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ABSTRACT

MULTI-VIEW VIDEO CODING VIA DENSE DEPTH FIELD

Özkalaycı, Burak Oğuz

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. A. Aydın Alatan

September 2006, 104 pages.

Emerging 3-D applications and 3-D display technologies raise some transmission prob-

lems of the next-generation multimedia data. Multi-view Video Coding (MVC) is one

of the challenging topics in this area, that is on its road for standardization via ISO

MPEG. In this thesis, a 3-D geometry-based MVC approach is proposed and analyzed

in terms of its compression performance. For this purpose, the overall study is parti-

tioned into three preceding parts. The first step is dense depth estimation of a view

from a fully calibrated multi-view set. The calibration information and smoothness

assumptions are utilized for determining dense correspondences via a Markov Random

Field (MRF) model, which is solved by Belief Propagation (BP) method. In the second

part, the estimated dense depth maps are utilized for generating (predicting) arbitrary

(other camera) views of a scene, that is known as novel view generation. A 3-D warping

algorithm, which is followed by an occlusion-compatible hole-filling process, is imple-

mented for this aim. In order to suppress the occlusion artifacts, an intermediate novel

view generation method, which fuses two novel views generated from different source

views, is developed. Finally, for the last part, dense depth estimation and intermediate
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novel view generation tools are utilized in the proposed H.264-based MVC scheme for

the removal of the spatial redundancies between different views. The performance of

the proposed approach is compared against the simulcast coding and a recent MVC

proposal, which is expected to be the standard recommendation for MPEG in the near

future. These results show that the geometric approaches in MVC can still be utilized,

especially in certain 3-D applications, in addition to conventional temporal motion

compensation techniques, although the rate-distortion performances of geometry-free

approaches are quite superior.

Keywords: Multi-view Video Coding, Dense Depth Estimation, Novel View Gen-

eration, Markov Random Field, Belief Propagation.
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ÖZ

SIK DERİNLİK HARİTASI İLE ÇOK-GÖRÜNTÜLÜ VİDEO KODLAMASI

Özkalaycı, Burak Oğuz

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Assoc. Prof. A. Aydın Alatan

Eylül 2006, 104 sayfa.

Gelişmekte olan 3-B uygulamalar ve görüntüleme teknolojileri, beraberinde yeni ne-

sil çoklu ortam verilerinin iletimi problemlerini gündeme getirmektedir. Bu alan-

daki güncel çalşmalardan biri de hızla standartlaşma yolunda ilerleyen Çok-görüntülü

Video Kodlamasıdır (ÇVK). Bu tezde geometri temelli bir ÇVK yaklaşımı önerilmiş,

sıkıştırma performansı açısından incelenmiştir. Bu amaçla, tüm çalışma birbiri üzerine

dayalı üç temel bölüme ayrılmıştır. Bu adımlardan ilkinde, tam kalibre edilmiş çoklu-

görüntü kümesinden, bir görüntüye ait sık derinlik haritasının tahminidir. Kalibrasyon

bilgisi ve sahnenin derinlik açısından pürüzsüzlüg̃ü varsayımı kullanılarak, sık eşlenik

bulma problemi Markov Rasgele Alanlar (MRA) şeklinde modellenmiş ve Yargı Yayılımı

(YY) metodu ile çözülmüştür. İkinci bölümde, kestirilen sık derinlik haritalarının

da yardımıyla, sahnenin her hangi başka bir görüntüsü elde edilmiştir. Bu amaçla

örtük alanlarla uyumlu bir boşluk doldurmanın ardından bir 3-B eg̃riltme algoritması

uygulanmıştır. Örtük alanların neden oldug̃u sorunların azaltılması amacıyla iki farklı

görüntüden elde edilen yeni görüntülerin kaynaştırılmasına dayalı yeni özgün bir ara

görüntü bulma metodu geliştirilmiştir. Son bölümde ise, çoklu görüntüler arasındaki
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uzamsal fazlalık bilginin arındırılması amacıyla sık derinlik kestirimi ve yeni ara görüntü

yaratımı metotlarını kullanan H.264 temelli bir ÇVK yöntemi önerilmiştir. Önerilen

yöntemin performansı, tüm görüntülerin ayrı ayrı kodlanması ve MPEG standardı ol-

ması beklenen ÇVK önerisi ile karşılaştırılmıştır. Benzetim sonuçları ÇVK’da geleneksel

hareket kestirimi tekniklerinin yanında, özellikle belirli uygulamalarda, 3-B geometrik

yaklaşımların da kullanılmasının faydalı olacag̃ını göstermiştir.

Anahtar Kelimeler: Çok-görüntülü Video Kodlama, Sık Derinlik Kestirimi, Yeni

Görüntü Yaratımı, Markov Rasgele Alanlar, Yargı Yayılımı.
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CHAPTER 1

INTRODUCTION

The 3D display technologies progressed drastically in the recent years. The glass-

free auto-stereoscopic displays, which create the feeling of 3rd dimension by driv-

ing multiple views, are expected to spread into the consumer market in the very

near future. Also it is sure that the emerging applications like 3D video and free

viewpoint video are the predecessors of the next generation multimedia. However,

besides the displaying problem, there exist many other open questions on the ac-

quisition, representation and transmission of the 3-dimensional content, that are

closely related to each other.

The multi-view video is a collection of traditional videos, capturing the same

scene in a synchronized fashion. The multi-view video based 3D systems domi-

nate the current approaches since it is compatible with the present multimedia

networks and 3D display technologies. The developed tools in computer vision

and computer graphics also favor and widen the opportunities of multi-view video
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based approaches. However the transmission of the multi-view video data by the

conventional video compression methods needs multiples of bandwidths which

are not possible for most cases.

The conventional video compression methods utilize mainly the temporal re-

dundancies in the frame sequence. In addition to the temporal redundancies,

multi-view video also contains spatial redundancies between the views. The on-

going research activities on Multi-view Video Coding (MVC) are focused on the

utilization of these spatial redundancies. Since the spatial redundancies between

the views constitute the clues of the scene geometry in perspective of computer

vision, MVC may means much more than a compression.

1.1 Scope of the Thesis

The research behind this dissertation is motivated by two main propositions. The

first one is that the next generation multimedia standards will contain the 3D

structure of the scene in some sense. And the second one is that the spatial

redundancies between the views of multi-view video are encoded in the 3D struc-

ture already. This thesis is devoted to the investigation of the utilization of the

3D structure of the scene in MVC schemes.

The dissertation can be partitioned into three main steps in a progressive way

to the proposition of a MVC approach. The first step is the estimation of the

scene geometry. The scene geometry is represented as the dense depth maps of
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some reference cameras. Dense disparity estimation techniques for stereo case

are generalized to multi-view case and Markov random field modeling is used in

particular. The next step is the generation of arbitrary views using the dense

depth estimate and the texture of the source camera. A 3D warping algorithm is

used for rendering novel views. Hole filling and view fusion methods are used to

tackle the occlusion artifacts and to improve the quality of the novel views. In

the last step novel view generation method is used to feed the H.264 based video

coding scheme with the estimates of the frames to be encoded.

1.2 Outline of the Thesis

The structure of the thesis follows the aforementioned three main steps in a

progressive way.

Chapter 2 is devoted to dense depth estimation from a full-calibrated multi-

ple image set. Some background information on camera geometry and epipolar

geometry is mentioned at first. A literature survey on dense depth estimation is

given in advance to utilized Markov random field based approach is introduced.

Simulation results of the dense depth estimation are given also.

Chapter 3 focuses on the novel view generation problem by the help of the

estimated dense depth estimation method. The 3D scene representation problem

is discussed and an image based representation/rendering method is introduced

to generate an intermediate novel view. The occlusion artifacts and hole filling

3



methods are also mentioned.

Chapter 4 proposes a MVC scheme which utilizes the spatial redundancies

between the views by exploiting the dense depth maps and the intermediate

novel view generation tool. Since the simulations of the proposed approach are

done on a test bed based on H.264 video coding standard, H.264 standard is also

mentioned briefly.

Finally, Chapter 5 gives a summary of the thesis and concluding remarks of

the proposed MVC approach. Some recommendations for MVC are also given

for future work.
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CHAPTER 2

DENSE DEPTH ESTIMATION

In this chapter, a variety of approaches for obtaining the depth (i.e. 3-D distance

from the camera) of a scene through stereo or multiple views will be discussed.

The chapter will start with some brief background information on the camera

model and epipolar geometry. By the help of this background information, the

dense depth estimation problem will be formulated. For the estimation of the

dense depth parameters, a Markov Random Field (MRF) model will be used.

The solution of this MRF model will be approached via different methods.

2.1 Camera Model

The information and the clues about the scene structure are observed through

a camera device which can be modeled as a transformation from 3D world co-

ordinate to 2D image plane coordinates. Although, the transformation between
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Figure 2.1: Basic pin-hole camera model

the 3D world and the 2D image plane is not linear due to the physical phe-

nomenon, called radial lens distortion [1], the effects of radial lens distortion can

be removed by pre-processing (or can be neglected) in most cases. The resulting

reduced linear transformation is built upon a basic pinhole camera model.

2.1.1 Basic Pinhole Camera Model

Basic pinhole camera model relates the 3D world coordinates to 2D image plane

coordinates by a line intersection with a plane. The line is defined by the 3D

point to be transformed and a fixed point C, called camera center and the plane

is defined as image plane, whose distance to the camera center is f, denoted as

focal length (see Figure 2.1).
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By utilizing the similarity of triangles, the relation between the 3D point X

and the 2D point x in Figure 2.2 can be easily derived as

(X, Y, Z)→ (f
X

Z
, f
Y

Z
) (2.1)

In homogenous coordinate system, such a transformation can be represented

by a 3x4 matrix, which is called as camera projection matrix [1].


fX

fY

Z

 =


f 0 0 0

0 f 0 0

0 0 1 0





X

Y

Z

1


(2.2)

Some other important definitions are also illustrated in Figures 2.1 and 2.2.

The principal axis is the ray, which passes through the camera center and inter-

sects the image plane perpendicularly. The principal point is the point which the

principal axis intersects the image plane.

2.1.1.1 Enhancing the Camera Model

The camera projection matrix, which is derived by the basic pinhole camera

model, does not work for many real cases due to some manufacturing imperfec-

tions. Moreover, 2.2 makes transformations from 3D world coordinate system

with respect to the camera center to the image plane coordinate system, which

is different from the pixelwise image coordinate system. Hence, the basic pinhole

7



Figure 2.2: Basic pin-hole camera relations

camera model can be improved after applying an affine and an Euclidean trans-

formations simultaneously in order to consider all the artifacts aforementioned.

The improved camera projection matrix becomes

x = PX = K[R|t]X (2.3)

where K is the pinhole camera model’s projection matrix with an affine trans-

formation. R and t matrices are the rotation and translation matrices of the Eu-

clidean transformation respectively. The K matrix is called the intrinsic parame-

ters, while Euclidean transformation part is denoted as the exterior parameters of

a camera. The detailed descriptions of the affine and Euclidean transformations

used for the camera model improvement are examined in [1]. A camera whose

intrinsic and exterior parameters are known is denoted as calibrated.
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Figure 2.3: Epipolar geometry

2.2 Epipolar Geometry

The special geometric properties defined by two arbitrarily positioned cameras,

which are shown in Figure 2.3, define the epipolar geometry.

The plane defined by two camera centers and an arbitrary 3D point is called

the epipolar plane [1]. All epipolar planes pass through the line connecting the

two camera centers, called the baseline. The intersections of the baseline with

the image planes are defined as the epipoles. The epipoles can also be defined as

the projection of a camera center to the image plane of the other camera.

The intersections of the image planes and the epipolar plane are called as

epipolar lines. The epipolar lines corresponding to different epipolar planes always

intersect at the epipoles. The Figure 2.4 shows another interpretation of the

epipolar line, which is derived by the projection of the line passing from the

camera center and a point, x, to the image plane of the other camera. By this

9



Figure 2.4: Another interpretation of an epipolar line

perspective, for every point on the image plane, there exists a corresponding

epipolar line on the other image plane.

The epipoles are called as positive and negative epipoles according to positions

of the camera centers and image plane on which the epipole is defined. The sign

of an epipole is assigned by dot products of the vector in the direction of the

principal axis of the corresponding camera and the vector connecting the camera

centers. Two cases are illustrated in Figure 2.5 with the vectors mentioned above.

2.2.1 The Fundamental Matrix

The correspondence between a point and an epipolar line can be handled as a

linear mapping by using the homogenous coordinate system. The 3x3 matrix

denoting this mapping is called the fundamental matrix [1].
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Figure 2.5: The positive and negative epipole cases are shown in (a) and (b)
respectively.

The derivation of the fundamental matrix can be obtained by simply project-

ing the line defined by a back-projection ray, as mentioned above. The parametric

equation of the back-projection ray passing though a point, x, on the image plane

is given as

X(λ) = P+x+ λC (2.4)

where C is the camera center and P+ is the pseudo inverse of the projection matrix

P , satisfying PP+ = I. The camera center, C, is the null space of P (PC = 0),

which means in homogenous coordinate system the projection of camera center

is not defined.

The projections of the 3D points lying on the back-projection ray are on the

corresponding epipolar line. Hence, the parametric equation of the epipolar line

is obtained as

x′(λ) = P ′P+x+ λP ′C = P ′P+x+ λe′ (2.5)
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where e′ is the epipole point. Since epipole must be on the epipolar line, the cross

product of the epipole and the x′(λ) gives the line equation of the epipolar line.

l′ = [e′]×P
′P+x+ λ[e′]×e

′ = [e′]×P
′P+x (2.6)

Finally the fundamental matrix, mapping a point to its corresponding epipolar

line can be obtained as

F = [e′]×P
′P+ (2.7)

2.3 Clues for the Depth Estimation

During the image formation phase, the depth information of the scene points is

inevitably lost due to the encountered projection. Theoretically, by using two dif-

ferently positioned cameras the depth information of a scene can be revealed by

using the calibration data of the cameras. After intersecting the back-projection

rays of the image points corresponding to the same scene point, the 3D coordi-

nates can be obtained by a procedure called as triangulation [1]. However, to

be able to use the triangulation tool, the image point correspondences should be

known.

For many camera calibration applications, the image point correspondences

are determined sparsely, and hence, robustly by restricting the correspondence

finding problem to domain of salient features of the images [1]. However, for

dense depth estimation, a correspondence has to be obtained at every image
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point, including the points on a constant intensity region or a repeating pattern.

In order to be able to determine correct correspondences at all these points, the

following two main clues are utilized widely for obtaining a solution:

• Affinity in the color or intensity

• Smooth depth variations

Expecting a similarity in color (or intensity) for an image point correspon-

dence is rational. However, due to some scene properties, such as variations in

illumination (and reflection) or some imperfections in the capturing device, such

as noise or white balance differences, generally the colors of the correct corre-

spondences do not match exactly. However, the L’ambertian [2] assumption is

still a powerful tool in most cases. In order to measure the color similarity, some

basic approaches, e.g. mean square error (MSE) and mean absolute difference

(MAD), or some more elegant methods, which will be mentioned in the next sec-

tion, can be used. However, increasing the complexity of such a measure makes it

impractical due to computational complexity for the dense case. Hence, there is

a tradeoff between the discriminational power as and computational cost during

the selection of measure for color similarity.

The assumption that the depth map of a scene is smoothly varying, is based

on the fact that the objects in most of the scenes constitute connected surfaces.

In many cases, the projections of the connected surfaces inherit the connectivity
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on the image plane, that is regarded as the smoothness of the depth map. Hence,

the depth map of a scene can be modeled as a piece-wise continuous function in

which the discontinuities belong to the object boundaries. However, the cost of

imposing a smoothness constraint might cause over-smoothing the solution across

the object boundaries.

2.4 Dense Depth Estimation in Literature

The dense depth estimation problem is one of the most examined topics in com-

puter vision for the last few decades and it continues to be heavily studied. The

first motivation of the problem has been acquiring the depth sense by a human-

vision-like-system.

The first and the most studied case is the two parallel oriented cameras settled

on a line, similar to the two eyes of a human being, that is called the two-

view stereo correspondence problem. As the correspondences are just horizontal

shifts in the left and right views, the dense depth estimation problem is generally

denoted as dense disparity estimation. This is the reason why the disparity is

often regarded as the inverse depth in computer vision.

The difficulty of the two-view stereo problem compelled the researchers to

increase the number of cameras. At first, the orientations of the cameras kept

similar to the two-view case, that is termed as the multi base-line stereo problem.

As the camera calibration techniques get matured, the dense depth estimation
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problem liberated to arbitrarily oriented multi camera setups.

An excellent taxonomy on two-view stereo correspondence problem is provided

by Szeliski et.al. in [3]. Since a large number of the approaches for dense depth

estimation is a generalization or an adaptation of the two-view stereo problem,

the categorization of the dense depth estimation techniques in the literature will

be achieved by following the one at [3].

The dense depth estimation problem can be partitioned into three main

phases, which are calculation of the matching cost, aggregation of the match-

ing cost (imposing a smoothness constrain) and finally the optimization of the

cost. Although all the parts of the problem are closely connected to each other,

the dense depth estimation methods will be mentioned according to this partition.

2.4.1 Matching Cost Measures

The most popularly used matching cost functions are aforementioned MSE and

MAD due to the practical reasons in computation. However, there are also some

other approaches that implicitly bind the smoothness constraint to the matching

cost calculation. A typical example is is the normalized cross correlation (NCC)

on the whole image [4]. As NCC is calculated on a support window, the spatial

correlation is used for the smoothness constraint. Since the rotational effects are

troublesome, some rectification tool [5],[6] should also be used to suppress them

[7]. The computational cost of NCC for the whole image is also considerably
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high.

Another such approach is utilizing the Fourier transform for matching the cost

function [8]. Since a shift in time domain can be observed as a phase shift in fre-

quency domain, the Fourier transform of image blocks can be used for matching.

However, the occluded regions create difficulties during this approach. For match-

ing the cost measures, the method by Birchfield [9] is shown to be insensitive to

sampling artifacts.

2.4.2 Aggregation of Matching Cost

The smoothness constraint on the solution of the dense depth map is implicitly

(or explicitly) defined in the aggregation of the matching costs. The aggregation

methods can be grouped in two titles, as local and global approaches.

The local approaches define some kernel for smoothness and in that kernel

the smoothness is explicitly imposed. In [10], a window is used as a kernel. By

the assumption that in a predefined size of such a window, the depth is constant,

the costs are summed up within this window. Obviously, the smoothness of

the solution depends on the window size. Since the discontinuities across the

object boundaries can not be preserved with a fixed size and shape window,

an adaptive window method is also proposed [10],[11]. Recently, the arbitrarily

shaped segments of a color clustering segmentation are also used for aggregation

unit in [12], that is shown to be quite successful, while preserving the depth
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discontinuities.

The global approaches impose the smoothness implicitly by modeling some

relationship on the depth map. One of the popular approaches is Markov random

Field (MRF) modeling. In MRF, the pixels of the depth field assumed to have

a Markovian property in some neighborhood, that controls smoothening. The

details of these methods will be given in the rest of this chapter. Apart from MRF,

there are other global aggregation approaches, which define some diffusion scheme

on the solution and make the smoothness diffuse on the depth map solution [13],

[14]. Although the global approaches impose the smoothness in a more realistic

manner, the solution of the model is cumbersome and usually only it is possible

after making an approximation.

2.4.3 Optimization of the Cost

The optimization part of the problem is dependent on the approaches that are

used in matching cost and cost aggregation. The most basic method for the op-

timization is the winner takes all (WTA) method [3]. The depth values, which

make the aggregated costs minimum, are assigned as the solution. WTA is suit-

able for the locally aggregated costs. Another approach utilizes the Dynamic

Programming (DP) on the epipolar lines [15]. Some other constraints, such as

ordering or one-to-oneness, are also imposed to DP solution in [16].

For globally aggregated costs, the optimization plays a vital role on the dense
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depth estimation. For MRF models, there are many proposed optimization tech-

niques in the literature, some of which can be listed as, iterated conditional modes

(ICM) [17], simulated annealing [17], Gibbs sampler [18], graph cut [19], belief

propagation [20]. Diffusion-based optimization techniques are also proposed for

optimizing global aggregated costs. Stochastic diffusion [21], partial differential

equations (PDE) based methods [14], level set solutions [22] are typical examples

for such solutions.

2.5 MRF-based Dense Depth Estimation

The spatial context of an image contains valuable information for the interpre-

tation of an image. Unless the image is a random noise, the intensity value of a

pixel is highly statistically dependent on the surrounding pixels. Markov random

field is just one of the mathematical models which is used to exploit the spatial

dependencies in image processing and computer vision.

In 1984, Geman and Geman introduced the MRF model for image denoising

by their brilliant paper [23]. After this landmark work, MRF models have been

used successfully in many other image processing and computer vision areas,

such as texture modeling and classification [24], image restoration [23], image

segmentation [25] and dense depth estimation [26]. In the following section, the

mathematical fundamentals of MRF will be introduced.
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2.5.1 Definition of Markov Random Fields

Let X = (X1, , Xn) be a family of random variables where Xi takes a value in

set D. Then the family X is called as a random field and the index set I = 1, , n

denotes the sites of the random field. The joint event (X1 = x1, , Xn = xn) is

simply denoted as x and it is a configuration of X, corresponding to a realization

of the field. The probability of the realization of configuration x on the field X

is denoted as P (x).

A neighborhood system is a collection of subsets of the index set I, {∂i :

i ∈ I}, if the sites associated with the neighborhood ∂i satisfy the following two

conditions [17]:

1. i /∈ ∂i

2. i ∈ ∂j if and only if j ∈ ∂i

Although, theoretically it is not obligatory, the neighborhood system is usually

defined by the help of the sites surrounding the current one. The neighborhood

systems that are widely used in image processing, are 4- and 8-neighborhood

systems which are illustrated in Figure 2.6.

A random field X is a Markov random field, if the probability of all possible

configurations of X are strictly positive and for a neighborhood system ∂, the

following statement holds for every x ∈ X [17]
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Figure 2.6: 4- and 8-neighborhood

P (Xi = xi|XI\i = xI\i) = P (Xi = xi|X∂i = x∂i) (2.8)

According to this definition, the probability of a site, given the rest of the field,

is reduced to a function of neighboring sites by MRF modeling. The MRF models

utilized in image processing and computer vision are generally homogenous, which

means for all sites, P (Xi = xi|X∂i = x∂i) have the same distribution.

2.5.1.1 MRF - Gibbs Random Field Equivalence

Gibbs Random Field (GRF) is another random field which is extensively used

in statistical physics. A random field is said to be a GRF with respect to some

neighborhood, ∂, if and only if its configurations obey a Gibbs distribution. A

Gibbs distribution is defined as [17]

P (X = x) =
e−

U(x)
T

Z
(2.9)
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Figure 2.7: 4- and 8- neighborhood cliques

where T is a constant, denoted as temperature, Z is the normalizing constant,

which can be obtained as

Z =
∑
x∈X

e−
U(x)

T (2.10)

and U(x) is the Gibbs energy term which is the core point of the MRF and

GRF equivalence. According to the equation 2.9 it can be concluded that, the

configurations of X which have less Gibbs energy, are more probable to observe.

The clique notion, which is defined for the Gibbs energy calculation, estab-

lishes the relation between the MRF and GRF. A clique is a set of sites, in which

two different indices are neighbors according to a neighborhood ∂, defined for the

GRF and the set of all cliques for the field X is denoted as CX . In Figure 2.7,

the cliques defined for the 4- and 8-neighborhoods are presented.

A clique potential, VC , of a clique is a scalar function depending on the con-

figuration of the sites in that particular clique. For a clique containing the indices

i, j, k ∈ I, the clique potential is defined as a scalar function VC(xi, xj, xk). The

Gibbs energy of a GRF is defined as the sum of all clique potentials defined on
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the field [17].

U(X) =
∑

c ∈Cx

Vc(c) (2.11)

If the clique potential functions are determined by the type of the clique

formations in Figure 2.7 and invariant to position of the clique on the field then

the corresponding GRF model is said to be homogenous [17].

For a random field, the GRF model imposes Gibbs distribution property in

global sense, whereas the MRF model imposes a Markovian property in local

sense. The Hammersley-Clifford theorem [27] combines these global and local

properties by stating that a random field X, is a MRF with respect to the neigh-

borhood system ∂ if and only ifX is a GRF with respect to the same neighborhood

system ∂. The proof of the theorem can be found in [28].

Beyond the theoretical assertion, the practical use of the theorem arises in

modeling the behavior of the random field. By choosing appropriate clique po-

tential functions, one can model the Markovian conditioning easily. Then, the

maximum a posterior (MAP) (i.e. the most probable solution with respect to

this model) can be determined by minimization of the Gibbs energy function.

In order to impose the desired constraints on the problem, defining the clique

potential functions is one of the major topics in MRF modeling. Another difficult

problem in MRF modeling is obtaining the configuration which minimizes the

Gibbs energy. These two major topics are mentioned throughout the following

22



sections with some focus on the dense depth estimation problem.

2.5.2 A MRF Model for Dense Depth Estimation

The dense depth estimation problem is an ill-posed problem which should be

made well-posed by imposing some constraints. The most widely used approach

for converting an ill-posed problem into a well-posed one is via the regulariza-

tion techniques [29]. For the regularization of the dense depth estimation, the

smoothness assumption plays the main role. The neighborhood definition in MRF

modeling provides the desired regularization affect for the solution.

The global sense of formulating the dense depth estimation problem is the

second main aspect of the MRF modeling. The Markovian property on the depth

field makes a direct or indirect interaction between each node in the field. More-

over, these implicit relations can be packed into the joint probability density

function of the random field by exploiting the equivalence between GRF and

MRF.

The explanation of the MRF model for the dense depth estimation is much

more comprehensible in terms of the Gibbs energy definition. The clique energies

composing the Gibbs energy are grouped into two main terms, as given in 2.12,

where X represents the depth field. The first term, which is calculated from first

order cliques, models the color consistency of the solution. Whereas the second

term, which is calculated from the second order cliques, models the smoothness
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of the solution. These kind of MRFs with a maximum clique order of 2 is denoted

as pairwise MRFs [17]. In the next sections these terms are explained in detail.

U(X) =
∑

x ∈C0

VC0(x) + λ ·
∑

x0,x1 ∈C1

VC1(x0, x1) (2.12)

2.5.2.1 Color Consistency Constraint

As mentioned before, the depth of a 3-D scene point can be obtained by triangula-

tion of its correspondent pixels on two images. In reverse order, assigning a depth

value to a pixel defines the correspondent pixels on the other images. For the

correct depth assignment the color of all the correspondences would be expected

to be similar under the same lightning conditions, following the L’ambertian as-

sumption (i.e. a L’ambertian surface reflects equal amount of light towards all

directions or cameras).

The first order clique energies, which are just a function of the configuration of

a pixel in the field, are defined as the color consistency cost of the assigned depth.

The color consistency function can be chosen as the sum of absolute differences

of the correspondences on different views, as below

VC0(x) =
1

N − 1

N−1∑
i=1

|I0(x)− Ii(fi(dx))| (2.13)

The I functions represent the intensity or the RGB color maps of the views. The

fi function in 2.13 is a mapping between the assigned depth value, dx, of a pixel,

x, on the 0th (reference) image and the correspondent pixel position on the ith
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image. The fi function can be easily derived from the projection matrices of the

0th and the ith views as the back- and re-projections (see 2.4 and 2.3 respectively).

However, this kind of color consistency cost does not take the visibility con-

straints into account and assumes that all the pixels on the reference camera are

visible by the rest of the cameras. In general, this is not the case and many

occluded regions might exist on the other camera views. In order to handle

such occlusions, many methods, which vary in complexity from taking the best

half of the correspondences [3] to computing the occluded pixels for each depth

assignment [30], have been proposed.

In Figure 2.8, the correspondences of a pixel for an assigned depth value is

illustrated. For the n-image case, a back-projection is followed by n-1 projec-

tions to find the correspondences. Repeating this procedure for all pixels at all

depth assignments is computationally cumbersome. For the stereo case, when

two images exist, the correspondences can be searched much more easily by the

rectification algorithms [5], [6] by using the epipolar properties. Moreover, in

[11] an approximate rectification scheme for the multiple case is also proposed to

reduce the back-projection and re-projection calculations.

The color consistency cost function given in 2.13 can not be expressed or

approximated analytically in a simple way. Hence, the search space for the depth

assignments should be sampled. In [31], the 3D space is sampled as depth planes

parallel to the image plane of the reference camera as shown in Figure 2.9 and
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Figure 2.8: Correspondences of a pixel for a depth value

this procedure is usually called as plane sweeping [31]. A regular sampling of

depth planes may result an irregular sampling on the image planes according to

non-linear mapping between the correspondences. In order to reduce the irregular

sampling on image planes, the depth planes can be selected to satisfy only one

pixel shifts on the epipolar line of another image.
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Figure 2.9: The parallel depth planes sampling the 3D space

2.5.2.2 Smoothness Constraint

For imposing the smoothness constraint on the solution, defining a 4- or 8-

neighborhood for the MRF model is sufficient. The second order clique energies

of the defined neighborhood are set to penalize the depth differences between

neighboring pixels.

The undesired effect of smoothing constraint is the loss of sharp depth discon-

tinuities across the object boundaries. For preserving the depth discontinuities

of the scene, solving two MRFs jointly for depth and edge maps can be used as

in [32], [26]. A more fundamental approach is to saturate the smoothing cost

function beyond some defined depth differences. In [26], a robust smoothing cost
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Figure 2.10: (a) Smoothing and (b) linear cost functions for cliques

function given in 2.14, that is derived from a total variance model is used. In

[33], a linear cost function with a cut-off is used for practical reasons (see Figure

2.10).

VC1(x0, x1) = − log( (1− e) · exp(
−|dx0 − dx1|

σ
) + e) (2.14)

In general, the object boundaries coincide with the color discontinuities. The

smoothing effect across the object boundaries can be suppressed by using the color

derivatives of the image. A non-homogenous MRF model, in which the clique

energy functions scaled inversely with the color derivative of that neighborhood,

favors the smoothness only on similar colored regions.
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2.5.3 The Solution of the MRF Model

The Gibbs energy term, stated in 2.12, should be minimized by the dense depth

field configuration to be estimated. However, the optimization problem can not

be solved analytically or by classical approaches, as it is an NP-hard problem

[34]. For the solution of the MRF problems, there are many proposed methods

in the literature. These methods can be grouped into two main set as stochastic

and deterministic [18].

The stochastic approaches are mainly based on a decision depending on a

random process result to update the configuration of the field. The fundamental

stochastic approaches are Simulated Annealing (SA), Gibbs sampler, and the

Metropolis algorithm [18]. The randomness of the update scheme prevents to

stick into local minima. In fact, Geman and Geman proved the convergence of the

simulated annealing to the exact solution in infinite iterations [23]. However, for

the problems like dense depth estimation, the number of depth labels is large and

the number of possible configurations increases in an exponential order. Hence,

the stochastic approaches are impractical for problems having a large label set.

For the deterministic methods, the iterated conditional modes (ICM) [18],

[17], and new approaches developed for inference problems should be mentioned.

The ICM method is similar to simulated annealing, except that ICM does not con-

tain any randomness. A much more sophisticated configuration update method

is proposed by using graph modeling for the MRF in graph cut method (GC) [19].
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Another well-developed approach is belief propagation (BP) [20], which handles

MRF as an inference problem. ICM and BP methods for the dense depth esti-

mation are introduced in the next sections.

2.5.3.1 Iterated Conditional Modes (ICM)

ICM is one of the most widely used approaches for the MRF solution as it is

practical to implement and gives satisfactory results for many applications. The

main idea of this method is to update the elements of the random field one by

one with the minimum cost contributing configuration. The contribution of a

field element is calculated by the sum of the clique functions which contain that

particular field element as a variable.

The pseudo code of the ICM algorithm for the dense depth estimation problem

is given below:

1. If an initial estimate is available

• set the depth field X with the initial estimate

else

• set X with a random configuration.

2. Set the FieldChangeFlag to 1.

3. While FieldChangeFlag is equal to 1

• set FieldChangeFlag to 0.
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• Visit all the field elements in a desired order and do the

steps from (a) to (c) for every element.

a. Calculate the cost contribution of the field element x,

u(x) = VC0(x) + λ ·
∑

x1∈C1
(x, x1) , for every depth label.

b. Set theXupdate(x) to the depth label which contributes the

minimum cost.

c. If Xupdate(x) is different from X(x), set FieldChangeFlag to 1.

• Set X to Xupdate.

Similar to gradient-descent methods, the solution is updated with a configura-

tion, having less Gibbs energy in ICM approach. Since the Gibbs energy function,

which is formulated for the dense depth estimation problem, is a non-convex one,

the solution of the ICM method may stuck in a local minimum according to the

initialization of the depth field. In order to tackle the initialization problem a

coarse-to-fine scheme may be used [35], [33]. Defining the elements of the coarser

depth fields as image blocks exploits the advantages of block matching algorithms

in the color consistency cost calculation.

The main difference of the stochastic approaches, such as SA and GS from

ICM, is that they might update the solution with a configuration having a higher

Gibbs energy. This property avoids to get stuck in local minima at stake of in-

creasing the total iteration number necessary for the convergence. In GC method,
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similar to ICM, the field is updated with a less costly configuration, while the

update of the field is not achieved one by one, but by using a graphical model

whose multiple entries are changed at once. The details of the GC method can

be found in [19].

2.5.3.2 Belief Propagation (BP)

The belief propagation method is widely used to solve the inference problems

arising in statistical physics, computer vision, error-correcting coding theory and

artificial intelligence. The inference problems are generally represented by graph-

ical models, such as Bayesian networks [36], MRFs, or a factor graphs [37]. In

fact, all these graphical representations can be converted to each other quite easily

[20], since they are equivalent.

BP algorithm is a tool for estimating the marginal probabilities of the elements

of the MRF. The joint probability density function of the MRF can be written in

terms of a factorized form, as given in 2.15 by defining φi and ψi,j functions, as the

exponentials of the negated first and second order clique functions, respectively,

and with a normalization constant Z.

p(X) =
1

Z

∏
xi∈I

φi(xi) ·
∏

xj∈∂xi

ψi,j(xi, xj) (2.15)

A small portion of the factor graph representation of 2.15 is illustrated in

Figure 2.11-a. In this figure, the circles denote the MRF elements as variables
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Figure 2.11: (a) Circles denote the MRF elements as variables and squares rep-
resent the factoring functions having variables as the MRF elements they are
connected to (b) The equivalent graphical representation of the pairwise MRF

and the squares represent the factoring functions having variables as the MRF

elements they are connected to.

The equivalent graphical representation of the pairwise MRF is shown in Fig-

ure 2.11-b, in which the unfilled nodes represent the field elements, hidden nodes,

and the filled ones represent the observed nodes. The observed nodes put condi-

tion on the hidden nodes, for which they are connected to, proportional to the

observed local evidences, which are φ functions in the factor graph representation.

For the inference between the hidden nodes a message receiving-sending scheme

is introduced in the BP algorithm.

A message from hidden node-i to hidden node-j is a vector, whose dimension

is equal to the number of possible states of node-j, and is denoted as mi,j(xj).
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In the BP algorithm, the belief at a hidden node xi is defined as the marginal

probability density of xi, p(xi), and it is proportional to the product of the local

evidence at node xi, φi(xi), and all the messages coming into xi. The k parameter

in 2.16 is a normalization constant for summing up the beliefs to 1.

p(xi) = k · φi(xi)
∏
j∈∂i

mj,i(xi) (2.16)

The messages are calculated recursively with the message update rule of the

BP algorithm that is given as [20]

mj,i ←
∑
xi

φi(xi)ψi,j(xi, xj)
∏

k∈∂i\j

mk,i(xi) (2.17)

The ψi,j function is a compatibility function between the neighboring nodes i

and j, that is derived from the second order clique functions, as mentioned before.

This message update rule is also known as the sum-product algorithm [36], since

it is the summation of some product terms. The algorithm is initialized with

messages having a uniform distribution. It is shown [38] that the beliefs of the

nodes of a graph, with no loop, converge to the exact marginal probabilities by

the BP algorithm. For the graphs with loops, the BP algorithm does not provide

the exact inference, but still a good approximation, which is proved to be a Bethe

approximation in [20], is achieved. After sufficient iterations or convergence, the

belief of each field element is computed and the every element is assigned to most

probable label for the solution of the MRF.
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The BP algorithm can be briefly summarized as a method that utilizes local

computations to understand the inference on a much more complex global models.

The messages generated with simple local computations flow on the network in

a source to drain scheme. In this manner, the messages from the source are

summarized according to the network model and send to the destination drain to

make a global inference.

Different from ICM, the BP algorithm handles all the possible configurations

in computation so that the BP algorithm does not suffer from the initialization

problem, as much as the ICM algorithm. For speeding up the convergence of the

BP algorithm, the same coarse-to-fine scheme, mentioned for ICM, is also widely

used [33].

The message update rule in 2.17 involves many multiplications, which becomes

impractical for the cases having many labels to assign. In order to tackle this

issue, the message update rule can be modified as [26]:

mj,i ← max
xj

φi(xi)ψi,j(xi, xj)
∏

k∈∂i\j

mk,i(xi) (2.18)

Moreover in [33], the message update rule is not performed on the probability

domain, but on the cost domain, in order to use summations, instead of multi-

plications and a linear second order clique function, presented in Figure 2.10 is

used for calculation efficiencies. In the literature, these modified BP algorithms

are called as max-product [26] and min-sum algorithms [33]. The message update
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rule of min-sum algorithm is given in 2.19.

mj,i ← min
xj

(− log φi(xi))(− logψi,j(xi, xj))
∑

k∈∂i\j

mk,i(xi) (2.19)

2.6 Simulations on Dense Depth Estimation

There are three main objectives in the experiments explained in this section. The

first one is to compare the performances of two MRF solving approaches, well-

known ICM and a contemporary one, BP. The second objective is to compare

the dense depth estimates from two view stereo against that of the multi-view

stereo. Finally, the last aim is to observe the effects of the smoothing constraint

on the dense depth estimates. All these experiments are conducted by using fully

calibrated views.

In order to compare the ICM and BP algorithms, a stereo image pair, which

is presented in Figures 2.12 a and b, is used. The special characteristic of this

particular stereo image pair is that it has many feature points which makes cor-

respondence finding much easier. For the fair comparison of the ICM and BP

methods, the same number of depth labels are used, exactly the same clique

functions are defined, no initial estimate is utilized and the same coarse-to-fine

scheme is implemented. Based on the simulations, given in Figures 2.12 c and d,

the depth estimate results of the BP algorithm gives much more realistic results.

It should also be noted that, in [39], the benchmark results are given for various

stereo disparity estimation algorithms, and BP algorithm is reported as one of
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the best solutions.

For the comparison of depth estimation from two view and multi-view sources,

Microsoft Breakdancer sequence is used. The Breakdancer data consists of 8

videos captured in a synchronized fashion by fully calibrated cameras. All 8-views

for an arbitrary time instant are given in Figure 2.13.a. The depth estimates of

the mid camera from two views and 8 views are acquired by the min-sum BP

algorithm and presented in Figures 2.13 b and c, respectively. In the min-sum

version, the linear second order clique energy, which is shown in Figure 2.10.b,

is used for computational efficiencies as mentioned in [33]. In Figures 2.13 d

and e, the dense depth estimates of the standard BP algorithm and the ICM

are compared. The results show that using multiple images makes the color

consistency constraint much more robust. Another observation is that the min-

sum BP results are preferable not only for computational efficiency but also the

quality of the estimates, as well.

The smoothness of the dense depth map solutions can be controlled by vary-

ing λ parameter of 2.12, that is the weight of the smoothness constraint in the

MRF model. The dense depth estimates for the increasing λ values are presented

in Figures 2.14 a to d. The smoothness of the estimates is increasing as expected.
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Figure 2.12: ICM and BP comparison for stereo case. Left and right image pairs
are shown in (a) and (b). The dense depth estimates of ICM and BP are given in
(c) and (d) respectively. The darker parts of the dense depth estimates represent
the nearer parts of scene.
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Figure 2.14: Evolution of the dense depth estimates while the smoothness con-
straint gets dominant in the MRF model from (a) to (d).
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CHAPTER 3

NOVEL VIEW GENERATION

In the literature, estimating an arbitrary view of a virtual camera by using the

given image sources and any other available related information is denoted as

novel view generation. In this chapter, a 3D warping algorithm will be explained

for the solution of the novel view generation problem. Firstly, the 3D scene

representation part of the problem will be mentioned and the main approaches in

the literature will be briefly explained. In the 3D warping algorithm, a hole-filling

method will also be introduced to handle the artifacts caused by the occluded

regions. Lastly, the fusion of two novel views will be studied to increase the visual

quality of the novel views.

3.1 3D Scene Representations

The increasing interest in immersive media and projects, such as 3DTV broadcast,

fuels the search of standardization in the representation of the 3D data. The
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main issue in the representation problem is to find a description favoring high

quality rendering and efficient compression for coding. Hence, the representation

problem is mainly in the domain of research activities of computer graphics and

data coding disciplines. At present, the main 3D scene representation methods

can be classified as point-based, surface-based, volume-based and image-based

methods.

In surface-based representation, the bounding surfaces of the objects in the

scene are mainly considered. The surfaces might have any arbitrary shape and

they generally do not have an analytical form. The polygonal meshes and NURBs

[40] are the most widely used elements for such surface representations. The

major advantage of a surface-based representation is the fact that the present

rendering infrastructure mainly supports the polygonal meshes. However, the

mesh structure has serious shortcomings in terms of coding perspective.

In recent years, as an alternative to mesh based rendering pipeline, point

primitives have received growing attention in computer graphics. The 3D scene

is represented by a point cloud, which is generally sampled non-uniformly and

each point has some attributes, such as color, surface normal and splat size. By

using these attributes and connectivity of the point cloud, the scene is rendered.

In [41], a fully complete 3D video system, from capturing to coding, is proposed

based via point-based representation.

For the visualization of the 3D data encountered in scientific and medical

42



areas, the volumetric representation has been used for many years. In order to

extract and represent the 3D scene structure, the volumetric approaches, like

voxel coloring [42] and space carving [43], are also utilized in computer vision

solutions.

The last approach to be mentioned is the image-based representations. A

collection of conventional 2D images and a model for the scene geometry is used

to represent the scene. The major advantage of the image-based representation

is the independency of the scene rendering problem from the complexity of the

scene geometry, that is a common problem for the representations based on some

geometric primitives. The rendering issues of the image based representation will

be mentioned in the next section.

At present, the solutions to the representation problem are quite application

dependent. However, for the immersive media broadcast, the image-based repre-

sentation seems to be more compatible with the current infrastructure. Moreover,

the rendering quality of the image-based representations is very promising.

3.2 Image-Based Rendering (IBR)

The image-based rendering (IBR) term is used for various approaches whose com-

mon identity is to exploit a collection of images. The utilization of the source

images in novel view generation may vary abruptly from geometric models to

statistical models. However, the IBR methods can be generalized in terms of
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utilization of interpolation and pixel reprojection during novel view rendering

which is completely different from conventional rendering pipelines. The promis-

ing features of the IBR are natural looking novel views by using real pictures and

capable of handling difficult geometric structures, such as hair, fur, leaves, in a

fixed computational complexity.

Two fundamental and breakthrough methods in IBR are the light field ren-

dering [44] and unstructured lumigraph [45]. The main idea of the unstructured

lumigraph is finding possible sources among the collection of images for each pixel

of the desired novel view and weighting the sources with respect to the available

constraints, like orientations of the source cameras and information on the scene

geometry. The light field rendering is a special case of unstructured lumigraph,

in which the source cameras are oriented as a matrix on a plane and the scene is

assumed to have a planar geometry.

Another IBR method, which is strongly based on the scene geometry, is the

layered depth images (LDI) [46]. LDI method should also be considered as a

novel 3D scene representation method. By using the dense depth map of each

image in the collection, the color and depth information is gathered into layered

image plane of a virtual camera whose field of view encompasses the whole scene.

A pixel of a LDI holds the color and depth information and these pixels are

ordered with the intersection order of the projection rays with the scene. The

desired novel views are rendered by using the visibility information encoded in
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Figure 3.1: Generation of a layered depth image

the layers. The generation of a LDI is illustrated in Figure 3.1

There are more weakly geometry-based IBR methods which are also proposed

in the literature. In [47], the ordering constraint on the epipolar lines are used

to generate intermediate novel views from two and three images. A different

IBR approach is proposed in [48] by the motivation that a novel view should

have similar texture statistics with the images in the collection. A novel view

is generated by using the textures patches in the source images considering the

epipolar constraints and texture statistics.
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In the next section, an IBR method, which is called 3D warping, will be

explained in detail. The 3D warping method can be evaluated as a variant of

unstructured lumigraph that uses the depth information of the source images.

The distinguishing property of the 3D warping method is that it is developed for

just one image available cases.

3.2.1 3D Warping Algorithm

3D warping can be briefly explained as a mapping from the image plane of the

source camera to image plane of the virtual camera. The 3D phrase is emphasized,

since every pixel on the source image follows the path from source image plane

to 3D world, and then to novel image plane. As long as the dense depth map of

the source image and the calibration information of the cameras are known, the

mapping can implemented for a point, as back-projection, rotation, translation

and re-projection in this order.

Naive 3D warping result for a frame in the Breakdancer sequence is shown in

Figure 3.2 According to the order of the pixel mapping, the regions, which should

not be observed from the viewing direction of the novel camera, are visible in this

novel view. For example, the leg of the man, that is indicated with the red

circle in the same figure, should be occluded by the arm of the dancer in front.

The green lines are other artifacts due to pixel-by-pixel mapping. And lastly,

a forward mapping, such as source to destination, needs rounding of the exact
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Figure 3.2: A naive 3D warping result with the resulting artifacts, denoted by
green regions.

positions of the mapped points to some discrete pixel locations.

In order to remove the resulting artifacts of such a naive approach, reconstruc-

tion of 2D manifolds (surfaces) in 3D world and projection of these manifolds into

desired image plane by using a depth buffer, is proposed in [49]. The forward

mapping artifacts might also be removed by using an interpolation on the topol-

ogy of the manifold.

The reconstruction of the 2D manifolds in 3D space can be easily obtained

by fitting a mesh on the reference image. The regular grid of the pixels provides

47



Figure 3.3: Illustration of the regular mesh on the image plane

a natural mesh structure. Back-projection of the pixels to the 3D space, as the

vertices of the mesh, whose link list is derived from the regular image grid defines

the desired 2D manifold. An illustration of the regular mesh on the source image

is shown in Figure 3.3.

A serious drawback of using a regular mesh is the construction of the whole

scene as a single connected surface. In fact, the real 3D scenes are generally

composed of various disconnected surfaces. Imposing connectedness might result

with disturbing interpolation artifacts at the regions, which are occluded in the
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Figure 3.4: Visibility artifacts of an over-connected surface

source image, whereas visible in the novel view. By using a proper distance

threshold, the connectedness of the vertices of the 3D mesh should be tested to

avoid the over-connectedness of the scene. In the generated novel view, these

discontinuities appear, as holes due to occlusions and handling of these occluded

regions will be the focus of the next section.

The rendering part of the novel view generation becomes sampling of the 2D

manifolds in the 3D space at the crossings of the projection rays of the pixels of

the desired image plane. The intensity (color) information of the sample is inter-

polated from the vertices of the triangle on which it is located. The architectures

of the present graphic hardware are designed and optimized for mesh rendering.
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Figure 3.5: A novel view generated by 3D warping algorithm

By using a graphics library, such as openGL [50], any novel view can be easily

rendered while taking the visibility issues into account by using a depth buffer.

In Figure 3.5, the same view, which is generated with a naive approach in Figure

3.2, is obtained by the 3D warping algorithm.

3.3 Hole Filling

According to the estimated, acquired or modeled scene geometry, the generated

novel views contain non-rendered regions, which are denoted as holes. Such holes
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are not visible in the source image due to occlusions. In fact, the corresponding

visual information at these hole locations are totally unknown, if one only con-

siders the visual data at the reference view. In order to fill out these holes, some

interpolation/extrapolation or patching methods are usually utilized in the lit-

erature. Interpolation/extrapolation-based methods fill such holes by using the

intensity information of the nearest rendered region to avoid disturbing effects

[51], [52]. In patching-based approaches, the texture of the bounding region is

pasted onto the holes [53]. In a recent study [54], an elegant PDE-based novel

view generation method is also proposed which handles the hole filling problem

during the sampling of the scene.

The main strategy of the hole filling algorithms is distinguishing the back-

ground section of the boundary for the hole. Since the occluded regions must

lay behind some other parts of the scene, it is reasonable to utilize the color or

texture information of the background during fill operation. In order to check the

background and foreground parts of a hole, the epipolar lines should provide a

perfect orientation. An epipolar line, crossing a hole, passes through two neigh-

boring points in the source image. An illustration of this fact is shown in Figure

3.6. Hence, a basic hole filling algorithm can be derived as the extrapolation of

the background boundary colors along the epipolar lines on the hole [51].

In [55], it has been proven that knowing only the sign of the epipole on the

source image defines an occlusion-compatible mapping order to warp the source
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Figure 3.6: The 3D warped view of a blue disc, standing at the front of a gray
background. The black region denotes the hole and the red line is an epipolar
line crossing the hole. Points a and b are two neighboring points in the source
image. Possible positive and negative epipoles are also shown.

image. A sketch of the proof is given in Appendix A. For the positive epipole

case, the source image should be mapped towards the epipole and away from the

epipole for the negative epipole case. In [49], the occlusion compatible mapping

order is used as the hole filling order. The sign of the epipole of the novel view

guarantees to fill the holes from background to foreground.

According to the position of the epipole with respect to the visible part of

the image plane, there are 9 possible configurations. Three distinct cases are

illustrated in Figure 3.8. The remaining configurations are identical to cases in

Figure 3.8 b and c. The position of the epipole divides the image into 4, 2 or just

1 parts, which are denoted as sheets [55]. In order to be implement in practice,
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Figure 3.7: The occlusion compatible directions for the positive and negative
epipoles are shown in (a) and (b), respectively.

the scanning directions, which should be perpendicular to the epipolar lines, are

approximated with three main directions; horizontal, vertical and diagonal. All

three cases, illustrated in Figure 3.8 are given for the positive epipoles, that means

scanning towards to epipole.

Using this scanning framework proposed in [49], the pixels belonging to the

holes are detected and the color of the background pixel in the scanning direction,

which are shown in Figure 3.8 as bold arrows, is extrapolated (i.e. copied). The

scanning order guarantees that the source pixel for the extrapolation is not an

unfilled pixel. Hence the holes of the novel image are filled in just one scan

considering the background-foreground distinction.
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Figure 3.9: In (a) a concave blue object standing in front of grey background and
its 3D warp is shown in (b). The red edges are the forward edges with respect to
the epipolar direction.

The hole filling method explained above might fail in case of a hole, which

is created by a concave foreground object. Figure 3.9.b illustrates an example

for this case. In [49], for tackling this problem, forward edge of an object is

defined on the source image. The object edges are the natural boundaries of

the unconnected surfaces of the 3D mesh which is used in 3D warping. The

object edges, which pass from foreground to background in the direction of the

intensity extrapolation, utilized during hole filling, are defined as forward edges

[49]. The hole filling algorithm can be modified easily by checking the source of

the extrapolation, whether it is from a forward edge or not, to avoid foreground

extrapolation.

A novel view before and after the application of hole filling is presented in

Figure 3.10. The experimental result concludes that the hole filling algorithm
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Figure 3.10: (a) 3D warped novel view and (b) result of hole-filling

might handle the occlusions in general, especially on the stationary backgrounds,

such as the floor or the wall in the given view. However, the occluded regions

of more complex backgrounds, like the man in the view, can not be handled

acceptable in terms of the visual quality. Moreover, the extrapolation of the

background might also become disturbing in large occluded regions, which are

encountered frequently in wide baseline cases.

3.4 Intermediate Novel View Generation

As long as the source image does not contain any information about the occluded

regions on the novel view, the hole filling algorithms are limited to generate some

predictions. However, if it is possible to increase the number of the view sources,

those occluded regions in one of the source might be compensated from another

source. An arrangement of two source views, that leaves the novel view as an
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intermediate, handles most of the occlusion problems.

The intermediate novel view generation algorithm can be interpreted as a

fusion of two hole-filled novel views, considering the occlusions. The algorithm

can be summarized as follows.

1. 3D warp the source images to novel view separately.

2. Apply hole filling to each novel views acquired and keep the masks

of the occluded regions of each novel views.

3. Repeat the following steps for each pixel on the novel view:

• If that particular pixel is visible in just one of the novel

views copy the color of the visible pixel.

• Otherwise fuse the color of two pixels by weighting them in

reverse proportional to the distances between the camera centers

of the sources and the novel view.

The simulation results of the intermediate novel view generation method are

given in Figures 3.11 and 3.12 for the Breakdancer and Ballet sequences, respec-

tively. In order to compare the objective quality of the results, an available image

in the multi-view set is selected to be estimated, as the novel view. Two source

views and their dense depth estimates acquired by the BP method are used in

the intermediate novel view generation. In Figures 3.11 and 3.12, the upper row
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consists of left source view, original novel view and right source view in left-to-

right order, whereas the bottom row consists of 3D warp of left source view, fused

intermediate novel view and right source view in the same order. PSNR values

of the intermediate novel views with respect to originals are obtained as 32.44

dB and 28.88 dB for typical frames from Breakdancer and Ballet sequences, re-

spectively. The reason of the drop in the PSNR value of the Ballet sequence is

the inferiority of the dense depth estimate quality, due to severe occlusions in

the scene geometry. However, it should be mentioned that the results are quite

promising in terms of subjective quality.
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CHAPTER 4

MULTI-VIEW VIDEO CODING

In this chapter, the recent research on compression of multiple video sequences

from cameras (more than two) viewing the same scene, that is known as Multi-

view Video Coding (MVC), is explained and a novel dense depth-assisted MVC

approach will be proposed. The performance of the proposed MVC method is

analyzed in a special test bed, which will be explained in detail. The chapter starts

with a summary of the video coding fundamentals with emphasis on the recent

ITU H.264 (ISO MPEG-4 version 10) video coding standard. Next, the MVC

problem is defined and the ongoing standardization activities are summarized,

as a research survey for MVC. And lastly, a novel approach, which utilizes the

tools introduced in the preceding chapters, will be proposed with some simulation

results.
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4.1 Video Coding Fundamentals and H.264 Standard

Current communication channels necessitate compression of a typical video data

for its transmission. The video data can be interpreted as a 3-dimensional data,

which consist of 2-dimensional spatial component and a single dimensional tempo-

ral component. Unless the video data is a random noise, there exist many spatial

and temporal redundancies which play a vital role in its compression. The spatial

redundancies arise from the visual coherency of the objects in the scene, whereas

the temporal redundancies arise from the smooth continuity of the object and

camera motions in time. Another source of redundancy is the statistical one,

which arises from the representation of the information before compression.

There are two main organizations developing video coding standards, that

are ITU-T Video Coding Experts Group and ISO/IEC Motion Picture Experts

Group (MPEG). In 1991, the first video coding standard, H.261 [56], is introduced

by ITU-T for videoconferencing and it is followed by H.262 [57] and H.263 [58]

standards. MPEG-1 [59] and MPEG-2 [60] are the two standards introduced by

MPEG group and they are widely used in the consumer products, VCD and DVD,

respectively. Other widespread applications of MPEG-2 can be listed as cable

TV and High Definition TV (HDTV). Afterwards, the joint work of these two

organizations, called as Joint Video Team (JVT), developed the H.264 standard.

All contemporary video coding standards exploit the spatial, temporal and
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statistical redundancies in the video data. The architectures of the aforemen-

tioned coding standards have a common structure, since they are built upon the

preceding standard. Most of these standards follow the industrial requirement

for being backward compatible to their parent standard. In order to explain the

methodologies for exploiting the redundancies existing in the video data, H.264

standard, which can be assumed as the-state-of-the-art in video coding, is pre-

ferred [61], [62], [63]. It is noteworthy that the improved features of H.264 have

almost doubled the compression performance against MPEG-2 standard.

4.1.1 Major Features of H.264

The encoder block diagram of the H.264 standard is given in Figure 4.1. The

frames of video are split into 16x16 pixel blocks which are called as macroblocks.

The macroblocks encoded in a raster scan order from top left to bottom right of

the frame. Each macroblock consists of three components which are luminance,

Y, and chrominance channels, Cr and Cb. As human vision system is less sensitive

to chrominance channels, they are usually subsampled by a factor of two in both

horizontal and vertical directions. Hence, a macroblock, the fundamental coding

unit of H.264, consists of 16x16 luminance and two 8x8 chrominance channels.

The macroblocks are grouped as slices and 5 types of slices are defined in

H.264, which are Intra (I), Predictive (P), Bi-predictive (B), Switch-I (SI), and

Switch-P (SP) slices. I-slices are encoded by intra-mode, whereas P and B slices
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Figure 4.1: The encoder structure of H.264 [63]

are encoded by inter-mode by using one and two reference frames, respectively.

The SI and SP slices are utilized for efficient bit-rate switching. A frame might

contain a mixture of these slices. The intra and inter coding modes are explained

in detail in the following sections.

4.1.1.1 Intra Coding

The intra coding mode can be briefly explained as a compression scheme which

does not exploit any temporal redundancies in a frame sequence. The main

reasons of avoiding temporal dependencies are to provide error resilience and

random access points to bit stream of the video data.

64



Figure 4.2: (a) The first 3 modes of 4x4 intra estimation and (b) the directions
of estimation modes

The intra mode within the predecessors of H.264 does not make any esti-

mation of the macroblock before the encoding procedure. However, in H.264, a

spatial estimation is proposed for the intra mode. In order to keep the temporal

independency of the intra coded macroblocks, the estimation is utilized over the

previously encoded macroblocks of the same frame. The spatial estimation of the

macroblocks is performed over the whole macroblock or 4x4 sub-macroblocks.

The spatial sources and the possible 9 estimation modes of the 4x4 intra estima-

tion are illustrated in Figure 4.2.

Intra coding is expected to be more efficient in case of inferior temporal es-

timations for particular macroblocks. However, the conventional usage of intra

coding is to encode all the macroblocks of the frames at a pre-defined periodicity
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in order to gain some error resilience and random access properties for the en-

coded video. In terms of compression, the intra coded frames are much costly,

compared to inter coding and they usually constitute about 15 to 25 percent of

the encoded data, according to the period of intra coded frames (usually I-frame

is utilized one out of 15 frames) and the quantization quality.

4.1.1.2 Inter Coding

The temporal redundancies are exploited via inter coding by the help of block

motion estimation. The motion estimation for the macroblock to be encoded is

performed on one (P-slices) or two (B-slices) reference frames which are recon-

structions of the previously encoded frames. In the former MPEG standards, the

reference frame is the most recent preceding frame. However, in H.264, any pre-

viously encoded frame can be used as a reference frame, although there is cost of

encoding the reference frame number and increase in the required memory both

for the encoder and decoder sides.

The motion estimation is achieved for blocks of pixels. In H.264, different

from the former standards the size of the blocks is not restricted to 16x16 and

8x8. In a hierarchical way the blocks of size 16x16 and 8x8 can be divided into

two in vertical and horizontal directions, such as 16x8 or 4x8.

The precision of the motion estimation vectors is increased to quarter pixel in
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H.264 for improving the estimation performance at the expense of higher com-

putational complexity. For the coding of motion vectors, a spatial estimation

is utilized, since the motion vectors are usually highly correlated in the spatial

domain. The prediction is performed by only using the available previously en-

coded motion vectors. The difference between the current motion vector and the

predicted motion vector is encoded and transmitted.

4.1.1.3 Transform Coding

After the estimation of a macroblock, regardless of whether the intra or inter

coding estimation is used, the residual macroblock is obtained by taking the

difference between the original and the estimated macroblock. The transform

coding is utilized to reduce the spatial redundancy in the residual macroblock.

In MPEG-1 and MPEG-2, two dimensional Discrete Cosine Transform (DCT)

of size 8x8 is applied. Instead of DCT, some other integer transforms are also

preferred in H.264. The size of these transforms is reduced to 4x4 mainly, and

2x2 for some special cases to better adapt the coding of residuals along the object

boundaries.

The applied integer transforms in H.264 are shown in Figure 4.3. Since all

the entries of these transforms are integers between -2 and 2, the transforms and

inverse transforms can be applied easily by shift, sum and subtract operations.

The inverse transform mismatches, due to the rounding, can also be prevented by
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Figure 4.3: Integer transforms in H.264.

using integer transforms. Additional to these advantages, the energy compaction

performance of those integer transforms is comparable with DCT.

All the coefficients of the transforms are quantized by a scalar quantizer.

There exist 52 different quantization step sizes, which are denoted as the Quan-

tization Parameter (QP). The quantization step size gets doubled for every 6

increment in QP value.

4.1.1.4 Entropy Coding

The transformed coefficients of the residual macro blocks and other syntax ele-

ments, such as residual motion vectors, indices of the reference frames, and type

of the macro blocks, are all entropy coded as a final step. H.264 provides two

alternatives for entropy coding [63]. While the low complexity one is called as

Context-based Adaptive Variable Length Coding (CAVLC), the more computation

intensive one is Context-based Adaptive Binary Arithmetic Coding (CABAC) [63].

Both methods provide a significant increase in the compression with respect to

the entropy coding methods, such as Huffman Coding, in the prior standards.
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4.2 Multi-view Video Coding

Advances in display and 3-D capturing devices revealed various applications,

which require multiple video signals captured from a single scene, such as 3D

TV, Free Viewpoint Video (FVV) and high performance imaging. The dramatic

increase for the required bandwidth to transmit such data makes the compression

a vital issue. In response to these developments, MPEG has recently initiated a

working group for the standardization of MVC and issued a Call for Proposals

on MVC [64].

Different from mono-view video coding, multi-view video data also contains

spatial redundancies between camera views, that are known as inter-view redun-

dancies. Hence, the main issue in MVC is the optimal utilization of the inter-view

redundancies within the coding scheme, that will be the focus of the rest of the

chapter. Some other issues related to the MVC are white balance and illumination

changes between the cameras with some proposed solutions [65].

In response to MVC standardization activity, a number of MVC methods

are proposed [65]. For the exploitation of the inter-view redundancies, various

approaches, which might be classified into two main classes, as reference frame-

based and disparity-based methods, are suggested.

The reference frame-based methods mainly adapt the motion compensation

algorithms, which are designed for temporal redundancies, to remove inter-view

redundancies. In [66], a hierarchical B-frame concept in spatial and temporal
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Figure 4.4: Reference frame structure for the method in [66]

domains is introduced, as in Figure 4.4. The arrows in Figure 4.4 denote the

reference frames to be used for the motion compensation of the frame to be

encoded. H.264 standard is utilized for the implementation of the hierarchical

B-frame based MVC approach. This algorithm is reported as resulting with the

best compression performance among all MVC proposals, after the subjective and

objective tests of the upcoming MPEG standard [65].

A major drawback of the reference frame-based approaches is the lack of dis-

tinction between temporal and spatial sources of the reference frames. Obviously,

the nature of the motion vectors in spatial and temporal domain differs in general.
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Figure 4.5: (a) Depth and (b) disparity maps for for a typical frame in Break-
dancer data [67]

For the temporal motion vectors, it is reasonable to bound the searching area to

a fixed box, whereas the search space of the spatial motion vectors (i.e. disparity

vectors) are quite dependent on the distance between the camera centers and the

epipolar geometry of the multi-view camera setup.

On the other hand, the disparity-based MVC methods take the geometric con-

straints into account in order to remove the inter-view redundancies. In addition

to the utilization of other cameras frames as reference frames for the motion com-

pensation, a view synthesis prediction method is also proposed [67]. The encoded

frame is estimated by a view synthesis process, which utilizes a frame from the

same time instant of an already encoded view and its corresponding dense depth

or disparity map.

In this approach [67], there exists an important distinction between depth

and disparity maps. While the depth maps are dependent on the geometry of

71



the scene, the disparity maps just satisfy the epipolar constraints and they are

optimized for the view synthesis step. The resulting depth map of a frame from

the Breakdancer data and its corresponding disparity map, which is optimized for

the view synthesis, are presented in Figure 4.5. Although the disparity maps are

reported to create better intensity estimates, they are much harder to compress.

Another disparity-based MVC method is proposed in [68], which utilizes view

interpolation according to the disparity maps, in addition to exploiting the inter-

view motion compensation methods. The reference frames, including the view

interpolated estimate, are illustrated in Figure 4.6 for the estimation of a mac-

roblock on an intermediate view. The novelty of this approach is that instead of

encoding the whole dense disparity map, it is sufficient to transmit the interpo-

lation parameter, α, to generate the view interpolated estimate at the decoder

side.

In [68], the interpolation with respect to the estimated disparity map is per-

formed on the nearest left and right views of the view to be decoded. The

transmitted interpolation parameter defines the dynamics between the assigned

disparity values and the correspondences of a pixel on the right and left source

views. A simple smoothness and color consistency costs among the right and left

views are minimized at the decoder to estimate the disparity map and its corre-

sponding interpolated view [69]. The correspondences of a pixel with respect to
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Figure 4.6: The MVC proposal of [68]

the transmitted value are illustrated in Figure 4.7 for the rectified views. How-

ever, the disparity maps, derived during the interpolation, might be inconsistent

and diverge from the scene geometry, since they are estimated independently for

each intermediate view.

A much more recent MVC approach which utilizes a single dense depth map

of a reference view is also proposed in [70]. The reference view is 3D warped onto

the other views via the depth map of the reference view, and the warped view

is used as an estimate of the views to be encoded. A cost term related with the

number of bits needed to encode the estimated dense depth map is utilized in

the dense depth estimation process, since the depth maps are also encoded. It is

reported that the proposed MVC method is very efficient in low bit-rates [70].
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Figure 4.7: Disparity estimation method of [68] for view interpolation

Some possible scenarios of 3DTV and FVV also require information about

the scene geometry. A variant of the multi-view video data, which contains the

information of the scene geometry, is the N-video + N-depth data format. In

[71], a MVC method for the N-video + N-depth format is implemented with the

main intention on real-time decoding of the desired views. In such a scenario, the

depth maps are only needed for the virtual view generation. Two cameras are

selected as reference cameras and they are encoded with their depth components

as a single video. The remaining videos and depths are spatially estimated from

one of the reference camera. And finally, the residuals of the estimates and the

occluded regions are encoded, separately.

A totally different approach for compression of N-video + N-depth data is pro-

posed in [72], which utilizes the LDI representation structure. For the generation

74



of the LDI data structure, a reference camera is chosen among the given set-up

and the depth data is used to fuse the other views in the layers of the LDI (see

Figure 3.1). Each layer of LDI is encoded by the H.264. However, LDI approach

should be examined carefully for the temporal prediction of an LDI frame.

4.3 The Proposed MVC Method

In terms of the exploitation of the inter-view redundancies, the recent MVC

methods can be sorted, based on their utilization of the 3-D scene geometry. The

hierarchical B-frame based MVC [66] can be interpreted as ”no 3-D utilization”

case, whereas N-video + N-depth coding MVC [71] can be interpreted as ”full

3-D utilization”. The proposed MVC method has two motivations, based on this

classification. The first one is due to much effective removal of the inter-view

redundancies, compared to the 3-D geometry-free approaches, especially for the

cases having large number of views, by the help of a reliable representation of

the scene geometry. The second motivation is based on the expectation that the

next generation interactive multimedia will be dominated by the 3-D applications

which explicitly require the 3-D information of the scene. Hence, utilization of

the scene geometry is not only beneficial for reducing the inter-view redundancies,

but it can also be strictly required in many 3-D applications, such as fly-view,

augmented and mixed reality.

Remembering the methods in Chapter 3, the intermediate view generation
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Figure 4.8: Typical multi-camera setup utilized in many test sequences, such
as Breakdancer and Ballet data. Red cameras are utilized as reference camera
locations

based on dense depth maps, provides a reliable estimation tool for the video

sequences belonging to the intermediate views. By properly selecting the reference

views for the intermediate view generation, the occlusion artifacts can also be

minimized. Moreover, by such an approach, the depth maps to be encoded can

be reduced, differing from the aforementioned N-video + N-depth MVC methods.

Proper selection of the reference cameras is a non-trivial question. However,

some recent research activities, such as [73], are focused on finding the optimal

(two or more) reference views in the multi-view set for the efficient estimation of

the remaining views by exploiting the depth information.

Nevertheless, the proposed MVC method in this thesis has an ad-hoc, but

intuitive, reference view selection algorithm whose main objective is to reduce

the area of the occluded regions on the estimated views. The multi-camera setup

of the Breakdancer and Ballet data, that consists of 8 cameras along an arc, is
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illustrated in Figure 4.8. Intuitively, as long as the reference view set contains

the leftmost and rightmost views, the occlusion artifacts should be reduced sig-

nificantly. The mid-view is also selected as another reference view, in order to

increase the quality of the intermediate view estimates by decreasing the baseline

distances between the reference views. For the multi-view video data sets, which

do not contain the depth information, mid-views are also more favorable as a ref-

erence view since they should suffer less from the occlusions during dense depth

estimation process. The other multi-view camera set-ups, which are different

from an arc shape, can also be handled easily with a similar approach.

In the proposed MVC method, the intermediate views are estimated by novel

view generation via the decoded texture video and depth maps of the reference

views, and then, the residuals of the intermediate view estimates are encoded

to reach the desired coding quality. For small baseline cases, the rightmost and

the leftmost reference views may also be estimated by the 3D warping algorithm

in Section 3.2.1, following a residual coding, similar to the compression of the

intermediate views. Due to the compatibility issues and its attractive compression

capabilities, H.264 framework is preferred during the encoding of video and depth

data of the reference views, as well as the residuals of the intermediate views. The

dense depth maps are encoded at a quality which costs 10-20% of the bitrate of

the simulcast encoded texture video. Such a ratio is preferred, since it is reported

to be sufficient for the required visual quality [74]. However, a recent work, [75],
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has also showed that the novel view generation methods may suffer at the depth

discontinuities, in case of using decoded depth maps at low bit-rates.

The proposed coding scheme can be applied to all time instances of the video

sequences. However, it is reported in [66] that the temporal reference frame

sources are dominated in the motion estimation of the hierarchical B-frames. In

other words, temporal redundancy can be better removed via conventional motion

compensation. Hence, an efficient MVC approach should also utilize the temporal

redundancies in the compression of the texture videos of the intermediate views.

However the proposed MVC method just utilizes the intermediate novel view

generation in order to observe the performance of the geometry-based spatial

compensation method.

The proposed MVC method, which is also illustrated in Figure 4.9, can be

summarized as follows:

1. Select the leftmost, the rightmost and the mid-views as the reference

views.

2. Encode the calibration data of all the views, as well as the indices

of the reference views.

3. If the dense depth maps of the reference views are not provided,

estimate them via the dense depth estimator, introduced in Section

2.5.
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4. Encode the texture of the frames for the reference views separately

by H.264.

5. Encode the (estimated/acquired) dense depth maps of the reference

views by H.264.

6. Repeat the sub steps for each view positioned between the right-

and mid-reference cameras.

a. By using the decoded texture and depth maps of the right- and

mid-reference views, generate an intermediate novel estimate

of the intermediate view.

b. Encode the residuals of the intermediate novel estimates of

the intermediate views by H.264.

7. Repeat the step 6 for the left side.

The intermediate novel view generation-based estimation can be utilized as

a reference frame source for motion compensation, in addition to the temporal

and spatial reference frame sources, such as the ones proposed in [67] and [68].

However, such an implementation needs to be embedded in the H.264 coding

framework. Hence, for the preliminary performance tests, it is assumed that the

generated novel intermediate view is the best estimate for the all macroblocks of

the frame to be encoded in the proposed MVC scheme. In the simulations part,
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Figure 4.9: Illustration of the proposed MVC method

the practical implementation for testing the performance of the proposed MVC

method is explained in detail.

4.4 Simulations of the Proposed MVC Method

In order to asses the performance of the proposed MVC method with respect to

the state-of-the-art in MVC, the method is compared against two other MVC

methods. The first method is the simulcast encoding of each video stream by

H.264, that was also used to compare the proposed MVC methods in response to

call for proposals of MPEG [65]. The second one is the hierarchical B-frame based
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MVC method, which is the best performing response to the call of MPEG. Ac-

cording to [76], it is quite likely that the MVC standard, which will be developed

by JVT in the near future, will be based on hierarchical B-frame method.

4.4.1 Implementation of Proposed MVC Method

The implementation of the proposed MVC method is achieved in two steps. The

first step is the encoding of the reference views and their dense depth maps. The

texture videos of the reference views are encoded just like the simulcast encoding

scheme. The dense depth maps of the corresponding views are handled as a

video sequence and also encoded with H.264. The sequence type of the H.264

configuration for the texture video is also used in depth coding. The quality of

the depth coding is set to satisfy 10-20% bit-rate of the encoded texture video

with a PSNR value around 36dB.

The second step is the creation of the residuals of the estimated intermediate

views. The encoded texture and dense depth maps are utilized in the novel

intermediate view generation method and the residuals are calculated with respect

to the original intermediate video sequences. Although, the acquired residuals

range between -255 and 255, they are mapped linearly into [0, 255] to handle

them, as typical video sequences. A drawback of this mapping is a 0.5 accuracy

lost in the residual maps. By this way, a video sequence of residuals for each

intermediate view is generated separately. The residual videos are encoded by
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H.264 with a proper quantization parameter to increase the PSNR values of the

encoded intermediate views. The PSNR values of the encoded intermediate views

are calculated by the summation of the novel view estimates with the decoded

residual frames inverse mapped to [-255, 255] range.

4.4.2 Simulation Results

The simulations are performed on the Breakdancer and Ballet sequences. Since

the groundtruth for the dense depth maps of both sequences are provided by

Microsoft Research, the simulations of the proposed method are achieved with

both the groundtruth and the estimated dense depth maps. I-frame insertion

period for the reference views is set to 1 second for both of these sequences. The

simulations of the other MVC methods for comparison are done with the anchor

configurations provided with the MPEG for MVC tests [77].

There exists an important performance difference between Breakdancer and

Ballet sequences, which are shown in Figure 4.10 and 4.12, respectively. In in-

terpreting this major difference, it should be reminded that the Breakdancer

sequence has a more dynamic scene in temporal domain with respect to Ballet

sequence. In Breakdancer, the proposed method achieved better average PSNR

values than the simulcast coding approach; however it can not reach the per-

formance of the simulcast coding of the Ballet sequences. For the high visual

quality cases of Breakdancer, the proposed method also becomes inefficient than
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the simulcast coding.

The portions of the bits used in coding the reference views, dense depth maps

and residuals are given as bar charts in Figures 4.11 and 4.13 for the Breakdancer

and Ballet, respectively. In both multi-view video sets, the percentage of the bits

spent for the residual coding is in an increasing trend against the PSNR values.

The reference views are encoded similar to the simulcast coding, hence the

difference between the proposed method and the simulcast coding arise mainly

from the coding of intermediate views. Since the residual coding is only utilized

for the coding of the intermediate views, the decrease in the performance of the

proposed method should be directly related to the increase in the cost of residual

coding for high PSNR cases.

The increase in the PSNR difference between the intermediate novel view es-

timates and the reference views also supports the residual coding related perfor-

mance decrease. Since the PSNR difference increases, the bits in residual coding

to reach the desired PSNR increase (see Figure 4.14).

The superiority of the hierarchical B-frame based MVC method in all cases

and the better performance of the simulcast coding for Ballet and high PSNR val-

ues of Breakdancer show that the temporal redundancies should also be utilized

for the compression of intermediate video sequences. The proposed geometry

based approach might be more beneficial for dynamic scenes similar to Break-

dancer.
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It should also be noted that the performance of the proposed MVC method

by using the groundtruth dense depth maps and estimated dense depth maps

are quite comparable for the Breakdancer. Since the dense depth estimates for

the Ballet suffer from the occlusions the better results in using the groundtruth

depth maps is expected.

Although the proposed MVC method is not mature enough to handle all

cases and exploit all redundancies, the simulation results show that the proposed

geometry based tools are promising in removing inter-view redundancies.

Figure 4.10: Bits vs PSNR graph of the MVC methods for Breakdancer
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Figure 4.11: Portions of the bits for reference views, depth maps and residuals
for Breakdancer

Figure 4.12: Bits vs PSNR graph of the MVC methods for Ballet
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Figure 4.13: Portions of the bits for reference views, depth maps and residuals
for Ballet

Figure 4.14: PSNR of reference views vs. PSNR difference between intermediate
estimates and reference views (for Breakdancer).
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CHAPTER 5

SUMMARY AND CONCLUSIONS

The main objective of this study is to investigate the performance of the 3-D

scene geometry utilization in Multi-view Video Coding (MVC). There are two

main motivations for exploiting the geometry information towards MVC. The

first one is the emerging applications, which indicate that the next generation

multimedia should contain its own 3-D information. The second motivation is

due to intuition that the geometrical representation should achieve better spatial

redundancy removal, especially when the number of views increases, since the

inherent entropy of the source (scene) does not change, while increasing the cor-

responding views. In order to measure the performance of the geometry-based

approach, in this thesis three major chapters are devoted to dense depth estima-

tion, novel view generation and MVC.

The dense depth maps are selected as the 3-D geometrical representations of

any scene. In order to estimate the dense depth map of a view, all other views
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of the multi-view data are utilized. Since it is assumed that all the views are

full-calibrated, assigning a depth value to a pixel at any view implies determining

all correspondences in the other views. In order to solve the ill-posed correspon-

dence problem for the multi-view case, the stereo disparity estimation techniques

are adapted. The main clues utilized in dense depth estimation are the color

consistency among the correspondences and the smooth variations on the depth

field. A Markov Random Field (MRF) modeling is preferred for realizing the

estimation, since MRF is a reliable model for handling the problem in a global

sense. The solution of the MRF model is obtained by Belief Propagation (BP)

method, which is also compared against the well-studied Iterated Conditional

Modes (ICM) approach. According to the simulation results, as long as the oc-

clusion artifacts are not severe in the multi-view set, reliable estimates can be

acquired via MRF formulation, while BP is certainly superior against ICM in

terms of both execution time and quality.

For the novel view generation, it is desired to estimate the view of an arbi-

trarily positioned camera by the help of the dense depth estimated view(s). Con-

sidering that an image is formed by sampling the 3-D space along the projection

rays of the pixels, the source view is back-projected to 3-D space and re-projected

to the desired view by the help of the corresponding estimated dense depth map,

which is called as 3D warping. In order to handle the un-connectedness of the

3D samples and the visibility artifacts, a regular mesh with some connectedness

88



threshold is utilized. The remaining holes on the generated novel view, due to

the occlusions, are filled with an occlusion-compatible method, which exploits

the epipolar constraints between the source and the desired view. Finally, in

order to minimize the occlusion artifacts, an intermediate novel view generation

method, which fuses the novel view estimates from the left-side and right-side

view sources, is introduced. All these steps for generating a novel view are shown

to yield visual improvements in this resulting rendered frame.

A 3-D geometry-based MVC method which is based on H.264 and utilizes

the dense depth estimation and intermediate novel view generation methods is

proposed. Three reference cameras, leftmost, rightmost and middle ones, are

selected as the reference views and their dense depth estimates are additionally

encoded. By using the decoded texture and dense depth maps of the reference

views, the intermediate views are estimated by the novel view generation method.

After this prediction, the residuals of the intermediate novel views are encoded

to increase the quality of the reconstructions of the intermediate views without

any temporal motion compensation. The performance of the proposed method is

compared with the simulcast coding and the best performing MVC proposal to

the MVC standardization action of MPEG.

Although the proposed MVC method is immature for exploiting the temporal

redundancies, the simulation results show that it performs better than the simul-

cast coding for low PSNR values in dynamic scenes. By increasing the PSNR
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values of the intermediate views, the portion of the residual coding in the bit-

stream becomes dominant, which yields to an inefficient system. Moreover, it

is observed that the removal of the temporal redundancies for each view can be

made more efficient during compression in stationary (static) scenes.

5.1 Future Work

For MVC, the proposed geometry-based approach is promising for the removal of

spatial (inter-view) redundancies between different views. However, the temporal

redundancies still play an important role during compression and they might be

utilized in any MVC scheme. Considering the novel view estimates as possible ref-

erence frames for the traditional motion compensation methods, these approaches

might achieve an integration between temporal and geometry utilization, which

should also be compatible with the present standards.

It should be noted that the performance of the proposed system might be

increased by decreasing the portion of the residual coding while keeping the the

PSNR values at the same level. There are two possible options for decreasing the

cost of residual coding. The first approach is to develop a compression technique

for the acquired residuals due to 3-D warping. It is important to remind that the

simulations for the residual coding are implemented by H.264 which is not de-

signed optimally for residual coding. Hence a specialized compression approaches

can be developed for residual coding.
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The second possible improvement in residual coding can be obtained by in-

creasing the quality of the novel view estimates. It is observed that the generated

intermediate novel views by using the original texture and dense depth maps of

the source views have a quality about 32 dB by the acceptable dense depth es-

timates. Although the intermediate novel views seem to be visually satisfactory

in terms of the subjective criterions, the novel view generation method does not

yield images with high-PSNR. The novel view generation method might also be

improved in order to get higher performance in objective criterions.

The dense depth estimation part also plays an important role on the quality

of the novel view estimates. In order to make the proposed MVC approach ap-

plicable to all possible scenes, the dense depth estimation part should be immune

to occlusions. The visibility checking and occlusion detection algorithms might

provide such an improvement.
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APPENDIX A

OCCLUSION-COMPATIBLE ORDERING

It is proved in [55] that, the occlusion-compatible mapping order for the images

having a positive epipole with respect to a desired novel view, is towards to

epipole and away from the epipole for the negative epipole case. A sketch of the

proof will be given following the formal proof given in [55].

Two unit spheres, Si and Sj, whose origins represent the camera centers of

two views, are shown in Figure A.1. The points on the surface of the unit sphere

are represented in spherical coordinate system. In projective sense there exists a

natural mapping between the points in 3D world and the points on the surface of

the unit sphere, which is illustrated by the ray (θx, φx). This projective mapping

is not one-to-one, which is in fact the known occlusion phenomena. The ray

(θ+, φ+) represents the positive epipole direction of Si. The pencil of planes on

the line connecting two camera centers defines all the epipolar planes for the

given setup. The projection of the epipolar planes on the spheres are shown as
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Figure A.1: The representation of two camera centers as unit spheres. [55]

the longitudinal lines.

A sectional view of the two unit spheres on an arbitrary epipolar plane is

shown in Figure A.2. Two 3D points, p1 and p2, constitutes an occlusion for the

camera denoted by Sj. In order to avoid wrong visibility decisions, the desired

occlusion-compatible mapping from Si to Sj should map the projection of the

further point, p2, in advance to closer one, p1.

In Figure A.3.a the scanning order for the surface of a unit sphere with respect

to the baseline vector is shown by the wrapping arrows. As the projection of the

sphere surface on to a plane preserves the ordering on epipolar lines, the scanning

directions for a pinhole camera model can be just derived by the projection of

the arrows on the corresponding image plane. In Figure A.3.b and c the deriva-

tions of the scanning orders of positive and negative epipole cases are illustrated
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Figure A.2: An occlusion illustration on an epipolar plane. [55]

respectively. It can be concluded that scanning the source image towards to posi-

tive epipole and away from the negative epipole satisfies the occlusion-compatible

ordering.
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Figure A.3: (a) Occlusion-compatible scanning directions for the spherical repre-
sentation of a camera, and corresponding derivation of the scanning directions of
the pinhole camera models for (b) positive epipole and (c) negative epipole. [55]
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APPENDIX B

CALIBRATION DATA FOR BREAKDANCER

AND BALLET SEQUENCES

The calibration data for the 8 cameras of the Breakdancer and Ballet multi-

view video sequences are given below. The projection matrix of a camera can be

obtained as P = K[R|t]. The video sequences and the calibration data is also

provided in [78].

B.1 Breakdancer Sequence

K0 =

 1884.19 −0.654998 513.7

0.0 1887.49 395.609

0.0 0.0 1.0

 [R0|t0] =

 0.962107 −0.005824 0.272486 −14.832727

0.004023 0.999964 0.007166 0.093097

−0.272519 −0.005795 0.962095 −0.005195



K1 =

 1898.03 0.282128 517.91

0.0 1900.81 382.815

0.0 0.0 1.0

 [R1|t1] =

 0.975810 −0.026010 0.216939 −11.315863

0.022983 0.999598 0.016432 −0.167907

−0.217280 −0.011048 0.976016 0.701363


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K2 =

 1904.87 0.437636 497.954

0.0 1908.15 385.047

0.0 0.0 1.0

 [R2|t2] =

 0.987000 −0.009204 0.160317 −7.554977

0.007599 0.999912 0.010582 0.000823

−0.160400 −0.009226 0.986984 1.245294



K3 =

 1872.93 0.680911 546.988

0.0 1877.1 380.224

0.0 0.0 1.0

 [R3|t3] =

 0.996735 −0.007450 0.080250 −3.841023

0.006410 0.999888 0.013222 −0.089977

−0.080339 −0.012665 0.996671 −0.083842



K4 =

 1877.36 0.415492 579.467

0.0 1882.43 409.612

0.0 0.0 1.0

 [R4|t4] =

 1.0 0.0 0.0 0.000006

0.0 1.0 0.0 0.000001

0.0 0.0 1.0 0.000003



K5 =

 1871.23 0.747826 540.106

0.0 1877.3 412.656

0.0 0.0 1.0

 [R5|t5] =

 0.998897 −0.017983 −0.043130 3.858103

0.017587 0.999799 −0.009367 0.069365

0.043289 0.008599 0.999013 0.606667



K6 =

 1873.25 1.073800 578.641

0.0 1880.06 386.506

0.0 0.0 1.0

 [R6|t6] =

 0.991407 −0.015086 −0.129693 7.647271

0.016454 0.999816 0.009545 −0.012308

0.129526 −0.011597 0.991473 −0.270987



K7 =

 1876.87 2.04 580.624

0.0 1883.93 395.399

0.0 0.0 1.0

 [R7|t7] =

 0.982395 0.005137 −0.186558 11.306122

−0.003610 0.999954 0.008587 −0.146099

0.186594 −0.007762 0.982368 −1.040691



B.2 Ballet Sequence

K0 =

 1918.27 2.48982 494.085

0.0 1922.58 447.736

0.0 0.0 1.0

 [R0|t0] =

 0.949462 0.046934 0.310324 −15.094651

−0.042337 0.998867 −0.021532 0.189829

−0.310985 0.007308 0.950373 1.383263


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K1 =

 1913.69 −0.14361 533.307

0.0 1918.17 398.171

0.0 0.0 1.0

 [R1|t1] =

 0.972850 0.010365 0.231187 −11.589320

−0.012981 0.999864 0.009794 −0.355771

−0.231056 −0.012528 0.972852 1.045534



K2 =

 1914.07 0.343703 564.645

0.0 1918.5 428.422

0.0 0.0 1.0

 [R2|t2] =

 0.989230 0.003946 0.146295 −7.784865

−0.004391 0.999983 0.002724 −0.431597

−0.146283 −0.003337 0.989230 1.392058



K3 =

 1909.91 0.571503 545.069

0.0 1915.89 394.306

0.0 0.0 1.0

 [R3|t3] =

 0.996415 0.026023 0.080480 −3.903715

−0.026884 0.999591 0.009614 −0.040429

−0.080197 −0.011743 0.996707 0.168691



K4 =

 1908.25 0.335031 560.336

0.0 1914.16 409.596

0.0 0.0 1.0

 [R4|t4] =

 1.0 0.0 0.0 −0.000002

0.0 1.0 0.0 0.000006

0.0 0.0 1.0 0.0



K5 =

 1915.78 1.21091 527.609

0.0 1921.73 394.455

0.0 0.0 1.0

 [R5|t5] =

 0.998175 0.028914 −0.053000 3.849864

−0.028594 0.999567 0.006786 0.041657

0.053173 −0.005258 0.998570 0.428967



K6 =

 1910.57 0.786148 578.134

0.0 1916.27 404.469

0.0 0.0 1.0

 [R6|t6] =

 0.988494 0.037674 −0.146458 7.602324

−0.037105 0.999288 0.006622 −0.045578

0.146603 −0.001111 0.989188 −0.044837



K7 =

 1929.09 0.831916 585.52

0.0 1937.21 416.944

0.0 0.0 1.0

 [R7|t7] =

 0.975422 0.032363 −0.217910 11.142041

−0.033721 0.999425 −0.002516 0.200655

0.217705 0.009803 0.975952 −0.230057


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