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ABSTRACT

NEW DIRECTIONS IN THE DIRECTION OF TIME

Bağcı, Gökhan Barış

Ph.D., Department of Philosophy

Supervisor      : Prof. Dr. Teo Grünberg

Co-Supervisor: Assoc. Prof. Dr. David Grünberg

June 2006, 165 pages

This thesis analyzes the direction of time problem in the framework of
philosophy of science. The radiation arrow, Newtonian arrow, thermodynamic
arrow and quantum mechanical arrow have been studied in detail. The
importance of the structure of space-time concerning direction of time is
emphasized.

Keywords: Direction of Time, Arrow of Time, Past Hypothesis
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ÖZ

ZAMANIN YÖNÜNDE YENİ YÖNELİMLER

Bağcı, Gökhan Barış

Doktora, Felsefe Bölümü

Tez Yöneticisi          : Prof. Dr. Teo Grünberg

Ortak Tez Yöneticisi: Doç. Dr. David Grünberg

Haziran 2006, 165 sayfa

Bu tez zamanın yönü problemini bilim felsefesi çerçevesinde çözümlemektedir.
Işıma oku, Newton oku, termodinamik ok ve kuvantum oku ayrıntılı bir şekilde
çalışılmıştır. Uzay-zaman yapısının zamanın oku açısından önemi de
vurgulanmıştır.

Anahtar Kelimeler: Zamanın Yönü, Zaman Oku, Geçmiş Hipotezi
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CHAPTER 1

INTRODUCTION

The concept of time has always been an interest in many a philosopher’s

mind. Many different forms of analysis have been tried to provide a deeper

understanding of this concept. Some tried their hands with grandiose metaphysical

questions whereas for some others it was a matter of psychological experience

only. Some others tried to understand it better with scientific analysis.

Concerning its nature, the first point which is considered is whether time

can be defined as an independent reality or something relational (Sol, p. 40).

Aristotle thought that time is not independent of change (Aristotle, Physics, Bk.

IV, pp. 20-22). On the other hand, for Hume, it is impossible to conceive a time

when there is no change in any real existence (Hume, 1888, p. 40). Van Fraassen

(1970, p. 15) considers the change as the means through which we become

conscious of passing time.

The observation that time may be associated with change nevertheless does

not entail that it does not have an existence of its own. The philosopher Sydney

Shoemaker (1969, p. 64) reaches this conclusion with the help of a Gedanken

experiment: he thinks of a time interval in which no change occurs and therefore

thinks that Aristotelian argument is far from establishing the independent reality of

time.

N. Rotenstreich takes a rather Kantian approach in this subject matter. He

considers time as a form of relation of succession (Rotenstreich, 1958, p. 51). He

then distinguishes pure time from empirical time which is not identical with the

changes that take place in time. He asserts that pure time does not flow since it is
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only a form used for the cognition of reality echoing the Kantian standpoint which

states time is a form of flow free from flow (ibid, pp. 60-61).

McTaggart distinguished two views of time and called them A series and B

series. Classifying each position as Past, Present and Future is the so- called A

series whereas labeling positions in time on the basis of earlier/later relations is

called B series (McTaggart, 1908, p. 24). A series emphasizes the transient

relation. On the other hand, B series emphasizes the permanence of events in time.

Earlier/later relations are fixed once an event E1 is earlier/later than a second event

E2. A nice example for A series is the death of Atif Yilmaz. His death was once in

the future. Then, it became present. Finally, it has been past now.

McTaggart first showed that change in time requires the existence of the A

series which then led to contradiction. He then rejected reality of time due to this

contradiction. He later rejected the reality of B series, too. This is tantamount to

saying the following

Nothing is really present, past, or future. Nothing is really earlier or later than
anything else or temporarily simultaneous with it. Nothing really changes. And
nothing is really in time. (ibid. p. 34)

This was the view adopted by Parmenides already. Hugh Mellor (Mellor, 1981,

p.92) criticized McTaggart’s view stating that A series language (i.e., tensed

sentences) can easily be translated into B series language (tenseless sentences). A

past event can be identified with “earlier than”, or present event can be with

“simultaneous with”. Since one can be translated into another, the ontology is all

that matters. Denbigh writes

Neither the A-theory nor the B-theory … is properly speaking a scientific
theory-not at least in Popper’s sense. There appear to be no empirical means by
which either of them might be refuted. (1981, p. 54)
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However, whichever theory we are tempted to pick, the time experienced by us is

certainly unidirectional. We perceive it as flowing from past towards future,

touching upon present. This is what is called direction of time or arrow of time in

the related literature.

We will begin our investigation of time direction from a philosophy of

science point of view. Along this line, the beginning has been marked by the

seminal work of Hans Reichenbach i.e., The Direction of Time (Reichenbach,

1956). He first considered points on a straight line. He quickly saw that these

points possess an asymmetric and transitive order under “to the left of/to the right

of” relations and deduced that this order is not directed at all. He then investigated

the directionality in the case of real numbers (ibid, p. 26). Reichenbach considered

them to have a serial order as in the case of points on a straight line but found them

directed as opposed to points on a straight line being not directed. He asserts

The square of a positive number is positive, and the square of a negative
number is also positive. We therefore can make this statement for the class of
[negative] real numbers: Any number which is the square of another number is
larger than any number which is not the square of another number. (ibid, p. 26)

Then, he considers the relation between the real numbers and time, deeming both

as having direction and order.

Denbigh too thinks that the points on a straight line have no direction but

real numbers do have direction. However, according to Denbigh, there is a major

difference between the relation “greater than” and “later than”. He states this as:

There is no logical necessity that all change in the universe, including the
ongoing of clocks, will not suddenly cease. (ibid, p. 63)

One important criticism along these lines against Reichenbach has been given by

Mehlberg. He argued that not only “greater than” has the properties listed by

Reichenbach in order to label the relation possessing serial order, but “smaller
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than” too has these properties i.e., asymmetry, transitivity and connectedness. The

same holds for the relations “after” and “before”. Another issue raised by

Mehlberg is that even if Reichenbach was to be found successful in his analysis,

he cannot be taken to have proved that one is more privileged than another. All he

could show was that one direction is just different than the other.

Adolf Grünbaum’s objection (1967, 1974) was straightly to the bull’s eye:

Asymmetry in the order was already bringing unidirectional nature in both points

on a straight line and case of real numbers independent of whether this order has

intrinsic or extrinsic basis i.e., whether it is based on reference to an external

viewer or not (ibid, pp. 214-215).

For our purposes, what we must learn from all these is that mere logical

analysis of the subject is not enough in order to comprehend the privileged status

of one direction over the other one. We can, by means of a logical analysis, see

why there will be two directions, but that is all!

We take this to be an impetus enough to consider the direction of time from

a philosophy of science point of view. And as far as science is considered, physics

will be the science we are talking about. There are two reasons for this: firstly, as

all hands agree upon, it is the developments in physics which have the most

important bearings on our subject matter i.e., directionality of time. Another

candidate would be to consider psychology but that field has registered

developments in no way near the ones in physics. Second, it is the usual way to

take for someone who is studying the direction of time. In fact, it is possible

nowadays to see philosophers of science who distinguish themselves from the

other philosophers of science calling themselves philosophers of physics. There

are even some departments which offer philosophy of physics as a separate

program such as University of Pittsburgh and University of Oxford. Naturally, the

distinction between fundamental science and philosophy of science then blurs. It is

usual to see some philosophers of physics to publish in journals of physics as well

as journals of philosophy. I hope this explanation will be taken as a frank and
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genuine excuse for many equations found in the text of this dissertation although it

is written for the sole purpose of being a philosophy of science dissertation.

The dissertation is organized as follows: First, in Chapter 2, we ponder

about the arrow of time in Newtonian mechanics. Usually, this theory is taken to

be completely reversible because of Newton’ second law, but this stand has been

challenged by some physicists and philosophers of science. We will consider the

recent developments headed by Keith Hutchison (1993) as the core of this Chapter

but it must be noted that similar ideas have been set forth before. For example, as

early as 1956, Schlegel (1956) noted that classical mechanics must be assumed to

provide time asymmetric solutions if the forces have explicit dependence on time

(ibid, p. 382). Mehlberg (1961) too agreed on this issue and took side with

Schlegel. Karl Popper (1956), on the other hand, argued against Schlegel’s

considering only one, single point particle. According to Popper, we must consider

the whole universe. He states this as follows:

If we reverse the velocity of one of the planets, at the time tf and at the position
xf , the planet will clearly not reverse its path precisely… If, however, we
reverse the motions of all the planets in the system, then the force will be the
same; the system is reversible. (ibid, p. 382)

We will not repeat these historical remarks in Chapter 2 since in one way or

another, they echo in the present debates on direction of time. What is important

though is to be able to see these problems without prejudice and this is what we

will attempt in Chapter 2. As we will see, uncertainties in measurement will also

play an important role in our argumentation. One conclusion which is inevitable is

related to how we assess the theories’ ontological structure and ontological

commitments.

Chapter 3 will deal with arrow of time in classical electrodynamics. This is

the so called arrow of radiation which puzzled many. A point must be made here

in order to explain that whatever is covered in Chapter 3 can be expanded to
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include any wave related phenomenon since classical electromagnetism is founded

on wave equation too. Therefore, we will not specify whether we are dealing with

electromagnetic waves or water waves for that matter.

The starting point of Chapter 3 is Maxwell equations since these four (two

in the covariant formulation) equations give us all we need (not exactly, but more

on his later) in order to solve any problem in electromagnetic phenomena. They

are assumed to be time reversal invariant but the way it is done is subject to

objection. This brings us to the very question about how time reversal invariance

must be defined. Is there a general definition we can use or must we consider each

case as a particular case? But, if the latter is the case, then how can we justify our

use of different definitions in different cases? Another surprising result of this

Chapter is to take us back to Zeno Paradox and teach us more about it as well as

time reversal of the states. As we will see, even the philosophy of mathematics in

the form of calculus and non-standard analysis will be invited to the court in order

to testify for/against time reversal invariance and direction of time in physics as far

as the radiation phenomena are considered. The next step in investigating Maxwell

equations will be investigating them in a relativistic manner to shed some more

light on the issue. As we will see, what is problematic in the non-relativistic case

can be easily answered within a relativistic scheme.

The textbook answers to the main riddle of the arrow of radiation have

almost always been based on causality. This is our aim in Section 3 in Chapter 3.

We will see that a straightforward answer is not easy to be provided.

Then, we turn our attention to solutions of Maxwell equations instead of

equations themselves. The main issue, almost a riddle from the Delphi temple, is

that Maxwell equations provide us two kinds of solutions, namely retarded and

advanced, but we observe only the retarded one in nature. This apparent

asymmetry is taken to be providing a direction of time. Whether this is so will be

discussed in Section 4 of Chapter 3.
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The physicists John Archibald Wheeler and Richard Feynman (1945) have

shown that one can formulate classical electrodynamics in a symmetric manner.

Their symmetric treatment of the subject is now called “Absorber Theory of

Radiation” and attracts attention of many philosophers of science. Their final

result is embraced fully now by almost all philosophers of science. This is the so

called origin of arrow of radiation being of thermodynamic nature. Indeed, this has

been the view shared by distinguished scientists such as Einstein and Feynman.

The current debates surrounding this issue bring the end of Chapter 3.

Chapter 4 is devoted to the study of thermodynamic arrow. The origin of

this asymmetry is found in H theorem, or in other words Second Law of

thermodynamics. We first discuss H theorem and see that it leads to some

paradoxes. Then, we turn our attention to generalized H theorem and show that it

is free of the paradoxes which ordinary H theorem faces. Indeed, this is due to the

transition in perspective from the single particle point of view to Gibbs ensemble

view. Generalized H theorem forms Section 2 of Chapter 4 while objections raised

against H theorem are investigated fully in Section 3. Section 4 is about

Reichenbach’s seminal work The Direction of Time and his branch structures.

Furthermore, important critiques by Sklar and Earman have been explained and

argued.

One important critique against Reichenbach is that he did not take the

gravitation into account, be it Einsteinian or Newtonian gravity. In this sense,

temporal orientability is explained and its relation to arrow of time in general has

been discovered. In fact, the very idea of gravity, let aside the form of space-time

we are in makes it impossible to talk about “isolation” as far as thermodynamic

systems are considered. Since a lot of thermodynamic arguments (even the famous

Second Law) include the idea of isolation at the core, the gravitational effects have

to be taken into consideration for a full understanding of the subject.

All these considerations lead to the Past Hypothesis, i.e. the hypothesis that

the universe has a low entropy initial state. We will see that this in itself forms the
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explanation needed to fulfill many a philosopher’s needs. Of course, then we face

with the dilemma of accepting an initial condition as lawlike. The two main

problems for a deeper study of the Past Hypothesis are that the universe has been

come into existence only once which means that a repeated experiment is

impossible. Second, it forms a singularity and going beyond it is impossible. Any

explanation which will explicate the Past Hypothesis must explain something

beyond this singularity and this does not make sense as we argue in Chapter 4.

Leaving Past Hypothesis unexplained is another problem since this is not an

ordinary initial condition. It is an event with low probability. Although not all low

probability events require some explanation, as Callender puts it, this is a rather

bizarre result to digest. Callender (1996) puts it as

Empiricists who think the sole goal of scientific inquiry is empirical adequacy
will not find any epistemic reason to prefer dynamical explanations to special
initial condition explanations if the two candidates are both empirically
adequate. The models used to describe the phenomena are what count.
Whether one chooses to pick out the class of relevant models with laws alone
or with laws plus boundary conditions does not matter, and, indeed, may be
viewed as merely a difference in language. Scientific realists, by contrast, are
not solely constrained by empirical adequacy in their search to find epistemic
reasons to prefer a theory, and therefore, they may have reasons to prefer
dynamical explanations to non-dynamical ones. (ibid, pp. 232-233)

According to the quote above, the empiricist view can be seen to be the way out,

but we must first understand how special this initial condition is. Again, a quote by

Callender (2003), although it is relatively long, will explain the situation:

Suppose that God or a demon informs you of the following future fact: despite
recent cosmological evidence, the universe is indeed closed and it will have a
‘final’ instant of time; moreover, at that final moment, all 49 of the world’s
Imperial Faberge eggs will be in your bedroom bureau’s sock drawer. You are
absolutely certain that this information is true. All of your other dealings with
supernatural powers have demonstrated that they are a trustworthy lot. After
getting this information, you immediately run up to your bedroom and check
the drawer mentioned. Just as you open the drawer, a Faberge egg flies in
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through the window, landing in the drawer. A burglar running from the
museum up the street slipped on a banana peel, causing him to toss the egg up
in the air just as you opened the drawer. After a quick check of the drawer, you
close it. Reflecting on what just happened, you push your bed against the
drawer. You quit your job, research Faberge eggs, and manage to convince
each owner to place a transmitter on his egg, so that you can know the eggs
whereabouts from the radar station in your bedroom. Over time you notice
that, through an improbable set of coincidences, they are getting closer to your
house. You decide to act, for the eggs are closing in and the news from
astronomers about an approaching rapid contraction phase of the universe is
gloomy. If-somehow-you can keep the eggs from getting into the drawer,
perhaps you can prevent the world’s demise. (Already eight eggs are in the
drawer, thanks to your desire to peek and your need for socks.) Looking out
your window, you can actually see eggs moving your way: none of them
breaking laws of nature, but each exploiting strange coincidences time and
again. Going outside, you try to stop them. You grab them and throw them
away as far as you can, but always something –a bird, a strange gust of wind-
brings the egg back. Breaking the eggs has proved impossible for the same
kinds of reasons. You decide to steal all the eggs, seal them in a titanium box
and bury it in Antarctica. That, at least, should buy some time, you think.
Gathering all the eggs from outside, you go upstairs to get the ones from the
drawer. The phone rings. It is a telemarketer selling life insurance. You decide
to tell the telemarketer that their call their call is particularly ill-timed and
absurd, given that the universe is about to end. Absent-mindedly, you sit down,
start speaking, put the eggs down in the open bureau drawer… and the
universe ends. (ibid, p. 1)

As Callender notes, the Past Hypothesis is pretty much like this. As he sates, Past

Hypothesis is like trillions of eggs to be in your bedroom miraculously. This is

why the initial condition is so special: because it has a very low probability.

Chapter 5 is about quantum theory and emergence of arrow of time in that

specific theory. The presentation is independent of interpretations such as

Bohmian or Copenhagen as much as possible. A brief investigation of the arrow of

time in quantum electrodynamics is given, too.
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CHAPTER 2

THE ARROW OF TIME IN CLASSICAL MECHANICS

2.1 Rudiments

In physics, the title “classical mechanics” represents Newtonian mechanics

together with all its versions, i.e., the one due to Lagrange or Hamilton. Newtonian

mechanics rests on three laws:

1) Law of Inertia: If there is no external force acting on a body, it

will stay at rest if it is initially at rest or it will remain in motion

with constant velocity if it is initially in motion.

2) Second Law: Newton’s second law simply states that mass times

acceleration is equal to net force exerted on the body or to write

it as an equation it reads

amF 
 (2.1)

3) Third Law: For every action, there is a reaction which is of

equal magnitude with the action but in opposite direction to it.

These three laws form the main skeleton of the Newtonian dynamics. Through

these laws, together with the initial conditions, whole dynamics of a physical

system can be computed for all times.

Classical mechanics has alternative formulations (Goldstein, 1950). We

can cite, among some others, the one by Lagrange and Hamilton in particular. The

version due to Lagrange is based on solving Lagrange equations which is given by

ni
q
L

q
L

dt
d

ii

,...2,1,0 








(2.2)
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where the Lagrangian is defined as the difference of kinetic energy and potential

energy and it is a function of position, velocity and time.

A second formulation is given by Hamilton and is based upon Hamiltonian

instead of Lagrangian. Hamiltonian reads

).,,( tqqLpqH
i

ii   (2.3)

Hamiltonian is a function of position, momenta and time. The differential of H is

given by

  











i i

i
i

i
i

dt
t

Hdp
p
Hdq

q
HdH , (2.4)

And from the definition of Hamiltonian in Eq. (2.3), we obtain

,dt
t
LdqpdpqdH i

i
ii

i
i 


   (2.5)

Also, making use of the following equation

.i
i

p
q
L



 (2.6)

Comparison of Eqs. (2.4) and (2.5) gives us the following set of equations, which

is called canonical equations of Hamilton

.,,
t

H
t
L

q
Hp

p
Hq

i
i

i
i 














  (2.7)

They constitute a set of 2n first order equations of motion instead of n second

order equations of Lagrangian formalism.

Since we will deal with some physical systems in classical framework in

this chapter, it is appropriate to study them using Newtonian equations of motion.

We will base our discussion on Eq. (2.1), which is Newton’s second law since this

is the form used in the literature of philosophy of science debates in general but

also make some remarks relevant to Lagrangian formalism in subsequent pages.
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As an application of classical mechanics, let us solve the problem of simple

harmonic oscillator applying Eq. (2.1) to a mass-spring system. Imagining that the

motion is taking place along the y axis, we can write the force acting as

ykF 
 , (2.8)

which is called Hooke’s law and y denotes the vertical displacement. If we

substitute the equation (2.8) into Eq. (2.1), we obtain

0 y
m
ky , (2.9)

where k is spring constant, m is the mass and double dots in the superscript

denotes second time derivative. The term mk /  is called angular frequency and

will be denoted by ω0. If the initial conditions are given by

y (0) = A, 0)0( y ,          (2.10)

in which reference time is taken to be zero, the general solution to Eq. (2.9) will be

given by

()( ACosty  ω0t).         (2.11)

Now, we will solve Eq. (2.1) again but with damping. Damping can be caused in

many ways. Even the twisting of the wire in the spring itself causes some

damping. Other sources of damping might be due to a viscous medium in which

mass-spring system is set in motion. The damping force is taken to be proportional

to velocity and if we take the proportionality constant to be positive, Eq. (2.9) now

becomes

0 kyycym  ,       (2.12)

where c is called damping constant. The solution consists of three cases. The first

case applies when c2-4km > 0. This case is called overdamping and its solution is

given by
trtr ececty 21

21)(  .    (2.13)

Since both r1 and r2 are negative numbers for overdamped case, we can safely say

that the motion dies out with time i.e.,
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0)(lim  tyt .  (2.14)

The second case is called critical damping and happens to be the case whenever

c2-4km = 0. Since the characteristic equation now has a single root, the general

solution reads
rtetccty  )()( 21 , (2.15)

Where the single root r is equal to (-c/2m). Again, we have

0)(lim  tyt . (2.16)

The last case is the case for c2-4km < 0. This is called underdamping. The general

solution to Eq. (2.12) now becomes

)]()([)( 21
2/ tSinctCoscety mct    , (2.17)

where β is given by

m
ckm

2
4 2

 . (2.18)

Since c and m are both positive, we have again the condition

0)(lim  tyt . (2.19)

In all three cases in which there is damping, the motion dies out eventually. In this

case of underdamping though, the motion is oscillatory, because of the sine and

cosine terms but is not periodic due to exponential term.

Generally, scientists and philosophers of science alike considered that

classical mechanics is time reversal invariant. For example, the Nobel laureate

Anthony Leggett (1987) puts it as follows:

Consider, first classical Newtonian mechanics. Newton’s first and third laws

clearly do not refer to the sense of time, and would have identical forms in a

time-reversed system. As to his second law, the acceleration which appears in

it is the second derivative of position with time; so, if we reverse the sense of

time, the velocity (and momentum) is reversed, but the acceleration is
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unchanged, and thus the second law also is the same in the time-reversed

system. (Leggett, 1987, p. 149)

At least, this has been the case until it has been challenged by Keith Hutchison in a

series of papers published in the British Journal for the Philosophy of Science. His

ideas are explained and criticized below.

2.2 Hutchison’s Defense

What happens to an insulated bar of iron , warm at one end, and cold at the

other? Left to itself, heat will be transferred in such a way that there will be a

common temperature throughout the iron bar. In other words, heat will be

transferred from hot to cold parts of the iron bar. Now, one can never witness

reverse change to occur spontaneously to isolated bars. Another example of same

kind is our model of simple harmonic oscillator studied above through Eqs. (2.8)-

(2.11). The solution includes a cosine term which is time symmetric. In short, the

simple harmonic oscillator model is time symmetric.

Armed with the solutions to the differential equations in each of the three

cases regarding the simple harmonic oscillator with friction term, we see that they

are time asymmetric. This claim can be approached in two ways: first, intuitively,

it is clear that the reverse motion cannot be witnessed. One cannot get almost

oscillatory behavior out of an equation of motion such as 0)(lim  tyt .

Second, the solutions to the model with friction either contains sine terms which

are not symmetric under the mapping t→-t or exponential terms which describe a

very fast decay. The reverse motion would represent a motion with exponential

increase in velocity which is impossible in a medium with friction. Concerning

this case, Hutchison (1993) remarks
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Classical mechanics acts as a sort of algorithm, enabling an intelligent creature

capable of solving differential equations, to calculate the full motions in terms

of the initial conditions and the forces acting. Whether the resulting motion is

reversible or not depends on the latter, the forces, part of the specifications of

the system, setting out the details of how its components interact. The

algorithm, the mechanics, is quite neutral on reversibility it is just as

compatible with the forces that produce irreversible behavior as with those that

produce reversibility. As a rough rule-of-thumb: The motions will be

reversible if the forces depend only on geometric configurations; but when the

forces vary with time, or the velocities of the interacting components, then

irreversible motion results if the dependence is asymmetric (that is, if

replacement of t by –t in the function specifying the dependence changes the

force acting). (Hutchison 1993, p. 311)

For many physicists, engineering calculations are too mundane to ponder about

since it is somehow more favorable to physicists to practice what is called

fundamental physics. According to their view, what is seemingly a force in the

Newtonian universe does not exist at the fundamental level but are only

phenomenal. This view in itself is a reductionist view and open to attacks of the

kind of Loschmidt paradox: how can we have macroscopic irreversibility in nature

if we have only reversible constituents on the micro scale?

Concerning the same example above, i.e. the motion in a viscous medium,

the physicist P. C. W. Davies (1977) seeks the way out in a more detailed account

of motion in terms of the environment. Davies states that irreversibility will fade

away once we take the whole system into account. He says:

… The motion of the body is slowed by the communication of kinetic energy

to the medium atoms in the form of heat. It follows that if the motions of the

individual atoms are also reversed then, because of the invariance of the laws
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of physics governing the atomic interactions, each collision will be reversed,

causing a cooperative transfer of momentum to the large body, which would

then become exponentially accelerated. (P. C. W. Davies, 1977, p. 26)

What Davies means by this reasoning is that we need to take into account all

degrees of freedom i.e., whole system, instead of taking only single degree of

freedom (the body or particle in motion) into account. If we can reverse the motion

of all degrees of freedom, then the reversibility will be obtained. Of course, in

practice, this is utterly impossible which means that we have irreversibility due to

our own limitations in one way or another.

Hutchison accepts this as a serious objection but seeks the solution in terms

of idealizations and simulations of science. In many cases in physics, we simply

ignore the effect of other molecules surrounding our particle of interest. Then, we

get reversible equation out of this condition, and nobody would object to this since

this is merely an idealization, our own simulation, and this fact alone cannot be

used to invalidate classical mechanics. When we consider friction or air resistance,

something similar happens indeed: We simply replace real air or real viscous

medium by some terms which will somehow simulate the air resistance or friction.

Hutchison remarks that once we simulate the motion as such, we are free of the

obligation of thinking what the real air is doing. Saying so, he insists that

irreversible simulation too is a part of classical mechanics.

Another problem with the explanation made by Davies is that it explains

away all non-mechanical but irreversible processes, too. In the conduction of heat

along an iron bar for example, if we were to reverse the motions of all the

particles, then we would be able to observe a transfer of heat from cold to hot end.

But, we never observe this kind of motion. Therefore, if one buys Davies’

explanation, we do not have even non-mechanical irreversibility.

At this point, it is useful to pose the question: Why, then, is one assumed to

believe in the reversibility of classical mechanics? The answer lies in the
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distinction of conservative / nonconservative forces. In Eq. (2.2), we wrote down

the Lagrangian to be defined as the difference of kinetic energy and potential

energy as Tolman (1938) did in his “The Principles of Statistical Mechanics”. This

consideration simply assumes that the forces are independent of time and velocity

so that one can talk about reversibility of the Lagrangian formalism. Indeed,

Tolman states it explicitly

It is possible to look at any system from  a point of view that would make this

[presumption] true. (Tolman, 1938, p. 102)

This is a personal belief on the part of Tolman and many others like him. This is

the belief that the fundamental forces governing the dynamics of the universe are

fundamentally conservative. One can see a similar statement in the works of

Feynman (1963), too. In his famous Lectures, he states that there are no non-

conservative forces. The main reason for physicists to insist on conservative forces

is because of the well-known results of the Noether theorem. According to

Noether theorem, there is a relation for a conserved quantity and a law of

invariance. In our case, whenever time reversal invariance holds, the conservation

of energy is implied. In a sense, to consider the possibility of the real existence of

the non-conservative forces in general, is tantamount to saying that the principle of

the conservation of energy fails to be valid. One delicate point is to understand the

fact that classical mechanics would not be affected by all these issues since it is

valid whether Noether theorem holds or not. In other words, one can still have a

non-reversible mechanics and embrace this view point without caring about

Noether’s theorem. This is an ontological position to be taken by the physicists,

and Newton himself is among the physicists who accepted this position happily

though due to other reasons.

Hutchison defended his case with a second paper in 1995. He made use of

concepts like stability and uncertainty in order to show that classical mechanics



18

can lead to irreversibility. His argument of stability can be understood if one is

familiar with nonlinear physics and chaos. He first formulates the usual

reversibility for a conservative and deterministic system.

We imagine a (conservative and deterministic) mechanical system evolving

from some initial state A to some final state AT in time T. Consider now the

same system (i.e. precisely the same collection of material objects interacting

in precisely the same manner) evolving from A*T, the precise ‘time-reversal’

of the state AT, viz. the state of the system in which all positions are left

unchanged but all velocities reversed. Will the state of the system at time T

later, viz. (A*T)T be just the state A*, time reversal of A? (Hutchison, 1995a,p.

223)

If the answer to the question above is YES, then we can say that the motion of the

system is time reversal invariant, otherwise it is not time reversal invariant. Now,

let us assume that the answer we provide to the question above is YES. Then, we

can ask a similar question: Can we say YES if we apply the same reasoning to a

point B in the neighborhood of A? In other words, when we reverse the motion of

the system, will it evolve to a point near A*? Of course, if all the initial

configurations are on equal footing as far as our equations are concerned, then we

must be able to answer Yes to this question, too. But, the sole fact that the system

is conservative does not ensure this, since as we know now very well, even the

conservative systems can exhibit chaotic systems. What we understand by the

word ‘chaotic’ in this context is related to the response of the system to a change

in its initial position. This simple observation is indeed enough to see that

conservative, deterministic but chaotic systems exhibit a genuine irreversibility.

The argument above also corrects one misunderstanding about the arrow of

time in the literature (see, for example, Denbigh, 1981,p. 99): It is usually said that

the source of irreversibility in some macroscopic systems is due to our or nature’s
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failure in producing exact initial conditions to occur needed for the reverse motion.

Then, it is deduced that the irreversibility is not in the laws of motion but simply

reflects the human incapacity, or contingent features of the universe. This idea is

partially true in stating that incapacity of the humans and nature does exist, but

still this does not ensure the irrelevance of the laws of motion to irreversibility

since not all systems which fail in achieving exact initial conditions will produce

irreversibility. This only happens when the system is chaotic, i.e., the equations of

motion of the dynamical system are not stable at all under small perturbations.

Only then, small perturbations will cause bigger shifts away off the initial

configuration which makes the system irreversible. Otherwise, if the system is

dynamically stable, small perturbations will just cause a return to the initial

configuration which will label the system as reversible. In this sense, the

irreversibility is a part of the system and not simply a result of our ignorance or

incapacity. To be able to see this in detail, one can consider the solutions to one of

the simple examples of dynamical systems, so called harmonic oscillator. This

system has been already studied above as Eq. (2.9). Its solutions are given by Eq.

(2.11), and depending on initial conditions, they are either of the form of Cosine or

Sine and can easily be represented in phase space. Each solution of the equation is

represented by a point in phase space corresponding to the coordinates (x,v). Time

reversal is represented by reflection in the x-axis since we require v→-v in time

reversed state. Inspecting Fig. 1 below, one sees that also the uncertainties

regarding two states i.e., any usual state and its time reversal are similar.
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Figure 1.1: Harmonic Oscillator

Now, let us consider another mechanical example due to Keith Hutchison

(1995a,p. 227): Imagine a free point-particle is projected at origin along the s-axis

with a constant velocity V. After T seconds elapses, this particle will have position

s = VT and velocity V since it is constant. If its velocity is reversed in order to

obtain time reversal of the previous motion, the free particle will retrace its

history. This case is shown in Fig. 2 below by solid lines.
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Figure 1.2: Uncertainty and Time Reversal

This motion, of course explained in the language of exactitude, does not

show any sign of irreversibility and so can be another example to prove

reversibility in classical mechanics as harmonic oscillator. Indeed, as Hutchison

noticed one can rightfully state

Our whole mathematical tradition is constructed on the notion of exactness,
and we have a few mathematical or conceptual tools at our disposal for the
systematic handling of vagueness, and such tools as we have seen extremely
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crude. We still teach theoretical physics via the ontology of exact values, for
instance, then later teach advanced to make various ad hoc allowances when
some special reason requires them temporarily to shun this ontology.
(Hutchison 1995a, p. 222)

But, let us look closer, and scrutinize a little bit more. Let us allow a little bit of

imprecision by imagining that velocity will be allowed to change in an interval as

V ± δV. This uncertainty in velocity can be thought in many ways e.g., because of

the measurement. Then, Hutchison remarks

After time T, the particle’s position will then be somewhere in the range VT ±
δV.T, and its velocity will still be in the range V± δV. We now reverse the
motion of the particle: i.e. we follow its motion given an initial position in the
range VT ± δV.T, and an initial velocity in the range - V± δV. Will classical
mechanics show that the particle returns to the time-reversal of its original
state another T seconds later? NO! For all we can predict about the position
then is that it will be somewhere in the range (VT ± δV.T)-( V± δV)T =
±2δV.T… The uncertainties do not reverse themselves, only the precise values.
(Hutchison, 1995b, p. 227)

This quote can be interpreted in many ways: firstly, it shows that even classical

measurement induces irreversibility in the dynamical system. This puts the

classical mechanics on equal footing as the quantum mechanics as far as the arrow

of time is considered. In my opinion, only this scheme of unification suffices to

present Hutchison’s ideas compelling. Why this simple observation has been

concealed for many physicists and philosophers of science will be explained when

we think about the cases against Hutchison. For the present, we just note it in

passing. Second, it shows us that the apparent reversibility of classical mechanics

was only a result of our modeling, the way we see things. Since when one takes

inexactitudes into account, if one models classical dynamics as such, the apparent

reversibility is lost immediately.

One immediate objection could be that the uncertainty introduced in the

above example is small since it depends on δV, and therefore can be neglected.
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However, this argument is misleading since what matters at the end is given by

δV.T which means that uncertainty depends on amount of time T. Of course, there

is no limit on the values of T. It can be as big as we want, so this renders it

impossible to label the uncertainty introduced above as neglible.

Third point worth of remark concerning the Hutchison’s case is relevant to

famous Loschmidt (1876a, 1876b, 1877) paradox. According to this paradox, H-

theorem, or in other words statistical mechanics, looks irreversible although the

very dynamics i.e., Newtonian mechanics on which it is founded is time reversible.

How can, Loschmidt questions, a foundationally reversible dynamics causes an

irreversible theory such as statistical theory of mechanics? Now, we can think of a

way out of this paradox as Hutchison remarks: If we model the universe by

allowing uncertainties, even classical mechanics exhibits irreversibility. This

means that there is nothing surprising in observing statistical mechanics to be

irreversible since its very foundations are so. So is the end of the Loschmidt

paradox.

 In a paper entitled “Is classical mechanics time reversal invariant?”,

Steven Savitt (1994) objected to Hutchison’s central premise that classical

mechanics is not time reversal invariant. According to Savitt (1994, p. 910), how

the time-reversed state is to be understood depends on the theory T under

consideration. Savitt’s objection that factors “outside” of Newtonian mechanics

are invoked as the origin of the arrow of time is not on point in this discussion

since it is exactly the same issue which makes important the debates about the

famous entropic arrow of time that arise in both a scientific and philosophical

sense; in thermodynamic irreversibility too, we must have some instances which

will make entropy decrease (or H function increase) according to the statistical

nature of the Second Law of Thermodynamics, yet we never observe (Savitt and

Hutchison use the word “witness” rather than “observe”) these instances.

Formulated as such, Hutchison’s contribution—as objected to by Savitt—is an

attempt to set the problem of Newtonian and entropic time arrows on same
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footing. This, however, should not be taken as a fault. First, Hutchison seems to

show that the two time arrows cited above can be understood as the same problem.

Second, he proposes some solutions to solve this problem using the notion of

uncertainty in experiments which further connects the classical case to the

quantum one.

A second point of Savitt’s objections to Hutchison’s view is not well

founded. As we have already indicated, Savitt considers how the time-reversed

state is to be understood depends on the theory T under consideration. In other

words, the measurement problem per se cannot be counted among the reasons one

can classify classical mechanics as time reversal non-invariant since measurement

does not form the core of the Newtonian theory. Savitt maintains that any

discussion related to classical mechanics must be centered on Newton’s equations,

not on how we practice them, nor on how we simulate them.

This view is deleterious to the clarification of the issues revolving around

arrows of time since it suggests an artificial richness of matters: one can look at

classical mechanics, and say alternately that there is irreversibility due to friction

or reversibility due to Newton’s equations. We contend in reply that one must be

able to have certain well-defined criteria that extend throughout the scientific and

philosophical literature to form valid categories. If we are able to deem quantum

mechanics to be irreversible due to the problems of measurement, we must be able

to do so for the classical mechanics as well.

As another philosopher who participated in this discussion in the columns

of the British Journal for the Philosophy of Science, Craig Callender (1995) dwells

on the point of ignoring non-conservative forces. He states:

… We make an ontological assumption… It is simply the following:
classically, there are really only particles in motion and interparticulate
(distance-dependent) forces… We ignore nonconservative forces simply
because we are confident they do not exist. (Callender 1995, p. 333)
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Callender, moreover, quotes Richard Feynman on this issue: in his famous

lectures, Feynman says that there are no non-conservative forces (1963, section

14.6). Callender then goes on to ask the reasons underlying this belief; what he

finds is another one, belief in so-called global conservation of energy. The

connection between conservative forces and conservation of energy is construed

through the well-known Noether’s theorem. According to this theorem for every

continuous symmetry of a dynamical system there must be a conserved quantity.

In our example, this means that time translational invariance results in a conserved

Hamiltonian, i.e., conserved energy if kinetic energy is homogeneous and

quadratic in velocities. Callender further argues that if the only extant forces are

the conservative ones, then we can show that the classical mechanics is time

reversal invariant, and hence energy is conserved.

Callender is correct when he states that the belief in time reversal

invariance is investigated by the conviction that energy is globally conserved. But,

again, this shows that the ontology of a theory has a direct bearing on its

acceptance. What is decisive in whether we apprehend a theory as time-reversal

invariant or not is our beliefs and our prior ontological commitments. In fact,

Callender fully embraces this point in the subsequent pages:

Laws are either TRI (Time reversal invariant) or not, regardless of the
ontology. However, when asking whether a theory is TRI, we need to know
which laws to look at to make this judgment, for as Hutchison ever reminds us,
there are TRI and non-TRI laws in classical mechanic. We have said we want
the fundamental ones. This is where ontology enters the picture, since
metaphysics determines which laws are fundamental. (Callender 1995, p. 336)

We argue that all forces are conservative only if an accurate account of all

the energy of all the constituents of the system is kept.  If any degree of freedom is

left unspecified or incorrectly audited, then the subsystem will not be conservative.

Thus, one is brought again to the place where knowledge and ignorance are the
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fundamental source of non-conservative forces and consequently a temporal

arrow.  This is where ontology enters, indeed.

Another issue raised by the ontological aspects of classical mechanics

concerning the Hutchison’s defense is the measurement problem: as we have

already remarked, Hutchison centralizes the problematic of the arrow of time

around the notion of measurement due to his interpretation. Once one begins to see

the classical dynamics in terms of inexact variables due to measurement, i.e. once

when one begins to take uncertainties due to measurement into consideration, the

arrow of time emerges to appear exactly as it would be in the case of quantum

mechanics since in that theory too, the source of the arrow of time is accepted to

be due to the measurement problem as will be seen in a related chapter in this

dissertation.

Although the observation that the measurement problem is at the heart of

quantum mechanical arrow of time has been made almost right from the

beginning, no one thought the same thing would happen with classical mechanics.

Why? I believe that the answer to this question lies in the fact that quantum

mechanical ontology was construed on uncertainty right from the start whereas the

ontological framework of Newtonian mechanics was based on certainty. In this

sense, when one talks about the measurement problem in the domain of quantum

theory, we already know that it is important and forms the core of the body of the

theory. On the contrary, we tend to neglect uncertainties arising in Newtonian

mechanics since we believe that the theory at hand is one of certainty.
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CHAPTER 3

THE ARROW OF TIME IN CLASSICAL ELECTRODYNAMICS

3.1 On Maxwell Equations

The classical electromagnetism is founded on Maxwell equations (Jackson,

1975), which can be given as
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These equations are time reversal invariant if we define the time reversal as the

following mapping
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jjT 
 , (3.6)

EET


 , (3.7)

BBT


 . (3.8)

Indeed, this is how the time reversal is defined in many textbooks. But, if one just

looks closely at the way how his transformation is made, i.e., leaving E


 invariant

but changing the sign of B


, one begins to think that this is an ad hoc maneuver to

save the electromagnetism from time reversal non-invariance since the fact

that E


and B


 is being treated in a different way is not justified at all. This problem
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can be traced back to the fundamental problem of how we define the inverse of a

process: a process P is said to be irreversible if and only if R (P), the temporal

inverse of the process P, is incompatible with the laws of nature. But, in many

cases, it is not clear how we must define the temporal inverse of an arbitrarily

given process. In other words, irreversibility is directly linked to the definition of

the operator R and we must have an explicit form for it. It is important to quote

Paul Horwich at this point. He argues as follows:

A natural first thought will be that if process P is made up of the sequence of
states, ABCD, then R (P) is the sequence, DCBA. In general, one is tempted to
suppose that R (P) contains just the same events and states as P, but occurring
in the opposite temporal order. However, this characterization must be
rejected, for, on reflection, it clearly fails to capture what we have in mind by
the inverse of a process. To illustrate, let P be the sequence, A (meteorite
comes flying toward the Earth), B (hits the ground), C (bounces around) and D
(stops). Surely, we don’t suppose that the inverse of this type of process is
DCBA-one in which a meteorite first stops, then bounces around, then hits the
ground, and, finally, comes flying toward the Earth… The moral here is that if
state A occurs in process P, then R (P) contains, not A itself but rather R (A),
the temporal inverse of A. It is plausible to suppose that when A is a state
involving a specific velocity, the temporal inverse of A will involve the
opposite velocity. However, we yet have no general account of how to
construct the temporal inverse of an arbitrarily given state. (Horwich, 1987)

The problem of defining the time reversal operator is also at the heart of matter

when it comes to classical electrodynamics since we do not have a recipe cooked

for each occasion. This problem is not only philosophical since the transformation

of electric and magnetic fields through the time reversal operator R would lead to a

new Lorentz force in the temporally inverted universe i.e.,

BvqEqF TTT
L

T


 , (3.9)

and force, according to Newtonian picture, is just one of the most essential

ingredients in calculating the future state of the universe once the initial conditions

are given. The possibility of a new force in this temporal universe is not only a
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philosophical issue but also a challenge for the physicists. Another philosopher of

science, Lawrence Sklar (Sklar, 1974) illustrates this point with an easy-to-

understand example: let us imagine, as in figure 3, a current carrying wire and a

magnet right below it with its north pole being closer to the wire itself. The current

is moving from right to left. According to the right hand rule, the force acting on

this wire will be into the page. When we consider the temporal inverse of this

process, one can try to do it only by inverting the direction of the current passing

through the wire and keeping the poles of the magnet fixed. This of course would

provide us with an out-of-page force. Since we are still working in Newtonian

universe, this simple observation, i.e. the observation that we would have a

different force in the temporally inverted universe, leads us to conclude that

classical electromagnetism is irreversible or in other words not time reversal

invariant. But, if we pay more attention to inner workings of a magnet in detail, we

see that its magnetism results from internal currents formed by electrons. This in

turn means that the direction of these internal currents within the magnet must also

be changed. This is tantamount to changing the orientation of the poles of the

magnet as a whole. Only then, only when we change the orientation of the poles of

the bar magnet and the direction of the current simultaneously, we obtain a force

in the same direction (and also with the same magnitude). Understanding the

inverse of a given process as this example shows requires an understanding of the

whole mechanism.

Recently, David Albert (Albert, 2000) provided a fresh way of seeing the

same kind of problematic explained above. First, he reminds us of the fact that the

only dynamical variable in Newtonian universe-the parameters changing with

time- is the position and then considers it in connection with what it means to have

a complete description of the physical situation of the world at an instant. This

issue is already important in the context of quantum mechanics due to the famous

Einstein-Podolsky-Rosen paradox. He lists two criteria for completeness:
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i. That it is genuinely instantaneous i.e., logical conceptual or

metaphysical independence among the descriptions of the world at

different times.

ii. That it be complete.

Albert calls any state satisfying these two criteria above an instantaneous physical

state of the world. In Newtonian picture, the physical state of the world is,

according to these criteria cited above, given by the positions of all the particles in

the world at any one time.

Albert’s first point of attack is very simple indeed: In most of the books

written in this area, what is called the instantaneous state of the world consists of

both positions and velocities of the particles at one particular time. But, when one

defines the instantaneous state as such, then one immediately faces a serious

problem: This definition breaks the independence postulate mentioned above since

specifications of the position and velocity both result not in determination of the

state of the world at that instant alone, but also for some interval of time which can

be judged by the tools of calculus.

Having made this criticism, Albert considers a general outline of what the

time reversal means. In his opinion, once the instantaneous states are determined,

what is left is just to juxtapose them in the inverse order. For example, let us

suppose that the instantaneous states are ordered as the sequence SI...SF with

respect to a theory T. Then, according to one account of time reversal, time

reversal of this process is the sequence SF...SI. Now, according to the classical

theory of electromagnetism, the instantaneous states are made of positions,

magnitude and directions of magnetic and electric fields. One can easily see that

this theory is not time reversal invariant with this adoption of time reversal

invariance which itself is based on the specification of instantaneous states for a

complete description of the state of the world at one instant. In other words, we

would expect position, velocity (since this is nothing but the change of position
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with respect to time), electric field and magnetic field all to be inverted i.e.,

multiplied by a minus sign. Of course, in practice (this is tantamount to saying

what is written in the textbooks in general), we invert the velocity and magnetic

field, but not electric field. This is Albert’s main objection. He thinks that time

reversal invariance is forced on set of equations. This does not cause any problem

for Newtonian mechanics since inverting the position and velocity is the one and

same thing. In the end, velocity is nothing but the rate of change of position with

respect to time as indicated before.

It is extremely instructive to look at how dressing the equations so that they

will be time reversal invariant works. What is done at this stage of things is simply

to operate on these states or more correctly first inverting them and then operating

on them through some operator of which the explicit structure varies from one

fundamental theory to another. In fact, what are accepted to be the description of

the physical state in general by the scientists and philosophers of science alike are

the dynamical conditions since for example, in Newtonian physics, these are

position and velocity and give the theory its full predictive power. But the price

one has to pay in return is to sacrifice the independence postulate cited above.

Concerning the time reversal problem in terms of dynamical conditions

instead of instantaneous states is a difficult one as an example by David Albert

shows: If DI...DF is a sequence of dynamical conditions concerning a single free

particle moving to the right, then  DF...DI will not correspond to a particle like that

moving to the left but to a particle whose position is constantly being displaced

toward the left, and whose velocity is constantly pointing to the right.

This example shows that if you would like to define the physical state of a

system in terms of its dynamical conditions, then you must have to do something

more than merely inverting the sequence i.e., you must have an operator to act

upon these dynamical conditions as mentioned before. For each D, one must have

some unique condition D* which is D’s time reversal. The first flaw in this kind of

reasoning makes it explicit even at this very beginning since one cannot be sure of
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what it means to talk about the reversal of one instantaneous physical situation.

Inversion as a sequence can be understood easily but not one instant of it.

Proceeding with the idea of assuming the physical situations are nothing

but the dynamical conditions, we now have a ready-to-cook recipe for any kind of

time-reversal process: One starts with DI...DF and ends up with D*F...D*I. This

simply means that we must first invert each dynamical condition, and then apply

the operator * onto them whose explicit structure is left unexplained since its form

varies from one theory to the other. For example, in the case of Newtonian

mechanics, we have to define * operator as an operator which reverses all the

velocities but leave everything else, including position untouched.

If you would try to do the same in the language of instantaneous states,

then what you have to do is simple: Let us imagine that we do not have access to

the states but only to the dynamical conditions DI...DF. We then translate this

sequence into a sequence of instantaneous states i.e., SI...SF, and invert it, writing

it as  SF...SI. Finally, we translate this sequence back into the language of the

dynamical conditions and then call it D*F...D*I.

When we interest ourselves with Newtonian mechanics, these

considerations do not cause any trouble. The velocities of the particles are rates of

changes of positions. Therefore, transition from SI...SF to D*F...D*I and back to

SI...SF does not lead to any inconsistencies if we define the operator D as the

operator which reverses the velocities only. But, mixing instantaneous states with

dynamical conditions leads to confusions in some other fundamental theories. One

immediate example, says Albert, is the classical electrodynamics. He says:

What counts as an instantaneous state of the world according to classical
electrodynamics is … a specification of the positions of all the particles and of
the magnitudes and directions of the electric and magnetic fields at very point
in space. And it isn’t the case that for any sequence of such states SI...SF which
is in accord with the dynamical laws of classical electrodynamics, SF...SI is
too. And so classical electrodynamics is not invariant under time reversal.
(Albert, 2000)
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According to textbooks though, classical electrodynamics is as much time reversal

invariant as classical mechanics. These books take the dynamical conditions to be

defining the physical state of the system, and proceed by defining the

transformation (3.5)-(3.8). With this definition of time reversal operator D, one

recovers the time reversal character of the classical electrodynamics. The problem

is, Albert emphasizes

That this identification is wrong. Magnetic fields are not the sorts of things that
any proper time reversal operation can possibly turn around. Magnetic fields
are not-either logically or conceptually- the rates of change of anything. If
SI...SF is a sequence of instantaneous states of a classical electro dynamical
world, and if the sequence of dynamical conditions corresponding to SI...SF is
DI...DF, and if we write the sequence dynamical conditions corresponding to
SF...SI as D*F...D*I, then the transformation from D to D* can involve nothing
whatsoever other than reversing the velocities of the particles. And if that’s the
case, and if DI...DF is in accord with the classical electrodynamical laws of
motion, then , in general, D*F...D*I will not be. (Albert, 2000)

In summary, the issue here is that there is no justification for the transformation

(3.5)-(3.8). The fact that one is using the dynamical conditions hand one the

freedom to choose the explicit form of the operator D. In other words, this D is

chosen in such a way that classical electrodynamical theory has no other option

than being time reversal invariant. This is nothing but an ad-hoc movement

according to Albert since for each fundamental theory, one has to define a distinct

operator D which will reverse the states. This simply does not make sense at all in

his view.

The treatment of the subject of time reversal invariance by Albert led to the

discussion of the topic in many aspects. One main discussion was related to the

idea of instantaneous states. The writings on the existence of the instantaneous
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states first emerged in relation to Zeno’s arrow argument. Zeno of Elea argued that

the motion of an arrow is impossible since it does not change its location at any

instant. There are three general stands that one can take philosophically in view of

Zeno’s paradox. First one is called “at-at” theory: According to this view, there is

no such thing as instantaneous velocity, while motion is possible. Here, the term

motion must be understood as the occupation of different locations at different

times (Arntzenius, 2000).

Aristotle responded to Zeno’s argument by rejecting the sensibility of the

notion of instantaneous velocity. He then described the situation in terms of

average velocity. Any motion takes place over a period of time. Thus, the only

notion which makes sense is average velocity over a time interval. Average

velocity then is defined as the distance taken by the time of travel (Aristotle,

Physics VI). His first step was to reject atomic units of time i.e., “instants”.

According to Aristotle, there are no smallest time intervals. He not only rejects

instantaneous velocity but also instantaneous position, too. This view is called

“no-instant” view.

The second idea one can read in Aristotle’s writings which is contradictory

to his former one is that there are instants and instantaneous positions but not

instantaneous velocities. The reason for the exclusion of instantaneous velocity is

the same as Zeno’s, that there are no changes of position in an instant. Later, this

idea has evolved into what is called “at-at” theory. Another issue that one learns

from these considerations is that motion is an entity defined in relation to some

other fundamental quantities such as position and time.

The “at-at” theory resolves Zeno’s paradox but it is not that comforting at

all since what it tells us is that there is no difference between a car moving to the

right and the one moving to the left. As Frank Arntzenius (2000) summarizes in

his paper in the Monist,
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Is there really no sense to be made of the claim that this car is moving right
now, at this instant? Doesn’t the complete state of the car at an instant not
include the fact that it is moving? Aren’t cars that are moving in different
directions in different instantaneous states? (Arntzenius, 2000)

If we do not include the existence of instantaneous velocities into our definition of

a physical state, we cannot even talk about why one ball moves to the right and

other to the left.

Zeno’s argument (and its so called solutions) understood as such is linked

to the core of classical physics. As is explained in Chapter 2 in detail, the

equations of motion in Newtonian physics are of second order. This requires the

use of velocities which are calculated at one instant in order to give a full account

of a physical state. The specification of a physical state requires the specification

of both positions and velocities. Of course, all this boils down to is determinism in

classical physics. So, the determinism in Newtonian universe requires the

existence of both instantaneous positions and velocities. It is of course true that

determinism is not something which must be guarded against all other arguments

per se but nobody would like to lose determinism just because of Zeno’s

arguments.

A different way to see this problem is as follows: Even though determinism

would fail, the Markovian nature (the feature of later evolutionary states to depend

on the former ones in terms of conditional probabilities) of the world does not

have to fail. We would still believe that the states at a time would fix the

probabilities of future developments of states as is the case with quantum physics

(consider the solution to Schroedinger equation). Since most of the theories of

physics we now have are of Markovian nature, we would not think it to fail so

easily.

One way out for the “at-at” theory is through Calculus developed by

Newton and Leibniz. According to Calculus, we define the instantaneous velocity

as
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The above equation indicates that velocity at time t is defined in terms of finite or

infinitesimal neighborhoods of that time t. This approach saves “at-at” theory in

the sense that one now is not forced to buy the idea of the instantaneous state. It is

enough to buy the ideas of instants and instantaneous position so that the left hand

side of Eq. (3.10) is justified. Therefore, the left hand side which is instantaneous

velocity is explained away with the help of instantaneous position and the concept

of instant alone.

However, this explanation still does not explain why the balls continue to

move in the directions that they do. The example given by Arntzenius is very

helpful in understanding this point.

Suppose that one defined an object to have the property X at time t iff it is blue
at time t + 1. Suppose one sees a ball that turns from red to blue between  t and
t + 1, and one asks: “why did it turn blue during that period?” It seems clear
that the answer “because it had property X at t,” is not to be regarded as a
satisfactory answer. Property X is not the kind of intrinsic property that could
cause it to turn blue. (Arntzenius, 2000)

We consider Eq. (3.10) to be different than the property X cited above, that much

is sure but why? What are the differences between ordinary properties X and so

called neighborhood properties even though both of them are not to be intrinsic?

There are two main differences between Eq. (3.10) and property X mentioned

above in the example given by Frank Arntzenius in his paper. First, property X is

only approachable from the right i.e., from times greater than t. But, we know that

in order to be able to speak about the existence of a limit, one must approach t

from right as well as left. Therefore, the neighboring property V(t) stands in

relation to not only t + 1 but also to t-1 as well. Second, contrary to X, we can

define V(t) in terms of intrinsic quantities since position and time are intrinsic
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quantities according to anybody’s theory of physical state. In my opinion, these

two main differences show the sharp line of demarcation drawn between property

X and V(t).

Next issue is how we must understand determinism concerning the

neighborhood properties. Since we can now include velocity in this picture without

invoking any paradox, the determinism is saved. Position and velocity both can be

used in order to understand what is going to happen in the future. This is well

known from the Newtonian equations of motion. This much is clear. The question

is whether we do have determinism or not based on these quantities alone (logic

and definition alone, in the words of David Albert) without invoking physics, too.

Neighborhood properties are rather different than intrinsic and non-

intrinsic quantities. We can appreciate this fact by thinking in terms of an example:

Imagine that the limiting value of a position at time t is equal to x(t). This is

possible only when right hand and left hand limits approach this definite value

which is x(t). But, this way approaching a number does not say anything about

what the position will be, for example, at a time equal to t + 1. All one can entail

from neighborhood properties is the position at time t even though we know more

than this seemingly in the overall limiting process. We can infer the tendency

around t but we cannot assign any particular definite value to any position after or

before t. This simply shows that the determinism acquired by the use of

neighborhood properties will not be a trivial one. We do have to rely on the

equations of development of physical states which must be taken to be the physical

laws governing the particular interactions in each case.

The second response to Zeno is called “impetus theory”. Impetus theory

claims that the reason that any object at any instant keeps moving in a definite

direction is that it has an impetus of a certain magnitude and direction at each

instant. In the words of Frank Arntzenius:
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On this view there is a kinematic quantity in addition to position, which one
could call “intrinsic velocity,” which equals impetus divided by mass, which is
part of the intrinsic state of an object at time t. This quantity is not defined in
terms of position developments, but it is a law of nature that “intrinsic
velocities” always equal the temporal derivatives of position developments.
(Arntzenius, 2000)

So, in this view, we have an additional state variable called “intrinsic velocity” and

an additional law which disables the possibility that this intrinsic quantity does not

correspond to position developments in a neighborhood of time. Another version

of impetus view could be formulated in terms of Hamiltonian dynamics. The full

physical state, according to Hamilton formalism of Newtonian mechanics, is

determined by canonical position and momentum. Then, Hamilton’s equations of

motion will determine what these variables are and the relation between the

canonical momentum and position. Since this can change from one case to the

other, this has to be understood as a law instead of identification of canonical

momentum with the kinematical momentum all the time.

One problem with this view is in the context of Ockham’s razor. All other

things being equal, one would really like to get rid of this “additional” state

variable called impetus.

The other issue which impetus theory has to face with is that the existence

of intrinsic velocities breaks the time reversal invariance of theories which have

been accepted to be time reversal invariant until now. The time reversal of any

state is formed by reversing the order of physical states. According to this recipe,

one has to reverse the order of positions and also intrinsic velocities but intrinsic

velocities, since they are intrinsic, will be pointing in the wrong direction. This

contradicts with the fact that there is nothing in Newtonian physics which would

suggest an objective temporal direction. So, at this point, one has two ways out of

this dilemma: one either accepts the view that classical mechanics is time reversal



39

invariant and therefore impetus theory is wrong or we must include time reversal

operations on physical states as is explained above.

Frank Arntzenius opts for the second one and argues favorably for time

reversal operations. If we rule out such transformations on states, then we will lose

the possibility of having non-trivial, deterministic and time reversible theories

since

It is impossible to have any non-trivial theory which both implies that the state
at a time fully determines all future and past states, and implies that any
reverse of any allowed sequence of states at times is also allowed. This would
imply mirror symmetry of developments of states in both directions of time
around any point in time. And that is impossible unless there is no state of
change ever. Surely, theories can be deterministic, time reversible and non-
trivial (Arntzenius, 2000)

Finally, we turn to “no-instants” view. According to this view, there are neither

instants nor instantaneous velocity. This is tantamount to saying that time is

atomless. Let us see how this can be done in the case of a pointless geometry

(Skyrms, 1993): We begin with the collection of open intervals of the real line and

then form Borel algebra by closing this collection up under complementation and

countable intersection and union. One can form an atomless algebra by

identification of regions that differ by Lebesque measure 0. We then identify these

regions of 0 measure with the null element of the algebra. The remaining algebra

of regions can be handled exactly as Caratheodory (Caratheodory, 1963) wished.

There are no regions of zero measure anymore. Borel algebra, in this sense,

represents a solution to Zeno’s paradox by removing the possibility of making

finite sized regions out of 0 sized points since we do not have any 0 sized points to

begin with in this new algebra.

Now, the question arises: How can one make sense out of functions of

space or functions of time if they are atomless? They cannot be thought as being
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formed from point values to point values. This point is summarized very well by

Arntzenius himself as

… One can still have maps from non-atomic regions to non-atomic regions…
In other words, if one supposes that space and time (and perhaps other physical
quantities) do not consist of points (do not have point values), but form
atomless algebras as outlined above, it is just as if one is working with
equivalence classes of point functions from the reals to the reals that differ at
most on sets of points of measure 0. (Arntzenius, 2000)

What about time reversibility if we adopt a “no-instant” view? To be able to talk

about time reversal, we must talk in terms of reversing the history of states at

times. In other words, we have to talk in terms of spaces occupied at an instant.

But, now, since we do not have the language of instants accessible to us, all we

can hope for is using the languages of mapping explained above in the quote. The

time reverse of a mapping is simply the mapping that corresponds to the time

reverse of the equivalence class of point functions that corresponds to the original

mapping. The problem is that we do not have a simpler picture with this approach.

This can be compared to the case of point particles versus extended objects. In

particular, consider how one can understand the motion of extended objects over a

period of time adopting the view that there are only point particles. One might

consider a mapping in terms of points and space that they occupy and try to see the

evolution of this mapping but of course this will have some difficulties. One

counter-example can be given at once: What if one has a homogeneous rotating

disk about its own axis? Now, all point particles will occupy the same position for

all time during the interval of motion but we cannot deny the fact that disk is

rotating i.e., it is not at rest at all. In other words, the difference between rotational

and translational motion is easily lost when one adopts only the point particle

view.
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It seems that adoption of pointless views is not natural (or simple) enough

in the sense that one would expect from a scientific theory.

Recently, Sheldon Smith (Smith, 2003) opposed the views expressed by

Frank Arntzenius by affirming that the instantaneous velocities are real. His first

vantage point was to link Arntzenius to Bertrand Russell: Russell, considering that

there were some problems concerning the calculus definition of instantaneous

velocity in regard to Zeno’s paradox, adopted the view that the concept of motion

only involves being at different locations at different times. Before proceeding

further, it is wiser to write down the formulation of Zeno’s paradox as stated in

Sheldon Smith’s paper concerning how Russell understood it. Smith considers

Zeno’s paradox to be formed as follows:

1) At each instant of its “flight”, an arrow occupies only one position.

2) If something only occupies one position, then it is not in a state of

motion.

3) Therefore, at each instant, an arrow is not in a state of motion.

4) If at each instant it is not in a state of motion, then it has not moved

over the entire time interval of its “flight”.

5) Therefore, motion-even over non-zero time intervals-does not take

place.

Obviously, the way Russell got rid of this paradox depended on granting 1, 2 and 3

but blocking 4 so that 5 does not follow. In his “Mathematics and the

Metaphysicians”, he wrote,

People used to think that when a thing changes, it must be in a state of change,
and when a thing moves, it is in a state of motion. This is now known to be a
mistake. When a body moves, all that can be said is that it is in one place at
one time and in another at another. We must not say that it will be in a
neighboring place at the next instant. Philosophers often tell us that when a
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body is in motion, it changes its position within the instant. To this view Zeno
long ago made the fatal retort that every body always is where it is; … It was
only recently that it became possible to explain motion in detail in accordance
with Zeno’s platitude, and in opposition to the philosopher’s paradox. We may
now at last indulge the comfortable belief that a body in motion is just as truly
where it is as a body at rest. (Russell, 1929)

Russell thought that the only way 1 can be wrong is if the infinitesimals were

coherent. He dismissed this idea very quickly so the only way out, according to

him, was to block 4 so that the conclusion 5 does not follow at all.

Bertrand Russell thought that Weierstrass, by his efforts to “arithmetize”,

founded mathematical analysis on the basis of numbers alone. He replaced the

continuous by the discrete so that he banished infinity from the realm of

mathematics. One major difference of opinion between Russell’s view and

Arntzenius’ view is that the former denied the existence of instantaneous velocity

due to calculus without infinitesimals whereas the latter tries to save the “at-at”

theory by calculus with infinitesimals.

Russell thought, due to the contributions of Weierstrass, that there were no

infinitesimals, so there were no instantaneous velocities. A response to this view

can now be given, Smith remarks. He appeals to the recent construction of so

called “smooth world” account of infinitesimals pioneered by Lawvere (Bell,

1998). Smooth world account is also called “smooth infinitesimal analysis” (SIA).

According to this account, infinitesimals are rather fuzzy (italics are Smith’s)

things, and the continuous is not explicable in terms of the discrete. The use of

limits is replaced by the use of nilpotent infinitesimals, quantities which are

nonzero but small and whose squares vanish. In order to understand SIA, let us

begin with the ordinary calculus definitions. Let y = f(x) be a differentiable

function on the real line  . Then, the increment y  is given by

)()( xfxxfy   . (3.11)
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Using Taylor’s theorem, we can write it as
2)()( xAxxfy   , (3.12)

Where )(xf   is the derivative of the function f with respect to x, and the value of

A depends on both x and x . If we could assume x  to be so small but nonzero

that we could equate ( x )2 = 0, then Eq. (3.12) would take the form

xxfxfxxf  )()()(  .            (3.13)

A quantity whose square is zero is called nil square infinitesimal or micro quantity.

Now, the equation (3.13) holds trivially in standard analysis since zero is the only

micro quantity. In SIA, there are enough micro quantities which ensures Eq. (3.13)

to hold non-trivially because we can replace x  by any  , i.e. for any micro

quantities. Then, the derivative may be defined to be a unique quantity D which

holds for all micro quantities as follows

Dxfxf   )()( .         (3.14)

Setting x equal to zero above, we get

Dxff   )()( ,        (3.15)

for  . The Eq. (3.15) is the axiom of SIA together with the above mentioned

definition of micro quantities,

}.0:{ 2  xxx        (3.16)

Then, it is postulated that, for any f:Δ→ , there is a unique D   such that the

Eq. (3.15) holds for all  . This postulate is called the principle of microaffineness

since any function on Δ is affine due to the reason that the Eq. (3.15) represents a

line with slope Δ.  Δ is not  a point which would be the case within the framework

of standard analysis but it can be rather thought to be of as an entity possessing

position but without any extension.

Now, if we think of a function y = f (x) as representing a curve, then the

image of  Δ+a under the mapping f is obtained by translating Δ to a. This image

will coincide with the tangent to the curve at x = a i.e., each curve is

infinitesimally straight. Another point of interest is called the principle of micro
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cancellation which rests upon the principle of microaffineness i.e., Eq. (3.15)

above. It reads,

If  a =  b for all  , then a = b. (3.17)

Again from Eq. (3.15), it follows that all functions on   are continuous. In SIA,

the fact that a function is continuous on   simply means the following: let x and y

be two points on  . They are said to be neighbors if x-y is in Δ i.e., if x and y

differs by a micro quantity. Continuity then simply means a mapping from

neighboring points to neighboring points. In order to see this, imagine a function f

from   to   and two neighboring points x and y which is tantamount to writing

y = x +  with   in Δ. Then, right after the mapping under the function f, we have

( ) ( ) ( ) ( ) ( ).f y f x f x f x f x       (3.18)

Since any multiple of a micro quantity is also a micro quantity, so ( )f x   is a

micro quantity, too. Therefore, all functions on   are continuous. Since the

equation above is valid for all functions f, it follows that all functions are

differentiable arbitrarily many times which explains the word “smooth” in SIA.

One interesting observation is that SIA is incompatible with the law of

excluded middle or in other words principle of tertium non datur. This principle

can easily be written in terms of classical logic as

p p   .         (3.19)

An example in sentences can be, for example, “ I am going to have my Ph. D. in

philosophy or I will not have my Ph. D in philosophy.”. The truth value of this

proposition is always true independent of whether I will have my Ph. D. or not.

There is no other possibility anyway.

There are two ways to assess the situation regarding the law of excluded

middle in the framework of SIA. First one can be put like this: Consider the

function defined for real numbers x by f(x) = 1 if x = 0 or f(x) = 0 whenever     x ≠

0. According to law of excluded middle, each real number would either be equal to

zero or unequal to zero. But considered as a function with domain  , f is clearly
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discontinuous. Since every function on   is continuous in SIA, f cannot have

domain  . In other words, universal continuity is the source of the failure of the

law of excluded middle.

A more rigorous argument can be given as follows: If x ≠ 0, then x2 ≠ 0, so

that, if x2 = 0, then necessarily not x ≠ 0. Now, instead of x, substitute  . This

means that, combined with the fact that  2 = 0, i.e., Eq. (3.16),

For all infinitesimal  , not  ≠ 0. (3.20)

 If the law of excluded middle held, then for any  , we would have either   = 0 or

 ≠ 0. But due to Eq. (3.20) above, second possibility is excluded, leaving us with

  = 0. This can be written as

For all  ,  .1 =  .0, (3.21)

From which one obtains, by micro cancellation, the falsehood

1 = 0. (3.23)

Therefore, the way out is the law of excluded middle to fail. The logic of SIA is

not completely classical as one can see from the arguments above. One does not

see this difference if one is only willing to give his strength to computational

aspects within this framework since logic veils itself there.

Sheldon Smith, in the light of all these developments in SIA, states,

The instant t, consists of indistinguishable points (the set of points not not
equal to equal to t) but whose identity does not follow from their
indistinguishability. (This is possible because of the denial of the excluded
middle within smooth world account.) So, at an instant, it cannot be said that
the arrow only occupies one fixed position, t. Rather, it occupies some vague
smear. Thus, with infinitesimals, like Russell suspected, we can reject premise
1 of the arrow argument as giving an improper picture of states, so we never
get to the denial of states of motion claim. (Smith, 2003)

On the contrary to what is believed by Berkeley and Russell, we have a coherent

picture of infinitesimals thanks to SIA. But, what about premise 2 in the argument

above? According to Smith, premise 2 is about the time intervals not instants. It is
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true that a thing does not move at all if it occupies only one position in time

interval. One can grant premise 1 but can deny premise 2 i.e., one can grant that a

thing occupies only one position at an instant, but deny that this indicates that it is

not moving since its instantaneous velocity can be nonzero. Smith gives the

following example,

There is nothing incoherent about saying that a particle in an instantaneous
state of motion of 1000 miles per hour travels no farther in the instant than a
particle going 5 miles per hour, but nonetheless they are in different states of
motion. (Smith, 2003)

In short, one is misled by the idea of average velocity applied to the case of the

instant. Russell was misled in deducing that the instantaneous velocity cannot be

attributed to instants. All he could deduce is that motion, in the sense of change of

place which requires two places, cannot be attributed to instants.

Smith also attacks another view expressed by Arntzenius. Arntzenius was

complaining about the fact that “even a well-defined velocity cannot account for

why the object after time t moved in the direction that it did”. Smith, accepting this

to be true, finds it irrelevant to the existence of instantaneous velocity since it is

not a task it has to undertake. The laws of motion do exist what velocity an object

will have at some later time t. It is not easy to understand why Frank Arntzenius

would like to have this feature as a source of complaint. In historical impetus

theory, this could have been an issue to worry but certainly not in Newtonian

physics. This is a problematic only in the Aristotelian physics which were unable

to explain constant velocity motion when there were no forces exerted on the

object. Even, a modern day version of the impetus view which would consider

mass times velocity as the modern impetus would fail since momentum by itself

does not tell us anything abut the future developments of states. One still needs

Newtonian equations of motion.



47

According to Arntzenius, the velocity is not a property of instants even

though it gives us values at instants. Smith understands this as the following

… If, however, the claim is that the value of the derivative depends upon the
behavior of the function throughout a certain finite neighborhood and thus can
only be considered a property of that neighborhood, then it is not true. If we
have any neighborhood (t-δ, t + δ) around t, there is always a smaller one (t-ε, t
+ ε) where ε< δ in which the derivative is still determined. (Smith, 2003)

Therefore, there is no finite neighborhood within which the values of X (t) are all

required for the value of the derivative. No “special: neighborhood is needed. Any

will do! This again makes the independence of the velocity and position values

explicit to us.

A related issue raised by David Albert is the use of the word temporal

vicinity. Albert states that the instantaneous velocity at t = 7 seconds is nothing but

the rate of change of the position of the particle in the immediate temporal vicinity

of t = 7 seconds. Against this, Smith remarks that there is no “immediate vicinity”

of any point in a standard continuum i.e., one without infinitesimals. In Smith’s

words, there is no smallest finite interval around a point t that can be considered

“immediate.”

The source of this debate indeed lies in the definition given by Albert in his

book “Time and Chance”. He has different definition of genuinely instantaneous

states. According to him, knowledge of the state at all points other than t ought to

have no logical implication for the instantaneous state at t. But, when we reflect on

velocity, knowing the position at certain points in the neighborhood of t has

implications about the velocity. Smith illustrates this point with the following

example

… Suppose at all temporal points of an interval (t-δ, t + δ) around t other than
t, the position of a particle is just zero with the behavior at t not being
stipulated. As a matter of logic (or conceptual necessity), the position at t can
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still be whatever you like. So, the state is not completely constrained by the
non-t knowledge. In fact, the position is not constrained at all. However, logic-
at least classical logic-does lay down that either the position is zero at t (and,
thus, by definition that the velocity is zero as well given the non-t behavior) or
that the position is not zero at t (and, thus, that the velocity is undefined at t
according to the standard definition since that would make the function
discontinuous there). We can deduce something about what the state is , at
least more than we could without this information of what is going on around t.
That is, we can deduce things like given the above behavior of the particle
around t, its velocity is either zero or undefined at t. We have done this without
any knowledge whatsoever of the evolutionary differential equation that might
govern the process; we only know the state at certain non-t times. (Smith,
2003)

Therefore, for Albert, this is about the doubtful nature of velocity at time t. If it

were a property of t alone, we could have been unable to deduce anything about its

value at t by non-t behavior.

Sheldon Smith opposes to this view since one cannot pinpoint what other

than t the velocity is a property of  since whenever we attempt to do this, we face

with the dilemma that there is no minimal neighborhood of t. In other words, one

can always choose a different neighborhood of t but what will be common to all

these choices would be to choose the intervals around t alone. This point forms the

contra-move of Smith (Smith, 2003) against what becomes the intuition of

Arntzenius and Albert.

Arntzenius further notices that even though one considers only velocities to

form the fundamental instantaneous properties, the problem will stay unresolved

since there happens to exist some velocity developments which are incompatible

with the calculus. He cites the following example, due to Hartry Field: Let velocity

be equal to 1 at rational times and equal to zero at irrational times. This cannot be

since the relevant limits converge to 1 at rational times and 0 at irrational times

according to calculus. So, even if one discards the positions from being the

fundamental instantaneous property, logic and definition alone would imply

constraints between instantaneous states at different times (Arntzenius, 2003).



49

Another complaint about the instantaneous velocity mentioned by Frank

Arntzenius is that it is relationally defined. He claims that velocity is constructed

from more basic ingredients of position and time. In fact, this is why he feels

attracted to impetus view for a while before he also begins to criticize that view

being guilty under Ockham’s razor. Since velocity is related to being at different

places at different times, it is indeed natural that it is defined by the notions of

position and time. Of course, then, it cannot be counted among the additional

properties of the particle. As Sheldon Smith puts it: ”… Once we are given

position information throughout an interval, velocity comes along with it for free.”

This causes, according to David Albert and Frank Arntzenius at least, nothing but

a reduction of the kinematical state of the particle into two, one of position and

other being time. Of course, the way out is the impetus view which requires

ontologically added ingredient. Therefore, if we accept the standard view of the

instantaneous velocity, it does not do us any good since it is an additional property

other than position developments. If we accept impetus view, then we have to have

another additional property which means an enlarged ontological kinematic state.

Smith remarks that position and velocity works well together with the laws of

motion and in this important sense, velocity is not additional. The adoption of

impetus view can be a remedy only if we do not have laws of motion which are

due to Sir Isaac Newton.

3.2 On Maxwell Equations Again

One can write Maxwell equations in a way which will conform to the

theory of relativity. In order to this, we assume that space-time continuum is

defined in terms of a four-dimensional space with coordinates xα where index α

ranges from 0 to 3. We suppose that there is a well-defined transformation that

yields new coordinates x   according to some rule unspecified for now.
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Tensors of rank k associated with the space time point x is defined by their

transformation properties under the transformation x→ x . A scalar (tensor of rank

zero) is a single quantity whose value is not changed by the transformation. For

tensors of rank one (i.e. vectors), we have two kinds, contravariant tensor A  and

covariant tensor A . A contravariant tensor is transformed according to the

following rule

xA A
x


 



 


, (3.24)

whereas a covariant tensor transforms according to the rule below

xB B
x



 

 


, (3.25)

where both α and β runs from 0 to 3. Of course, we employ Einstein summation

convention for repeated indices.

The inner or scalar product is defined as the product of the components of a

covariant and a contravariant vector.

.A B A B
 . (3.26)

The metric is written as
2( )ds g dx dx 

 , (3.27)

where g is called metric tensor. For flat space-time of special relativity, we have

00 11 22 331, 1g g g g     . (3.28)

All off-diagonal elements are zero. We also have

x g x 
 , (3.29)

and its inverse

x g x
  . (3.30)

With the choice of the metric tensor given by Eq. (3.28), we see that if we have a

contravariant 4 vector with components (A0, A1 , A2, A3), we will have a covariant

vector with components (A0, -A1 , -A2, -A3). We write this as
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0 0( , ), ( , )A A A A A A
  

 
. (3.31)

What about partial derivative operators? We can write them as follows

0

0

( , )

( , )

x x

x x

 





 
   

 
 

   
 



 (3.32)

Therefore, the divergence of a four vector A can be written as
0

0( . )AA A
x





  




. (3.33)

The four dimensional Laplacian is given by
2

2
02( )

x





     



. (3.34)

The electric and magnetic fields can be written in terms of scalar and vector

potentials

1 AE
c t

B A


  


 


 

 
(3.35)

These equations imply that the electric and magnetic fields are the elements of a

second rank, antisymmetric field-strength tensor,

F A A        . (3.36)

 Or, in explicit form,

0
0

0
0

x y z

x z y

y z x

z y x

E E E
E B B

F
E B B
E B B



   
    
   

. (3.37)

The elements of F  are obtained from F  by putting E E 
 

 since the dual

Fαβ is defined by ½ εαββγδ Fγδ .The dual field-strength tensor is defined as
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0
0

0
0

x y z

x z y
dual

y z x

z y x

B B B
B E E

F
B E E
B E E



   
    
   

. (3.38)

The inhomogeneous Maxwell equations read

4

1 4

E
EB j

c t c





  


  



 


   . (3.39)

They can be written in a covariant form as follows

4F j
c

 



  . (3.40)

The homogeneous Maxwell equations read

0

1 0

B
BE

c t

  


  



 


  . (3.41)

These two equations can be written in a covariant form as

0dualF 
  . (3.42)

The equations (3.47) and (3.49) form the relativistic Maxwell equations in flat

space.

The continuity equation which follows from Eq. (3.40) reads

. 0J
t

 



 
, (3.43)

where ρ(x, t) is charge density and J(x, t) is current density. If we postulate that

they form a 4 vector Jα together as

( , )J c J 


, (3.44)

Then the continuity equation (3.35) takes the form

0J
  . (3.45)
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Within the scheme of Lorentz gauge, The equations for the vector potential A


 and

the scalar potential   are
2

2
2 2

2
2

2 2

1 4

1 4

A A J
cc t

c t






 


 

  



 

(3.46)

together with the Lorentz condition

1 . 0A
c t


 



. (3.47)

Defining the vector potential

( , )A A  


, (3.48)

We see that Eqs. (3.38) and (3.39) reads

4

0

J
c

A

 





  

 
(3.49)

At this point, we claim that time reversal invariance is to be given as
TFαβ = -Fαβ, TJα = -Jα.           (3.50)

It is easy to see that the electric, magnetic fields and charge are all on equal

footing in the above equation (for details, see Malament 2004). With the time

reversal given in Eq. (3.50), one can easily see that Eqs. (3.47) and (3.49) are time

reversal invariant. The property of Maxwell equations being time reversal

invariant is nontrivial. In order to emphasize this point, David Malament chooses

the following arbitrary Maxwell-like equation

4( )F F j
c


  


  . (3.51)

The left hand side of the equation above is time reversal invariant, whereas the

right hand side is not. The Eq. (3.51) too is written in a covariant way but it is not

time reversal invariant. Therefore, the fact that we have written Maxwell equations

in covariant form does not ensure that it is time reversal invariant. These are two
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different issues not to be confused with one another. The fact that Maxwell

equations are time reversal invariant is independent of the definitions of F  or

j . It is only easier to see it this way!

In order to understand David Albert’s claim, it is better even to get deeper

in relativistic approach. For this purpose, let us adopt a general relativistic

formulation due to Malament. To this end, let (M, gαβ) be a relativistic space time,

in other words, let M be a smooth, connected, four-dimensional manifold and gab

be the metric with signature (1, 3) associated with this manifold (Wald, 1984).

With this signature, a vector is timelike if its norm is greater than zero, spacelike if

the norm is less than zero and null if it is zero. Let τα be a continuous timelike

vector field on M. This is tantamount to assume that (M, gab) is temporally

orientable. All timelike vectors at all points qualify as either future-directed or

past-directed relative to τα since it is impossible to have two timelike vectors

orthogonal to one another. A timelike vector ξα is future-directed relative to τα if

ταξα > 0 and past-directed relative to τα if ταξα < 0. A four-dimensional volume

element is a smooth tensor field εαβγδ on M that is completely anti-symmetric and

satisfies the normalization condition εαβγδ εαβγδ = -24. If there exists such a volume

element in M, then (M, gab) is said to be orientable. Then, there are two volume

elements in M, one εαβγδ and the other being - εαβγδ. So, we assume from now on

that (M, gab) is orientable as well as temporally orientable and εαβγδ is volume

element. Let ηα be a frame of reference on (M, gab). Let εαβγ be the spatial volume

element relative to ηα. Now, let us consider the effects of three operators on these

objects:

Time reversal operator T does not act on εαβγ but affects τα and εαβγδ by

multiplying the latter two with a minus sign. Spatial parity reversal P does not act

on τα but affects εαβγ and εαβγδ by multiplying the latter two with a minus sign.

Together, they do not change εαβγδ but multiply τα and εαβγ by a minus sign. These

important fundamental properties are summarized in the following table.
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Table 3.1: Fundamental Reversals

Fundamentals Time Reversal T Spatial Parity Reversal P TP

τα -τα τα -τα

εαβγδ -εαβγδ -εαβγδ εαβγδ

εαβγ εαβγ -εαβγ -εαβγ

Another table can be prepared in order to explain what will happen to electric,

magnetic fields and current densities in terms of these transformations.

Table 3.2: Particular Reversals

Time Reversal Parity Reversal TP Reversal
T  P  TP 

T j j   P j j  TP j j  

T E E  PE E  TPE E 
T B B   PB B   TPB B 

Let us try to understand how these entries in Table 3.2 is formed. The definitions

that we will need are given below:
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( )

1
2

J
J g J

E F

B F




   
 

  


 
 

 

 



 



 





(3.52)

According to these definitions above (see Malament 2004 for details), time

reversal of charge is given by

( )( )T T TJ J J  
          . (3.53)

The time reversal of J was already given in Eq. (3.50). It makes future-directed

timelike vectors into past-directed ones i.e., ηα = - ηα. Therefore, Eq. (3.53)

follows. For the other entries in the first column, we have

( ) ( )( )

( )( )

1
2

T T T T T

T T T

T T T T

J g J g J J

E F F F E

B F B

       
   

       
  

  
 

   

  

 

      

     

  

(3.54)

The table 3.2 shows that what Albert’s proposed as the genuine transformation for

electric and magnetic fields corresponds to the last column which is a combination

of spatial parity and time reversal operations. Magnetic fields do not just lie there

as Albert puts it in his book “Time and Chance” but are left intact under TP

because the actions of the two operations cancel one another. The transformation

properties of magnetic field are exactly the same as of angular velocity. As David

Malament puts it, concerning the last entry in the last column,

If we make a movie of a fluid whirling in a clockwise direction, and then play
the movie backwards, we see the fluid whirling in a counterclockwise
direction. The angular velocity of the fluid is reversed. On the other hand, if
we play it backwards, project the image onto a mirror, and then watch the
reflected image, we see the fluid whirling in a clockwise direction again, as in
the original. In this case, angular velocity is not reversed. (Malament, 2004)
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One point of debate might be the claim that Maxwell equations are invariant under

Albert’s proposed time reversal. Let us make this point clearer: we have observed

that Albert’s proposal corresponds to TP invariance. In other words, why not use

Albert’s definition, why not buy his transformation rules since Maxwell equations

are also invariant under those operations.  This somehow looks like providing

support in Albert’s claim. This apparent conclusion is deceiving since TP

invariance does not ensure T invariance. Take, for example, Eq. (3.48). This

equation is TP invariant as we already stated but it is not time reversal invariant if

we understand Albert’s version as a definition of time reversal operation. The

reason for this is that although electric and magnetic fields stay invariant under

this transformation, t has to be replaced by –t, thereby breaking the time reversal

invariance of the equation. If we consider Albert’s transformation as TP though,

there comes another minus sign to cross product (curl) which makes both sides of

the equation even. This simply shows us that although Maxwell equations are TP

invariant, the same set of operations do not ensure the time reversal invariance of

the Maxwell equations.

This relativistic approach we considered above is founded on the idea of

temporal orientability. The textbook approach assumes the background temporal

orientation fixed, but inverts dynamical histories under the action of symmetries.

3.3 Self-interaction and Causality

Every classical object has a self-field which affects its motion. It is

generated by the moving object and acts back on it. Therefore, this self-force must

be added into the equations of motion, in other words, it must be taken into

account in all cases. One must note that only part of the self force can be identified

as due to the reaction of the emitted radiation. But, the remaining part is due to the

nonlocality of this self-interaction term (Rohrlich, 2000).



58

In Newtonian physics, particles must be classical i.e., they must be

macroscopic. So, from now on, what we understand by the word “particle” will be

only extended objects, not point particles.

Another important distinction must be made of the use of the word

causality in this section: causality here must be taken to be the claim that a cause

cannot be later in time than the effect it causes. It is not meant to be the same as

predictability nor determinism. We also assume that integrability holds.

Integrability in this sense means that small changes in initial conditions only yield

small changes in the prediction of a later state. Chaotic motions are classified as

non-integrable ones.

Historically, it was first Lorentz who calculated the self-field of an

extended object non-relativistically. He found that this additional term is
2

3

2
3self

eF v
c

 , (3.55)

where e is the total charge, v the velocity of the particle, c speed of light. Double

dot above the velocity term indicated double differentiation with respect to time.

The equation above is called Lorentz equation in the literature (Lorentz, 1892).

This additional term above explicitly contradicts with the Newtonian law that an

equation must be first order in time derivative of the velocity. The double

derivative simply means that we must specify not only the initial position and

initial velocity but also initial acceleration of the particle.

Later, due to the discovery of the electron, the same problem have been

handled relativistically. The first two scientists working on this problem were

Thomson (Thomson, 1897) and Abraham (1904, 1905). Abraham did not know

about Einstein’s theory of special relativity since it was still unpublished then. His

equation took into account the action of the self-field on the motion of the particle.

The same term given by Eq. (3.55) is obtained also in the relativistic framework

and given the name “Schott term”. Later on, Dirac took over this problem and he

also obtained the same term and especially because of the prominence of Dirac,
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this equation became highly respected and called Lorentz-Abraham-Dirac (LAD)

equation. Together with the four-vector force of radiation reaction, LAD equation

reads
2

2
3

2 ( / )
3self

eF v v v v c
c

   
    . (3.56)

Forcing classical physics to provide solutions outside its own domain of

applicability resulted in two main “pathologies”: one is the self-accelerating

solutions of LAD equation and the other is acausal solutions. One obtains self-

accelerating solutions out of LAD equation when there are no external forces.

According to Newton’s laws of dynamics, this case must result in a constant

velocity motion. Instead, as already stated above, one has a particle which

constantly accelerates without any force exerted on the particle. The second

pathology indicates the existence of solutions which show acceleration due to the

future action of a force which breaks the causality. Fritz Rohrlich summarizes

what happened next in a way which must be very pedagogical to all scientists:

Unfortunately, during much of the half-century following Dirac’s work, some
physicists tried to ‘repair’ the LAD equations instead of recognizing that its
pathologies are symptoms of the inapplicability of classical physics to point
particles. Such particles must be treated by quantum mechanics and are outside
the validity limits of any classical theory. Therefore, this ‘repair work’ led to a
useless literature but was unfortunately quite voluminous. (Rohrlich, 2000)

The irony is that these scientists working on LAD had completely overlooked a

work done by Sommerfeld in 1904 (Sommerfeld, 1904). Sommerfeld calculated

for a surface-charged sphere of total electric charge e moving with non-relativistic

velocity. Later in 1918, this calculation has been repeated by Page. This equation

reads

[ ( ) ( )] /self e a aF m v t v t    , (3.57)
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where me is mass, v is the velocity, a is the radius of the sphere, and τa is the time

it takes a light ray to traverse the diameter of the sphere. The Sommerfeld-Page

(SP) equation is not a differential equation of motion but a differential-difference

equation. Moreover, it has no third order derivative term. SP equation also has no

pathological solutions as LAD equation since it does deal with finite size particle.

The SP equation came on stage for brief period of time in 1977 due to papers

written by Levine, Moniz ad Sharp but remain almost forgotten until the works of

Yaghjian in 1992.

Yaghjian considered a sphere with radius a and a uniform charge

distribution on the surface. He then showed that the self-force due to self-field is

proportional to the earlier velocity v(t- τa) at a time t, observed in its own rest

frame. Yaghjian did not make any non-relativistic assumption so it has been easy

to generalize it into relativistic reference frame. When this equation is inserted into

the equation of motion, one obtains an equation first conjectured by Caldirola in

1956 (Caldirola, 1956). This equation is now called Caldirola-Yaghjian (CY)

equation and reads

( ) ( )

[ ( ) ( ) ( ) ( )] /
in

e a a a

mv F
m v t v v v

 

  


 

     

 

  


(3.58)

The Eq. (3.58) replaces Eq. (3.57). CY equation reduces to SP equation in the non-

relativistic limit. It reduces to LAD equation as the radius a goes to zero. And

finally, it has no pathological solutions. CY is a relativistic equation which takes

into account self-field for a finite size charged particle. The SP and CY equations

are the only classical equations for an extended charged particle which include

electromagnetic self-interaction. Both CY and SP are not time reversal invariant

due to the explicit occurrence of t and t- τa in Eq. (3.57) and τ and τ - τa in Eq.

(3.58). Rohrlich comments on this asymmetry as follows

And it is physically intuitive because self-interaction involves the interaction
of one element of charge on the particle wit another such element That
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interaction takes place by the first element emitting an electromagnetic field,
propagating it along the future light cone, and then interacting with the other
element of charge. The future light cone (rather than the past light cone) was
selected by using the retarded fields (rather than the advanced fields). An
asymmetry in time was thus introduced according to the causal structure of this
process. What is at first somewhat surprising, however, is that LAD equation is
invariant under time reversal (Rohrlich, 1965). But this, too, is now easily
understood: that equation describes a point charge; therefore if that point
charge is thought of as a charged sphere that shrank to a point, the light cones
that send the self-field from one element of charge to another also shrink to a
point. In that limit, therefore, there is no difference between past and future
light cones. (Rohrlich, 2000)

The main result of Rohrlich’s paper is to state that classical physics is not time

reversal invariant if one includes the self-interaction in the picture. This case is

reminiscent of Hutchison’s paper which was defending the case that Newtonian

mechanics is not time reversal invariant. Together with Hutchison, Rohrlich tries

to show that time reversal invariance is not broken only by Second Law but also

lacking in the case of classical physics under certain conditions.

An objection has been made against Rohrlich’s arguments by Carlo Rovelli

(Rovelli, 2004). First, let us see how Rovelli understands Rohrlich’s argument.

This will prove to be important in order to understand his vantage point. Rovelli

thinks that Rohrlich founds his case on an equation of the form

( ) ( ) earlier
ext selfF t F t F  , (3.59)

where external force is applied for a short finite time interval to accelerate the

particle. This acceleration generates a radiation field which in turn acts back on the

extended particle causing it to feel a self-force (the second term on the right hand

side). This process of course takes some time, there will indeed be delay. Then, he

takes what the time reversal of Eq. (3.59) is supposed to be as

( ) ( ) later
ext selfF t F t F  . (3.60)

This time, instead of an earlier time, there is a later time involved in the time

reversed of the Eq. (3.59). Rohrlich immediately judges this case to be in complete
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violation of causality since Eq. (3.60) requires the specification of initial points in

the future. This cannot be, in view of causality so Rohrlich argues, we can discard

Eq. (3.60). So, we do not have a time reversed equation for Eq. (3.59), and we do

not have time reversibility in classical physics.

First of all, Carlo Rovelli does not agree with Rohrlich on using causality

in this manner. He expresses his criticism in the following words

… We can always write an equation that connects a force at time t2 with some
events that happened at an earlier time t1. We can also argue that the event at
time t1 was the “cause” of the force acting at time t2, if we like to think in
terms of “causes”. But, in the time-reversed process, we cannot keep the same
causal connections. If we want to think in terms of causes, causal connections
must be reversed. If in the “forward” tennis game a bounce A happens first and
a bounce B happens later, then we can say that the bounce A is the “cause” of
the later force at the bounce B. But, in the time-reversed process, it is the
bounce B that happens first. Therefore, we cannot say anymore that A causes
the force at B. This does not contradict the fact that there exists an equation
connecting the force at B with the (later in the time-reversed process) bounce
at A. (Rovelli, 2004)

In other words, Rovelli does not allow causality to play a role in distinguishing the

understanding of time reversal of these equations. He sees it merely as a matter of

words such as “earlier” and “later” to be replaced with one another.

Secondly, Rovelli notices one important point: right from the beginning,

Rohrlich decomposes the overall field into two i.e.,

( , ) ( , ) ( , )ext selfF x t F x t F x t    . (3.61)

The first component is the external field, the second is the self-field generated by

the acceleration of the particle itself as is already indicated above. Now, the crucial

point is that this decomposition is already non-time-reversible, since external field

is present even when the particle is not there by very definition. In other words,

this field is same in the past as it is in future. Of course, one can decompose the

overall field into two, this is permissible. What is wrong here is to insist to obtain
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the time reversal also in this decomposed form in terms of causality. If one really

needs to do his, one must give a new meaning to external force.

Another important point made by Rovelli is as follows: Rohrlich must

specify everything in terms of particles and fields. But, at some point in his paper,

he drops the field in explaining the dynamics. The key assumption of Rohrlich is

his specific choice of initial conditions. The field generated by the accelerating

particle does not only act back on the particle itself in the form of self-force but

also radiates away in to the future. Therefore, the main assumption in Rohrlich’s

case is that he allows the outgoing radiation but not incoming radiation when he

wants to treat the time reversal of the same problem. It is especially this

assumption that breaks time reversal invariance. If there is no incoming radiation,

which is the case with the Rohrlich’s assumption, then we can use retarded

potentials.

Fritz Rohrlich responded these criticisms in an online paper in Phi. Sci.

Archive (Rohrlich, 2004). He first stated that he also took into account the

incoming radiation (Rohrlich, 1999). He finds Rovelli guilty of suppressing all the

relevant indices. He presents the matter more cautiously as follows: He first gives

a clearer explanation for LAD equation by decomposing it into components but

this time also taking into account incoming field:

( , ) ( , ) ( , ) ( , ) ( , )in ret out advF x t F x t F x t F x t F x t        . (3.62)

He then defines the symmetric and asymmetric combinations as

2 ( , ) ( , ) ( , )ret advF x t F x t F x t  
   (3.63)

and

2 ( , ) ( , ) ( , )ret advF x t F x t F x t  
   . (3.64)

When the Lorentz force on a point charge is evaluated (Rohrlich, 1990), one

obtains

eF eF v m v
F eF v

  


  


 

 

  

  


. (3.65)
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where the dot indicated differentiation with respect to proper time τ, me is the

electrostatic mass of a surface charged sphere of radius a and equal to e2 /2a.
22 ( )

3
e v v v v   

     (3.66)

is the radiation reaction written in Gaussian units with c = 1. Since we are trying to

treat a point particle, the radius a must approach to zero giving us a divergent me.

After normalization, we are led to following equation

inmv F     , (3.67)

where mass term m is the difference between the renormalized (observable) mass

and me. inF   is the Lorentz force due to the incoming field. The time reversal state

is described by

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

adv
ret

ret
adv

out
in

in
out

x x

v v

F x F x

F x F x

F x F x

F x F x






















 



 

 

 

 

 

  

   . (3.68)

The last term is obtained by inspecting Eq. (3.66). This set of transformations

show us that the time reversed form of the LAD equation written above as Eq.

(3.67) is given by
outmv F     . (3.69)

This shows us that LAD equation is apparently not time reversal invariant.

However, note that one can get, from the Eqs. (3.62), (3.63), (3.64) and (3.65)

in outF F        . (3.70)

This means that LAD equation, in opposition to the apparent asymmetry in Eq.

(3.69), is indeed time reversal invariant. It is so even though there is reference to
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retarded fields. In Rohrlich’s words, what matters is only the total field given by

Eq. (3.62) and it can be expressed in either way.

Then, we have the Caldirola-Yaghjian equation for a sphere with radius a.

This equation already written above as Eq. (3.58) and its properties are well listed.

The CY equation is not time reversal invariant as mentioned before. Another way

to see this is to know that it can be written, by expanding in powers of 2a, in the

following form

( , )inmv F R a        , (3.71)

Where the last term is a remainder term Or which contains third and higher

derivatives of velocity four vector and it vanishes for a = 0. Since this last term is

not time reversal invariant, CY equation overall is not time reversal invariant.

Rohrlich warns that one must not think T violating term in the equation

above are relatively small. Though small, that term is responsible for establishing

the agreement between the theory and the observation. In that sense, they are

essential.

3.4 On Solutions of Maxwell Equations

We will, for the sake of simplicity, assume the medium to be non-

dispersive now so that wave velocity c is constant. From Maxwell equations, one

can obtain the following wave equation (Jackson, 1975)
2

2
2 2

1( ) ( , ) 4 ( , )r t r t
c t




  


  , (3. 72)

where ( , )r t
  is the amplitude of the wave and ( , )r t

  is the corresponding

source density. Eq. (5.72) has two solutions. First one reads

3( , )( , ) [ ]ret ret
r tr t d r

r r
  

 





  , (3.73)
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where the integral is taken over all space. The subscript “ret” denotes that time t  is

evaluated as the retarded time
r r

t
c



 

. This “retarded” solution expresses the

fact that the disturbance at position r  at time t is caused by the source at another

point r  , but not at a simultaneous time t; instead at an earlier time t  ,the

difference being due to the delay in propagation of the disturbance. The total

amplitude ( , )ret r t
  is the linear superposition of all these earlier sources. Another

solution to wave equation can be written as

3( , )( , ) [ ]adv adv
r tr t d r

r r
  

 





  , (3.74)

where the integral is taken over all space. The subscript “adv” denotes that time

t  is evaluated as the advanced time
r r

t
c



 

. This “advanced” solution

expresses the fact that the disturbance at position r  at time t is caused by the

source at another point r  , but not at a simultaneous time t; instead at a later time

t  . The total amplitude ( , )ret r t
  is the linear superposition of all these later

sources.

One point is worth making: The Eqs. (3.73) and (3.74) are not time

reverses of one another. In order to obtain Eq. (3.73) from Eq. (3.74), it does not

suffice only to reverse the time but is necessary to invert source, too. What we

observe in nature though as a solution of wave equation is not advanced solutions

but the retarded ones. The retarded solutions correspond to a radio wave coming

from infinity and converging onto a radio transmitter for example.

Following the explanation given by Davies and Jackson, let us first try to

understand the relevance of boundary conditions related to advanced and retarded

solutions. The wave equation is a second order inhomogeneous hyperbolic partial

differential equation. In order to have a unique solution, one must specify Dirichlet
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and Neumann boundary conditions together i.e. both   and
t




 throughout all

space at one time t. For example, a possibility would be the following

0
t


  


, (3.75)

For t < 0 in  the case of retarded solutions and

0
t


  


, (3.76)

For t > 0 in the case of advanced solutions. From any solution, another may always

be obtained by adding a solution to the homogeneous (source free) equation. Also

the difference between retarded and advanced solution forms a solution to the

homogeneous equation.

In order to have a deeper understanding, we can write the wave equation in

integral representation as

[ ]
( , )

1 1 1 1{[ ] ( ) [ ] [ ] }
4

ret
V

S ret ret ret

r t dV
R

R dS
n R R n t R n





   

   
   

   



. (3.77)

In the equation above, we have taken c equal to 1, and R = r r
  . The meaning of

the terms are illustrates in Fig. (3.1) below.
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Figure 3.1: Surface and Volume Integrals

In Fig. (3.1), we have a smooth closed surface S which bounds a volume V. The

surface S has an outward normal n . The position vector r  refers to a point inside

V. Keeping this figure in mind, one can find three sources that contribute the total

field ( , )r t
  as:

I. The first volume integral in Eq. (3.77) corresponds to the sources

inside the volume V.

II. The sources outside V which is taken care of by surface integral.

III. Source free disturbances coming from infinity which is still

represented by some parts in surface integral.
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The volume integral satisfies the inhomogeneous equation whereas the surface

integral satisfies the homogeneous equation, inside V.

There is another integral representation which will be very useful in further

discussions in this Section. The total field can be written as

( , ) V Sr t adv adv    
 . (3.78)

Or,

( , ) V Sr t ret ret    
 . (3.79)

The abbreviations “ret” and “adv” correspond to “retarded” and “advanced”

respectively. Because of the linearity of the wave equation, any linear combination

of ret and adv may be taken  as

( , ) (1 ) (1 )V V S Sr t k ret k adv k ret k adv          
 , (3.80)

Where k < 1. In particular, we can equate k = ½ and obtain the following

expression:

1 1( , ) ( ) ( )
2 2V Sr t ret adv ret adv      

 . (3.81)

If we now suppose that the sources creating the disturbance are located in a small

region within V, then the contribution to the surface integral is only due to the

source free disturbances coming from infinity. In order to have Eq. (3.73) from Eq.

(3.79), we have to have

0S ret  , (3.82)

i.e., source free radiation in the retarded case should vanish, too. But, in order to

recover Eq. (3.74) from Eq. (3.78), we cannot say that

0S adv  . (3.83)

In fact, we have

S V Vadv ret adv     ., (3.84)

which in general does not vanish. This shows us that although we are allowed to

use both retarded and advanced formulation equivalently, the boundary conditions
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must be chosen in a different way. The interpretation of Eqs. (3.82) and (3.84) is

odd enough to be written: one must not allow for source free radiations coming

into region of interest from remote past, but must allow for disturbances

propagating outwards from the region of interest into the remote future.

Since the boundary conditions play a very important role as is seen above,

let us try to have a better understanding of them. In order to do this, let us use the

following notation due to Dirac (Dirac, 1938) and Davies (Davies, 1974):

tot ret in

tot adv out

F F F
F F F

 

 
(3.85)

Where the total field is either decomposed into the incident field from outside the

volume V plus the retarded contribution or outgoing field plus the advanced

contribution. The incident field Fin satisfies the homogeneous equation for t→-∞.

Similarly, The outgoing field Fout satisfies the homogeneous equation for t→+∞.

Dirac then defined the radiation field as

rad out inF F F  . (3.86)

The equation above can be written, due to Eq. (3.85), as

rad ret advF F F  . (3.87)

The corresponding potential ( ret advA A ) is a solution of the homogeneous

equation
2 0A  . (3.88)

The solutions of Eq. (3.88) have the property that if they vanish on the surface S at

all times, they vanish everywhere. Consequently, 0radF   everywhere when the

particle acceleration is zero.

Let us also introduce the following fields:

1 ( )
2
1 ( )
2

ret adv

ret adv

F F F

A A A

 

 
(3.89)
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That they are time symmetric can easily be seen now. These fields are solutions of

the inhomogeneous equation. The appropriate solutions of the corresponding

homogeneous equation can always be added to these equation above, so that we

can, for example, write

1
2
1
2

ret rad

adv rad

F F F

F F F

 

 
(3.90)

Rewriting the total radiation as,

1
2tot rad inF F F F   , (3.91)

Dirac evaluated the effect of this total field when surface S encloses a single

charge. According to Dirac’s calculations, The first two terms represent the

particle’s self fields, while the third term represents the incoming field due to all

other particles in the world outside V and any radiation coming from past infinity.

Dirac then showed that self field results in divergence for a point source.

We did not specify anything particular about Fin. Inspecting Eq. (3.91), one

sees how the retarded field Fin of a single charge can be decomposed into a source

free part 1/ 2( )ret advF F  which causes the observable, finite radiation damping

force and 1/ 2( )ret advF F  which leads to a part of self energy.

Let us now consider a collection of charged particles in a volume V

bounded by a smooth surface S in an otherwise empty world (Davies, 1974). The

total force acting on particle i is due to the field

( ) ( ) ( )
1 ( )
2j ret i ret i adv in

j i
F F F F



   . (3.92)

Fin now includes only the source free fields coming from infinity since there are

supposedly no charges outside the volume V. But, there is another situation which

is similar to the equation above. In Eq. (3.92), we did not take boundary conditions

into account. Therefore, this equation must still preserve its time symmetrical
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nature due to the Maxwell equations. In fact, we could have started right from the

beginning with the following equation

( ) ( ) ( )
1 ( )
2j adv i ret i adv out

j i
F F F F



   . (3.93)

Moreover, summing the last two equations, we obtain

( ) ( )
1 1( ) ( )
2 2j ret j adv in out

j i
F F F F



   . (3.94)

Obviously, the Eq. (3.94) is time symmetric. Now, the issue is that we only have

retarded waves in nature. If we would like to simulate this case with the equation

above, we have to set the boundary condition as follows

0inF  . (3.95)

Thos boundary condition is called “Sommerfeld radiation condition”. Inspection of

Eq. (3.92) shows us that, once we set this condition, the fields acting on particle i

is only retarded fields of the other particles plus the self field (finite part). We also

have, from Eqs. (3.86) and (3.87), we obtain

( ) ( )( )out j ret j adv
allj

F F F  . (3.96)

This means that Eq. (3.93) reduces to Eq. (3.92). This simply dictates that apparent

time symmetry is lost!

One can defend the time symmetrical view still by stating that one could

have equally started by the boundary condition

0outF  . (3.97)

Then, we would have advanced fields and a radiation which converges onto

particles and accelerates them. In short, the damping force would change sign.

Now, we are ready to discuss the last Section of this Chapter which is about the

absorber theory of radiation.
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3.5 The Absorber Theory of Radiation

The original article written by Wheeler and Feynman (Wheeler and

Feynman, 1945) almost begins with a simple statement: they write that they accept

the proposal made by Tetrode (Tetrode, 1922) which is the following:

The sun would not radiate if it were alone in space and no other bodies could
absorb its radiation… If for example I observed through my telescope
yesterday evening that star which let us say is 100 light years away, then not
only did I know that the light which it allowed to reach my eye was emitted
100 years ago, but also the star or individual atoms of it knew already 100
years ago that I, who then did not exist, would view it yesterday evening at
such and such a time… One might accordingly adopt the opinion that the
amount of material in the universe determines the rate of emission. Still, this is
not necessarily so, for two competing absorption centers will not collaborate
but will presumably interfere with each other. If only the amount of matter is
great enough and is distributed to some extent in all directions, further
additions to it may well be without influence. (Tetrode, 1922)

Wheeler and Feynman accepted the proposal of Tetrode and agreed upon treating

the radiation not as an elementary process but as a consequence of the interaction

between a source and an absorber. They present four different derivations. We will

follow the fourth one since this has been the most general derivation and followed

by many philosophers of science working in the field.

According to this fourth derivation, we do not take the refractive index nor

density of the absorber into account. The only assumption to the medium to be a

complete absorber. This simply means that any charged particle outside the

absorber will experience no disturbance. Then, Wheeler and Feynman continues to

write

( ) ( )1 ( ) 0
2

k k
ret adv

k
F F  (outside the absorber). (3.98)

Since this sum vanishes outside the absorber everywhere and at all times, we must

have
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( ) 0k
ret

k
F   (outside). (3.99)

and
( ) 0k

adv
k

F   (outside). (3.100)

Retarded waves represent the outgoing waves, and advanced fields represent the

incoming (converging) waves. But, complete destructive interference between

these two is impossible. Therefore, the fact that their sum is equal to zero, simply

means that they have to be equal to zero independently. From Eqs. (3.99) and

(3.100), we can write

( ) ( )1 ( ) 0
2

k k
ret adv

k
F F   (outside). (3.101)

This field is a solution of Maxwell’s equations for free space. Since it vanishes

everywhere outside, it must be equal to zero inside, too. Therefore,
( ) ( )( ) 0k k

ret adv
k

F F   (everywhere). (3.102)

According to the theory of action at distance, the entire field , on the ath charge is

given by

( ) ( )1 ( )
2

k k
ret adv

k a
F F



 . (3.103)

The expression above can be broken into three different parts:

( ) ( ) ( ) ( ) ( )1 1( ) ( )
2 2

k a a k k
ret ret adv ret adv

k a allk
F F F F F



     . (3.104)

Third term vanishes for an absorber as shown previously. The second term gives

rise to radiation damping.

The results of Wheeler-Feynman theory is very important since it gives us

the classical time-asymmetric solutions of electrodynamics in a time-symmetric

way since they presuppose the existence of both the retarded and advanced fields

at the beginning. One also notes the fact that Eq. (3.102) is time symmetrical. We

can easily change the subscript advanced to retarded and vice versa. However, we
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will have a radiation term with opposite sign in this case, suggesting that the

charged particle will gain energy instead of losing energy while it accelerates. This

point is interpreted by Wheeler and Feynman as follows:

…Evidently the explanation of the one sidedness of radiation is not purely a
matter of electrodynamics… We have to conclude with Einstein (W. Ritz and
A. Einstein,1909) that the irreversibility of the emission process is a
phenomenon of statistical mechanics connected with the asymmetry of the
initial conditions with respect to time. In our example the particles of the
absorber were either at rest or in random motion before the time at which the
impulse was given to the source. It follows that in the equation of motion, the
sum, ( )k

n ret
k a

F 

 , of the retarded fields of the absorber particles had no

particular effect on the acceleration of the source. Consequently, the normal
term of radiative damping dominates the picture. In the reverse formulation of
these equations of motion, the sum of the advanced fields of the absorber
particles is not at all neglible, for they are put into motion by the source at just
the right time to contribute to the sum ( )k

n ret
k a

F 

 . This contribution, apart from

the natural random effects of the changes of the absorber, has twice the
magnitude of the usual damping term. The negative reactive force of the
reversed equation of motion is therefore cancelled out, and a force of the
expected sign and magnitude remains.           (Wheeler and Feynman, 1945)

After this last remark, one can take the work of Wheeler and Feynman not proving

the classical electrodynamics to be time symmetric but rather showing that the

time asymmetry in classical theory is due to the special role played by initial

conditions. In other words, according to Wheeler and Feynman, it is the initial

conditions which create the time asymmetry in classical electrodynamics.

The works of Wheeler and Feynman regarding the absorber theory of

radiation had great popularity among the philosophers of science such as Zeh

(Zeh, 1999), Price (Price 1991a, 1991b, 1994, 1996), Ridderbos (Ridderbos,

1997), Leeds (1994, 1995), Frisch (Frisch, 2000) working in the field of time

arrow in electromagnetic radiation. One interesting point made by Huw Price has

been to claim that he himself has reinterpreted the “core” of their theory in order to
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show that electromagnetic radiation is time symmetric on the micro level. Zeh or

Jackson considers radiative asymmetry described as

(3.0) All accelerated charges or sources can be associated with fully retarded

(but not fully advanced) radiation fields.

They also agree that the microscopic fields associated with the individual charges

exhibit time asymmetry. But, Price believes that the apparent asymmetry of

radiation arises only in the macroscopic case, and agues that the asymmetry can be

characterized by

(4.0) Organized waves get emitted, but only disorganized waves get absorbed.

According to Price, an emitter is a charge or a distribution of charges that emits

electromagnetic energy, while an absorber is a charge that absorbs energy. Price

further thinks that only emitters are associated with retarded waves, he then

proceeds to write

(5.0)  All emitters produce retarded rather than advanced wave fronts.

The difference between (3.0) and (5.0) is that while retarded fields are associated

with all kind of charges in (3.0), it is related only to emitters in (5.0). Price first

dismisses (5.0) on the basis that it gives us a symmetric picture of radiation. Then,

he discards (4.0) on the basis of the fact that radiation is time symmetric at the

micro level. Doing so, he takes full support from Wheeler-Feynman theory. Based

on their theory, he finally proposes the following

(6.0) Both emitters and absorbers are centered on coherent wave fronts (these

being outgoing in the first case and incoming in the second)

Therefore, he believes that there is no riddle to solve at micro level since radiation

is time symmetric in that domain whereas this is not true for macroscopic case. So,

the only riddle to be solved is the macroscopic time asymmetry. Price argues that

the solution to this riddle is because of the cosmological initial conditions. There

are large macroscopic coherent emitters but no macroscopic coherent absorbers.

Leeds, Ridderbos and Frisch all argued against the reinterpretation of Huw Price.
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Here, I will adopt the version due to Frisch since I believe his arguments are the

strongest and more general than the others.

The first objection by Price and Frisch against Wheeler and Feynman is

about the temporal double standard: Wheeler and Feynman begins their paper with

a time symmetric equation, i.e. half retarded and half advanced. Then, when they

consider the time symmetric case, they appeal to the statistical argument. But, this

does not mean one is able to explain away the macroscopic existence of retarded

fields only. This is what is called double temporal standard and will be explained

in detail in next Chapter.

The second objection by Frisch against Price is also the one mentioned by

Leeds and Ridderbos. This objection is based on the reinterpretation of Price based

on Wheeler-Feynman theory. Price says that

The real lesson of the Wheeler-Feynman argument is that the same radiation
field may be described equivalently either as a coherent front or diverging
from [the charge a], or as the sum of coherent wave fronts converging on the
absorber particles. (Price, 1996)

Where the diverging wave is a fully retarded wave and the converging waves are

fully advanced. Therefore, according to him,
( ) ( )a k

ret adv
k a

F F


 . (3.105)

Since Price is associating only retarded fields with a point charge, he will face

with the infinities related to self interaction which Wheeler and Feynman was

trying to avoid. Another possibility is that he is on the same page with Wheeler

and Feynman in thinking that the force on a charge is due to fields of other charges

only. But it is not obvious how he can get the radiation term in his theory. The

radiation term arises in Wheeler-Feynman theory only because their time

symmetric fields of the source interact with the time symmetric field of the

absorber. To see the impossibility of this option in Price’s reinterpretation, let us
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use an example we borrow from Frisch: we can calculate the field of a second

charge b some distance away from a. If b is one of the charges on the absorber,

then we would have, according to Price,
( ) ( ) ( )

,

a k b
ret adv adv

k a b
F F F



  . (3.106)

As one can easily see, there occurs no radiation term above related to the charge b.

Another simple algebra shows us that we can obtain, from Eq. (3.105), the

following
( ) ( ) ( )( )a a k

ret adv adv
allk

F F F  . (3.107)

The left hand side of this equation will in general not be equal to zero far away

from the charge. This must be so then  also for the right hand side. But, this

violates the fundamentals on which Wheeler-Feynman theory is built on. This

shows us that Price’s proposal conflicts with the absorber theory and it cannot

merely be its reinterpretation.

Even though we can reject Price’s theory on the grounds that it fails to be a

reinterpretation of absorber theory, we cannot reject it wholly on these grounds.

Whether it is a theory on its own rights requires more study.

Previously, we have seen that Maxwell equations reduce to two. One of

these equations, i.e. Eq. (3.47) shows us that the four dimensional divergence is

related to four current. If we look at the region surrounding the charge a, the

retarded field of the charge in this region has a source but advanced field of the

absorber particles does not. This retarded field due to charge a is a solution to

Maxwell equations if a is the only charge in the world. Likewise, the advanced

field of the absorber particles is a solution if the absorber particles are the only

charges. Therefore, the divergence of the absorber field is equal to zero whereas

that of the charge is not. Therefore, if they are equal, then one of then cannot

satisfy Maxwell’s equations which is a contradiction. This shows us that they
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cannot be equal to one another. Price’s theory cannot be true in the fundamental

sense.

At this point, something similar to what Craig Callender defended in the

Hutchison case in Chapter 1 is mentioned by Frisch. Trying to answer the question

why the arrow of radiation is a genuine problem, he answers by the ontological

value of the Maxwell equations in electromagnetic theory. Since the solutions to

Maxwell equations include both advanced and retarded solutions, we deem both of

them to be actual. In this sense, we take it to be the same thing if something is

physically possible or actual. One can easily read Maxwell equations giving us all

the possibilities but not all actualities. One can then easily define retardation as a

law. This is in a way similar to the solutions of quadratic equations. In general, we

solve for the unknowns and obtain two unknowns. Then, the choice of the

particular solution depends on the physical problem at hand. Accordingly, one can

easily discard negative solution deeming it to be unphysical. This does not mean it

is not a solution to the quadratic equation we are trying to solve. It is just possible

but not in this actual case. That is all!

Another way of looking at this is related to inspecting the content of a

theory and actual data. If the content of a theory exceeds of what is actual i.e., it is

able to explain what really happens and more, then we do not have to discard it

straight away. Even the possibility of mathematics going beyond the actual can be

thought enough of a reason for not to see arrow of radiation as a genuine problem.

It is true that retardation as a law will not be as profound as the Maxwell laws but

still this is not a criteria for lawhood anyway.

This view has been criticized by Jill North (North, 2003). She begun her

analysis by noting the importance of free field in the description of any

electromagnetic phenomenon. As we have noted before, any field can be written in

the form of retarded plus incoming or advanced plus outgoing fields. In this sense,

North redefines the problem of asymmetry of radiation. Even though one can

describe any radiation field in the way explained above, why do we perceive that it



80

is in the form of retarded fields after all? She moreover notices that the free field in

the universe do exist even though it is weak i.e., so called background radiation.

According to her, we might be perceiving the advanced fields anyway since these

fields might be coupled to some free fields and give us the impression that they are

nothing but retarded fields.

She thinks that most of the philosophers of science appeals to the

simplicity of equations when one chooses the retarded case. Since only then, the

free field can be chosen small, and this seems reasonable. But, this does not alter

the fact that the same situation can easily be written with a superposition of

advanced field together with a source free field chosen appropriately.

There is still an apparent asymmetry in  radiation though. North is against

explaining this away by the retardation condition proposed above by Frisch.

According to North, the existence of free fields is enough to show that not all

fields comply with the retardation condition. Moreover, it cannot be derived from

initial conditions plus deterministic Maxwell laws which further shadows its status

as a scientific law.

Jill North offers the thermodynamic arrow (in its connexion to

cosmological arrow) as a solution to the arrow of radiation. This is usually called

Past Hypothesis (more in next Chapter). In the case of arrow of radiation, it can be

explained as follows: let us imagine the situation in the universe right after the Big

Bang. The state would be one of extremely low gravitational entropy. Since

everything is in one uniformly hot soup, the universe was in thermal equilibrium.

Therefore, the lowness of the entropy in this stage is not due to thermal gradients

but due to gravitational entropy. Then the process of clumping up begins and stars

start to form. This forms the continual change towards gravitationally higher

gravitational entropy states. Of course, the universe now moves away off thermal

equilibrium. Then, as a tendency to go back to the state of thermal equilibrium,

accelerating charges will begin to radiate energy into the surrounding place. Since

we are following the footsteps of Boltzmann, we must assert that it is quite
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possible for radiation to take place in both ways i.e., through retarded or advanced

fields. But, note that it will be more in retarded form since advanced means

radiation towards past cone. It is still probable but the probability of this event will

be less since there happened to be thermal equilibrium in the past anyway.

What North is trying to do mainly is to try to explain radiative

asymmetry based on existent laws plus initial conditions (Past Hypothesis). In fact,

both Frisch’s and North’s account were predicted by Callender (Callender, 2002):

he states that there are two viable stands to thermodynamic entropy. First, one can

assume asymmetrical boundary conditions as North did above. Second, one can

posit an additional time asymmetric law. This is what Mathias Frisch tried to do by

elevating retardation condition to the privileged status of a law.

One can easily note that even though there are seemingly two viable posits,

there is a major similarity between them. The dissimilarity between them is

founded on their acceptance or refusal, for that matter, of the basic asymmetrical

law, e.g., thermodynamical asymmetry. Frisch does not accept the thermodynamic

asymmetry to be the solution to radiative phenomena as long as time arrow is

considered. Of course, this is so in the first place since he does not consider the

arrow of radiation to be a genuine problem. But, leaving this aside, we can easily

observe that he does not choose to consider  the thermodynamic asymmetry as a

solution to radiative phenomena. What he reaches instead is retardation condition

as a law.

Of course, thinking retardation condition in the status of law is not

satisfying to many including Jill North. On the other hand, North and other

philosophers of science like her take the other way out i.e., believing the Past

Hypothesis to be the cure to the case under study. At this point, one can easily

catch a similarity between these two approaches even though they look different.

As much as retardation condition is in need of explanation, so is Past Hypothesis.

Both of them looks simple enough. Both of them gives us a plausible solution.

Both of them represents what is in our belt as scientists and philosophers of
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science; the retardation condition is already explicit in the solutions of Maxwell

equations. If one accepts the general view that the theory just provides the physical

solutions not the actual ones, then there occurs to be no problem as Frisch states.

On the other hand, Past Hypothesis is also nothing but an initial condition which

one requires in order to solve some differential equations. In fact, both of these

approaches rely on the struggle of getting actual out of what is physical. One

chooses to delimit the theory via initial conditions and the other through

retardation condition.

Note that both approaches mentioned above will have the same predictive

power as far as natural phenomena is considered.
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CHAPTER 4

THE ARROW OF TIME IN STATISTICAL MECHANICS

4.1 H Theorem and the Second Law of Thermodynamics

There are many phenomena in nature which exhibit thermodynamic time

asymmetric behavior. Although placing an ice cube in war water and observe it to

melt is an ordinary phenomenon one can observe in daily life, the time reverse of

this process i.e., the spontaneous freezing of a small part of warm water is never to

be seen. Examples of this kind are many and they have one thing in common: they

exhibit the so called time asymmetry in thermodynamics which is summarized in

the so called “second law of thermodynamics”.

One version of the second law owes itself to Lord Kelvin and Clausius.

They state that heat does not, of its own accord, move from cold to hot bodies

(Davies, 1974). In other words, all isolated systems tend to approach equilibrium

and not to leave it again. In the language of physics, this fact is stated as

dQS
T

   ,  (4.1)

where S  is the change in a quantity called entropy, Q is heat and T is

temperature. The equality sign is applicable only when the process is reversible.

For an adiabatic enclosure, we have dQ = 0, so that

0S  . (4.2)

Eq. (4.2) is valid for any change which occurs in the “real” world. It says that the

entropy of an isolated system never decreases. Since all the natural changes

increase the entropy of an isolated system, a condition for no change to occur must
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be maximum entropy condition. Such a maximum entropy state is called

equilibrium state.

In order to illustrate second law, let us give the example of heat reservoirs:

suppose that we have two heat reservoirs at constant temperatures T1 and T2

respectively. Then, we let them interact with one another thermally. If T1 > T2,

then we expect that an amount of heat Q will flow from the first reservoir to the

second one. The entropy change for the first reservoir will be 1/Q T  and the

entropy change for the second reservoir will be 2/Q T . The total entropy change

will therefore be equal to 2 1(1/ 1/ )Q T T  which is a positive quantity. This

indicates that the overall entropy increased. This example shows us that the heat

will spontaneously move only from hot bodies to cold bodies and not  vice versa.

The inverse is not to be observed since this will violate the second law of

thermodynamics. Only when the two temperatures become equal, the entropy

change will be zero indicating the reversibility of the situation in which case there

is no temperature difference to be seen.

As a second example, one can consider an ideal gas enclosed in a cylinder

composed of N number of single atoms thereby making it possible for us to

neglect the intermolecular interactions. Let us assume the cylinder to be an

adiabatic enclosure. The entropy of this kind of gas is given by
3 / 2log( )S Nk VT , (4.3)

V being the volume of the cylinder, and k being a constant called Boltzmann

constant . Now, let us imagine that we are expanding this gas with the help of a

removable piston very quickly. Then, the gas will not do any work on the piston

but will only fill the vacuum very quickly. The temperature of the gas will be

constant due to the first law of thermodynamics which states

dE dQ dW  . (4.4)

Due to the adiabaticity of the enclosure, dQ has to be equal to zero. Since dW too

is zero, we must have dE = 0, which means that energy is constant. Since
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( )E E T  for an ideal gas, the energy being constant implies the temperature

being constant. This will require that the change in entropy be given by

2 1log( / )S Nk V V  ,     (4.5)

where V2 and V1 are the final and initial volumes respectively. The change in

entropy in this particular case will be positive indicating the irreversible nature of

the process.

Another way to expand the gas would be to do it as we withdraw the piston

infinitesimally slowly. This will ensure the states of the gas to be at equilibrium at

each instant. Also, we must note that the state of an ideal gas is given by

PV = NkT.              (4.6)

Since we still do have adiabatic enclosure, we deduce, from the first law of

thermodynamics, that

3
2

NkTdVdE NkdT
V

  . (4.7)

From the equation above, it is easy to find that
3 / 2log( ) tanVT cons t . (4.8)

Inspection of Eq. (4.3) then tells us that the change in entropy is equal to zero.

This simply means that the quasistatic expansion is reversible.

From the considerations above, it is explicit that the macroscopic time

asymmetry is mainly founded on the second law of thermodynamics. Historically,

this law was stated as H theorem by Ludwig Boltzmann. In order to proceed

further, it is important to see the derivation of this theorem.

A simple model for an ideal gas consists of N identical spherical particles

in a box with volume V. The number of particles must be large enough in order to

allow for a statistical treatment of the gas. The container must have perfectly rigid

walls so that particles will collide elastically with the walls of the container. Let us

also assume the box to be adiabatic i.e., no heat transfer occurs. Assuming that the

gas is dilute enough, we will neglect long-range interactions and only focus on
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binary interactions. We will, in other words, allow the particles to collide with one

another. We will treat the subject matter classically (and non-relativistically) since

quantum mechanics does not alter the picture which classical physics provides as

far as temporal asymmetry is considered.

In order to describe the physical state of the ideal gas explained above, we

need to determine all position and momentum coordinates of each particle. The

space consisting of all these position and momentum coordinates is called μ space

and its dimension is given by 6 N. The position or momentum (or velocity for that

matter) of a particle at any time is associated with a point in μ space. Therefore,

the entire state of the ideal gas can be traced as observing N points in this space.

As the microscopic state of the gas evolves, these N points will move, too. Now,

we divide this space into small cells in such a manner that the volume of the cells

is large enough to contain many particles, but still small enough to be considered

as infinitesimal compared to macroscopic dimensions. The size of these cells is

also determined by the limits of resolution of macroscopic observation. Then, each

cell will have a volume (d3qd3p). The total number of particles in each cell is given

by f (q, p, t) d3qd3p where f is the density of points and is called distribution

function. Integrating over all the cells in μ space, we obtain
3 3f (q, p, t) d qd pN   . (4.9)

In fact, knowing the explicit form of distribution function, one can calculate any

macroscopic variable of interest by a suitable averaging procedure.

For many purposes, we will need the distribution function and how it

evolves with time. Excluding any possibility of collision for now, we can  imagine

the behavior of this function to be like a fluid in phase space. Then, we can write

the usual conservation equation given by

( ) 0f uf
t


   


  . (4.10)
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In the equation above, f is the distribution function, 


 is the six dimensional

divergence being equal to ( , )
i iq p
 
 

 where the index i runs from 1 to 3. u  the six

dimensional velocity vector given by ( , )i iq p  . Since there are no collisions i.e.,

since we neglect the interaction between the particles, their energy will be constant

or in other words, their momentum will be conserved. This reduces Eq. (4.10) into

the following equation

3( ) 0f v f
t


  


 , (4.11)

where v  is the three dimensional velocity vector and 3


 is the gradient operator

acting only on position. If we also include an external force in Eq. (4.11), we

obtain

3( ) 0v
Fv f

t m

    




  . (4.12)

In the equation above, the last term within the parentheses is gradient operator

acting on velocity v. If we include the collisions between the particles, we must

add another term on the right hand side giving us

3( ) ( )v collision
F fv f

t m t
 
    

 


  . (4.13)

This equation is the famous Boltzmann’s equation. The collision term on the right

hand side will ensure the sudden disappearances and appearances of cell points

due to abrupt collisions taken into account. Because of the collisions, the points in

μ space will be reshuffled at random.

If we throw the N points into μ space randomly, the only constraint being

constant energy, each throw will produce a different microscopic arrangement of

points. Many throws will essentially lead to same distribution function since we

cannot see beyond the resolution scale anyway. For fixed number of particles and

fixed energy, this gives us the famous Maxwell distribution i.e.,
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2

( ) vf v e 
 . (4.14)

Due to each collision, the system will be reset. But, at one point, the state will be

the most probable one i.e., the Maxwell distribution. Once Maxwell distribution is

obtained, it is less likely that subsequent reshuffling will remove it. The Maxwell

distribution is therefore regarded as the equilibrium distribution. The time required

to reach equilibrium is called relaxation time. For N of the order of Avogadro

number, deviations from Eq. (4.14), once attained, are exceedingly small. But, in

order to have this picture which is consistent with the empirical results, we need to

make one statistical assumption which states that the points in μ space are

reshuffled at random after each collision. Let us also call this assumption as

assumption A following the convention of Paul Davies (Davies, 1974). In order to

move from Eq. (4.14) to H theorem, one needs a second assumption which is

independent of assumption A. This assumption has been called assumption of

molecular chaos (or Stosszahlansatz) by Boltzmann. According to this assumption,

the positions and velocities of the particles are uncorrelated before they collide but

not after the collision. In order to understand what the mathematical meaning of

this assumption can be, we can try to think in terms of the following simple picture

now: let us imagine two particles (also generalize them as Type 1 and Type 2

particles concerning whole distribution) moving towards one another. Let one of

them have the velocity 1v  and the other particle have the velocity 2v . After the

collision, the velocities will be changed to 1v   and 2v   respectively. The molecular

chaos assumption states that the distribution functions f1 and f2 are the same

function. In other words, the distribution functions of two types of particles are

same. Of course, this cannot be said for f’1 and f’2 where the prime denotes the

new distribution functions being changed after the collision. We can further

specify the collision as a mapping from { 1v , 2v → 1v  , 2v  }. Assuming that the

forces of  interaction between the particles forming the gas during the collision are
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time symmetric, we can see that the inverse collision is understood to be { 1v  ,

2v  → 1v , 2v }. The reverse collision is given by {- 1v  , - 2v  → - 1v , - 2v }. The fact

that the cross section of ordinary collision and the reverse collision is equal to one

another is called the classical principle of microreversibility.

If the external force is taken to be zero, the condition for equilibrium i.e.,

1 0
f
t





, given also the Boltzmann’s equation in terms of collision cross sections,

provides us the following equation
3

2 1 2 2 1 2 1( ) ( ) 0d v d v v f f f f       
   . (4.15)

A necessary and sufficient condition for this to happen is

2 1 2 1f f f f   . (4.16)

The Eq. (4.16) states that all types of collisions are exactly balanced by their

inverses in equilibrium. This is an example of detailed balance. From the Eq.

(4.16), we have

2 1 2 1log( ) log( ) log( ) log( )f f f f    . (4.17)

The equation above shows us that left hand side is unchanged due to the collision.

In other words, the distribution function must be chosen in terms of the kinematic

quantities which are conserved during the collision. These kinematic quantities are

total momentum and energy. Therefore, the most general form of the distribution

function will be
2

0log( ) ( ) logf v v C   
  . (4.18)

The constant 0v  represents the velocity of the gas as a whole. If the container is at

rest, then this term is equal to zero leading to Maxwell distribution in Eq. (4.14).

In order to show that Maxwell distribution is indeed the equilibrium

distribution for an arbitrary initial state, Boltzmann introduced his famous H

function defined as



90

3 ( , ) log ( , )H d vf v t f v t 
  . (4.19)

Differentiation of above equation with respect to time gives us

3 (1 log )dH fd v f
dt t


 

 . (4.20)

We then substitute f
t



 from Boltzmann’s equation, we finally obtain

0dH
dt

 . (4.21)

The equation (4.21) tells us that when a gas is in a condition of molecular chaos, H

will decrease. H will attain a minimum value at equilibrium. H is of course

minimized by the Maxwell distribution.

The H function for an ideal monatomic gas is given by

3 / 2log( ) tanNH VT cons t
V

   . (4.22)

The entropy in this case reads

S kVH  . (4.23)

The negative sign in the Eq. (4.23) is important and shows us that while H

function decreases towards a minimum, entropy increases towards a maximum.

The equilibrium state is characterized by either minimum H or maximum S.

Concerning entropy, we also have another important relation which is

engraved in the tombstone of Ludwig Boltzmann. It reads

log( ) tanS k cons t   , (4.24)

where the letter Ω is reserved for the total number of microstates compatible with

the given macrostate which will lead to entropy S. This relation above indicates

that the maximum entropy state will be the most shuffled state. In other words,

disordered states are more probable than the ordered ones. In order to support this

interpretation of entropy, we can cite the example of two different gases in two

different compartment separated by a partition in between. When we remove the
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partition, the gases will mix evenly with each other in a short time. This example

shows the natural tendency for the transition from order to disorder.

The interpretation based on Eq. (4.24) above also suggests us some uses of

the concept of entropy beyond thermodynamic systems. A less (more) ordered

state clearly requires (consider the example above) more (less) information for a

full specification of the macrostate of the system. This picture suggests us that

negative entropy (negentropy hereafter) must be associated with information.

A more quantitative picture can be provided (Davies, 1974): Consider

having a discrete number q of possible outcomes. If we do not have any additional

information about the situation, each outcome is equally likely. But, it may happen

that we have some additional information which will enable us to reduce the

number of choices to p where p < q. Then, the amount of information is defined as

log( / ) log( ) tanI k q p k p cons t     . (4.25)

If we compare the last two equations above, we see that

I S   . (4.26)

In principle, it is impossible to make experiment on a physical system without

perturbing it. Finding the temperature of a room requires one to make

measurements by the use of a thermometer, which in turn interacts with the room

temperature and perturb the very quantity i.e., thermal equilibrium it was supposed

to measure. The acquisition of information is always associated with some

negentropy which is “negentropy principle of information” by Brillouin which is

mathematically stated as

I S   . (4.27)

One point worth remark is the following: everyday experience suggests us that

information only increases with time. Does this not point to a simultaneous

increase of both information and entropy? There is none if we understand that

traces we leave behind increase information content (and hence decrease entropy)

at the expense of an entropy increase in the universe. In other words, entropy
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increases in a closed universe but information increases in an open one considering

the local environment as a universe.

One very unorthodox view has recently been advocated by Jos Uffink

(Uffink, 2001) and Harvey Brown (Brown and Uffink, 2001). According to these

philosophers, the origin of time asymmetry in thermodynamics lies in anything but

in thermodynamics itself. One important point which is usually forgotten to be

discussed by many authors is apparent for example in Kelvin’s formulation of

Second Law: what this law states then refers to the irreversibility of cyclic

processes. It is almost a common mistake to use this formulation anywhere one

wants and deduce the irreversibility of system as such. But all that Kelvin

formulations states, for example in the case of adiabatic expansion of a gas, in the

words of Brown and Uffink, is

If the gas spontaneously expands to a new equilibrium state, and if certain
other processes are available, then the converse transition is impossible. But
that this expansion occurs spontaneously, I not part of the content of the Law.
(ibid, p. 527)

The problem is that the spontaneous approach to equilibrium is taken as a

definition in thermodynamics and this definition is time symmetric. We define a

thermodynamical equilibrium a one-way road. One state can evolve into an

equilibrium state but not vice versa. This state is supposed to be unique too.

Thermodynamic equilibrium once attained cannot be disturbed unless an

intervention from the environment has been made. This situation of equilibrium

principle overwriting Second Law is called “Minus First Law” by Brown and

Uffink (ibid, p. 529).

This is not the same for statistical mechanics though. In statistical

approach, we have a time-symmetric formulation (apart from Gibbsian approach).

Fluctuations out of equilibrium occur spontaneously for almost all microstates

(ibid, p. 530). Of course, statistical approach has its own problems with it as we
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will see later in this Chapter. But, it is safe at least that its time-symmetric

formulation is possible and we know this if we keep our eyes on the ball.

Another way to see the difference between the thermodynamic and

statistical cases is to look at one possible (arguably the best candidate we have so

far) solution of the Past Hypothesis. In order for Bolztmann account to hold firm,

one has to posit that the early state of the universe must be a low entropy initial

state. This is called Past Hypothesis. If this is really correct, then the origin of

statistical asymmetry is totally different than thermodynamic asymmetry since the

former lies in some cosmological initial value issue whereas the latter is already

written in the theory by definition alone.

The next step of course is to wonder whether we can have a time

symmetric formulation of Second Law, following the line of development of

statistical mechanics. This has been shown to be possible recently by Lieb and

Yngvason (1999). Its details however are out of scope of this dissertation. As is

seen clear already from this Section, we will take the statistical arguments serious

and move on from there.

4.2 Generalized H Theorem

The domain of ordinary H theorem is a system of interest. If one has to use

H theorem for an ensemble of systems, then the generalized H theorem must be

used. The generalized H theorem is due to Gibbs who took over H theorem from

Boltzmann and handled it in a way which will be suitable for ensembles. The

presentation of generalized theorem in this Section is due to Richard Tolman

(1979).

In order to begin our investigation, we must define two kinds of density

functions i.e., fine-grained and coarse-grained density functions. From equation

(4.9), we can define a fine–grained density ρ (q, p, t) normalized to unity as



94

1  f (q, p, t)
N

  . (4.28)

It is obvious now that
3 3(q, p, t) d qd p 1  . (4.29)

However, when we make a real measurement of momenta and coordinates of a

system, there occurs some uncertainty in measurements. Because of this

uncertainty in measurement, we will define another distribution function which

will tell us about the probability of finding members of an ensemble within small

but finite regions having extensions δq and δp which are related to the accuracy of

the measurement. For this, we define another distribution function i.e., coarse-

grained density whose notation will be Ρ. It will be given by
3 3

1 3

(q, p, t) d qd p

...q p



 
   . (4.30)

The coarse-grained density, too is normalized to unity. Now, we are ready to

define the generalized H function as
3 3 logH d qd p   . (4.31)

We can also write the equation above as
3 3 logH d qd p  , (4.32)

Since logΡ will be constant over each one of the small regions δq…δp and the

integration of fine-grained density is equal to (Ρ δq…δp) due to the relation in Eq.

(4.30). Eq. (4.32) shows us that such a defined coarse-grained density function is

indeed nothing but the mean of logΡ over the ensemble. This observation also

justifies the bar over H in the notation.

One useful remark about the fine-grained density would be to indicate that

it must obey Liouville’s theorem which states that

0d
dt

 .              (4.33)
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Liouville’s theorem allows us to write

3 3 log 0d d qd p
dt

   . (4.34)

This observation will be proven to be useful in understanding the evolution of

generalized density function.

In order to understand how the generalized density function will evolve in

time, let us consider what is going to happen at an initial time t1: According to the

fundamental postulate of statistical mechanics, we assume equal a priori

probabilities for the fine-grained density function. But, this simply means that this

fine-grained density function will be constant inside each related phase space

volume. It will also be equal to coarse-grained density since coarse grained density

is nothing but mean value of fine grained density over δq…δp by very definition.

Therefore, we can write, initially, the following equality

1 1   . (4.35)

This equality is valid at all points in phase space. We can then write, for this initial

case,
3 3

1 1 1logH d qd p   . (4.36)

For a later time t2

3 3
2 2 2logH d qd p   . (4.37)

To be able to compare the values of generalized H function, we subtract these

equations above from one another to get
3 3

1 2 1 1 2 2( log log )H H d qd p       . (4.38)

Now, we can write the equation above in the following form
3 3

1 2 2 2 2 2 2 2( log log )H H d qd p           .            (4.39)

The change in the first term is due to Eq. (4.34) whose existence is due to the

Liouville’s theorem. Second term owes itself to the observation (4.32). The last
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two terms cancel each other after the integration since both fine-grained and

coarse-grained density functions are normalized to unity.

At this point, we make use of the following lemma: For any two quantities

ρ and Ρ, we have

log log 0         . (4.40)

The only requirement for Eq. (4.40) to hold is that ρ and Ρ to be assuming

nonnegative values. This is of course true for ρ and Ρ by definition. With the help

of this lemma, we obtain, from Eq. (4.39),

1 2

1 2

0H H
H H

 


. (4.41)

Since the equality holds only when ρ and Ρ equal to one another, and we are

interested in cases which are different than this, we finally write

1 2H H . (4.42)

This final result shows us that also generalized form of H functional decreases by

time. This result is called generalized H theorem.

The relation between the H  for an ensemble and H for a system is given as

follows (Tolman, 1979)

log tansystem k k
k

H H P P cons t   . (4.43)

In the above formula, Pk is the total probability of finding a member of our

ensemble in the condition k. The first term on the right hand side is given by

system k k
k

H P H . (4.44)

In other words, this term is the average for all system values. If the probability Pk

= 1, then we have these two different function equal to one another apart from a

constant. After this relatively brief account, we then proceed to the objections

raised against H theorem and see what kind of relation it bears to the direction of

time.
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4.3 Some Remarks on Reversibility Objections

Historically, there have been two main attacks against the Boltzmann’s

famous H theorem. The first of them is due to Loschmidt and Zermelo and calls

for a reversibility paradox inherent in H theorem itself. According to Loschmidt, H

theorem is based on classical mechanics, or in other words, microreversibility of

the collision processes. Since these kind of processes are known to be time

reversal invariant, how come one obtains a result such as H theorem which

indicates a behavior in single time direction only i.e., towards future. This apparent

conflict between the underlying time reversal invariance of classical mechanics

and non-invariance of H theorem forms the paradox itself. Of course, the time

reversal non-invariance of H theorem must be understood in that it only specifies a

certain function ( H function) to decrease as we move towards a future state.

I believe the resolution of this first paradox (we will see the second one in

a while) is closely associated with some misunderstandings on part of the structure

of H theorem. In order to see this, one needs to look closer to what it assumes to be

able to say what it says. As we have seen in the previous Section, we needed two

assumptions in order to obtain H theorem. These were called equal a priori

postulate and assumption of molecular chaos. The latter has been time asymmetric

right from the start since it stated a certain property which was inherent in the

picture before collision and not thereafter. This indeed allowed us to write number

of collisions as the multiplication of two distribution functions. The temporal

distinction of before/after was already there in the assumption of molecular chaos.

This point is important in order to show us that the time reversal invariance of

classical mechanics is not broken at all. It is the assumption which we make. It is

this assumption as a seed for time reversal non-invariance. Concerning the remark

that H theorem is not immune to reversibility paradox, let us try to formulate it in a

better way. This solution will be called textbook solution since it is the one
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presented in the textbooks like Huang (Huang, 1987) and the one that I believe to

be the true account of the theorem concerning the objections related to the time

reversal.

First of all, let us understand how this paradox emerges with the following

example: as we have already mentioned, the molecular chaos assumption i.e.,

Stosszahlansatz, is responsible for the emergence of time reversal non-invariance.

This assumption does not say anything about the explicit form of the distribution

functions which we multiply in order to get the number of collisions. Since this is

the case, in order to see how the paradox emerges easily, let us assume that we

have a particular kind of distribution function, f = f ( v ). This simply means that

we have a distribution function which only depends on the magnitude of the

velocity vector explicitly. Let us also assume that our gas is in a state of molecular

chaos and not be Maxwell-Boltzmannian at time t = 0. According to H theorem

then, we must have a decreasing H at time t = 0+. Now, let us consider another gas

which has exactly the same properties as the previous one but the velocities

reversed this time. This gas will have the same distribution function of course

since the distribution function only depends on the magnitude of velocities and it

is left unchanged when we reverse the velocities since this is tantamount to the

mapping v →-v. Since it has the same distribution function, it will also have same

H and must also be in the same state of molecular chaos. So, also for this new gas,

we must have a decreasing H for t = 0+. But, there must be something wrong with

this picture since the future of the new gas is the past of the old one. Therefore, for

the original gas, we must have a decreasing H for t = 0+ and an increasing H for t =

0- . Therefore, H (or S for that matter) must be at a local peak (minimum) as

shown in the following figure.
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Figure 4.1: H Function versus Time

When H is not at a local peak, then it is not in a state of molecular chaos.

Molecular collisions can create molecular chaos when there is none and can

destroy molecular chaos when there is one. dH/dt cannot of course be continuous

function of time since it can undergo drastic changes abruptly due to the collisions.

The more improbable the state, the sharper the peak. In general, the value of H

fluctuates a little bit above the minimum. This range is called “noise range”. It is

very improbable for H to have a value more than one which lies within the noise
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range. Following Huang (Huang, 1987), these results can be summed up nicely in

three items as follows:

I. For all practical purposes, H never fluctuates spontaneously above the

noise range. This corresponds to the observed fact that a system in

thermodynamic equilibrium never spontaneously goes out of equilibrium.

II. If at an instant H has a value above the noise range, then, for all practical

purposes, H always decreases after that instant. In a few collision times, it

will within the noise range. This corresponds to the observed fact that if a

system is initially not in equilibrium, it always tends to equilibrium.

Together with item I, this forms the second law of thermodynamics.

III. Most of the time, the value of H fluctuates in the noise range, in which

dH/dt is positive as frequently as negative. These small fluctuations

produce no observable change in the equation of state and other

thermodynamics quantities. When H is in the noise range, the system is,

for all practical purposes, in thermodynamic equilibrium. However, they

lead to some observable effects such as blue sky since it is due to nothing

but the fluctuations scattering of light.

All these moves above are indeed directed in explaining the statistical nature

of the H theorem. H theorem cannot be thought as the Newton’s laws. There

is a difference in nature between a fully deterministic theory and the one of

statistical nature and this is what caused trouble for a lot of scientists and

philosophers of science in this field. These explanations above are

summarized in the two figures below.
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Figure 4.2: H Function and Local Peak
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Figure 4.3: H Curve

The second objection is due to the works of Poincaré. Poincaré’s

“recurrence” theorem states that any state will be revisited to arbitrary closeness an

infinite number of times in an isolated system. When accepted, it is obvious that

eventually very low entropy states (peaks in H above the noise range) must occur.

The textbook version we have just provided already is independent of such flaws

since it is already inherent in that picture that from time to time we will have those

peaks which lie way above the noise range. They are highly improbable but yet do

happen. We must again emphasize the statistical nature of H theorem. H theorem

does not say that dH/dt < 0 all the time.

The time required for a second fluctuation which would lie above the noise

range is called a Poincaré cycle. A crude estimate (see Huang, page 90) shows us

that this cycle is of the order of eN where N is the number of the molecules in the
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system. Especially concerning the fact that the age of the universe is merely 1010

years, one comes to realize that these cycles are too long.

Now, it is time to see how the literature about statistical direction of time

has been built and in order to so, there is no better place than starting from the

classical treatise of Hans Reichenbach called “the direction of time”.

4.4 Reichenbach on Direction of Time

Hans Reichenbach (1956) was the first philosopher of science who

analyzed the philosophical implications of the direction of time. His analysis

begins with a causal definition of time order. According to Reichenbach, the

relationship defined by “between” is an order relation and can be used to shed

more light on reversible processes since whatever is in between will stay invariant

under the time reversal.

Then, he observes the difficulty of noting the arrow of time in physical

processes, stating

Neither the laws of mechanics nor mechanical observables give us a direction
of time, unless such a direction has been defined previously by reference to
some irreversible process. For instance, if the velocity of a body is regarded as
an observable, its direction must be ascertained by comparison with some
temporally directed process, such as the time of psychological experience,
which is derived from the irreversible processes of the human organism. But if
no such standard is used, we cannot regard a velocity as an observable. We can
merely derive its value from other observables, which, however, leave the sign
of the velocity undetermined. (ibid, pp. 35-36)

But, he argues, one can obtain what is in between out of mechanical arguments

and therefore can form a causal net which has a lineal (e.g., the assignment of one

direction to one line fixes the direction for al the other lines) order. Only the

knowledge of “between” will suffice to form a causal net and moreover, this is
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something we can achieve without irreversible processes. Below, one can find an

example of a causal net. If several arrows depart from one point, we choose any

one we like. According to Reichenbach (ibid, p. 36), sum of these lines may be

called a causal chain. Once we begin our journey on a causal chain, we can never

return to the starting point i.e., there are no closed causal chains. Openness of the

net is an empirical fact not a logical necessity. However, the existence of a time

order for our universe is founded on the openness of the causal net. In other words,

one can easily deduce whether an event is before or after another event. A closed

causal chain would violate this property since then an event could be before and

after another event at the same time. This time order we mention here still does not

give us any direction. Moreover, we must note that the reversing the direction

would not change anything in the causal chain as far as we are interested in a

picture with ever repeating past.

Reichenbach’s next important step is his treatment of probability lattice

(ibid, 96). Using the now usual frequency interpretation he makes distinction

between the time ensemble and space (what physicists today call Gibbs ensemble)

ensemble. To be able to understand how he does this, let us imagine a mixing

process where we have nitrogen molecules on one side of the partition which we

can label as B, and on the other side, we have oxygen i.e., on part B . When we

remove the partition, we know that these two gases will ix with one another. After

enough time, there will be equal amount of nitrogen and oxygen molecules in B

and B . Once a molecule is in B, it will stay there for short time later. The same

applies also to molecules in B . Reichenbach calls this “aftereffect”. If we form a

sequence for all the molecules in the enclosure, we obtain what is called a

probability lattice for this diffusion process in the following form

x11 x12 …x1i …→ p

x21 x22 …x2i …→ p
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……………….

 xk1 xk2 …xki …→ p

……………….

p1 p2…pi…….→ p

Each horizontal row represents the history of a molecule whereas the vertical

column represents the space ensemble.

Reichenbach (ibid, pp. 99-101) considered two limitations concerning the

lattice structure. Firstly, he assumed the independence of the rows. Secondly he

assumed lattice invariance holds. It means that the horizontal probability of finding

a B in the kth row reappears as a vertical probability. It measures the number of B

terms selected from the ith column by the condition that the preceding column has

a B at the same place. Then, he proves that the inference from the time ensemble

to space ensemble is valid for every lattice of mixture.

Having defined time order in terms of causality, Reichenbach moves on to

analyze the unidirectionality of time. There are two main questions to be

answered, he adds (ibid, pp. 114-116): the first one is a possibility of inference

from time to entropy and the latter being the possibility of inference from entropy

to time.

The first of these cases can be put as follows(ibid, p. 114): Given the time

direction and an initial nonequilibrium macrostate A of entropy S(A), will the

entropy S(B) of a macrostate B be higher if B is later than A? The answer by

Reichenbach (and Boltzmann) is that S(B) > S(A) is more probable than S(B) <

S(A) if A has  a low entropy. The problem is that this is also true if B precedes A.

In other words, It is more probable that S(B) > S(A) than S(B) < S(A) even though

A is later than B in time. This simply expresses the symmetry of time direction for

the entropy curve (ibid, p. 115). In sum, we cannot use the entropy curve to define

a time direction since it is symmetric in the last analysis.
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To find a way out of this dilemma, Reichenbach, following Gibbs’

analysis, turns his attention to space (in other words, Gibbs ensemble) ensembles.

In order to do this, he introduces the issue of interaction:

For example, if one observer tells us he saw the gases I a container rather well
separated, though they were not divided by a partition, and another observer
informs us that he saw the well mixed, we shall conclude that the second
observation was made later than the first. We shall add the further conclusion
that originally the gases were separated by a partition, and that someone must
have removed the partition shortly before the first observation was made. This
means that, rather than proceeding on the assumption that the gas system was
closed all the time, we assume that it was originally in interaction with its
environment; and we conclude that that improbable state is the product of this
interaction rather than the result of a separation process produced by mere
chance in the history of closed system (ibid, p. 117)

Taking this example further, he arrives at the concept of branch systems. These are

subsystems which branch off from another system and remain isolated for some

time thereafter. They state with a low entropy and progress towards relatively high

entropy. Once we pose the problem of direction of time in terms of these branch

systems with same initial conditions i.e., being all low entropy states and adopt

Gibbsian point of view, i.e. space ensembles, it is possible to show that the

probability that a low entropy state is followed by a high entropy state is greater

than the probability that a high entropy state is followed by a low entropy state.

The figure related to these branch systems in an entropy upgrade given below. The

reversibility objection does not apply here since we are dealing with many-system

probability rather than one-system probability (ibid, p. 121).
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Figure 4.4: Branch Systems

According to Hans Reichenbach, the approach of moving from time

ensemble to space ensemble is imperative in the probabilistic sense since

probability, in the frequency interpretation at least, requires many-systems

anyway. He adds that probability statement concerning a single event does not

have any meaning. In short, even probabilistic concepts require us to consider

space ensembles rather than time ensembles.

There are two things about the figure above which is not realistic: first,

there is only one upgrade in the figure above, but we know that there must be

random upgrades and downgrades and some horizontal sections. Second, the

branch systems above extend to infinity in time. This is also not realistic since we
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know that the branch systems are isolated for a limited time and turn back to

environment after that time. If we put coffee and cream into a thermos bottle, the

resulting mixture will not stay in the bottle for infinitely long time(ibid, p. 126).

Having considered these two realistic corrections, we have the figure below.

Figure 4.5: S or W versus Time

This more realistic picture however shows us some other features which

were unknown to us before. The branch systems starting with initial low entropy

are possible only for the entropy upgrade such as number 1-2 or 5-6. If we inspect

the section given by 7-8 for example, we see that this branch system begins with

high entropy and ends up in low entropy opposite to what is being stated before.

This simply shows the dependence of direction of time on different sections. As

Reichenbach puts it; a time direction can be defined only for sections of the total
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entropy curve since the frequencies of overall upgrades and downgrades will be

equal. If the universe is on an entropy upgrade, then the statistics accessible to us

will give a direction of time. In other words, main ingredient in Reichenbach or

Boltzmann recipe is to assess whether we i.e., the universe, are on an entropy

upgrade or downgrade.

Thinking in terms of the problem of direction of time in the context of

different sections of the universe, leads us to the understanding that one can easily

mention opposite direction of times related to different sections. The upgrade and

downgrade parts will provide different (in fact, opposite) directions of time.

Reichenbach then notes that

Philosophers had attempted to derive the properties of time from reason; but
none of their conceptions compares with this result that a physicist derived
from reasoning about the implications of mathematical physics. As in so many
other points, the superiority of a philosophy based on the results of science has
here become manifest. There is no logical necessity for the existence of a
unique direction of total time; whether there is only one time direction, or
whether time directions alternate, depends on the shape of the entropy curve
plotted by the universe. (Reichenbach, p. 128)

There happens to be a serious possibility of us being in entropy downgrade section

of the universe without our awareness of the situation.

Reichenbach, at this point, introduces the notion of supertime. It has no

direction but an order. This supertime works even when there is a horizontal

plateau on the entropy curve. When this is the case, one cannot talk in terms of

entropy since there occurs neither entropy increase nor decrease.

How can we know then that our universe is at present  on an upgrade? As

is argued before, one system solutions do not work. We need to consider space

ensembles to be able to answer the question posed about. Reichenbach (ibid, pp.

130-131) notices that these kinds of inferences are already in use. For example, the

crust of Earth is regarded as the product of cooling process in geology (ibid, p.
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130). The plurality of branch systems enables us to deduce a definite time

direction. This shows how a powerful tool the concept of branch system is. He also

states

The existence of a long upgrade of entropy, though a necessary condition for
the phenomenon of time direction, is therefore not a sufficient condition. Time
direction becomes apparent to us only because the upgrade contains a large
number of situations in which subsystems branch off, disclosing in their further
development the universal growth of entropy (Reichenbach, p. 131).

One must make a difference between the time direction perceived by us and the

direction of time as a whole.

At this point, it is very important to understand the assumptions we made

so far in order the branch structure to work in shedding light on the problem of

arrow of time. The first assumption we made is that the entropy of the universe at

present is low and is on a slope of the entropy curve (ibid, p. 136). Second

assumption is related to the existence of many branch systems, which are isolated

from the main system for a certain period of time (but not infinite) but connected

with the main system at two ends. This assumption is very plausible in the sense

that it requires nothing but the existence of Gibbs ensembles which are being used

more often than the 1950s in which Hans Reichenbach had written his treatise

“The Direction of Time”. It has also been assumed that majority of branch

systems, one end is a low point and the other end a high-point. The last assumption

is that the directions toward higher entropy are parallel to one another and to that

of the main system in majority of the branch systems. This last assumption is

called “the principle of the parallelism of entropy increase” in Reichenbach’s

terminology. The principle of parallelism cannot be derived from the assumption

that  the entropy of the universe at present is low and is on a slope of the entropy

curve i.e., our first assumption. If the entropy gradient of a branch system or all of

them for that matter is counterdirected to that of the main system, there is nothing
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violated as far as laws of mechanics is considered. This also means that it would

be consistent with the causal laws, too. This is why it has to be postulated on its

own merit as a separate assumption. In short, the principle of the parallelism of

entropy increase ensures that the time direction from point 1 to point 2 (see Fig.

4.5 above)is the same for the main system as for the branch system (ibid, p. 137).

4.5 After Reichenbach

Even though Reichenbach wrote his treatise in 1956, his “Direction of

Time” has been accepted to be the most thorough discussion in the literature of

time arrow (Sklar, 1993). But, the ideas on the arrow of time did not cease to

emerge and even Reichenbach had taken his share from these developments in the

form of critiques. In fact, anyone who decides to work on temporal asymmetry

related to entropy and universe in general has to pay homage to him one way or

another.

The first critique of Reichenbach, at least to my knowledge, has

been done by Stein (1967, 1968) and Earman (1974). A similar route has also been

adopted by late Robert Weingrad (1977). According to these philosophers, the

main issue which has been overseen by Reichenbach is the temporal orientability

and gravitational issues related to the direction of time. According to Earman, a

relativistic space-time is temporally orientable if there exists a continuous

nonvanishing vector field on the differential manifold which is time like with

respect to the metric. The temporal orientability has to be taken into account since

the very space-time we are embedded in is relativistic. Having defined the

temporal orientability, he goes on to enumerate the following three research

programmes which has to be dealt with of one would like to have a concise view

on the direction of time (ibid, pp. 18-19).

I. Can any nontemporally orientable space-time be ruled out a priori as an

arena for physics?
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II. Is the actual world temporally orientable?

III. By means of what kind of evidence could we come to know the answer to

second item above?

IV. Does the world come equipped with a time orientation?

V. If the answer to fourth item is affirmative, where does it come from? If the

answer is negative, what explains our psychological feeling of a direction

for time?

VI. If the answer to the fourth item is affirmative, how do we know which of

the two possible orientations is the actual one?

Reichenbach had not worried about the first three of these items which is based on

the general relativity. He just took it for granted and moved from therein. As is

explained in the previous Section, he just believed that the direction associated

with the entropy increase can be “labeled” as future. In the end, he discovered,

together with Boltzmann, that a global direction if time is unattainable. Of course,

as Earman noticed, it is not easy to make sense out of usages like “region of space

time” (ibid, p. 21) or the space-time sections with different time directions he has

offered since it is almost impossible to partition space-time regions in terms of the

issues of temporality. Therefore, this is an assumption to be mentioned. John

Earman then proceeds to define a new and more powerful criterion to be able to

understand the time sense of a temporally orientable space-time. This is called

“Principle of Precedence” (PP hereafter) and it reads

Assuming that space-time is temporally orientable, continuous timelike
transport takes precedence over any method (based on entropy or the like) of
fixing time direction; that is, if the time senses fixed by a given method in two
regions of space-time (on whatever interpretation of ‘region’ you like) disagree
when compared by means of transport which is continuous and which keep
timelike vectors timelike, then if one sense is right, the other is wrong. (ibid,
p.22)
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Now, due to this principle and the statistical analysis of Reichenbach, Earman

concludes

With Reichenbach’s entropy method it is always physically possible and in
many cases highly likely (according to statistical mechanics) that there will be
disagreement. (ibid, p. 22)

One can simply consider a combined use of Reichenbach’s entropy analysis and

PP i.e., one can take a piece of space-time region and apply the statistical method

in order to determine the time sense and then use the timelike vector transport

beginning from there. But, Earman finds it problematic since one cannot determine

which region will provide us with the correct sense of time since believes in a

unique global time sense.

Another important issue raised by Earman is about whether we can take

“isolation” of the systems of interest for granted. Reichenbach apparently did to

certain extent but Earman is against this very idea by defending his case through

the effects of gravitational field since there is no way to shield a system from its

effects. In fact, Earman (ibid, p. 38) quotes Morrison on this issue who states

… a gravitational force exerted by a falling apple a kilometer away over an arc
of ten centimeters is ample to mix up the trajectories of a mole of normal gas
in a time of milliseconds. (Morrison, p. 350)

This is a very important critique but one must also keep in mind that the intricate

relationship between the entropy and the gravitation is not clear even today.

Therefore, even though Reichenbach would like to study the gravitational effects

on the direction of time, he would have no means for it, let alone a result coming

out of his study. Moreover, Reichenbach (p. 113), as noted by Earman, noted the

instability of the microstates which lead to order under small perturbations.
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Another well known fact about the physical systems of statistical nature is

the observation time. If one observes the system shorter than the relaxation time,

one will certainly misinterpret the situation due to the lack of full knowledge of the

system. Indeed, Earman (ibid, p. 38) cites Chandrasekhar who states

… An isolated system appears irreversible (or reversible) according as whether
the initial state is characterized by a long (or short) time of recurrence
compared to the times during which the system is under observation
(Chandrasekhar, p. 56)

Reichenbach considers this point in favor of his and Boltzmann’s argument by

stating that it is this feature of the processes which allow a statistically solid

argument of symmetrical treatment of time.

The importance of temporal orientability has also been emphasized by

Robert Weingrad (Weingrad, 1977) in a paper entitled “Space-time and the

direction of time” published in Noûs. What Weingrad argued in his paper was the

existence of space-time constructs with past/future distinction but without

asymmetric earlier/later relation. One example to this, says Weingrad, is a

Minkowski space-time with closed time-like world lines. This is very obtain to

simple indeed, it is just enough to roll up a two dimensional Minkowski space-

time into a cylinder along its time-like worlds lines. Then, one has the following

figure which has been adopted from Weingrad (1977, p. 122).
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Figure 4.6: Cylinder Minkowski Space-time

As can easily be seen from the figure above, there will be closed time-like curves

on this space which will allow the past/future distinction as far as PP holds but an

earlier/later distinction will not make any sense at all. In fact, Weingrad uses this

simple example to justify the superlative use of PP since he then goes on to state

In any case, it seems desirable then, to develop a notion of time direction
within (relativistic) spacetimes that is more fundamental than temporal
relations. We achieve this by focusing on the property of temporal
orientability. (ibid, p. 123)

In order to understand the concept of temporal orientability better, we adopt

another figure from the same paper of Weingrad (p. 124) below:
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Figure 4.7: Parallel Transport

If we apply PP and transport a timelike vector from p to q along the path I in the

figure above in a continuous and timelike manner, then the vector τ will point into

the upper light cone at q. This result is independent of the path. PP simply states

that a continuous transport of a timelike vector divides all timecone into two

classes. One of them can be labeled as + and the other -. It must be noted that this

is also global i.e., once fixed, it determined the temporality if whole space-time

manifold (Weingrad, p. 125).

The last example of this sort is a Moebius strip space-time. In the figure 4.

8, we have this structure which is formed by the coincidence of A with A , and B

with B . This time, the transport of the timelike vector τ around I will twist it to be

in the opposite direction compared to its initial orientation whereas its

transportation around II will cause it to point in the same direction. PP states that

we cannot define a global time sense on this space-time and we cannot talk about a

future/past division globally.
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Figure 4.8: Moebius Strip Space-time

Another philosopher of science who criticized Reichanbach’s treatment of the

direction of time was Lawrence Sklar (Sklar, 1993) but his critiques were more

towards Reichanbach’s assumptions instead. On other words, He as criticizing

Reichenbach not because of what he did not argue but because of his assumptions

in his arguments. One important point he made in his case against Reichanbach is

his assumption on parallelism. He considers this to be a circular argument overall

since assuming this parallelism brings out the desired result. Instead of explaining

the underlying symmetry of H theorem, what Reichenbach does, according to

Sklar (ibid, p. 325), is to reduce problem into the parallelism of branch systems.

Now, we are in a position of explaining why branch systems behave the way they

behave. But, this is not an explanation. It is merely a shift in the explanandum, that

is all! According to Sklar then, Reichenbach’s analysis does not explain anything

at all.
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Craig Callender does agree with Sklar in not buying Reichenbach’s

analysis as an explanation. He first notes that the Gibbs perspective and

Boltzmann perspective conflicts with one another (Callender, 1997). We do not

have an entropy definition which can decrease with time when we adopt the

Gibbsian point of view whereas Boltzmann entropy is entitled to such changes

from time to time. What Callender does not accept is that the generalized H

theorem is a success in its own right removing the conflict with the observation.

He writes

The S (ρ) associated with an ice cube on the floor might increase even if (or
when) the individual ice cube suddenly starts to freeze!... The switch from S
(X) to S (ρ) hardly appears to be a harmless case of concept extension. (ibid, p.
227)

But, what Craig Callender (2004) offers instead is a novel approach based on

Hume and what is called best system-analysis; in Reichenbach’s analysis, the first

assumption was the universe to have a low entropy at present state and evolving

towards a higher entropy condition. Therefore, the initial state of the universe must

have been an even lower entropy state. But, Boltzmann’s view is time symmetric

so it must work in both directions. This states that the initial state can also be a

higher entropy increase (more on this issue later). Therefore, according to

philosophers of science such as Callender and Price, the question to be posed is

why the initial state of the universe has his property of being low in entropy. Now,

at his junction, Callender needs help from David Hume’s argument against the

classical cosmological argument for the existence of God. Hume (Hume, 1980) , to

begin with, assumes that every effect in the universe must have a cause. He thinks

that there would be no sufficient reason for the effect otherwise. Then, we are

given two options if we follow the reasoning of Hume: either there is an infinite

chain of causes or there was an Uncaused Cause. We choose the latter.
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The same argument by Hume is used by Callender in order to shed light on

initial value problem concerning the direction of time. This initial condition is

called as Past Hypothesis after David Albert (Albert, 2000). Callender thinks that

we must be done with this problem by positing the Past Hypothesis and move on.

What would, asks Callender, explain the Past Hypothesis anyway? This initial

condition forms the boundary of the known facts. If we also consider that the

universe has come to existence only once and there is no way of observing this, he

insists that Past Hypothesis solves all the problems related to thermodynamic

asymmetry of time as distinguished physicists such as Schroedinger and Feynman

believed. In Hume’s “Dialogues Concerning Natural Religion”, Philo argues about

the cosmos’ coming into existence in the following way:

The subject in which you [Cleanthes] are engaged exceeds all human reason
and inquiry. Can you pretend to show any such similarity between the fabric of
a house and the generation of a universe? Have you ever seen Nature in any
situation as resembles the first arrangement of the elements? Have worlds ever
been formed under your eye[…]? If [so] […] then cite your experience and
deliver your theory. (ibid, p. 22)

Then, Callender contrasts the case of Past Hypothesis to a historical example:

… Consider an old chestnut in the history and philosophy of science, namely
the example of scientists rejecting Newton’s gravitational theory because it
posited an action-at-a-distance force. Such a force could not be basic because it
was judged to be not explanatory. But a priori, why are non-local forces not
explanatory and yet contact forces explanatory?... Furthermore, note that
believing Newton’s action-at-a-distance problematic simulated scientists to
posit all manner of mechanisms that would restore contact forces. Not only
were these efforts ultimately in vain, but many of these posits came at a price
of their mechanisms not being independently testable. (ibid. p. 205)

So, there is no problem of justification of Past Hypothesis for Callender.
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Another problem with the Past Hypothesis is that it is a low probability

event. But, Callender argues that there are lots of low probability events and they

do not require explanation at all. The probability of an asteroid to strike Earth is

also low but when it happens, it does not require explanation at all. As Callender

notes, these low probability events even serve as the explananda, not merely the

explanans. An asteroid strike is a low probability event in itself but it might be

arguably used in explaining the death of dinosaurs. In short, there do not need to

be a close relation between the probability and explanation.

This issue is also related to one’s definition of scientific explanation and

scientific knowledge. Without any new evidence, we had better stick to the

preexisting explanation under the heavy empirical data which is the whole

universe in this particular case under study.

Callender also appeals to “Best-System” argument advocated by Ramsey

and Lewis (Lewis, 1994). Lewis states this as:

Take all deductive systems whose theorems are true. Some are simpler, better
systematized than others. Some are stronger, more informative than others.
These virtues compete: An uninformative system can be very simple, and an
unsystematized compendium of miscellaneous information can be very
informative. The best system is the one that strikes as good a balance as truth
will allow between simplicity and strength. How good a balance that is will
depend on how kind nature is. A regularity is a law IFF it is a (contingent)
theorem of the best system. (ibid, p. 478)

Basing his argument on the quotation above, Callender rests his case by saying

that the laws of nature are the axioms of those true deductive systems with the

greatest balance of simplicity and strength and arguing that Past Hypothesis

satisfies these criteria (Callender, 2004, p. 207). We always use Past Hypothesis to

explain thermodynamic behavior of ordinary mixing processes anyway in our

daily life. Why not making the Past Hypothesis a law? It is non-dynamical, yes,

but, there is no explicit statement about what a scientific law can be. We also do
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not need to explain it since we can state easily that it is impossible a violation of

Past Hypothesis to occur.

It must be noted that the same kind of approach has been made by Frisch in

the case of electromagnetic arrow of radiation. He was offering a way out by

accepting retardation condition as a law. His main argument was that not all

nomologically possible situations happen in the universe. One can also classify

advanced solutions as such. They can be physically possible but are not actually

possible. What happens in actuality can be differentiated as a scientific law. This

has been Frisch’s stand before about the electromagnetic arrow of time.

Callender’s point is not the same exactly since Past Hypothesis is about something

which happened once and only once, i.e. the universe coming into existence.

Contrary to this, electromagnetic radiations happen all the time and might be

checked better later on about the retardation condition, therefore, this is a plus on

Callender’s case. So, we can be inclined to assume that Callender is right in his

own case more than Frisch.

The philosopher Huw Price, too defends the atemporal view. He defines

the problem exactly as Callender does. The fact that entropy is increasing is not a

matter of explanation since this corresponds to an approach to equilibrium. What

is in need of explanation is the fact that it has been low to begin with. Price finds

Boltzmann/Reichenbach view as a great advance (Price, 1996, p. 35) since one can

be convinced that the direction of time is a subjective matter. But, this does not

mean he endorses it completely since according to Price, Boltzmann/Reichenbach

view misses the real point about the relation between entropy and probability.

Price states:

If the choice is between (1) fluctuations which create the very low-entropy
conditions from which we take our world to have evolved, and (2) fluctuations
which simply create it from scratch with its current macroscopic configuration,
then choice (2) is overwhelmingly the more probable. Why? Simply by
definition, once entropy is defined in terms of probabilities of microstates for
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given macrostates. So the most plausible hypothesis-overwhelmingly so- is
that the historical evidence we take to support the former view is simply
misleading, having itself been produced by the random fluctuation which
produced our world in something very close to its current condition. (It is no
use objecting that such a fluctuation would have to involve all kinds of
“miraculous” correlated behavior. It would indeed, but not half as miraculous
as that required by option [1]!) (ibid, p. 35)

This simply means the negation of all historical evidence. According to

Boltzmann’s view, the universe could have come into existence just some minutes

ago as well.

The second main objection uttered by Huw Price is that we should avoid

fluctuations which extend the low entropy region. In other words, we should not

expect more of these kinds of region like ours to be wide spread. This is also a

problem which conflicts with the recent cosmological data since we continue to

discover order as much as we go on with our research.

The main difference between the views of Callender and Price happens to

be the one related to Past Hypothesis. According to Price, Past Hypothesis itself

can be taken to be a scientific law whereas It is still an enigma, a riddle waiting to

be solved for Price. For Price, the solution to the Past Hypothesis is of

cosmological kind since the question is seemingly one of large structure. The

cosmological help one can get for the case of time asymmetry will be inquired in

next Section.

4.6 Cosmology and Thermodynamical Time Asymmetry

We begin this Section by trying to understand what the problems related to Past

Hypothesis are. In order to do this, we must first understand the early smoothness

of the universe and its implications. Smoothness simply means, at least in this

context, that matter was distributed with same density everywhere. But, why does

this call for an explanation? Why do we have to call it special state even though
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the smoothness looks like a property of equilibrium? The key to understanding this

is to consider the gravitational forces. If we look at a gas in a container, we

consider it to be uniformly spread throughout the container. But, in that case, we

have the interaction among the particles forming the gas which is in the form of

repulsion. Gravitation is a force which exists in the form of attraction. This means

that the equilibrium configuration for a thermodynamical system under the effect

of gravitation will be in a clumpy one as has been emphasized very nicely by

Roger Penrose (Penrose, 1989). This situation is nicely illustrated in the following

figure adapted from Penrose (1989).

Figure 4.9: Entropy with and without Gravity
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The smoothness of the earlier universe then simply means that it was out of

equilibrium to begin with. This out-of-equilibrium behavior is in need of

explanation. This initial low entropy state is what needs to be explained because it

is simply a low probability event. In fact, according to Roger Penrose, its

probability is given by
1231010 . So, our universe is very “special” in this

probabilistic sense. The smoothness at the beginning of the universe is a must

since only then our universe could have been evolved into the state it is in today.

Today, we even have some indirect proofs for smoothness of the universe and it is

widely accepted among physicists.

Any discussion which will connect the thermodynamic asymmetry and

cosmology is centered around the Gold Universe (Gold, 1962). It is  a scientific

fact that the force of gravity will be sufficient to overcome the expansion of the

present universe if the gravitational force is strong enough. Then, instead of

expansion, we will have a contracting universe towards an end called big crunch.

Will it be a kind of mirror image of the big bang? The Gold universe is this kind of

universe model which has been set forth by Thomas Gold in 1962. Gold’s

hypothesis has not been taken very seriously since the physicists were also

committing what Price (ibid, p. 82) called a “temporal double standard”. But as

Price puts it nicely

People argue that if Gold were right, matter would have to behave in extremely
unlikely ways as entropy decreased. They fail to appreciate that what Gold’s
view requires towards the future is just what the standard view requires
towards the past. (ibid, p. 82)

Therefore, if we do assume that the laws of physics are time symmetrical, then we

will have two options: both ends can be smooth which is Gold’s universe, or

neither ends are. If the second option is adopted, then the Past Hypothesis remains

unexplained of course.
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According to inflation model, one assumes that the force of gravity is

repulsive in the early states of the universe which lead the universe to expand. It

cools down as it grows, and a phase transition occurs at some point. Then, the

gravitational force becomes attractive, and the ordinary big bang scenario begins.

If we look at it from the atemporal view as Price suggests, we must have a collapse

with deflation at the other end. If the second law of thermodynamics changes

direction when the universe recon tracts, the universe would witness many

miracles such as converging radiation, growing younger etc. (Price, 1996, p. 100).

But, this does not constitute any argument against the symmetric model of the

universe. Paul Davies (Davies, 1977) states this fact with the following words:

It is curious that this seems so laughable, because it is simply a description of
our present world given in time-reversed language. Its occurrences are no
more remarkable than what we at present experience-indeed it is what we
actually experience-the difference in description being purely semantic and not
physical. (ibid, p. 196)

According to Huw Price then, there is no objective reason to discard Gold’s

hypothesis until a better theory comes up.



126

CHAPTER 5

THE ARROW OF TIME IN QUANTUM MECHANICS

The dynamical equation governing the quantum realm, which corresponds

to Newton’s second equation in classical mechanics is the so called Schroedinger

equation, and it reads:

i H
t


 


 , (5.1)

Where   is a constant called Planck’s constant, H is the Hamiltonian, i is the

complex number and finally  is the wave function. According to the orthodox

view (i.e., Copenhagen interpretation) at least, the probability of a particle to be

found at a specific space-time point is given by the Born Postulate which states

that the modulus squared of the wave function provides this link between the

unobservable wave function and the observable particle. Born postulate can be

written as
2( , ) ( , )P x t x t  . (5.2)

The Schroedinger equation is accepted independent of the interpretations of

quantum theory, be it many-world, Bohm or Copenhagen. It provides the

deterministic evolution of the wave function once the initial data is given.

The second fundamental postulate is the measurement postulate. Assuming

that the state (or wave function) can be decomposed into any orthonormal basis as

i i
i

c   , (5.3)
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where i ’s are eigenvectors of the relevant observable and ci’s are the relevant

coefficients, the modulus squared of these coefficients gives the probability of

finding that particular value.

First, let us look closer to the measurement postulate. In order to assess the

situation, it is instructive to adopt an example due to Roger Penrose (Penrose,

1989, p. 358) in the form presented by Craig Callender (Callender, 2000). It reads

At L we place a source of photons- a lamp- that we direct precisely at a photon
detector- a photocell- located at P. Midway between L and P is a half-silvered
mirror tilted at 45 degrees from the line between L and P. Speaking loosely,
when a photon’s wave function hits the mirror it will split into two
components, one continuing to P and the other to a perpendicular point A on
the laboratory wall. Since the wave function determines the quantum
probabilities, and by assumption it weights both possibilities equally, we
should expect one-half of the photons aimed from L to make it to P and one-
half to be reflected to A. Each photon has a one-half chance of either being
reflected to A or passing through to P. (Callender, 2000, p. 7)

Penrose, and together with him Callender, ask what the conditional probability of

L registering will be given that P registers i.e., P(L, P) and vice versa. Penrose then

concludes that P(P, L) is ½ whereas P(L, P) is equal to unity since there is a

certainty that the photon came from the lamp and not from the laboratory wall

(i.e., A) if the photocell indeed registers. Then, Penrose argues that there is the

time asymmetry in quantum mechanics due to the fact that these two processes are

temporal inverses of one another (ibid, p. 8). Of course, there are some gaps to be

filled in this Gedanken experiment such as the issue of extra information. But the

most important issue which can be objected is the use of comparison of P(Si→Sf)

with P(Sf→ Si) but not with P(Sf
T→ Si

T). Penrose should have treated emitter as

the absorber and the absorber as the emitter in this time symmetric case.

According to Callender, he should have asked instead what the probability that the

time reversed photocell will emit a photon to the time reversed lamp would be.
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Even though there are some objections which can be raised against

Penrose’s example, it reminds us one important fact about quantum theory: It is

predictive but not retrodictive. In other words, forward transition probabilities

(FOR) are not equal to backward transition probabilities (BAC) in general. This

shows that there is temporal asymmetry in the measurement process. It is not time

reversal invariant since the theory does not tell us the same thing in two different

directions (ibid, p. 11).

One important step to take is about the law-likeness or fact-likeness of

FOR. In Chapter 2, it has been observed that the ontology of the theory at hand

plays a very decisive role in judging whether that particular theory is time reversal

invariant or not. The same issue is being raised here by asking the role of FOR in

different interpretations of quantum theory. If one adopts the Ghirardi-Rimini-

Weber (1980) collapse interpretation (GRW in short), FOR is a fundamental law,

therefore deeming quantum theory to be not time reversal invariant. In Bohmian

(Bohm, 1952) mechanics though, the motion of the particles is governed by the so

called guidance principle

Im /v   


. (5.4)

Therefore, the time reversal invariance of Bohm’s interpretation is based on first

postulate and has nothing to do with the measurement postulate. Then, the

observed asymmetry is explained away with the help of initial conditions

(Arntzenius, 1997): according to Bohmian kind of noncollapse interpretation, in

addition to their quantum state, each particle has to obey the guidance principle

given in Eq. (5.4) above. Looking at Fig. (5.1) below which is modified from

Arntzenius (1197, p. 214), we deduce that

If the photon comes from A, then the initial quantum state will be in a wave
packet A  concentrated around A. Since there is no collapse in Bohm’s
theory, after encountering the mirror the quantum state will become a
superposition C D   of wave packets centered around C and D. But, each
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particle also has a definite position, and it is that position which will determine
which way it will go. Bohm’s theory says that half the initial positions will
pass through the mirror and the other half will bounce off the mirror. Thus one
will get the desired invariant forward transition chances for particles starting
from A. (ibid, p. 219)

Figure 5.1: Arntzenius Gedanken Experiment
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If the particles would begin in a quantum state B  centered around B, they would

develop into C D  . Now, if we think in terms of backward transition

probabilities, it is obvious that we must consider the final states as a criterion to

determine what is going to happen. If the final state is C D  , then it is obvious

that all the particles came from B. On the other hand, if the final state is equal to

C D  , then we will be sure of the fact that all the particles came from A. This

simply shows us that backward transition chances depend on the final quantum

states and not on the final positions. Since the final state depends on the initial

state (whether we started from A or B), we have the temporal asymmetry. The

source of this asymmetry hence lies in the initial states. After all, this is not

surprising at all since Bohmian interpretation is a deterministic one. In this sense,

i.e., relying on initial conditions to account for time asymmetry, Bohmian

mechanics reflects the thermodynamic account of time asymmetry inherently.

Now, let us focus our attention on the first postulate which is Schroedinger

equation plus Born interpretation. This is same as investigating whether

Schroedinger equation is time reversal invariant or not. It is very simple to notice

that it is not indeed since it is a first order equation in time derivative and its

temporal inverse will give us

i H
t


  


 . (5.5)

This equation is certainly not equal to the ordinary Scroedinger equation. As

Callender (2000, p. 13) notices, this is exactly the same case one would have if

Newton’s second law would be written as F = mv.

The way out of this non-invariance in textbooks is explained by referring to

what is called Wigner (1936) reversal. According to Wigner reversal, we must not

only reverse the time order but also apply the complex conjugate operator on the

state. Then, we will have
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*
*i H

t


 


 , (5.6)

Which has the same form as Eq. (5.1) i.e., ordinary Schroedinger equation. If

Ψ(x,t) is a solution to Schroedinger equation, then so is Ψ*(x,-t). Let us, following

Callender (2000), call this symmetry as WRI  instead of ordinary time reversal

invariant, TRI. Since what is important for all practical purposes is the

probabilities (at the end, this is observable!), WRI restores the Born postulate

which is given by Eq. (5.2).

Callender argues that symmetries must be applied o states and this must

suffice for us to deduce whether a theory is time reversal invariant or not.

Explicitly, Eq. (5.5) is not. In other words, WRI and TRI are two different

symmetries. If TRI fails, it will tell us something abut time’s handedness in

quantum mechanics. On the other hand, the failure of WRI can be either due to

TRI or complex conjugate operation. One cannot infer time is handed in quantum

theory just by looking at the failure of WRI. It must be noted that all

interpretations of quantum theory is time reversal non-invariant since they all

embody Schroedinger equation, be it collapse or no-collapse theories.

However, it is easy to see why physicists insist on using WRI. It rests on a

principle called Correspondence Principle (CP). In order to see this, we can use

Ehrenfest theorem. According to Ehrenfest theorem, we have

d x p
dt m

 . (5.7)

This equation shows the classical correspondence of the quantum mechanical

operators when the position and momentum operators are averaged in terms of

wave function. Now, looking at equation (5.7), we can apply TRI to get

d x p
dt m

  . (5.8)
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The right hand side of the equation must also have a minus sign if we want

( )x t  to follow lawfully. But, this is not possible since momentum operator is

defined as

* ( , )( , )( ) x tp x t dx
i x


 


 . (5.9)

The equation above makes it explicit that the expectation value of the momentum

operator does not change sign under the time reversal invariance TRI. Choosing to

apply a second operation which will turn i to (-i), i.e., conjugation, will do the

work however. In other words, the CP commands us to adopt WRI instead of TRI.

This means that even Bohmian mechanics is not time reversal invariant if we

adopt TRI instead of WRI. Indeed, this result is independent of any interpretation

one can adopt since Schroedinger equation is fundamental to each one of them.

In GRW, it must be noted that even without Schroedinger equation, there is

a preferred orientation of time. In all collapse theories, certain feature of the

system such as particle number or mass will ignite a non-unitary indeterministic

collapse to one of the eigenfunctions of the state. Therefore, there is certainly a

temporal preference in these theories.

The experimental determination of temporal asymmetry in Bohmian

interpretation is not trivial since there is no possible experiment which can tell us

the difference whereas it is possible to do with the collapse theories (Callender,

2000, p. 13).

Reichenbach too accepts TRI as the correct time reversal invariant but

thinks that the ordinary wave function and the time reversed one is

indistinguishable. He then concludes that quantum mechanics is time reversible.

He states this explicitly in following words

There remains the problem of distinguishing between Ψ(q,t) and Ψ(q,-t). In
order to discriminate between these functions, we should first have to know
whether [ /E i t     or: /E i t     ] is the correct equation. But the
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sign on the right in Schroedinger’s equation can be tested observationally only
if a direction of time has been previously defined. We use here the time
direction of the macroscopic systems by the help of which we compare the
mathematical consequences of Schroedinger’s equation with observation.
Therefore, to attempt a definition of time direction through Schroedinger’s
equation would be reasoning in a circle; this equation merely presents us with
the time direction we introduced previously in terms of macroscopic processes.
(Reichenbach, 1956, pp. 209-210)

Andrew Holster (Holster, 2003, pp. 18-19) considers Reichenbach’s view

confusing since according to Reichanbach, we can equally go with TRI which will

give us a time reversal non-invariant macroscopic picture due to CP.

So far, we considered the time reversal quantum states being formed by the

action of an operator. In Chapter 3, it has been discussed that whether the actions

of operators on states make sense. The time reverse of any sequence of states can

simply be the inverse of the same sequence. But, in general, we do not be content

with just inverting the sequence of states. We also apply an operator to this

inverted sequence. Arntzenius (2004) considers this aspect from a quantum

theoretical point of view. But, first he makes the point that he considers the use of

operators is necessary in order to have non-trivial time asymmetries. Since one

cannot have both deterministic and trivially time reversal non-invariant theories if

we allow any kind of time reversal operator to act on the quantum states, we must

either allow the states to be inverted without reversal operations acted upon at all

or some certain operations to be acted. Why this is so is worth some pause: Let us

imagine a history which can evolve into some other state in time as S(t) following

Frank Arntzenius (ibid, p. 32) in a deterministic theory. Let us take the time

reverse of the state S(t0+δt) to be S(t0-δt) where t0 is a  fixed time. In other words,

we assume

(S(t0+δt))T = S(t0-δt). (5.10)
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Of course, this definition itself is compatible with STT = S. Now, let us suppose

that S(t) develops into the state S(t+dt). Now, if we define s ≡ t0-t, we get

(S(t+dt))T = (S(t0-s+dt))T = S(t0+s-dt). (5.11)

Now, according to rules of evolution for the states, it is obvious that S(t0+s-dt) will

evolve into S(t0+s). Now, note that

(S(t))T = (S(t0-s))T = S(t0+s). (5.12)

This proves that (S(t+dt))T evolves into (S(t))T if S(t) develops into the state

S(t+dt). These considerations are also unique since the theory is assumed to be

deterministic. In other words, if we choose just inverting the order of sequences,

every deterministic theory is time reversal invariant. Since we do not want to have

such a restriction, we now turn to understand more and use quantum mechanical

arguments in order to understand what kind of time reversal operations must be

used. Note that standard textbooks solve it in terms of four-potentials but reflect

the act of time reversal operation as A0→ A0 and Ai→ -Ai for all components other

than zero. This is not a four-vector transforms, states Arntzenius and look for

another explanation to be able to justify the use of operators on states.

In quantum field theory, creation fields and annihilation fields can be

written as
3

,

3
,

( , ) ( , , , )

( , ) ( , , , )

p ss

p ss

x t k u p s x t a d p

x t k v p s x t a d p

 



 

 

 
 

(5.13)

Where k is normalization constant, u and v are coefficients, p is momentum, s is

spin, and a’s are operators which create and annihilate the single particle states

with definite momentum and spin. It is possible to form scalar Lagrangians out of

these quantum fields if u and v transforms like irreducible representations of the

proper Lorentz group. In assessing the transformation properties, be it parity or

time reversal, one assumes the energy to be positive (ibid, p. 39). This is necessary

in order to avoid the possibility that of extracting unlimited amounts of energy

through decays into deeper and deeper negative energy states. As an example for
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transformation properties, we consider, following Arntzenius, chargeless massive

spin-0 particle. Under parity, an eigenstate p  of three-momentum must

transform to p   where   is a phase factor. Then, the next step is to see that

pa  transforms to pa 
  and annihilation operator to * pa  . Also, using p→-p, we

find that under parity Φ(x, t)→η Φ(-x, t) if we assume η = η*. This assumption

means that η is equal to 1 or -1. If it is equal to 1, then Φ(x, t) is invariant under

parity and is called a true scalar. If it is equal to (-1), then Φ changes its sign and

becomes pseudo-scalar.

In order to do the same kind of analysis for the case of time reversal, T

must be anti-unitary i.e., it must transform cap to c*a-p. Only then, together with

the assumptions that energy is always positive and transition probabilities are to

remain invariant, we obtain Φ(x, t)→α Φ(x, -t) since we also change the sign of

complex numbers in the exponentials. Of course, we still have the possibility of α

being equal to +1 or -1.

Let us assume that we start with 0-memntum eigenstate 0  which by

assumption changes its sign under time reversal (ibid, p. 40) i.e., T 0 = - 0 . We

can then define a new zero-momentum eigenstate as 0 0i  . When we apply T

to this new state, we see that it is given by T 0 = 0 . Its phase factor is equal to

1 now instead of -1. Then, the other states can be defined by Lorentz boosting

0 . They will all have the same phase factors. This cannot be done for parity

operator since it does not affect the complex numbers at all. Therefore, we can

choose a new state and always have 1 as phase factor. Lorentz group properties

suffice in order to explain the intrinsic structure of these transformation operators.

One interesting unorthodox proposal to connect quantum theory with the

thermodynamic asymmetry of time has been offered by David Albert (Albert,

1994). Albert begins his discussion by considering two bodies in thermal contact
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with a temperature gradient (ibid, p. 671). Then we know that we can talk about

two kinds of microstates, normal and abnormal, of the system which are

compatible with its initial macrostate. The normal microstates are the ones which

will decrease the temperature gradient whereas the abnormal microstates are the

ones which will increase the temperature gradient. Of course, we know from

statistical considerations that normal microstates will outnumber the abnormal

ones. Moreover, the normal microstates will be stable under small perturbations

while abnormal states will be unstable. Then, David Albert states

Therefore, if the two bodies we have been talking about here were, in fact,
somehow being frequently and microscopically and randomly perturbed, then
the fact that their temperatures approached one another could be explained
objectively, it could be explained (that is) without reference to anything about
what anybody happens to have known. (ibid, p. 672)

These perturbations must be genuinely random but must be proven to be useful in

their connection with the physical chances (ibid, p. 672). These chances must be

such that they must have nothing to do with measurement problem since the

tendency of temperature equalization of these two bodies is a fact independent of

measurement.

What is Ghirardi-Rimini-Weber theory of collapse (GRW, 1980) then?

According to GWR, the wave function usually evolves with respect to

deterministic laws i.e., Schroedinger equation. But, from time to time, in a random

way, the wave function of N particles is multiplied by a Gaussian of the form

below
2exp[ ( ) / 2]kK r r    . (5.14)

where K is of course normalization constant. rk is chosen at random from the

arguments of the N particle wave function. It is in general of the order of 10-5 cm.

The probability of such jumps per particle per second and the width of the

multiplying Gaussian are new constants of nature (ibid, p. 675). According to



137

Albert then, every single one of the microstates (not majority of them) will be

overwhelmingly likely will evolve into states which the temperature difference

gets smaller. In other words, these jumps are playing the role of perturbations we

are looking for and in need of (ibid, p. 676).

Craig Callender (Callender, 1998) notes that Albert’s proposal has

everything one expects from a dynamical theory and can stand as an explanation

but only up to a certain point: GRW theory cannot explain why we have initial low

entropy state to to begin with. In other words, Albert’s proposal is unable to

explain Past Hypothesis. But, still, it is a good proposal in that one gets a

dynamical explanation out of it (ibid, p.148).

Jos Uffink (2002) also hailed Albert’s proposal a new approach but there is

one big flaw in all this according to him: GRW only applies to solids not gases.

Therefore, an ideal gas initially in a product state will not evolve into

quasiclassical state, in which the center of mass is sharply localized (ibid, p. 562).

When the classical treatment of Boltzmann is applied to radiation which is

modeled as a group of harmonic oscillators, it leads to Rayleigh-Jeans distribution

whose output is that the total energy of any radiation is infinite. This is the so

called UV catastrophe. The way out is the quantum mechanical treatment which

then leads to the correct Planck distribution. The final answer lies in quantum

electrodynamics (QED from now on).

As we have seen earlier in Chapter 3, it has been claimed in the literature

that pure emission of light without absorption is possible but pure absorption

without emission is impossible. Then, it is simple matter to label this as temporal

asymmetry. Is this indeed so? The interaction of electrons and photons is given by

QED. According to QED, these processes are called Compton scattering: an

electron of momentum p and spin s absorbs a photon of momentum q and

polarization λ. The intermediate electron will have momentum p+q due to the

conservation of momentum at each vertex. The final state then consists of an
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electron with momentum p and spin s , and a photon with momentum q  and

polarization   . This case is plotted in Fig. 5.2 below adopted by Atkinson (ibid,

p. 4)

Figure 5.2: Compton Scattering

When q=0, the energy of the outgoing photon too is zero. This simply is

tantamount to say that the outgoing radiation is zero. But, this is kinematically

impossible due to energy and momentum conservation and mass-shell condition

(Atkinson, 2006, p. 4). Mass-shell condition applies to initial and final states not

the intermediate ones and command the square of the energy minus momentum

squared is equal to mass squared in such units that speed of light is taken to be

equal to one. However, we also cannot have q = 0 exactly due to same reasons. In

other words, the emission without absorption is also impossible due to kinematic

constraints.
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Although pure emission is not possible for a free electron, this is not the

case for a bound electron. The Feynman diagram for this case is given blow as Fig.

5.3 adopted by Atkinson (ibid, p. 5).

If the atom is in excited state, it can undergo a transition to the ground state, with

the emission of photon. The interaction will be between the electron (e) and an up

quark (u)  in the proton for example. This interaction will be accounted for by a

virtual photon (ibid, p. 5). The energy of the photon will be equal to the energy of

the excitation of the atom. Therefore, pure emission is possible for a bound state

electron. But, its inverse is also possible which is simply the absorption of a

photon in an atom so that the atom ends up being in excited state. The Feynman

diagram for this pure absorption is also given in Fig. 5.3.
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Figure 5.3: Pure Absorption and Pure Emission
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In short, as David Atkinson remarks (ibid, p. 5), no arrow of time is obtained by

the phenomena of emission and absorption of photons.

One important issue is to understand that there are other contributions to

Compton scattering. For example, one needs to add another amplitude

corresponding to Fig. 5.4 adopted from Atkinson (2006, p. 6) to Fig. 5.2 at two-

vertex model in order to have a complete description of the overall process. What

is happening in this figure? According to this figure, the emission of an outgoing

photon happens before the absorption of the incoming photon, which causes the

emission somehow, although this has already happened (ibid, p.5). Then, but only

then, the sum of these two contributions, both being two-vertex contributions, is

time symmetric. As Atkinson reminds us, this is the case for all perturbative levels

of QED. Atkinson states that

The Green’s function that is used to calculate scattering amplitudes can be
written as the sum of three parts (see Atkinson, 2000, p. 48): a retarded
Green’s function, an advanced Green’s function, each with the same strength,
and a self-interaction term, reflecting the fact that an electron interacts with the
electromagnetic field that it produces itself. (Atkinson, 2006, p.6)

QED is a time symmetric theory which describes the interaction of photons with
electrons.
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Figure 5.4: Symmetry in QED



143

Electrons also undergo weak interactions and weak interaction is not time

symmetric. They violate this symmetry by about one part in thousand. Quarks,

having charges themselves, couple to photons and violate T-invariance. The theory

which unifies QED and weak interactions is called electroweak theory. Even

though this is a small violation, it is a violation nevertheless. This violation in

itself would not explain Sommerfeld radiation condition. It would not be able

explain the arrow of radiation in the classical case since there are differences in

magnitudes in non-invariance. Yet, one can deduce that there is a microscopic

arrow of time.
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CHAPTER 6

CONCLUSION

One important conclusion which can be drawn from this dissertation is that

there is no master arrow or at least we are far from perceiving such an arrow in

philosophy of science or science itself. The temporal invariance we have faced in

Newtonian mechanics in Chapter 2 is certainly different than the thermodynamical

arrow. One can of course argue that both of them might be interpreted as a

problem of initial condition since we also emphasized the effect of initial

conditions on mechanical systems as we did in the case of thermodynamic arrow

by arguing the Past Hypothesis. However plausible this can seem, it is misleading:

The initial value enters into our discussion related to chaotic behavior of

mechanical systems whereas the Past Hypothesis has got nothing to do with

mechanical systems. Another difference can be traced back in the observation that

the Past Hypothesis is needed to explain something else i.e., the present high

entropy state and in need of explanation while initial conditions in chaotic systems

do not require further explanation. This is apparent since we would not try to

consider initial conditions in mechanical systems lawlike. However, as we have

seen, this is not the case for the Past Hypothesis.

Many scientists and philosophers now agree that the origin of the

thermodynamic arrow is cosmological. However, the science which will explain

this further is not adequate enough to provide the ultimate solution to the

cosmological arrow of time. There are many debates surrounding the issues of big

bang or big crunch.
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I do however believe that certain parallels can be drawn between some

issues. The problem of measurement in Newtonian mechanics and quantum

mechanics both share the same feature in playing the role in making the theory

time reversal non-invariant. The reason that we consider the measurement process

in quantum theory by itself as opposed to our treatment in Newtonian mechanics is

due to the difference in ontologies of these theories. Newtonian universe is led by

the certainty written all over it whereas uncertainty is a common feature of

quantum world. Nevertheless, this does not make Newtonian mechanics immune

to the critiques mentioned by Keith Hutchison as we had the opportunity to see in

Chapter 2.

One of the important lessons one can learn from Chapter 3 is the

distinction between the definitions of time reversals. One can choose to do it in

terms of the instantaneous states or dynamical conditions. If one adopts the latter

view, one is forced to choose to apply a definite time reversal operator on

dynamical states. Just inverting the dynamical conditions is not enough. This

brings us to the problem of defining time reversal operators explicitly. In many

cases, this is a difficult procedure and there is no ready-to-cook recipe. Choosing

to use the instantaneous states in description of the universe on the other hand does

not require such a time reversal operator to act. The problem is that state

description gives us more than we bargain for: according to this view, even

Maxwell equations become time reversal non-invariant.

As we have seen, one way out of this dilemma lies in covariant formulation

of classical electrodynamics. Once we increase the dimension from three to four,

what has seemingly been a problem appears to be a normal case in which one can

defend time reversal invariance easily. This example is important from another

aspect, too. It shows us how important developments in physics are in order to

shed some light on topics which philosophers (remembering the connection of the

problem stated above to the famous Zeno paradox) and philosophers of science

argue about.
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Another interesting topic which has been covered within Chapter 3 is the

famous Wheeler-Feynman theory of radiation. This theory gives a successful

treatment of electrodynamics in a time symmetric way. The down side of the

theory is that it ends up in an asymmetrical conclusion and is forced to accept the

thermodynamic arrow i.e., initial conditions as the adequate explanation. The

Wheeler-Feynman theory is important in showing us that there might be

alternative formulations, different points of view. Recently, philosophers of

science got into a very hot debate to discuss Wheeler-Feynman theory, its

implications and alternatives. All these topics have been covered in Chapter 3.

The relation of causality on time asymmetry is discussed in the framework

of LAD equation. This topic has brought us to whether we must allow the use of

point particles in classical theories. As we all know, the limit of classical theory is

De Broglie wavelength. For sizes smaller than this wavelength, one has to adopt a

quantum mechanical perspective. As we have observed, confusing the domain of

use of a theory can lead to some strange behaviors which can be mistakenly

interpreted in terms of temporal symmetry/asymmetry although it has nothing to

do whatsoever with it. In fact, this allows us to have two different readings of

Chapter 2: In Chapter 2, we discovered the asymmetry hidden in Newtonian

mechanics. It was hidden because we underestimated the domain of use of the

theory. In the case of Chapter 3 though, we overestimated the use of theory and

used it in a way we were not allowed to. The Classical mechanics is not the proper

domain to talk in terms of point particles.

Chapter 4 had its starting point in Hans Reichenbach’s work the Direction

of Time. Reichenbach’s main analysis was based on the works by Boltzmann and

in this regard historical. But, he went beyond a simple historical account by

providing all the philosophical and logical background. His emphasis on branch

structures were based on a transition from time ensemble to space ensemble i.e.,

Gibbs ensemble. The problem is that there are many philosophical problems with
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Gibbs ensemble, and Reichenbach has just inherited these problems since his

solution included the use of Gibbs ensemble.

The post-Reichenbach period is marked by the emphasis on two issues:

Firstly, its emphasis on gravitational effects. Second, Reichenbach’s assumptions

in order to have a consistent formulation of the problem. The first critique of

Reichenbach has been anticipated by Reichenbach himself but he did not pursue

his route. One reason might be that one cannot talk about any thermodynamic

isolation if one does not neglect gravitation. Even today, we do not know how to

consider gravitational cases in a consistent manner. The Boltzmannian approach,

right from the beginning, assumed short range interactions. Therefore, it is not

adequate to handle gravitational forces which are long range. In short, I believe

that Reichanbach was right in neglecting gravity in this sense. But, there is a

second sense in which gravitation plays a very important role. It is the very

structure of space-time itself. After general theory of relativity, the structure of

space-time in which we are living has been extremely important. Therefore, the

form of space-time has to be taken into account in order to be able to talk about

any direction of time in a consistent way. Even Boltzmann (and later Reichenbach

for that matter) wrote about different space-time points having different temporal

orientabilities but that was it. Neither Boltzmann (he could not know about

Einsteinian theory of gravity then anyway) nor Reichenbach (he excluded all

issues related to gravity somehow when he was discussing the direction of time)

had a consistent study of the direction of time as far as the structure of space-time

is considered. This is surprising since Reichenbach was a philosopher of science

who also studied Einsteinian theory of gravitation and knew it well enough. One

explanation for this might be that Reichenbach’s The Direction of Time was left

unfinished and published posthumously.

One critique which can be made about this dissertation which is also

applicable to Reichenbach himself as far as general theory of gravity is considered

is that we also did not discuss some important aspects of general relativity on the
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direction of time. Let us make this point clearer: any kind of closed causal net will

have important bearance on our topic since a direction of time cannot be specified

then. This point has been emphasized in this dissertation. The problem is that we

are beginning to take the possibility of such a space-time serious as some

developments in physics are emerging. The point is the famous Gödel universe.

When Gödel was working on Einstein’s theory of gravity, he quickly discovered

that Einstein’s theory allows a model of universe in which closed timelike curves

are possible. This simply means that the direction of time has no ordinary sense

since it forms a closed causal net as Reichenbach calls it. The possibility of time

travel and other implications of Gödel universe are studied in detail now by

physicists and philosophers of science. We omitted this part in this dissertation

since the findings are mixed with speculations yet.

Chapter 5 has aimed to give a concise description of what the quantum

mechanical arrow of time is all about. The main results is that quantum mechanical

world is suspected to be time asymmetric but gives rise to a time symmetric view

of universe at macro level (arguably). As is well known, there are many

interpretations of quantum theory and each of them may provide a new insight into

the quantum mechanical arrow of time. We excluded many-world interpretation

(Everett, 1957), modal-interpretation (van Fraasen, 1974) and transactional

interpretation of quantum mechanics (Cramer, 1986) since these topics by

themselves form a dissertation topic. Nevertheless, we believe that the almost

interpretation-independent view in Chapter 5 will form the next step in assessing

the true meanings of the quantum mechanical arrows of time when one would like

to consider the arrow of time emerging in a particular interpretation of quantum

theory.

One important topic which has not been considered in this dissertation is

the arrow of time in quantum gravity. The physicist/philosopher Julian Barbour

(Barbour,2001) has been the first person, as far as I know, who drew attention to

the outcomes of this theory concerning the arrow of time. Indeed, the main result
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is simple and very direct: there is no such thing as time. Why is this result

important? The answer to this question lies in understanding what quantum gravity

is: it is supposed to be the holy grail of physics. In other words, many physicists

believe that it is either the ultimate theory or an important part of it. Therefore, a

theory of quantum gravity is important. The theory of quantum gravity developed

so far has a main formula (main in the same sense of second law being the main

equation in Newtonian mechanics) which does not have anything to do with time.

This is a timeless equation which suggests the possibility of a timeless existence.

We believe that developments in physics and the works done by physicists

and philosophers related to these developments will shed new light on the famous

arrow of time problem in the future.



150

REFERENCES

Abraham, M. 1905. Theorie der Elektrizität. Teubner: Leipzig.

Abraham, M. 1904. Die Grundhypothesen der Elektronentheorie. Physikalische
Zeitschrift 5, 576-579.

Albert, D. Z. 1994. The Foundations of Quantum Mechanics and the Approach to
Thermodynamic Equilibrium. British Journal Philosophy of Science 45, 669-677.

Albert, D. Z. 2000. Time and Chance. Harvard University Press: Cambridge, MA,
London.

Arntzenius, F. 1997. Mirrors and the Direction of Time. Philosophy of Science 64,
S213-S222.

Arntzenius, F. 2000. Are there really instantaneous velocities? The Monist 83,
187-208.

Aristotle. 1980. Physics. Harvard University Press and Heinemann: Harvard.

Atkinson, D. 2006. Does quantum electrodynamics have an arrow of time? Studies
in History and Philosophy of Modern Physics, in press.

Barbour, Julian. 2001. The End of Time. Oxford University Press: USA.

Bell, J. L. 1998. A Primer of Infinitesimal Analysis. Cambridge University Press:
Cambridge.

Bohm, D. 1952. A Suggested Interpretation of Quantum Theory In Terms of
Hidden Variables. Physical Review 85, 166-193.

Boltzmann, Ludwig. 1898. Vorlesungen über Gastheorie. Leipzig.

Brown, R. H., Uffink, Jos. 2001. The Origins of Time-Asymmetry in
Thermodynamics: The Minus First Law. Studies in History and Philosophy of
Modern Physics 32, 525-538.



151

Caldirola, P. 1956. A New Model of the Classical Electron. Nuovo Cimento 3,
297-343.

Callender, C. 1995. The Metaphysics of Time Reversal: Hutchison on Classical
Mechanics. British Journal Philosophy of Science 46, 331-340.

Callender, Craig. 1997. What is ‘The Problem of Direction of Time’? Philosophy
of Science 64, 223-234.

Callender, Craig. 1998. The View from No-when. British Journal Philosophy of
Science 49, 135-159.

Callender, Craig. 2000. Shedding Light on Time. Philosophy of Science 67, S587-
599.

Callender, Craig. 2002. Is Time ‘Handed’ in Quantum World? http://phil-sci-
archive.pitt.edu/archive/00000612. Last accessed April 2006.

Callender, Craig. 2003. Contemporary Debates in the Philosophy of Science, C.
Hitchcock (ed.). Blackwell: Oxford, UK.

Callender, Craig. 2004. Measures, Explanations, and the Past: Should ‘Special’
Initial Conditions Be Explained? British Journal Philosophy of Science 55, 195-
217.

Caratheodory, C. 1963. Algebraic Theory of Measure and Integration. Chelsea
Publishing Company: New York.

Chandrasekhar, S. 1943. Stochastic Problems in Physics and Astronomy. Reviews
of Modern Physics 15, 1-89.

Cramer, John G. 1986. The Transactional Interpretation of Quantum Mechanics.
Reviews of Modern Physics 58, 647-688.

Davies, P. 1974. The Physics of Time Asymmetry. University of California Press:
Berkeley, CA.

Denbigh, K. G. 1981. Three Concepts of Time. Springer-Verlag: Berlin.

Dirac, P. A. M. 1939. Classical Theory of Radiating Electrons. Proceedings of the
Royal Society (London) A 167, 148-169.



152

Earman, John. 1974. An Attempt to Add a Little Direction to “The Problem of the
Direction of Time”. Philosophy of Science 41, 15-47.

Everett, H. 1957. Relative State Formulation of Quantum Mechanics. Reviews of
Modern Physics 29, 454-462.

Feynman, R., Leighton, R. and Sands, M. 1963. The Feynman Lectures on
Physics. Addison-Wesley: Reading, Mass.

Frisch, Matthias. 2000. Dis-solving the Puzzle of the Arrow of Radiation. British
Journal for the Philosophy of Science 51, 381-410.

Ghirardi, G. C., Rimini, A. and Weber, T. 1980. General Argument Against
Superluminal Transmission Through the Quantum-Mechanical Measurement
Process. Lettere al Nuovo Cimento 27, 293.

Gold, Thomas. 1962. The Arrow of Time. American Journal of Physics 30, 403-
410.

Goldstein, H. 1950. Classical Mechanics. Addison-Wesley: Reading, Mass.

Healey, R. 1981. Statistical Theories, Quantum Mechanics and the Directedness of
Time, in Reduction, Time and Reality, Healey (ed.). Cambridge University Press:
Cambridge.

Horwich, Paul. 1987. Asymmetries in Time : Problems in the Philosophy of
Science. MIT Press: Cambridge, Massachusetts.

Holster, Andrew.2003. The Quantum-Mechanical Time-Reversal Operator.
http://philsci-archive.pitt.edu/archive/00001449. Last accessed April 2006.

Huang, Kerson. 1987. Statistical Mechanics. John Wiley and Sons: New York.

Hume, D. 1978 (1888). A Treatise of Human Nature. Clarendon: Oxford.

Hume, David. 1980. Dialogues Concerning Natural Religion, R. H. Popkin (ed.).
Hackett: Indianapolis, IN.

Hutchison, K. 1993. Is Classical Mechanics Really Time-reversible and
Deterministic? British Journal Philosophy of Science 44, 307-323.



153

Hutchison, K. 1995a. Temporal Asymmetry in Classical Mechanics. British
Journal Philosophy of Science 46, 219-234.

Hutchison, K. 1995b. Differing Criteria for Temporal Symmetry. British Journal
Philosophy of Science 46, 341-347.

Jackson, J. D. 1975. Classical Electrodynamics. John Wiley and Sons: New York.

Leeds, S. 1994. Price on the Wheeler-Feynman Theory. British Journal for the
Philosophy of Science 45, 288-294.

Leggett, A. 1987. The Problems of Physics. Oxford University Press: Oxford.

Leeds, S. 1994. Wheeler-Feynman Again: A Reply to Price. British Journal for the
Philosophy of Science 46, 381-383.

Lewis, D. 1994. Humean Supervenience Debugged. Mind 103, 473-490.

Lieb, E., Yngvason, J. 1999. The Physics and Mathematics of the Second Law of
Thermodynamics. Physics Reports 310, 1-96.

Loschmidt, J. 1876a. Wien. Ber. 73, 135.

Loschmidt, J. 1876b. Wien. Ber. 73, 366.

Loschmidt, J. 1877. Wien. Ber. 75, 67.

Lorentz, H. A. 1892. La théorie Électromagnétique de Maxwell et son Application
aux Corps Mouvants. Collected Papers, Vol. 2. pp. 164-343.

Malament, D. M. 2004. On the time reversal invariance of the classical
electrodynamics. Studies in History and Philosophy of Modern Physics 35, 295-
315.

McTaggart, J. M. E. 1993 (1908). The Unreality of Time, in Philosophy of Time,
R. Le Poidevin and M. MacBeath (eds.). Oxford University Press: Oxford, 23-34.

Mehlberg, H, 1961. Physical laws and time’s arrow, in Current Issues in the
Philosophy of Science, H. Feigl and G. Maxwell (eds.). Holt, Rinehart and
Winston: New York, 105-138.

Mellor, D. H. 1981. Real Time. Cambridge University Press: Cambridge.



154

Morrison, P. 1966. Time’s Arrow and External Perturbations, in Preludes in
Theoretical Physics,  A. De Shalit (ed.). North-Holland Publishing Co. :
Amsterdam.

North, Jill. 2003. Understanding the Time-Asymmetry of Radiation. Philosophy of
Science 70, 1086-1097.

Penrose, Roger. 1989. The Emperor’s New Mind. Oxford University Press:
Oxford.

Popper, K. R. 1956b. Nature 177, 382.

Price, Huw. 1991a. The Philosophy of Physics. British Journal for the Philosophy
of Science 42, 111-144.

Price, Huw. 1991b. The Asymmetry of Radiation: Reinterpreting the Wheeler-
Feynman Argument. Foundations of Physics 21, 959-975.

Price, Huw. 1994. Reinterpreting the Wheeler-Feynman Absorber Theory: Reply
to Leeds. British Journal for the Philosophy of Science 45, 1023-1028.

Price, Huw. 1996. Time’s Arrow and Archimedes’ Point. Oxford University Press:
Oxford.

Reichenbach, Hans. 1956. The Direction of Time. University of California Press:
Berkeley.

Ridderbos, T. M. 1997. The Wheeler-Feynman Absorber Theory: A
Reinterpretation? Foundations of Physics Letters 10 (5), 473-486.

Ritz, W. and Einstein, Albert. 1909. Physikalische Zeitschrift 10, 323.

Rohrlich, F. 1998. The Arrow of Time in the Equations of Motion. Foundations of
Physics 28, 1045-1055.

Rohrlich, F. 2000. Causality and the Arrow of Classical Time. Studies in History
and Philosophy of Modern Physics 31, 1-13.

Rohrlich, F. 2004. http://philsci-archive.pitt.edu/archive/00001843. Last accessed
April 2006.

Rotenstreich, N. 1958. Between Past and Present: An essay on History. Yale
University Press: New Haven.



155

Rovelli, Carlo. 2004. Comment on “Causality and the Arrow of Classical Time”.
Studies in History and Philosophy of Modern Physics 35, 397-405.

Russel, B. 1929. Mathematics and the metaphysicians, in Mysticism and Logic, B.
Russel (ed.). Barnes and Noble Books: Totawa, NJ, 59-74.

Savitt, S. F. 1994. Is Classical Mechanics Time Reversal Invariant? British
Journal Philosophy of Science 45, 907-913.

Schlegel, R. 1956. Irreversibility and Mechanics. Nature 178, 381-382.

Shoemaker, S. 1993 (1969). Time Without Change, in Philosophy of Time, R. Le
Poidevin and M. MacBeath (eds.). Oxford University Press: Oxford, 63-69.

Sklar, L. 1993. Physics and Chance. Cambridge University Press: Cambridge.

Skyrms, B. 1993. Logical atoms and combinatorial possibility. The Journal of
Philosophy 90, 219-232.

Smith, Sheldon. 2003. Are instantaneous velocities real and really instantaneous?:
An argument for the affirmative. Studies in History and Philosophy of Modern
Physics 34, 261-280.

Sol, Ayhan. 1998. An Analysis of the Concept of Retrodiction. Ph. D. Dissertation.
METU: Ankara.

Sommerfeld, A. 1904. Verhandlungen. Koninklijke Nederlandse Akademie van
Wetenschappen. Afdeling Naturkunde 13, 346.

Stein, H. 1967. Newtonian Space-Time. Texas Quarterly 10, 174-200.

Stein, H. 1968. On Einstein-Minkowski Space-Time. Journal of Philosophy 65, 5-
23.

Tetrode, H. 1922. Zeitschrift für Physik 10, 317.

Thomson, J. 1897. Cathode Rays. Philosophical Magazine 44, 294-316.

Tolman, R. 1938. The Principles of Statistical Mechanics. Clarendon Press:
Oxford.



156

Uffink, J. 2001. Bluff Your Way in the Second Law of Thermodynamics. Studies
in History and Philosophy of Modern Physics 32, 305-394.

Uffink, Jos. 2002. Essay Review: Time and Chance. Studies in History and
Philosophy of Modern Physics 33, 555-563.

Van Fraassen, B. C. 1970. An Introduction to the Philosophy of Time and Space.
Random House: New York.

Van Fraassen, B. C. 1974. The Einstein-Podolsky-Rosen Paradox. Synthese 29,
291-309.

Wald, R M. 1984. General Relativity. University of Chicago Press: Chicago.

Weingrad, Robert. 1977. Space-Time and the Direction of Time. Noûs 11, 119-
131.

Wheeler, J. A. and Feynman R. A. 1945. Interaction with the Absorber as the
Mechanism of Radiation. Reviews of Modern Physics 17, 157-181.

Wigner, E. 1959. Group Theory. Academic Press: NY.

Yaghjian, A. 1992. Relativistic Dynamics of a Charged Sphere. Springer Verlag:
Berlin.

Zeh, H. D. 1999. The Physical Basis of the Direction of Time. Springer Verlag:
Berlin.



157

TURKISH SUMMARY

Zamanın oku problemi, genel olarak felsefe, özeldeyse bilim felsefesinin

önemli konuları arasındadır. Önemi sadece kapsadığı konular açısından değil,

farklı disiplinler ve felsefe sistemleri arasında kurduğu bağlantı dolayısıyladır.

Zamanın yönünün çalışılması felsefenin herhangi bir alt bölümü esas alınarak

yapılabileceği gibi (metafizik ya da ontoloji) farklı bilim dallarından da

yararlanılarak yapılabilir. Psikolojik zaman ile fiziğin bize sunduğu zaman anlayışı

birbirinden farklı zaman tanımlarına yaslandığından, her bir bilim dalının seçimi

kendi öz felsefesini de beraberinde getirecektir. Bu tezde yararlanılan bilim fizik

olduğu için bu tezin fizik felsefesi alanında olduğunu saptamak yanlış

olmayacaktır.

Zaman oku sözü ilk defa Sir Arthur Eddington tarafından edilmiş olup,

zamanın hep ileriye doğru akmasını, yani tek yönlülüğünü belirtmek için

kullanılmaktadır. Devamlı yaşlanmamız, sütle kahvenin kendiliğinden birbirine

karışması (ayrışmaması) hep zamanın tek yönlülüğüne işaret eder.

Fizik felsefesindeyse, zaman oku yolundan yapılacak herhangi bir

araştırma, zamanın tersinirliği işlemi cinsinden yapılır. Denklemlerimizdeki zaman

parametresi negatifiyle değiştirildiğinde denklemin aynı kalması bize bu

denklemin belirli bir zaman yönünü ayrıcalıklı saymadığını gösterir. Bunun tersi

bir durumsa, o denklemin zamanın yönü açısından belirli bir yönü ayrıcalıklı

saydığını düşündürür.

Denklemlerin zamanla ilişkisini teorinin zamanla ilişkisine dönüştürmekse

kolay değildir. Bir teori yapısı itibariyle birçok denklemi içerebilir. Bunların

herhangi birini temel denklem saymak her zaman kolay bir iş olmayacaktır. Bu

kişinin öznel kıstaslarına göre değişen bir uğraş olacağından doğrudan o kişinin
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ontolojik seçimlerine bağlıdır. Buna örnek olarak Newton mekaniğini verebiliriz:

Newton mekaniğinde genellikle en temel olarak alınan yasa ikincisidir. Bu yasa,

kuvvet, kütle ve ivme arasındaki ilişkiyi verir. Newton’un ikinci yasasında

belirtilen kuvvet herhangi bir kuvvet olabilir. Diğer bir deyişle geneldir. Bu kuvvet

ifadesine sürtünme kuvvetini eklediğimiz anda Newton mekaniğinin zaman oku

açısından simetriye sahip olmadığını görürüz. Genel ifadenin kendisiyse zaman

açısından simetriktir. Eğer sürtünme kuvvetini doğada bulunan bir kuvvet olarak

düşünürsek, Newton mekaniğinin zaman simetrik olmadığı sonucuna varırız ki, bu

da bizi Newton denklemlerinin geçmiş ile gelecek arasında ayrım yapabildiğini

düşünmeye sevk eder. Eğer denklemin genel halini düşünürsek, zaman simetrik

olduğundan çıkan sonuç tam aksi olacaktır. Bunun hangisi doğrudur? Cevap

kişinin ontolojik seçimlerine bağlıdır. Eğer ünlü fizikçi Richard Feynman gibi

doğadaki bütün kuvvetlerin korunumlu olarak ifade edilebileceğini düşünüyorsak,

denklemlerin geçmiş ve gelecek arasında ayrım yapmadığını düşüneceğiz.

Klasik mekanikte zaman oku problemi açısından önemli olan bir diğer

konu da kaos teorisidir. Bu teoriye göre, belirli bir noktadan başlayan hareket,

klasik olsa bile, tekrar o noktaya dönemez. Bunun nedeni, sistemin bizzat

kendisinin küçük değişimlere aşırı hassasiyetidir. Bu açıdan bakıldığında bir

sistemin klasik olması onun zaman oku simetrik olmasını gerektirmez.

Tezin ilgili kısmında bahsi geçen son konu klasik fizikte ölçmenin zaman

oku problemine etkisidir. Eğer ölçümlerde, ölçümün bizzat kendisinden doğan

hatalar da düşünülürse, o zaman sistemin zaman simetrik olmayacağı açıktır.

Çünkü her ne kadar ölçüm sonucu bulunan değerin kesinlik içeren kısmı zaman

simetrik olacaksa da, aynısını kesinliği az olan kısım için söylemek mümkün

değildir. Bütün bu yukarıda özeti yapılmaya çalışıla konular tezin ikinci kısmını

oluşturmaktadır.

Tezin üçüncü bölümü klasik elektrodinamikte zamanın oku konusunu

incelemektedir. Klasik elektrodinamik Maxwell’in dört denklemi yardımıyla

incelenir. Genellikle bu denklemler zaman açısından simetrik olarak Kabul
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edilirler. Bunu görebilmek için, elektrik alan aynı kalmasına rağmen, manyetik

alanın negatifinin alınması gerekir. Bu tür bir zaman tersiniri işleyişi anlamlı

gözükmemektedir. Çünkü biz her şeyden önce elektrik ve manyetik alanın aynı

şekilde düşünülmesi gerektiğini biliyoruz. Nasıl oluyor da elektrik alan aynı

kalırken manyetik alanın negatifinin alınması haklılık kazanmış oluyor o zaman?

Bu konuda yapılabilecek ciddi bir çözümleme bizi zaman oku probleminin

yeniden tanımlanmasına götürür. Bir eylemler dizininin tersi sadece bu eylemlerin

tersyüz edilmesiyle mi elde edilir yoksa her eylemin tersine bir başka işlem daha

uygulamak mı gerekir? Bu soru sadece felsefi açıdan önemli olmayıp, fizik bilimi

açısından da oldukça önemlidir. Zamansal olarak tersten işleyen bir dünyada yeni

kuvvetlerin olup olmaması olasılığı da buna bağlıdır. Örneğin, eğer elektrik ve

manyetik alanın zaman oku karşısındaki değişimleri yeni bir Lorentz kuvvetine yol

açacak cinstense, bunun fiziki önemi aşikardır.

Bir olaylar dizininin zamansal açıdan tersinin tanımlanması iki şekilde

yapılabilir: Anlık değerlerin tersine çevrilmesi ya da dinamik koşulların tersine

çevrilmesi. Eğer dinamik koşullar diliyle konuşacak olursak, sadece bu koşulların

tersine çevrilmesinin bizim amaçlarımız için yeterli olmayacağı açıktır. O halde,

bu dinamik koşullar ek bir işleme tutulmalıdırlar.

Anlık değerler ya da dinamik koşullar cinsinden konuşmak klasik mekanik

söz konusu olduğunda sorun teşkil etmez. Çünkü bu teori açısından bakıldığında

anlık değer olan konum vektörüyle dinamik koşul olan hız aynı anda ve tutarlı bir

biçimde ters çevrilebilirler. Aynı şeyi klasik elektromanyetik alanında yapmaya

kalktığımızdaysa sorun çıkar çünkü elektrik ve manyetik alanlar arasında hız ile

konum arasındaki bağdan farklı bir bağ vardır. Bu bize aslında zamanın oku

probleminin tanımlamasının bile ne kadar çetrefil bir iş olduğunu göstermektedir.

Aslında olası bir çözüm boyutun arttırılması ile mümkün gözükmektedir.

Maxwell denklemlerini dört boyutta yazdığımızda elektrik ve manyetik alanları bir

alan tensörü içinde yazmak mümkün olduğundan dinamik koşulların ya da anlık

koşulların önemi kalmamaktadır. Bu örnek aslında bize çok daha genel bir
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oluşumu işaret etmektedir: Boyut arttırımı bazen basit bir matematiksel işlem

olmaktan çok aynı olayın farklı görünmesini sağlamaktadır.

Dikkat çekilmesi gereken konulardan biri yukarıda anılan çözümün sadece

kovaryant yazımdan kaynaklanmadığıdır. Her kovaryant yazım bize istenilen

sonucu vermemektedir. Bu yüzden özel görecelik kuramının yeri ayrıdır.

Üçüncü kısımda ele alınan konulardan biri de fiziksel sistemlerin kendi

üzerine etkilerinin ele alınmasıdır. Tarihsel olarak ilk defa Lorentz tarafından ele

alınan bu konu hızın zamana göre ikinci dereceden türevi ile verilen bir terime yol

açmıştır. Daha sonar aynı terim, Dirac ve Abraham tarafından da elde edilmiştir.

Bu terim temelde iki sorunu da beraberinde getirmiştir. İlk olarak kendi kendine

hızlanan bir sistemi betimlemesi Newton yasaları açısından tutarsızdır. Çünkü

Newton yasaları uyarınca, üzerine hiç bir kuvvet etki etmeyen bir nesne ya sabit

hızla hareketine devam etmelidir ya da durmalıdır. Diğer bir sorunda nedensellik

ilkesinin bu tür durumlarda geçersiz kılınmasıdır.

Lorentz-Abraham-Dirac denkleminin bu iki sorununun çözümü aslında çok

önceleri Somerfeld tarafından verilmiş olmasına rağmen bilim tarihinin karanlık

sayfalarının arasında kalmıştı. Sommerfeld’in çözümü klasik elektrodinamiğin

uzanımlı bir parçacığa uygulanışı ile ilgiliydi. Diğer bir deyişle Sommerfeld nokta

parçacıklar yerine, yarıçapı sıfırdan farklı olan parçacıkları kullanarak hesap

yapmış ve az önce bahsedilen iki sorun da ortadan kalkmıştı. Bu örnek bize klasik

elektrodinamiğin aslında zaman oku yönünden simetrik olmadığını gösterir.

Çünkü nokta parçacıklar sadece kuvantum fiziği ile anlaşılabilir. Eğer parçacığın

uzanımı varsa, klasik dinamik kullanılabilir ve o zamanda asimetrik bir durumdan

söz edilebilir. Aslında bu örneğin bize gösterdiği, bir teorinin tanım kümesinde

kullanılması gerekliliğidir. Bohr dalga boyundan az olan bir yarıçapa sahip

parçacık her zaman kuvantum teorisi ile anlaşılmaya çalışılmalıdır ve bu tür

durumlarda klasik teori kullanılmamalıdır.

Daha önce Maxwell denklemlerinin kendisinden bahsetmekle birlikte,

bunların çözümü üzerinde durulmadı. Bu tezin üçüncü bölümünün bir kısmı buna
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ayrılmıştır. Burada bizim açımızdan en önemli sorun şudur: Maxwell

denklemlerinin iki tür çözümü vardır. Bunlardan birisi nedensellik ilkesi ile

bağdaşmakta, diğeriyse bağdaşmamaktır. Nedensellik her ne kadar fiziğin içinde

fiziksel yasa olarak kabul edilmese de, doğada her zaman nedensellik ilkesiyle

bağdaşan çözüm görülmektedir.

Maxwell denklemlerinin her iki tür çözümü de sunmalarına rağmen bizim

sadece bunlardan birini gözlemlememiz aslında çok da anlaşılmaz

bulunmamalıdır. Maxwell denklemleri bütün olasılıkları verecek güçtedir. Her iki

çözümün de aynı anda evrende bulunmasını beklemek safdillik olacaktır. Bunun

bir benzeri ikinci dereceden denklem çözümlerinde görülür. Bu tür denklemler biri

pozitif diğeri negatif olmak üzere iki çözüm önermelerine rağmen, hesaplanılan

fiziksel niceliğe göre uygun olan çözüm seçilmektedir. Aynısı Maxwell

denklemlerinin çözümü için de düşünülebilir o halde. Tabii ki bu nedensellik

ilkesinin fiziksel bir yasa olarak Kabul edilmesiyle eş değerli düşünülmelidir.

Maxwell denklemlerinin bu iki tür çözümleri düşünüldüğünde, çözüm en

sonunda istatiksel okun kendisine indirgenir. Wheeler-Feynman teorisinin de

önemi bu noktada ortaya çıkmaktadır. Bu teoriye göre aslında bütün klasik

elektrodinamiği her iki çözümle de elde etmek mümkündür. Ama yine de bu

teorinin vardığı sonuç, zaman okunun tersine çevrilmesinde karşılaşılan sorunun

istatiksel olduğudur. Diğer bir deyişle sistemin ilk durumu çok büyük önem

kazanmaktadır.

Bazı felsefeciler bu noktadan hareketle elektrodinamik okun temelini

Geçmiş Hipotezinde ararlar. Buna göre, evren ilk aşamasında çok düşük bir

çekimsel entropiye sahipti. Daha sonra bu entropi artmaya başladı. Söz konusu

entropi artışına neden olan şey çekim kuvveti olduğundan, görünümü cisimlerin

bir araya gelmesiyle olmuştur. Bütün bunlar olurken evren başlamış olduğu termal

dengeden de uzaklaşmaya başlamıştır. Termal dengenin tekrar sağlanabilmesi için

ivme kazanmış olan parçacıklar ışımaya başlayacaklardır. İstatiksel teoriye göre bu

ışımalar her iki yönde de, yani hem geçmişe doğru, hem de geleceğe doğru
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olmalıdır. Ama geçmişte zaten termal denge söz konusu olduğundan bu yöndeki

ışımalar az olacaktır. Bu da istatiksel olarak klasik elektrodinamik zaman okunun

açıklanışıdır.

Tezin dördüncü bölümü az önce bahsettiğimiz istatiksel zaman okunun

anlaşılmasına yöneliktir. Burada en önemli konu H teoremdir. Boltzmann

tarafından bulunan H teorem istatiksel olarak her iki yönde de zaman okuna

açıktır. Bu yapısındaki asimetriden kaynaklanmaktadır. Söz konusu asimetri

moleküler kaos denilen bir varsayımdan kaynaklanmaktadır. Bu varsayım olmadan

H teorem olamayacağından, H teoremin asimetrisi aslında moleküler kaosun

kendisidir. Çözüm genelleştirilmiş H teoremidir. Bu teoremde artık moleküler

kaos varsayımına gerek duyulmamaktadır. Önemli olan birbirinin aynı olan

gruplar cinsinden istenilen niceliklerin ortalamasının bulunmasıdır.

Genelleştirilmiş H teoreminin temelinde ölçüme dair belirsizliklerin hesaba

katılması rol oynamaktadır. Belirsizlikler hesaba katıldığında zaman oku problemi

de çözülmüş olmaktadır. Bu durum aslında daha önceden de konu ettiğimiz klasik

mekanikteki duruma çok benzemektedir. Klasik mekanikte de ölçüme dair

belirsizlikler hesaba katıldığında sistemin zaman oku yönünden tersinmez olduğu

görülür. Klasik mekaniğin istatistiksel mekaniğin de temelinde olduğu düşünülürse

bu tür bir düşünüşün ünlü Loschmidt paradoksunun çözümünü de beraberinde

getirdiği kolaylıkla anlaşılacaktır.

Bilim felsefesi alanında bu doğrultuda en önemli çalışmayı Hans

Reichenbach yapmıştır. Onun temel katkısı Boltzmann’ın düşüncelerini büyük bir

berraklıkla açımlayabilmesidir. Tanımladığı branş sistemleri aracılığıyla

entropinin genel artışını bu branş sistemlerinin davranışına bağlamıştır. Bütün

bunlardan çıkan en önemli sonuçsa, zamanın okunun yönünün evrende bir alandan

diğer alana değişiklik gösterebileceğinin anlaşılmasıdır. Diğer bir deyişle zaman

oku bizim nerede olduğumuza bağlıdır. Bu bizim algıladığımız zaman ile evrensel

zaman arasındaki bağlantıyı gözler önüne serer.
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Reichenbach sonrası yapılan her çalışma bir şekilde ondan yola çıkmıştır.

Onu eleştirel gözle okuyanların başında felsefeci John Earman gelir. Earman’a

göre Reichenbach Einstein’ın genel görelilik yasasından tam anlamıyla

faydalanamamış, çıkarması gereken dersi çıkarmamıştır. Earman’a göre, zamanın

yönü problemi global özelliğe sahip olmakta yani evrenin her yerinde geçerli bir

zaman okundan söz etmektedir. Bu zaman oku bir kere belirlendiğinde değişmesi

söz konusu olamaz. Buna göre, evrende, herhangi bir alanında zamanın yönünün

belirlenmesi için iki temel yöntem vardır. Ya Boltzmann’ın entropi metodu

kullanılabilir ya da Earman’ın paralel taşıma metodu. İşte sorun da tam bu noktada

belirmektedir. Diyelim ki Earman’ın metodu herhangi bir bölge için gelecek

yönünü gösterdi. Boltzmann’ın metodu da bunu doğrular nitelikte diyelim.

Boltzmann’ın metodu doğası gereği istatiksel olduğundan bir sure sonra aynı yönü

geçmiş olarak göstermesi kaçınılmazdır. Buna rağmen Earman’ın metodu hala bu

nokta için geleceği işaret edecektir. Bu iki yöntemin çelişmesi kaçınılmazdır ve

çeliştiklerinde de hangisine güvenilebileceği açık değildir.

Tezin beşinci bölümü kuvantum mekaniğindeki zaman oku üzerinedir. Bu

teoride iki ana nokta vardır. Birincisi Schrödinger denklemine ilişkindir. Bu

denklem zaman oku yönünden asimetriktir. Buna rağmen bu durum engel teşkil

etmez. Çünkü kuvantum mekaniği uyarınca önemli olan dalga fonksiyonunun

kendisi değil, bundan elde edilen olasılıktır. Bu olasılık ta aynı kalmaktadır.

Diğer sorunda kuvantum mekaniğindeki ölçme sorunudur. Ölçmeden

hemen sonra elde kalan dalga fonksiyonu tersinmez niteliktedir. Zaman oku yön

değiştirdiğinde aynı sonuç elde edilemeyeceğinden ölçmenin kendisi dolayısıyla

kuvantum mekaniğinin zaman oku açısından asimetrisine hükmedebiliriz. Bu

açıdan bakıldığında David Albert’in kuvantum mekaniğiyle istatistik mekanik

arasında kurduğu ilişki çok önem kazanmaktadır. Böylece artık kuvantum

mekaniğinin zaman okuyla istatistiksel zaman okunun kaynağının bir ve tek

olduğu düşünülebilir.
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Son olarak beşinci bölümde analize tutulan konu kuvantum

elektrodinamiğinde zaman okudur. Bütün derecelerden perturbasyonlar dikkate

alındığında bu teori de zaman oku açısından nötrdür.
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