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ABSTRACT 

ACTIVE VIBRATION CONTROL OF A SMART BEAM:  

A SPATIAL APPROACH 

 
 
 

Kırcalı, Ömer Faruk 

M. S., Department of Aerospace Engineering 

Supervisor: Prof. Dr. Yavuz Yaman 

Co- Supervisor: Dr. Volkan Nalbantoğlu 

 

September 2006, 139 Pages 

 
 

This study presented the design and implementation of a spatial H∞  

controller to suppress the free and forced vibrations of a cantilevered smart 

beam. The smart beam consists of a passive aluminum beam with surface 

bonded PZT (Lead-Zirconate-Titanate) patches.  In this study, the PZT 

patches were used as the actuators and a laser displacement sensor was used 

as the sensor. 

 

In the first part of the study, the modeling of the smart beam by the 

assumed-modes method was conducted.  The model correction technique 



 v

was applied to include the effect of out-of-range modes on the dynamics of 

the system. Later, spatial system identification work was performed in order 

to clarify the spatial characteristics of the smart beam.  

 

In the second part of the study, a spatial H∞  controller was designed for 

suppressing the first two flexural vibrations of the smart beam. The efficiency 

of the controller was verified both by simulations and experimental 

implementation.  

 

As a final step, the comparison of the spatial and pointwise H∞  controllers 

was employed. A pointwise H∞  controller was designed and experimentally 

implemented. The efficiency of the both controllers was compared by 

simulations. 

 

Keywords: Assumed-Modes Method, Model Correction, Spatial System 

Identification, Spatial H∞  Controller Design. 
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ÖZ 

AKILLI BİR KİRİŞİN AKTİF TİTREŞİM KONTROLÜ:  

UZAMSAL BİR YAKLAŞIM 

 
 
 

Kırcalı, Ömer Faruk 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Yavuz Yaman 

Ortak Tez Yöneticisi: Dr. Volkan Nalbantoğlu 

 

Eylül 2006, 139 Sayfa 

 
 

Bu çalışmada, ankastre akıllı bir kirişin serbest ve zorlanmış titreşimlerinin 

sönümlendirilmesi için uzamsal H∞  denetçi tasarımı ve gerçekleştirimi 

sunulmuştur. Akıllı kiriş pasif aluminyum bir kiriş ve yüzeyine yapıştırılmış 

PZT (Lead-Zirconate-Titanate) yamalardan oluşmuştur.  Çalışmada, PZT 

yamaları uyarıcı ve bir lazer yardımıyla yerdeğiştirme ölçüm cihazı ise 

algılayıcı olarak kullanılmıştır. 

 

Çalışmanın ilk bölümünde, akıllı kirişin varsayılan-biçimler metodu ile 

modellenmesi incelenmiştir. Elde edilen modele yüksek frekanstaki titreşim 
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biçimlerinin etkisi model iyileştirme tekniği kullanılarak dahil edilmiştir. 

Daha sonra uzamsal sistem tanımlama yöntemi kullanılarak akıllı kirişin 

uzamsal karakteristiklerinin daha net bir şekilde elde edilmesi çalışılmıştır.  

 

Çalışmanın ikinci kısmında, akıllı kirişin ilk iki eğilme titreşimlerini 

sönümlendirmek için uzamsal bir H∞  denetçisi tasarlanmıştır. Denetçinin 

etkinliği benzetim ve deneysel uygulamalar ile doğrulanmıştır.  

 

Son olarak, uzamsal ve noktasal denetçilerin karşılaştırılması çalışılmıştır. 

Noktasal bir H∞  denetçisi tasarlanmış ve deneysel olarak uygulanmıştır. Her 

iki denetçinin de etkinlikleri benzetimler vasıtasıyla karşılaştırılmıştır. 

 

Anahtar Kelimeler: Varsayılan-Biçimler Metodu, Model İyileştirme, 

Uzamsal Sistem Tanımlama, Uzamsal H∞  Denetçi Tasarımı. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation to the Study 

 

The vibration phenomenon is an important and a costly issue for lightweight 

flexible aerospace structures. Those structures may be damaged or become 

ineffective under the undesired vibrational loads because of possible fatigue 

and instability. Hence, they require a proper control mechanism to attenuate 

the vibration levels in order to preserve the structural consistency. The usage 

of smart materials, as actuators and/or sensors, has become promising 

research and application area that gives the opportunity to accomplish the 

reduction of vibration of flexible structures and proves to be an effective 

active control mechanism. 

 

A smart structure consists of a passive structure and distributed active parts 

working as sensors and/or actuators. That can sense the external disturbance 

and respond to it. That kind of structures gives the opportunity to control the 

vibrations in an active control manner instead of using passive vibration 

control units such as external vibration absorbers. Recent researches indicate 

that smart materials such as piezoelectric materials, electrostrictive materials, 
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magnetostrictive materials, shape memory alloys, electrorhelogical fluids 

and magnetorhelogical fluids can be used as the active parts of a smart 

structure. 

 

Active vibration control concepts have offered an extensive research area for 

the last few decades. Designing controllers for decided performance criteria 

requires a good mathematical modeling of the system. Smart structures can 

be modeled by using analytical methods or system identification techniques 

using the experimental data. 

 

The system model of a smart structure generally involves a large number of 

vibrational modes. However, the performance goals are mostly related to the 

first few vibrational modes since their effect on structural failure is more 

prominent. Hence, a reduction of the order of the model is required. On the 

other hand, ignoring the higher modes can directly affect the system 

behavior, which in turn requires the researchers to work on model correction 

techniques in order to compensate the model reduction error and to have 

more accurate system models. 

 

Today, various controller design techniques are available for attenuating the 

structural vibration levels. The common behavior of all active vibration 

control techniques is to suppress the vibration levels for the first few 

vibrational modes on well-defined specific locations of the structure. 

Although that kind of pointwise vibration suppression seems to successfully 

work at those specific locations; the effect of vibration at the rest of the 

structure may not be effectively controlled. The effects on the entire structure 
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should be taken into consideration. The spatial active vibration control 

technique has emerged in order to minimize the vibration over the entire 

body in a spatially averaged sense. 

 

1.2 Historical Background 

 

1.2.1 Smart Structures 

 

For the last few decades there has been an extensive research about the 

piezoelectric materials because of the capability of being used both as 

actuators and sensors. The smart structure is a structure that can sense 

external disturbance and respond to that in real time to fulfill operational 

requirements. Smart structures consist of a passive structure, highly 

distributed active devices called smart materials/elements and processor 

networks. The smart materials are primarily used as sensors and/or actuators 

and are either embedded or attached to an existing passive structure [1]. An 

extensive literature survey about various smart materials and their 

characteristics can be found in Çalışkan [1]. In this study, PZT (Lead-

Zirconate-Titanate) type smart materials are utilized as actuators. 

 

Pierre and Jacques Curie first discovered the direct piezoelectric effect in 

naturally occurring single crystals such as quartz [2]. They observed that the 

crystals exposed to mechanical deformation generate voltage on their 

surfaces. Later, they also discovered that applied electric field caused the 

material go under mechanical deformation which is known as converse 
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piezoelectric effect. Having the capability of converting the energies between 

electrical and mechanical, the piezoelectric materials had the possibility to be 

used in various application areas. Today, the main and may be the most 

widespread application area of piezoelectric materials is using them as 

collocated actuator and sensor pair for active vibration control purposes [3]. 

 

1.2.2 Structural Modeling and Model Correction 

 

Active vibration control of a smart structure starts with an accurate 

mathematical model of the structure. Modeling smart structures may require 

the modeling of both passive structure and the active parts. Crawley and de 

Luis [4], by neglecting the mass of active elements, presented an analytical 

modeling technique to show that the piezoelectric actuators can be used to 

suppress some modes of vibration of a cantilevered beam. Similar approach 

was carried out on thin plates by Dimitridis et al [5]. Although neglecting the 

mass and stiffness properties of the smart materials compared to the passive 

structure is generally acceptable, the modeling of a smart structure mainly 

involves the force and moment descriptions generated by the smart 

materials. Sample modeling studies are proposed by several researchers such 

as Pota et al. [6], Halim [7].  The governing differential equations of motion 

of the smart structures can then be solved by analytical methods, such as 

modal analysis, assumed-modes method, Galerkin’s method or finite 

element method [8]. 

 

Since it is not so easy to consider all non-uniformities in structural properties 

of a smart structure, the analytical modeling techniques such as finite 
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element model, modal analysis or assumed modes method allow one to 

obtain system model including only the natural frequencies and mode 

shapes of the structure except damping [1, 7]. In order to improve the model, 

Nalbantoğlu [9] and Nalbantoğlu et al. [10] showed that experimental system 

identification techniques can be applied on flexible structures and they may 

help one to identify the system more accurately. 

 

Due to having a large number of resonant modes, the high frequency 

characteristics of a flexible structure generally cause problems in identifying 

the system model. Since, usually the first few vibrational modes are taken 

into account in the controller design, the reduction of the model is often 

required to obtain the finite-dimensional system model [11, 12, 13]. General 

approach for reducing the order of the model is the direct model reduction. 

However, removing the higher modes directly from the system model 

perturbs zeros of the system [14].  Minimizing the effect of model reduction 

and correcting the system model is possible by adding a feedthrough, or 

correction, term including some of the removed modes, to the truncated 

model [14, 15, 16]. Halim [7] proposed an optimal expression for feedthrough 

term incase of undamped and damped system models. 

 

1.2.3 Active Vibration Control Strategies 

 

Various control techniques have been used as active control strategy like 

optimal control [17], LQG control [18] and robust control using H∞  [9, 19, 20] 

or 2H  control framework [21]. 
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The robust stabilizing controllers designed based on H∞  control technique 

originated by Zames [22], are widely used in controlling the vibration of 

smart structures to take into account of the unmodeled dynamics in terms of 

the uncertainties over the system.  The H∞  control design technique for 

robust control phenomena has been developed by many researchers for 

various application areas including the vibration control [23, 24, 25]. 

 

Yaman et al. [19, 26] showed the effect of H∞  based controller on suppressing 

the vibrations of a smart beam due its first two flexural modes. Later they 

extended their studies to a smart plate [27, 28].  Ülker [20] showed that, 

besides the H∞  control technique, µ-synthesis based controllers can also be 

used to suppress vibrations of smart structures. Lenz et al. [25, 29] studied 

the active vibration control of a flexible beam using distributed parameter 

H∞  control method in order to obtain finite-dimensional controllers from 

infinite-dimensional system models. In all those works on flexible structures, 

the general control strategy focused on analyzing the vibrations at specific 

locations over the structure and minimizing them. However, that kind of 

pointwise controller design ignores the effect of vibration at the rest of the 

body and a successful vibration reduction over entire structure can not 

always be accounted for. 

 

Moheimani and Fu [30] introduced spatial 2H  norm, which is a measured 

performance over spatial domain, for spatially distributed systems in order 

to meet the need of spatial vibration control. Afterwards, Moheimani et al. 

[13, 31] proposed spatial H∞  norm concept and simulation based results of 

spatial vibration control of a cantilevered beam were presented. Moheimani 
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et al. [32, 33] carried out the spatial approach on feedforward and feedback 

controller design, and presented illustrative results. They also showed that 

spatial H∞  controllers could be obtained from standard H∞  controller design 

techniques. Although the simulations demonstrated successful results on 

minimizing the vibrations over entire beam, implementation of that kind of 

controllers was not guaranteed on real world systems. Halim [7, 21] studied 

the implementation of spatial 2H  controllers on active vibration control of a 

simply-supported beam experimentally and presented successful results. He 

continued to work on simply-supported beams about implementation of 

spatial H∞  controller and obtained successful experimental results [34]. 

Further experimental studies were performed on active vibration control of a 

simply-supported piezoelectric laminate plate by Lee [35].  Lee also 

attenuated acoustic noise due to structural vibration. 

 

The current study aims to contribute to the spatial control by considering a 

smart beam under clamped-free boundary conditions. It investigates the 

effect of spatial control on the suppression vibrations of the cantilevered 

smart beam. 

 

1.3 Aims and Limitations of the Study 

 

The aim of this thesis is to obtain the corrected system model of a clamped-

free smart beam by assumed-modes method and to design and implement a 

spatial H∞  controller to suppress the free and forced vibrations of the smart 

beam. The smart beam consists of a passive aluminum beam with surface 
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bonded PZT (Lead-Zirconate-Titanate) patches.  In this study, the PZT 

patches are used as the actuators and a laser displacement sensor is used as 

the sensor.  

 

The frequency range of interest covers only the first two flexural modes of 

the smart beam. 

 

The locations of the PZT patches are considered as optimal locations and no 

formal optimization has been conducted.  

 

The PZT patches are assumed perfectly bonded to the beam. 

 

Nonlinear characteristics of piezoelectric actuators and their hysteresis effects 

are neglected.  

 

1.4 Outline of the Thesis 

 

Chapter 1 presents the motivation to the study and gives a literature survey 

about the smart structures, modeling and control techniques for active 

vibration control. 

 

Chapter 2 gives the theory which is used and developed in the study. 

 

Chapter 3 gives the verifications of the theoretical model developed and 

experimental work for spatial system identification of the smart beam. 
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Chapter 4 describes the design, simulation and implementation of spatial H∞  

controller and presents experimental results. This chapter also includes a 

comparison of the spatial and pointwise H∞  controllers. 

 

Chapter 5 includes the general conclusions of the study and 

recommendations for further research. 
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CHAPTER 2 

THEORY 

2.1 Introduction 

 

This chapter describes the underlying theory of the thesis. The approaches in 

the modeling are first given and of the assumed-modes method and 

application of it on the smart beam are then presented. Later, the model 

correction technique is explained. For the sake of simplicity, the detailed 

derivations of the formulations and the spatial norm definitions are referred 

to appendices. The spatial H∞  control method and its mathematical 

background are also described.  

 

2.2 Modeling Approaches 

 

2.2.1 Transverse Vibration of a Passive Euler-Bernoulli Beam 

 

Many flexible structures such as aircraft wings, bridges, and entire buildings 

experience transverse vibrations. In transverse vibration, the beam deflects 

perpendicular to its own axis, which in turn results in bending motion. 
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This chapter studies a uniform Euler-Bernoulli beam with no axial loading. 

 

Consider the transverse deflection of a passive beam of length bL  shown in 

Figure 2.1.a. The beam’s density, Young’s modulus of elasticity and second 

moment of area are defined as bρ , bE , and bI  respectively. 

 

Figure 2.1: a) Beam in transverse vibrations. b) Free body diagram of a small 

element of the beam. 

 

Consider Figure 2.1.b where ( , )M t r , ( , )S t r , and ( , )p t r  denote the bending 

moment, shear force, and external distributed force per unit length at r at 

time t, respectively. Applying Newton’s second law to the y direction for 

small deflections gives: 

 
2

2

( , ) ( , )( , ) ( , ) ( , ) ( )b b
S t r y t rS t r dr S t r p t r dr A r dr
r t

ρ∂ ∂ + − + = ∂ ∂ 
 (2.1) 

 

which can be found to yield: 
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2

2

( , ) ( , )( , ) ( )b b
S t r y t rdr p t r dr A r dr
r t

ρ∂ ∂
+ =

∂ ∂
 (2.2) 

 

where ( )bA r  is the cross-sectional area of the beam at point r. 

 

Since the rotatory inertia effects are neglected, the sum of moments on the 

element is zero and it consequently leads to: 

 

( , ) ( , )( , ) ( , ) ( , ) ( , ) 0
2

M t r S t r drM t r dr M t r S t r dr dr p t r dr
r r

∂ ∂   + − + + + =   ∂ ∂   
  (2.3)  

 

where the point about which the moments are considered is the lower left 

corner of the beam element of Figure 2.1.b and the counter-clockwise 

moment is assumed positive. 

 

Equation (2.3) can be simplified to yield: 

 

( , )( , ) M t rS t r
r

∂
= −

∂
 (2.4) 

 

The relation between the bending moment and bending deformation is [8]: 

 
2

2

( , )( , ) b b
y t rM t r E I
r

∂
=

∂
 (2.5) 

 

Substituting the bending moment expression given in equation (2.5) into 

equation (2.4) will give the shear force as: 
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2

2

( , )( , ) b b
y t rS t r E I

r r
 ∂ ∂

= −  ∂ ∂ 
 (2.6)

  

Inserting this shear expression into equation (2.2) results in the differential 

equation of motion for the transverse vibration of the beam: 

 

2 2 2

2 2 2

( , ) ( , )( ) ( , )b b b b
y t r y t rE I A r p t r

r r t
ρ

 ∂ ∂ ∂
− + = ∂ ∂ ∂ 

 (2.7) 

 

which is also known as the Euler-Bernoulli beam equation. 

 

This study analyzes the beam in cantilevered configuration. Hence, the 

boundary conditions of the cantilevered beam are: 

 

At clamped end (i.e. r = 0): 

 

0
( , ) 0

r
y t r

=
=  (2.8) 

 

0

( , ) 0
r

y t r
r =

∂
=

∂
 (2.9) 

 

At free end (i.e. r = bL ): 

 

2

2

( , ) 0
b

b b
r L

y t rE I
r =

∂
=

∂
 (2.10) 
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2

2

( , ) 0
b

b b

r L

y t rE I
r r

=

 ∂ ∂
= ∂ ∂ 

 (2.11) 

 

Equations (2.7) to (2.11) form a boundary value problem. The solution of the 

problem for harmonic motion gives the natural modes, or the eigenfunctions, 

of the cantilevered passive beam as [8]:  

 

( )cos cosh
( ) cosh cos sinh sin

sin sinh
i b i b

i i i i i i
i b i b

L L
r A r r r r

L L
β β

φ β β β β
β β

 +
= − − − + 

 (2.12) 

 

where iA  is an arbitrary constant and iβ  are the roots of characteristic 

equation [8] given in equation (2.13) with subscript i yielding an infinite 

number of eigenvalues, i.e. i= 1, 2, … 

 

1 cos cosh 0b bL Lβ β+ =  (2.13) 

 

Note that, the natural modes of the cantilevered passive beam satisfy the 

below orthogonality expressions [8]: 

 

0
( ) ( ) 0,   

bL

b b i jA r r dr i jρ φ φ = ≠∫  (2.14) 

 
22

2 2
0

( )( )
0,   

bL ji
b b

d rd r
E I dr i j

dr dr
φφ

= ≠∫  (2.15) 
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2.2.2 Assumed-Modes Method 

 

Approximate methods tend to represent the continuous system with an 

equivalent discrete one. Assumed-modes method is an approximate method 

that possesses this discretization by means of a series solution. It assumes a 

solution of the boundary value problem as: 

 

1
( , ) ( ) ( )

N

i i
i

y t r r q tψ
=

= ∑  (2.16) 

 

where ( )i rψ  are admissible functions satisfying the passive beam’s geometric 

boundary conditions, and ( )iq t  are time-dependent generalized coordinates. 

 

Assumed-modes method uses this solution in junction with Lagrange’s 

equation to obtain approximate system model of the structure.  Lagrange’s 

equation of motion including nonconservative forces is: 

 

i
i i i

d L L F Q
dt q q q
 ∂ ∂ ∂

− + = ∂ ∂ ∂ & &
 (2.17) 

 

where '   '&  represents the derivative with respect to time, i.e. /d dt , and 

L T V= −  is the Lagrangian term. ( )T t  and ( )V t  in Lagrangian term refer to 

the kinetic and potential energy, respectively. Besides, the nonconservative 

forces involve the viscous damping force ( )F t  and external forces applied on 

the system ( )iQ t . 
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The kinetic and potential energy expressions of a cantilevered passive beam, 

with uniform structural properties and cross-sectional area, at time t are [8]: 

 
2

0

1 ( , )( )
2

bL

b b
y t rT t A dr
t

ρ ∂ = ∫  ∂ 
 (2.18) 

 
22

2
0

1 ( , )( )
2

bL

b b
y t rV t E I dr
r

 ∂
= ∫  ∂ 

 (2.19) 

 

The viscous damping expression of the passive beam is [8]: 

 
2

0

1 ( , )( )
2

bL

b b
y t rF t c A dr
t

ρ ∂ = ∫  ∂ 
 (2.20) 

 

where c  is the proportional viscous damping coefficient, which is related to 

viscous damping factor ξ  and natural frequency of the beam ω  as [8]: 

 

2=c ξω  (2.21) 

 

The external forces including only a distributed force ( , )f t r  have the general 

expression as [8]: 

 

0
( ) ( , ) ( )

bL

i iQ t f t r r drψ= ∫  (2.22) 

 

Further, the external force can be decomposed as [8]: 
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( ) ( )i iQ t Pu t=  (2.23) 

 

where ( )u t  is the time-dependent excitation force, considered as the input to 

the system, and iP  is the constant forcing term. 

 

Following the necessary mathematical manipulations, one will obtain the 

solution of Lagrange’s equation (2.17) in the form of the following ordinary 

differential equations of motion: 

 
2( ) 2 ( ) ( ) ( )+ + =&& &i i i i i i iq t q t q t Pu tξ ω ω  (2.24)

  

 

where  '   '&&  represents the second derivative with respect to time, i.e. 2 2/d dt . 

One should recall that, the subscript i shows the number of the eigenvalue. 

That is, iξ  and iω  are the modal damping ratios and natural frequencies of 

the passive beam, respectively. 

 

Taking the Laplace transform of the equation (2.24) will yield the input and 

output relation of the system dynamics as a transfer function in the 

frequency domain: 

 

2 2
1

( )
( , )

2
N

i i
N

i i i i

P r
G s r

s s
ψ
ξ ω ω=

= ∑
+ +

 (2.25) 
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where ( , )NG s r  defines the transfer function of the system from system input 

to the beam deflection including N  number of admissible functions ( )i rψ . 

The detailed derivation of equation (2.25) can be found in Appendix A. 

 

2.3 Assumed-Modes Modeling of the Smart Beam 

 

Consider the cantilevered smart beam model used in the study depicted in 

Figure 2.2. 

 

 

Figure 2.2: The smart beam model used in the study 

 

The smart beam consists of a passive aluminum beam (507mmx51mmx2mm) 

with eight symmetrically surface bonded SensorTech BM500 type PZT (Lead-

Zirconate-Titanate) patches (25mmx20mmx0.5mm), which are used as the 

actuators. Note that, in this thesis, the group of PZT patches on one side of 

the beam is considered as if it is a single patch. The beginning and end 

locations of the PZT patches along the length of the beam away from the 

fixed end are denoted as 1r  and 2r , and the patches are assumed to be 
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optimally placed [1]. The subscripts b  and p  indicate the passive beam and 

PZT patches, respectively.  

 

The total kinetic energy expression of the smart beam, sbT , is: 

 

( ) 21

1 20( ) | 2 | | bLrr
sb b b p r b rT t T T T T= + + +  (2.26)  

 

where bT  and pT  are the kinetic energy expressions of the beam and the PZT 

patch, respectively. Recall that the kinetic energy expression of the passive 

beam is given in equation (2.18). Similarly, the kinetic energy expression of 

the piezoelectric patch bonded to one side of the passive beam can be shown 

to be: 

 

2

1

21 ( , )( )
2

r

p p p
r

y t rT t A dr
t

ρ ∂ = ∫  ∂ 
 (2.27) 

 

Substituting equations (2.18) and (2.27) into equation (2.26), and considering 

equation (2.16), one can obtain the total kinetic energy expression of the 

smart beam as: 

 

2

11 1 0

1( ) 2
2

bL rN N

sb b b i j p p i j i j
i j r

T t A dr A dr q qρ ψ ψ ρ ψ ψ
= =

 
= +∑ ∑ ∫ ∫ 

 
& &  (2.28)  

 

Similarly, the total potential energy of the smart beam, sbV , can be shown to 

yield: 
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( ) 21

21
0

( ) 2 b
rr L

sb b b p b rr
V t V V V V= + + +  (2.29) 

 

where bV  and pV  are the potential energy expressions of the beam and the 

PZT patch, respectively.  

 

The potential energy of the piezoelectric patch bonded to one side of the 

passive beam is: 

 

2

1

22

2

1 ( , )( )
2

r

p p p
r

y t rV t E I dr
r

 ∂
= ∫  ∂ 

 (2.30) 

 

Hence, the total potential energy of the smart beam can be found to yield: 

 

2

11 1 0

1( ) 2
2

bL rN N

sb b b i j p p i j i j
i j r

V t E I dr E I dr q qψ ψ ψ ψ
= =

 ′′ ′′ ′′ ′′= +∑ ∑ ∫ ∫ 
 

 (2.31) 

 

where '   '′′  represents the second derivative with respect to spatial 

coordinate, i.e. 2 2/d dr . 

 

The total viscous damping force of the smart beam, sbF , is: 

 

( ) 21

21
0

( ) 2 b
rr L

sb b b p b rr
F t F F F F= + + +  (2.32) 

 

where bF  and pF  are the dissipative damping force expressions of the beam 

and the PZT patch, respectively.  
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The viscous damping of the piezoelectric patch bonded to one side of the 

passive beam is: 

 

2

1

21 ( , )( )
2

r

p p p
r

y t rF t c A dr
t

ρ ∂ = ∫  ∂ 
 (2.33) 

 

So, total viscous damping force of the smart beam consequently leads to: 

 

2

11 1 0

1 (2 ) 2 (2 )
2

bL rN N

sb i i b b i j i i p p i j i j
i j r

F A dr A dr q qξ ω ρ ψ ψ ξ ω ρ ψ ψ
= =

 
= +∑ ∑ ∫ ∫ 

 
& &  (2.34) 

 

If the PZT patches are placed in a collocated manner and the voltage is 

applied in order to create a bimorph configuration (PZT patches bonded to 

opposite faces of the beam have opposite polarity), the resulting effect on the 

beam becomes equivalent to that of a bending moment. This case is shown in 

Figure 2.3: 

 

 

Figure 2.3: Inducing bending moment by applying voltage to PZT patches  
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Here ( , )pM t r  denotes the bending moment and ( , )aV t r  is the applied 

voltage. The general expression of the applied voltage is: 

 

[ ]1 2( , ) ( ) ( ) ( )a aV t r V t H r r H r r= − − −  (2.35) 

 

where ( )cH r r−  denotes the Heaviside step function given as: 

 

1     
( )

0   
c

c

for r r
H r r

elsewhere
≥ 

− =  
 

 (2.36) 

 

When the voltage in equation (2.35) is applied on a PZT patch, a piezoelectric 

strain pε  is introduced in the patch [36]: 

 

31( , ) ( , )p a
p

d
t r V t r

t
ε =  (2.37) 

 

This strain results in a longitudinal stress pσ  as: 

 

( , ) ( , )p p pt r E t rσ ε=  (2.38) 

 

This stress in turn generates a bending moment about the neutral axis of the 

system, given by [36]: 

 
/ 2

/ 2
( , ) ( , )

b p

b

t t

pa p p
t

M t r t r w ydyσ
+

= ∫  (2.39) 
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where ( , )paM t r  denotes the bending moment exerted from the PZT patch 

bonded on one side of the beam. Since both PZT patches having opposite 

polarity are used as the actuators in this study, the bending moment exerted 

on the beam becomes: 

 

22

2 2

( , )
bb pp

b b

tt tt

t tp p p p pM t r w ydy w ydyσ σ
 − ++  
 

−
= +∫ ∫  (2.40) 

 

which consequently leads to: 

 

( )( , ) ,p p aM t r C V t r=  (2.41) 

 

where pC  is a geometric constant due to bending moment, and expressed as: 

 

31 ( )p p p p bC E d w t t= +  (2.42) 

 

The loading due to bending moment actuated by PZT patches can be 

expressed as in (2.22): 

 
2

2
0

( )
bL p

i i

M
Q r dr

r
ψ

∂
= ∫

∂
 (2.43) 

 

In this thesis, the assumed modes (i.e. the admissible functions) of the fixed-

free smart beam are taken as the eigenfunctions of the fixed-free passive 

beam: 
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( )cos cosh
( ) cosh cos sinh sin

sin sinh
i b i b

i b i i i i
i b i b

L L
r L r r r r

L L
β β

φ β β β β
β β

 +
= − − − 

+ 
 (2.44) 

 

where the orthogonality conditions given in equations (2.14) and (2.15) 

reduce to [37]: 

 

3
ij

0
( ) ( ) ,   

bL

b b i j b b bA r r dr A L i jρ φ φ ρ δ= ≠∫  (2.45) 

 
22

3 2
2 2

0

( )( )
,   

bL ji
b b b b b i ij

d rd r
E I dr A L i j

dr dr
φφ

ρ ω δ= ≠∫  (2.46) 

 

where ijδ is the Kronecker’s delta function: 

 

1
0ij

i j
i j

δ
=

=  ≠
 (2.47) 

 

Substituting the expressions of equations (2.28), (2.31) , (2.34) and (2.43)  into 

equation (2.17) will lead to the following ordinary differential equations of 

motion: 

 

2 12
3 3

( )[ ( ) ( )]
( ) 2 ( ) ( )

2
p a i i

i i i i i i
b b b p p p

C V t r r
q t q t q t

A L A L
φ φ

ξ ω ω
ρ ρ

′ ′−
+ + =

+
&& &  (2.48) 

 

where '   '′  represents the first derivative with respect to spatial coordinate, 

i.e. /d dr .  
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As a consequence, the transfer function, ( , )NG s r , from the input voltage to 

the beam deflection in the frequency domain, including N  number of 

eigenfunctions, is obtained as: 

 

2 2
1

( )
( , )

2
N

i i
N

i i i i

P r
G s r

s s
φ
ξ ω ω=

= ∑
+ +

 (2.49) 

 

where 

 

[ ]
{ }

2 1

3

( ) ( )p i i
i

sb

C r r
P

AL

φ φ

ρ

′ ′−
=  (2.50) 

 

and 

 

{ }3 3 32b b b p p psb
AL A L A Lρ ρ ρ= +  (2.51) 

 

The detailed derivation of equation (2.49) can be found in Appendix B. 

 

2.4 Model Correction Technique 

 

Assumed-modes method uses admissible functions in order to model the 

dynamics of the system, but ignores the nonuniform mass and stiffness 

distributions. If one uses a large number of admissible functions, or more 

general if it goes to infinity, the model will be exactly the same as the original 

one. However, using infinite number of admissible functions is not 
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convenient to apply for real structures at least for huge amount of computing 

requirements. Therefore, it is generally believed that the utilization of 

sufficiently large number of admissible functions will be enough to increase 

the accuracy of the approximate system model [38]. 

 

Including large number of admissible functions leads to not only a more 

accurate but also a high order approximate system model. Usually such a 

higher order model yields a high order controller which may not be possible 

to implement. However, the controller design techniques generally focus on 

a particular bandwidth which includes only a few vibration modes of the 

system. In this respect, the reduction of the order of the model is required. 

 

One of the most popular techniques for reducing the order of the system 

model is the direct model reduction, which simplifies the system model by 

directly truncating the higher modes of frequency range of interest. 

However, removing the higher modes may perturb the zeros of the system 

which will affect the closed-loop performance and stability [14].  

 

One particular approach to compensate the error of the model truncation 

was presented by Moheimani [39] which considers adding a correction term 

that minimizes the weighted spatial 2H  norm of the truncation error. The 

additional correction term had a good improvement on low frequency 

dynamics of the truncated model. Moheimani [15] and Moheimani et al. [16] 

developed their corresponding approach to the spatial models which are 

obtained by different analytical methods. Moheimani [40] presented an 

application of the model correction technique on a simply-supported 
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piezoelectric laminate beam experimentally. However, in all those studies, 

the damping in the system was neglected. Halim [7] improved the model 

correction approach with damping effect in the system. This section will give 

a brief explanation of the model correction technique with damping effect 

based on those previous works [15, 16, 39] and for more detailed explanation 

the reader is advised to refer to the references [7, 41]. 

 

Recall the transfer function of the system from system input to the beam 

deflection including N  number of modes given in equation (2.25). The 

spatial system model expression includes N  number of resonant modes 

assuming that N  is sufficiently large. The controller design however 

interests in the first few vibration modes of the system, say M  number of 

lowest modes. So the truncated model including first M  number of modes 

can be expressed as: 

 

2 2
1

( )
( , )

2
M

i i
M

i i i i

P r
G s r

s s
ψ
ξ ω ω=

= ∑
+ +

 (2.52) 

 

where M N<< . 

 

This truncation may cause error due to the removed modes which can be 

expressed as an error system model, ( , )E s r : 

 

2 2
1

( , ) ( , ) ( , )
( )

          
2

N M

N
i i

i M i i i

E s r G s r G s r
P r

s s
ψ
ξ ω ω= +

= −

= ∑
+ +

 (2.53) 
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In order to compensate the model truncation error, a correction term should 

be added to the truncated model [7]: 

 

( , ) ( , ) ( )C MG s r G s r K r= +  (2.54) 

 

where ( , )CG s r  and ( )K r  are the corrected transfer function and correction 

term, respectively. 

 

The correction term ( )K r  involves the effects of the removed modes of the 

system on the frequency range of interest, and can be expressed as: 

 

1
( ) ( )

N

i i
i M

K r r kψ
= +

= ∑  (2.55) 

 

where ik  is a constant term. The reasonable value of ik  should be determined 

by keeping the difference between ( , )NG s r  and ( , )CG s r  to be minimum, i.e. 

corrected system model should approach more to the higher ordered one 

given in equation (2.25). Moheimani [39] represents this condition by a cost 

function, J , which describes that the spatial 2H  norm of the difference 

between ( , )NG s r  and ( , )CG s r   should be minimized: 

 

{ } 2
2( , ) ( , ) ( , )N CJ W s r G s r G s r=<< − >>  (2.56) 

 

The notation 2
2..<< >>  represents the spatial 2H  norm of a system where 

spatial norm definitions are given in Appendix C. ( , )W s r  is an ideal low-

pass weighting function distributed spatially over the entire domain R  with 
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its cut-off frequency cω  chosen to lie within the interval ( Mω , 1Mω + ) [39]. That 

is: 

 

( )

1

1

1   - ,  
( , )

0   

 ,

c c

c M M

r R
W j r

elsewhere

and

ω ω ω
ω

ω ω ω

+

+

< < ∈ 
=  
 

∈

 (2.57) 

 

where Mω  and 1Mω +  are the natural frequencies associated with mode 

number M  and 1M + , respectively. 

 

The reason of selecting ( , )W s r  as an ideal low-pass weighting function with 

its cut-off frequency lower than the first out-of-bandwidth mode, i.e. 1Mω + , is 

that the cost function (2.57) will remain finite [41]. Hence, it will be possible 

to find a finite ik . 

 

Halim [7] showed that, by taking the derivative of cost function J  with 

respect to ik  and using the orthogonality of eigenfunctions, the general 

optimal value of the correction term, so called opt
ik , for the spatial model of 

resonant systems, including the damping effect, can be shown to be: 

 

2 2 2

2 2 2 2

2 11 1 ln
4 1 2 1

c c i i iopt
i i

c i i c c i i i

k P
ω ω ω ξ ω

ω ω ξ ω ω ω ξ ω

 + − + =  
− − − +  

 (2.58) 

 

An interesting result of equation (2.58) is that, if damping coefficient is 

selected as zero for each mode, i.e. undamped system, the resultant 

correction term is equivalent to those given in references [15, 16, 39] for an 
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undamped system. Therefore, equation (2.58) can be considered as not only 

the optimal but also the general expression of the correction term. 

 

Substituting equation (2.58) into equation (2.55) gives the general correction 

term as: 

 

2 2 2

2 2 2 21

2 11 1( ) ( ) ln
4 1 2 1

N c c i i i
i i

i M c i i c c i i i

K r r P
ω ω ω ξ ω

ψ
ω ω ξ ω ω ω ξ ω= +

  + − +   = ∑    
− − − +     

 (2.59)

  

So, substituting equation (2.59) into equation (2.54), one will obtain the 

corrected system model including the effect of out-of-range modes as: 

 

2 2
1

2 2 2

2 2 2 21
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2

2 11 1             ( ) ln
4 1 2 1
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i i

C
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N c c i i i
i i

i M c i i c c i i i

P r
G s r

s s

r P

ψ
ξ ω ω

ω ω ω ξ ω
ψ

ω ω ξ ω ω ω ξ ω

=

= +

= ∑
+ +

  + − +   + ∑    
− − − +     

 (2.60) 

 

2.5 Spatial H∞  Control Technique 

 

Obtaining an accurate system model lets one to understand the system 

dynamics more clearly and gives him the opportunity to design a consistent 

controller. Various control design techniques have been developed for active 

vibration control like H∞  or 2H  methods [23, 24].   
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The effectiveness of H∞  controller on suppressing the vibrations of a smart 

beam due to its first two flexural modes was studied by Yaman et al. [19] and 

the experimental implementation of the controller was presented [26]. By 

means of H∞  theory, an additive uncertainty weight was included to account 

the effects of truncated high frequency modes as the model correction. 

Similar work has been done for suppressing the in-vacuo vibrations due to 

the first two modes of a smart fin [27, 28] and the effectiveness of the H∞  

control technique in the modeling of uncertainties was also shown. However, 

H∞  theory does not take into account the multiple sources of uncertainties, 

which yield unstructured uncertainty and increase controller 

conservativeness, at different locations of the plant. That problem can be 

handled by using the µ-synthesis control design method [9]. Ülker [20] and 

Yaman et al. [42] presented the application of µ-synthesis active vibration 

control technique to smart structures.  

 

Whichever the controller design technique, the major objective of vibration 

control of a flexible structure is to suppress the vibration for the first few 

vibration modes on well-defined specific locations over the structure. As the 

flexible structures are distributed parameter systems, the vibration at a 

specific point is actually related to the vibration over the rest of the structure. 

As a remedy, minimizing the vibration over entire structure rather than at 

specific points should be the controller design criteria. The cost functions 

minimized as design criteria in standard 2H  or H∞  control methodologies do 

not contain any information about the spatial nature of the system. In order 

to handle this absence, Moheimani and Fu [30], and Moheimani et al. [13, 31] 

redefined 2H  and H∞  norm concepts. They introduced spatial 2H  and 
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spatial H∞  norms of both signals and systems to be used as performance 

measures.  

 

The concept of spatial control has been developed since last decade. 

Moheimani et al. [31] studied the application of spatial LQG and H∞  control 

technique for active vibration control of a cantilevered piezoelectric laminate 

beam. They presented simulation based results in their various works [31, 32, 

33]. Experimental implementation of the spatial 2H  and H∞  controllers were 

studied by Halim [7, 21, 34]. These studies proved that the implementation of 

the spatial controllers on real systems is possible and that kind of controllers 

show considerable superiority compared to pointwise controllers on 

suppressing the vibration over entire structure. However, these works 

examined only simply-supported piezoelectric laminate beam. The 

contribution to the need of implementing spatial control technique on 

different systems was done by Lee [35]. Beside vibration suppression, Lee 

studied attenuation of acoustic noise due to structural vibration on a simply-

supported piezoelectric laminate plate.  

 

This section gives a brief explanation of the spatial H∞  control technique 

based on the complete theory presented in reference [41]. For more detailed 

explanation the reader is advised to refer to the references [7, 41]. Necessary 

spatial norm definitions can be found in Appendix C. 

 

Consider the state space representation of a spatially distributed linear time-

invariant (LTI) system: 
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1 1 2
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( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )

x t Ax t B w t B u t
z t r C r x t D r w t D r u t
y t C x t D w t D u t

= + +
= + +

= + +

&

 (2.61) 

 

where r is the spatial coordinate of the domain R , x  is the state vector, w  is 

the disturbance input, u  is the control input, z  is the performance output 

and y  is the measured output. The state space representation variables are as 

follows: A  is the state matrix, 1B  and 2B  are the input matrices from 

disturbance and control actuators, respectively, 1C  is the output matrix of 

error signals, 2C  is the output matrix of sensor signals, 1D , 2D , 3D  and 4D  

are the correction terms from disturbance actuator to error signal, control 

actuator to error signal, disturbance actuator to feedback sensor and control 

actuator to feedback sensor, respectively.  

 

The spatial H∞  control problem is to design a controller which is: 

 

( ) ( ) ( )
( ) ( ) ( )
k k k k

k k k

x t A x t B y t
u t C x t D y t

= +
= +

&
 (2.62) 

 

such that the closed loop system satisfies: 

 

[ )2

2
0,inf  sup  K U w L J γ∈ ∞∈ ∞ <  (2.63) 

 

where U  is the set of all stabilizing controllers and γ  is a constant. The 

spatial cost function to be minimized as the design criterion of spatial H∞  

control design technique is: 
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0

0

( , ) ( ) ( , )

( ) ( )

T

R

T

z t r Q r z t r drdt
J

w t w t dt

∞

∞ ∞

∫ ∫
=

∫
 (2.64) 

 

where ( )Q r  is a spatial weighting function that designates the region over 

which the effect of the disturbance is to be reduced. Since the numerator is 

the weighted spatial 2H  norm of the performance signal ( , )z t r  (see 

Appendix C), J∞  can be considered as the ratio of the spatial energy of the 

system output to that of the disturbance signal [41]. The control problem is 

depicted in Figure 2.4: 

 

 

Figure 2.4: Spatial H∞  control problem 

 

Spatial H∞  control problem can be solved by the equivalent ordinary H∞  

problem [41] by taking: 

 

0 0
( , ) ( ) ( , ) ( ) ( )T T

R
z t r Q r z t r drdt z t z t dt

∞ ∞

=∫ ∫ ∫ % %  (2.65) 
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so, the spatial cost function becomes: 

 

0

0

( ) ( )

( ) ( )

T

T

z t z t dt
J

w t w t dt

∞

∞ ∞

∫
=
∫

% %

 (2.66) 

 

The representation in equation (2.66) can be obtained from state space 

representation of ( , )z t r . Consider ( , )z t r  representation: 

 

[ ]1 1 2( , ) ( ) ( ) ( )
x

z t r C r D r D r w
u

 
 =  
  

 (2.67) 

 

Substitute equation (2.67) into equation (2.65) and simplify the common 

integral of [0, ∞): 

 

[ ] [ ]1 1 2 1 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T

T

R

x x
C r D r D r w Q r C r D r D r w dr z t z t

u u

      
       =∫       
            

% %  (2.68) 

 

Application of transpose of multiplication of matrices given below to 

equation (2.68) will yield equation (2.70): 

 

( )T T TXY Y X=  (2.69) 
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[ ] [ ]1 1 2 1 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T
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Performing necessary rearrangements, one can reach the following equation: 

 

  ( ) ( )T T T T T

x
x w u w z t z t

u

 
   Γ Γ =   
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where [ ]1 2Γ = Π Θ Θ  is a matrix [7] that satisfies: 
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1
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2
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So the spatial H∞  control problem is reduced to a standard H∞  control 

problem for the following system: 

 

1 2

1 2

2 3 4

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x t Ax t B w t B u t
z t x t w t u t
y t C x t D w t D u t

= + +
= Π +Θ +Θ
= + +

&

%  (2.73) 

 

However, in order to limit the controller gain and avoid actuator saturation 

problem, a control weight should be added to the system. 
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where κ  is the control weight and it designates the level of vibration 

suppression. Control weight prevents the controller having excessive gain 

and smaller κ   results in higher level of vibration suppression. However, 

optimal value of κ  should be determined in order not to destabilize or 

neutrally stabilize the system. 

 

2.6 Conclusion 

 

This chapter described the underlying theory of the thesis. It was shown that 

the assumed-modes method can be used to model both the cantilevered 

passive beam and the smart beam. The model correction technique can be 

applied to minimize the effect of out-of-range modes. Finally, the spatial H∞  

control method was described. 
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CHAPTER 3 

IDENTIFICATION OF THE SMART BEAM 

3.1 Introduction 

 

This chapter describes the identification of the smart beam. Recall that 

analytical system model of the smart beam under transverse vibration was 

obtained by the help of assumed-modes method and presented in Section 2.3. 

In this chapter, the modeling was conducted to include the first two flexural 

modes of the smart beam and so was followed by the model correction 

technique in order to reduce the effect of neglected high frequency dynamics 

of the smart beam. Later, in order to obtain the modal damping ratios, 

resonance frequency values and the uncertainty on them, experimental 

system identification work was performed. 

 

3.2 Model Correction of the Smart Beam System Model 

 

Consider the cantilevered smart beam depicted in Figure (2.2) with the 

structural properties given at Table 3.1. 
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Table 3.1: Properties of the smart beam 

 Aluminum Passive 

Beam 

PZT 

Length 0.494bL m=  0.05pL m=  

Width 0.051bw m=  0.04pw m=  

Thickness 0.002bt m=  0.0005pt m=  

Density 32710 /b kg mρ =  37650 /p kg mρ =  

Young’s Modulus 69bE GPa=  64.52pE GPa=  

Cross-sectional Area 4 21.02 10bA m−= ×  4 20.2 10pA m−= ×  

Second Moment of Area 11 43.4 10bI m−= ×  11 46.33 10pI m−= ×  

Piezoelectric charge constant - 12
31 175 10 /d m V−= − ×

 

The beginning and end locations of the PZT patches 1 0.027r m=  and 

2 0.077r m=  away from the fixed end, respectively. Note that, although the 

actual length of the passive beam is 507mm, the effective length, or span, 

reduces to 494mm due to the clamping in the fixture.  

 

The system model given in equation (2.49) includes N  number of modes of 

the smart beam, where as N  gets larger, the model becomes more accurate. 

In this study, first 50 flexural resonant modes are included into the model 

(i.e. 50N = ) and the resultant model is called the full order model: 

 

50

50 2 2
1

( )
( , )

2
i i

i i i i

P r
G s r

s s
φ
ξ ω ω=

= ∑
+ +

 (3.1) 
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However, the control design criterion of this thesis is to suppress only the 

first two flexural modes of the smart beam. Hence, the full order model is 

directly truncated to a lower order model, including only the first two 

flexural modes, and the resultant model is called the truncated model:  

 

2

2 2 2
1

( )
( , )

2
i i

i i i i

P r
G s r

s s
φ
ξ ω ω=

= ∑
+ +

 (3.2) 

 

As previously explained, the direct model truncation may cause the zeros of 

the system to perturb, which consequently affect the closed-loop 

performance and stability of the system considered [14].  For this reason, the 

general correction term, given in equation (2.58), is added to the truncated 

model and the resultant model is called the corrected model: 
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− − − +     

 (3.3) 

 

where the cut-off frequency, based on the selection criteria given in equation 

(2.57), is taken as: 

 

( )2 3 / 2cω ω ω= +  (3.4) 

 

The assumed-modes method gives the first three resonance frequencies of 

the smart beam as shown in Table 3.2. 
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Table 3.2: First three resonance frequencies of the smart beam 

Resonance Frequencies Value (Hz) 

1ω  6.680 

2ω  41.865 

3ω  117.214 

 

Hence, the cut-off frequency becomes 79.539 Hz. Figure 3.1 shows the effect 

of model correction on the locations of the zeros of the system. By applying 

the model correction to the truncated model, the zeros of the truncated 

system approach to the zeros of the full order model. The performance of 

model correction for various system models obtained from different 

measurement points along the beam is shown in Figure 3.2, Figure 3.3, 

Figure 3.4 and Figure 3.5. 

 

 

Figure 3.1: Zeros of the full order, truncated and corrected models. 
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Figure 3.2: Frequency response of the smart beam at r = 0.1397Lb 

 

 

Figure 3.3: Frequency response of the smart beam at r = 0.3219Lb 
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Figure 3.4: Frequency response of the smart beam at r = 0.7470Lb 

 

 

Figure 3.5: Frequency response of the smart beam at r = 0.9899Lb 
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The error between full order model-truncated model, and the error between 

full order model-corrected model, so called the error system models F TE −  

and F CE − , allow one to see the effect of model correction more 

comprehensively.   

 

( , ) ( , )F T N ME G s r G s r− = −  (3.5) 

 

( , ) ( , )F C N CE G s r G s r− = −  (3.6) 

 

The frequency responses of the error system models are shown in Figure 3.6, 

Figure 3.7, Figure 3.8 and Figure 3.9. 
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Figure 3.6: Frequency responses of the error system models at r = 0.1397Lb 

 

 

Figure 3.7: Frequency responses of the error system models at r = 0.3219Lb 
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Figure 3.8: Frequency responses of the error system models at r = 0.7470Lb 

 

 

Figure 3.9: Frequency responses of the error system models at r = 0.9899Lb 
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One can easily notice from the above figures that, the error between the full 

order and corrected models is less than the error between the full order and 

truncated ones in a wide range of the interested frequency bandwidth. That 

is, the model correction minimizes error considerably and makes the 

truncated model approach the full order one. The error between the full 

order and corrected models is smaller at low frequencies and around 50 Hz it 

reaches a minimum value. As a result, model correction reduces the overall 

error due to model truncation, as desired.   

 

3.3 Spatial System Identification of the Smart Beam 

 

Theoretical assumed-modes modeling does not provide any information 

about the damping of the system. Experimental system identification, on the 

other hand, when used in collaboration with the analytical model, helps one 

to obtain more accurate spatial characteristics of the structure.  

 

System identification technique consists of two main branches called as 

nonparametric identification and parametric identification [43]. In 

nonparametric identification, the system is excited, for example, by a sine-

wave and one can obtain the transfer function of the system [9]. In 

parametric identification, basically, curve fitting is conducted to give a 

proper system model that best matches with the frequency response of that 

transfer function. Additionally, comparing the experimental model with the 

analytical one leads to determine the modal damping terms and the 

uncertainty on resonance frequencies [44]. 
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The smart beam of this study, shown in Figure 3.10, consists of piezoelectric 

patches which are used as the actuators. Keyence LB-1201(W) LB-300 laser 

displacement sensor (LDS) is used as the sensor.  

 

 

Figure 3.10: The smart beam used in the study 

 

In this study, the experimental transfer functions based on displacement 

measurements were obtained by nonparametric identification. The smart 

beam was excited by piezoelectric patches with sinusoidal chirp signal of 

amplitude 5V within bandwidth of 0.1-60 Hz, which covers the first two 

flexural modes of the smart beam. The response of the smart beam was 

acquired via laser displacement sensor from specified measurement points. 

Since the patches are relatively thin compared to the passive aluminum 

beam, the system was considered as 1-D single input multi output system, 

where all the vibration modes are flexural modes. One should note that, 

system identification technique uses the input and output data in order to 

form the transfer function. Hence, performing a healthy identification and 

obtaining an accurate system model is strictly dependent on the amount of 

data collected. That is to say the excitation period should be long enough to 

sweep the interested frequency range which yields a higher sampling rate. In 
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this study, the smart beam was excited for 240 seconds, where longer time 

was prevented due to hardware constraints. The open loop experimental 

setup is shown in Figure 3.11. 

 

 

Figure 3.11: Experimental setup for the spatial system identification of the  

smart beam 

 

The applied force and the time response of the smart beam measured from 

the point r=0.9899 bL  are given in Figure 3.12 and Figure 3.13, respectively: 
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Figure 3.12: Applied force 

 

 

Figure 3.13: Time response of the smart beam measured at r=0.9899Lb 
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In order to have more accurate information about spatial characteristics of 

the smart beam, 17 different measurement points, shown in Figure 3.14, were 

specified. They are defined at 0.03m intervals from tip to the root of the smart 

beam. The values of the measurement points from the root and their 

corresponding ratios to the smart beam length are given in Table 3.3. 

 

 

Figure 3.14: The locations of the measurement points 

 

The smart beam was actuated by applying voltage to the piezoelectric 

patches and the transverse displacements were measured at those locations. 

Since the smart beam is a spatially distributed system, that analysis resulted 

in 17 different single input single output system models where all the models 

were supposed to share the same poles. That kind of analysis yields to 

determine uncertainty of resonance frequencies due to experimental 

approach. Besides, comparison of the analytical and experimental system 

models obtained for each measurement points was used to determine modal 

damping ratios and the uncertainties on them. That is the reason why 

measurement from multiple locations was employed. The rest of this section 

presents the comparison of the analytical and experimental system models to 
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determine modal damping ratios and clarify the uncertainties on resonance 

frequencies and modal damping ratios. 

 

Table 3.3: The measurement points and their ratios to the length of the smart beam. 

Point r/Lb Distance from root (m) 

1 0.9899 0.489 

2 0.9291 0.459 

3 0.8684 0.429 

4 0.8077 0.399 

5 0.7470 0.369 

6 0.6862 0.339 

7 0.6255 0.309 

8 0.5648 0.279 

9 0.5040 0.249 

10 0.4433 0.219 

11 0.3826 0.189 

12 0.3219 0.159 

13 0.2611 0.129 

14 0.2004 0.099 

15 0.1397 0.069 

16 0.0789 0.039 

17 0.0182 0.009 
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Consider the experimental frequency response of the smart beam at point 

r=0.9899 bL  given in Figure 3.15: 

 

 

Figure 3.15: Experimental frequency response of the smart beam at r=0.9899Lb 

 

Because experimental frequency analysis is based upon the exact dynamics 

of the smart beam, the values of the resonance frequencies determined from 

experimental identification were accepted more accurate than the ones 

obtained analytically, where the analytical values are presented in Table 3.2. 

Hence, the first two resonance frequencies were extracted as 6.728 Hz and 

41.433 Hz from experimental system given in Figure 3.15. Since the analytical 

and experimental models should share the same resonance frequencies in 

order to coincide in the frequency domain, the analytical model for the 

location r=0.9899 bL  was coerced to have the same resonance frequencies 

given above. Notice that, the corresponding measurement point (i.e. 
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r=0.9899 bL ) can be selected from any of the measurement locations given in 

Table 3.3. Also note that, the analytical system model is the corrected model 

of the form given in equation (3.3). The resultant frequency responses are 

shown in Figure 3.16. 

 

 

Figure 3.16: Analytical and experimental frequency responses of the smart beam 

at r=0.9899Lb 

 

The analytical frequency response was obtained by considering the system as 

undamped. The point r=0.9899 bL  was selected as measurement point 

because of the fact that the free end displacement is significant enough for 

the laser displacement sensor measurements to be more reliable. After 

obtaining both experimental and analytical system models, the modal 

damping ratios were tuned until the magnitude of both frequency responses 

coincide at resonance frequencies, i.e.: 
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( , ) ( , )
i

E CG s r G s r
ω ω

λ
=

− <  (3.7) 

 

where ( , )EG s r  is the experimental transfer function and λ  is a very small 

constant term. Similar approach can be employed by minimizing the 2-norm 

of the differences of the displacements by using least square estimates [44]. 

Figure 3.17 shows the effect of tuning modal damping ratios on matching 

both system models in frequency domain where λ  is taken as 10-6. Note that 

each modal damping ratio can be tuned independently. 

 

 

Figure 3.17: Experimental and tuned analytical frequency responses at r=0.9899Lb 

 

Consequently, the first two modal damping ratios were obtained as 0.0284 

and 0.008, respectively. As the resonance frequencies and damping ratios are 

independent of the location of the measurement point, they were used to 



 56

obtain the analytical system models of the smart beam for all measurement 

points. Afterwards, experimental system identification was again performed 

for each point and both system models were again compared in frequency 

domain. The experimentally identified flexural resonance frequencies and 

modal damping ratios determined by tuning are given at Table 3.4 for each 

point. The frequency responses obtained both analytically and 

experimentally for various measurement points are shown in Figure 3.18 and 

Figure 3.19. 
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Table 3.4: First two flexural resonance frequencies and modal damping ratios  

of the smart beam 

/ br L  1ω  (Hz) 2ω  (Hz) 1ξ  2ξ  

0.9899 6.728 41.433 0.0284 0.008 

0.9291 6.740 41.149 0.0282 0.008 

0.8684 6.749 41.206 0.0284 0.009 

0.8077 6.738 41.135 0.0278 0.008 

0.7470 6.742 41.164 0.0256 0.006 

0.6862 6.738 41.490 0.0286 0.009 

0.6255 6.735 41.121 0.0272 0.007 

0.5648 6.745 41.178 0.0300 0.008 

0.5040 6.745 41.533 0.0282 0.008 

0.4433 6.745 41.178 0.0244 0.007 

0.3826 6.745 41.533 0.0256 0.007 

0.3219 6.761 41.277 0.0262 0.007 

0.2611 6.731 41.093 0.0210 0.006 

0.2004 6.735 41.476 0.0290 0.009 

0.1397 6.766 41.305 0.0272 0.009 

0.0789 6.740 41.504 0.0338 0.012 

0.0182 6.733 41.461 0.0520 0.117 

 

 



 58

 

Figure 3.18: Analytical and experimental frequency responses of the smart beam  

at r=0.2611Lb 

 

 

Figure 3.19: Analytical and experimental frequency responses of the smart beam  

at r=0.9291Lb 
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The results given in Table 3.4 show that, the corresponding values of the 

resonance frequencies and the modal damping ratios slightly differ at each 

measurement point. That is because of the uncertainty due to measurement 

via laser displacement sensor.  

 

The amount of uncertainty on resonance frequencies and modal damping 

ratios can be determined by spatial system identification. There are different 

methods which can be applied to determine the uncertainty and improve the 

values of the parameters ω  and ξ  such as boot-strapping [44]. However, in 

this study the uncertainty is considered as the standard deviation of the 

parameters and the mean values are accepted as the final values, which are 

presented at Table 3.5 

 

Table 3.5: Mean and standard deviation of the first two resonance frequencies and 

modal damping ratios 

 1ω  (Hz) 2ω  (Hz) 1ξ  2ξ  

Mean 6.742 41.308 0.027 0.008 

Standard Deviation 0.010 0.166 0.002 0.001 

 

It should be noted that, the modal damping ratio values determined at 

locations 0.0789 br L= and 0.0182 br L=  are in contradiction with the rest of 

the others. These are due to the fact that the possibility of sensing by laser 

displacement sensor is too low because of low flexural displacement close to 

the fixed end of the smart beam. Hence, while taking the mean and standard 

deviation of the values, these two data were omitted.  Tuning the modal 

damping terms to satisfy equation (3.7) results in an estimate of the 
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magnitude of the mode shapes of the smart beam. So, by using the estimated 

values at the measurement points, the magnitude of the mode shapes at any 

arbitrary point along the beam can be estimated by interpolation. Figure 3.20 

and Figure 3.21 show the analytical and estimated mode shapes normalized 

with respect to the tip of the beam.  
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Figure 3.20: First mode shape of the smart beam 

 

 

Figure 3.21: Second mode shape of the smart beam 
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3.4 Conclusion 

 

This chapter described the identification of the smart beam. The system 

model of the smart beam including the first two flexural modes was 

corrected by the model correction technique. Later, experimental system 

identification was employed. And, by using both analytical and experimental 

system models, the spatial characteristics of the smart beam were obtained. 

As a result, the system model of the smart beam to be used in spatial control 

was obtained. 
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CHAPTER 4 

ACTIVE CONTROL OF THE SMART BEAM 

4.1 Introduction 

 

This chapter describes the methodologies utilized in the active control of the 

smart beam. The spatial H∞  controller was designed for the suppression of 

first two flexural modes of the smart beam. In order to maintain the 

simplicity and the clarity, the detailed formulations are given in Appendix D. 

The simulations conducted showed that the designed controller was 

performing satisfactorily. The designed controller was then experimentally 

implemented and the results were demonstrated. Later, a pointwise H∞  

controller was designed, and the necessary simulations were performed and 

the implementation was conducted. The two controllers were compared in 

order to see their effectiveness on suppressing the vibrational levels over the 

entire beam. 

 

 

 

 

 



 64

4.2 Spatial H∞ Control of the Smart Beam 

 

4.2.1 Controller Design 

 

Consider the closed loop system of the smart beam shown in Figure 4.1. The 

aim of the controller, K, is to reduce the effect of disturbance signal over the 

entire beam by the help of the PZT actuators. 

 

 

Figure 4.1: The closed loop system of the smart beam 

 

The state space representation of the system above can be shown to be (see 

Appendix D): 

 

1 2

1 1 2

2 3 4

( ) ( ) ( ) ( )
( , ) ( ) ( ) ( ) ( ) ( ) ( )
( , ) ( ) ( ) ( )L

x t Ax t B w t B u t
y t r C r x t D r w t D r u t
y t r C x t D w t D u t

= + +
= + +
= + +

&

 (4.1) 
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where all the state space parameters were defined at Section 2.4, except the 

performance output and the measured output which are now denoted as 

( , )y t r  and ( , )Ly t r , respectively. The performance output represents the 

displacement of the smart beam along its entire body, and the measured 

output represents the displacement of the smart beam at a specific location, 

i.e. Lr r= . The disturbance ( )w t  is accepted to enter to the system through the 

actuator channels, hence, 1 2B B= , 1 2( ) ( )D r D r=  and 3 4D D= . 

 

The state space form of the controller design, given in equation (2.62), can 

now be represented as: 

 

( ) ( ) ( , )
( ) ( ) ( , )
k k k k L

k k k L

x t A x t B y t r
u t C x t D y t r

= +
= +

&
 (4.2) 

 

Hence, the spatial H∞  control problem can be represented as a block diagram 

which is given in Figure 4.2: 

 

 

Figure 4.2: The spatial H∞  control problem of the smart beam 
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As stated in Section 2.5, the spatial H∞  control problem can be reduced to a 

standard H∞  control problem. The state space representation given in 

equation (2.74) can be adapted for the smart beam model for a standard H∞  

control design as: 

 

1 2

1 2

2 3 4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0

( , ) ( ) ( ) ( )L

x t Ax t B w t B u t

y t x t w t u t

y t r C x t D w t D u t
κ

= + +

Θ ΘΠ     
= + +    
     
= + +

&

%  (4.3) 

 

The state space variables given in equations (4.1) and (4.3) can be obtained 

from the transfer function of equation (3.3) as: 

 

2
1 1 1

2
2 2 2

0 0 1 0
0 0 0 1

0 2 0
0 0 2

A
ω ξ ω

ω ξ ω

 
 
 =
 − −
 − −  

 (4.4) 

 

1 2
1

2

0
0

B B
P
P

 
 
 = =  
 
  

 (4.5) 

 

[ ]1 1 2( ) ( ) 0 0C r rφ φ=  (4.6) 

 

[ ]2 1 2( ) ( ) 0 0L LC r rφ φ=  (4.7) 
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The detailed derivation of the above parameters can be found in Appendix 

D. 

 

One should note that, in the absence of the control weight, κ , the major 

problem of designing an H∞  controller for the system given in equation (4.1) 

is that, such a design will result in a controller with an infinitely large gain 

[33]. As described in Section 2.5, in order to overcome this problem, an 

appropriate control weight, which is determined by the designer, is added to 

the system. Since the smaller κ  will result in higher vibration suppression 

but larger controller gain, it should be determined optimally such that not 
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only the gain of the controller does not cause implementation difficulties but 

also the suppression of the vibration levels are satisfactory. In this study, κ  

was decided to be taken as 7.87x10-7 by trial-and-error. The Bode plot of the 

resultant spatial H∞  controller is shown in Figure 4.3. The simulation of the 

effect of the controller is shown in Figure 4.4 as a magnitude plot. The 

frequency domain simulation is done by Matlab v6.5. 
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Figure 4.3: Bode plot of the spatial H∞  controller  

 

 

Figure 4.4: Open and closed loop frequency responses of the smart beam under the 

effect of spatial H∞  controller 
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In order to observe the stability of the system, the Nyquist plot of the 

nominal system loop gain of the smart beam was analyzed. Figure 4.5 shows 

that the nominal system is stable since there is no encirclement of the point (-

1, 0) which is the stability criterion of Nyquist [45]. 

 

 

Figure 4.5: Nyquist plot of the nominal system loop gain under the effect of  

spatial H∞  controller 

 

The vibration attenuation levels at the first two flexural resonance 

frequencies were determined from the Bode plots of the controlled and 

uncontrolled systems shown in Figure 4.6. The resultant attenuation levels of 

the first two flexural modes were found to be 27.2 dB and 23.1 dB, 

respectively. The simulated results show that the designed controller is 

effective on the suppression of undesired vibration levels. 
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Figure 4.6: Bode plots of the open and closed loop systems under the effect of  

spatial H∞  controller 

 

4.2.2 Implementation 

 

This section presents the implementation of the spatial H∞  controller for 

suppressing the free and forced vibrations of the smart beam. The closed 

loop experimental setup is shown in Figure 4.7. The displacement of the 

smart beam at a specific location was measured by using a Keyence Laser 

Displacement Sensor (LDS) and converted to a voltage output that was sent 

to the SensorTech SS10 controller unit via the connector block. The controller 

output was converted to the analog signal and amplified 30 times by 

SensorTech SA10 high voltage power amplifier before applied to the 

piezoelectric patches. The controller unit is hosted by a Linux machine on 
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which a shared disk drive is present to store the input/output data and the C 

programming language based executable code that is used for real-time 

signal processing. The hardware properties are detailed in Reference [20]: 

 

 

Figure 4.7: The closed loop experimental setup 

 

4.2.2.1 Free Vibration Control of the Smart Beam 

 

For the free vibration control, the smart beam was given an initial 5 cm tip 

deflection and the open loop and closed loop time responses of the smart 

beam were measured. The results are presented in Figure 4.8: 
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 Figure 4.8: Open and closed loop time responses of the smart beam under the effect 

of spatial H∞  controller 

 

Figure 4.8 shows that the controlled time response of the smart beam settles 

nearly in 1.7 seconds. Hence, the designed controller proves to be very 

effective on suppressing the free vibration of the smart beam. 

 

4.2.2.2 Forced Vibration Control of the Smart Beam 

 

The forced vibration control of the smart beam was analyzed in two different 

configurations. In the first one, the smart beam was excited for 180 seconds 

with a shaker located very close to the root of the smart beam, on which a 

sinusoidal chirp signal of amplitude 4.5V was applied. The excitation 

bandwidth was taken first 5 to 8 Hz and later 40 to 44 Hz to include the first 

two flexural resonance frequencies separately. The open loop and closed loop 
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time and frequency responses of the smart beam under respective excitations 

are shown in Figure 4.9, Figure 4.10, Figure 4.11 and Figure 4.12. 

 

The experimental attenuation of vibration levels at first two resonance 

frequencies were determined form the Bode magnitude plots of the 

frequency responses of the smart beam and shown in Figure 4.13 and Figure 

4.14. The resultant attenuation levels were found as 19.8 dB and 14.2 dB, 

respectively. Hence, the experimental results show that the controller is 

effective on suppression of the vibration levels. The reason why experimental 

attenuation levels are less than the simulated ones is that, the excitation 

power of the shaker was not enough to make the smart beam to reach the 

larger deflections which in turn causes a smaller magnitude of the open loop 

time response. The hardware constraints prevent one to apply higher 

voltages to the shaker. On the other hand, the magnitude of the experimental 

and simulated closed loop frequency responses at resonance frequencies 

being close to each other makes one to realize that, the controller works 

exactly according to the design criteria. Additionally, one should note that 

the attenuation levels were obtained from the decibel magnitudes of the 

frequency responses. Hence, a simple mathematical manipulation can give 

the absolute attenuation levels as a ratio of the maximum time responses of 

the open and closed loop systems at the specified resonance frequencies.  
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Figure 4.9: Open and closed loop time responses of the smart beam within excitation 

of 5-8 Hz under the effect of spatial H∞  controller 

 

Figure 4.10: Open and closed loop time responses of the smart beam within 

excitation of 40-44 Hz under the effect of spatial H∞  controller 
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Figure 4.11: Open and closed loop frequency responses of the smart beam within 

excitation of 5-8 Hz under the effect of spatial H∞  controller 

 

Figure 4.12: Open and closed loop frequency responses of the smart beam within 

excitation of 40-44 Hz under the effect of spatial H∞  controller 
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Figure 4.13: Bode magnitude plot of the frequency responses of the open and closed 

loop systems within excitation of 5-8 Hz under the effect of spatial H∞  controller 

 

Figure 4.14: Bode magnitude plot of the frequency responses of the open and closed 

loop systems within excitation of 40-44 Hz under the effect of spatial H∞  controller 
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In the second configuration, instead of using a sinusoidal chirp signal, 

constant excitation was applied for 20 seconds at the resonance frequencies 

with a mechanical shaker. The open loop and closed loop time responses of 

the smart beam were measured and shown in Figure 4.15 and Figure 4.16. 

Although, it is hard to control such a resonant excitation, the time responses 

show that the designed controller is still very effective on suppressing the 

vibration levels. Recall that the ratio of the maximum time responses of the 

open and closed loop systems can be considered as absolute attenuation 

levels; hence, for this case, the attenuation levels at each resonance frequency 

were calculated approximately as 10.4 and 4.17, respectively. 
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Figure 4.15: Open and closed loop time responses of the smart beam under constant 

excitation at first resonance frequency under the effect of spatial H∞  controller 

 

Figure 4.16: Open and closed loop time responses of the smart beam under constant 

excitation at second resonance frequency under the effect of spatial H∞  controller 
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4.3 Pointwise H∞ Control of the Smart Beam 

 

4.3.1 Controller Design 

 

This section gives only a brief description of pointwise H∞  controller design 

methodology since the scope of this thesis is mainly spatial control. For a 

more detailed explanation, the interested reader may refer to the references 

[46, 47]. Consider the general framework of the controller design given in 

Figure 4.17. The pointwise H∞  controller design may yield to fit the general 

control framework where G represents the generalized plant and ∆ 

represents the uncertainty block.  The feedback diagram of the pointwise H∞  

controller design is depicted in Figure 4.18. 

 

 

Figure 4.17: General framework for control design 
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Figure 4.18: General feedback diagram for pointwise H∞  controller design 

 

The feedback diagram shown in Figure 4.18 includes the necessary weights 

representing the design objectives. ( , )G s r  is the nominal system model to be 

controlled. The level of the disturbance, w , entering to the system through 

the controller output channel is set by the disturbance weight dW . aW  

represents the actuator weight that prevents the actuator saturation, multW  is 

the multiplicative, or uncertainty weight, and defines the unmodeled 

dynamics of the system. pW  is the performance weight which tunes the 

controller to show higher performance on defined bandwidth and less at the 

rest of the frequency range, and finally nW  is the signal to noise ratio which 

represents the amount of the sensor measurement that is affected by the 

noise. 

 

The parametric uncertainty may also be included in the general H∞  

framework on condition that the perturbations are real, i.e. structured 

uncertainty [47]. In Section 3.4, the identification of the uncertainty on the 

resonance frequencies and modal damping ratios were given in detail. 
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However, as shown in (Table 3.5), the standard deviations of the parameters 

are very small; hence, the perturbed plants do not deviate significantly from 

the nominal system model. So, the uncertainty on these parameters can be 

directly included in the frequency domain multiplicative uncertainty. 

 

The selected weights, pW  and multW , are shown in Figure 4.19. The 

disturbance weight was selected as unity, i.e. the system is directly affected 

by the disturbance, the signal to noise ratio was selected as 0.01 and the 

actuator weight was selected as 0.2. The Bode plot of the resultant pointwise 

H∞  controller is shown in Figure 4.20. The simulation of the effect of the 

controller is given in Figure 4.21 as a magnitude plot, and the stability of the 

nominal system was again guaranteed. The relevant Nyquist plot is shown in 

Figure 4.22. 
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Figure 4.19: Weights for pointwise H∞  controller design 

 

Figure 4.20: Bode plot of the pointwise H∞  controller 
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Figure 4.21: Open and closed loop frequency responses of the smart beam under the 

effect of pointwise H∞  controller 

 

Figure 4.22: Nyquist plot of the nominal system loop gain under the effect of 

pointwise H∞  controller 



 85

The vibration attenuation levels can be determined from the Bode plot of the 

controlled and uncontrolled systems shown in Figure 4.23. The resultant 

attenuation levels at first two resonance frequencies were found to be 23.5 dB 

and 24.4 dB, respectively. Hence, the simulated results show that the 

pointwise controller is also very effective on suppression of the vibration 

levels. 

 

 

Figure 4.23: Bode plots of the open and closed loop systems under the effect of 

pointwise H∞  controller 
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4.3.2 Implementation 

 

This section presents the implementation of the pointwise H∞  controller for 

suppressing the free and forced vibrations of the smart beam. The closed 

loop experimental setup is shown in Figure 4.7. 

 

4.3.2.1 Free Vibration Control of the Smart Beam 

 

For the free vibration control, the smart beam was given an initial 5 cm tip 

deflection and the open loop and closed loop time responses of the smart 

beam were measured. The results are presented in Figure 4.24: 

 

 

Figure 4.24: Open and closed loop time responses of the smart beam under the effect 

of pointwise H∞  controller 
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The controlled time response of the smart beam settles nearly in 1.9 seconds. 

Hence, the pointwise H∞  controller is very effective on suppressing the free 

vibration of the smart beam. 

 

4.3.2.2 Forced Vibration Control of the Smart Beam 

 

The forced vibration control of the smart beam was analyzed in the same two 

different configurations as considered in spatial controller implementation. 

The open loop and closed loop time and frequency responses of the smart 

beam under sinusoidal sweep excitations are shown in Figure 4.25, Figure 

4.26, Figure 4.27 and Figure 4.28. The experimental attenuation of vibration 

levels at first two resonance frequencies were determined form the Bode 

magnitude plots of the frequency responses of the smart beam given in 

Figure 4.29 and Figure 4.30. The resultant attenuation levels were found as 

21.02 dB and 21.66 dB, respectively. Hence, the experimental results show 

that the pointwise H∞  controller is effective on suppression of the vibration 

levels. In the second configuration, the open loop and closed loop time 

responses of the smart beam were measured and shown in Figure 4.31 and 

Figure 4.32. The absolute attenuation levels at each resonance frequencies 

were calculated approximately as 5.8 and 4.37, respectively.   
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Figure 4.25: Open and closed loop time responses of the smart beam within 

excitation of 5-8 Hz under the effect of pointwise H∞  controller 

 

Figure 4.26: Open and closed loop time responses of the smart beam within 

excitation of 5-8 Hz under the effect of pointwise H∞  controller 
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Figure 4.27: Open and closed loop frequency responses of the smart beam within 

excitation of 5-8 Hz under the effect of pointwise H∞  controller 

 

Figure 4.28: Open and closed loop frequency responses of the smart beam within 

excitation of 40-44 Hz under the effect of pointwise H∞  controller 
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Figure 4.29: Bode magnitude plot of the frequency responses of the open and closed 

loop systems within excitation of 5-8 Hz under the effect of pointwise H∞  controller 

 
Figure 4.30: Bode magnitude plot of the frequency responses of the open and closed 

loop systems within excitation of 40-44 Hz under the effect of pointwise H∞  

controller 
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Figure 4.31: Open and closed loop time responses of the smart beam under constant 

excitation at first resonance frequency under the effect of pointwise H∞  controller 

 
Figure 4.32: Open and closed loop time responses of the smart beam under constant 

excitation at second resonance frequency under the effect of pointwise H∞  

controller 
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4.4 Comparison of Pointwise and Spatial H∞  Controllers 

 

The comparative effects of the spatial and pointwise H∞  controllers on 

suppressing the first two flexural vibrations of the smart beam are presented 

in Table 4.1: 

 

Table 4.1: The comparison of attenuation levels under the effect of spatial and 

pointwise H∞  controllers in forced vibrations 

 Spatial H∞  controller Pointwise H∞  controller 

Modes 1st mode 2nd mode 1st mode 2nd mode 

Simulated attenuation 

levels (dB) 

27.2 23.1 23.5 24.4 

Experimentally obtained 

attenuation levels (dB) 

19.8 14.2 21.02 21.66 

Absolute attenuation 

levels under constant 

resonant excitation (max. 

OL time response/ max. 

CL time response) 

10.4 4.17 5.75 4.37 

 

The simulations show that both controllers work efficiently on suppressing 

the vibration levels. The forced vibration control experiments of first 

configuration show that the attenuation levels of pointwise controller are 

slightly higher than those of the spatial one. Although the difference is not 

significant especially for the first flexural mode, better attenuation of 
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pointwise controller would not be a surprise since the respective design 

criterion of a pointwise controller is to suppress the undesired vibration level 

at the specific measurement point. Additionally, absolute attenuation levels 

show that under constant resonant excitation at the first flexural mode, the 

spatial H∞  controller has better performance than the pointwise one. This is 

because the design criterion of spatial controller is to suppress the vibration 

over entire beam; hence, the negative effect of the vibration at any point over 

the beam on the rest of the other points is prevented by spatial means. So, the 

spatial H∞  controller resists more robustly to the constant resonant excitation 

than the pointwise one. 

 

The effect of both controllers on suppressing the first two flexural vibrations 

of the smart beam over entire structure can be analyzed by considering the 

H∞  norm of the entire beam. Figure 4.33 and Figure 4.34 show the plots of 

H∞  norm of the controlled (closed loop) and uncontrolled (open loop) smart 

beam as a function of r. Finally, Figure 4.35 shows the H∞  norm plots of the 

smart beam as a function of r under the effect of both controllers. 

 



 94

 

Figure 4.33: Simulated H∞  norm plots of open loop and closed loop systems under 

the effect of pointwise H∞  controller 

 

Figure 4.34: Simulated  H∞  norm plots of open loop and closed loop systems under 

the effect of spatial H∞  controller 



 95

 

Figure 4.35: Simulated H∞  norm plots of closed loop systems under the effect of 

pointwise and spatial H∞  controllers 

 

The robustness analysis of the designed controllers is also an important issue, 

since the controlled system should resist to the uncertainties in order to 

preserve a consistency. As given in Figure 4.17, the general control 

framework includes the uncertainty block so as to represent all the perturbed 

plants as an uncertainty set. In order to maintain robust stability, the 

designed controller should keep the system stable for all plants in that 

uncertainty set. However, stability by only itself cannot guarantee the 

robustness. Beside satisfying the nominal performance, the system should 

also resists to the exogenous disturbances (such as noise) acting on itself in 

order to keep the possible errors due to that disturbances small, which can be 

defined as the robust performance.  
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The robustness analysis of the designed controllers was performed by Matlab 

v6.5 µ-synthesis toolbox. The results are presented in Figure 4.36 and Figure 

4.37. The theoretical background of µ-synthesis is detailed in the References 

[20, 46, 47]. One should know that the µ values should be less than unity to 

accept the controllers to be robust. The Figure 4.36 and Figure 4.37 show that 

both spatial and pointwise H∞  controllers are robust to the perturbations. 
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Figure 4.36: µ-analysis for spatial H∞  controller 

 

 

Figure 4.37: µ-analysis for pointwise H∞  controller 
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4.5 Conclusion 

This chapter described the methodologies developed and implemented in the 

active vibration control of the smart beam. First, a spatial H∞  controller was 

designed for suppressing the first two flexural vibrational levels of the smart 

beam and the effect of the controller was demonstrated by simulations. The 

experimental implementation of the spatial H∞  controller was also 

performed and successful attenuation of the vibration levels was achieved. 

Later, a pointwise H∞  controller was designed based on the same 

performance criteria. The simulations and experimental results were showed 

that, the pointwise  H∞  controller was also effective to suppress the 

vibrations. Finally, the comparison of both controllers was conducted. 

Although both controllers were robust and effective on suppressing the 

vibrations of the smart beam, the results showed that the spatial H∞  

controller has a slight superiority over the pointwise H∞  controller in 

attenuating the vibration levels of the entire structure. 
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CHAPTER 5 

GENERAL CONCLUSIONS AND RECOMMENDATIONS 

5.1 General Conclusions 

 

This thesis presented a different approach in active vibration control of a 

cantilevered smart beam.  

 

The required mathematical modeling of the smart beam was conducted by 

using the assumed-modes method. This inevitably resulted in a high order 

model including a large number of resonant modes of the beam. This higher 

order model was truncated to a lower model by including only the first two 

flexural vibrational modes of the smart beam.  The possible error due to that 

model truncation was compensated by employing a model correction 

technique which considered the addition of a correction term that 

consequently minimized the weighted spatial 2H  norm of the truncation 

error. Hence, the effect of out-of-range modes on the dynamics of the system 

was included by the correction term. 

 

This study first presented the modeling and identification aspects of a smart 

beam. The results showed that for the case of cantilevered smart beam the 
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eigenfunctions of the respective cantilevered passive beam can be utilized as 

the assumed modes of the smart beam. During the modeling phase the effect 

of piezoelectric patches was also conveniently included in the model to 

increase the accuracy of the system model. Additionally, the model 

correction helps one to obtain more proper system model in the frequency 

range of interest and the utilized model correction decreases the uncertainty 

due to the unmodeled high frequency dynamics. However, the assumed-

modes modeling alone does not provide any information about the damping 

of the system. It was shown that experimental system identification, when 

used in collaboration with the analytical model, helps one to obtain more 

accurate spatial characteristics of the structure. Since the smart beam is a 

spatially distributed structure, experimental system identification based on 

several measurement locations along the beam results in a number of system 

models providing the spatial nature of the beam. Comparison of each 

experimental and analytical system models in the frequency domain yields a 

significant improvement on the determination of the resonance frequencies 

and helps one to identify the uncertainty on them. Also, tuning the modal 

damping ratios until the magnitude of both frequency responses coincide at 

resonance frequencies gives valid damping values and the corresponding 

uncertainty for each modal damping ratio. 

 

This study also presented the active vibration control of the smart beam. A 

spatial H∞  controller was designed for suppressing the first two flexural 

vibrations of the smart beam. The efficiency of the controller was 

demonstrated both by simulations and experimental implementation. Later, 

a pointwise H∞  controller was designed and the efficiency of it was again 
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verified by simulations and experimental implementations. Then the 

effectiveness of both controllers on suppressing the vibrations of the smart 

beam over its entire body was compared.  

 

The implementations of the controllers showed that both pointwise and 

spatial H∞  controllers managed to reduce the vibration levels of the 

cantilevered smart beam due to its first two flexural modes in nearly equal 

significance and the simulated H∞  norms of the smart beam as a function of r 

showed that spatial H∞  controller has a slight superiority on suppressing the 

vibration levels over entire beam. 

 

Additionally, this study also proved that, the corrected assumed-modes 

modeling in collaboration with the experimental system identification yields 

a more accurate system model to be used in controller design. 

 

5.2 Recommendations for Future Work 

 

The current study only concentrated on a smart beam. Further studies may 

investigate the implementation of spatial controllers on a two or three-

dimensional smart structures like plates and/or shells. 

 

As a further research topic, a robust spatial controller design methodology 

can be investigated by introducing spatial uncertainties on the system model. 

The robust spatial controller may be verified experimentally on the 

cantilevered smart beam. 



 102

Another future work subject may be to investigate the efficiency of a spatial 

controller for suppressing the vibrations of a smart beam and/or plate 

subjected to aerodynamic loads. Since that kind of aerodynamic load will 

cause a distributed loading on the structure, the effectiveness of the spatial 

controller may be tested more clearly.   
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APPENDIX A 

MODELLING OF THE CANTILEVERED PASSIVE BEAM BY 
ASSUMED MODES METHOD 

 

 

Consider equation (2.7), which is the equation of motion of an Euler-

Bernoulli beam, for rth eigenvalue:  
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b b b b r r b
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Multiply both sides by sφ  and integrate over the length: 
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Consider only the left hand side of the equation (A.2) and denote as LHS. By 

applying the integration by parts, it can be found that: 
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Recall the boundary conditions given in equations (2.8) and (2.11).  It can be 

seen that the first term of the integral (A.3) is zero at the boundaries, r=0 and 

r=Lb. Hence, the above equation becomes: 
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b b
dddLHS E I dr
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If one conducts integration by parts one more time, the LHS becomes: 
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Equations (2.9) and (2.10) yield that; the first term of the integral (A.5) is zero 

at the beam boundaries. Then, LHS finally becomes: 
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and the equation (A.2) turns out to be: 
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In equation (A.7) one can define the following: 
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The above definitions are symmetrical, i.e. rs srm m= .  

 

Substitute equation (2.16) into equation (2.18) and follow the necessary 

mathematical manipulations as shown below, one can define the kinetic 

energy T(t) as: 
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So, use the definition given in equation (A.8), the final form of the kinetic 

energy definition becomes: 
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Similarly, substitute equation (2.16) into equation (2.19): 
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So, use the definition given in equation (A.9), final form of the potential 

energy definition becomes: 
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Similarly, substitute equation (2.16) into equation (2.20): 
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So, use the definition given in equation (A.10) and assuming a proportional 

viscous damping coefficient c associated with the rth mode, final form of the 

viscous damping expression can be written as: 
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Let us write the Lagrange’s equation (2.17) as: 
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By substituting the expressions of ( )T t , ( )V t  and ( )F t , the final form of the 

equation (A.17) can be obtained as following: 
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where: 
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so, equation (A.18) becomes: 
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note that: 

 

    rs ri si rs si rim m or m mδ δ= =  (A.21) 

 

If one substitutes (A.21) into (A.18), it can be found that: 

 

{ }
1 1

1 1

1
2

1 1               
2 2

N N

si s ri r
r si

N N

si s ri r
s r

d T d m q m q
dt q dt

d m q m q
dt

= =

= =

 ∂  = +∑ ∑   ∂   
 = +∑ ∑ 
 

& &
&

& &

 (A.22) 

 

Let’s put r instead of s, the final form of (A.22) becomes: 
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As mentioned before rim  is symmetrical, so the final form of equation (A.23) 

becomes: 
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Following a similar procedure, one can obtain that: 
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and 
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Consequently, substitute (A.24), (A.25) and (A.26) into (A.17) and consider 

the equalities given in (A.9) and (A.10): 
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Rearrange the orthogonality expression given in equation (2.14): 
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where Z is a constant. If eigenfunctions are normalized, Z will be equal to 1. 

Otherwise, it should be determined. One can easily notice that the left hand 

sides of equation (A.28) and (A.8) are identical. Hence, substitute the external 

force expression given in equation (2.23) and the viscous damping coefficient 

expression given in equation (2.21) into equation (A.27), and for simplicity, Z 

is taken as 1, then the general equation of motion will finally be: 
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This equation, which is in time domain, can be easily transferred to the 

frequency domain by using Laplace transform with zero initial conditions. 
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where: 
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Note that the Laplace transform of the assumed modes solution (2.16) is: 
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Hence, substitute equation (A.31) into equation (A.32), and rearrange to give 

the final form of the transfer function from U(s) to Y(s, r): 
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which is equal to the transfer function of the system given in equation (2.25). 
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APPENDIX B 

MODELING OF THE SMART BEAM BY ASSUMED MODES 
METHOD 

 

 

As mentioned in Section 2.3, in this thesis the admissible functions are 

selected as the exact eigenfunctions of a cantilevered passive beam given in 

equation (2.44). So, substitute the eigenfunctions into equations (2.28), (2.31) 

and (2.34) and apply the orthogonality conditions given in equations (2.45) 

and (2.46), the total energy expressions and viscous damping force of the 

smart beam become: 
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Following the same formulation procedure given in Appendix A, i.e. 

substituting the above equations into Lagrange’s equation of motion given in 

(2.17), one will yield the equations of motion as: 
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Now, recall external forcing expression given in equation (2.43). Substitute 

the bending moment expression given in equation (2.41) and the voltage 

term given in equation (2.35) into equation (2.43): 
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The relation between Heaviside’s function and Dirac’s delta function, δ, is 

[48]: 

 

[ ]( ) ( )dr a H r a
dr

δ − = −  (B.6) 

 

where the Dirac’s delta function satisfies: 

 

0
( )

0 0
x

x
x

δ
∞ =

=  ≠
 (B.7) 

 

Hence, the external forcing expression reduces to: 

 

( )1 2
0

( ) ( ) ( )
bL

i p a iQ C V r r r r r drδ δ φ′ ′= − − −∫  (B.8) 
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The property of the derivative of Dirac’s delta function is given as [48]: 

 

( ) ( ) ( )f x x a dx f aδ
∞

−∞
′ ′− = −∫  (B.9) 

 

Hence using the above equality, the final expression of the external forcing 

expression becomes: 

 

[ ]2 1( ) ( )i p a i iQ C V r rφ φ′ ′= −  (B.10) 

 

Substitution of equation (B.10) into equation (B.4) yields: 

 

[ ]2 12
3 3

( ) ( )
( ) 2 ( ) ( )

2
p a i i

i i i i i i
b b b p p p

C V r r
q t q t q t

A L A L
φ φ

ξ ω ω
ρ ρ

′ ′−
+ + =

+
&& &  (B.11) 

 

which is equivalent to the equation (2.48). 

 

Taking Laplace transform of equation (B.11) and following the necessary 

mathematical manipulations as given in Appendix A, the frequency domain 

transfer function of the smart beam from the input voltage to the beam 

deflection becomes: 

 

[ ]
( )( )

2 1

3 3 2 21

( ) ( ) ( )( , )( , )
( ) 2 2

N p i i i
N

ia b b b p p p i i i

C r r rY s rG s r
V s A L A L s s

φ φ φ

ρ ρ ξ ω ω=

′ ′−
= = ∑

+ + +
 (B.12) 

 

For simplicity, define:  
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[ ]
{ }

2 1

3

( ) ( )p i i
i

sb

C r r
P

AL

φ φ

ρ

′ ′−
=  (B.13) 

 

and 

 

{ }3 3 32b b b p p psb
AL A L A Lρ ρ ρ= +  (B.14) 

 

So, the final form of equation (B.12) becomes: 

 

2 2
1

( )
( , )

2
N

i i
N

i i i i

P r
G s r

s s
φ
ξ ω ω=

= ∑
+ +

 (B.15) 

 

which is equivalent to the equation (2.49).  
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APPENDIX C 

SPATIAL NORMS 
 

 

The spatial 2H  and H∞  norms involve the spatial information of the spatially 

distributed systems. They can be used as performance measures in model 

correction and spatial control design [7]. The definitions and theorems given 

in this Appendix can be found in any of the following references [7, 13, 30, 

31, 41] in detail. This appendix presents the definitions based on reference 

[41].  

 

Consider the spatially distributed linear time-invariant (LTI) system which 

maps an input signal to an output signal as shown below: 

 

 

Figure C.1: A spatially distributed LTI system 

 

where ( )w t  represents the system input and ( , )z t r  represents the system 

output. 
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C.1 Spatial 2H  norm of a signal 

 

The spatial 2H  norm of a signal can be defined as the total energy of the 

spatially distributed signal ( , )z t r : 

 

2
2

0
( , ) ( , ) ( , )T

R
z t r z t r z t r drdt

∞

<< >> = ∫ ∫  (C.1) 

 

In flexible one-dimensional structures, this norm can be interpreted as the 

deflection of every point along the structure. 

 

C.2 Spatial 2H  norm of a system 

 

The spatial 2H  norm of a system ( , )G s r  is defined as: 

 

{ }2 *
2

1( , ) ( , ) ( , )
2 R

G s r tr G j r G j r drdtω ω
π

∞

−∞
<< >> = ∫ ∫  (C.2) 

 

The spatial 2H  norm of a system takes into account the spatial information 

embedded in the system such as the deflection of entire structure. 

 

Theorem C.2.1: Consider a stable system ( , )G s r  that is represented in state-

space form as: 

 

( ) ( ) ( )
( , ) ( ) ( )
x t Ax t Bu t
y t r C r x t

= +
=

&
 (C.3) 
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Then 

 

2 2
( , ) ( )G s r G s<< >> = %  (C.4) 

 

where ( )G s%  is a finite-dimensional system defined by: 

 

1( ) ( )G s sI A B−= Γ −%  (C.5) 

 

and 

 

( ) ( )T T

R
C r C r drΓ Γ = ∫  (C.6) 

 

Theorem C.2.2: The spatial 2H  norm of a spatially distributed system given in 

equation (2.25), where the eigenfunctions satisfy orthogonality condition 

given in equation (2.14), is equivalent to the 2H  norm of a finite-dimensional 

LTI system. 

 
22

2 21
( , ) ( )

N

N i
i

G s r G s
=

<< >> = ∑ %  (C.7) 

 

where 

 

2 2( )
2

i
i

i i i

P
G s

s sξ ω ω
=

+ +
%  (C.8) 
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C.3 Weighted spatial 2H  norm of signals and systems 

 

The weighted spatial 2H  norm of a signal ( , )z t r  is: 

 

2
2,

0
( , ) ( , ) ( ) ( , )T

Q
R

z t r z t r Q r z t r drdt
∞

<< >> = ∫ ∫  (C.9) 

 

The weighted spatial 2H  norm of a system ( , )G s r  is: 

 

{ }2 *
2,

1( , ) ( , ) ( ) ( , )
2Q

R
G s r tr G j r Q r G j r drdtω ω

π

∞

−∞
<< >> = ∫ ∫  (C.10) 

 

where in both case 

 

( ) 0Q r ≥  (C.11) 

 

The weighting function, ( )Q r , emphasizes the certain regions within the 

domain. For example, in flexible structures, it shows the region over the 

structure where vibration levels will be controlled. 
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C.4 Spatial induced norm of a system 

 

Let S  be the linear operator that maps the inputs of the system ( , )G s r  to its 

outputs. The spatial induced norm of S  is defined as: 

 

{
2[0, )

2
2 2

2
0 2

sup
w L

z
w

∞≠ ∈

<< >>
<< >> =S  (C.12) 

 

C.5 Spatial H∞  norm of a system 

 

The spatial H∞  norm of a system ( , )G s r  is defined as: 

 

{
2 *

maxsup ( , ) ( , )
RR

G G j r G j r dr
ω

λ ω ω∞

∈

 << >> = ∫ 
 

 (C.13) 

 

where maxλ  denotes the largest eigenvalue of the system. 

 

Theorem C.5.1: Let S  be the linear operator that maps the inputs of the system 

( , )G s r  to its infinite-dimensional outputs. Its induced operator norm 

<< >>S  satisfies: 

 

G ∞<< >>=<< >>S  (C.14) 
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C.6 Weighted spatial induced norm of a system 

 

Let S  be the linear operator that maps the inputs of the system ( , )G s r  to its 

outputs. The weighted spatial induced norm of S  is defined as: 

 

{
2[0, )

2
2,2

2
0 2

sup Q
Q

w L

z

w
∞≠ ∈

<< >>
<< >> =S  (C.15) 

 

C.7 Weighted spatial H∞  norm of a system 

 

The weighted spatial H∞  norm of a system ( , )G s r  is defined as: 

 

{
2 *
, maxsup ( , ) ( ) ( , )Q

RR

G G j r Q r G j r dr
ω

λ ω ω∞

∈

 << >> = ∫ 
 

 (C.16) 

 

From Theorem C.5.1: 

 

,Q QG ∞<< >> =<< >>S  (C.17) 
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APPENDIX D 

SPATIAL ∞H  CONTROL MODEL OF THE SMART BEAM 
 

 

Consider the ordinary differential equations of motion given in equation 

(2.48): 

 
2( ) 2 ( ) ( ) ( )i i i i i i i aq t q t q t PV tξ ω ω+ + =&& &  (D.1) 

 

where iP  is given in equation (2.50). 

 

In order to represent equation (D.1) in state space form, define states as: 

 

1 1

2 1

3 2

4 2

( )
( )
( )
( )

x q t
x q t
x q t
x q t

=
=
=
=

&

&

 (D.2) 

 

From the above equations (D.1) and (D.2), time derivatives of the states can 

be found to be: 
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1 2
2

2 1 1 1 1 1 2

3 4

2
4 2 2 3 2 2 4

( ) 2

( ) 2

a

a

x x

x PV t x x
x x

x PV t x x

ω ξ ω

ω ξ ω

=

= − −

=

= − −

&

&

&

&

 (D.3) 

 

From equation (2.16), the displacement expression of the smart beam 

including the first two modes in terms of state variables will be as follows: 

 

1 1 2 2

1 1 2 2

( , ) ( ) ( ) ( ) ( )
          ( ) ( )
y t r r q t r q t

r x r x
φ φ
φ φ

= +
= +

 (D.4) 

 

So, use u instead of ( )aV t  to represent the system input in a more general 

form, one will yield the state space representation in matrix form as: 

 

[ ]

1 1
2

2 1 1 1 2 1

3 3
2

4 2 2 2 4 2

1

2
1 2

3

4

0 1 0 0 0
2 0 0

0 0 0 1 0
0 0 2

( , ) ( ) 0 ( ) 0

x x
x x P

u
x x
x x P

x
x

y t r r r
x
x

ω ξ ω

ω ξ ω

φ φ

       
       − −       = +
       
       − −              

 
 
 =
 
 
  

&

&

&

&
 (D.5) 

 

Now, note that as mentioned in Chapter 4, the disturbance, ( )w t , was 

assumed to enter our system through the actuator channel so it can be 

considered as another input to the system. Besides, the model correction term 

given in equation (2.59) was included in order to reduce the effect of 
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truncated higher modes on the system’s output. So, the smart beam’s spatial 

H∞  controller design based state space model in matrix form will be: 

 

[ ] ( )

1 1
2

2 1 1 1 2 1 1

3 3
2

4 2 2 2 4 2 2

1

502
1 2

33

4

0 1 0 0 0 0
2 0 0

0 0 0 1 0 0
0 0 2

( , ) ( ) 0 ( ) 0 ( )

(

opt
ri i

i

x x
x x P P w
x x u
x x P P

x
x w

y t r r r k r
x u
x

y t

ω ξ ω

ω ξ ω

φ φ φ
=

       
       − −         = +           
       − −              

 
    = + ∑     
 
  

&

&

&

&

[ ] ( )
1

502
1 2

33

4

, ) ( ) 0 ( ) 0 ( )opt
L L L ri i L

i

x
x w

r r r k r
x u
x

φ φ φ
=

 
    = + ∑     
 
  

 (D.6) 

  

Rearranging the system will give: 

 

[ ] ( )

1 1

3 3
2

2 1 1 1 2 1 1
2

4 2 2 2 4 2 2

1

503
1 2

32

4

0 0 1 0 0 0
0 0 0 1 0 0

0 2 0
0 0 2

( , ) ( ) ( ) 0 0 ( )opt
ri i

i

x x
x x

w u
x x P P
x x P P

x
x

y t r r r k r w
x
x

ω ξ ω
ω ξ ω

φ φ φ
=

         
         
         = + +
         − −
         − −                  

 
 
 = + +∑
 
 
  

&

&

&

&

( )

[ ] ( ) ( )

50

3

1

50 503
1 2

3 32

4

( )

( , ) ( ) ( ) 0 0 ( ) ( )

opt
ri i

i

opt opt
L L L ri i L ri i L

i i

k r u

x
x

y t r r r k r w k r u
x
x

φ

φ φ φ φ

=

= =

∑

 
 
 = + +∑ ∑
 
 
  

 (D.7) 
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Hence, the above matrix formed system can be represented in state space 

form as: 

 

1 2

1 1 2

2 3 4

( ) ( ) ( ) ( )
( , ) ( ) ( ) ( ) ( ) ( ) ( )
( , ) ( ) ( ) ( )L

x t Ax t B w t B u t
y t r C r x t D r w t D r u t
y t r C x t D w t D u t

= + +
= + +
= + +

&

 (D.8) 

 

which is equivalent to equation (4.1), and where the state space variables are: 

 

2
1 1 1

2
2 2 2

0 0 1 0
0 0 0 1

0 2 0
0 0 2

A
ω ξ ω

ω ξ ω

 
 
 =
 − −
 − −  

 (D.9) 

 

1 2
1

2

0
0

B B
P
P

 
 
 = =  
 
  

 (D.10) 

 

[ ]1 1 2( ) ( ) 0 0C r rφ φ=  (D.11) 

 

[ ]2 1 2( ) ( ) 0 0L LC r rφ φ=  (D.12) 

 
50

1 2
3

( ) opt
i i

i
D D r kφ

=
= = ∑  (D.13) 

 
50

3 4
3

( ) opt
i L i

i
D D r kφ

=
= = ∑  (D.14) 
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which are equal to the equations (4.4) to (4.9). 

 

As mentioned in Section 2.5, the spatial H∞  control problem can be turned 

into an equivalent ordinary H∞  problem by: 

 

 ( , ) ( ) ( , ) ( ) ( )T T

R
y t r Q r y t r drdt y t y t dt=∫ % %  (D.15) 

 

Hence, let spatial weighting function ( ) 1Q r =  so that the region over which 

the effect of the disturbance is to be reduced will be the entire beam. Hence, 

equation (D.15) will reduce to: 

 

( , ) ( , ) ( ) ( )T T

R
y t r y t r dr y t y t=∫ % %  (D.16) 

 

Recalling from state-space: 

 

[ ]1 1 2( , )
x

y t r C D D w
u

 
 =  
  

 (D.17) 

 

where x  represents the vector of the states as:  

 

1

3

2

4

x
x

x
x
x

 
 
 =
 
 
  

 (D.18) 
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The transpose of equation (D.17) is: 

 

1

1

2

( , )

T

T T T T T

T

C
y t r x w u D

D

 
  =   
  

 (D.19) 

 

So, the integral term of equation (D.16) will be: 

 

[ ]
1

1 1 1 2

2

( , ) ( , )

T

T T T T T

T

C x
y t r y t r x w u D C D D w

D u

   
    =     
     

 (D.20) 

 

that is: 

 

1 1 1 1 1 2

1 1 1 1 1 2

2 1 2 1 2 2

( , ) ( , )

T T T

T T T T T T T

T T T

C C C D C D x
y t r y t r x w u D C D D D D w

D C D D D D u

   
    =     
     

 (D.21) 

 

yielding in: 

 

( , ) ( , ) ( ) ( )T T T T T T

R

x
y t r y t r dr x w u w y t y t

u

 
  = Γ Γ =∫    
  

% %  (D.22) 

 

where: 
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1 1 1 1 1 2

1 1 1 1 1 2

2 1 2 1 2 2

T T T

R R R
T T T T

R R R
T T T

R R R

C C dr C D dr C D dr

D C dr D D dr D D dr

D C dr D D dr D D dr

 
∫ ∫ ∫ 

 
Γ Γ = ∫ ∫ ∫ 

 
 ∫ ∫ ∫
 

 (D.23) 

 

The orthogonality of eigenfunctions given in equation (2.45) can be 

rearranged as: 

 

3

0

bL

i j b ijdr Lφ φ δ=∫  (D.24) 

 

Consider each element of the matrix given in equation (D.23) separately. So, 

substitute (D.11) into the below integration and apply the orthogonality 

given in equation (D.24): 

 

[ ]
1

2
1 1 1 2

0

1 1 1 2
0 0

2 1 2 2
0 0

3

3

0 0
0
0

0 0

0 0

0 0 0 0
0 0 0 0

0 0 0
0 0 0
0 0 0 0
0 0 0 0

b

b b

b b

L
T

R

L L

L L

b

b

C C dr dr

dr dr

dr dr

L
L

φ
φ

φ φ

φ φ φ φ

φ φ φ φ

 
 
 =∫ ∫  
 
 

 
∫ ∫ 

 
 = ∫ ∫ 
 
 
  
 
 
 =
 
 
  

 (D.25) 
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Similarly, substitute equations (D.11) and (D.13) into the below integral: 

 

1

502
1 1

30
( )

0
0

bLT opt
i i

iR
C D dr k r dr

φ
φ

φ
=

 
 

  = ∑∫ ∫     
 
 

 (D.26) 

 

and since i=3…50, due to the orthogonality: 

 

1 1

0
0
0
0

T

R
C D dr

 
 
 =∫  
 
 

 (D.27) 

 

As the equality mentioned in equation (D.13) is used, the result of equation 

(D.27) will be equal to the integrals 1 2
0

L
TC D dr∫ , 1 1

T

R
D C dr∫  and 2 1

T

R
D C dr∫ . 

 

Similarly: 

 

( )( )

50 50

1 1
3 30

50 50

3 3 0

50 2 3

3

( ) ( )

( ) ( )

( )

b

b

L
T opt opt

i i j j
i jR

L
opt opt
i j i j

i j

opt
i b

i

D D dr k r k r dr

k k r r dr

k L

φ φ

φ φ

= =

= =

=

  = ∑ ∑∫ ∫      

= ∑ ∑ ∫

= ∑

 (D.28) 

 

Equation (D.28) is also equal to 2 1
0

L
TD D dr∫ , 1 2

T

R
D D dr∫  and 2 2

T

R
D D dr∫ .  
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Hence, substituting each matrix element in equation (D.23) yields in: 

 

3

3

50 502 3 2 3

3 3
50 502 3 2 3

3 3 6 6

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 ( ) ( )

0 0 0 0 ( ) ( )

b

b

T

opt opt
i b i b

i i

opt opt
i b i b

i i x

L
L

k L k L

k L k L

= =

= =

 
 
 
 
 

Γ Γ =  
 

∑ ∑ 
 
 ∑ ∑  

 (D.29) 

 

which is satisfied by: 

 

( ) ( )

3 / 2

3 / 2

1/ 2 1/ 250 502 3 2 3

3 3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 ( ) ( )

b

b

opt opt
i b i b

i i

L
L

k L k L
= =

 
 
 
 

Γ =  
 
 
 ∑ ∑  

 (D.30) 

 

where Γ  is defined as [7]: 

 

[ ]1 2Γ = Π Θ Θ  (D.31) 

 

such that: 
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3 / 2

3 / 2

0 0 0
0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

b

b

L
L

 
 
 
 Γ =
 
 
  

 (D.32) 

 

and, 

 

( )
1 2

1/ 250 2 3

3

0
0
0
0

( )opt
i b

i
k L

=

 
 
 
 

Θ = Θ =  
 
 
 ∑  

 (D.33) 

 

where equations (D.32) and (D.33) are equal to the ones given in (4.10) and 

(4.11). 


