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Abstract

Term Structure Of Government Bond Yields:

A Macro-Finance Approach

Halil Artam

M.Sc., Department of Financial Mathematics

Supervisor: Assist. Prof. Dr. Kasırga Yıldırak

SEPTEMBER 2006, 74 pages

Interactions between macroeconomic fundamentals and term structure of

interest rates be stronger according to the way of changes in structure of world-

wide economy. Combined macro-finance analysis determines the joint dynamics

of term structure of interest rates and macroeconomic fundamentals. This the-

sis provides analysis of two existing macro-finance models and an original one.

Parameter estimations for these three macro-finance term structure models are

done for monthly Turkish data by use of an efficient recursive estimator Kalman

filter. In spite of the small scale application the results are satisfactory except

first model but with longer sets of macroeconomic variables and interest rate

data models provide more encouraging results.

Keywords: Term structure, interest rates, macroeconomic fundamentals, Kalman

filter.
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Öz

DEVLET TAHVİLİ GETİRİLERİ VADE YAPISI:

MAKRO-FİNANS YAKLAŞIM

Halil Artam

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Kasırga Yıldırak

Eylül 2006, 74 sayfa

Dünya ekonomisindeki yapısal değişiklikler doğrultusunda, temel makroe-

konomik göstergeler ve faiz haddi vade yapıları birbirlerine daha güçlü tesir

etmeye başlamıştır. Birleşmiş makro-finans analizi faiz haddi vade yapıları ile

temel makroekonomik değişkenlerin birleşmiş dinamiklerini açıklamaktadır. Bu

çalışma varolan iki makro-finans modelini ve yeni önerdiğim modelin analizini

ortaya koymaktadır. Bahsi geçen üç makro-finans vade yapısı modellerinin

parametre tahminleri Kalman filtrelemesi kullanılarak aylık Türkiye verisiyle

geçekleştirilmiştir. Küçük ölçekli veriler kullanılmasına rağmen sonuçların bir-

inci model dışında gözlenilen getiri eğrisini iyi ifa etmesi, daha uzun makroeko-

nomik değişkenler ve faiz veri kümeleri kullanılarak yapılacak olan çalışmalarda

sonuçların daha iyi ifa eder şekilde çıkacağı beklentisini artırmıştır.

Anahtar Kelimeler: Faiz haddi, vade yapısı, temel makroekonomik göstergeler,

Kalman filtresi.
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Nazlıben and Sühan Altay for their support.

vii



Table of Contents

Plagiarism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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Chapter 1

INTRODUCTION

The term structure of interest rates is commonly cited in literature as an

indicator of monetary policy especially for economic activity and inflation. Hav-

ing a bidirectional characterization, term structure of interest rates is sensitive

and responds to macroeconomic shocks. Hence, understanding the stochastic

behaviour of term structure of interest rates in the light of macroeconomic evo-

lution is very important to decide about monetary policy transmission.

The monetary authority to decide how to conduct the monetary policy mon-

etary policy to achive the goals of economic stabilization is the central bank and

short term interest rates are a key instrument to realize a powerful monetary

policy under the control of central banks. The most cited theory to explain the

determinants of the shape of the term structure of interest rates is expectation

hypothesis theory. This theory argues that yields with longer term interest rates

are equal to the average of expected future short term interest rates. According

to the expectation hypothesis short term interest rates are a building block for

longer term rates. These two properties imply that the short term interest rates

is a critical intersection point between finance and macroeconomy.

The financing of public debt, expectations of real economic activity and infla-

tion, interest rate risk management of a portfolio including interest rate sensitive

instruments and valuation of interest rate sensitive derivatives are other reasons

which make the importance of understanding term structure greater. These im-
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portances of understanding the behaviour of the term structure of interest rates

force someone modeling and describing the term structure of interest rates. By

fitting a model to an available interest rate data, both financial economists and

macroeconomists would like to discover the dynamics of interest rates.

Financial economists try to develop models for pricing and forecasting in-

terest rate related securities and these models are based on the assumption of

no arbitrage. They are also called traditional models and focusses on jointly

modeling the entire yield curve and propose the existence of unobserved latent

risk factors or a few linear combination of interest rates with different matu-

rities. While fitting these models is rather good since they could not provide

relationships between term structure and macroeconomic fundamentals. The

pioneers of this literature are Vasicek (1977), Cox Ingersoll and Ross (1985),

Duffie and Kan (1996), Duffie and Singleton (1997), Dai and Singleton (2000,

2002), Duffee(2002), Knez Litterman and Scheinkmann (1994). [43] and [10]

used dynamics of short term interest rate as the underlying state factor. Rest

of papers commonly study with the principal components of yield curve as

state factors and try to determine the shape of the yield curve by means of

these principal components. [34] use principal component analysis to present

factors affecting the yield curve in terms of the general level of interest rate, the

slope of the yield curve and its curvature. These three latent factors are often

interpreted as level, slope and curvature according to their effects on the yield

curve following [34].

On the other hand macroeconomists try to draw the triangle between in-

terest rates, monetary policy and macroeconomic fundamentals without any

restrictions about absence of arbitrage and based on expectation hypothesis.

As an alternative approach, statistical techniques use to determine the shape

of the yield curve usually do not consider the factors driving it. The pioneer of

this approach, Nelson and Siegel (1987), have relatively few parameters and suc-

ceed fairly well in capturing the overall shape of the yield curve. Although they

can mimic hump-shaped yield curves, they could not do so for spoon-shaped
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ones. Thus, in general, it is not possible to match arbitrary term structures with

sufficient precision. Spline techniques, kernel methods and parametric classes

such as Nelson-Siegel family of curves are most widely used estimation methods

in statistical techniques approach.

In the beginning of the second millenium, the need to bridge the gap between

macroeconomic and term structure models, a joint characterization of macroe-

conomy and term structure by adding observable macroeconomic variables to

the latent factors which is presented by traditional term structure modelling

literature became necessary. Macro-finance models present jointly developing

dynamics of interest rates and macroeconomic variables which reciprocally in-

teract between each other. The joint macro-finance modelling strategy provides

the most comprehensive understanding of the term structure as Diebold Rude-

busch and Aruoba (2006) argued.

This thesis provides detailed explanations about two existing joint macro-

finance models and give empirical results by use of zero coupon Turkish govern-

ment bond yields and related macroeconomic variables. One of the pioneering

papers of this joint macro-finance modeling strategy literature is Ang and Pi-

azzesi (2003). It offers a no arbitrage vector autoregression framework. [17] can

be given as a second paper which offers a Nelson Siegel based representation of

macro finance modeling in state space form. Comments about advantages and

disadvantages of these two models and the empirical results for Turkish data

will appear in following chapters. In the final an original macro-finance model

based on Vasicek’s term structure solution and forward-looking Taylor Rule has

been proposed.

The thesis proceed as follows. In Chapter 2 preliminaries about interest

rates and yield curves are provided and the most cited term structure theory,

expectations hypothesis is discussed. Chapter 3 provides the most popular ap-

proaches for term structure modelling, equilibrium and no-arbitrage approaches.

It presents the types of these two approaches and give explanations about them.

A detailed description about the framework of two existing and the original

3



macro-finance models is provided in Chapter 4. The data description and em-

pirical analysis of these three models appear in Chapter 5 by use of zero coupon

Turkish government bond yields and related macroeconomic variables. A brief

explanation about the Kalman filter is also included in this chapter since it

is used to estimate the models. In the final chapter conclusion and further

suggestions are provided.
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Chapter 2

PRELIMINARIES

2.1 ESSENTIALS ABOUT YIELD CURVE

Brief explanation about some key relationships between interest rates and

term structure needs to be given since they are frequently used throughout the

thesis.

A risk free zero coupon bond, a bond with no coupon payments, is a building

block in fixed-income analysis. The price at time t for a bond mature at time T

will be denoted by P (t, T ) for any t < T as a function of the current time t and

maturity time T where P (T, T ) = 1. A zero coupon bond of maturity T pays

to its holder one unit of cash at a pre-specified date T in the future. The term

structure of interest rate estimation from bond market data is just a simple set

of calculations.

The yield to maturity (YTM), is the continuously compounded rate of return

that causes the market price of bond P (t, T ) to be equal to the present value

of the future cash flows. The yield to maturity is denoted by Y (t, T ) and the

price of bond at time t is given in terms of yield to maturity as

P (t, T ) = e−(T−t)Y (t,T ), ∀t ∈ [t, T ]. (2.1.1)

The term structure of interest rates or the yield curve is the function that
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presents the relationship between yields Y (t, T ) and their maturities T . It is

obvious that for arbitrary fixed maturity date T , there is a one-to-one corre-

spondence between the bond prices process P (t, T ) and its yield to maturity

process Y (t, T ) from (2.1.1). Given the yield to maturity process Y (t, T ), the

corresponding bond price process P (t, T ) is uniquely determined by following

formula

Y (t, T ) = − ln(P (t, T ))

T − t
. (2.1.2)

The initial term structure of interest rates may be represented either by the

current bond prices with different time to maturity or by the initial yield curve

Y (0, T ) as

P (0, T ) = e−T×Y (0,T ) ∀T ∈ [0, T ]. (2.1.3)

Instantaneous interest rate is an important and useful instrument in mod-

elling interest rates and denoted by r(t). The limit of yield to maturity as T → t

gives the instantaneous short rate as follows

r(t) = lim
T→t

Y (t, T ). (2.1.4)

In reality, the instantaneous short term interest rate does not exist, it is just

a theoretical construct used to make the modelling process easier since the most

cited traditional stochastic interest rate models are based on the specification

of a short term rate of interest.

The rate that can be agreed upon at time t for a risk-free loan starting at

time T1 and finishing at time T2 is called the forward rate and it is denoted by

f(t, T1, T2)

f(t, T1, T2) =
ln P (t, T1)− ln P (t, T2)

T2 − T1

(2.1.5)

and the instantaneous forward rate is

f(t, T ) = f(t, T, T ). (2.1.6)
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It is the rate that one contracts at time t for a loan starting at time T for an

instantaneous period of time. We have

f(t, T ) = −∂P (t, τ)

∂τ
|τ=T = − 1

P (t, T )

∂P (t, T )

∂T
(2.1.7)

under the assumption that the bond prices are differentiable. The bond price

can be obtained in terms of forward rates as

P (t, T ) = e−
R T

t f(t,s)ds (2.1.8)

therefore we can write r(t) = f(t, t).

The yield curve for any given day can be obtained from the daily prices of

interest rate instruments. Yields using throughout this study are obtained by

using zero coupon bond prices with different time to maturities. The relation-

ship between yield on zero coupon bond and maturity is referred as the term

structure of interest rates. Since there is a one-to-one correspondence between

yields and bond prices, studying yield curve is equivalent with studying bond

valuation.

Examination of the term structure of interest rate is crucial in the analy-

sis of all interest rate sensitive securities, forecasting the future interest rate,

pricing fix payment contracts, hedging for portfolios include interest rate sensi-

tive instruments, having arbitrage between bonds with different maturities and

figuring expectations about the future path of the economy.

The shape of the yield curve can be used when analyzing the evolution of

the term structure of interest rate over time. The shape of the yield curve may

be a flat one which means longer term rates are almost the same as shorter ones

or upward sloping which means longer term rates are higher than shorter ones

or downward sloping which says short term interest rate fluctuate more than

long term rates.

An understanding of the stochastic behavior of yields is important for four

reasons. The first one is the conduct of monetary policy since central banks seem
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to be able to move the short end of the yield curve to achieve their economic

stabilization target and the long term rates are the average of expected future

short rates at least after an adjustment of risk. A powerful model of the yield

curve helps understanding the relationship between long and short term rates

and deciding adjustment of short rate to manage a powerful monetary policy

transmission. Forecasting is the second important aspect of understanding the

yield curve. The current term structure contains information about the future

path of the economy since long term interest rates are conditional expected

values of future short rates. Thirdly yield curve can be given as constituting a

debt strategy. Governments need to decide about the maturity of bonds when

they issuing new debts. In this manner, it is important to consider how various

issuance strategies perform under different interest rate outcomes. The last but

not the least understanding the yield curve helps better risk management and

derivative pricing. To manage risks like paying short term interest rates on

deposits while receiving long term interest rates on loans, banks need to decide

and compute hedging strategies with respect to changing state of the economy.

The changing state of the economy affects the pricing processes for interest rate

sensitive instruments.

2.2 EXPECTATIONS HYPOTHESIS

A number of theories have developed to understand the behavior of the

term structure of interest rates. The most cited theories are based on market

expectations hypothesis and generally the theory of term structure is called

expectations hypothesis. Expectations hypothesis has an important role in the

analysis of the term structure of interest rates. The hypothesis suggest that the

continuously compounded zero coupon bonds with maturity T , Y (t, T ) equals

the average of the current and expected future short rates r(t + k) for 0 < k <

8



T − t plus a maturity specific constant:

Y (t, T ) =
1

T

T−t−1∑

k=0

Et[r(t + k)] + αT . (2.2.9)

The expectation hypothesis argue that the current term structure says some-

thing about investors expectations of future interest rates and by use of these

information someone guess what actual future rates might be. The expecta-

tions hypothesis predict that when the expected future short rates are falling,

the yield curve will slope downward and when we expect them to rise, the curve

will be slope upward. Another alternative scenario concludes that the upward

sloping yield curve can be given as uncertainty about long term bond yields

which makes them systematically less attractive to lenders than the short term

bonds. If it is certain that the short term rate will remain constant, lenders

should be indifferent between lending on short or long term bonds with respect

to expectation hypothesis. These two distinct scenarios give the same result

shows the excellence flexibility of expectations hypothesis. The alternative sce-

nario for the upward sloping of the yield curve based on uncertainty about

future interest rates and this says that the expectation hypothesis is exactly

true in a certain world by the force of no-arbitrage but in a stochastic world

uncertainty causes systematic distortion of expectation hypothesis.
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Chapter 3

TERM STRUCTURE

MODELLING

An interest rate model characterizes the uncertainty on future interest rates

based on today’s information. The last three decades witnessed significant de-

velopments in term structure modelling. Conducting of monetary policy, fore-

casting for the future path of the economy, public debt policy and the risk

management of a portfolio of interest rate sensitive securities make understand-

able the term structure of interest rate crucial. There are various types of ap-

proaches trying to model the term structure of interest rates. The most popular

approaches are equilibrium, no-arbitrage models and functional form models.

Most of the one-factor interest rate models take the short rate as the basis

for modelling the term structure of interest rate. The first interest rate models,

equilibrium models, were not offered to fit an arbitrary initial term structure.

The equilibrium approach focus on posit an endogenously specified term struc-

ture of interest rate under various assumptions about economic equilibrium and

absence of arbitrage are based on a given market price of risk and other param-

eters governing collective expectations by using typically affine models. The

equilibrium approach derives a stochastic process from the short term rate in

a risk neutral world, typically using affine models, and finally contributes and

decides about effects of these process on interest rate claims. A detailed in-

formation about affine models is given in [39]. This approach derive the term

10



structure in models with consumer maximization and, occasionally, production

functions.

In contrast with equilibrium approach, no arbitrage framework focuses on

perfectly fitting the term structure at a given point in time to ensure that

no arbitrage possibilities exist and try to choose parameters to determine the

behavior of the term structure of interest rate in future under assumption of

risk neutral scenario. Figure 3.1 shows the difference between these two term

structure modelling approach. The idea is to write a plausible mathematical

description of the term structure which is numerically tractable. Construction

of no-arbitrage models imply that they are exactly consistent with the current

term structure.

No−Arbitrage ModelsEquilibrium Models

estimated curve
actual values

estimated curve
actual values

Figure 3.1: Estimation of Short Rate with Equilibrium and No-Arbitrage Mod-
els
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3.1 EQUILIBRIUM MODELS

A general representation for one factor models is given by

dr(t) = µ(t, r)dt + ν(t, r)dWt, (3.1.1)

where r is the short rate, µ(t, r) and ν(t, r) represent the average rate of change

or instantaneous drift and variance of the short rate process respectively. Drift

term is the deterministic part and variance is the stochastic part of the short

rate process. Furthermore dWt represents an increment in a Wiener process

over a small time interval dt. The value of a discount bond with maturity T

for t < T can be given as the expectation of the payoff discounted at the future

levels of the short rate in following form

P (t, T ) = Et[e
− R T

t r(s)ds], (3.1.2)

where Et imply the conditional expected value in the risk neutral world on

information available up to time t. The behavior of the term structure of interest

rates can be determined by the short rate process under the assumption of no-

arbitrage.

Although classical models are motivated by their analytical and mathemat-

ical tractability, if a so called market risk premium is not included, they have

a weak ability to describe the real data. Absence of arbitrage restriction is the

main reason creating this drawback. The equilibrium models do not tell us any-

thing useful about the real world dynamics of interest rates since they assumed

a risk neutral scenario.

3.1.1 Vasiček Model

[43] presented one of the first term structure model based on no-arbitrage

considerations. This model assumes a risk neutral scenario and offer a model

to determine the instantaneous short rate dynamics as an Ornstein-Uhlenbeck
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process in following form:

dr(t) = κ(θ − r(t))dt + σdWt (3.1.3)

where κ, θ, σ are strictly positive constants Wt is a standard Wiener process

and movements of the instantaneous short rate follow a Brownian motion, which

indicates that the spot interest rate is a continuous stochastic process and the

difference of two interest rates with different maturities has mean zero and

variance exactly equal to the maturity gap κ. The Vasiček model says that the

instantaneous short rate follows a trend with a mean reverting characteristic.

If r(t) goes over θ, then r(t) tends to adjust with a speed of κ to its average

long term level θ.

Vasiček model is popular because of its analytical and mathematical tractabil-

ity. Integrating the stochastic differential equation (3.1.3) we get the expression

for the instantaneous interest rate as

r(t) = r(s)e−κ(t−s) + θ(1− e−κ(t−s)) + σ

∫ t

s

e−κ(t−u)dW (u) (3.1.4)

for s < t. The instantaneous short rate r(t) is normally distributed for the given

set of information at time s:

r(t) | Fs ∼ N(θ + (r(s)− θ)e−κ(t−s),
σ2

2κ
(1− e−2κ(t−s))). (3.1.5)

The prices of a discount bond solves the following partial differential equa-

tion under all of the above assumptions

∂P

∂t
+ (κ(θ − r(t))− λσ)

∂P

∂r
+

1

2
σ2∂2P

∂r2
− rP = 0 (3.1.6)

where P (t, T ) is the price at time t of a discount bond maturing at time T , with

unit maturity value P (T, T ) = 1. Furthermore κ(θ − r(t)) the instantaneous

drift of the process of r and λ = µ−r
σ

is usually called the market price of risk.

If r and λ are specified, the bond prices obtained by solving (3.1.6) subject to

13



the boundary condition P (T, T ) = 1. When the expected instantaneous rates

of return on bonds of all maturities are the same, the bond price can be given

as

P (t, T ) = Et(e
− R T

t r(τ)dτ ), (3.1.7)

and the analytical solution is

P (t, T ) = eA(t,T )r(t)+B(t,T ), (3.1.8)

where

A(t, T ) =
1

κ
(e−(T−t)κ − 1), (3.1.9)

B(t, T ) =
σ2

4κ3
(1−e−2(T−t)κ)+

1

κ
(θ−λσ

κ
−σ2

κ2
)(1−e−(T−t)κ)−(θ−λσ

κ
− σ2

2κ2
)(T−t).

(3.1.10)

By use of (2.1.2) the yield to maturity can be written as

Y (t, T ) = − 1

T − t
[
1

κ
(e−(T−t)κ − 1)r(t) +

σ2

4κ3
(1− e−2(T−t)κ)

+
1

κ
(θ − λσ

κ
− σ2

κ2
)(1− e−(T−t)κ)− (θ − λσ

κ
− σ2

2κ2
)(T − t)]

(3.1.11)

The yield to maturity Y (t, T ) with respect to given set of information at s ≤ t

is normally distributed

Y (t, T ) | Fs ∼ N(µR, σ2
R) (3.1.12)

with

µR = (1− e−κ(t−s))(R(t,∞) +
1− e−κT

κT
(θ −R(t,∞)) +

σ2(1− e−κT )2

4κ3T
)

+ e−κ(t−s)R(s, t), (3.1.13)

σR = (
1− e−κT

κT
)2(1− e−2κ(t−s))

σ2

2κ
, (3.1.14)
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where R(t,∞) is

R(t,∞) = lim
t→∞

R(t, T ) = θ − λσ

κ
− σ2

2κ2
(3.1.15)

as time to maturity tends to infinity, volatility of the term structure tends to

zero.

The Vasiček model has some drawbacks based on its assumptions. Since

the movements of instantaneous short rate obeys Brownian motion, the spot

rate can be negative. Another drawback of this model is the perfect correlation

for yield curve from (3.1.4). Perfect correlation means that the correlation of

two random interest rates with different maturities is always one, which means

rejected. And as a common problem of equilibrium models, the Vasiček model

also does not fit the initial term structure.

3.1.2 Cox-Ingersoll-Ross Model

[10] proposed an alternative model based on Vasiček to prevent the oc-

currence of negative short-term interest rate r(t) faced in Vasiček model by

introducing a
√

r(t) in the variance term of the short rate process. The CIR

model is

dr(t) = κ(θ − r(t))dt + σ
√

r(t)dWt (3.1.16)

CIR has the same assumptions and parameters as the Vasiček model except

that the standard deviation is proportional to
√

r(t), which guarantees the

nonnegativeness of the spot rate. The CIR model gives a detailed prediction

about the response of the term structure into changes in underlying variables

that effect the behavior of term structure of interest rate. This approach is a

result of the CIR point of view since consider the problem of understanding the

term structure as a problem in general equilibrium theory.

CIR model drawbacks show a similarity with the Vasiček model except avoid-

ing the occurrence of negative spot rate. Both the Vasiček and CIR models are
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affine models since the yield to maturity Y (t, T ) is an affine function of the

instantaneous short rate r(t) as given in (3.1.11).

3.2 NO-ARBITRAGE MODELS

The no arbitrage approach provides an exact fit to the initial term structure

of interest rates and specifies the stochastic evolution of the term structure. In

order to achieve that there are no arbitrage possibilities.

3.2.1 Ho and Lee Model

The first no arbitrage model of the term structure of the interest rate is [29].

The short rate process under the no arbitrage assumption can be given as

dr(t) = θ(t)dt + σdz, (3.2.17)

where r(t) is the short rate at time t, σ is constant and θ(t) is a function of

time, provides an exact fit to the initial term structure and given as

θ(t) = f(0, t) + σ2t. (3.2.18)

Here f(0, t) is the instantaneous forward rate at t = 0. The value of a discount

bond can be given analytically as

P (t, T ) = A(t, T )e−r(T−t), (3.2.19)

where

ln(
P (0, T )

P (0, t)
)− (T − t)

∂ ln(P (0, T ))

∂t
− 1

2
σ2t(T − t)2 = 0, (3.2.20)

The advantages of Ho and Lee model can be given as analytical tractability

and exact fitting to the initial term structure of interest rates. On the other
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hand containing no mean reversion and having all spot and forward rates the

same volatility can be given as drawbacks of this model.

3.2.2 Heath-Jarrow-Morton Model

Heath-Jarrow-Morton approach provide the stochastic evolution of dynam-

ics of the entire yield curve by the use of instantaneous forward rates under no

arbitrage considerations. They perform to equate the underlying securities with

the entire yield curve by use the spot curve observed in the market. The ab-

sence of arbitrage implies that the discounted bond prices of such products are

martingale under a risk neutral probability. The Heath-Jarrow-Morton process

for forward rates can be given as

df(t, T ) = α(t, T )dt + σ(t, T )dW (t), (3.2.21)

where f(t, T ) is the instantaneous forward rate of maturity T − t, mature at T

and α(t, T ) is the instantaneous drift as follows

α(t, T ) = σ(t, T )

∫ T

t

σ(t, τ)dτ.

Here, σ(t, T ) is the standard deviation of f(t, T ) and W (t) is a standard Wiener

process. The single factor Heath-Jarrow-Morton approach could be extended

to a model with multi-factors

df(t, T ) = α(t, T )dt +
∑

k

σk(t, T )dW (t), (3.2.22)

where the instantaneous drift for the multi-factors Heath-Jarrow-Morton model

is given as

α(t, T ) =
∑

k

σk(t, T )

∫ T

t

σk(t, τ)dτ. (3.2.23)

As a characteristic property of no arbitrage models, the Heath-Jarrow-

Morton approach also consistent with the initial term structure data. On the
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other hand, it is difficult to obtain closed form solutions for the values of bonds

and interest rate derivatives. Although classical models are motivated by their

mathematical tractability, they have a weak ability to describe the real data un-

less a so-called market-risk premium is included, this is also true for the popular

Heath-Jarrow-Morton model.

3.2.3 Hull White Model

Hull and White (1990) provide a class of models that both incorporate the

properties of no arbitrage and equilibrium models. Ho-Lee model do not im-

pose mean reversion property, however, Hull-White model incorporates deter-

ministically the mean reversion property and exact fit of the initial yield curve.

Hull-White extend the equilibrium models Vasiček and CIR with settling a time

varying parameter to perform an exact fit to the currently observed yield curve.

The extended Vasiček model provides a closed form solution for the instanta-

neous short rate. The short rate process for this model can be written as

dr(t) = (θ(t) + α(t)r(t))dt + σ(t)dW (t), (3.2.24)

where θ(t), σ(t) and α(t) are functions of t. If σ(t) and α(t) are assumed to be

constants, the analytic solution for the short rate can be given as

r(t) = e−αtr0 +

∫ t

0

e−α(t−s)θ(s)ds +

∫ t

0

e−α(t−s)σdW (s)

= e−α(t−u)ru +

∫ t

u

e−α(t−s)θ(s)ds +

∫ t

u

e−α(t−s)σdW (s). (3.2.25)

To summarize the advantages and disadvantages of each approach can be

given as follows in pricing interest rate derivatives. The advantage of the equi-

librium models is that all interest rate derivatives are valued on a common

basis. However, the equilibrium models have some disadvantages. First, they

do not correctly price actual bonds and derivatives. Second, they have not

sufficiently incorporated empirical realism, i.e., the model term structure does
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not fit the initial term structure and because of these reasons, they may admit

arbitrage. On the other hand, no-arbitrage models have the advantage that the

model term structure can fit the initial term structure. The disadvantages of

the no-arbitrage models are as follows: First, there is no guarantee that the

estimated function for the term structure of interest rate will be consistent with

the previously estimated function. Second, it is difficult to obtain closed-form

solutions for the value of bond and interest rate derivatives.

19



Chapter 4

MACRO-FINANCE

MODELLING

4.1 Connecting The Edges

Understanding the term structure of interest rate is important from both

finance and macroeconomic perspectives. On finance side, forecasting and pric-

ing interest rate sensitive instruments in several fixed-income markets is crucial

to manage the interest rate risk. Another reason is the importance of the short

rate since the long term yields are risk adjusted averages of expected future

short rates after at least an adjustment of risk, this says that the short rate is

a fundamental building block for rates of other maturities. On the other hand,

the term structure of interest rates provides useful information about under-

lying expectations of inflation and real activity from macroeconomic point of

view. Future expectations about macroeconomic fundamentals open the way

for central banks deciding monetary policy transmission perfectly by adjust-

ing the most important key instrument short rate to achieve their economic

stabilization goals.

The term structure models constructed in these two distinct branches have

different aims. Financial economists develop models based on the absence of

arbitrage and calibrating to the initial spot rate curve since their necessities
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are forecasting and pricing. Their models could not specify the relationship

between the term structure and other economic variables. These traditional

models of the term structure of interest rates determine the behavior of the

yield curve by means of a limited number of unobservable latent factors where

they are obtained by decomposing the yield curve using one of statistical meth-

ods. They fail to provide an economic interpretation of these factors. On the

other hand, macroeconomists have developed term structure models to deter-

mine the relation between interest rates, monetary policy and macroeconomic

fundamentals. These macroeconomic models are based on the expectation hy-

pothesis and could not provide the interactions between macroeconomy and

term structure dynamics.

It is very important to understand how the behavior of the yield curve re-

acts to macroeconomic shocks not only for traders but also for central banks

and government agencies since yield curves provide a useful information about

underlying expectations of inflation and output over a number of different hori-

zons.

According to the way of changes in the worldwide economy, stronger links

appear between macroeconomic fundamentals and asset pricing models of the

yield curve. A key aspect of this change is the sharp decline in overall macroe-

conomic volatility depending on several factors. One of these factors is the sta-

bilization of economies by use of a better economic policy transmissions which

turn out less output volatility and a lower, stable inflation. Another factor is

the development of financial markets and the beginning use of new financial

instruments. These changes in nature of economy reflect the behavior of the

term structure of interest rates and someone needs to determine how informa-

tion about macroeconomy feeds into bond prices or yield curve. This can be

done by providing an explanatory role to macro factors on term structure of

interest rate. As [22] argued ”... the factors moving the interest rates should

be linked to monetary policy and to fluctuations in real economic activity ...”.

In the beginnings of the second millennium, someone started to connect two

21



edges, the macroeconomic and traditional term structure models and offered

a joint characterization for these two literatures. The combined macro-finance

analysis determines the behavior of yield curve in the light of macroeconomic

issues since the addition of term structure information to a macroeconomic

model provides sharpened inference. There have appeared various papers trying

to determine the joint macro-finance characterization of the term structure of

interest rates and macroeconomic fundamentals. Although papers based on

different frameworks they have a number of common properties. First, the short

end of the yield curve plays the most important role to explain the behavior

of the entire yield curve. Considering the yield curve as a function, that is

obviously contrary to vector autoregressive models, is another common property.

These models could not provide an explicit relation between the determinants

of the yield curve shape and macroeconomic factors.

The pioneers of macro-finance literature, [3] offer a vector autoregressive

framework to capture the joint dynamics of macro factors and additional la-

tent factors based on no arbitrage restrictions where macroeconomic factors are

measures of inflation and real activity. This approach provides a unidirectional

characterization between the term structure of interest rates and macroeco-

nomic fundamentals. This means that shocks on interest rates do not effect

macroeconomic fundamentals.

[17] offer a macroeconomic interpretation of Nelson-Siegel representation

which allows that the latent variables and macroeconomic factors can be cor-

related and find strong effects of macroeconomic variables on the future move-

ments of yield curve. This framework occurs under a standard macroeconomic

vector autoregressive, but they do not preclude no-arbitrage movements of the

yield curve. This paper provides a bidirectional characterization of macroeco-

nomic factors real activity, inflation and a monetary policy instrument federal

funds rate and term structure of interest rates. According to the paper, the

bidirectional characterization shows that the causality from macroeconomy to

yields is stronger than in reverse direction.
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Further examples of recent papers are; [30] follows a framework like [3], but

they remove the assumption that inflation and output macroeconomic variables

are independent of the policy interest rate by building a structural macroe-

conomic model with both forward and backward looking expectations, rather

than employing a bivariate vector autoregressive of inflation and output. They

show that the out-of-sample forecasting performance is comparable to the best

available affine term structure models, apart from long-term yields. [41] pro-

posed a more macroeconomic structure which combine the affine dynamics for

yields with a macroeconomic model which typically consists of a monetary pol-

icy reaction function, an output equation and an inflation equation under the no

arbitrage restrictions. They allow for a bidirectional feedback between the term

structure of interest rates, latent factors and macroeconomic variables which

says latent factors are affected by macroeconomic variables through inflation

targeting and monetary policy inertia. This paper argues that current and

future yield curves show a significant response to the expectations of forward

looking agents about the future dynamics of the economy. However, current

observed yield curves and macroeconomic information include these expecta-

tions indirectly. [1] offer a bidirectional characterization of the macroeconomic

fundamentals and the yields by use of the Markov Chain Monte Carlo method

under no arbitrage restrictions and estimate forward looking Taylor rules us-

ing the short rate equation. The key observable factor is the federal reserves

interest rate target. The short rate is modelled as the sum of the target and

short lived deviations from target. This paper shows that lower pricing errors

occur when using macroeconomic information rather than a traditional latent

factor characterization. [44], [19], [4], [14] and [15] are the remaining papers in

macro-finance literature that are study the joint dynamics of bond yields and

macroeconomic variables.

All these studies offering distinct joint macro-finance models concluding that

macroeconomic variables are useful for understanding and forecasting govern-

ment bond yields. Although these models have different methodologies, the

use of a small macroeconomic information for the analysis can be given a com-
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mon feature for them. The most commonly used factors in these macro-finance

models include a measure of inflation, real activity, output gap and at most two

other macroeconomic factors and latent yield curve factors that relates yields

of different maturities. Besides providing a useful compression of information,

factor structure must also agree with the parsimony principle.

4.1.1 Advantages of Macro-Finance Modelling

The joint macro-finance modelling brings up some additional advantages

to understand the behavior of the yield curve over traditional term structure

modelling and pure macroeconomic modelling.

Traditional term structure models determine the yield curve by use of his-

torical interest rates whereas the macro-finance models offer to characterize the

bidirectional interactions between interest rates and macroeconomic variables

since these two are jointly developing over time. A macro-finance model allows

us to determine the behavior of risk premiums explicitly depending on macroe-

conomic conditions. This is an extra advantage of macro-finance models over

standard consumption based models of asset returns since they determine the

risk premium by the covariance of asset returns with the marginal utility con-

sumption. This advantage was shown in empirical study [7] that macro-finance

models find a strong relationship between economic activity and excess return

in bond markets or in other words risk premiums. A third extra advantage of

macro finance model over standard macroeconomic models is that the macro-

finance model allows a substantial component of historical bond yields effecting

the evolution of time varying term of risk premiums. In traditional finance

modelling the same effect on time varying term and risk premium according

to the estimated dynamics of model is captured by the absence of arbitrage

restriction.

The rest of this chapter includes a description of three distinct macro-finance

modelling frameworks. The first two are existing macro-finance models that

were offered by [3] and [17]. The last but not least important one is as original
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alternative macro-finance model that we offer for the first time in this study

under absence of arbitrage opportunities in a stochastic manner. From now

on, Ang and Piazzesi, Diebold, Rudebusch and Aruoba and the alternative

framework are going to be interpreted as AP, DRA and original macro-finance

approaches respectively.

4.2 AP Approach

A no arbitrage based financial term structure model could determine move-

ments of the yields of all maturities respond to the movements to the underly-

ing state factors but could not identify the sources of those movements in state

factors. On the other hand, a macroeconomic empirical vector autoregressive

model could explain the economic sources of movements in state variables for

given yields, but could not say anything about the response of the entire yield

curve against those movements.

AP combine these two frameworks to derive the movements of yield curve

and present a no arbitrage vector autoregressive model. This joint vector au-

toregressive framework captures the joint dynamics of the macroeconomic and

bond yield factors based on the absence of arbitrage opportunities. Three latent

factors and two measures of macroeconomic factors are included in the model

as state variables. The macroeconomic factors are derived by using the first

principal component of a set of large collection of candidate macroeconomic

series for inflation, real activity and latent factors ending up measuring from

yields.

In AP there are two maintained assumptions. The first can be given as inde-

pendence of latent and macroeconomic factors and the second is that both latent

and macroeconomic factors follow vector autoregressive processes. Throughout

this study latent and macroeconomic factors for AP approach are denoted by

uni
t , mj

t for i = 1, 2, 3, j = 1, 2, respectively. The vector autoregressive process

is adjusted according to data available for Turkey and present VAR(1) and a bi-
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variate VAR(3) process for latent and macroeconomic factors respectively. The

forward looking rule for macroeconomic variables joined the ability of lagged

macroeconomic variables to forecast the future. The dynamics of latent and

lagged macro variables can be written as

Xt = µ + φXt−1 + Σεt, (4.2.1)

where

Xt =
(

m1
t m2

t m1
t−1 m2

t−1 m1
t−2 m2

t−2 un1
t un2

t un3
t

)

and

εt =
(

um1
t um2

t 0 0 0 0 uun1
t uun2

t uun3
t .

)

Here, umi
t and u

unj

t are the shocks to the macro and latent factors, respectively,

for i=1,2 and j=1,2,3. The reduced form (4.2.1) is a VAR process of order 1

with nonlinear parameters.

It is assumed that the short term rate is affected from both macroeconomic

variables as in the literature on simple monetary policy and unobservable factors

as in the affine term structure literature. This means that is the one period short

rate rt is assumed to be affine functions of all state variables

rt = δ0 + δ1Xt, (4.2.2)

where rt is the two month yield in our framework according to Turkey data.

No arbitrage restriction guarantee the existence of a risk neutral measure Q

or, in other words, existence of Radon-Nikodyn derivative, ξt, which is used to

convert the risk neutral measure to data generating measure, such that the price

of any asset Vt without dividend payments at time t+1 satisfies the following

equation

Vt = EQ
t (e−rtVt+1). (4.2.3)

This means that the current price of any asset is the expectations of one step
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ahead price discounted today under a risk neutral measure. By using Radon-

Nikodyn derivative for any random variable Zt+1 at time t + 1, the change of

measure occurs as follows:

EQ
t (Zt+1) = Et(ξt+1Zt+1 | ξt). (4.2.4)

Assume that the Radon-Nikodyn derivative ξt+1 follows the log-normal process,

then one can write

ξt+1 = ξte
−1
2

λ
′
tλt−λtεt+1 , (4.2.5)

where λt are the time varying market prices of risk associated with the source

of uncertainty εt+1 in the economy. The market price of risk parameter is

commonly assumed to be constant in a Gaussian models or proportional to

the factor volatilities. The model combines a vector autoregressive framework

for the unobservable and macroeconomic variables with an exponential affine

pricing kernel. As a result, the implied risk premia are affine in the unobservable

and macroeconomic variables as following

λt = λ0 + λ1Xt. (4.2.6)

Here, Xt is defined by (4.2.1). The equation (4.2.6) relates the shock in the

underlying state dynamics to ξt+1. The constant risk premium parameter λ0

is a 9 × 1 vector column, while time varying risk premium parameter λ1 is a

9 × 9 matrix, but parameters in λ0 and λ1 that correspond to lagged macro

variables are set to zero to reduce the number of parameters to be estimated.

Since latent and macro variables are assumed to be orthogonal, let us set any

λ1 parameters corresponding to the latent variables to zero in estimations of

models with macro variables. The matrix λ1 is specified to be block diagonal,

with zero restrictions on the upper -right and lower-left corner blocks. All of

these settings leaves a 2 × 2 matrix for current macro variables and a 3 × 3

matrix for the latent variables different than zero in λ1 matrix.

AP follows the standard dynamic arbitrage-free term structure literature
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and defines the nominal pricing kernel, pricing kernel prices all assets in the

economy, as

mt+1 = e−rt(
ξt+1

ξt

). (4.2.7)

Substituting (4.2.5) and (4.2.2) in (4.2.7), the expressions turns to be

mt+1 = e−δ0−δ
′
1Xte

−1
2

λ
′
tλt−λ

′
tεt+1 (4.2.8)

= e
−1
2

λ
′
tλt−δ0−δ

′
1Xt−λ

′
tεt+1 .

Let us denote P (t, t + n + 1) as P n+1
t for tractability which represents the

price at t of an n + 1 period zero coupon bond, then the bond price can be

computed recursively by use of pricing kernel as

P n+1
t = Et(mt+1P

n
t+1)), (4.2.9)

with

P n
t = eAn+B

′
nXt . (4.2.10)

To derive An and Bn in terms of market prices of risk and parameters in (4.2.1)

and (4.2.2), first note that for a one period bond, n = 1, we have

P 1
t = Et[mt+1]

= e−rt

= e−δ0−δ1Xt . (4.2.11)

This adjustment turns the coefficients to be A1 = −δ0 and B1 = −δ1. From

(4.2.9) and (4.2.10) we can write
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P n+1
t = Et[mt+1P

n
t+1]

= Et[e
(−rt−−1

2
λ
′
tλt−λ

′
tεt+1+An+B

′
nXt+1)]

= e(−rt− 1
2
λ
′
tλt+An)Et[e

−λ
′
tεt+1B′nXt+1 ]

= e(−rt− 1
2
λ
′
tλt+An)Et[e

−λ
′
tεt+1B′n(µ+φXt+Σεt+1)]

= e(−δ0−δ1Xt−−1
2

λ
′
tλt+An)Et[e

−λ
′
tεt+1B

′
n(µ+φXt+Σεt+1)]

= e(−δ0+An+B′nµ+(B′nφ−δ1)Xt− 1
2
λ
′
tλt)Et[e

−(λ
′
t+B′nΣ)εt+1 ]

= e−δ0+An+B
′
n(µ−Σλ0)+ 1

2
B
′
nΣΣ

′
Bn−δ

′
1Xt+B

′
nφXt−B

′
nΣλ1Xt , (4.2.12)

and the coefficients An and Bn follows the difference equations

An+1 = An + B′
n(µ− Σλ0) +

1

2
B′

nΣΣ
′
Bn − δ0 (4.2.13)

and

B′
n+1 = B′

n(φ− Σλ1)− δ
′
1 (4.2.14)

with A1 = −δ0 and B1 = −δ1.

By use of (2.1.2) bond yields can be written as an affine functions of the

state variables in following form

yn
t = An + B

′
nXt, (4.2.15)

where An = −An

n
and Bn = −B

′
n

n
.

4.3 DRA Approach

DRA provides a simple way of adding macroeconomic variables in a finance

specification of the yield curve. They provide a macroeconomic interpretation

of the Nelson-Siegel representation by combining it with VAR dynamics for
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macroeconomic variables. The Nelson-Siegel framework drives out the principal

components of the entire yield curve, period by period, into a three dimensional

parameter that evolves dynamically. The Nelson-Siegel representation is

yt(τ) = β1t + β2t[
1− e−λtτ

λtτ
] + β3t[

1− e−λtτ

λtτ
− e−λtτ ], (4.3.16)

where β1t , β2t , β3t and λt are parameters and τ denotes maturity. The param-

eter λt governs with the exponential decay rate which satisfies better fit for the

yield curve at long maturities with large values and short maturities with small

values of it. Throughout this thesis, the exponential decay rate are assumed as

constant for estimation tractability.

Three factors β1t, β2t and β3t in Nelson-Siegel representation (4.3.16) can

be interpreted in terms of time varying level slope and curvature factors. Limit

of (4.3.16) is taken as time to maturity τ goes to infinity the result as longest

term yield will be obtained

yt(∞) = lim
τ→∞

yt(τ) = β1t. (4.3.17)

Since the coefficient of β1t is one, it affects all maturities identically, that means

changing the level of the yield curve.

The slope of the yield curve can be defined as the difference between long

term and short term rates as yt(∞) − yt(0) which exactly equals to β2t from

(4.3.16). That is an increase in β2t increase short term yields more than longer

term yields because the short rates load on β2t more heavily thereby this factor

changing the slope of the yield curve.

Finally the last factor β3t is closely related to the yield curve curvature that

an increase in β3t will have little effect on very short or very long yields which

load minimally on it, but will increase medium term yields. Therefore one can

say that β3t increase the yield curve curvature.
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yt(τ) = Lt + St(
1− e−λtτ

λtτ
) + Ct(

1− e−λtτ

λtτ
− e−λtτ ). (4.3.18)

DRA wish to characterize the joint dynamics of Lt, St, Ct and the macroe-

conomic fundamentals. Capacity utilization is used to represent the level of

real economic activity relative to potential. Federal fund rates and monthly

CPI include in macroeconomic factor set to represent the monetary policy in-

strument and inflation rate respectively. These three macroeconomic factors

are widely considered to be the minimum set of fundamentals to interpret the

basic macroeconomic dynamics. The addition of macroeconomic factors to the

Nelson-Siegel representation is easy to do. Nelson-Siegel representation can

be extended after including the macroeconomic factors and turns to be as a

measurement equation in the form




yt(τ1)

yt(τ2)

yt(τ3)

yt(τ4)




=




1 1−e−λτ1

λτ1
1−e−λτ1

λτ1
− e−λτ1 a14 a15 a16

1 1−e−λτ2

λτ2
1−e−λτ2

λτ2
− e−λτ2 a24 a25 a26

1 1−e−λτ3

λτ3
1−e−λτ3

λτ3
− e−λτ3 a34 a35 a36

1 1−e−λτ4

λτ4
1−e−λτ4

λτ4
− e−λτ4 a44 a45 a46







Lt

St

Ct

RAt

INFLt

FFRst




+




εt(τ1)

εt(τ2)

εt(τ3)

εt(τ4)




.

The system is constructed under several assumptions. First it is assumed

that the factor dynamics are unconstrained and follows a VAR(1) process. This

assumption gives the transition equation in following form:




Lt

St

Ct

RAt

INFLt

FFRst




=




f11 f12 f13 f14 f15 f16

f21 f22 f23 f24 f25 f26

f31 f32 f33 f34 f35 f36

f41 f42 f43 f44 f45 f46

f51 f52 f53 f54 f55 f56

f61 f62 f63 f64 f65 f66







Lt−1

St−1

Ct−1

RAt−1

INFLt−1

FFRst−1




+




η1,t

η2,t

η3,t

η4,t

η5,t

η6,t




.
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Compact forms for the measurement and transition equations are

yt = Aft + εt, (4.3.19)

ft = Fft−1 + ηt. (4.3.20)

In addition to these assumptions, it is assumed that there is no relation be-

tween factor loadings and factor dynamics and for linear least square optimality

of the Kalman filter which will be discussed in latter chapter, white noise tran-

sition and measurement disturbances are orthogonal to each other and to the

initial state.


 ηt

εt


 ∼ WN





 0

0


 ,


 Q 0

0 H





 . (4.3.21)

It is assumed for estimation tractability that H is a diagonal matrix, implies

that the deviation of yields of various maturities from the yield curve are un-

correlated, and Q is an upper triangular matrix, allows the shocks to the three

term structure latent factors to be correlated.

Unlike the AP the model offer a bidirectional characterization between the

term structure of interest rates and the macroeconomic variables. Hence, it is

determined whether the relation flows from the term structure to the macroe-

conomic factors or vice-versa. The model present that the causality from the

macroeconomy to yields is indeed significantly stronger than in the reverse di-

rection for US data in original paper but that interactions in both directions

can be important.

4.4 An Original Macro-Finance Model

The starting point of this thesis is to present a term structure model that ad-

equately captures the dynamics of the Turkish term structure of interest rates.
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The model must provide an analytic representation for the relationship between

the state variables and the term structure of interest rates with having a rela-

tively easy to estimate and interpret parameter set. Observable macroeconomic

factors with unobservable long run expectations of these macroeconomic factors

and two latent yield curve factors which one of them is the long run expected

short term interest rate target are used to present that relationship. A measure

of inflation and real activity are represented by monthly change in consumer

price index (CPI) and capacity utilization (CU) , respectively, and two latent

factors included in the state factors after taking difference of macroeconomic

variables with unobservable long run expectations as central tendencies are used.

The dynamics of the observed and the unobserved factors that drive the long

run interest rates are assumed as follows

dπt = βπ(π? − πt)dt + σπdW π
t (4.4.22)

dγt = βγ(γ
? − γt)dt + σγdW γ

t (4.4.23)

dft = βfftdt + σfdW f
t , (4.4.24)

where W π(t) , W γ(t) and W f (t) denote independent Wiener processes defined

on the probability space (Ω,F , P ) with filtration Ft. Furthermore π(t), γ(t)

and f(t) are inflation real activity and latent factors, respectively, and π∗ and

γ∗ are the long run expectations about inflation and real activity.

Bond prices and consequently yields are sensitive against fluctuations in ex-

pectation about the future path of monetary policy. Therefore central bank

policy rule about instantaneous interest rate plays an important role in term

structure modelling. The most cited policy rule for the dynamics of interest

rates is proposed in [42]. Taylor’s model based on which allow the macroe-

conomic forecasts of the first opportunity to explain variation in yields. We

formalize the policy rule according to forward looking Taylor rule based on

the assumption that the variables in that process converge to their respective
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central tendencies as

r∗t = ζ0 + ζ1(E(πt+1|Ft)− π∗) + ζ2(E(γt+1|Ft)− γ∗) + ζ3ft, (4.4.25)

where r∗t is the time varying interest rate target. After total differentiate (4.4.25)

and taking the conditional expectations with respect to t under the assumptions

πt+1|Ft ' πt|Ft,

γt+1|Ft ' γt|Ft,

the expressions turn to be as follows

Et(dr∗t ) = ζ1Et(dπt) + ζ2Et(dγt) + ζ3Et(dft)

Substituting (4.4.22), (4.4.23) and (4.4.24) into this expression under assump-

tion Et(r
∗
t+1) = r∗t+1 and using Euler method for discretization, the following

expression appears

Et(r
∗
t+1) = r∗t + ζ1βπ(πt − π∗) + ζ2βγ(γt − γ∗) + ζ3βfft, (4.4.26)

r∗t+1 = r∗t + ζ1βπ(πt − π∗) + ζ2βγ(γt − γ∗) + ζ3βfft. (4.4.27)

If we denote ζiβj = αi for i = 1, 2, 3 and j = π, γ, f then the last equations

turns to

r∗t+1 = r∗t + α1(πt − π∗) + α2(γt − γ∗) + α3ft (4.4.28)

The long run expectations of instantaneous interest rate r∗t can be written

as the average long term level parameter θ in Vasiček model (3.1.3) and obtain

the process for instantaneous short rate as

drt = κ(r∗t − rt)dt + σrdWt. (4.4.29)

The no arbitrage restriction allows us to determine the relationship between
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the term structure of interest rates and the state variables by use of Vasiček

model which permits analytic solutions for the term structure (3.1.11)

By use of Euler method, one can write the discrete time analogy for equations

(4.4.22), (4.4.23), (4.4.24) as folows

πt+1 = (1− βπ)Πt + βππ∗ + σπε1t

πt+1 − π∗ = (1− βπ)πt + (1− βπ)π∗ + σπε1t

πt+1 − π∗ = (1− βπ)(πt − π∗) + σπε1t, (4.4.30)

γt+1 = (1− βγ)γt + βγγ
∗ + σγε2t

γt+1 − γ∗ = (1− βγ)γt + (1− βγ)γ
∗ + σγε2t

γt+1 − γ∗ = (1− βγ)(γt − γ∗) + σγε2t, (4.4.31)

ft+1 = βfft + ft + σfε3t

ft+1 = (1 + βf )ft + σfε3t. (4.4.32)

The term structure solution of the Vasiček model (3.1.11) turns to be as

follows after setting (4.4.28) as θ in (3.1.3):

Y (t, T ) = Y (τ) = − 1

T − t
[
1

κ
(e−(T−t)κ − 1)r(t) +

σ2

4κ3
(1− e−2(T−t)κ)

+
1

κ
(r∗t −

λσ

κ
− σ2

κ2
)(1− e−(T−t)κ)

− (r∗t −
λσ

κ
− σ2

2κ2
)(T − t)], (4.4.33)

where r∗t is given in (4.4.28) and λ is constant risk premium.

Kalman filter that exploits the affine relationships between bond prices and

the state variables will be explained in the following chapter to subsequently

estimate the parameter set. So far we provide the state variables processes
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(4.4.30), (4.4.31), (4.4.32) and (4.4.28) and the term structure equation (4.4.33)

and from now on formulation of these equations in state-space form involves the

specification of the model’s measurement and transition equations are given.

Equation (4.4.33) presents the measurement system by using a sequence of four

zero coupon bond yield series with distinct time to maturities as




yt(τ1)

yt(τ2)

yt(τ3)

yt(τ4)




=




At(τ1)

At(τ2)

At(τ3)

At(τ4)




+




B(τ1)

B(τ2)

B(τ3)

B(τ4)







r∗t−1

πt − π∗

γt − γ∗

ft




+




wt(τ1)

wt(τ2)

wt(τ3)

wt(τ4)




; (4.4.34)

in compact form:

y(τ) = A + H ′Xt + wt. (4.4.35)

Here, τi denotes the time to maturity and

At(τi) = − 1

τi

(
(e−τiκ−1)rt

κ
+

σ2
r(1− e−2τiκ)

4κ3
− σ2

r(1− e−τiκ)

κ3
− σ2

rτi

2κ2

+ (−λσr

κ2
)(1− e−τiκ) +

λσrτi

κ
) (4.4.36)

B(τi) =
[

e−τiκ−1
τiκ

e−τiκ−1
τiκ

α1
e−τiκ−1

τiκ
α2

e−τiκ−1
τiκ

α3

]
(4.4.37)

and the transition system can be written by use of (4.4.28), (4.4.30), (4.4.31)

and (4.4.32) as




r∗t

πt − π∗

γt − γ∗

ft




=




1 α1 α2 α3

0 (1− βπ) 0 0

0 0 (1− βγ) 0

0 0 0 (1 + βf )







r∗t−1

πt−1 − π∗

γt−1 − γ∗

ft−1




+




vt(τ1)

vt(τ2)

vt(τ3)

vt(τ4)




.

In compact form:

Xt = FXt−1 + vt. (4.4.38)
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The expressions (4.4.35) and (4.4.38) together represent the state-space form

of our term structure model. The estimation results provided by using Kalman

filter to this state space form will appear in the next chapter.

Our original model is being given the very definition of the yield curve as a

function of maturity and other economic factors which gives the strong interac-

tion between yields with different maturities make up the curve and macroeco-

nomic factors. The Kalman filter estimation method allows dependence among

the entire yield curve and macro economic factors since the filter procedure

follow an update process when new information appears.

The rest of this thesis includes detailed explanations for the Kalman filter

method and estimation results for three macro-finance models.
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Chapter 5

Empirical Analysis of

Macro-Finance Models

5.1 Data

There are various approaches to estimate the yield curves and forward curves

from observed bond prices since in practice they are not observed. The yield

data used throughout this paper are produced from Turkish government zero

coupon bond prices using the Nelson-Siegel functional form. A limited sample of

end of month zero coupon constant maturity Turkish government bond yields

ranging from February 2003 to March 2006 with maturities 2, 6, 12 and 24

month are used throughout this study. Table 5.1 displays descriptive statistics

and up to three lags autocorrelations. Yields with longer maturity bonds are not

used since they are sparse and not liquid enough to be used in term structure

analysis. Figure 5.1 plot a figure of yield data.

mean stdev skew kurt lag1 lag2 lag3

2 month 20.2988 7.8855 1.1477 3.4074 0.8931 0.7579 0.6602
6 month 24.0012 10.6050 1.1371 3.3946 0.8964 0.7537 0.6575
12 month 27.0877 13.4642 1.2313 3.6206 0.8957 0.7458 0.6450
24 month 29.1636 15.5512 1.3137 3.8793 0.8901 0.7342 0.6309

Table 5.1: Descriptive Statistics for Yields
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Figure 5.1: Monthly Zero Coupon Bond Yields

Different sets of macroeconomic variables are used in each model. All

macroeconomic series used in this chapter obtained from the web-site of the

Central Bank of the Republic of Turkey as follows

PPI Producer Price Index
CPI Consumer Price Index
WPI Wholesale Price Index
CU Capacity Utilization
IP Industrial Production

O/N Overnight Lending Interest Rate

Table 5.2: Macroeconomic Variables

Monthly returns of PPI, CPI, WPI, CU and IP series are used throughout

this study after normalizing to zero mean and unit variance to achieve econo-

metric identification. We have to achive this econometric identification since

latent factors are also included in term structure model settings and give obser-

vationally equivalent systems with macroeconomic variables. Table 5.3 provides
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the descriptive statistics and up to three lags autocorrelations for these macroe-

conomic series as follows.

mean stdev skew kurt lag1 lag2 lag3

PPI 0.0067 0.0125 1.0069 4.0472 0.2070 -0.1742 -0.1174
CPI 0.0071 0.0060 0.3992 3.0344 0.4113 -0.0399 -0.3673
WPI 0.0072 0.0076 -0.4174 4.3938 0.2856 -0.1138 -0.1074

CU 0.0041 0.0436 0.5163 3.5965 -0.3864 0.0724 0.0399
IP 0.0074 0.0950 0.0791 3.2247 -0.4327 -0.1107 0.2843

Table 5.3: Descriptive statistics for macroeconomic variables

In AP model, macroeconomic factors are derived by using the first principal

component of set forms from candidate macroeconomic series for inflation and

real activity. The first group consist of CPI, PPI and WPI as measures of

inflation variables and the second group includes CU and IP to capture the

dynamics of real activity. The loadings of the first three principle components

for inflation and first two principle components for real activity and the variance

explained of each principal components are given in Table 5.4 and Table 5.5.

1st 2nd 3rd

PPI -0.5571 0.7046 0.4395
CPI -0.5562 -0.7096 0.4225
WPI -0.6166 0.0035 -0.787

% variance explained 0.5545 0.8023 1

Table 5.4: Principal Component Analysis for Inflation

1st 2nd

CU -0.7071 -0.7071
IP -0.7071 0.7071

% variance explained 0.7229 1

Table 5.5: Principal Component Analysis for Real Activity

As Table 5.4 and Table 5.5 display, over 50% of the variance of inflation

group is explained by the first principal component. The first principal compo-
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nent of the inflation factors group loads negatively on PPI, CPI and WPI that

says a positive shock on this variable loads negative shocks to inflation factors.

From now on the first principle component of these macroeconomic factors are

interpreted as measure of inflation. On the other hand, over 70% of the variance

of real activity group are explained by the first principal component and this

component has negative loadings on associated macroeconomic factors. Hence,

we interpret the first principal component of the real activity factors as a mea-

sure of real activity. The measures of inflation and real activity are plotted in

Figure 5.2.
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Figure 5.2: Measures of Inflation and Real Activity

Figure 5.3 and Figure 5.4 display the relationship between measures of infla-

tion and normalized inflation factors and measure of real activity and normalized

real activity factors, respectively.

The measure of inflation, which are displayed by circles on solid lines in

Figure 5.3, move together with three normalized inflation factors. All of these

41



01.03 06.03 11.03 04.04 09.04 02.05 07.05 12.05 05.06
−4

−3

−2

−1

0

1

2

3

4

time

Inflation factors versus Measure of Inflation 

Measure of Inflation
CPI
PPI
WPI

Figure 5.3: Measure of Inflation versus Inflation Factors

variables have roughly the same cycles. Measure of real activity in Figure 5.4

follows a closely relative path with two factors of real activity. The measure

of real activity shows more close movements to its factors rather than inflation

measures show to inflation factors, this can also be seen from the correlations

between measures of macroeconomic variables and real macroeconomic factors

are given in Table 5.6. This table also provides an intuition about the relation-

ship between measures of inflation and real activity and yield curve.

Yields with 2, 6, 12 and 24 months to mature are used to estimate the rest of

two macro-finance models. However, different macroeconomic series are used to

capture the dynamics macroeconomic fundamentals. For DRA approach WPI

series is used as measure of inflation and CU series is used as measure of real

activity. As an additional macroeconomic factor, overnight short rate series are

used as measure of monetary policy transmission instrument. For the original

macro-finance model CPI and CU series are used as measures of inflation and
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Figure 5.4: Measure of Real Activity versus Real Activity Factors

real activity respectively.

5.2 Kalman Filter

Parameter estimations for three macro-finance models are made by using the

maximum likelihood estimation method via Kalman filter. The Kalman filter

concept was arised to describe a recursive solution to the discrete-data linear

filtering problem in engineering control literature. The idea is that one observes

a stream of data over time which is subject to noise. This noise generally stems

from measurement error arising in the devices used to measure the signal. In

the context of the thesis, the noise in zero-coupon bond yields might relate to

macroeconomic and latent yield factors. The Kalman filter is the method for

filtering out the true signal and the unobserved components from this unwanted

noise. More recently, it has also been used in some non-engineering applications
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PPI CPI WPI
INFL 0.7186 0.7174 0.7953

CU IP
RA 0.8503 0.8503

INFL RA y2 y6

RA -0.2066
y2 0.3524 -0.1814
y12 0.3222 -0.1229 0.9838
y24 0.3168 -0.1054 0.9762 0.9982

Table 5.6: Selected Correlations

such as short-term forecasting.

The Kalman filter is a set of mathematical equations that allow an estimator

to be updated once a new observation becomes available. The Kalman filter

provides an efficient recursive estimation by minimizing the mean of the squared

error. The Kalman filter approach used in term structure literature is dealing

with the estimation of affine term structure model. It is a linear estimation

method and makes use of the assumption of an affine relationship between

bond yields and state variables, which allows to be unobserved, to estimate the

parameter set in a state-space framework. State-space representation consist of

a measurement and a transition equation. The transition equation describe the

dynamics of unobservable state variables assumed to follow a Markov process.

The measurement equation describing how the observed data are generated

from the state variables, that is provide the affine relation between observable

bond yields and state variables. These state variables are unobservable factors

but indeed observable factors can also be used as in our framework. Both

observable macroeconomic variables and latent factors are included in state

vector throughout this study. The Kalman filter use this type of formulation to

recursively predict the unobservable values of the state variables based on the

observation available up to the current time from observed market zero coupon

yields. This property allows the state-space models to capture the dynamics

of the system. As an example, when examining the relationship between term
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structure and macroeconomic factors, one should take into account the regime

of the economy since economic recessions and expansions at a particular date

is appropriately reflected in the estimate of the state variable for that date and

the prediction for the next period will be more accurate using a state space

model rather than a fixed coefficients methodology.

The general state-space models are in following form

yt = A′zt + H ′Xt + wt (5.2.1)

Xt+1 = FXt + vt+1, (5.2.2)

where (5.2.1) is the measurement and (5.2.2) is the transition equations. yt is a

vector of observation and Xt is a vector of state factors. Furthermore, wt and vt

are disturbance vectors for measurement and transition equations respectively.

F is a transition matrix with appropriate number of rows and columns that

relates the state vector at the previous time step t−1 to the state at current step

t, in the absence of either a driving function or process noise. The matrix H ′ in

the measurement equation relates the state to the measurement yt. In practice,

the matrices H ′ and F might be change with each time step or measurement,

but here we assume coefficients in them as constants.


 vt

wt


 ∼ WN





 0

0


 ,


 Q 0

0 R





 . (5.2.3)

The Kalman filter begins with a guess about the initial state vector since it

is a recursive algorithm. This is the first and most difficult step to decide the

appropriate initial values for the recursive filtering. The unconditional mean

and variance used to forecast of X1 are based on no observation of y1 given as

X̃1|0 = E(X1) = E(X1|F0) = 0 (5.2.4)

P1|0 = var(X1) = var(X1|F0). (5.2.5)
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For given X̃1|0 and P1|0 the next step is to calculate the conditional forecast

of the measurement equation for the following day iterating on

X̃t|t = X̃t|t−1 + Pt|t−1H(H ′Pt|t−1H + R)−1(yt − A′zt −H ′X̃t|t−1)) (5.2.6)

the MSE associated with this updated projection is given as

Pt|t = Pt|t−1 − Pt|t−1H(H ′Pt|t−1H + R)−1H ′Pt|t−1. (5.2.7)

A sense of the error in our conditional prediction can be obtained since the

true value of the measurement system yt is now observed. The error is given as

errt = yt − A′zt −H ′X̃t|t−1. (5.2.8)

Now the transition equation (5.2.2) is used to forecast Xt by using the Kalman

gain matrix

Kt = FPt|t−1H(H ′Pt|t−1H + R)−1. (5.2.9)

The presence of the Kalman gain is what takes into account previous values

of the explanatory variables and appropriately weights the previous prediction

error and factors into the updated estimation of the coefficients. In other words,

the Kalman gain allows the Kalman filter to adopt more quickly to structural

change than would be the case under standard regression techniques.

In the next step, the unknown values of our state system for the next time

period conditioning on the updated values for the previous period. The condi-

tional expectations and conditional variance appears as

X̃t+1|t = FX̃t|(t−1) + FPt|(t−1)H(H ′Pt|t−1H + R)−1(yt − A′zt −H ′X̃t|t−1)

= FX̃t|(t−1) + Kt(yt − A′zt −H ′X̃t|t−1)

= FX̃t|t, (5.2.10)
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Pt+1|t = F (Pt|t−1 − Pt|t−1H(H ′Pt|t−1H + R)−1H ′Pt|t−1)F
′ + Q

= FPt|tF
′ + Q. (5.2.11)

Those given steps must be iterated recursively for each discrete time step. At

each step, a measurement-system prediction error (5.2.8) and a prediction error

covariance matrix (5.2.11) appear. Under the assumption that measurement-

system prediction errors are Gaussian, the likelihood function can be con-

structed as

L(θ) =
N∑

i=1

ln[(2π)−
n
2 (det(H ′Pt|t−1H + R))−

1
2 e−

1
2
(err

′
t(H

′Pt|t−1H)−1errt)]

= −nN ln(2π)

2
− 1

2

N∑
i=1

[ln(det(H ′Pt|t−1H + R)) + err
′
t(H

′Pt|t−1H + R)−1errt].

(5.2.12)

The log-likelihood function (5.2.12) can then be maximized numerically with

respect to the unknown parameters in matrix F , Q, A, H and R.

5.2.1 Impulse Response Function

We define the impulse response functions of the systems as the responses of

the endogenous variables to one unit shock in the residuals of state vectors. One

would often see responses to a ”one unit” shock instead of the ”one standard

deviation” shock that we use.

The rest of this chapter includes empirical results for parameter estimations

of three distinct macro-finance models for related Turkish government bond

yields and macroeconomic data that were mentioned in the previous section.
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5.3 Empirical Results for AP Approach

The orthogonality assumption between macro and latent factors brings on

the upper right 6 × 3 corner and the lower left 3 × 6 corner of θ in (4.2.1)

contains only zeros. This framework allows to focus on the impact of pure

macroeconomic variables on yields since orthogonality vanishes uncertainties

appear in the latent factors. This approach make it impossible to make a

bidirectional characterization that is responses of macro factors on yield factors

could not be explained.

5.3.1 Estimation Method

Estimation occurs by use of the maximum likelihood method via Kalman

filter. A two step estimation procedure is constructed to reduce difficulties

related with estimating a large number of factors in one step with maximum

likelihood estimation. Firstly parameters in the state dynamics equation (4.2.1)

and the coefficients of δ0 and δ1 corresponding to macro factors in the short rate

dynamic equation (4.2.2) are estimated by use of ordinary least square method

and the results appear in Table 5.7 and Table 5.8.

It RAt It−1 RAt−1 It−2 RAt− 2
It−1 0.3799 -0.0859 1.0000 0.0000 -0.0000 0.0000

(0.0323) (0.0267) (0.0000) (0.0000) (0.0000) (0.0000)
RAt−1 0.0772 -0.2431 -0.0000 1.0000 -0.0000 -0.0000

(0.0310) (0.0256) (0.0000) (0.0000) (0.0000) (0.0000 )
It−2 -0.2370 0.2686 0.0000 -0.0000 1.0000 0.0000

0.0335 (0.0276) (0.0000) (0.0000) (0.0000) (0.0000)
RAt−2 -0.0702 -0.0615 -0.0000 0.0000 0.0000 1.0000

(0.0330) (0.0272) (0.0000) (0.0000) (0.0000) (0.0000)
It−3 -0.1986 -0.3526 -0.0000 -0.0000 0.0000 -0.0000

(0.0275) (0.0227) (0.0000) (0.0000) (0.0000) (0.0000)
RAt−3 -0.1323 0.2022 -0.0000 -0.0000 -0.0000 0.0000

0.0310 (0.0256) (0.0000) (0.0000) (0.0000) (0.0000)

Table 5.7: Reduced Form Θ Corresponding to Macro variables
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It RAt It−1 RAt−1 It−2 RAt− 2
rt 0.0001 0.0001 -0.0000 -0.0000 0.0001 0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Table 5.8: Coefficients of δ1 Corresponding to Macro variables

Both the state dynamics and short rate dynamics corresponding to latent

factors are estimated by maximizing likelihood as a second step of the estima-

tion procedure and results appearing in Table 5.9, Table 5.10 As appear in

un1
t un2

t un3
t

un1
t+1 0.8945 0.0547 -0.0027

(0.0310) (0.1867) (0.1822)
un2

t+1 0.1387 0.3802 -0.0898
(0.0274) (0.1649) (0.1610)

un3
t+1 0.3106 -0.2843 0.2784

(0.0253) (0.1525) (0.1489)

Table 5.9: Reduced Form Θ for Latent variables

Unobs1 Unobs2 Unobs3
2.93 -0.1900 -0.0900

(0.0015) (0.0013) (0.0016)

Table 5.10: Short Rate Equation Parameters δ1 For Latent Factors (×100)

Table 5.10 the first unobservable factor is the most persistent factor determine

the short rate dynamics. Table 5.12 displays estimation results for the risk

premia parameters.

Table 5.11 provides a necessary prior knowledge about the strength of the

AP model by use of its estimated yields. This table answer the question ”How

are the estimated yields fit to actual yield series?”. As clearly seen, the AP

approach provides a misfit estimated yield series. This table says that parameter

estimates of AP approach could not provide reliable results to make comment

on them but we present them for just giving information.
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mean
y2 y6 y12 y24

Actual 20.2988 24.0012 27.0897 29.1636
AP 13.9500 12.7009 12.4772 12.3786

Table 5.11: Comparing Estimated Yields For AP Model With Actual Data

λ0 λ1

INF RA Unobs1 Unobs2 Unobs3
INF 0.0106 0.0136 0.0114 0.0000 0.0000 0.0000
RA 0.0135 0.0092 0.0159 0.0000 0.0000 0.0000

Unobs1 0.0042 0.0000 0.0000 0.0012 0.0083 0.0003
Unobs2 0.0076 0.0000 0.0000 0.0121 0.0061 0.0154
Unobs3 0.0157 0.0000 0.0000 0.0010 0.0175 0.0194

Table 5.12: Prices of Risk λ0 and λ1

The effects of each state factor on yield curve can be determined by the

weights B
′
n in (4.2.15). The loadings are as in Table 5.13

As Table 5.13 shows, the loadings on macroeconomic factors representing

yields are very small and this means according to this model, macroeconomic

factors have no dominant characteristics that determine the variation in the

yield curve. The most powerful factor that represent yields is Unobs1 factor,

which has almost identical coefficients corresponding to all yields. The second

powerful factor are Unobs2 factors in determining yields and the Unobs3 factor

has small loadings as macroeconomic factors. These loadings say that the model

with a large number of parameters to be estimated with limited Turkish data

sample could not provide persistent results. This is why the state factors and

the term structure of interest rates are unrelated. In addition, a series of regres-

sions are run to provide the relation between macro factors and the latent yield

factors estimated from the corresponding model. These regressions display that

macroeconomic variables and latent factors are unrelated. The results appears

in Table 5.14.

These results say that the AP approach is not suitable for Turkish data since

it needs a large number of parameters to be estimated with a small number of
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y2 y6 y12 y24

Inf 0.0002 0.0002 0.0002 0.0002
RA 0.0001 0.0001 0.0001 0.0001

Unobs1 -0.3078 -0.3082 -0.3083 -0.3083
Unobs2 -0.0329 -0.0319 -0.0320 -0.0320
Unobs3 0.0040 0.0040 0.0040 0.0040

Table 5.13: Weights of State Factors on Yields

Inf RA Unobs1 Unobs2 Unobs3 Adj R2

Unobs1 0.0000 0.0000 1.0000 0.0000 0.0000 0.9999
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Unobs2 0.0000 0.0000 0.0000 1.0000 0.0000 0.9999
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Unobs3 0.0000 0.0000 0.0000 0.0000 1.0000 0.9999
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Table 5.14: Regressions Unobservable Factors on State Factors

data set.

5.3.2 Impulse Response Analysis

We examine the orthogonal impulse response functions of yields with matu-

rities 2, 12, 24 month against a one standard deviation shock to macroeconomic

factors providing the relationship between macroeconomic variables and yields

where Figure 5.5 presents the results, however we could not verify meaningful

results by use of estimated parameters related with the term structure. Initial

response of a 2 months yield appears as 3.41 basis points where yields with 12

month and 24 month to mature have negative initial responses with -25 and -2.6

basis points against a shock to inflation factor. These initial responses implies

that inflation factor effect the yield with 12 month to mature stronger than

yields with 2 and 24 month to mature.

Impulse response functions of 2, 12 and 24 month yields against one standard

deviation shock to real activity factor appear in Figure5.6. Long term 24 month
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Figure 5.5: Orthogonal IRF : 1σ shock to Inflation

yield shows the highest initial response in magnitude with -36 basis points and

medium term 12 month yield follows with a 27 basis points initial response.

This says that a change in real activity factor effect yields with long term yields

rather than short terms yields according to this model.

5.4 Empirical Results for DRA Approach

In previous chapters it is mentioned that three key macroeconomic variables

CU, WPI and overnight interest rates additional to latent factors are used as

the minimum set to capture the dynamics of economy and term structure in

DRA approach.
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Figure 5.6: Orthogonal IRF: 1 σ shock to Real Activity

5.4.1 Estimation Method

The term structure model according to DRA approach in state space form

is appeared in (4.3.20) and (4.3.19). Maximum likelihood method via Kalman

filter is used to estimate parameters and the unobservable yield curve factors

which we called as level, slope and curvature on that state-space form. Ta-

ble 5.15 presents the estimate of parameters in transition equation which pro-

vides the interaction between macroeconomic and term structure dynamics.

This table provides that the overnight lending interest rate which include in the

model as monetary policy instrument factor have negligible loadings on other

state factors. On the other hand real activity factor plays an important role in

determining all of the latent factors which means any changes on real activity

level effects all of the latent yield curve factors in one step ahead. The slope

factor is a significant characteristic factor for one step ahead real activity with

respect to the Table 5.15. The loading of slope factor on inflation is also signif-
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icant coefficient in transition matrix of the state equation. Estimated Q matrix

coefficients are displayed in Table 5.16. Covariances between real activity-slope

and real activity-level factors are asserted coefficients.

Lt−1 St−1 Ct−1 RAt−1 INF t−1 O/N t−1

Lt 0.0989 -0.3674 -2.7616 -0.2560 0.3764 0.0197
(0.0198) (0.0189) (0.0210) (0.0208) (0.0206) (0.0198)

St -0.0160 0.3150 -0.4846 -0.3752 0.1917 0.0035
(0.0193) (0.0204) (0.0197) (0.0183) (0.0211) (0.0175)

Ct 0.0591 -0.0790 0.3765 0.3608 -0.0357 -0.0034
(0.0232) (0.0240) (0.0181) (0.0179) (0.0204) (0.0145)

RAt -0.0593 0.2385 0.4642 0.0779 -0.4171 0.0014
(0.0204) (0.0175) (0.0206) (0.0197) (0.0175) (0.0222)

INF t -0.0052 0.2923 -0.0201 0.0948 0.1277 0.0048
(0.0233) (0.0196) (0.0201) (0.0198) (0.0237) (0.0177)

O/N t 19.9156 2.9412 19.8886 13.5777 -5.7744 -0.8520
(0.0225) (0.0195) (0.0211) (0.0222) (0.0251) (0.0208)

Table 5.15: Transition Matrix Parameter Estimates for DRA approach

Lt St Ct RAt INF t O/N t

Lt 0.0297 -0.1039 0.0124 0.0248 0.0101 0.0002
(0.0192) (0.0214 ) (0.0211) (0.0197) (0.0206) (0.0191)

St 0.5753 0.0264 -0.1257 -0.0812 -0.0010
(0.0213) (0.0241) (0.0192) (0.0198) (0.0179)

Ct 0.0797 0.0380 -0.0341 -0.0015
(0.0205) (0.0193) (0.0223) (0.0194)

RAt 0.4399 -0.0109 0.0010
( 0.0213) (0.0192) (0.0208)

INF t 0.9649 0.0018
(0.0231) (0.0237)

O/N t 0
(0.0203)

Table 5.16: Estimated Q matrix for DRA approach

By use of estimated parameters according to DRA approach we present

estimated yield curve mean and actual data mean in Table 5.17 to provide

a prior knowledge about strength of DRA model. It can be easily seen that

estimated yields corresponding to DRA provides almost an exact fit for yields
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with 2, 6 and 12 month to mature. This says estimation results are reliable

about DRA models by use of Turkey data.

mean
y2 y6 y12 y24

Actual 20.2988 24.0012 27.0897 29.1636
DRA 20.0898 25.0626 27.0117 27.7131

Table 5.17: Comparing Estimated Yields For DRA Model with Actual Data

The loadings of state factors on four different yields in equation (4.3.19) are

appeared in Table 5.18. Like AP approach the loadings on yields corresponding

to macroeconomic factors are very small. This says level and slope factors

determine the yield curve. Loadings on yields corresponding to slope factor

is more persistent on short term yields with 2 months to mature and levels

off as time to maturity increase on the other hand level factor has identical

effect on each yield with different maturities. These results are presented as

characteristics of coefficients in Nelson-Siegel representation.

5.4.2 Impulse Response Analysis

Interrelations between yields macroeconomic factors are provided via or-

thogonal impulse response functions. We consider responses of macroeconomic

factors against shocks to latent factor, latent factor responses against shock

to macro variables, yield curve responses against shock to macro variables and

latent variables to understand the dynamics between macroeconomic fundamen-

tals and yields according to DRA approach in following analysis.

Lt St Ct RAt INF t O/N t

y2 1 0.0769 0.0017 0.0000 0.0003 -0.0001
y6 1 0.0256 0.0052 0.0012 -0.0006 -0.0014
y12 1 0.0128 0.0102 0.0007 -0.0036 -0.0006
y24 1 0.0063 0.0202 0.0011 -0.0006 -0.0005

Table 5.18: State Factors Loadings on Yields for DRA approach
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Macroeconomic variables have negligible responses against shocks on level

factor. Real activity, inflation and overnight interest rate factors shows -0.25,

-0.1 and 0.89 basis points initial response to a one standard deviation shocks

on level factor, respectively.

Initial response of real activity is -25 basis points due to shocks on slope

factor but levels off corresponding to magnitude in continuing steps. Inflation

factor shows 4.5 basis points response and overnight interest rates has a -13

basis point initial response against shocks on slope factor according to DRA

model. These results show that slope factor is related closer with real activity

rather than inflation and overnight interest rates as Figure 5.7 presents.
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Figure 5.7: Orthogonal IRF : 1 σ Shocks to Slope Factor

A one standard deviation shock on curvature factor arise an initial response

for real activity of 27.74 basis points. On the other hand inflation and overnight

interest rates initial responses are -0.9 and -5.17 basis points respectively. Fig-

ure 5.8 presents these impulse response functions. The overall macroeconomic
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factors responses to a shock on curvature factor show that curvature factor is

related with real activity stronger than other factors as occurs when a shock

apply on slope factor. These two results provide that real activity factor is

closely related with latent factors.
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Figure 5.8: Orthogonal IRF for Macro Factors: 1 σ Shocks to Curvature Factor

As Figure 5.9 presents, one standard deviation shock to inflation factos

represents identical initial impulse responses on latent factors as 8 basis points.

Figure 5.10 displays the impulse response functions of latent factors against

shock on RA. Level factor has an initial response with -5.35 basis points against

a one standard deviation shock to real activity factor. On the other hand

slope and curvature factors have -1.7 and 6.95 basis points initial responses

respectively. Initial response of one standard deviation shocks on overnight rate

are negligible.

Impulse response functions of yields with maturities 2, 12 and 24 months

against shocks to macroeconomic variables are examined. As Figure 5.11 presents
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Figure 5.9: Orthogonal IRF for Latent Factors: 1 σ Shocks to Inflation

the 12 month yield has -11 basis points initial response where 2 month and 24

month yield have 2.85 and 4.81 basis points initial responses respectively against

a one standard deviation shock to inflation. These results say that a shock on

inflation effect the medium term rather than short and long term yields. Short

term yield with 2 month to mature has a small initial response against shocks

on real activity and overnight interest rates but 12 month and 24 month yields

have considerable initial response to shocks on real activity which are 29 and

-36 basis points respectively.

Impulse response of term structure against shocks on latent variables to

check the model for Turkish data are also examined since we have knowledge

about the effects of latent factors from Nelson-Siegel on term structure of in-

terest rates. The initial impulse responses against a one standard deviation

to slope factor for 2, 12 and 24 month yields are 3.93, 10.28 and 1.91 basis

points respectively. These results coincident with the loadings of slope factor
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Figure 5.10: Orthogonal IRF for Latent Factors: 1 σ Shocks to Real Activity

in Nelson-Siegel representation since the loading says a change in slope factor

effect short term yields more than long term yields. This impulse response func-

tions appear in Figure 5.12 It was mentioned that curvature factor have little

effect on very short and long yields and higher effect on medium term yields

with respect to loadings comes from Nelson-Siegel representation. According to

DRA model for Turkish data the impulse response of yields comes up with the

same aspect as Figure 5.13 presents. The initial impulse response of 2 month

and 24 month yields are -1.25 and 2.09 basis points respectively on the other

hand the medium term yield 12 month has an initial response against shocks

to curvature factor 8.62 basis points. Therefore we can say that DRA approach

is an applicable method for Turkish data since presents expected results and

relations.
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Figure 5.11: Orthogonal IRF for Yields : 1 σ Shocks to Inflation

5.5 Empirical Results for the Original Macro-

Finance Model

5.5.1 Estimation Method

The term structure model is constructed by given processes for macroeco-

nomic variables and the short term rates in previous chapter. The state-space

system (4.4.35) and (4.4.38) is estimated by use of maximum likelihood estima-

tion method via Kalman filter. The model is tested on a data set containing four

yields with different maturities and two macroeconomic variables as a measure

of inflation and real activity. Estimation results for coefficients in transition and

measurement system appear in Table 5.19 with standard deviations in paran-

thesis.

Table 5.20 presents the estimation results for the transition equation (4.4.38)
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Figure 5.12: Orthogonal IRF for Yields : 1 σ Shocks to Slope Factor

α1 α2 α3 βπ βγ βf

0.0030 -0.0034 0.1524 1.5040 -0.0631 -0.1293
(0.0394) (0.0440) (0.0332) (0.0308) (0.0068) (0.0314)

Table 5.19: Estimated Coefficients

and the estimation results for measurement equation (4.4.34) is presented in

Table 5.21.

Coefficients of latent factor ft−1 is more effective on determining the long

run expectation of future short rates rather than macroeconomic factors as Ta-

ble 5.20 presents. On the other hand measurement equations coefficients implies

that the long term expectations of short term rates and the latent factors ft

undertake a dominant role in determining the yields rather than macroeconomic

factors with respect to these results. According to the results, macroeconomic

factors effect term structure of interest rates identically for all terms. That is a

shock on macroeconomic factors affect all yields with different maturities iden-

61



0 5 10 15 20 25 30 35 40
−0.02

0

0.02

0.04

0.06

0.08

0.1

Time steps

Response of Yields to a 1 σ shock to curvature factor

2 month yield
12 month yield
24 month yield

Figure 5.13: Orthogonal IRF for Yields : 1 σ Shocks to Curvature Factor

r∗t−1 πt−1 − π∗ γt−1 − γ∗ ft−1

r∗t 1 0.0030 −0.0034 0.1524
πt − π∗ 0 −0.5040 0 0
γt − γ∗ 0 0 1.0631 0

ft 0 0 0 0.8707

Table 5.20: Estimated F Matrix for the Original Macro-Finance Approach

tically. Another approach examining the dynamic interaction between macro

factors and yield curve present by use of orthogonal impulse response functions.

By using the estimated parameters according to the original macro-finance

approach we present estimated yield curve mean and actual data mean in Ta-

ble 5.22 to provide a prior knowledge about strength of the original macro-

finance model. It can be easily seen that estimated yields corresponding to

original model provides almost an exact fit for yields with 6, 12 and 24 month to

mature. This says estimation results are reliable for the original macro-finance

model by use of Turkey data.
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r∗t πt − π∗ γt − γ∗ ft

y2 0.9889 0.0030 -0.0034 0.1520
y6 0.9944 0.0030 -0.0034 0.1522
y12 0.9963 0.0030 -0.0034 0.1723
y24 0.9972 0.0030 -0.0034 0.1723

Table 5.21: Estimated H ′ Matrix for The Original Macro-Finance Approach

mean
y2 y6 y12 y24

Actual 20.2988 24.0012 27.0897 29.1636
DRA 18.5100 24.0028 26.7492 28.9472

Table 5.22: Comparing Estimated Yields For Original Macro-Finance Model
With Actual Data

5.5.2 Impulse Response Analysis

This section provide the impulse response functions of yields against a one

standard deviation shock to state factors. Figure 5.14 presents the impulse

response of yields against a one standard deviation shock to r∗t and easily seen

from the figure that 2 month and 12 month yields initial responses are 42 basis

points and 48 basis points respectively. On the other hand the long term yield

24 month to mature has a 5 basis points initial response. These results imply

that the latent factor r∗t effect yields with shorter time to maturities. The

impulse response of yields against a one standard deviation shock to central

tendencies of inflation factor is presented in Figure 5.15 and shows longer term

yields with 12 and 24 months to mature have negative initial responses with

-9 and -11.5 basis points respectively and the short term yield initial response

appear as 2.2 basis points. Figure 5.16 presents the impulse response function

of yields against a shock to central tendencies of real activity factor. It shows

initial response of short term yield is negligible. Yields with 12 and 24 months

to mature show initial responses almost same in magnitude but different in

signs with 34 and -37 basis points. Initial responses of yields against a shock

to the latent factor ft, as Figure 5.17 presents, are strong for 2 and 12 month
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Figure 5.14: Orthogonal IRF for Yields : 1 σ Shocks to r∗t

yields which are -240 and -280 basis points respectively. 2 month yield response

functions has an upward sloping shape. Initial response for 24 month yield is

30 basis points and incline to 110 basis points at fourth step.

64



0 5 10 15 20 25 30 35 40
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Time steps

Response of Yields to a 1 σ shock on Inflation Factor  

2 month yield
12 month yield
24 month yield

Figure 5.15: Orthogonal IRF for Yields : 1 σ Shocks to πt − π∗
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Figure 5.16: Orthogonal IRF for Yields : 1 σ Shocks to γt − γ∗

66



0 5 10 15 20 25 30 35 40
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time steps

Response of Yields to a 1 σ shock on Latent yield factor f
t
  

2 month yield
12 month yield
24 month yield

Figure 5.17: Orthogonal IRF for Yields : 1 σ Shocks to ft factor
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Chapter 6

CONCLUSION

In first part of this thesis the traditional model literature about term struc-

ture modelling has been reviewed and macro-finance models started by the sem-

inal article Ang and Piazzesi(2003) has been discussed. Three macro-finance

term structure models are explained and estimated throughout this paper after

giving the importance and advantages of macro-finance modelling against tra-

ditional models. These macro-finance approaches estimate the joint dynamics

of bond yields and macroeconomic variables together with affine term struc-

ture models. For AP approach, a well performing estimated yield curve that

coincide with the historically observed term structure of interest rate by using

estimated parameters could not be constructed. This may be a result of large

number of parameters to be estimated with a small scale data sets. For DRA

approach a better performing estimated yield curve had been constructed de-

spite not indeed no-arbitrage restriction. Although macroeconomic variables

have less impact on term structure rather than latent factors, macroeconomic

variables have related with yield curve as following. RA factor effect medium

and long term yields rather than short term yields and inflation factor effect

medium term yields at most. On the other hand overnight lending rate has

almost negligible effect on yield curve.

Estimation results show that the original macro-finance model better per-

form the yield curve rather than DRA approach. As in two macro finance

models the macroeconomic variables have smaller impact on yield curve than

68



latent factors r∗t and ft. r∗t factor is dominant to determine the short term yields

since it is constructed as the policy rule according to forward looking Taylor

rule. Corresponding to estimation results inflation factor effects the long term

yields rather than short terms, as real activity factor do.

Despite the small-scale application the results are quite encouraging and

by a larger set of macroeconomic variables and interest rate data the models

expected to be even more convincing.

69



References

[1] Andrew, A., Piazzesi, M., Dong, S., No Arbitrage Taylor Rules, Working

Paper , University of Chicago, Chicago, (2005).

[2] Andrew, A., Bekaert, G., The term structure of real rates and expected

returns, Working Paper, Columbia University, (2005).

[3] Andrew, A., Piazzesi, M., A no-arbitrage vector autoregression of term

structure dynamics with macroeconomic and latent variables, Journal of

Monetary Economics, 50, 745-787 (2003).

[4] Andrew A., Piazzesi, M., Wei, M., What does the yield curve tell us about

GDP growth?, Journal of Econometrics, 131, 359-403, (2006).

[5] Bekaert, G., Hodrick, R., Expectations hypothesis tests, Journal of Finance,

56, 115-38, (2001).

[6] Brigo D., Mercurio F., Interest Rate Models Theory and Practice, Springer,

(2001).

[7] Cochrane, J. H., Piazzesi, M., Bond Risk Premia, American Economic

Review, 95, 138-160, (2005).

[8] Cochrane, J. H., Piazzesi, M., The Fed and Interest Rates: A High-

frequency Identification, American Economic Review, 92, 90-95, (2002).

[9] Constantinides, G., A theory of the nominal term structure of interest

rates, Review of Financial Studies, 5, 531-552, (1992).

70



[10] Cox, J. C., Ingersoll, J. E., Ross, S. A., A theory of the term structure of

interest rates, Econometrica, 53, 385-407, (1985).

[11] Dai, Q., Singleton, K., Term structure dynamics in theory and reality,

Review of Financial Studies, 16, 631-678, (2003).

[12] Dai, Q., Singleton, K., Specification analysis of affine term structure mod-

els, Journal of Finance, 55, 1943-1978, (2000).

[13] Dai, Q., Singleton, K., Expectation puzzles, time-varying risk premia, and

affine models of the term structure, Journal of Financial Economics, 63,

415-441, (2002).

[14] Dewachter, H., Lyrio, M., Macro Factors and the Term Structure of Inter-

est Rates, Journal of Money Credit and Banking, 38(1), 119-140, (2006).

[15] Dewachter, H., Lyrio, M., Maes, K., A joint model for the the term struc-

ture of interest rates and the macroeconomy, Journal of Applied Economet-

rics, 21(4), 439-462, (2006).

[16] Diebold., F.X., Piazzesi, M., Rudebusch, G.D., Modeling Bond Yields in

Finance and Macroeconomics, American Economic Review, 95, 415-430,

(2005).

[17] Diebold, F.X., Rudebusch, G.D., Aruoba, B., The Macroeconomy and the

Yield Curve: A Dynamic Latent Factor Approach, Journal of Econometrics,

131, 309-338, (2006).

[18] Diebold, F.X., Li, C., Forecasting the Term Structure of Government Bond

Yields, Journal of Econometrics, 130, 337-364, (2006).

[19] Duffee, G.R., Term premia and interest rate forecasts in affine models,

Journal of Finance, 57, 405-443, (2002).

[20] Duffie, D., Kan, R., A yield-factor model of interest rates, Mathematical

Finance, 6, 379-406, (1996).

71



[21] Durbin, J., Koopman, S.J., Time Series Analysis by State Space Methods,

Oxford University Press, Oxford, (2001).

[22] Evans, C.L., Marshall, D.A., Monetary policy and the term structure of

nominal interest rates: Evidence and theory, Carnegie-Rochester Confer-

ence Series on Public Policy 49, 53-111, (1998).

[23] Evans, C.L., Marshall, D.A., Economic determinants of the term structure

of nominal interest rates, Working paper, Federal Reserve Bank of Chicago,

Chicago, IL, (2001).

[24] Fisher, M., Gilles, C., Estimating exponential-affine models of the term

structure, Working paper, Federal Reserve Atlanta, (1996).

[25] Fisher, M., Gilles,C., Around and around: The expectations hypothesis,

Journal of Finance, 53, 365-83, (1998).

[26] Hamilton, J.D., Time series analysis, Princeton University Press, Prince-

ton, New Jersey, (1994).

[27] Harvey, A.C., Time Series Models, MIT Press, Cambridge, (1981).

[28] Heat, D., Jarrow, H., Morton, A., Bond Pricing and the Term Structure

of Interest Rates: A New Methodology for Contingent Claims Valuation,

Econometrica, 60, 77-105, (1992).

[29] Ho S.Y., Lee S., Term structure movements and pricing interest rate con-

tingent claims, Journal of Finance, 41, 1011-1029, (1986).

[30] Hördahl, P., Tristani,O., Vestin, D., A Joint Econometric Model of

Macroeconomic and Term Structure Dynamics, Journal Econometrics, 131,

405-444, (2006).

[31] Hull, J., Options, futures, and other derivatives (4th edition), Englewood

Cliffs, NJ: Prentice Hall, (2000).

[32] Hull J., White A., Pricing Interest Rate Derivative Securities, The Review

of Financial Studies, 3, 573-592, (1990).

72



[33] James J., Webber N., Interest Rate Modelling, Wiley (2002).

[34] Knez, P.J., Litterman, R., Scheinkman,J., Explorations Into Factors Ex-

plaining Money Market Returns, Journal of Finance, 49(5), 1861-1882,

(1994).

[35] Litterman, R., Scheinkman, J., Common factors affecting bond returns,

Journal of Fixed Income, 1, 54-61, (1991).

[36] Nelson, C.R., Siegel, A.F., Parsimonious modelling of yield curves, Journal

of Business, 60, 473-489, (1987).

[37] Piazzesi, M., An econometric model of the yield curve with macroeconomic

jump effects, NBER Working paper, no:8246, (2001).

[38] Piazzesi, M., Bond Yields and the Federal Reserve, Journal of Political

Economy, 113(2),311-344, (2005).

[39] Piazzesi, M., Affine Term Structure Models, in: Ait-Sahalia, Y., Hansen,

L.P., Handbook of Financial Econometrics, (2004).

[40] Rudebusch, G. D., Wu, T., A Macro-Finance Model of the Term Structure,

Monetary Policy, and the Economy, Federal Reserve Bank of San Francisco

working paper, 2003-17, (2004).

[41] Rudebusch, G. D., Wu, T., The Recent Shift in Term Structure Behavior

from a No -Arbitrage Macro -Finance Perspective, Federal Reserve Bank

of San Francisco working paper, 2004-25, (2004).

[42] Taylor, J.B., Discretion versus policy rules in practice, Carnegie-Rochester

Conference Series on Public Policy, 39, 195-214, (1993).

[43] Vasicek, O., An equilibrium characterization of the term structure, Journal

of Financial Economics, 5, 177-188, (1977).

[44] Wu, T., Macro factors and the affine term structure of interest rates, Fed-

eral Reserve Bank of San Francisco Working Paper, 2002-06, (2005).

73



[45] Wu, T., Stylized Facts on Nominal Term Structure and Business Cycles:

An Empirical VAR study, Applied Economics, 35, 901-906, 2003.

[46] Wu, T., Macro factors and the affine term structure of interest rates, Work-

ing Paper, Federal Reserve Bank of San Francisco, (2001).

[47] Wu, T., Monetary policy and the slope factor in empirical term struc-

ture estimations, Working Paper, Federal Reserve Bank of San Francisco,

(2001).

[48] Hull, J., White, A., Pricing interest rate derivative securities, Review of

Financial Studies 3, 4, 573-92, (1990).

74


