The simulation parameters are selected to match with the simulations of [4].

5 sinks and 5 sources are used in all of the simulations. The sinks are

randomly selected inside the lower 100 pixel rectangle of the simulation region,

and the sources are randomly selected from the top 100 pixel rectangle. The

density of the nodes is kept constant at 3200 px2/node for all network sizes. The

exploratory query duration is for one epoch only, and it is distributed to the

network through flooding. The first incoming data is reinforced and data coming

from other nodes is discarded. The reinforced query duration is for 9 epochs. The

results are obtained by taking the mean of 10 different simulations with different

topologies and using a 95% confidence interval.

68

The first graph of this simulation shown in Figure-40 is drawn by

omitting the initial query flooding and reinforcement phase, so the data delivery

paths are already established. This graph shows that, as the network size

increases, the cost of retrieving a query value per network size decreases

exponentially. This is the expected result of directed diffusion, since, the network

size increases geometrically while the path that delivers information from source

to the sink increases linearly. This graph is consistent with the analytical results

obtained in the Directed Diffusion study by Intanagonwiwat et.al. [4]. The y-axis

values for data delivery cost are comparable but they don’t have the same values

as Figure-6c of [4]; since their results are analytical, they are using an ideal

square-grid topology, and they consider data delivery cost per distinct data unit.

Our simulation uses total data delivery cost in the network, moreover, nodes are

distributed randomly.

0

5

10

15

20

25

30

35

40

50 100 150 200 250 300 350 400

Network Size

D
a
ta

 D
e
li
v
e
ry

 C
o
s
t
(p

e
r
n
e
tw

o
rk

 s
iz

e
)

Figure-40 Directed Diffusion data delivery cost vs network size, without
initial query flood

69

The graph in Figure-41 also shows the data delivery cost per network

size; but it includes all of the cost generated by the simulation. This graph can be

thought as a measure of average dissipated energy per node, since most of the

energy is used for transmission and reception. In Directed Diffusion study [4],

they performed simulations for average energy dissipation for different

configurations. Since we do not apply suppression in the network, our results are

consistent with the average dissipated energy without suppression graph shown in

Figure 9-b of [4]. The simulations of [4] calculates the energy loss by using real

power values for the antenna transmission, reception and idle states, so our y-axis

values are different from their graph.

0

20

40

60

80

100

120

50 100 150 200 250 300 350 400

Network Size

D
a
ta

 D
e
li
v
e
ry

 C
o
s
t
(p

e
r
n
e
tw

o
rk

 s
iz

e
)

Figure-41 Directed Diffusion data delivery cost vs network size

70

CHAPTER IV

DISCUSSION AND CONCLUSION

In this thesis, a modular sensor network protocol stack is presented,

defined and implemented using several sensor network algorithms. The

implementations are realized using OMNeT++ simulation environment.

Simulation results are compared with the original results of these algorithms.

The simulation results presented in Section 3.4.5 proves that the protocol

stack suggested in this study is applicable to sensor networks. It is observed that

the new layer stack proposed in this study has a similar performance to previous

work and does not result in performance degradation. TAG and SD simulation

results were similar to the results in [9] and TD result was similar to [11].

Directed Diffusion simulation results were as expected and similar to the results

in [4].

As explained in Section 2.2, Akyıldız et.al. [1] and Kumar at.al. [8] have

also proposed layered protocol stacks for sensor networks; yet applications of

these stacks to real sensor network algorithms are not widely and generally

available. In this thesis, along with proposing a new stack architecture for sensor

networks, various sensor network algorithms are also implemented using the

suggested stack. Furthermore, this architecture offers the following features;

modularity, reusability and the ability to be used as a framework for sensor

networks.

71

In the following section, these benefits are discussed in detail. In section

4.2, shortcomings and possible future work of this thesis are given.

4.1 BENEFITS OF THE PROPOSED ARCHITECTURE

The definition of modularity is the property of system modules being

cohesive inside and less coupled with each other. Both the TCP/IP and OSI

reference layered stack architectures aim to increase modularity by encapsulating

related tasks in one layer. With the modularity of layers, upper level layers will

be able to access lower-level functions transparently. Moreover, every layer can

be supported by different vendors, and can be implemented in different hardware

platforms. Modularity also leads to simplicity: every layer concentrates on its

specific task and the complexities of lower layers are hidden from it.

The most important advancement of the stack proposed in this study is

its modular architecture designed specifically for sensor networks. With this stack

design, algorithms can be directly and easily divided into query and aggregation

layers, without interfering with the tasks of application and network layers. These

layers are coupled minimally; the required communication between query and

aggregation layers is basically the notification of the incoming query downwards

and the aggregate result upwards. They are also cohesive; such that query layer is

concentrated with query optimization and distribution, while aggregation layer

focuses on data collection and aggregation.

The previous stack suggestions in [1] and [8] do not define the

implementation details for a particular algorithm. Consequently, the comparison

of our stack with the previous stacks is based on the implementations we

performed in this thesis. In the following paragraphs, TCP/IP, other stack

proposals and our approach are compared briefly.

If the traditional TCP/IP stack is to be used for the data-centric

algorithms implemented in this thesis, the actual algorithm designs will have to

be placed inside the application layer. On top of its normal assignment,

72

implementing the whole algorithm in one layer would make the design more

complex and less modular. Moreover, transport layer is not required for these

algorithms, thus this layer would become essentially null.

The stack proposed by Akyıldız et.al. [1] has three vertical planes

defined over the TCP/IP stack. These planes are power, mobility and task

management planes. The simulated algorithms do not require mobility

management, since they are oriented for stationary operations. The power

management is intertwined with the query and data collection algorithms, such as

sleep-wake up schedules of TAG and SD, or path enforcement of Directed

Diffusion. Thus, it is not easy to separate these procedures to place inside another

layer. The task management plane schedules and balances tasks for a specific

region. Scheduling algorithm could be applied to TAG; however, it would again

be difficult to separate from the original algorithm.

The stack suggested by Kumar et.al. [8] has a data fusion layer and it can

be used for the aggregation tasks of TAG, SD and TD algorithms. Nevertheless,

query and data collection operations would again have to be performed by the

application layer, just like TCP/IP. Moreover, algorithms that do not make data

fusion, e.g. Directed Diffusion, would always work in the application layer.

On the other hand, if our protocol stack is used, application and network

layers would continue to perform their usual tasks, and for all algorithms, the

core sensor network operations will be performed in query and aggregation

layers. With the help of these layers, the implementation of the algorithms would

be modular. In comparison to the structures in [1] and [8], our stack seems to

provide simplicity of implementation.

In Table-3, the sensor network algorithms simulated in this thesis are

classified according to the operations performed in the different layers of the

proposed stack structure. By examining the implementation details for these

algorithms, the modularity of this stack architecture can be observed.

73

Table-3. Algorithm comparison based on the operations performed in the different layers of the proposed stack

 TAG SD TD-Coarse TD-Fine Directed Diffusion

Query Layer Sink Node:

• Prepare query packet
• Broadcast query
• Receive and evaluate query

results

Other Nodes:

• Receive query
• Update query info
• Inform aggregation layer
• Rebroadcast query

Same as TAG TAG and:

Sink Node:

• Send count query
• Receive and evaluate count

response
• If required, broadcast a TD

adaptation message to the
network

TAG and:

Sink Node:

• Send count query

Nodes at TD Boundary:

• Receive and evaluate the
count response

• If required, send TD
adaptation message to
child nodes

TAG and:

Sink Node:

• Reinforce first arriving
response by sending an
updated query along that
path

Aggregation

Layer

• Receive query information
from query layer

• Wait for own epoch
• Read own sensor data
• Receive responses from

child nodes
• Aggregate all incoming and

own reading
• Send aggregated value to

parent node

• Receive query information
• Wait for own epoch
• Read own sensor data
• Generate synopsis
• Receive and merge

incoming responses from the
outer ring levels

• Send resulting synopsis to
the inner ring level

• If the node is in Tributary
section, act similar to TAG

• If the node is in Delta
section, act similar to SD

• If the node is at the
boundary,

• Collect and aggregate data
as TAG

• Generate synopsis and send
to inner ring

Same as TD-Coarse • Receive query information
• If data is available, send own

data to the previous hop
along the query path

• Send the data of other nodes
to previous hop along the
query path

Network

Layer

• Send a network packet to a
destined node using node
address

• Filter incoming packets
according to own address

• Interface with MAC

Same as TAG Same as TAG Same as TAG Same as TAG

74

Another advantage of this stack is reusability. It is possible that different

algorithms use the same layer design, while altering other layers slightly or

completely. As seen in Table-3, TAG and SD algorithms can use the same query

layer, and they have different aggregation function implementations in

aggregation layer. TD algorithm combines the aggregation layers of TAG and

SD, and it adds adaptation logic into their query layer. Directed Diffusion also

extends the query layer of TAG by including a query enforcement process.

In addition to reusability, this modular sensor stack leads to simplified

refactoring. Since the algorithm is divided into separate functional parts, it will be

easier to refactor the design of a single layer, and implement it transparently

without disturbing other layers.

The last benefit of this architecture is that it can be used as a framework

for sensor network algorithms. This framework will be useful in classifying and

comparing different algorithms based on the operations performed on different

layers. It will be possible to point out differences and similarities of sensor

network algorithms; understanding and analyzing an algorithm will also be less

complicated.

Table-3 shows that our stack architecture is quite convenient to classify

and compare algorithms. For these implementations; network layers of all

algorithms, query layers of TAG and SD, and aggregation layers of TD-Coarse

and TD-Fine are completely the same. The difference between TAG and SD is at

the aggregation layer, the way they process and send data. The difference of TD-

Coarse and TD-Fine is at the query layer, the first one makes network adaptations

initiated from the sink node, while the second one makes adaptations initiated

from the nodes at the TD-boundary. Aggregation layers of TD algorithms

combine TAG and SD aggregation layers, and include a data merging procedure

for the nodes at the boundary. Directed Diffusion has extensions to the query

layer of TAG; it contains procedures to enforce the minimum delay data path.

Contrary to TAG, aggregation layer of Directed Diffusion does not wait to send

data, or make data aggregation; it just sends its own data, or routes received data

to previous query node.

75

4.2 SHORTCOMINGS AND FUTURE WORK

The other major stack structures proposed by Akyıldız et.al. [1] and

Kumar et.al. [8] have not been used in implementing the algorithms considered

within the scope of this study. This is because, it has not been possible to access

specific implementation details based on those structures in the literature.

Therefore, in this study, it has not been possible to claim that the structure

proposed here is in any way superior to those others. It remains as a future work

to examine whether different structures lead to concrete advantages over one

another in terms of efficiency and effectiveness.

The layered stack structure explained in this thesis is the basis for a

generalized, modular and applicable sensor network protocol architecture. In

order to improve this structure and to strengthen the claim of being a generalized

stack for sensor networks, more sensor network systems should be implemented

and tested with this protocol stack. Likewise, the interface definitions of the

layers are specified considering the simulated algorithms. These interfaces should

be improved by generalizing them and making them applicable to any sensor

network system.

This study has concentrated mostly on query and aggregation layer

operations. The simulations did not consist of complex routing tasks for network

layer. As a future work, sensor network systems that require intense routing

operations should be investigated. In this sense, semantic routing trees of TinyDB

[3] explained in Section 2.3.2.1 could be implemented using the network layer

more effectively. Another subject could be to examine and implement query

informed routing using the network and query layers in conjunction.

Query layer and aggregation layer keep the addresses of one hop

neighbors, since they are directly related to query and data response tasks. It

should be examined whether keeping the addresses inside network layer and

feeding the data using query and aggregation layers will improve modularity or

not.

76

REFERENCES

[1] I. F. Akyıldız, M.C. Vuran, Ö.B. Akan, W. Su, "Wireless Sensor Networks:

A Survey Revisited", to Appear in Computer Networks (Elsevier) Journal, 2006.

[2] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: A Tiny

Aggregation Service for Ad-hoc Sensor Networks”, ACM SIGOPS Operating

Systems Review, Vol. 36, No. SI, pp. 131–146, 2002.

[3] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, "An

Aquisitional Query Processing System for Sensor Networks", ACM Transactions

on Database Systems, Vol. 30, No. 1, pp. 122–173, March 2005.

[4] C. Intanagonwiwat, R. Govindan, D. Estrin and J. Heidemann, "Directed

Diffusion for Wireless Sensor Networking", IEEE/ACM Transactions on

Networking, Vol. 11, No. 1, pp. 2–16, February 2003.

[5] N. Sadagopan, B. Krishnamachari and A. Helmy, “Active Query

Forwarding in Sensor Networks”, Computer Networks (Elsevier) Journal,

Vol. 3, No. 1, pp. 91–113, January 2005.

[6] Y. Yao and J. Gehrke, “Query Processing in Sensor Networks”,

Proceedings of the 1st Biennial Conference on Innovative Data Systems Research

(CIDR), pp. 233–244, January 2003.

77

[7] O. Gnawali, R. Govindan and J. Heidemann, “Implementing a Sensor

Database System Using a Generic Data Dissemination Mechanism”, IEEE Data

Engineering Bulletin, Vol. 28, No. 1, pp. 70–75, March, 2005.

[8] R. Kumar, S. PalChaudhuri, D.Johnson and U. Ramachandran, “Network

Stack Architecture for Future Sensors”, Rice Computer Science Technical

Report, TR-04-447, 2004.

[9] S. Nath, H.Yu, P. B. Gibbons, S. Seshan, “Synopsis Diffusion for Robust

Aggregation in Sensor Networks”, Intel Research Technical Report,

IRP-TR-04-13, April 2004.

[10] J. Considine, F. Lee, G. Kollios, and J. Byers, “Approximate Aggregation

Techniques for Sensor Databases”, Proceedings of the 20th International

Conference on Data Engineering (ICDE), p. 449, 2004.

[11] A. Manjhi, S. Nath an P. B. Gibbons, “Tributaries and Deltas: Efficient and

Robust Aggregation in Sensor Network Streams”, Proceedings of the 2005 ACM

SIGMOD International Conference on Management of Data, pp. 287–298, June

2005

[12] P. Flajolet and G. N. Martin, “Probabilistic Counting Algorithms for

Database Applications”, Journal of Computer and System Sciences, Vol. 31, pp.

182–209, 1985.

[13] S. Vardhan, M. Wilczynski, G. Pottie, and W. J. Kaiser, “Wireless

Integrated Network Sensors (WINS): Distributed in Situ Sensing for Mission and

Flight Systems,” IEEE Aerospace Conference, Vol. 7, pp. 459–463, March 2000.

78

[14] B. Warneke, B. Liebowitz, and K. S. J. Pister, “Smart Dust:

Communicating with a Cubic-Millimeter Computer,” IEEE Computer Magazine,

Vol.34, No.1, pp. 44–51, January 2001.

[15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J.Pister,

“System Architecture Directions for Networked Sensors”, Proceedings of the 9th

International Conference on Architectural Support for Programming Languages

and Operating Systems, pp. 93–104, November 2000.

[16] OMNeT++ Discrete Event Simulator, http://www.omnetpp.org (last access:

August 2006).

[17] A. Varga, “OMNeT++ 3.2 User Manual”,

http://www.omnetpp.org/doc/manual/usman.html (last access: August 2006).

[18] INET Framework for OMNeT++,

http://www.ctieware.eng.monash.edu.au/twiki/bin/view/Simulation (last access:

August 2006).

[19] A. Varga, “INET Framework Documentation”,

http://www.omnetpp.org /doc/INET (last access: August 2006).

[20] B.Krishnamachari, D.Estrin and S.Wicker, “The Impact of Data

Aggregation in Wireless Sensor Networks”, Proceedings of the 22nd

International Conference on Distributed Computing System Workshops, pp. 575–

578, July 2002.

[21] I. F. Akyıldız, W. Su, Y. Sankarasubramaniam, E. Cayirci,"Wireless Sensor

Networks: A Survey", Computer Networks (Elsevier) Journal, Vol. 38, No. 4, pp.

393–422, March 2002.

79

[22] D. Estrin, L. Girod, G. Pottie, M. Srivastava, “Instrumenting the World

with Wireless Sensor Networks”, Proceedings of the International Conference on

Acoustics, Speech and Signal Processing (ICASSP 2001), Vol. 4, pp. 20–33, May

2001

80

APPENDIX

SOURCE CODES AND EXECUTABLE FILES OF THE SIMULATIONS

The source codes and executable files of the simulations performed in this study

are given in the CD attached at the back cover of this thesis.

