

AN ADAPTIVE SIMULATED ANNEALING METHOD FOR ASSEMBLY

LINE BALANCING AND A CASE STUDY

A THESIS SUBMITTED TO

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

HÜSEYİN GÜDEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

AUGUST 2006

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan ÖZGEN
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree
of Master of Science.

 Prof. Dr. Çağlar GÜVEN
 Head of the Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for degree of Master of Science.

 Asst. Prof. Dr. Sedef MERAL
 Supervisor

Examining Committee Members:

Assoc. Prof. Dr. Levent KANDİLLER (METU, IE)

Asst. Prof. Dr. Sedef MERAL (METU, IE)

Prof. Dr. Hadi GÖKÇEN (Gazi U., IE)

Onur ÖZKÖK (Baskent U., IE)

Asst. Prof. Dr. Bayram Ali SU (Atılım U., IE)

 iii

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I

also declare that, as required by these rules and conduct, I have fully cited

and referenced all material and results that are not original to this work.

Name, Last name : Hüseyin, GÜDEN

Signature :

 iv

ABSTRACT

AN ADAPTIVE SIMULATED ANNEALING METHOD FOR

ASSEMBLY LINE BALANCING AND A CASE STUDY

Güden, Hüseyin

M.Sc., Department of Industrial Engineering

Supervisor: Asst. Prof. Dr. Sedef Meral

August 2006, 195 pages

Assembly line balancing problem is one of the most studied NP-Hard

problems. NP-Hardness leads us to search for a good solution instead of the

optimal solution especially for the big-size problems. Meta-heuristic

algorithms are the search methods which are developed to find good solutions

to the big-size and combinatorial problems. In this study, it is aimed at solving

the multi-objective multi-model assembly line balancing problem of a

company. A meta-heuristic algorithm is developed to solve the deterministic

assembly line balancing problems. The algorithm developed is tested using the

test problems in the literature and the the real life problem of the company as

well. The results are analyzed and found to be promising and a solution is

proposed for the firm.

Keywords: Assembly Line Balancing, Multi-Model Line, Multi-

Objective, Meta-Heuristics, Adaptive Simulated Annealing

 v

ÖZ

MONTAJ HATTI DENGELEMESİ İÇİN BİR UYARLANABİLİR

TAVLAMA BENZETİMİ YÖNTEMİ VE BİR ÖRNEK ÇALIŞMA

Güden, Hüseyin

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Y. Doç. Dr. Sedef Meral

Ağustos 2006, 195 sayfa

Montaj hattı dengeleme problemi en çok çalışılan NP-Zor

problemlerden biridir. NP-Zorluk, özellikle büyük boyutlu problemlerde, en iyi

çözüm yerine iyi bir çözümü araştırmamıza neden olur. Modern-sezgisel

algoritmalar büyük boyutlu ve kombinatoryal problemlere iyi çözümler bulmak

amacıyla geliştirilmiş yöntemlerdir. Bu çalışmada, bir şirketin çok-amaçlı çok-

modelli montaj hattı dengeleme problemini çözmek amaçlanmıştır. Bir

modern-sezgisel algoritma geliştirilmiş ve deterministik montaj hattı

dengeleme problemlerini çözmek üzere sunulmuştur. Geliştirilen algoritma

literatürdeki test problemleri ve şirketteki gerçek hayat problemi kullanılarak

test edilmiştir. Sonuçlar analiz edilmiş ve umut verici bulunmuşlardır ve firma

için bir çözüm önerilmiştir.

Anahtar Kelimeler: Montaj Hattı Dengeleme, Çok-Modelli Hat, Çok-

Amaç, Modern-Sezgiseller, Uyarlanabilir Tavlama Benzetimi

 vi

To my family

 vii

ACKNOWLEDGMENTS

I express my great gratitude to Asst. Prof. Dr. Sedef MERAL because

of her guidance and contributions throughout the study. I am indebted to İlker

İPEKÇİ, my friend, for his invaluable help. I also want to thank to Asst. Prof.

Dr. Haldun SÜRAL for his suggestions. Thanks to Yiğit Koray GENÇ, my

friend, for his contributions.

 viii

TABLE OF CONTENTS

PLAGIARISM .. iii

ABSTRACT ...iv

ÖZ ... v

DEDICATION .. vi

ACKNOWLEDGMENTS ...vii

TABLE OF CONTENTS ..viii

LIST OF TABLES ..xi

LIST OF FIGURES ...xv

CHAPTER

1. INTRODUCTION ..1

2. ASSEMBLY LINE BALANCING AND THE RELEVANT

LITERATURE .. 6

2.1 Assembly Lines ... 6

2.2 Assembly Line Balancing Problem ... 9

2.2.1 Single-Model Deterministic ALBP ...10

2.2.1.1 Single-Model Deterministic Type-I ALBP12

2.2.1.1.1 Optimal Seeking Methods ...12

2.2.1.1.2 Heuristic Solution Approaches19

2.2.1.2 Single-Model Deterministic Type-II ALBP20

2.2.2 Mixed-Model ALBP ..21

2.2.3 Multi-Model ALBP ..26

2.2.4 Meta-Heuristic Approaches ..28

3. THE CASE STUDY ...34

3.1 The Company in the Study ...34

3.2 Current Balancing Method and Development of the Proposed

Method ..34

3.3 Determining the Problem ..37

 ix

3.3.1 Tasks ...37

3.3.2 Task Times ...38

3.3.3 Precedence Relationships Diagram ..39

3.3.4 Zoning Restrictions ..42

3.4 Integer Programming Studies ..45

4. THE PROPOSED APPROACH ...49

4.1 Simulated Annealing (SA) ..49

4.2 Adaptive Simulated Annealing (ASA) ...51

4.3 Construction of the Solutions ...54

4.4 Representation of the Solutions ..55

4.5 Types of Moves ..56

4.6 Objectives of ALBP and Evaluation of Solutions57

4.6.1 Minimization of the Number of Stations57

4.6.2 Minimization of Cycle Time ...58

4.6.3 Maximization of Irregularity between Station Times59

4.6.4 Maximization of Smoothness between Station Times61

4.6.5 Maximization of Common Tasks that Assigned to the Same

Stations between Consecutive Models62

4.7 Sequencing Problem ..63

4.8 The Proposed Methodology...63

4.8.1 Representation of the Solutions ..64

4.8.2 The Move Procedure ...67

4.8.3 The Adaptive Cooling Schedule ...68

4.8.4 Construction of the Initial Solution ...70

4.8.5 Evaluating the Solutions ...70

4.8.5.1 Evaluating the Line Balances ..70

4.8.5.2 Evaluating the Sequences ..73

4.8.6 The Overall Methodology ...74

5. EXPERIMENTAL ANALYSIS ... 77

5.1 Design of the Experiment ..77

5.2 Single and Mixed-Model Assembly Line Balancing Problems ….79

 x

5.2.1 Test Problems ...79

5.2.1.1 The First ASA Part ..79

5.2.1.2 The Second ASA Part ..80

5.2.2 The Case Problem ..81

5.3 Multi-Model Assembly Line Balancing Problems85

5.4 Current Line Balance and Suggested Line Balances88

5.5 Run Times of the Experiments ...88

6. CONCLUSION AND FURTHER RESEARCH ISSUES90

REFERENCES ...96

APPENDICES

A. SKETCH OF THE ASSEMBLY LINE OF THE FIRM105

B. TASK LIST ..106

C. PRECEDENCE RELATIONSHIPS ..116

D. PSEUDOCODE OF THE ALGORITHM ...128

E. RESULTS OF THE EXPERIMENTAL RUNS131

F. CURRENT AND SUGGESTED ASSIGNMENTS188

 xi

LIST OF TABLES

TABLES

Table 4.1 Computations of station numbers and station times for the

example ..56

Table 4.2 Representations of the current and candidate solution in the

example with standard and order encoding65

Table 4.3 Differences between current and candidate solution of the

example according to standard and order encoding66

Table 5.1 Average values and Standard Deviation values of response

variables of 10 runs of SMALB and MiALB82

Table 5.2 Average values of response variables of 10 runs for

MuALB ..87

Table B.1 Task List ..106

Table C.1 List of immediate predecessor-successor relationships for

individual models ...116

Table E.1 Test problems and deviations of the found solutions from the

optimum solutions for SALBP-I.131

Table E.2 Descriptive statistics of deviations for SALBP-I137

Table E.3 Test problems and deviations of the found solutions from the

optimum solutions for SALBP-II.138

Table E.4 Descriptive statistics of deviations for SALBP-II144

Table E.5 Sequences and number of common tasks between successive

models in a sequence. ...145

Table E.6 Average values of common tasks that are assigned to the same

stations with low level of the weight of the third

objective ...146

 xii

Table E.7 Average values of common tasks that are assigned to the same

stations with intermediate level of the weight of the third

objective ...147

Table E.8 Average values of common tasks that are assigned to the same

stations with high level of the weight of the third

objective ...148

Table E.9 Average values of TSTs at the beginning of the runs with low

level of the weight of the third objective149

Table E.10 Average values of TSTs at the end of the runs with low level

of the weight of the third objective150

Table E.11 Average values of numbers of stations at the beginning of the

runs with low level of the weight of the third objective151

Table E.12 Average values of numbers of stations at the end of the runs

with low level of the weight of the third objective152

Table E.13 Average values of the differences between the theoretical

minimum numbers of used stations and the numbers of used

stations found with the algorithm at the end of the runs with

low level of the weight of the third objective153

Table E.14 Average values of cycle times at the beginning of the runs

with low level of the weight of the third objective154

Table E.15 Average values of cycle times at the end of the runs with low

level of the weight of the third objective155

Table E.16 Average values of the differences between the theoretical

minimum cycle times and the cycle times found with the

algorithm at the end of the runs with low level of the weight

of the third objective ..156

Table E.17 Average values of TSTs at the beginning of the runs with

intermediate level of the weight of the third objective157

Table E.18 Average values of TSTs at the end of the runs with

intermediate level of the weight of the third objective158

 xiii

Table E.19 Average values of numbers of stations at the beginning of the

runs with intermediate level of the weight of the third

objective ...159

Table E.20 Average values of numbers of stations at the end of the runs

with intermediate level of the weight of the third

objective ...160

Table E.21 Average values of the differences between the theoretical

minimum numbers of used stations and the numbers of used

stations found with the algorithm at the end of the runs with

intermediate level of the weight of the third objective161

Table E.22 Average values of cycle times at the beginning of the runs

with intermediate level of the weight of the third

objective ...162

Table E.23 Average values of cycle times at the end of the runs with

intermediate level of the weight of the third objective163

Table E.24 Average values of the differences between the theoretical

minimum cycle times and the cycle times found with the

algorithm at the end of the runs with intermediate level of the

weight of the third objective ..164

Table E.25 Average values of TSTs at the beginning of the runs with

high level of the weight of the third objective165

Table E.26 Average values of TSTs at the end of the runs with high level

of the weight of the third objective166

Table E.27 Average values of numbers of stations at the beginning of the

runs with high level of the weight of the third objective ...167

Table E.28 Average values of numbers of stations at the end of the runs

with high level of the weight of the third objective168

Table E.29 Average values of the differences between the theoretical

minimum numbers of used stations and the numbers of used

stations found with the algorithm at the end of the runs with

high level of the weight of the third objective169

 xiv

Table E.30 Average values of cycle times at the beginning of the runs

with high level of the weight of the third objective170

Table E.31 Average values of cycle times at the end of the runs with

high level of the weight of the third objective171

Table E.32 Average values of the differences between the theoretical

minimum cycle times and the cycle times found with the

algorithm at the end of the runs with high level of the weight

of the third objective ..172

Table F.1 Current and Suggested Assignments188

 xv

LIST OF FIGURES

FIGURES

Figure 2.1 Types of Assembly Lines (Wild, 1972)….........................8

Figure 2.3 A combined precedence diagram constructed from two

models ..23

Figure 4.1 An example of the convergence of a SA algorithm with very

small initial temperature ...51

Figure 4.2 An example of the convergence of a SA algorithm with very

high initial temperature ..51

Figure 4.3 An example of the convergence of an ASA53

Figure 4.4 An example of the conventional cooling schedule of a SA

algorithm (Example 1) ...53

Figure 4.5 An example of the conventional cooling schedule of a SA

algorithm (Example 2) ...53

Figure 4.6 An example of the cooling schedule of an ASA algorithm ..54

Figure 4.7 Precedence Diagram of the Example56

Figure 4.8 Current and candidate solutions for the example60

Figure 4.9 Precedence Diagram of the Example65

Figure 4.10 An example of cooling schedule of the developed ASAs ..69

Figure 4.11 Flow chart of the methodology ...76

Figure A.1 Sketch of the Assembly Line of the Firm105

Figure C.1 Combined precedence diagram ..127

Figure E.1 Model1-number of used stations ..173

Figure E.2 Model1-cycle times ..174

Figure E.3 Model1-total slack times ..175

Figure E.4 Model2-number of used stations ..176

Figure E.5 Model2-cycle times ..177

Figure E.6 Model2-total slack times ..178

 xvi

Figure E.7 Model3-number of used stations ..179

Figure E.8 Model3-cycle times ..180

Figure E.9 Model3-total slack times ..181

Figure E.10 Model4-number of used stations182

Figure E.11 Model4-cycle times ..183

Figure E.12 Model4-total slack times ..184

Figure E.13 Combined-number of used stations185

Figure E.14 Combined-cycle times ...186

Figure E.15 Combined-total slack times ...187

 1

CHAPTER 1

INTRODUCTION

Assembly line production is a production type, which is especially

suitable for mass production. The production system runs with a high

production rate and it is assumed that there is enough demand that can

consume this production.

Assembly line balancing offers many benefits such as increased

productivity, production of high amount of standardized items at low costs, less

work congestion, reduced material handling, etc.

In order to realize the production, there are some tasks that have to be

performed. Assembly lines are the production lines through which these tasks

are performed following the sequential stations. At the assembly lines,

production parts flow from a previous station to the next one. Because of this

fixed and directed flow, the tasks have to be assigned to the sequential stations

such that no part goes back to be reprocessed. The precedence relationships

between the tasks show the order of the tasks to be completed. Any task cannot

be performed before the tasks that are located in front of itself on the

precedence relationships diagram. The assembly line balancing is allocating the

tasks to the stations on the line such that all precedence relationships are

satisfied and the production is realized with the directed production flow.

Cycle time is the time between two parts’ passing from one station to

the next one. It can be assumed that each station has this time capacity which

cannot be exceeded.

 2

Assembly lines can be classified into three groups, namely, single-

model lines which are dedicated to the production of a single product, multi-

model lines on which two or more similar models of products are produced

separately in batches and mixed-model lines on which two or more similar

models of a product are produced simultaneously on the line where the batch

sizes are very small or even one.

Real life problems are complex problems. When the problem includes

more than one and conflicting objectives, it gets harder to solve the problem.

Assembly line balancing problems, especially multi/mixed-model assembly

line balancing problems, are complex problems and generally consist of more

than one and conflicting objectives. Number of used stations, cycle time, idle

times, common tasks between models, setup cost for switching from

production of a model to another one’s, etc. are some of the components that

affect the solution of the assembly line balancing problems.

Especially for the multi-model assembly lines, the sequencing problem

arises as another problem besides the balancing problem. Because the common

tasks between the sequential models change with respect to the models, it

becomes important to determine the best sequence. If so, without balancing the

line for each model, determining the best sequence of the models arises as

another problem.

In today's industries and global market, due to the increasing

competitiveness, companies try to enhance production flexibility by reducing

their batch sizes and increasing product varieties. Because of this

competitiveness, single-model production is less common than multi/mixed

model production.

Although, based on our limited observations, multi/mixed-model

assembly lines are more preferred in real life, literature includes much more

 3

studies on the single-model line. Therefore, the main motivation of our study

for working on multi/mixed-model assembly lines stems from these

observations. During our study on a real life multi-model assembly line

balancing problem, we have faced with many kinds of details, complexities and

very flexible structures on the line. In real life, assembly line balancing

problems proved to be much more difficult than in theory. We spent a lot of

time and effort to deal with these difficulties but it somehow motivated us.

The firm in the study produces consumer durables. It is one of the

companies that continue their production with different models. The firm

develops new models and produces different models in a continuous manner. It

also modifies its standard models according to customer specifications. But, the

ratio of these modifications is very small. Recently, the firm especially

produces four main models with high amounts.

There is no precedence relationships diagram in the firm. Assignments

are made manually by trial and error approach based on personal experiences.

Daily production is adjusted according to the production plans on some

monthly periods. Then, the line is balanced such that it satisfies this production

rate. Batch sizes of the different models are omitted. Similarities and common

tasks between models and consequently, sequence of the models are also

neglected.

Production seriously becomes inconsistent at the week that balancing is

made. This is an important disadvantage of the current balancing procedure.

Rarely, a few amount of products from a different model passes throughout the

line among other models. But, generally system works with large batch sizes

and as a multi-model assembly line. Balancing the multi-model assembly line

as if it is a mixed-model assembly line is another disadvantage of the current

procedure. Because of the lack of the objective functions goodness of the

obtained solution is not known. Furthermore, due to the lack of evaluating

 4

functions and difficulty of the current method, better solutions may not be

searched. This is another disadvantage of the current procedure.

Meta-heuristic approaches are recently developed general search

strategies. When the problem sizes get larger, the computational times to solve

an NP-Hard problem increase non-polinomially. Especially solving the big-size

NP-Hard and combinatorial problems optimally becomes very hard, even

impossible.

This study proposes a new approach which is based on the Simulated

Annealing, one of the meta-heuristic approaches, to solve assembly line

balancing problems. The developed algorithm solves the multi-objective single,

mixed and multi-model assembly line balancing problems in a heuristic

manner. For illustrative purposes, the algorithm is used to solve the real life

multi-model assembly line balancing problem of the firm under consideration.

The proposed algorithm is tested on test problems from the literature

and on the case problem. For each type of assembly line balancing problems

the experimental results are analyzed separately and found to be promising.

With this study, it is achieved to find very good solutions even optimal

solutions, but it is not guaranteed, to complex assembly line balancing

problems in reasonable computational times. For the specific case of the firm

the method eradicated the disadvantages of the current method of the firm.

The thesis includes five chapters. The concepts related to Assembly

Line Balancing and the techniques used to solve Assembly Line Balancing

Problems are discussed in Chapter 2. The real life multi-model assembly line

balancing problem under consideration and its environment are defined in

Chapter 3. Besides, the difficulties related to the problem at hand and the

process of the development of the solution method proposed are discussed in

Chapter 3. In Chapter 4, the proposed solution method is explained. In

 5

Chapter 5, the experimental results are analyzed and the study is concluded in

Chapter 6.

 6

CHAPTER 2

ASSEMBLY LINE BALANCING AND THE RELEVANT

LITERATURE

2.1 Assembly Lines

When a product or a family of technologically similar products exhibits

high volume and stable demand over lengthy periods of time, it becomes

economical to design and layout a special facility dedicated exclusively to the

product or family of products under consideration. In order to cut down

work-in-process inventory and nonproductive times as loading, unloading and

transportation between successive operations, the workstations are physically

arranged in a contiguous sequence according to the technological ordering of

the manufacturing stages. The resulting facility is called an assembly line if the

production process is assembly or fabrication line if it is fabrication (Hax and

Candea, 1984).

Assembly is a production system and it is defined as the aggregation of

all necessary tasks in order to form a product.

Assembly is usually realized on assembly lines. Assembly line is a set of

workstations which are sequentially arranged and connected by means of a

transfer system.

Assembly lines can be classified with respect to the variety of models

assembled and the batch sizes of the models as:

 7

• Single-model Assembly Line

• Multi-model Assembly Line

• Mixed-model Assembly Line

Single-model assembly line is the line on which only one model product

assembly is realized. The assembly line on which the batch production of more

than one similar model of products is realized is called multi-model assembly

line. Mixed-model assembly line is the line on which the simultaneous

production of more than one model of products takes place (Wild, 1972). (See

Figure 2.1).

Manufacturing a product on an assembly line requires partitioning the

total amount of work into a set of elementary operations named tasks (Scholl

and Becker, 2004). A task is the smallest indivisible work element that adds

value to the product. Performing a task requires certain equipment, machines

and/or skills of workers and takes some time called task time.

A workstation (or just station) is a location along the assembly line

where a subset of tasks is processed. To perform these set of tasks, a

workstation consists of human and/or robotic operators and equipment.

The sum of the task times of all tasks that are assigned to a workstation

(i) is called work content (WCi) of the workstation. A predetermined amount of

time allocated to each workstation to finish the tasks assigned to it is called the

cycle time (C). Cycle time is equal to the biggest work content and it

determines the time between two successive products passing from any fixed

point of the assembly line. In other words, cycle time is the time between two

successive products’ completions. Hence, the production rate of the assembly

line is 1/C. Slack time (or idle time) (STi) of a station (i) is the time difference

between cycle time and the work content of that station. The sum of the work

contents of all stations, or equivalently the sum of the task times of all tasks, is

 8

called the total work content (TWC) and the sum of slack times of all stations

is called the total slack time (TST) or balance delay (BD). Assembly time (AT)

is the maximum time that the line may use to complete a product. Assembly

time is equal to multiplication of number of stations (m) and cycle time

(Baybars, 1986; Held, Karp and Sareshian, 1963; Klein, 1963; Kilbridge and

Wester, 1961; Kilbridge and Wester, 1962).

Figure 2.1 Types of Assembly Lines (Wild, 1972)

Stocks of parts to be assembled

a) Single-Model Assembly Line

Basic item fed

into the line

Assembly Line

b) Multi-Model Assembly Line

c) Mixed-Model Assembly Line

 9

In order to realize the production, all tasks have to be performed. At the

assembly lines, products move from a previous station to the next station.

Because of this fixed and directed flow, the operations have to be assigned to

sequential stations such that no part goes back to be reprocessed. Some tasks

can not be performed until some other tasks are completed. These precedence

relations restrict the assignment of tasks to the workstations. A task can not be

assigned to the previous stations of the station that any previous task of that

task is assigned. The graph that shows precedence relations of tasks is called

precedence graph. It contains a node for each task, node weights for the task

times and arcs for the precedence constraints (Scholl and Becker, 2004).

Especially for the real life problems, zoning restrictions add further

complexities to the problem. Sometimes, there can be such situations that a set

of tasks has to be performed at the same station or different stations.

Occasionally, because of particular equipment, a task would be made at any

specific station or a task can not be performed at a particular station.

2.2 Assembly Line Balancing Problem

Assembly lines rely heavily on the Principle of Interchangeability and

the Division of Labor. Principle of interchangeability suggests that individual

components that make up a finished product should be interchangeable

between product units. Division of labor includes the concepts of work

simplification, standardization and specialization. These two concepts

facilitated mass production, allowed replacement parts to be used to lengthen a

product's useful life and made the development of assembly lines possible

(Askin and Standridge, 1993).

The first assembly line is credited to Henry Ford in 1915 after which it

has been widely used in various production systems (Erel, Sabuncuoğlu and

Aksu, 2001).

 10

Assembly line balancing is allocating the tasks, which have to be

performed to manufacture the product, to workstations such that all precedence

relations and zoning restrictions are satisfied, taking into account cycle time

and/or number of workstations and task times. Assembly line balancing

problem (ALBP) is finding an allocation that optimizes an objective function.

Minimizing the number of workstations given cycle time, and

minimizing the cycle time given number of workstations are the two most

commonly used objectives in ALBP literature. When the ALBP considers the

first objective, it is called Type I problem, and it is called Type II problem

when it considers the second objective. There are some other objectives like

minimizing balance delay, maximizing line efficiency, minimizing inventory,

minimizing some costs, minimizing set-up time, etc..

Whether the objective is minimizing the number of workstations or

minimizing the cycle time, the ALBP is referred to as the General Assembly

Line Balancing Problem (GALBP). The subtypes of ALBP are considered in

the next sections (Scholl and Becker, 2004).

2.2.1 Single-Model Deterministic ALBP

The line is dedicated to a single-model product and all task times are

known with certainty. This is the simplest form of ALBP and it is called Simple

Assembly Line Balancing Problem (SALBP).

The following assumptions are valid for SALBP (Baybars, 1986):

• All input parameters are given and known with certainty.

• All tasks have to be done.

• A task cannot be split among two or more stations.

• Because of the precedence relations, tasks cannot be done in an

arbitrary sequence.

 11

• There are no layout, zoning or positional restrictions, thus any

task can be processed at any station.

• The fixed and the variable costs associated with all stations are

the same and all stations under consideration are equipped and

manned to process any one of the tasks.

• The task times are fixed and independent from the sequence.

• The line is serial with no feeder line or parallel subassembly

lines.

• The line is designed for a unique model of a single product.

The problem is called as the SALBP-I if the simple assembly line

balancing problem is Type-1 problem, and SALBP-II if the problem is Type-II

problem.

Although the SALBP problem is easy to formulate, it is NP-hard. The

enumeration of the feasible task sequence requires an enormous effort. The

SALBP has a finite, but extremely large number of feasible solutions. The

problem's inherent integer restrictions result in enormous computational

difficulties. There are n! different sequences of n tasks, without considering the

precedence constraints. However, the precedence and cycle time constraints

drastically reduce this number. For r precedence relations among n tasks, there

are roughly n!/2r distinct sequences; even this is too large to handle (Erel and

Sarin, 1998).

Because of the complexity of the problem, to achieve an optimal or at

least an acceptable solution, a lot of solution methodologies have been

suggested in the literature.

 12

2.2.1.1 Single-Model Deterministic Type-I ALBP

2.2.1.1.1 Optimal Seeking Methods

According to both Tonge (1961) and Prenting and Thomopoulos

(1974), Bryton (1954) was the first to give an analytical statement of ALBP.

However, the first published analytical statement of the problem is due to

Salveson (1955) (Baybars, 1986). Salveson (1955) formulated Type-I ALBP as

a linear programming problem. His model can result in split tasks and

infeasible solution, because of the continuous definition of the decision

variables. Bowman (1960) was the first researcher who suggested integer

programming approaches for ALBP. By changing the LP formulation to IP

formulation, he provided the “nondivisibility” constraint. He developed two

different IP formulations to solve ALBPs. The first one uses decision variables

which represent the amount of time that a task uses at a station. Then he uses

other binary variables to prevent division of tasks. The second one uses

decision variables which show the starting times of tasks. In this model the

stations are not explicitly represented. Then he uses other binary variables to

guarantee that tasks may not have the same starting time.

White (1961) modified Bowman’s model and used binary variables to

represent the assignments. A variable is ‘1’ if a task is assigned to a station or

‘0’ otherwise. Bowman (1960) and White (1961) use a cost function to

minimize the number of stations. Some other IP formulations have been

presented that use different objective functions to minimize the number of

stations. Thangavelu and Shetty (1971) and Patterson and Albracht (1975) are

two of these studies.

Thangavelu and Shetty (1971) proposed a 0-1 IP formulation. They

have used different precedence constraints and occurrence constraints from the

Bowman’s model. They solve their 0-1 IP program by applying additive

 13

algorithm of Balas (1965), as presented by Geoffrion (1967). This method is a

Branch and Bound (B&B) method which uses two subroutines, one for

augmenting the partial solution if it may lead to a feasible completion better

than the incumbent feasible solution, and the other one for backtracking and

record-keeping, whenever a feasible completion better than the incumbent is

obtained or when it can be shown that such a solution does not exist. Authors

add a conditional feasibility test to the Geoffrion algorithm. The test permits

ready augmentation of the partial solution retaining feasibility, so that the

implicit enumeration process is expedited. They start with a feasible solution,

obtained by the heuristic procedure of Helgeson and Birnie (1961), from which

they determine the optimal solution (Baybars, 1986).

Patterson and Albracht (1975) suggested a 0-1 IP formulation with a

Fibonacci Search method. Their method examines a sequence of 0-1 IP

problems to obtain feasible solutions. In order to reduce the number of

variables, they use the earliest and latest stations that the tasks can be assigned

to. They eliminate the occurrence constraints and use conditional feasibility

tests for the precedence constraints, and use a binary infeasibility test for the

cycle time constraints. They use a dummy final task if necessary and try to

minimize the number of the stations that the final task is assigned to.

Talbot and Patterson (1984) proposed a general IP algorithm to solve

SALBP-I. Since the problem is not 0-1 IP, the number of integer variables is

limited with the number of tasks. To expedite the backtracking in the problem

they used network cuts and network chains and idle time tests. Their method

systematically evaluates all possible task assignments to the stations and, like

Thangavelu and Shetty (1971) it is based on the implicit enumeration algorithm

of Balas (1965) (Baybars, 1986).

 14

The general 0-1 IP for Type-I ALBP is formulated as follows:

Minimize ∑
m

j

jm (1)

Subject to

number. large very a is and

 timecycle is

 task of task time theis

 tasksofnumber theis

 stations ofnumber maximum theis

 task of successors immediate ofset theis

otherwise0

 used is station if1

otherwise0

station toassigned is task if1

 where,

(6) 11 }1,0{

(5) 1 0

(4) 1

(3) 1 0

(2) 1 1

1

1

11

1

M

C

it

n

m

iS

j
m

ji
x

,...,m j,...,n andix

,...,mjMmx

,...,mjCxt

Sd k,...,n anijxjx

,...,n ix

i

i

j

ij

ij

j

n

i

ij

n

i

iji

i

m

j

kj

m

j

ij

m

j

ij





=





=

==∈

=≤−

=≤

∈=≤−

==

∑

∑

∑∑

∑

=

=

==

=

In this model, the objective function (1) computes the number of used

stations m. Constraint (2) is the assignment constraint and ensures that each

task is assigned to exactly one station. Constraint (3) is known as the

precedence constraint and states that all immediate successors of task i (Si)

have to be assigned to either stations that comes after the station that task i is

assigned to or to the station that task i is assigned to. Constraint (4) is the cycle

time constraint and prevents exceeding the cycle time for a station. Constraint

 15

(5) states that station j is used if any task is assigned to it. Constraint (6) is the

non-divisibility constraint and satisfies that any task can be assigned to a

station as a whole or not.

The general 0-1 IP for Type-II ALBP is formulated as follows:

Minimize C (7)

Subject to

 timecycle is and

 task of task time theis

 tasksofnumber theis

used stations ofnumber theis

 task of successors immediate ofset theis

otherwise0

station toassigned is task if1

 where,

(11) 11 }1,0{

(10) 1

(9) 1 0

(8) 1 1

1

11

1

C

it

n

m

iS

ji
x

,...,m j,...,n andix

,...,m jCxt

Sd k,...,n anijxjx

,...,n ix

i

i

ij

ij

n

i

iji

i

m

j

kj

m

j

ij

m

j

ij





=

==∈

=≤

∈=≤−

==

∑

∑∑

∑

=

==

=

In this model, the objective function (7) minimizes the cycle time.

Constraint (8), Constraint (9) and Constraint (10) are same with the Constraints

(2), (3) and (4) in the previous model respectively. Constraint (11) is same with

the Constraint (6) in the previous model.

It is possible to find the optimal solution of an ALBP by a Branch and

Bound (B&B) algorithm. A feasible solution to an ALBP can be represented by

a tree in which each path corresponds to a feasible solution, with each arc

 16

representing a workstation. Optimal solution can be found by evaluating the

paths enumeratively.

Jackson (1956) presented the first branch and bound algorithm to solve

the ALBP. In this algorithm, before any assignment is made to the last station,

all assignments except for the last station are examined explicitly. Therefore,

the algorithm is time consuming. Jackson (1956) showed that an optimal

solution exists in a full enumeration tree whose arcs represent only maximal

stations. A station is maximal, if no unassigned task can be added feasibly.

Hu (1961) and Mertens (1967) are some of the authors that present

optimum tree-search procedures for solving ALBP in their studies.

Wee and Magazine (1981a) constructed a B&B algorithm. This

enumerative method was formulated for the minimization of the number of

workstations. They developed two heuristics, one of which is a variation of the

bin packing problem and the other is basically a reverse application of the

Ranked Positional Weight Technique due to Helgeson and Birnie (1961).

Wee and Magazine (1981b) developed another B&B algorithm by

modifying the one in Wee and Magazine (1981a). This algorithm was

formulated for the minimization of cycle time. They reported four different

search methods. Two of them are search methods starting with lower and upper

bounds. The others are a "binary search" and a "binary and Fibonacci search"

procedures.

Johnson (1988) developed a B&B algorithm called Fast Algorithm for

Balancing Lines Effectively (FABLE) to solve SALBP-I. Because of the fact

that just one branch in the tree needs to be stored at any one time, the use of

backtracking and re-use of the same computer memory locations allow

minimal and predictable memory space to be used. Constructing the tree as one

 17

branch at a time is termed laser search by Johnson (1988). In other words,

FABLE is a depth-first B&B algorithm. In the enumeration stage, eight

fathoming rules are used in order to shorten the search time. Although FABLE

is an effective algorithm it has some limitations. For example, some of the

fathoming rules can not be applied if problem includes zoning restrictions.

Hoffmann (1992) proposed a single solution method called EUREKA.

EUREKA makes depth-first laser search by using "theoretical minimum total

slack time" fathoming rule. Since EUREKA is a depth oriented laser search

algorithm, only the current branch needs to be recalled along with the

precedence information and thus computer storage does not have to be

allocated for alternate nodes. EUREKA uses the procedure that is described by

Hoffmann (1963) to generate a set of tasks for a single station. Hoffmann

Heuristic Technique uses this procedure and creates all alternative task sets for

a single station and selects the set that has the smallest slack time. Then it

passes to the next station. On the other hand, EUREKA uses this procedure to

generate a set for a single station and then algorithm passes to the next station.

As a new station combination is generated, the cumulative sum of station slack

times is calculated. If this sum exceeds the theoretical minimum total slack

time, all emanating branches are fathomed. The algorithm searches in an

orderly manner for an alternative set at this station; if one is found that does not

result in an excessive slack, it goes on to the next station; if not, it backtracks to

the previous station and generates an alternative set of tasks there and

continues. The algorithm continues until all the tasks have been assigned and

the theoretical minimum total slack time has not been exceeded or all branches

have been fathomed. If the algorithm can not find a feasible solution at the end

of searching all the branches, it increases the theoretical minimum number of

workstations by one and the theoretical minimum total slack time by cycle

time, then searches all branches again. When problem size gets larger, it may

take unreasonable time to search all branches. Therefore, Hoffmann sets a time

limit for computation, and if the algorithm can not find a feasible solution at

the end of this time limit, then the algorithm searches in the backward direction

 18

in the tree of branches. If the algorithm again can not find a feasible solution at

the end of the time limit, it uses Hoffmann Heuristic Technique (1963) to find

a feasible solution.

Klein and Scholl (1996) developed Simple Assembly Line Balancing

Optimization Method (SALOME). The version of the algorithm that is

developed to solve Type-I ALBP is called SALOME-I. This algorithm is a

multiple solution method that performs bidirectional search. It integrates and

improves the most promising components of FABLE and EUREKA and it uses

some additional bounding and dominance rules. A local lower bound method is

used in each node to dynamically decide on the planning direction. The

branching scheme used is station oriented.

Dynamic programming (DP) is another technique in order to solve

ALBPs optimally. The main problem of all dynamic programming methods is

that the computations required grow at an exponential rate with the increasing

problem size. Jackson (1956) developed the first algorithm based on dynamic

programming (DP) to solve ALBPs. He starts by generating all feasible

assignments to the first station. Then one generates all feasible assignments to

the second station, given the first station assignments. Then, for all feasible

first-second station combination, all feasible assignments are generated for the

third station. The algorithm is then repeated by adding a new station and stops

with the optimal solution (Baybars, 1986).

Held and Karp (1962) reported a new DP algorithm which was

described in detail in Held, Karp and Sharessian (1963). They proposed a

solution method in two parts: first part consists of a dynamic programming

technique for the exact solution of small problems and the second part finds an

approximate solution of large problems by an iterative procedure. Schrage and

Baker (1978) proposed an efficient dynamic programming algorithm. They

 19

defined and used feasible subsets of tasks and enumerate all of them with a

labeling scheme.

2.2.1.1.2 Heuristic Solution Approaches

Solving the ALBP optimally can not always be possible because of the

problem size. When the problem size gets larger, solving the problem

optimally becomes harder and even impossible in a reasonable computation

time. Therefore, several heuristic approaches have been tried so far to find a

good solution, maybe the optimal one, but they do not guarantee it, in a

reasonable time.

The Ranked Positional Weight Technique (RPWT), due to Helgeson

and Birnie (1961), is one of the best known heuristic methods proposed. The

procedure constructs a single sequence. A task is prioritized based on the

cumulative assembly time associated with itself and its successors. Tasks are

then assigned in this order to the lowest numbered feasible station (Askin and

Stanridge, 1993).

Hoffmann (1963) proposed the Successive Maximum Element Time

Method (known as Hoffmann heuristic). This method uses precedence matrix

to generate all feasible assignments and aims to make assignment with the least

slack time.

Arcus (1966) presented COMSOAL (Computer Method of Sequencing

Operations for Assembly Lines). Procedure constructs the set of available tasks

that can be assigned to the current station and chooses and assigns any task

from this set randomly. Then it updates the available task set and assigns

another task randomly. The algorithm stops when all tasks are assigned.

Because of this random selection, algorithm gives different solutions at the end

 20

of every run. It is a fast algorithm and offers a set of sequences to the

researcher. It is especially useful for large problems.

Raouf and Tsui (1980) proposed Critical Path Approach to solve

SALBP-I. Their method first determines the critical path, then gives priority to

the tasks that are on the critical path while assigning tasks to the stations.

Baybars (1986a) proposed a heuristic method in which he first

eliminates some tasks and reduces the size of the problem. Then he

decomposes the problem into some smaller problems, searches their solutions

and finally combines their solutions to construct the entire solution.

Heckman, Magazine and Wee (1989) developed several heuristic

fathoming rules and proposed a fast and effective branch-and-bound

method.

2.2.1.2 Single-Model Deterministic Type-II ALBP

While a large variety of exact solution procedures exists for Type-I

problem, only few have been developed which directly solve SALBP-II. Most

research has been devoted to search methods which are based on repeatedly

solving SALBP-I.

Helgeson and Birnie (1961) proposed solving Type-II problems, for the

first time, as a sequence of Type-I problems. For any value of cycle time, the

Type-I problem is solved. If the minimum number of stations obtained from

solution of Type-I problem is less than the given number of stations, then the

cycle time is made smaller. If it is more than the specified number of stations,

then the cycle time is made larger. At the end, the minimum cycle time is

found for the given number of stations.

 21

Klein and Scholl (1996) proposed a branch and bound algorithm, called

SALOME-II, for the SALBP-II. SALOME-II is the adaptation of SALOME-I

to SALBP-II. It solves Type-II problems by using a new enumeration

technique, the Local Lower Bound Method, which is complemented by a

number of bounding and dominance rules. It makes unidirectional and

bidirectional search.

Uğurdağ, Rachamadugu and Papachristou (1997) presented a two-stage

heuristic procedure to solve SALBP-II. Their approach is based on the integer

formulation of the problem. The first stage, which is based on a heuristic

procedure they have developed, provides an initial solution to the problem. The

second stage improves the initial solution using a simplex like algorithm.

Recently, meta-heuristic approaches became very popular to solve

many different NP-hard combinatorial problems. These brilliant approaches

provide a way to construct efficient heuristic algorithms to solve a specific

problem. It is possible to solve SALBP-I or many other variations of ALBP

like SALBP-II, multi-objective, stochastic, multi/mixed-model, U-type or any

other assembly line balancing problem with these meta-heuristics. Because

these methods are general approaches to solve any kind of ALBP as well as

SALBP, they are discussed in the last section of this chapter.

2.2.2 Mixed-Model ALBP

Mixed-model assembly line is the line on which the simultaneous

production of more than one model is realized. On a mixed-model assembly

line, the lot sizes are usually very small, like one. Although there are numerous

studies published on the various aspects of the line balancing problem, the

number of studies on mixed-model is relatively small. (Gökçen and Erel,

1998).

 22

The most important difference between single-model and mixed-model

assembly line balancing (MiALB) is seen in the precedence constraints. In

SALB, there is only one model and precedence diagram. However, in MiALB,

every model has its own precedence diagram and a solution (balance) can not

violate any of these constraints.

The mixed-model assembly lines assume that both changeover times

and changeover costs are negligible. This assumption allows to transform the

problem into single-model assembly line balancing problem. There are mainly

two methods used in this transformation: combined precedence diagram and

adjusted task times. The first approach combines the precedence diagram of the

different models into a single precedence diagram. The second approach is

appropriate only when different models have the same precedence diagram, but

with different task times. The combined precedence diagram method is more

widely used in the literature.

Combined Precedence Diagram Methods

Macaskill (1972) gives the formal definition of combining many single-

models into a single precedence diagram. When the precedence diagram of

model i is represented by a graph Gi=(Vi,Ai), where Vi is the set of tasks of

model i and Ai is the set of precedence relations, the combined graph is

G=(V,A), where V=∪i Vi and A=∪i Ai \{redundant arcs}. An arc (i,j) is

redundant if there exists another path from i to j in G. The mixed-model

defines the number of units to be produced from each model during a shift of T

time units. The processing time of i∈V is equal to the total time required for the

processing of this task in a given mixed-model.

Figure 2.2 illustrates the combined precedence diagram method. The

numbers above each node represent the task time of the corresponding task.

Note that the redundant arcs are indicated with a dashed line.

 23

Figure 2.2 A combined precedence diagram constructed from two models

2 4

5 6

7 8

2

5

5 1

1

4

Model 2

Number of units required: 1

1

2

3

4

9

7

6

8

5

10

9
1

1

15

2

2

8

6

1

2

3 6

8

9

2

3

2

5

5

1

Model 1

Number of units required: 2

 24

The balancing of the mixed-model line using the combined precedence

diagram approach is similar to the balancing of a single-model assembly line.

The only difference is that the tasks are assigned to the stations on shift, T,

which is the basis in the combined precedence diagram method, instead of the

cycle time, C.

Thomopoulos (1967) was the first researcher who used the combined

precedence diagram to solve MiALBP. Thomopoulos and then Macaskill

(1972) applied heuristics developed to solve SALBP to their combined

precedence diagrams.

Fokkert and de Kok (1997) summarized the advantages and

disadvantages of the combined precedence diagram method. According to their

study, an advantage of this method is that every repetition of a task is

performed by the same workstation, resulting in minimum learning costs. A

disadvantage of this method is related to the balancing on shift basis. Another

model mix can lead to another balance and this might create some confusion on

the shop floor. Another disadvantage of the method is that it might lead to

unequal distribution of the total work content of single-models among the

workstations.

Gökçen and Erel (1998) developed a binary integer programming

model for the MiALBP. They attempt to decrease the size of the model by

using combined predecence diagram and lower and upper bounds that limit the

increase in the number of decision variables and constraints. The results

obtained with their model are significantly superior to the one in the literature

with respect to the number of decision variables and constraints. But the

suggested model is capable of solving problems with up to 40 tasks in the

combined precedence diagram.

Gökçen and Erel (1997) proposed a goal programming approach to

solve MiALBPs with conflicting objectives. They use their mathematical

 25

model in 1998 with different objective functions. The goal programming

method they proposed solves the problem with the most important objective.

Then they add the previous solution as a constraint to the model and solve it

with the next objective.

In the study of Erel and Gökçen (1999) a shortest-route formulation of

the mixed-model assembly line balancing problem is presented. Common tasks

across models are assumed to exist and these tasks are performed in the same

stations. The formulation is based on an algorithm which solves the single-

model version of the problem. The mixed-model problem is transformed into a

single-model problem by using combined precedence diagram. They use TST

associated with each model as a performance measure.

Ayral (1999) used combined precedence diagram method to solve the

mixed-model assembly line balancing problem of Arçelik Dishwasher Plant.

She has developed a decision support system. The system provides alternative

solutions to decision makers for single or mixed-model assembly line

balancing problems. The program uses single-model balancing methods

proposed by Wee and Magazine (1981a, 1989) to solve the problem.

Bukchin and Rabinowitch (2006) seek to minimize the sum of costs of

the stations and the task duplication. They develop an optimal solution

procedure based on a backtracking, dept-first B&B algorithm and evaluate its

performance via a large set of experiments. They also propose a B&B based

heuristic for solving large-scale problems.

Adjusted Task Times Method

The second method to transform the MiALBP into SALBP is the

"adjusted task times" method. This method is only useful for the situation that

 26

all models have the same precedence diagram, but with different task times.

The method calculates the average task times with the following formula:

ti=Σk fkti
k

where ti is the average task time of task i, ti
k
 is the task time of task i on model

k and fk is the frequency of model k. Frequency of a model is the persentage of

the production of that model in the total production.

Fokkert and de Kok (1997) also summarized the advantages and the

disadvantages of the "adjusted task times" method. Their study suggests that

using the cycle time base, instead of the shift base, is the advantage of this

method. A disadvantage of the method is that there is no procedure which

determines the sequence of models in which they are produced. Another

disadvantage is that this method is not appropriate, if models have different

precedence diagrams, which is a more realistic situation.

2.2.3 Multi-Model ALBP

Multi-model assembly line balancing problem (MuALB) differs from

MiALB in the magnitude of the lot sizes. The problem shifts to MuALBP when

lot sizes get larger. So, changeover costs are important in MuABP. In the

mixed-model assembly line balancing, because the lot sizes are very small,

solution approaches try to balance the line such that tasks would be performed

on the same station for different models. As it is mentioned before, these

procedures may ignore the changeover costs. But in the multi-model assembly

line balancing, although it is not a preferred situation because of the learning

effect costs, it may be preferred to assign a certain task to different stations for

different models. In other words, it may be more appropriate to make more

model specific balancing. In the literature some studies ignore the learning

 27

curve effects and make completely separate balancing for different models as

in the case of SALB.

Wild (1972) proposed to balance a multi-model line with the balancing

methods of MiALBP, when the lot sizes are small and carrying out every

repetition of a task at the same station is more beneficial. Moreover, he

suggested to solve MuALBP with successive applications of the solution

methods of SALBP for each model, when the lot sizes are large. He proposed a

heuristic method that starts with balancing the line for the model which has the

biggest production rate and then assigns the tasks for the remaining models

according to this model's balance. The algorithm computes the efficiency of the

balance by using the slack times. Then it repeats the same procedure for the

model which has the second biggest production rate and so on. At the end, the

solution which has the best efficiency is chosen. The next step searches for the

best sequence of the models to be produced by formulating the problem as an

assignment problem so as to minimize the set up cost. The last step is finding

the batch sizes.

Buxey, Slack and Wild (1993) stated that the objective of MuALBP as

the minimization of the production costs which also include the changeover

costs. They suggested that the number of stations and the location of parts and

equipment should be static and common tasks should be allocated to the same

worker and by the manipulation of the cycle time, the balance delay could be

minimized.

Chakravarty and Shtub (1985) presented a method to solve MuALBP

that considers labor, set-up and inventory costs. They assume that the models

are produced in batches which are transported to the next station as a whole

batch. By placing buffers between two adjacent workstations, they allow the

batch sizes to vary between workstations. They use the combined precedence

diagram approach to transform their problem into SALBP.

 28

Berger, Bourjolly and Laporte (1992) described a Branch & Bound

algorithm to solve MuALBP which uses the combined precedence diagram and

the depth-first search.

Altekin (1999) developed a method to balance multi-model assembly

lines. The method tries to minimize the number of used stations. The proposed

method includes upper and lower bounds and branch-and bound procedures.

She first constructs the ‘base model’ which is obtained by choosing the

common tasks for each model and balances the line for the base model as a

single-model assembly line by using EUREKA method. Then she generates the

individual balances for each model by using the balance of the base model.

While generating the individual balances the algorithm she proposes satisfies

the feasibility.

2.2.4 Meta-Heuristic Approaches

The most popular meta-heuristic algorithm is the Genetic Algorithm.

These algorithms simulate the genetic processes of biological organisms. The

algorithms use the 'survival of the fittest' principle of the nature. It was first

proposed by Holland (1975). Genetic algorithms run with a solution set called

generation. Each solution is called a chromosome and each solution component

is called a gene. Generation is a set of chromosomes. The algorithm also

simulates the crossover and mutation processes of the biological organisms to

find the solutions and by using these operators, produces the next generation

according to the fitness values of the solutions. The first operator of Genetic

Algorithms is crossover operator. This is an operator that constructs a

chromosome, called offspring, by using two parent chromosomes. Many

problem specific crossover operators may be defined. But two-crossover

operators are more popular. The first one is one-point crossover. There is only

one crossover point at this operator and this point can be selected randomly or

with any other strategy. The offspring is constructed by taking the first part of

the first parent and the second part of the second parent according to this

 29

crossover point. The second operator is two-point crossover. With this strategy,

there are two crossover points and offspring is constructed by taking middle

part from one parent and outside parts from the other parent. The second

operator of the Genetic Algorithm is the mutation operator. This operator

generally makes point changes on a chromosome. Changing the number of

stations of a task, corresponding to the gene that the mutation operator effects,

or changing the places of two genes on the chromosome are some examples of

mutation operator. Many problem specific mutation operators may be defined.

The algorithm constructs a new generation from the current one and converges

after some iteration. According to a parent selection strategy, two parents are

chosen, and with the crossover probability, they are exposed to crossover

operator. After crossover operator, with the mutation probability, offsprings are

exposed to mutation operator. Then according to regeneration strategy, the next

generation is generated from the offsprings and parents. Parent selection and

regeneration strategies are user_specified. Hence, lots of strategies can be

developed. One of the widespread strategies is Roulette Wheel Strategy.

According to this strategy, chromosomes are ranked according to their fitness

values. Then selection probabilities are computed by using fitness values. The

algorithm generates a random number, let it be P, from the uniform distribution

between 0 and 1. The chromosome whose P value is between its selection

probabilities is chosen as one of the parents or passes to the next generation.

One of the other parent selection or regeneration strategies is selecting two

chromosomes randomly and comparing their fitness function values and taking

the better chromosome as one of the parents or passing the better one to the

next generation.

Adapting the general Genetic Algorithms approach to the ALBP

involves some difficulties. The first one is representing a solution

appropriately. There are two most general representations: standard encoding

and order encoding.

 30

Standard encoding: The chromosome is defined as a vector containing

the labels of the stations to which the tasks 1,...,n are assigned (Scholl and

Becker, 2004).

Order encoding: The chromosomes are defined as precedence feasible

sequences of tasks (Scholl and Becker, 2004).

The other difficulty faced, while constructing Genetic Algorithm to

solve ALBP, is feasibility. There are many relations between genes of a

chromosome. For example, a chromosome has to satisfy: precedence

restrictions, cycle time or number of stations limitations, assignment of all

tasks, representation of each task only once in a chromosome, etc. All of these

relations may cause infeasibilities after crossover or mutation operators. After

these operators, offspring may have a task that is repeated two times or a task

may not be represented or cycle time or precedence relations may be violated.

To overcome these difficulties, a repair algorithm has to be developed or

infeasible solutions have to be penalized.

 The best solution is updated and stored while the algorithm is running

and when the algorithm stops, the best solution is obtained.

There are many studies that use GA approaches to solve various

assembly line balancing problems. Some of them are: Anderson and Ferris,

1994; Rubinovitz and Levitin, 1995; Kim, Kim and Kim, 2000; Sabuncuoğlu,

Erel and Tanyer, 2000; Goncalves and Almeida, 2002; Ponnambalam,

Aravindan and Subba Rao, 2003.

Another meta-heuristic approache is Tabu Search, which tries to

improve a given feasible solution by iteratively transforming it into other

feasible solutions. Such transformations are referred to as moves. Solutions

which may be obtained from a given solution S by means of a single move are

 31

called neighborhood of S (School and Becker, 2004). The main logic of Tabu

Search is preventing the moves that give the recently searched solutions for a

certain amount of time and thus, searching for new solutions without cycling.

There are some other strategies of Tabu Search approach like intensification

and diversification which are mentioned below.

 There are two types of moves for SALBP: shift and swap. They are

explained using the following notations:

LPj : latest station to which a predecessor of task j is currently assigned.

ESj : earliest station to which a successor of task j is currently assigned.

• A shift (j,k1,k2) describes the movement of a task j from station

k1 to station k2 with k1≠k2. This move is feasible if k2 ∈

[LPj,ESj].

• A swap (j1,k1,j2,k2) exchanges tasks j1 and j2, which are not

related to precedence, between different stations k1 and k2. This

move is feasible if the two corresponding shifts (j1,k1,k2) and

(j2,k2,k1) are feasible (Scholl and Becker, 2004).

The Tabu Search approach forbids the attributes of the moves most

recently performed and makes them tabu for a number of iterations TD (tabu

duration) and stores them in a tabu list TL (recency based memory). When a

swap (j1,k1,j2,k2) is performed, the attributes (j1,k1) and (j2,k2) are added to TL

such that removing j1 to k1 and j2 to k2 is temporarily forbidden for TD

iterations (Scholl and Becker, 2004).

Tabu Search algorithm runs by making local search. Sometimes, all

neighborhood of S is searched and the best move or the first improving move

made or any randomly selected move is chosen as the new current solution, if it

is not tabu. Sometimes, the algorithm needs to overwrite a tabu. The criteria

that determine this need are called tabu aspiration criteria. For any current

 32

solution S, all of its neighborhood solutions may be tabu. In this situation, in

order to continue searching the algorithm, the oldest tabu is abolished or the

best move in the neighborhood is selected. Occasionally, the algorithm can find

a solution that is the best solution found so far, but one of the tabu attributes

may prevent this move. At this situation the algorithm can abolish that tabu.

The algorithm starts with an initial solution which is created by any

constructive procedure like COMSOAL or RPWT, and stops when the

stopping criteria are satisfied. The stopping criteria may be the number of

iterations or a computational time limit or any convergence measure.

In order to intensify the search in certain regions or to direct the search

into yet unvisited parts of the solution space, a frequency based memory is

used. In this memory, the relative number of iterations and task-station

assignments are stored (denoted as zjk). Several phases of the search are either

used for collecting frequency information, fixing tasks j in a station k where

they have a high zjk value (intensification) or avoiding those tasks j reenter a

station k where they have a high zjk value (diversification) (Scholl and Becker,

2004).

Some of the studies use TS to solve various assembly line balancing

problems are: Chiang, 1998; Pastor, Andres, Duran and Perez, 2002; Lapierre,

Ruiz and Soriano, 2006.

Another well-known and efficient meta-heuristic approach is Simulated

Annealing. This approach simulates the annealing processes of materials on

the decision problems. The main idea of the algorithm is to escape from the

local optima by giving an acceptance chance to inferior solutions as the next

current solution.

Simulated Annealing algorithm starts with an initial solution which is

initiated by any constructive algorithm and makes moves with swaps or shifts.

 33

The probability of accepting inferior solutions decreases, if the negative (bad)

difference between the current solution and worse candidate solution increases

or the value of the control parameter t decreases. Where F is a function to

evaluate a solution, the function that gives an acceptance probability of bad

solution is:

Exp(-(F[candidate solution]-F[current solution])/t).

 At the beginning of the algorithm, the value of t is higher and it

decreases during the iterations. This is called cooling and this cooling provides

intensification during the procedure. Algorithm initially searches the space

roughly, and as time passes, it focuses on some good solution regions.

Generally, the final value of the control parameter t is used as a termination

criterion.

Some of the studies that use SA to solve line balancing problems are:

Suresh and Sahu, 1994; Bolat, 1997; McMullen and Frazier, 1998; Xiaobo and

Zhou, 1999; Alp, Cercioglu, Tokaylı and Dengiz, 2001; Mendes, Ramos,

Simaria, Vilarinho, (2005).

Another meta-heuristic approach is Ant Colony Optimization. This

approach is one of the most recent approaches and there are fewer studies on

this method than the previously mentioned approaches. This approach

simulates the process that ants search and find the shortest path that goes to

food. Bautista and Pereria (2002) presented an ant colony algorithm to solve

SALBP-1. McMullen and Tarasewich (2003) proposed an ant colony algorithm

for a generalization of SALBP with respect to parallel stations, stochastic task

times, multiple objectives and mixed-model production.

 34

CHAPTER 3

THE CASE STUDY

3.1 The Company in the Study

Today’s global competitive market forces the companies to diversify

their products and develop new models. Companies try to enlarge their market

share, or at least, to save it by producing various models that have different

specifications according to their costumer needs. The consumer durables plant

studied is one of the companies that continue their production with different

models. The firm develops new models and produces different models. It also

modifies its standard models according to customer specifications. But the ratio

of these modifications is very small. Recently, the firm produces four main

models with high production amounts; Model1, Model2, Model3 and Model4.

(See Appendix A for sketch of the layout of the assembly line of the firm).

Model1, Model2, Model3 and Model4 comprise approximately

99-100 % of total production. According to the information obtained from the

production planning department: roughly, Model1, Model2, Model3 and

Model4 each has 70%, 15%, 10% and 5% share in total production

respectively. The production amount is 500 units per shift.

3.2 Current Balancing Method and Development of the Proposed

Method

There is no precedence relationships diagram in the firm. Assignments

of tasks to stations are made manually according to personal experiences by

 35

trial and error method. Daily production is adjusted according to the production

plans of a number of months. Then, the line is balanced such that it satisfies

this production rate. Batch sizes of the different models, similarities and

common tasks among models and consequently, assembly sequence of the

models are neglected. This situation is similar to balancing the multi-model

line by using combined precedence relationships diagram and obtaining a

unique assignment, as if it is a mixed-model line. The firm even does not have

the combined precedence relationships diagram, but the assignments are made

by taking into account the list of all tasks and omitting the specifications of the

models. Sometimes, with some more trial studies on this unique balance, small

changes related to the models are made.

Production becomes significantly inconsistent at the week that

balancing is made; because of the trial and error method many assignments

violate the precedence relationships and it stops the production. Trials and

adjustments continue till a feasible solution is achieved. This is a major

disadvantage of the current balancing procedure. Rarely, a small amount of a

different model passes throughout the line among other models. But, generally

system works with large batch sizes as a multi-model assembly line. Balancing

the multi-model assembly line as if it is a mixed-model assembly line is

another disadvantage of the current line balancing procedure. Because of the

lack of the objectives which will be mentioned in Chapter 4, the quality of the

solution thus obtained is not known. Furthermore, even it is a great success to

find any feasible solution to such a large problem based on individual

experiences and trial methods. Due to the lack of evaluating functions and

difficulty of the current method, better solutions may not be searched for. This

is another disadvantage of the procedure.

Our study started as a case study. The main intention was obtaining a

good line balance for the assembly line. The firm wanted us to develop such a

program that uses the daily production information and computes the cycle

 36

time and balances the line. The firm was not interested in the objectives

explained in Chapter 4 and related costs. The main interest of the firm was

obtaining any feasible solution that fulfills the daily production. The batch

sizes of the different models in the total daily production and differences

among the models as to the processing requirements were not important for the

firm. Namely, the firm wanted us to develop a software that makes the

balancing job that is currently being made manually.

Every assembly line balancing procedure needs a list of the tasks, task

times, precedence relationships and zoning restrictions. The lists of the tasks

and task times have been obtained from the firm. Then we have determined the

precedence relationships and sub-task lists of the models with our observations

and contributions of the workers.

Initially, because the firm wanted us to develop such a program that

produces a unique balance for all models, we have tried to develop integer

programming-based method and find the optimum solution. At the beginning

of the modeling effort, the size of the problem was absolutely large. Although

we have achieved to decrease the problem size significantly with some

manipulations, the running time was still too long.

During the time of construction of the precedence relationships

diagram, we have observed that the production was more suitable for the multi-

model production rather than the mixed-model production. Hence, balancing

the line according to the mixed-model line balancing method was insufficient.

Then we have determined the individual task lists of the models. We have

realized that some other objectives and the sequencing problem should be also

taken into account. Solving the problem with integer programming for all

models and all possible sequences would require extremely long computation

times. In addition, considering different batch sizes, cycle times and cost

 37

component combinations, it is almost impossible to solve the whole problem

with integer programming-based methods.

As it is mentioned in the following paragraphs, we have already made

some assumptions and gave up with the overall optimal solution. Because of

these reasons, we have decided to develop a heuristic approach that can find

good solutions in acceptable computational times, few hours, and can be

adapted to different scenarios with different model mix, batch sizes, objective

weights, etc.. The proposed approach and the relevant code are explained in the

following chapter. The problem is explained in the following parts of this

chapter.

3.3 Determining the Problem

3.3.1 Tasks

The first step is to determine the tasks and to construct the list of tasks.

Any task consists of some sub-operations. For example, in order to perform a

task, we may take a part from a specific location, do some operations on that

part and then assemble it into the main part. Sometimes, it may be very

difficult to determine the bounds of the task. If tasks are defined such that they

consist of many operations, this may cause a task to be defined as aggregation

of tasks. As a result, this situation dictates any solution to assign this group of

tasks to the same station. It shrinks the solution space and may exclude the

optimum solution. On the other hand, defining a task such that it includes very

few operations may cause infeasibility. For instance, some sub-parts of a given

task may be defined as separate tasks. Hence, sub-parts of a task may be

assigned to different stations which results in infeasible solutions. In

conclusion, tasks have to be defined such that they are not groups of tasks or

sub-parts of a specific task.

 38

In our study, tasks were already defined in the firm. We have got these

definitions, but it was difficult to observe production and identify these tasks.

While we try to construct precedence relationships diagram according to this

task list, we have realized that there were some mistakes in this list. There were

some tasks in the list which were already abolished. In contrast, there were

some tasks that we have observed on the line but missing in the list.

Sometimes, a task was performed more than once on the line, but coded and

named once in the list. In order to balance any line, all tasks that have to be

done on that line must be known. If any task is repeated more than once, every

repetition may have the same name, but each of them must have different

codes. By discussing these situations with workers, we have adjusted the task

list. There were some other undefined tasks which were being performed

automatically by robots. Because we have needed them in the precedence

relationships diagram, we have defined and coded them. Then we have

distinguished the task list for each model. Task lists are given in Appendix B.

There is a task “Oil the reel of hinge” in the list which is repeated two

times on the line. It is adjusted by defining two separate tasks “Oil the right

reel of hinge” and “Oil the left reel of hinge” (task 7 and task 27). There are

some automatically made tasks which are defined as “Erect the main part”,

“Functional test” and “Fill water to the salt box” (Tasks 72, 289 and 310).

Many others are similarly added or removed to/from the list by discussing with

the workers and the list is updated.

3.3.2 Task Times

Next step is determining the task times. Actually, it requires a lot of

observations, measures, some statistical and analytical computations and

goodness of fit tests, etc.. However, task times were obtained from the firm.

Since no other task can be assigned to the stations of newly defined and

 39

automatically performed tasks, the task times of these tasks are taken as cycle

time. Task times are given in Appendix B.

There were some zoning restrictions due to which it was impossible to

assign any other task to the same station with these tasks. To prevent infeasible

assignments, task times of these special tasks were taken as being equal to C.

These tasks are task 72, task 195, task 259, task 289, task 310 and task 317.

3.3.3 Precedence Relationships Diagram

The most difficult step of the case study was to build the precedence

relationships diagram. There were lots of alternative diagrams. It was a

demanding work to represent the real situation on the paper. Occasionally, we

were to make some assumptions and decisions. On the other hand, we were

trying to represent the real situation as much as possible with minimal essential

assumptions.

While we were trying to construct the diagram, we have realized that it

was not obligatory to perform all of the listed tasks on the line. There were a

lot of tasks which could be performed off the line. This relaxation gives rise to

thousands of alternative precedence relationships diagrams. It messed up our

studies up to that point. We faced with a lot of questions and decisions like;

� Which tasks were to be made on the line?

� Which tasks could be performed off the line?

� If we had determined all of these tasks and extracted them from the

list, what would have happened?

� Since extracting all of these tasks from the line messes up the real

situation, which subsets of these tasks should be extracted?

� What were the advantages and disadvantages of the decision about

extracting tasks from the line?

 40

When we consider all of the subsets of these tasks, there are thousands

of alternative precedence diagrams and consequently, thousands of alternative

solutions. Since we were trying to solve this real life problem and find the best

solution, each of these alternatives was an alternative applicable solution.

Finally, since the advantages and disadvantages of the alternative

solutions are not known, we have decided to consider only the current situation

of the line; we have decided to assume that all tasks being performed on the

line currently have to be performed on the line.

The other important and difficult decision was about the tasks that

require opening and closing the lid of the machine (product). There are two

tasks as, “Open the lid” and “Close the lid”. There is a code for “Open the lid”

and another one for “Close the lid”. But on the line, each of them is repeated

more than once. In order to balance the line, we have to know exactly how

many tasks we assign to the stations, the relationships between them, the task

times and the zoning restrictions. But at almost every step of our observations,

we have faced with very flexible situations. There are some tasks which have

to be performed inside the machine. Let us consider two of them. It is possible

to assign one of them to a station and the other one to another station, or it may

be possible to assign them to the same station according to the precedence

relationships. If these two tasks are assigned to different stations, there would

be two alternative situations. In the first case, a pair of “Open the lid”, “Close

the lid” tasks would be also assigned to each of the stations and those two tasks

would be performed on the machine. This situation requires two “Open the lid”

and two “Close the lid” tasks. In the second case, the lid is opened at the first

station, the first task is performed, the machine moves to the second station

with the open lid, the second task is performed and then the lid is closed. This

situation requires one “Open the lid” and one “Close the lid” tasks. But this

time if we allow moving the machine with the open lid between stations, the

“Open the lid” task may be assigned to a previous station of the first station

 41

and the “Close the lid” task may be assigned to a successor station of the

second station. At this point some other questions may arise; “Is it feasible to

move the machine with the open lid between stations?”, “If it is infeasible for

some stations, what will happen?”, “Sometimes the open lid forces the worker

to go away from the machine and gets the work harder, how will the moves

with the open lid affect the production?”, etc. If these two tasks are assigned to

the same station, it is needed to assign one “Open the lid” task and one “Close

the lid” task to this station. In the real problem, there are 38 such tasks and it is

possible to attain thousands of different alternative precedence diagrams.

Increasing the number of “Open the lid”-“Close the lid” pairs and

decreasing the number of inside-tasks between each pair on the precedence

relationships diagram enlarges the solution space and gives a chance to find

better solutions. But at the same time, it increases the number of tasks, work

content, number of stations and most importantly the size of the problem.

Decreasing the number of “Open the lid”-“Close the lid” pairs and increasing

the number of inside-tasks between each pair on the precedence relationships

diagram decreases the work content and problem size, but it shrinks the

solution space and may lead to worse solutions. It was impossible to construct

all possible precedence relationships diagrams and solve the problem overall

alternatives. We were to choose one of them. Thus, we decided to give up the

overall optimum solution. Instead, we chose to find the best possible solution.

There are some zoning restrictions and tasks that have to be assigned to the

same station. One of the groups of these tasks (317 TASK GROUP 4) has a

total task time of 43.3 seconds. By considering this situation, we have grouped

the inside-machine tasks such that their total task time can not exceed 30-35

seconds. According to these groups we have added “Open the lid”-“Close the

lid” pairs. The selection procedure is a heuristic approach, but we have tried to

save the flexible structure and represent the current production line as realistic

as possible. The final task list is given in Appendix B. Precedence relationships

 42

for individual models are given in Table C.1 and combined precedence

diagram is given in Figure C.1 in Appendix C.

3.3.4 Zoning Restrictions

In addition to precedence relationships, zoning restrictions specify some

special restrictions. Because of the requirement of some special equipment, a

task can be performed at only some specific stations. Occasionally, it can be

neccessary to perform some specific tasks together at the same station or

separately at different stations. Such limitations are called zoning restrictions.

We have determined many zoning restrictions at the assembly of consumer

durables in the firm. Sometimes we have represented them in the precedence

diagram or we have manipulated the task times so as to satisfy these zoning

restrictions or we have used them in the file which consists of the station

numbers at which a task may be performed (assignable station numbers).

There is a robot and special equipment at station 11. Tasks 12, 15, 16,

18 and 20 are to be performed at this station because of this special equipment.

Because of the precedence relationships, tasks 13, 14 and 17 are to be assigned

to station 11. Since the worker at station 11 can handle many tasks, it is

feasible to assign other tasks to station 11. Furthermore, since the worker does

tasks 13, 14 and 17, while the robot turns the pallet, the task times of task 12

and task 20 are defined as zero. Assignable station numbers are fixed to 11 for

tasks 12, 13, 14, 15, 16, 17, 18 and 20.

There is another robot at station 17 which changes the position of the

machine. It holds and lifts the machine. Then, it turns the machine and puts it

again on the pallet. There is no worker at this station. Hence, it is impossible to

assign some other tasks to station 17. The robot can only perform task 72. The

task time of task 72 is taken as cycle time and the assignable station number is

fixed as 17 for task 72.

 43

Task 310 is performed by a robot automatically at station 22. Task time

of task 310 is taken as the cycle time and the assignable station number is fixed

as 22 for this task. Similarly, task 195 is performed by a robot automatically at

station 43. Task time of task 195 is taken as the cycle time and the assignable

station number is fixed as 43 for this task.

Tasks 207, 210, 211, 212 and 216 are to be done at station 44, because

of another robot. Likewise, because of the precedence relationships, tasks 208

and 209 are assigned to station 44. There is a worker at the station and it is

possible to assign some other tasks to this station. Since the worker performs

tasks 208 and 209 while the robot works, their task times are defined as zero on

the line. Assignable station numbers are fixed as 44 for these tasks.

There is a parallel station (station 29) to the line and tasks 298, 299,

300, 301, 302, 303, 304, 305, 306, 307, 308, 309 and 311 are to be performed

at this station because of a specific equipment: fixture.

Tasks 173 and 178 are to be done at the same station. This situation first

is represented by taking each of them as a predecessor and the other as a

successor. But after developing the proposed meta-heuristic algorithm, since

this situation is preventing the running of the algorithm, tasks 173 and 178 are

taken as one combined task (323 TASK GROUP 10).

Tasks 275 and 280 are to be performed at the same station. Because of

the precedence relationships, tasks 272, 273, 274, 279 are also to be assigned to

the same station. This restriction is satisfied by adding the arc (280,275) to the

precedence relationships diagram.

There is a special section on the line. This section includes stations 45,

46, 47 and 48. There is much space to put the product (machine). There are

workers at these stations who set the machine and test it. A machine works as a

 44

finished item. If there is a problem, the machine is sent to the repair

department. This section is dedicated to test operations only. In order to

represent this situation in the precedence diagram, we have defined a task

(functional test) and give a code (289). Then we have taken its task time as the

cycle time and fixed the assignable station number as 45. The task “289 test” is

always assigned to station 45, but it shows that test is made at one of the

stations 45, 46, 47, 48. For other tasks, these stations are removed from the

assignable station numbers in order to prevent assigning any other task to these

stations.

There is a parallel sub-assembly line to the assembly of the inner lid. A

conveyor moves an inner lid and a worker takes this inner lid and assembles it

to the main part. The task 86 is to be assigned to station 23. By using

assignable station numbers and fixing it as 23 for task 86, this zoning

restriction is integrated into the algorithm.

Similarly, task 259 is to be performed by a robot automatically at

station 54. Task time of task 259 is taken as the cycle time and assignable

station number is fixed as 54 for this task.

Since it is not allowed to move a machine between stations with the

open lid, a pair of “Open the lid”-“Close the lid” tasks has to be assigned to the

same station. If this is the case, the tasks which are in between this pair in the

precedence relationships diagram have to be assigned to the same station.

According to this result, tasks 106, 199, 200, 201, 202, 203 and 189 have to be

assigned to the same station. Tasks 190, 252, 253, 255, 261, 262, 263, 264,

256, 254, 257, 258, 265 and 194 have to be assigned to the same station.

Similarly, tasks 312, 281, 282, 283 and 313; tasks 160, 284, 290, 285, 286,

288, 296, 161, 287, 291 and 292; tasks 217, 218, 219, 220, 222, 223, 224, 225,

226, 227 and 228 have to be assigned to the same stations. Because an

 45

equipment performs task 219 while the worker is doing some other tasks, task

times of tasks 220 and 223 are defined as zero on the line.

3.4 Integer Programming Studies

At the beginning of the studies with integer programming, the problem

size is found to be absolutely large. There are 313 tasks at the combined

precedence diagram and 68 stations on the line which is equivalent to

(68)(313)=21284 binary decision variables in the mathematical model. The

main models of the product (Model 1, 2, 3 and 4) consist of 270, 271, 282 and

297 tasks, respectively. Hence, there are approximately 18360 to 20196

(=(68)(270) to (68)(297)) binary decision variables in the individual

mathematical models of the individual product models. We have used the

precedence relationships and zoning restrictions, and made the following

manipulations to reduce the problem size:

� There are 6 tasks which have task times equal to the cycle time

(tasks 72, 195, 259, 289, 310 and 317). Since the assignment of any other task

to the same stations with these tasks is impossible, we have discarded

assignment variables of other tasks to these stations. We have also discarded

assignment variables of all tasks to stations 46, 47, 48 because of task “289

functional test”. These operations decrease the number of binary variables

approximately by 2700 (=(6+3)(300)) for roughly 300 tasks.

� Since tasks 72, 195, 259, 289, 310 and 317 are to be assigned to the

specific stations, it is possible to remove the assignment variables of these

tasks to other stations. This process reduces the number of binary variables by

402 (=(68-1)(6)).

 46

� Some tasks between a pair of “Open the lid”-“Close the lid” are to

be assigned to the same station with that pair. So, it is possible to group these

tasks and assume them as one task.

• Tasks 106, 199, 200, 201, 202, 203 and 189 are combined and

called as “315 TASK GROUP 2”. This reduces the number of

variables by 408 (=(7-1)(68)).

• Tasks 12, 13, 14, 15, 16, 17, 18 and 20 are combined and called

as “314 TASK GROUP 1”. It reduces the number of variables

by 476 (=(8-1)(68)).

• Tasks 207, 208, 209, 210, 211, 212 and 216 are combined and

called as “316 TASK GROUP 3”. It reduces the number of

variables by 408 (=(7-1)(68)).

• Tasks 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308,

309 and 311 are combined and called as “317 TASK GROUP

4”. It reduces the number of variables by 816 (=(13-1)(68)).

• Tasks 275, 272, 273, 274, 279 and 280 are combined and called

as “318 TASK GROUP 5”. It reduces the number of variables

by 340 (=(6-1)(68)).

• Tasks 190, 252, 253, 255, 261, 262, 263, 264, 256, 254, 257,

258, 265 and 194 are combined and called as “319 TASK

GROUP 6”. It reduces the number of variables by 884

(=(14-1)(68)).

• Tasks 312, 281, 282, 283 and 313 are combined and called as

“320 TASK GROUP 7”. It reduces the number of variables by

272 (=(5-1)(68)).

• Tasks 160, 284, 290, 285, 286, 288, 296, 161, 287, 291 and 292

are combined and called as “321 TASK GROUP 8”. It reduces

the number of variables by 680 (=(11-1)(68)).

• Tasks 217, 218, 219, 220, 222, 223, 224, 225, 226, 227 and 228

are combined and called as “322 TASK GROUP 9”. It reduces

the number of variables by 680 (=(11-1)(68)).

 47

• Tasks 173 and 178 are combined and called as “323 TASK

GROUP 10”. It reduces the number of variables by 68

(=(2-1)(68)).

� After these preliminary studies, the number of binary variables is

reduced by approximately 50% (by 8000 to10000 variables). But the number of

variables is still high to try to solve the problem optimally. It is possible to use

precedence relationships and zoning restrictions to reduce this number further.

For example, task 72 is to be assigned to station 11. If that is the case, no one

of the preceding tasks of task 72 at precedence relationships diagram can be

assigned to the successor stations of station 11. By using precedence

relationships, task times, a pre-determined cycle time and zoning restrictions,

we have found the upper and lower bounds of stations that a given task may be

assigned to for each of the tasks. Then we have removed the unnecessary

assignment variables.

The number of assignment variables is reduced to approximately 2000.

Then we have constructed the mathematical model IP formulation of which is

given in Chapter 2 for each machine type for a given cycle time and searched

the minimum number of stations. We have used LINGO 8.0 and CPLEX 8.1

programs, but still the running times were very high; more than a day for one

product model. We have stopped the runs without achieving any solution. For

four product models, there are 24 possible sequences. To evaluate a sequence,

a model has to be constructed and solved for each of the four product models.

To evaluate all sequences for a specific cycle time, it is necessary to construct

and solve 96 mathematical programming models. Considering different cycle

times, different cost components and different batch sizes, it is concluded that

mathematical models can not be used to solve this problem.

In general, in today’s production environment, companies produce

more than one type of a product. The companies that benefit from the assembly

 48

lines use the same line to produce different product models. According to our

limited observations, these lines do not consist of a few number of tasks.

Furthermore, almost everything is flexible and consists of many decision

criteria in the real life production processes. Hence, it is very important to be

able to evaluate different situations according to different objective function

combinations and find good solutions in acceptable times, even if it is possible

to find the optimum solution. In this study, a heuristic solution algorithm is

developed to find good solutions in reasonable times for especially

multi/mixed-model. Our algorithm is used to solve such a real life problem

which can be defined as a large-size assembly line balancing problem,

consisting of flexible and multi-criteria real life environment. The proposed

algorithm is explained in detail in the following chapter.

 49

CHAPTER 4

THE PROPOSED APPROACH

4.1 Simulated Annealing (SA)

Simulated Annealing is a well-known and efficient meta-heuristic

approach. This approach simulates the annealing processes of materials on the

decision problems. The main idea of the algorithm is to give a chance to the

inferior solutions to be accepted as the next current solution in order to escape

from the local optimums.

Simulated Annealing algorithm starts with an initial solution which is

constructed with any constructive algorithm. At any iteration, the algorithm

generates a neighboring solution by making a randomly chosen small variation

on the current solution. Generating a neighboring solution by making small

perturbations on the current solution provides a way to make detailed search on

the special regions of the solution space. If the candidate solution is generated

by making many changes on the current solution, the algorithm jumps from the

current solution to any other solution residing in a very different region of the

solution space. Thus, using a near neighboring solution as a candidate solution

improves the algorithm performance.

At any iteration, if the candidate solution is better than the current one,

a move to the candidate solution is made. However, if the candidate does not

improve the current solution, the algorithm may adopt the candidate solution as

the next current solution with some acceptance probability or reject it. If the

 50

transition from the current solution to the candidate solution is rejected, another

solution in the neighborhood of the current solution is generated and evaluated.

The probability of accepting a poor solution decreases if the negative

(bad) difference between the current solution and worse candidate solution

increases or the value of the control parameter t, which denotes the

temperature, decreases. The function that gives an acceptance probability of a

bad solution is,

Exp (-(F [candidate solution]-F [current solution])/t)

where F is a function to evaluate a solution.

At the beginning of the algorithm, the value of t is higher and it

decreases during the search according to a function known as the cooling

schedule. This cooling provides intensification during the time. Because of the

higher value of t, initially the algorithm searches the space roughly and as time

passes, because of the cooling effect, it focuses on some good solution regions.

If the initial value of the parameter t is chosen very small, the algorithm

cannot escape from the local proximity of the initial solution and approximates

to a local optimal solution in this region. On the other hand, choosing a very

high initial value of t causes a long extended search before starting to intensify

on good regions. Figure 4.1 and Figure 4.2 show examples for the convergence

of the simulated annealing algorithm with a very small and a very high initial

temperature, respectively.

The algorithm stops when the termination criterion is satisfied. Number

of the iterations, the running time or the final value of the control parameter t

can be used as the termination criterion.

 51

4.2 Adaptive Simulated Annealing (ASA)

In 1984, a proof was established that, by carefully controlling the rates

of cooling of temperatures, SA could statistically find the best minimum. This

was good news for researchers trying to solve hard problems which could not

be solved by other algorithms. The bad news was that finding the optimum is

only guaranteed if they were willing to run SA forever. In 1987, a method of

fast annealing (FA) was developed, which permitted lowering the temperature

exponentially faster, thereby statistically guaranteeing that the minimum could

be found in some finite time. However, that time still could be quite long.

iteration

F(best)

Figure 4.1 An example of the convergence of a SA

algorithm with very small initial

iteration

F(best)

Figure 4.2 An example of the convergence of a SA

algorithm with very high initial

 52

Shortly thereafter, in 1987, L. Ingber developed Very Fast Simulated Re-

annealing (VFSR) which is exponentially faster than FA. The main idea of the

method was generating the new solution and balancing the temperature by

using the information obtained during the search. The original method was

especially useful for D-dimensional, continuous solution space problems where

one component of the solution is independent from the other components. The

method was affecting the direction of search and the step sizes in each

dimension by evaluating the changes on the objective function values of the old

and the new solutions. Then the temperature was being changed by using the

best solution found so far and the last accepted solution. The original method

was not applicable to all kinds of problems with the original structure. But the

idea of adjusting the algorithm according to the search history pioneered to the

development of ASA. Then the ASA approach was applied to many different

problems (Ingber, 1998; Chen, Istepanian and Luk, 2001).

The temperature change mechanism is an important part of the

transition probability equation. In conventional simulated annealing, the search

begins with a high temperature allowing a higher chance of transition to an

inferior solution. By doing so, the search is able to move out of local minima.

However, as the search continues, the temperature continuously decreases

resulting in a reduced chance of uphill transition. Such an approach could be

useful if the local minima are near the starting point, but may not lead to a near

optimal solution if some local minima are encountered at a relatively low

temperature toward the end of the search. Instead of this monotonically non-

increasing cooling schedule, ASA approach allows adjustment of the

temperature dynamically based on the profile of the search path. Such

adjustments could be in any direction including the possibility of reheating.

Because of these adjustments, the algorithm is not completely dependent on the

initial solution and the initial temperature; the algorithm balances the parameter

itself. Nevertheless, it could be affected from the initial values. Figure 4.3

shows an example of the convergence of an ASA. Figure 4.4 and Figure 4.5

 53

show examples of the conventional cooling schedule. Figure 4.6 shows an

example of an ASA cooling schedule (Azizi and Zolfaghari, 2004)

iteration

F(best)

Figure 4.3 An example of the convergence of an ASA

iteration

temperature

Figure 4.4 An example of the conventional cooling

schedule of a SA algorithm (Example 1)

iteration

temperature

Figure 4.5 An example of the conventional cooling

schedule of a SA algorithm (Example 2)

 54

4.3 Construction of the Solutions

The majority of the constructive procedures are based on priority rules,

others are restricted to enumerative procedures (Scholl and Becker, 2004).

Restricted enumerative procedures are generally based on the exact

enumeration techniques, which are modified by restricting the search space in a

heuristic manner. Each B&B (or DP) procedure can be applied as a heuristic by

adding heuristic fathoming rules or imposing a time limit. All these procedures

together with the Heuristic of Hoffmann (1963) and its modifications can be

examples of the restricted enumerative procedures.

There are two construction schemes relevant to the priority rule based

approaches. They differ with respect to the manner in which the tasks to be

assigned are selected out of the set of available tasks.

• Station-oriented procedures. They start with the first station

(k=1). The following stations are considered successively. In

each iteration, a task with highest priority which is assignable to

the current station k is selected and assigned. When station k is

iteration

temperature

Figure 4.6 An example of the cooling schedule of an

ASA algorithm

 55

loaded maximally, it is closed, and the next station k+1 is

opened (Scholl and Becker, 2004).

• Task (Operation)-oriented procedures. Among all available

tasks, one with the highest priority is chosen and assigned to the

earliest station to which it is assignable (Scholl and Becker,

2004).

The priority rule based approaches use any one of the construction

scheme and work, generally, uni-directionally in forward direction and

construct a single feasible solution. But there are many techniques that work in

backward direction, or flexible bi-direction.

4.4 Representation of the Solutions

There are two most general representations: standard encoding and

order encoding.

Standard encoding: The solution is defined as a vector containing the

labels of the stations to which the tasks 1,...,n are assigned

Order encoding: The solutions are defined as precedence feasible

sequences of tasks (Scholl and Becker, 2004). Numbers of stations that tasks

are assigned to and the station times are computed by adding task times until

the station time of current station exceeds the cycle time. If the station time

exceeds the cycle time by adding the current task to the current station, the next

station is opened and that task is assigned to the next station. An illustrative

example is given below.

 56

Example:

Let us consider the operations shown in Figure 4.7 and let the operation

times be 3, 1, 2, 4, 4, 5, 3, 6, 2 seconds respectively and cycle time (C) be 8

seconds.

X = (1,3,5,2,4,6,8,9,7) is an example of order encoding. Then we can

determine the station numbers that the operations are assigned as follows:

Table 4.1 Computations of station numbers and station times for the example

Station (i)
Operations assigned to

station i

Station time of

station i

1 1 3

1 1,3 3+2=5

2 5 4

2 5,2 4+1=5

3 4 4

4 6 5

5 8 6

5 8,9 6+2=8

6 7 3

The solution found above can be represented by standard encoding like;

X = (1,2,1,3,2,4,6,5,5).

4.5 Types of Moves

There are two types of moves for SALBP: shift and swap. They are

explained using the following notation:

6 1

2

3 5

4
7

8

9

Figure 4.7 Precedence Diagram of the Example

4

2

1

3

3

4

5

2

6

 57

LPj : latest station to which a predecessor of task j is currently assigned.

ESj : earliest station to which a successor of task j is currently assigned.

• A shift (j,k1,k2) describes the movement of a task j from station

k1 to station k2 with k1≠k2. This move is feasible if k2 ∈ [LPj,ESj]

(Scholl and Becker, 2004).

• A swap (j1,k1,j2,k2) exchanges tasks j1 and j2, which are not

related to precedence, between different stations k1 and k2. This

move is feasible if the two corresponding shifts (j1,k1,k2) and

(j2,k2,k1) are feasible (Scholl and Becker, 2004).

4.6 Objectives of ALBP and Evaluation of Solutions

4.6.1 Minimization of the Number of Stations

It is the best known and the most studied objective of the assembly line

balancing problem. Assembly line type production and assembly line balancing

problems are transformed from the simple types (single-model, deterministic

etc.) to the complicated types (multi/mixed-model, stochastic, parallel, U type,

S type etc.) in the course of time. At the single-model assembly lines,

achieving a pre-determined amount of production with the minimum number of

stations, saves the system from all the costs related to the unused stations

permanently. Consequently, at the single-model assembly lines, minimizing the

number of stations may be the first objective without any other challenging

objectives. On the other hand, assembly lines with the multi/mixed models,

having an unused station at any model’s production, does not save the system

from all the costs related to that station permanently, it saves the system from

these costs at only that model’s production period. In this situation, there may

be any other challenging objective and using that station with a high station

slack time may be preferred to getting that station unused at that model’s

production period.

 58

Because the system avoids the costs of unused stations while that model

is produced, minimizing the number of stations must be more important for the

models that have large batch sizes. The component used to evaluate the

solutions according to their number of stations is:

F1[x]=(m1)(Batch Size)(Cycle Time)(Number of Stations)

where x is a solution (line balance) for the model.

The time that is equal to the multiplication of cycle time and the

number of stations is the assembly time and it is equal to the maximum time

allowed to complete a unit product. ((Batch Size)(Cycle Time)(Number of

Stations)) is equal to the total assembly time to complete the batch size units of

products of a model. Here, m1 is the cost of using a station for a unit time. The

batch size and cycle time are constant. This component represents the total

assembly cost of a model. So, if a move decreases the number of stations by

one, it improves the solution by the total cost of using that station in the

production of that model.

4.6.2 Minimization of Cycle Time

This is the second best known objective for assembly line balancing. If

it is certain that the production is to be made with any number of stations, it is

desired to achieve the most frequent production with these stations. It increases

the daily production. Because of the production plan, even it is not wanted to

increase the daily production, minimizing the cycle time decreases the total

production time and the production cost. Furthermore, it provides opportunity

to tolerate some simple problems that may arise during production. Producing

any product with smaller cycle times makes the system more flexible for the

production of other products, if it is necessary to increase the cycle time. Due

to these reasons, if it becomes certain that production is to be made with any

 59

number of stations, minimizing cycle time arises as a second objective. The

component used to evaluate the solutions according to their cycle times is:

F2[x]=(m1)(Batch Size)(Cycle Time)(Number of Stations)

Here, m1 is again the cost of using a station for a unit time and the

batch size is constant as well as the number of stations. Because this

component shows the total assembly cost of a model, if any solution decreases

the cycle time by one unit, it saves all stations from this cost for the whole

batch size.

4.6.3 Maximization of Irregularity between Station Times

In general, meta-heuristic approaches search the space by passing from

a current solution to a candidate solution which is generated from the current

solution by making small changes. Simulated Annealing algorithm moves to

the candidate solution if it has a better objective function value. Otherwise, it

passes to the given candidate solution according to the acceptance probability.

Hence, correct evaluation of solutions is very important. If the objective

function uses only the number of stations while evaluating the solutions, all

candidate solutions that have the same number of stations with the current

solution have the same objective function value; however, the objective

function value must decrease by the moves which try to get any station empty.

Because the aim is minimization of the number of stations, the objective

function must encourage these moves by reducing its value. An illustrative

example is given below:

Example:

Let there be an assembly line that has 10 tasks; a, b, c, d, e, f, g, h, i, k.

There is no precedence restriction, all task times are 5 seconds and cycle time

 60

is 25 seconds. Let us consider the current solution and two candidate solutions

as follows:

Figure 4.8 Current and candidate solutions for the example

If the objective function uses only the number of stations while

evaluating the solutions, candidate solutions and the current solution have the

same objective function value. So, if the algorithm generates the candidate

solution-1, it directly passes to this solution or if it generates the candidate

2 1 3

a

b

c

d

e g

f

k

i

h

station

Station time

25

20

15

10

5

Current solution

a

b

c

d

e g

f

k

i

h

station

Station time

25

20

15

10

5

Candidate solution -1

1 2 3

a

b

c

d

e g

f

k

i

h

station

Station time

25

20

15

10

5

Candidate solution -2

1 2 3

 61

solution-2, it again directly passes to this solution. The candidate solution-1

makes decreasing the number of stations harder. On the other hand, the

candidate solution-2 makes decreasing the number of stations easier. In this

case, the algorithm should understand that the candidate solution-1 is worse

than the current one and penalize this move by increasing its objective function

value. It should also realize that the candidate solution-2 is better than the

current one and encourage this move by decreasing its objective function value.

To achieve this, the following cost component of the objective function is

developed:

Since the SA algorithms search the solution space by passing from a

solution to its neighboring solution, using only the number of stations as an

objective function is not enough to evaluate the solutions to minimize the

number of stations. Maximization of variance (irregularity) in station times is a

sub-objective to achieve the minimization of the number of stations.

4.6.4 Maximization of Smoothness between Station Times

If the stations that are to be used in the production are determined, it is

required to minimize the deviations between the workloads of these stations. In

other words, it is desired to maximize the smoothness between these stations’

workloads. If the deviations among stations’ workloads are high, some stations

are highly loaded, while some of them work at low levels. In this situation,

some of the employees work continuously and some of them have a lot of idle

time. This may cause some satisfaction problems, that is bottleneck station. On

the other hand, the stations that have high workload become more critical. Any

problem occurring in these stations may affect the whole line. Therefore, when

penalty a is 2 andstation used ofset theis where

23

mK

C-WC)(m[x]F
Ki

i∑
∈∀

=

 62

the stations that are to be used are known, total workload is required to be

shared equally by these stations as much as possible.

At the previous parts, the cycle time minimization objective is

explained. For the meta-heuristic approaches, as it is a sub-objective to

maximize irregularity to achieve minimization of the number of stations,

maximization of smoothness is a sub-objective to achieve minimization of

cycle time. Determination of the stations that will be used in production means

having a line balance that the production quantities can be met. After having

such a balance, it is required to minimize the cycle time and maximize

smoothness to improve this balance. In order to minimize the cycle time, if the

objective function only uses cycle time, it could not be enough to evaluate the

solutions truly. There should be such an objective function component that

encourages the moves which transfer a task from a station that has high station

work content to a station that has low station work content and punish the

reverse moves. The component developed to achieve this is given below:

4.6.5 Maximization of Common Tasks that Assigned to the Same

Stations between Consecutive Models

There are common tasks among models or individual tasks in

multi/mixed-model assembly lines. After balancing the line for a model, while

passing to another model, some tasks are deleted from the line while some

others are added to the line. Because of the precedence relations and the zoning

restrictions, the balance is changed. Because of this transition, common tasks

between two consecutive models may be assigned to different stations in each

balance.

penalty. a is3 and stations used ofset theis where

34 2

 mK

)(C-WC)(m[x]F
Ki

i∑
∈∀

=

 63

While passing from one model to another, because of added, extracted

or common tasks that are assigned to different stations, it may be needed to add

or remove some equipment, workers, sub-items and materials to/from the line

or it may be needed to change location of some of them. There may exist a

setup cost related to these changes. Furthermore, until the system arrives at a

steady state at the production of the new model, it bears to learning curve

effect. The following component is used to evaluate common tasks:

F5[x]= (m4)(Number of common tasks between two consecutive models

assigned to different stations)

Here, m4 is the cost of changing the assignment of a common task from

one station to another.

4.7 Sequencing Problem

Especially for the multi-model assembly lines, sequencing of models

arises as another problem besides balancing problem. Because the common

tasks between consecutive models differ with respect to the models, it becomes

important to determine the best sequence. From a sequence of models to

another one; remaining times, cycle times and correspondingly number of

stations, assignments and values of all components of the objective functions

and consequently the best balances are changed. If so, besides balancing the

line for each model, determining the true sequence of the models turns out to

be another critical problem.

4.8 The Proposed Methodology

In this study, a methodology is developed to solve multi-criteria

multi/mixed or single-model assembly line balancing problems heuristically.

The method contains an algorithm that uses COMSOAL and two ASA in a

 64

sequential manner. For different cost components and batch sizes, the

algorithm yields different final solutions which can be appropriate for different

assembly lines (multi-model assembly lines with large batch sizes, mixed-

model assembly lines with small batch sizes, mixture of these two types, single

assembly lines). If the assembly line is multi-model, the algorithm uses the

explained method below to find the task assignments for each model and the

production sequence of the models. If the line is mixed-model, then the

algorithm uses the combined precedence relationships diagram and finds a

single balance for all models. If the line is single-model, or if the user wants to

balance the line as a single-model for each model, the algorithm gives a

balance for only that model. If the line consists of some models with large

batch sizes and some others with small batch sizes, it is possible to adjust the

cost parameters according to this situation and the algorithm can find a good

solution.

4.8.1 Representation of the Solutions

There are 63 workstations on the assembly line and there are many

zoning restrictions about tasks. Some of the tasks have to be assigned to some

specific stations. The number of used stations (m) does not mean that first m

stations are used. Some stations between any other busy stations could be idle.

This situation makes the usage of standard encoding more appropriate for this

problem. Besides, standard encoding is more appropriate for making a small

change on the current solution, generating near neighboring solutions and

making more detailed search on special regions. These situations may be

understood more clearly with the following example.

Example:

Let us consider an assembly that consists of 9 tasks. Furthermore, let

there be a zoning restriction that task 4 has to be assigned to station 3.

 65

Cycle time is 8 seconds. Task times for the tasks 1 thru 9 are 4, 3, 4, 3,

3, 5, 4, 7, 2 seconds respectively and precedence diagram is as follows:

Figure 4.9 Precedence Diagram of the Example

Let us consider that we have the following solution as a current solution

and we transfer task 3 from station 1 to station 5 and obtain a neighboring

solution:

Table 4.2 Representations of the current and candidate solution in the example

with standard and order encoding

 Current solution Candidate solution

Standard

encoding
(1,3,1,3,4,4,5,6,7) (1,3,5,3,4,4,5,6,7)

Order

encoding
(1,3,2,4,5,6,7,8,9) (1,2,4,5,6,3,7,8,9)

The order encoding solutions show the order of tasks for the same

solutions at the standard encoding. From the standard encoding we can see that

station 2 is empty, task 4 is assigned to station 3. Zoning restriction is satisfied.

By making a small change, we obtain a neighboring solution. But on the other

hand, at order encoding it seems like only a small change is made; only the

order of the task 3 is changed. Hence, it can be considered that these two

solutions are very similar. But from the order encoding if we try to determine

1

9

7

3

2 4

5

6

8

3

4

4

4

3

3 5

7

2

 66

the assignments to the stations and station times, we face with the following

situation:

Table 4.3 Differences between current and candidate solution of the example

according to standard and order encoding

 Current solution Candidate solution

(1,3,1,3,4,4,5,6,7) (1,3,5,3,4,4,5,6,7)

Station Tasks assigned Station

time

(sec)

station Tasks assigned Station

time

(sec)

1 1,3 8 1 1 4

2 - - 2 - -

3 2,4 6 3 2,4 6

4 5,6 8 4 5,6 8

5 7 4 5 3,7 8

6 8 7 6 8 7

S
ta

n
d
ar

d
 e

n
co

d
in

g

7 9 2 7 9 2

(1,3,2,4,5,6,7,8,9) (1,2,4,5,6,3,7,8,9)

Station Tasks assigned Station

time

(sec)

station Tasks assigned Station

time

(sec)

1 1,3 8 1 1,2 7

2 2,4 6 2 4,5 6

3 5,6 8 3 6 5

4 7 4 4 3,7 8

5 8 7 5 8 7

6 9 2 6 9 2

O
rd

er
 e

n
co

d
in

g

7 - - 7 - -

The order encoding solutions show the order of the corresponding

solutions at the standard encoding. However, when we try to determine the

 67

station numbers that tasks are assigned to and the station times, we face with

some difficulties. The first one is about the station numbers. We can not

understand the assignments from the order of tasks easily. If we try to compute

these numbers as explained in the paragraph of order encoding, we can obtain

any solution that does not represent the real situation as shown in the table. If

we try to fix the number of station as 3 that task 4 is assigned to, we can not be

sure that whether the task 2 is assigned to station 2 or station 3. The other

difficulty is about generating the neighboring solutions. It seems that only the

order of task 3 is changed. But if we try to determine the assignments and the

station times and calculate the objective value of this candidate solution (a

function of number of stations, cycle time, common tasks, batch sizes, etc.),

wee see that this new solution is very far from the current solution (The

changes about the solutions are bold-typed in Table 4.3). In conclusion, order

encoding may have an adverse effect on detailed search in a region. Because of

these disadvantages of order encoding, standard encoding is used in the

constructed algorithm.

4.8.2 The Move Procedure

Shift is used as the move procedure. A swap makes two shifts

simultaneously. Because swap mechanism is more restrictive than shift and

shift mechanism is more appropriate for making smaller changes on the current

solution, it is adopted as the move procedure.

Each of the two ASA algorithms designed in the study chooses a task k

randomly. Then the algorithm determines the set of stations that task k may be

assigned to by considering precedence relationships, cycle time, station times

and zoning restrictions. Then the task k is moved to a station which is chosen

randomly from this set.

 68

4.8.3 The Adaptive Cooling Schedule

The Simulated Annealing approach can not escape from a local optima

if acceptance probability is very small. As it is mentioned in the previous

sections, the main idea of Adaptive Simulated Annealing is adjusting the

algorithm according to the past search. In order to escape from local optimums,

logic of the approach allows reheating. If so, the main job is to develop such a

method that the algorithm perceives that it is in a local optimal region and it is

difficult to escape from there. There are two dimensions about the subject. The

first one is being in a local optimal region and the second one is being unable

to escape from there. The SA algorithm generates a neighboring solution and if

it is a better solution, the algorithm passes to that solution; if it is an inferior

solution, the algorithm passes to that solution according to the acceptance

probability. If the number of inferior solutions in the recently generated

neighboring solutions increases, it may be a sign to being in a local optimal

region. If the number of inferior solutions in the recently generated neighboring

solutions is very high, it may be a sign to being in a local optimal region and

not passing to inferior solutions. If the algorithm generates and passes to an

inferior solution, then the probability to generate a better solution increases and

the number of inferior solutions decreases. On the other hand, the algorithm

may be in a local optimal region, but if the acceptance probability is

sufficiently high, it may escape from that region. But if the ratio of accepted

inferior solutions in the whole inferior solutions in the recently generated

solutions is very low, it may be a sign to understand that the temperature is not

high enough to escape from that region.

The cooling schedule used in the algorithm is given below:

Tem[i]=K / j

where Tem[i] is the temperature at iteration i, j is a counter that controls

the temperature and K is a positive integer.

 69

The values of j and i are equal to 1 at the first iteration; the initial

temperature is K. Then the algorithm increases i and j by one, and performs the

next iteration and so on. At each 100 iterations, the developed approach checks

the number of inferior solutions in the recently generated 100 solutions. If this

number (NUMINF) exceeds 90, the algorithm checks the temperature: whether

it is high enough to escape from that region or not. Then it controls the number

of accepted inferior solutions in the NUMINF inferior solutions. If this number

(NUMACC) is less than 9, then the algorithm adjusts the temperature by

adjusting j as follows:

j = (K)(NUMACC)/NUMINF {if NUMACC = 0 then j = 1)

Increasing NUMINF or decreasing NUMACC increases the probability

of being in a local optimal region. By adjusting j according to the above

formula, if NUMACC decreases or NUMINF increases the value of j decreases.

Correspondingly, at that iteration (i) temperature (Tem[i]) increases and the

acceptance probability and chance to escape from that region increases. An

example of the cooling schedule of the developed ASA algorithms is given in

Figure-4.10.

iteration

Tem[i]

Figure 4.10 An example of cooling schedule of the

developed ASAs

 70

4.8.4 Construction of the Initial Solution

In real life, assembly lines generally include some zoning restrictions.

Because of the zoning restrictions, while constructing a solution, we have to

consider the list of stations that any task may be assigned to. As a result, at any

iteration in the construction algorithm, we can not use only available tasks; we

have to use the assignable tasks to the current station. Therefore, we have

constructed a station-oriented and modified COMSOAL algorithm to generate

a feasible starting solution. The algorithm first determines the available tasks

from the precedence diagram. Then it chooses the assignable tasks among the

available tasks by checking the zoning restrictions, the cycle time and the

station time. After that, the algorithm takes a task randomly among the

assignable tasks and assigns it to the current station. Then it updates the

available and assignable tasks by considering the last assignment. If there is no

assignable task, it passes to the next station. Because of the zoning restrictions,

occasionally, there may be no assignable task, although the station is opened

recently and empty. The modification on COMSOAL is about the zoning

restrictions.

4.8.5 Evaluating the Solutions

4.8.5.1 Evaluating the Line Balances

Upon completing the COMSOAL routines, the algorithm passes to the

ASA phases to improve the solution. Because the problem may be multi/mixed

or single-model assembly line balancing problem and it is multi-objective, it

requires using two ASA parts sequentially.

As it is mentioned in Chapter 2, there are two main approaches to

balance the multi-model assembly lines. The first one is balancing the line

 71

separately for each model as a single-model assembly line balancing, while the

second one is balancing the line as if it is a mixed-model assembly line.

When the first approach is accepted, the system uses the minimum

number of stations for each model and avoids the costs related to the unused

station at the period of that model’s production. But, in this situation, the

number of the common tasks assigned to different stations and the changes on

the set of tasks assigned to the same station increase. Consequently, the setup

costs and negative learning curve effect increase. When the batch sizes are very

large, the advantages of this method dominate its disadvantages and, in general,

this approach is adopted.

When the second approach is accepted, the problem is considered as a

mixed-model assembly line balancing, and generally, by using the combined

precedence diagram, a single balance is found for all models. With this

approach, all common tasks are assigned to the same stations. When the

production changes over to a new model, some tasks are extracted from the line

and some others are added to the line. Hence, there still exists additional setup

cost and learning curve effect, but it is minimized. Nevertheless, this time, the

number of stations and the station slack times increase for each model.

Furthermore, opportunity to increase smoothness and to minimize cycle time

and their advantages can not be utilized. When the batch sizes are very small,

the second approach is adopted, since the advantages of this approach generally

dominate its disadvantages.

The first method assumes that the setup costs and the learning curve

effects are negligible compared to the gain from balancing separately. On the

other hand, the second method assumes that its disadvantages are negligible

compared to its advantages. If the batch sizes are medium and none of the costs

is negligible, balancing the line gets harder. In this situation, there exists

challenging objectives. One of them is minimizing the number of stations while

 72

trying to maximize the common tasks assigned to the same station. The other

one is minimizing the cycle time, while trying to maximize the common tasks

assigned to the same station. Although it is possible to decrease the number of

stations or the cycle time and to increase smoothness, common tasks may

prevent the method from making these moves.

As it is mentioned in the previous parts, in order to minimize the cycle

time or maximize smoothness, the number of stations and a feasible solution

must be pre-determined. In addition, maximization of irregularity and

maximization of smoothness are exactly opposites. So, they should be used

separately. For these reasons, the proposed algorithm first tries to minimize the

number of stations and uses maximization of irregularity while considering the

common tasks and batch sizes. Then, it uses this solution as an input to the next

ASA part and tries to minimize the cycle time and the total slack time, while

maximizing the smoothness. The algorithm, at this stage, also takes the

common tasks and batch sizes into account.

The objective functions used to evaluate the solutions in the first ASA

(Ffirst[x]) and in the second ASA (Fsecond[x]) are given below:

Ffirst[x] = F1[x] + F3[x] + F5[x]

 Fsecond[x] = F2[x] + F4[x] + F5[x]

where x is a line balance and,

F1[x] is the objective function used to minimize number of stations,

F2[x] is the objective function used to minimize cycle time,

F3[x] is the objective function used to maximize irregularity,

F4[x] is the objective function used to maximize smoothness,

F5[x] is the objective function used to maximize common tasks

assigned to same station.

 73

Because of the structure of the SA algorithm, the solutions are

evaluated separately at the sequential ASA algorithms. But the whole problem

is balancing the line and determining the best sequence. For single-model lines

because the number of product models is one the sequencing problem drops.

Similar to the single-model lines, because of the combined precedence diagram

for mixed-model lines, the sequencing problem again drops. The best solution

found for a model i is evaluated with the objective function of balancing model

i (Fmodeli[x]) which is given below:

Fmodeli[x]=F2[x]+F4[x]+F5[x]

Here, F2[x] evaluates the solution according to the cycle time, number

of used stations and batch sizes; F4[x] evaluates the solution according to the

smoothness; F5[x] evaluates it according to the common tasks between the

current model (i) and the previous model. Because F1[x] is identical with

F2[x] and maximization of irregularity (F3[x]) is not really a desired objective,

these two components are not used to evaluate the final balance of model i.

4.8.5.2 Evaluating the Sequences

The other problem is the sequencing problem. In order to evaluate the

whole solution which consists of both the individual model balances and the

sequence of these models, it is needed to use a more widespread objective

function: F[x] which is given below:

For a single-model i (or mixed-model) line balancing, F[x] transforms

to Fmodeli[x] (or Fmodelcombined[x]).

 zerohan greather t is sizebatch which of models ofset theis where K

[x]FmodelF[x]
Ki

i∑
∈∀

=

 74

4.8.6 The Overall Methodology

The explained methodology is used to balance any type of assembly

line. This methodology, consisting of the modified COMSOAL and two ASA

algorithms to solve the multi-objective assembly line balancing problems, used

as a main block and as an inner part of the complete algorithm. The external

part of the algorithm adjusts the usage of the inner part. The external part

determines the type of the assembly line, batch sizes of the models and the

period of the production. If the assembly line is a single-model assembly line

or the user wants to balance the line for a single-model, the external part

computes the cycle time and runs the main part for this single-model only.

Because of the minimization of the cycle time in the second ASA, the

algorithm saves some time and the external part computes this time and reports

it along with the assignments.

If the line is mixed-model assembly line, the algorithm uses the

combined precedence diagram and finds a single common solution for all

models.

If the line is multi-model assembly line, the external part first gets the

batch sizes and the production period. Then it determines the first sequence of

the models and runs the inner part for the first model in the sequence. The

external part then computes the remaining time, calculates the cycle time and

runs the inner part again for the next model in the sequence. After completing

all models, the external part determines the next sequence and runs the inner

part for all models once more. At the end, the algorithm finds the best sequence

and all individual assignments.

If the line consists of some models with large batch sizes and some

others with small batch sizes, the user may easily set the cost parameters and

find a good solution suitable for this situation. If the line includes only the

models with large batch sizes or small batch sizes, the user may balance the

 75

line as a single-model assembly line for all models with large batch sizes or as

a mixed-model assembly line or he/she may adjust the cost parameters and find

solutions between these two extremes. Furthermore, the firm may select some

of the models to produce and the algorithm finds the best sequence and the

individual assignments for only those selected models. Figure 4.11 shows the

flowchart of the methodology and the pseudocode of the whole algorithm is

given in Appendix D.

 76

Figure 4.11 Flowchart of the algorithm

N

N

Pass next model in the

sequence

Pass another untried

sequence

For the current sequence is it

completed to balance the line for all

models?

Is it completed to balance the line for

all possiblesequences?

STOP

Y

Y

Record the best sequence and

balances of models

Compute the remaining time and cycle

time

For the model construct a feasible

initial solution by using COMSOAL

First ASA part to minimize number of

stations and maximize common tasks

Second ASA part to minimize cycle

time and maximize common tasks

Get the type of the assembly line

Get the batch size(s)

Get the production period

Get the precedence relationships, task

times and zoning restrictions

Determine the sequence(s) of the

model(s)

 77

CHAPTER 5

EXPERIMENTAL ANALYSIS

5.1 Design of the Experiment

The proposed algorithm may be used to solve single, mixed or multi-

model assembly line balancing problems. Furthermore, a problem may be

solved by taking one or more objectives into account. Because the structure of

the algorithm changes under different objective combination and assembly line

type scenarios, the performance of the algorithm should be evaluated according

to these scenarios.

There are five objective function components in the algorithm, but these

objectives may be grouped in three classes. The first one is minimization of the

number of used stations. Because the maximization of irregularity is sub

objective to achieve minimization of the number of used stations and they are

not conflicting objectives with each other, these two components may be

considered as the first objective group. Similarly, the maximization of

smoothness is sub objective to achieve minimization of cycle time and these

two components may be considered as the second objective group. On the

other hand, the maximization of common tasks which are assigned to the same

station at the assembly of successive models is another objective class by itself.

These three objectives are conflicting objectives with each other. One of the

methods to deal with conflicting objectives is to take them into account

successively. In this method, the problem is solved according to the first

objective, then it is solved according to the next objective such that the

previous solution is satisfied. Another method to deal with conflicting

 78

objectives is to give these objectives weights and to solve the problem

according to these objectives simultaneously. The developed algorithm uses

these two methods to overcome the difficulty of conflicting objectives. The

first two objective groups are separated by using two ASA algorithms. The first

ASA part tries to find the best solution according to the first and the third

objective groups. On the other hand the second ASA part tries to find the best

solution according to the second and the third objective groups such that the

previous solution found in the first ASA part is satisfied.

The proposed algorithm solves the mixed-model assembly line

balancing problems by using the combined precedence diagram method. This

method transforms the problem to a single-model assembly line balancing

problem. The third objective group is redundant when the problem is single-

model or mixed-model assembly line balancing problem. Because the other

two objective groups are used separately, for the single-model and mixed-

model assembly line balancing problems, the performance of the first ASA part

may be evaluated according to the minimization of the number of used stations

and the performance of the second ASA part may be evaluated according to the

minimization of cycle time. For this purpose, the test problems of SALBP-I

from the literature are used to evaluate the performance of the first ASA part

and those of SALBP-II are used to evaluate the performance of the second

ASA part. Then the algorithm is tested on the case problem and it is run 10

times, and the results are analyzed. For the single and mixed-model assembly

line balancing problems, the experimental analysis is explained in the

following sections. The analysis about the multi-model assembly line balancing

problems is explained in the following sections.

 79

5.2 Single and Mixed-Model Assembly Line Balancing Problems

5.2.1 Test Problems

5.2.1.1 The First ASA Part

First the algorithm is tested on the SALBP-I problems in the literature.

For this purpose the optimally solved problems from the sets of Talbot et. al.

(1986), Hoffmann (1990, 1992) and Scholl (1993, 1995) are used. Table E.1

shows the test problems, optimum solutions and the best solutions found with

the proposed algorithm.

Descriptive statistics are used to evaluate the performance of the

algorithm on the test problems. Deviations are computed according to the

following formula:

Deviation = (Solution Found-Optimum Solution)/Optimum Solution

Table E.2 shows that the algorithm is tested on 25 problem groups.

Table E.1 shows the problems included in these groups. For example, Arcus1

is one of the problem groups and it consists of 16 problems with different cycle

times. The columns of Table E.2 show the statistics of deviations of these 16

problems.

The algorithm is used to solve 265 test problems. The optimum

solutions are found for 237 test problems (89.4%) by using the algorithm. 22

problems (8.3%) are solved with less than 5% deviations and the remaining 6

problems (2.3%) are solved with more than 5% deviations. The average of the

deviations is 0.45%.

 80

Table E.2 shows that the proposed algorithm has solved all of the

problems optimally for the 18 groups. It solved at least one problem from each

group optimally. The maximum deviation is 14%. For each one of the problem

groups, the average of the deviations is less than 5%.

According to the results the performance of the heuristic method is

considered to be satisfactory. The given statistics show that the proposed

algorithm is very good for SALBP-I.

5.2.1.2 The Second ASA Part

The algorithm is tested on the SALBP-II problems in the literature. For

this purpose the optimally solved problems from the sets of Data set 1 and Data

set 2 (Scholl, 1993; 1999) are used. Table E.3 shows the test problems,

optimum solutions and the best solutions found with the proposed algorithm.

Table E.4 shows that the algorithm is tested on 17 problem groups.

Table E.3 gives detailed problems included in these groups.

Table E.3 shows that the algorithm is used to solve 286 test problems.

The optimum solution is found for 213 test problems (74.4%) by the algorithm.

All of the remaining problems (25.6%) are solved with less than 3% deviation.

The average of the deviations is 0.16%.

Table E.4 shows that the proposed algorithm has solved all of the

problems optimally for the 7 groups. It has solved at least one problem from

each group optimally. The maximum value of deviations is 2.15%. For each

one of the problem groups, the average of the deviations is less than 0.7%.

According to the given statistics, the proposed algorithm is considered

to be satisfactory on SALBP-II.

 81

The experiments on the test problems showed us that the performance

of the first ASA part is very good at the minimization of the number of used

stations and the performance of the second ASA part is very good at the

minimization of cycle time, when the third objective group which is conflicting

with the first two objective groups is neglected. The performance of the

algorithm is very good at single-model assembly line balancing problems.

Furthermore, because we transform the mixed-model problems to single-model

problems by using combined precedence diagram method, the performance of

the algorithm is also very good at mixed-model assembly line balancing

problems at our case study. After these experiments the algorithm is tested on

the case problem.

5.2.2 The Case Problem

Two factors are defined for these experiments: model and batch size.

Levels of the model are Model1, Model2, Model3, Model4 and Mixed. Levels

of the production amounts are 300, 500 and 600 units per shift; during the

production period a single model, or more then one model with mixed-model

type, is produced with batch size 300, 500 and 600 units. Then the response

variables are used to analyze the effects of the factors on the performance of

the algorithm. Response variables are the number of used stations (m), cycle

time (C), total slack time (TST) and deviations from the theoretical optimums

of the number of stations (Dm) and cycle time (DC) at the beginning of the run

and at the end of the run. Table 5.1 shows the average and standard deviation

values of the response variables for 10 runs.

 82

Table 5.1 Average values and Standard Deviation values of response variables

of 10 runs of SALB and MiALB

Batch Size

300 500 600
 initial final Impr. initial final Impr. initial final Impr.

Avg 25 21.4 0.144 34 31.1 0.0853 38.3 35.1 0.0836 m

 Std 0 0.5164 0 0.3162 0.6749 0.3162

Avg 84 77.78 0.074 50.4 49.62 0.0155 42 41.76 0.0057 C

 Std 0 3.0695 7E-15 0.5412 0 0.2836
Avg 441 41.52 0.9059 256.2 90.47 0.6469 201.6 60.15 0.7016 TST

Std 0 20.149 6E-14 21.264 28.348 7.8589

Avg 5.25 0.5295 0.8991 5.0833 1.8206 0.6418 4.8 1.4408 0.6998 Dm

 Std 0 0.2429 9E-16 0.4168 0.6749 0.1936

Avg 17.64 1.9444 0.8898 7.5353 2.9046 0.6145 5.2538 1.7124 0.6741

M
o
d
e

l1

DC

Std 4E-15 0.9544 2E-15 0.6528 0.6275 0.2093

Avg 25 22.6 0.096 35 32.1 0.0829 39.8 36.7 0.0779 m

 Std 0 0.6992 0 0.3162 0.4216 0.483

Avg 84 76.8 0.0857 50.4 49.41 0.0196 42 41.53 0.0112 C

 Std 0 2.2959 7E-15 0.3348 0 0.4668

Avg 376.4 54.34 0.8556 242 70.01 0.7107 200 55.23 0.7239 TST

Std 6E-14 40.975 0 18.616 17.709 14.596

Avg 4.481 0.7069 0.8422 4.8016 1.4157 0.7052 4.7619 1.3299 0.7207 Dm

 Std 0 0.5358 9E-16 0.3717 0.4216 0.3483

Avg 15.06 2.372 0.8425 6.9143 2.1767 0.6852 5.0213 1.5018 0.7009

M
o

d
e

l2

DC

Std 2E-15 1.6993 2E-15 0.551 0.3977 0.3843

Avg 25 21.3 0.148 34.9 31.2 0.106 38.1 35.3 0.0735 m

 Std 0 0.483 0.3162 0.4216 0.3162 0.483

Avg 84 79.87 0.0492 50.4 49.26 0.0226 42 41.81 0.0045 C

 Std 0 2.4909 7E-15 0.9395 0 0.3247

Avg 416.4 41.55 0.9002 276.96 61.42 0.7782 168.6 45.36 0.731 TST

Std 0 24.282 15.938 8.7472 13.282 17.339

Avg 4.957 0.518 0.8955 5.4952 1.2456 0.7733 4.0143 1.0851 0.7297 Dm

 Std 9E-16 0.2968 0.3162 0.1646 0.3162 0.4143

Avg 16.66 1.9445 0.8833 7.9326 1.9696 0.7517 4.4229 1.28 0.7106

M
o
d
e

l3

DC

Std 4E-15 1.1259 0.3938 0.2883 0.3055 0.4697

Avg 26 23.5 0.0962 37.5 34.2 0.088 42.1 39.6 0.0594 m

 Std 0 0.527 0.7071 0.4216 0.9944 0.5164
Avg 84 79.83 0.0496 50.4 49.82 0.0115 42 41.66 0.0081 C

 Std 0 2.4904 7E-15 0.7052 0 0.3893

Avg 344 59.96 0.8257 251.6 68.72 0.7269 180.2 63.64 0.6468 TST

Std 0 19.137 35.638 14.286 41.766 14.63

Avg 4.095 0.7497 0.8169 4.9921 1.3785 0.7239 4.2905 1.5283 0.6438 Dm

 Std 0 0.2367 0.7071 0.283 0.9944 0.3523
Avg 13.23 2.5503 0.8072 6.6956 2.0079 0.7001 4.2615 1.6038 0.6237

M
o

d
e

l4

DC

Std 0 0.8055 0.81 0.4011 0.882 0.3526

Avg 27.6 24.4 0.1159 39.2 35.3 0.0995 43.4 41.2 0.0507 m

 Std 0.516 0.5164 0.4216 0.483 0.5164 0.4216

Avg 84 79.04 0.059 50.4 50.01 0.0077 42 41.64 0.0086 C

 Std 0 2.8175 7E-15 0.5724 0 0.3718
Avg 406.8 45.52 0.8881 265.68 57.46 0.7837 163.2 58 0.6446 TST

Std 43.38 20.435 21.251 10.206 21.689 7.7554

Avg 4.843 0.5709 0.8821 5.2714 1.1503 0.7818 3.8857 1.3935 0.6414 Dm

 Std 0.516 0.2385 0.4216 0.2126 0.5164 0.1924

Avg 14.72 1.8724 0.8728 6.7731 1.6252 0.7601 3.7555 1.4067 0.6254

M
ix

e
d

DC

Std 1.306 0.8625 0.4622 0.2677 0.453 0.1775

m Avg 25.72 22.64 0.12 36.12 32.78 0.092 40.34 37.58 0.069

C Avg 84 78.664 0.0635 50.4 49.624 0.015 42 41.68 0.0076

TST Avg 396.92 48.578 0.875 258.49 69.616 0.729 182.72 56.476 0.689

Dm Avg 4.7252 0.615 0.867 5.1287 1.402 0.725 4.3505 1.3555 0.687

G
e
n
.

A
v
g

DC Avg 15.46 2.1367 0.859 7.17 2.135 0.702 4.543 1.5009 0.667

 83

The cycle time is computed as the production period (7 hours=a shift)

divided by the total production amount. If the batch size increases, the initial

value of cycle time decreases. If batch size is 300, 500 or 600 units, the

corresponding initial values of cycle time are 84, 50.4 or 42 seconds.

Improvement values are computed for a response variable as follows:

Improvement = (initial value-final value)/initial value

For each model, but Model1, improvement in number of stations (m)

decreases, when batch size increases or initial value of cycle time decreases.

General averages show that the improvement in m decreases, when batch size

increases. It means that the performance of the first ASA part increases, when

the initial cycle time increases.

For each model, but Mixed, improvement in C decreases, when batch

size increases. If the batch size increases, the initial cycle time decreases and

the number of stations needed increases. The general average values of m are

22.64, 32.78 and 37.58. When the number of stations increases, it is expected

that the final value of cycle time would be lower and the improvement in the

cycle time would increase. But results show the opposite of it; the

improvement in C decreases when the number of stations increases.

For Model3, Model4 and Mixed, the improvement in TST decreases

when batch size increases. For Model1 and Model2, the improvement in TST

fluctuates, but in general, it decreases when the initial cycle time decreases.

Because the improvement in m and C decreases, the result about TST is

expected.

The results summarized above show that improvement in m, C and TST

decreases, when the initial cycle time decreases, or equivalently, when the

 84

amount of production per shift increases. Consequently, as the initial cycle

time increases, the performance of the algorithm gets better.

Deviation from the lower bound of the number of stations (Dm) is

computed as:

Dm = (TST)/C

The integer part of Dm shows the maximum number by which the

number of stations may be decreased to reach the theoretical minimum at that

cycle time. The interesting result is that the integer part of Dm value with 300

batch size is zero for each model. It shows that the algorithm finds the

optimum solutions. This value increases to 1 with 500 and 600 batch sizes. It

means that the solution found deviates from the lower bound by one station

only. In general, the improvement in Dm decreases, when the batch size

increases.

Deviation from the lower bound of cycle time (DC) is computed

according to the following formula:

DC = (TST)/m

If cycle time may be decreased by DC units, the perfect balance is

obtained. The results show that DC value fluctuates with the batch size for

individual models, but in general averages it decreases, when the batch size

increases. Improvement in DC decreases when the initial cycle time decreases.

At the end of the runs deviations from the lower bound of cycle time do not

exceed 2 seconds.

For each model but Mixed, at the end of the run, the standard deviation

of m is the smallest at 500 units per shift. The biggest value of standard

 85

deviations of m is 0.699 stations. For each model but Model1, at the end of the

run, the standard deviation of C decreases, when the batch size increases. The

biggest value of standard deviations of C is 3.069 seconds. For 500 units of

production, this value decreases to 0.9 seconds. Standard deviation of TST

fluctuates with batch sizes and models. Also the standard deviation of Dm

fluctuates with batch sizes and models. For each model, standard deviation of

DC decreases, when the batch size increases.

The most important results are about Dm and DC values, because these

values give an opinion about the quality of the solutions. The deviations from

the lower bound do not exceed 3% for the number of stations and 4% for the

cycle time. Standard deviations of Dm do not exceed 0.53 stations and standard

deviations of DC do not exceed 1.699 seconds. According to the results the

algorithm finds very good solutions for the case problem, because the

deviations from the lower bounds are less than 5%. Since the current amount of

production per shift is 500, the convergence graphics with 500 batch size are

given in Appendix E.

5.3 Multi-Model Assembly Line Balancing Problems

When the problem is multi-model assembly line balancing problem, the

third objective group is to be taken into account which conflicts with the first

two objectives. If the weight of the third objective is negligible, the

assignments of the common tasks to the different stations get free, transforming

the problem to a SALBP for each model. The performance of the algorithm is

examined in the previous sections. On the other hand, if the weight of the third

objective group is very high, it forces the algorithm to assign all of the

common tasks to the same stations. In this situation, the problem shifts to a

MiALBP which makes assignments by using the combined precedence

diagram and obtains a single balance for all models. The performance of the

algorithm is also studied in the previous sections in this situation. For

 86

MuALBP, the problem has to be solved as a MuALBP. The test problems for

MuALBP which consist of conflicting objectives could not be obtained from

the literature. The analysis is made on the case problem. The problem is solved

with three different weights of the third objective. For each one of the weights,

the algorithm is run 10 times and the results are evaluated. The percentages of

the number of common tasks which are assigned to the same stations and the

effects of the third objective to the other objectives are analyzed.

The weights of the third objective group are low, intermediate and high.

The daily batch sizes of the Model1, Model2, Model3 and Model4 are 350, 75,

50 and 25 units, respectively. At low level of the weight of the third objective,

the contribution of the third objective is similar to the contributions of the other

objectives for Model4. At intermediate level of the weight of the third

objective, the contribution of the third objective is similar to the contributions

of the other objectives for Model2 and it is similar to the contributions of the

other objectives for Model1 at the high level of the weight of the third

objective.

Table E.5 shows the sequences of the models and number of common

tasks between models. Tables E.6, E.7 and E.8 show the numbers of common

tasks that are assigned to the same stations at the successive models and their

percentages. The values are average of 10 runs for each level of the third

objective. For low, intermediate and high level of the weight of the third

objective, the overall averages of percentages are 47.88%, 88.54% and 94%,

respectively. These results indicate that the algorithm is sensitive to the third

objective. The results show that when the weight of the third objective is at

intermediate or higher levels, the algorithm assigns approximately 90% of the

common tasks to the same stations.

Total slack time, number of used stations and cycle time values are

recorded throughout the runs. Table 5.2 shows the average values of number

 87

of used stations (m), cycle time (C), total slack time (TST) and deviations from

the lower bound of number of stations (Tm) and cycle time (TC) at the

beginning of the run and at the end of the run.

Table 5.2 Average values of response variables of 10 runs for MuALB

 Low Intermediate High

m 34.41146 34.87604 34.26458

C 53.49594 52.07615 53.84875

TST 287.2238 279.0299 286.2759

Dm 5.371893 5.350897 5.315542

Beginning

DC 8.401711 8.015751 8.40985

m 31.18333 32.45313 34.16458

C 51.95479 51.30927 50.97438

TST 75.47677 133.0051 212.2435

Dm 1.474284 2.578629 4.133182

DC 2.417654 4.110379 6.17753

End

Common 0.4788 0.88541 0.94002

Impr. In m = (mb-me)/mb 0.094081 0.069104 0.00027

Impr. In C = (Cb-Ce)/Cb 0.028443 0.014781 0.049083

Imp. in TST = (TSTb-TSTe)/TSTb 0.730645 0.524464 0.264433

Note: mb, Cb and TSTb represent the beginning values of m, C and TST. me,

Ce and TSTe represent the end values of m, C and TST.

According to the results shown in Table 5.2 the increment in the weight

of the third objective has negative effects on the other objectives. Initial values

of m, C and TST are approximately 34, 52 and 280, respectively. On the other

hand, final values of m are 31, 32, 34 for low, intermediate and high levels.

Because the final value of m increases, it is expected that the final value of C

decreases; but according to the results there is no meaningful decrease in C.

Final values of TST are 75, 133 and 212 seconds. It increases according to the

increment in the weight of the third objective. Deviations from the lower

bounds increase for both of m and C. Each of the improvement values

decreases, when the weight increases. But success in the third objective

increases from 48% to 89% and then to 94%.

 88

Tables from E.9 to E.32 in the Appendix E show the detailed results

about the first, second, third and the last model in a sequence; Model1,

Model2, Model3 and Model4; m, C and TST. General results obtained from

these detailed results are summarized in Table 5.2 above.

5.4 Current Line Balance and Suggested Line Balances

According to the current balance, for Model1, Model2 and Model3 the

number of used stations is 36, while it is 37 for Model4. When the line passes

to produce Model4, station numbers of nine tasks change. As it is mentioned in

Chapter3, the system finds this solution in a week, but the suggested method

uses computers and balances the line in some minutes for the mixed-model

case and in a few hours for multi-model case. Daily productions of Model1,

Model2, Model3 and Model4 are taken as 350, 75, 50 and 25 units,

respectively. On the other hand, in this study, the balancing problem of the

company is solved according to the multi-model case. According to the

suggested solution, numbers of the used stations for Model1, Model2, Model3

and Model4 are 31, 30, 30 and 31, respectively. Daily production amounts are

the same. Production sequence is Model1, Model3, Model2, Model4. Stations

of 43, 22 and 18 tasks change, when the system passes from Model1 to

Model3, from Model3 to Model2 and from Model2 to Model4, respectively. If

the system prefers to balance the line as a mixed-model line, the proposed

method finds a solution with the number of used stations as 35, and all of the

common tasks being assigned to the same stations. The current assignments

and the suggested assignments are given in Appendix F.

5.5 Run Times of the Experiments

The algorithm is coded in Turbo Pascal Windows and the runs are made

in a computer specifications of which are Intel Pentium 4, CPU 3 GHz, 512

MB RAM.

 89

The algorithm is run for 10 minutes for each of the test problems and

the best solutions are recorded.

For the experimental runs about the case problem, the algorithm is run

for a limited number of iterations; 10000 iterations for each ASA part. The

computer completes a run for any model in about 1-1.5 minutes. i.e., the

algorithm finishes the run in 1-1.5 minutes for single-model or mixed-model

balancing cases. For the multi-model case, the algorithm solves an individual

single-model balancing for all sequences and for each of the models in a

sequence. Because the case consists of 4 models, the algorithm makes 96

(4*4!) individual balancing and the whole run is completed in approximately

96-144 minutes.

 90

CHAPTER 6

CONCLUSION AND FURTHER RESEARCH ISSUES

In this study, we deal with a real-life assembly line balancing problem

and propose an approach which solves each type of SALBP, MiALBP and

MuALBP with zoning restrictions. The proposed algorithm solves multi-

objective assembly line balancing problems as well. Because the proposed

algorithm has a flexible structure, it may be used to solve each type of

assembly line balancing problems, furthermore, it is also appropriate to solve

harder problems, real-life problems because it considers different objectives

and zoning restrictions.

When the problem includes more than one and conflicting objectives, it

gets harder to solve the problem. Assembly line balancing problems, especially

multi/mixed model assembly line balancing problems, are complex problems,

and generally consist of more than one conflicting objectives. Number of used

stations, cycle time, common tasks among models, setup cost of passing from

production of a model to another one’s, etc. are some of the factors that affect

the solution of the assembly line balancing problems.

Especially for the multi model assembly lines, sequencing arises as

another problem besides the line balancing problem. Because the common

tasks between sequential models change with respect to the models, it becomes

important to determine the best sequence. If so, without balancing the line for

each model, determining the true sequence of the models becomes another

problem.

 91

Most of the real-life problems are complex ones and consist of zoning

restrictions, multi-model or mixed-model situations, conflicting objectives etc.

which make the problem even harder. Although the real-life problems consist

of these complexities most of the studies in the literature are about SALBPs. In

this study, we attempt to solve a real-life multi-objective multi-model assembly

line balancing problem with many zoning restrictions for which there is as yet

no optimum-seeking algorithm in the literature. Because of these complexities

of the problem, we have constructed a flexible heuristic algorithm and used to

solve it. The developed approach is proposed to solve such complex assembly

line balancing problems.

The developed algorithm uses a modified COMSOAL algorithm to

construct an initial solution and two sequential ASA algorithms to improve the

solution. To solve MuALBPs, the algorithm uses five objective function

components to evaluate the solutions, regarding the three conflicting

objectives. The first ASA algorithm tries to minimize the number of stations

while trying to maximize the number of common tasks which are assigned to

the same stations. The second ASA algorithm tries to minimize the cycle time

while trying to maximize the number of common tasks assigned to the same

stations by considering the batch sizes as well as the first ASA algorithm’s

results. Then the algorithm passes to the next models and next sequences. At

the end of the run, the algorithm finds individual balances for each model and

the best sequence of the models. To solve MiALBPs, the algorithm uses the

combined precedence diagram method. Because the algorithm finds a single

balance for all models, the sequencing problem and therefore the objective of

maximization of number of common tasks which are assigned to the same

stations at the sequential models drop. Thus as well as the SALBPs for the

MiALBPs the first ASA algorithm tries to minimize only the number of used

stations and the second ASA algorithm tries to minimize only the cycle time.

 92

In this study, we have tested the proposed algorithm on test problems

from the literature and on the case problem as well. For each type of the

assembly line balancing problem, the experimental results are analyzed

separately. The results may be summarized as follows:

The algorithm is tested on 265 SALBP-I problems from the literature.

The optimum solution is found in 237 of the 265 test problems (89.4%) by the

algorithm. On the average, for any cycle time, the proposed algorithm solves

the problem with 0.45% deviation from the optimum solution. The given

statistics show that the proposed algorithm is very good on SALBP-I. The

algorithm is also tested to solve 286 SALBP-II test problems. The optimum

solution is found in 213 of the 286 test problems (74.4%) by the algorithm. The

proposed algorithm is very good on SALBP-II as well.

The algorithm is tested on the case problem for single-model and mixed

model cases. According to the results the algorithm finds very good solutions

for the case problem. The deviations from the lower bound does not exceed 3%

in the number of stations and 4% in the cycle time. The solution for the case

problem may be the optimum solution, but theoretically the number of stations

may be decreased by ‘1’, when the total amount of daily production increases.

On the other hand, if the total amount of daily production increases, i.e. the

initial cycle time decreases, the deviation from the theoretical minimum (lower

bound) of the cycle time decreases. The deviation from the lower bound does

not exceed 2 seconds (4%).

The algorithm is finally tested on the case problem for the multi-model

case. As it is expected, the increase in the weight of the ‘common tasks’

objective affects the other objectives adversely; if the weight is increased, the

deviations from the lower bounds increases up to 4 stations and 6.17 seconds.

But the percentage of the common tasks that are assigned to the same stations

increases to 94%.

 93

At the end of this study, some worthwhile contributions to the company

can be stated as follows:

Task list has been updated and corrected. The tasks which are

performed on the line but are not defined yet are defined and coded. The tasks

which were formerly performed more than once on the line, but coded and

named once in the list, are defined and coded separately. Some automatically

made tasks are defined and added to the list.

The assembly line and the models of the product are observed;

precedence relationships diagram for each individual model and combined

precedence relationships diagram are constructed. Zoning restrictions are

determined.

A meta-heuristic approach is developed and computer program of the

method is coded. Thus, the disadvantages of balancing the line manually are

eradicated. It is possible to balance the line in some minutes for the mixed-

model case or in some hours for the multi-model case for the assembly line

under study.

According to the current balance in the plant, the number of stations is

36 for Model1, Model2 and Model3, and 37 for Model4. When the line passes

to produce Model4, station numbers of 9 tasks change. Daily productions of

Model1, Model2, Model3 and Model4 are 350, 75, 50 and 25 units,

respectively. On the other hand, in this study, the balancing problem of the

company is solved according to the multi-model case. According to our

suggested solution, numbers of stations for Model1, Model2, Model3 and

Model4 are 31, 30, 30 and 31, respectively. Daily production amounts are the

same. Production sequence is Model1, Model3, Model2, Model4. Station

numbers of 17, 32 and 16 tasks change when the system passes from Model1 to

Model3, from Model3 to Model2 and from Model2 to Model4. If the system

 94

prefers to balance the line as a mixed-model line, the proposed method finds a

solution with 35 stations.

The contributions of this study to the literature may be summarized as

follows:

We offer to use an objective function that maximizes the irregularity

among station times (workloads) in order to minimize the number of used

stations. Similarly, we offer an objective function that maximizes the

smoothness in order to minimize the cycle time.

We use an original cooling mechanism in the Adaptive Simulated

Annealing algorithms.

Further research issues:

There are a few studies in the literature that solves multi-objective

MiALBPs but unfortunately we have not found a study that solves multi-

objective MuALBPs. In this study we solve any type of assembly line

balancing problem by considering multiple objectives and solve the sequencing

problem in the MuALBPs.

Although the proposed algorithm has a flexible structure and solves any

type of assembly line balancing problem, there may be some further

improvements in the algorithm. The most important drawback of the algorithm

is that currently the algorithm can solve multi-model assembly line balancing

problems, if the number of models is less than or equal to 4. With some more

studies this limit may be eradicated. But on the other hand, for the multi-model

cases the algorithm solves the sequencing problem by an enumerative manner

and solves n*n! individual balancing problems for n models. When the number

of models increases, solution time may be very long. In order to prevent this

 95

disadvantage, a heuristic sequence determination method may be developed

which may use the similarities among the models, common task numbers, and

batch sizes etc..

The performance of the proposed methodology on the single and

mixed-model assembly line balancing problems is evaluated with the

experiments made on the case problem. Three different daily production levels

are used in these experiments. It may be more appropriate to make further

experiments with more than three different daily production levels to

understand the changes of the performance of the algorithm according to the

chances in the production amounts.

 96

REFERENCES

Alp, A., Çerçioğlu, H., Tokaylı, M. A. and Dengiz, B., 2001. ‘Stokastik montaj

hattı dengeleme: Bir Tavlama Benzetimi algoritması’, Endüstri

Mühendisliği, 12, 32-51.

Altekin, T. F., 1999. 'An Approach to Multi-Model Assembly Line Balancing',

M.S. Thesis, METU, ANKARA.

Anderson, E. J., and Ferris, M. C., 1994. ‘Genetic Algorithms for

Combinatorial Optimization: the Assembly Line Balancing Problem’,

ORSA Journal of Computing, 6, 161-173.

Arcus, A. L., 1996. ‘COMSOAL: A Computer Method of Sequencing

Operations for Assembly Lines’, International Journal of Production

Research, 4 (4), 259-277.

Askin, R. G., and Standridge, C. R., 1993. Modeling and Analysis of

Manufacturing Systems, John Wiley & Sons, New York, NY.

Ayral, N.D., 1999. 'A Decision Support System for Assembly Line Balancing',

M.S. Thesis, METU, ANKARA.

Azizi, N., and Zolfaghari, S., 2004. ‘Adaptive Temperature Control for

Simulated Annealing: A Comparative Study’, Computers and Operations

Research, 31, (2439-2451)

Bautista, J., Pereira, J., 2002. ‘Ant algorithms for assembly line balancing’, In:

Dorigo, M., Di Caro, G., Samples, M. (Eds.), Ant Algorithms, Third

 97

International Workshop, ANTS 2002, Brussels, Belgium, 2002,

Proceedings, Lecture notes in Computer Science, 2463. Springer, Berlin,

65-75.

Baybars, İ., 1986a. ‘An Efficient Heuristic Method for the Simple Assembly

Line Balancing Problem’, International Journal of Production Research,

24, 149-166.

Baybars, İ., 1986b. ‘A Survey of Exact Algorithms for the Simple Assembly

Line Balancing Problem’, Management Science, 32 (8), 909-932.

Berger, I., Bourjolly, J. M., and Laporte, G., 1992. ‘Branch-and-Bound

Algorithms for the Multi-product Assembly Line Balancing Problem’,

European Journal of Operational Research, 58, 215-222.

Bolat, A., 1997. ‘Stochastic procedures for scheduling minimum job sets on

mixed-model assembly lines’, The Journal of the Operational Research

Society, 48 (5), 490-501.

Bowman, E. H., 1960. ‘Assembly Line Balancing by Linear programming’,

Operations Research, 8 (3), 385-389.

Bryton, B., 1954. ‘Assembly Line Balancing’, Unpublished MS Thesis, North

Western University, Evanston.

Bukchin, Y. and Rabinowitch, I., 2006. ‘A Branch and Bound Based Solution

Approach for the Mixed-Model Assembly Line Balancing Problem for

Minimizing Stations and Task Duplication Costs’, European Journal of

Operational Research, 174, 492-508.

 98

Buxey, G. M., Slack, N. D., and Wild, R., 1973. ‘Production Flow Line System

Design-A Review’, AIIE Transactions, 5, 37-48.

Chakravarty, A. K., and Shtub, A., 1985. ‘Balancing Mixed Model Lines with

In-process Inventories’, Management Science, 31 (9), 1161-1174.

Chen, S., Istepanian, R., and Luk, B. L., 2001. ‘Digital IIR Filter Design Using

Adaptive Simulated Annealing’, Digital Signal Processing, 11, 241-251

Chiang., W. C., 1998. ‘The application of a tabu search metaheuristic to the

assembly line balancing problem’, Annals of Operations Research, 77,

209-227.

Erel, E. and Gökçen, H., 1999. ‘Shortest-route formulation of mixed-model

assembly line balancing problem’, European Journal of Operational

Research, 116, 194-204.

Erel, E., and Sarin, S. C., 1998. ‘A Survey of the Assembly Line Balancing

Procedures’, Production Planning and Control, 9 (5), 414-434.

Erel, E., Sabuncuoğlu, I., and Aksu, B. A., 2001. ‘Balancing of U-type

Assembly Systems Using Simulated Annealing’, International Journal

of Production Research, 39 (13), 3003-3015.

Fokkert, J. I. Z., and Kok, T. G., 1997. ‘The Mixed and Multi Model Balancing

Problem: A Comparison’, European Journal of Operational Research,

63, 399-412.

Gökçen, H. and Erel, E., 1997. ‘A Goal Programming Approach to Mixed-

Model Assembly Line Balancing Problem’, Int. J. Production

Economics, 48, 177-185.

 99

Gökçen, H. and Erel, E., 1998. ‘Binary Integer Formulation for Mixed-Model

Assembly Line Balancing Problem’, Computers ind. Engng., 34 (2),

451-461.

Gonçalves, J. F., and De Almeida, J. R., 2002. ‘A Hybrid Genetic Algorithm

for Assembly Line Balancing’, Journal of Heuristics, 8, 629-642.

Hackman, S. T., Magazine, M. J., and Wee, T. S., 1989. ‘Fast, Effective

Algorithms for Simple Assembly Line Balancing Problems’,

Operations Research, 37 (6), 916-924.

Hax, A. C. and Candea, D., 1984. Production and Inventory Management,

Prentice-Hall Inc., Englewood Cliffs, NJ.

Held, M., Karp, R. M., 1962. ‘A Dynamic Programming Approach to

Sequencing Problems’, SIAM, 10, 196-210.

Held, M., Karp, R. M., and Shareshian, R., 1963. ‘Assembly-line Balancing

Dynamic Programming with Precedence Constraints’, Operations

Research, 11 (3), 442-460.

Helgeson, W. P., and Birnie, D. P., 1961. ‘Assembly Line Balancing Using the

Ranked Positional Weight Technique’, Journal of Industrial

Engineering, 12 (6), 394-398.

Hoffmann, T. R., 1963. ‘Assembly Line Balancing with a Precedence Matrix’,

Management Science, 9 (4), 551-562.

Hoffmann, T. R., 1992. ‘Eureka: A Hybrid System for Assembly Line

Balancing’, Management Science, 38 (1), 39-47.

 100

Holland, J. H., 1975. ‘Adaptation in Natural and Artificial Systems’, The

University of Michigan Press, Ann Arbor, MI.

Hu, T. C., 1961. ‘Parallel Sequencing and Assembly Line Problems’,

Operations Research, 9, 841-848.

Ingber, L., 1998. ‘Data Mining and Knowledge Discovery via Statistical

Mechanics in Nonlinear Stochastic systems’, Mathl. Comput.

Modelling, 27 (3), 9-31.

Jackson, J. R., 1956. ‘A Computing Procedure for a Line Balancing Problem’,

Management Science, 2 (3), 261-271.

Johnson, R. V., 1988. ‘Optimally Balancing Large Assembly Lines with

‘FABLE’’, Management Science, 34 (2), 240-253.

Kilbridge, M. and Wester, L., 1961. ‘The Balance Delay Problem’,

Management Science, 8 (1), 69-84.

Kilbridge, M. D. and Wester, L., 1962. ‘A Review of Analytical Systems of

Line Balancing’, Operations Research, 10 (5), 626-638.

Kim, Y. K., Kim, Y. and Kim, Y. J., 2000. ‘Two-sided assembly line

balancing: A genetic algorithm approach’, Production Planning and

Control, 11, 44-53.

Klein, R., 1963. ‘On Assembly Line Balancing’, Operations Research, 11,

274-281.

 101

Klein, R., and Scholl, A., 1996. ‘Maximizing the Production Rate in Simple

Assembly Line Balancing-A Branch and Bound Procedure’, European

Journal of Operational Research, 62, 367-385.

Lapierre, S. D., Ruiz, A. and Soriano, P., 2006. ‘Balancing assembly lines with

tabu search’, European Journal of Operational Research, 168, 826-837.

Macaskill, J. L. C., 1972. ‘Production Line Balance for Mixed-model Lines’,

Management Science, 19 (4), 423-434.

McMullen, P. R., and Freizer, G. V., 1998. ‘Using Simulated Annealing to

Solve a Multi-objective Assembly Line Balancing Problem With

Parallel Workstations’, International Journal of Production Research,

36 (10), 2717-2741.

McMullen, P. R., and Tarasewich, P., 2003. ‘Using ant techniques to solve the

assembly line balancing problem’, IIE Transactions, 35, 605-617.

Mendes, A. R., Ramos, A. L., Simaria, A. S. and Vilarinho, P. M., 2005.

‘Combining heuristic procedures and simulation models for balancing a

PC camera assembly line’, Computers & Industrial Engineering, 49,

413-431.

Mertens, P., 1967. ‘Assembly Line Balancing by Partial Enumeration’, Ablauf

und Planungforscung, 8, 429-433.

Pastor, R., Andres, C., Duran, A. and Perez, M., 2002. ‘Tabu search algorithms

for an industrial multi-product and multi-objective assembly line

balancing problem, with reduction of the task dispersion’, Journal of

the Operational Research Society, 53, 1317-1323.

 102

Patterson, J. H., and Albracht, J. J., 1975. ‘Assembly-Line Balancing: Zero-

One Programming with Fibonacci Search’, Operations Research, 23,

166-174.

Ponnombalam, S.G., Aravindan, P. and Subba Rao, M., 2003. ‘Genetic

Algorithms for sequencing problems in mixed model assembly lines’,

Computer & Industrial Engineering, 45, 669-690.

Raouf, A., and Tsui, C. L., 1982. ‘A New Method for Assembly Line

Balancing Having Stochastic Work Elements’, Computers and

Industrial Engineering, 6, 131-148.

Rubinovitz, J. and Leivitin, G., 1995. ‘Genetic algorithm for assembly line

balancing’, International Journal of Production Economics, 41, 343-

354.

Sabuncuoğlu, I., Erel, E. and Tanyer, M., 2000. ‘Assembly line balancing using

genetic algorithms’, Journal of Intelligent Manufacturing, 11, 295-310.

Salveson, M. E., 1955. ‘The Assembly Line Balancing Problem’, Journal of

Industrial Engineering, 6 (3).

Scholl, A., and Becker, C., 2006. ‘State-of-the-art exact and heuristic solution

procedures for simple assembly line balancing’, European Journal of

Operational Research, 168, 666-693 .

Schrage, L., and Baker, K. R., 1978. ‘Dynamic Programming Solution of

Sequencing Problems with Precedence Constraints’, Operations

Research, 26 (3), 444-449.

 103

Suresh, G., and Sahu, S., 1994. ‘Stochastic Assembly Line Balancing Using

Simulated Annealing’, International Journal of Production Research,

32, 1801-1810.

 Talbot, F. B., and Patterson, J. H., 1984. ‘An Integer Programming Algorithm

with Network Cuts for Solving the Single Model Assembly Line

Balancing Problem’, Management Science, 30, 85-99.

Thangavelu, S. R. and Shetty, C. M., 1971. ‘Assembly Line Balancing by

Zero-One Integer Programming’, AIIE Trans., 3, 61-68.

Thomopoulos, N. T., 1967. ‘Line Balancing and Sequencing for Mixed Model

Assembly Line’, Management Science, 14 (2), 59-75.

Uğurdağ, H. F., Rachamadugu, R. and Papachristou, C. A., 1997. ‘Designing

Paced Assembly lines with Fixed Number of Stations’, European

Journal of Operational Research, 102 (3), 488-501.

Wee, T. S., and Magazine, M. J., 1981a. ‘An Efficient Branch and Bound

Algorithm for Assembly Line Balancing – Part 1: Minimizing the

Number of Workstations’, Working Paper, University of Waterloo,

ONT.

Wee, T. S., and Magazine, M. J., 1981b. ‘An Efficient Branch and Bound

Algorithm for Assembly Line Balancing – Part 2: Maximize the

Production Rate’, Working Paper, University of Waterloo, ONT.

White, W. W., 1961. ‘Comments on a Paper by Bowman’, Operations

Research, 9.

 104

Wild, R., 1972. The Design and Operation of Production Flow Line Systems,

John Wiley and Sons, London.

Xiaobo, Z. and Zhou, Z., 1997. ‘Algorithms for Toyota’s goal of sequencing

mixed-models on an assembly line with multiple workstations’, The

Journal of the Operational Research Society, 50 (7), 704-710.

 105

APPENDIX A

SKETCH OF THE ASSEMBLY LINE OF THE FIRM

Figure A.1 Sketch of the Assembly Line of the Firm

Product flow direction

Special equipments

38 39 40 41 42 43 44 45 46 47 48

FUNCTIONAL TEST AREA

29 30 31 32 33 34 35 36 37 23 24 25 26 27 28 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 18 19 20 21 22 11

Inner Lid Group Assembly

17

49 50 51 52 53 54 55 57 56 58 59 60 63 62 61 64 68 67 66 65 LIFT

LIFT

1,...,68: workstations

 106

APPENDIX B

TASK LIST

Table B.1 Task List

TASK

CODE TASK DEFINITION

TASK

TIME

(SEC) M
O

D
E

L
1

M
O

D
E

L
2

M
O

D
E

L
3

M
O

D
E

L
4

1 Put the main part on to the pallet 13 1 1 1 1

2 Attach the plastic support part of back leg to the right frame 3.5 1 1 1 1

3 Attach the plastic support part of back leg to the left frame 3.5 1 1 1 1

4 fix the sheet iron of left leg to the frame with 3 screws 14.6 1 1 1 1

5 fix the sheet iron of right leg to the frame with 3 screws 14.6 1 1 1 1

6 fix the sheet iron of hanger of motor to the frame with 2 screws 12.5 1 1 1 1

7 oil the right reel of hinge 2.5 1 1 1 1

8 attach the right reel of hinge to its handle 3.1 1 1 1 1

9 nail the rondela to the right reel 4.1 1 1 1 1

10
put the fan group to the frame and fix it from the bottom with 2

screws
12 0 0 0 1

11 fix the fan group to the frame from the side with 2 screws 10 0 0 0 1

12 turn the pallet 90 degree 0 1 1 1 1

13
take the group of reservoir from the conveyor and assembly the

gasket to the reservoir
6.4 1 1 1 1

14 oil the gasket and reservoir 3.5 1 1 1 1

15 put the reservoir into the fixture 2 1 1 1 1

16 put the group of reservoir to the main part by using piston 2.1 1 1 1 1

17
attach the support part of colander to the reservoir and control

that it is set
4.5 1 1 1 1

18 fix the group of reservoir to the main part with 4 screws 14.5 1 1 1 1

19 put the U strafor to the right frame 3.5 0 1 1 1

20 turn the pallet 90 degree 0 1 1 1 1

21 set the circulation motor to the reservoir and tighten the clamp 8.9 1 1 1 1

22 attach the hose of heater-motor and tighten the clamp 6.5 1 1 1 1

23 fixate the circulation motor by using cover of motor 3.6 1 1 1 1

24 put the U strafor to the left frame 3.5 0 1 1 1

25 attach the long hose (having string) to the valve (3 outlets) 4 1 1 1 1

26 tighten the clamp which is attached to the hose (having string) 3.6 1 1 1 1

 107

Table B.1 (Continued)

27 oil the left reel of hinge 2.5 1 1 1 1

28 attach the left reel of hinge to its handle 3.1 1 1 1 1

29 nail the rondela to the left reel 4.1 1 1 1 1

30 set the salt box to the main part 3 1 1 1 1

31 put the nut of salt box from inside of the main part manually 4.2 1 1 1 1

32 tighten the nut of salt box by using special equipment 8 1 1 1 1

33 Attach the 4. transparent hose to the salt box 4.5 1 1 0 0

34 tighten the clamp of 4. transparent hose 4.5 1 1 0 0

35 Attach the group of counter to the back frame 5.6 1 1 1 1

36 set the group of water pocket to the main part 3.5 1 1 1 1

37 set the nails of the water pocket to the frame 4 1 1 1 1

38 spread the soap to the outlets of the water pocket 3.5 1 1 1 1

39 Attach two parts of new water pocket and salt box to each other 9.5 0 0 1 1

40 put two O-RINGs to salt box if the water pocket is new model 7.2 0 0 1 1

41 Attach a clamp to the 4. transparent hose 3.5 1 1 0 0

42 link the 4. transparent hose to the reservoir 4.5 1 1 0 0

43 tighten the clamp of 4. transparent hose 4.5 1 1 0 0

44
bind a sponge to a side of salt box if the water pocket is new

model
11 0 0 1 1

45
tie the thin and thick transparent hoses to the frame by using a

plastic tie
6 1 1 1 1

46 fixate an adjustable foot to the part of right back leg 3.8 0 1 1 1

47 fixate an adjustable foot to the part of left back leg 3.8 0 1 1 1

48 fixate an adjustable foot to the sheet iron of right front foot 3.8 1 1 1 1

49 fixate an adjustable foot to the sheet iron of left front foot 3.8 1 1 1 1

50
set the nail of fan to the sheet iron and adjust the outlet of the

fan
7 0 0 0 1

51
set the outlet of the fan onto the main part and fix the cover of

fan to the main part by using a special equipment
11 0 0 0 1

52 attach a clamp to the hose which will be connected to the fan 2.5 0 0 0 1

53 connect the hose to the fan 3.5 0 0 0 1

54 tighten the clamp of the hose of fan 3.5 0 0 0 1

55 attach a hose to the pipe of fan 3 0 0 0 1

56
tie the hose which is attached to the pipe of fan to the front

upper frame
4.5 0 0 0 1

57 oil the pin of right hinge 2 1 1 1 1

58 oil the pin of left hinge 2 1 1 1 1

59 put the arm of left hinge to the sheet iron 2.5 1 1 1 1

60 put the arm of right hinge to the sheet iron 2.5 1 1 1 1

61
fixate the water pocket to the main part by using cover of air

pocket
10.7 1 1 1 1

62 set a string to the right reel of hinge 4.3 1 1 1 1

63 set a string to the left reel of hinge 4.3 1 1 1 1

 108

Table B.1 (Continued)

64 attach the group of pipe of upper spray to the main part 5.9 1 0 0 0

65 attach the group of upper spray to the main part and fix it 4.9 0 1 1 1

66 set the sheet iron of left rail to the reels 2.9 1 1 1 1

67 set the sheet iron of right rail to the reels 2.9 1 1 1 1

68 attach the cover of right rail from the back 4 1 1 1 1

69 attach the cover of left rail from the back 4 1 1 1 1

70 attach the bottom propeller to the pump reservoir 2.7 1 1 1 1

71 peel the foil which is bind to the frame 5 1 1 1 1

72 erect the main part C 1 1 1 1

73 set the handle of motor card to the main part 5.5 0 0 0 1

74 attach two screws to the handle of motor card 9.3 0 0 0 1

75 attach a screw to the group 4.2 1 1 1 0

76 attach the part of the lock 4.5 1 1 1 1

77 spread the soap to the sheet iron of gasket 3.9 1 1 1 1

78 attach two covers to the sheet iron of gasket 8 1 1 1 1

79 attach the gasket of the lid to its sheet iron manually 21 1 1 1 1

80
tighten the bottom part of sheet iron of gasket of the lid by

using hammer
1.5 1 1 1 1

81 set the handle of spring to the right frame 2.5 1 1 1 1

82 attach the spring to the right spring handle 1.2 1 1 1 1

83
take the group of inner lid from the conveyor and put it onto the

arms of hinge
6.1 1 1 1 1

84 fix the left arm of hinge to the inner lid with 2 screws 7.8 1 1 1 1

85 fix the right arm of hinge to the inner lid with 2 screws 7.8 1 1 1 1

86 close the inner lid which is screwed 2.5 1 1 1 1

87 stretch the right spring and connect it to the string 4.2 1 1 1 1

88 stretch the left spring and connect it to the string 4.2 1 1 1 1

89 set the handle of spring to the left frame 2.5 1 1 1 1

90 attach the spring to the left spring handle 1.8 1 1 1 1

91 put the support sheet iron onto the arms of hinge 2.3 1 1 1 1

92 fix the support sheet iron to the arms of hinge with a screw 3.7 1 1 1 1

93 fix the support sheet iron to the arms of hinge with a screw 3.7 1 1 1 1

94 fix the support sheet iron with a screw 3.7 1 1 1 1

95 fix the cable of earth to the support sheet iron with a screw 5.3 1 1 1 1

96 pass the hose of flusher from the hook of heater-reservoir hose 2 1 1 1 1

97 attach the other end of the hose of flusher to the buoy 7.4 1 1 1 1

98 tie the 2. hose of flusher to the buoy 5.5 1 1 1 1

99 attach the polisher switch to the detergent box 3.8 1 1 1 1

100 attach a cable to the detergent box 3.9 1 1 0 0

101 attach a isolater to the detergent box cable 3 1 1 0 0

102 attach a cable to the detergent box 3.9 1 1 1 0

103 set the support strafor to the support sheet iron 2.6 1 1 1 1

104 fix the strafor to the sheet iron by tighten the sheet iron 4.5 1 1 1 1

 109

Table B.1 (Continued)

105 attach a cable tie to detergent box and tie the cable 8.5 1 0 1 0

106 open the lid 0.5 1 1 1 1

107 attach the sound gasket to the front upper support sheet iron 7.1 1 1 1 1

108 pass the group of cable from the upper side of "s" hose 5.5 1 1 1 1

109 turn the pallet 3 1 1 1 1

110 attach a cable to the switch of salt box 4.5 1 1 1 1

111 attach 2 cables to the buoy 8.5 1 1 1 1

112 attach a cable to the buoy 4.5 1 1 1 1

113 oil the NTC and attach it to the pump reservoir 3.5 1 1 1 1

114 attach a cable to the valve (3 outlets) 3.9 1 1 0 0

115 bind a felt to the main part from the left side 6.5 1 1 1 1

116 fixate the circulation motor and cover of motor with a screw 4.2 1 1 1 1

117 attach a socket to the counter card 4.5 0 1 0 1

118
attach an isolater to the cable which is attached to the

circulation motor
3 1 1 1 1

119 attach 2 cables to the circulation motor 7.5 1 1 1 1

120 attach a cable to the circulation motor 3 0 0 0 1

121 bind a felt to the main part from the right side 6.5 1 1 1 1

122
bind the sponge of sound isolation to the main part from back

under
6.5 1 1 1 1

123
attach an isolater to the cable which is attached to the

regeneration valve
3 0 1 0 1

124 attach 2 cables to the regeneration valve 9 0 1 0 1

125 attach an isolater to the cable which is attached to the heater 3 1 1 1 1

126 attach an isolater to the cable which is attached to the heater 3 1 1 1 1

127 attach a cable to the heater 5.5 1 1 1 1

128 attach a cable to the switch of salt box 4.5 1 1 1 1

129 attach a cable to the valve (3 outlets) 3.9 1 0 1 0

130 attach 2 cables to the fan motor 7 0 0 0 1

131 put the sheet iron of concrete to the pallet 2.5 1 1 1 1

132 attach a wire tie to the sheet iron of concrete 2.5 1 1 1 1

133
attach an isolater to the cable which is connected to the parasite

filter and one of the cable of main group of cables
3 1 1 1 1

134
attach an isolater to the cable which is connected to the parasite

filter and one of the cable of main group of cables
3 1 1 1 1

135
connect the ends of the cables of main group of cables to the

parasite filter (1 unit)
4 1 1 1 1

136
connect the ends of the cables of main group of cables to the

parasite filter (1 unit)
4 1 1 1 1

137
connect the ends of the cables of main group of cables to the

parasite filter (1 unit)
4 1 1 1 1

 110

Table B.1 (Continued)

138
attach an isolater to the cable which is connected to the parasite

filter and one of the cables of net cable
3 1 1 1 1

139
attach an isolater to the cable which is connected to the parasite

filter and one of the cables of net cable
3 1 1 1 1

140
connect the ends of the cables of net cable to the parasite filter

(1 unit)
4 1 1 1 1

141
connect the ends of the cables of net cable to the parasite filter

(1 unit)
4 1 1 1 1

142 attach a cable to the valve (3 outlets) 3.9 1 1 1 0

143 put the net cable to the socket 3.5 1 1 1 1

144 attach a clamp to the frame (left) 2.5 1 1 1 1

145 tie a camel neck to the frame with a clamp 5.9 1 1 1 1

146
connect the ends of the cables of net cable to the parasite filter

(1 unit)
4 1 1 1 1

147 put the concrete part to the sheet iron of concrete 3 1 1 1 1

148 adjust the concrete part and fix it by using piston 3.5 1 1 1 1

149
fix the sheet iron of concrete to the frame from right back side

with a screw
4.9 1 1 1 1

150
fix the sheet iron of concrete to the frame from right back side

with a screw
4.9 1 1 1 1

151
fix the flexible part of the sheet iron to the frame from the right

side with a screw
4 1 1 1 1

152
fix the flexible part of the sheet iron to the frame from the left

side with a screw
4 1 1 1 1

153 attach a clamp to the hose (string) 3.5 1 1 1 1

154
heat the end of the hose (string) and connect it to the water

pocket
18 1 1 1 1

155 tighten the clamp of the hose (string) 6 1 1 1 1

156 attach the hose of aqua-stop to the pallet and tighten it 13 0 1 0 1

157 attach cable protections to the ends of cables of the aqua-stop 4.5 0 1 0 1

158 attach the green and green-white cables to the aqua-stop socket 5.2 0 1 0 1

159
tie the cables of aqua-stop to the hanger of hose with a plastic

clamp
9.5 0 1 0 1

160 open the lid 0.5 1 1 1 1

161 close the lid 0.5 1 1 1 1

162 attach a cable to the heater 4.5 1 1 1 0

163 attach a cable to the heater 4.5 1 1 1 0

164 put the bottom part of the hose hanger to the fixture 2.9 1 1 1 1

165 connect the end of the emptying hose to the fixture 4.7 1 1 1 1

166
put the upper part of the hose hanger to the fixture and connect

its nails to the bottom part
3.7 1 1 1 1

167 move the emptying hose 0.3 1 1 1 1

168 connect the aqua-stop hose to the hanger 6.5 0 1 0 1

 111

Table B.1 (Continued)

169 put the group of hanger to the sheet iron of concrete 5.2 0 1 0 1

170 attach a camel neck to the emptying hose 4.2 1 1 1 1

171 tie the emptying hose to the frame with a clamp 6.5 1 1 1 1

172 adjust the emptying hose and attach its free end to the pallet 5.4 1 1 1 1

173 attach a clamp to the emptying hose 2.5 1 1 1 1

174 connect the emptying hose to the motor and adjust it 4.5 1 1 1 1

175 tighten the clamp of emptying hose 5.5 1 1 1 1

176 oil the emptying hose 2.5 1 1 1 1

177 connect the emptying hose to the reservoir and set its nails 4.2 1 1 1 1

178 set the cables of heater to the part on the reservoir 2.4 1 1 1 1

179
attach an isolater to the cable which is connected to the

emptying motor
3 1 1 1 1

180 attach 2 cables to the emptying motor 8.4 1 1 1 1

181 adjust the machine (product) 2.5 1 1 1 1

182 set the front bottom support sheet iron between the frames 3.8 1 1 1 1

183
set the flusher between the bottom support sheet iron and main

part
3.5 1 1 1 1

184 set the 2. flusher to the front bottom sheet iron 4.5 1 1 1 1

185 adjust the cable protection 2.2 1 1 1 1

186
fix the front bottom support sheet iron to the frame with a

screw
6.3 1 1 1 1

187
fix the front bottom support sheet iron to the frame with a

screw
5.8 1 1 1 1

188
fix the front support sheet iron of hinge from the right side with

2 screws
9.5 1 1 1 1

189 close the lid 0.5 1 1 1 1

190 open the lid 0.5 1 1 1 1

191 put the group of upper basket into the machine 5.9 1 1 1 1

192 attach the cover of right rail from the front 2.8 1 1 1 1

193 attach the cover of left rail from the front 2.8 1 1 1 1

194 close the lid 0.5 1 1 1 1

195 set the "start the program" button to test position C 1 1 1 1

196 close the cover of salt box 4.3 1 1 1 1

197
fix the front support sheet iron of hinge from the left side with

2 screws
9.5 1 1 1 1

198 put the group of outer lid onto the inner lid and board 7.5 1 1 1 1

199 fix the inner-outer lid from the bottom side with a screw 3.2 1 1 1 1

200 fix the inner-outer lid from the bottom side with a screw 3.2 1 1 1 1

201 fix the inner-outer lid from the upper side with a screw 3.2 1 1 1 1

202 fix the inner-outer lid from the upper side with a screw 3.2 1 1 1 1

203 tighten the 2 screws which are half tightened on the board 3 0 1 0 1

204 pass the motor card cable (1. type) among the hoses 6.5 0 0 0 1

205 pass the motor card cable (2. type) among the hoses 4.3 0 0 0 1

 112

Table B.1 (Continued)

206 connect the motor card cable (1. type) and adjust it 6.5 0 0 0 1

207 operate the bottom plane robot 5.5 1 1 1 1

208 attach the part which fixates the upper plane 0 1 1 1 1

209 attach 2 L strafors to the frame 0 1 1 1 1

210 connect the buoy and bottom plane 2.1 1 1 1 1

211 fixate the bottom plane with 2 screws to the frame 10.6 1 1 1 1

212
check the cables and hoses of buoy after attaching the bottom

plane
2.1 1 1 1 1

213 attach the mistake trace paper to the lid with a magnet 2.1 1 1 1 1

214 control the 1. electrical test 1 1 1 1 1

215 connect the motor card cable (2. type) and adjust it 6.4 0 0 0 1

216 send the pallet 5.5 1 1 1 1

217 open the lid 0.5 1 1 1 1

218 open the cover of salt box 3 1 1 1 1

219 evacuate the water in the salt box with the vacuum machine 10.2 1 1 1 1

220 move the micro filter and reservoir 0 1 1 1 1

221 connect the cable of circulation motor card to the card 5.6 0 0 0 1

222 evacuate the water in the reservoir with the vacuum machine 6.8 1 1 1 1

223 close the cover of salt box 0 1 1 1 1

224 put the colander into the reservoir 2.1 1 1 1 1

225 put the micro filter to the colander and tighten it 2.1 1 1 1 1

226 bind a sticker to the cover of salt box 5.8 1 1 1 1

227
adjust the tuning screw in the water pocket by using

screwdriver
3.5 1 1 1 1

228 close the lid 0.5 1 1 1 1

229 put a felt on to the main body 3.5 1 1 1 1

230 ravel the water entry hose from the pallet 6.8 1 1 1 1

231 ravel the emptying hose from the pallet 0.8 1 1 1 1

232 tie the water entry and emptying hoses according to the figure 5.1 1 1 1 1

233 tie the water entry and emptying hoses with a clamp 3.9 1 1 1 1

234 put a felt on to the machine 4.1 0 0 0 1

235 attach a clamp to the right frame 2.5 1 1 1 1

236 set a long starafor to the right back frame 4.7 1 1 1 1

237 set a long starafor to the left back frame 4.7 1 1 1 1

238 attach the sound gasket to the left side by using the equipment 7.8 0 0 1 1

239 attach a strafor to the left back side of main body 2.9 1 1 1 1

240 attach the left side plane and fix it with 2 screws 15 1 1 1 1

241 put 2 white stopper to the left side plane 4.1 1 1 1 1

242 attach the centralize part of inner lid (left and right) 8 1 1 1 1

243 attach the sound gasket to the right side by using the equipment 7.8 0 0 1 1

244 attach a strafor to the right back side of main body 2.9 1 1 1 1

245 attach the right side plane and fix it with 2 screws 15 1 1 1 1

246 put 2 white stopper to the right side plane 4.1 1 1 1 1

 113

Table B.1 (Continued)

247 put the left side support starafor between the felts 2.3 1 1 1 1

248 attach a strafor to the back side of the upper basket 3.5 1 1 1 1

249 attach the lid of motor card cable 5.7 0 0 0 1

250
fix the right side plane to the frame from the upper side with 2

screws
7.8 1 1 1 1

251
fix the left side plane to the frame from the upper side with 2

screws
7.8 1 1 1 1

252 put the bottom basket into the machine 4.3 1 1 1 1

253 control the working of the group of bottom basket and the lid 0.8 1 1 1 1

254 transfer the bottom basket 0.5 1 1 1 1

255 put a pocket of detergent into the bottom basket 2.1 1 1 1 1

256 transfer the pocket of detergent 0.5 1 1 1 1

257 attach the shelf group to the bottom basket 4.5 1 1 1 1

258
after attaching the shelf group set 2 strafors to the back side of

the basket
4.9 1 1 1 1

259
set the "start the program" button to test position and push the

start button
C 1 1 1 1

260 bind an attention sticker to the lid of motor card 5.5 0 0 0 1

261 tie a sponge to the bottom basket 3.5 1 1 1 1

262 put a salt funnel to the bottom basket 2.1 1 1 1 1

263 attach 2 strafors to the back side of the bottom basket 4.9 1 1 1 1

264 set the CKB basket into the bottom basket 2 1 1 1 1

265 transfer the material 1 1 1 1 1

266 set the kick felt to the frame 9 1 1 1 1

267 set the kick sheet iron to the frame 3.7 1 1 1 1

268 transfer the kick sheet iron 0.5 1 1 1 1

269
fix the kick sheet iron to the frame from the upper side with 2

screws
11.6 1 1 1 1

270
fix the kick sheet iron to the frame from the right bottom side

with 2 screws
7.8 1 1 1 1

271 bind a sponge to the kick sheet iron 6.5 1 1 1 1

272
fix the right side plane to the frame from the back side with 2

screws
7.8 1 1 1 1

273
fix the left side plane to the frame from the back side with 2

screws
7.8 1 1 1 1

274 fix the bottom plane from the back side with 2 screws 7.8 1 1 1 1

275 turn the pallet 3 1 1 1 1

276
fix the kick sheet iron to the frame from the left bottom side

with 2 screws
7.8 1 1 1 1

277 attach the plastic kick part to the kick sheet iron 2.7 1 1 1 1

278 transfer the plastic kick part 0.5 1 1 1 1

279 ravel the net cable from the pallet and set it between the hoses 2.7 1 1 1 1

280 turn the pallet 3 1 1 1 1

 114

Table B.1 (Continued)

281 test the machine according to the 2. control paper 22 1 1 1 1

282 put the sample pochette into the upper basket 2.8 1 1 1 1

283
attach a plastic part to the bottom basket and fixate the CSK.

funnel and user guide
9 1 1 1 1

284 match the user guide. type sticker and barcode number 5.5 1 1 1 1

285 save the barcode number 2.8 1 1 1 1

286 bind a sticker to the mistake trace paper 3.2 1 1 1 1

287 put a separator into the user guide 5.3 1 1 1 1

288 put the user guide into the machine 2.7 1 1 1 1

289 functional test C 1 1 1 1

290 give a barcode number 1.5 1 1 1 1

291 Attach a strafor to the bottom basket 4.5 1 1 1 1

292 bind a program sticker to the inside of the lid 5.5 1 1 1 1

293 clean the outside surfaces 20 1 1 1 1

294 bind a type sticker to the front barcode paper 5.1 1 1 1 1

295 bind a type sticker to the back barcode paper 5.1 1 1 1 1

296 control the existence of the user guide in the machine 1 1 1 1 1

297
bind the sticker of the firm to the outside of the lid from the

upper left side
5.5 1 1 1 1

298 put the concrete sheet iron onto the fixture 2.5 1 1 1 1

299 put the bracket parasite filter to the fixture 1 1 1 1 1

300 Attach the bracket parasite filter to the concrete sheet iron 2.8 1 1 1 1

301 fix the parasite filter to the concrete sheet iron with 2 screws 7 1 1 1 1

302 turn the concrete sheet iron 2.8 0 0 0 1

303 attach a wire clamp to the concrete sheet iron 2.5 1 1 1 1

304 tie the net cable 2.8 1 1 1 1

305 put the net cable to the bottom part of its handle 3.1 1 1 1 1

306
connect the upper part of handle of the net cable to the bottom

part
3.2 1 1 1 1

307 attach the handle of the net cable to the concrete sheet iron 3.6 1 1 1 1

308 pass the 3 cables of the net cable from the handle 4.5 1 1 1 1

309 collect the grouped parts 2 1 1 1 1

310 fill water to the salt box C 1 1 1 1

311 attach the outlet part of fan to the concrete sheet iron 5.5 0 0 0 1

312 open the lid 0.5 1 1 1 1

313 close the lid 0.5 1 1 1 1

314 TASK GROUP 1 33 1 1 1 1

315 TASK GROUP 2 13.8 1 1 1 1

316 TASK GROUP 3 25.8 1 1 1 1

317 TASK GROUP 4 C 1 1 1 1

318 TASK GROUP 5 32.1 1 1 1 1

319 TASK GROUP 6 32.1 1 1 1 1

320 TASK GROUP 7 34.8 1 1 1 1

 115

Table B.1 (Continued)

321 TASK GROUP 8 33 1 1 1 1

322 TASK GROUP 9 34.5 1 1 1 1

323 TASK GROUP 10 4.9 1 1 1 1

Note: The number 1 in model columns shows that corresponding model

includes the corresponding task. and the number 0 in model columns shows

that corresponding model does not include the corresponding task

 116

APPENDIX C

PRECEDENCE RELATIONSHIPS

Table C.1 List of immediate predecessor-successor relationships for

individual models

MODEL1 MODEL2 MODEL3 MODEL4

T
a
s
k

I
m

m
e
d

ia
te

S
u

c
c
e
s
s
o

r

T
a
s
k

I
m

m
e
d

ia
te

S
u

c
c
e
s
s
o

r

T
a
s
k

I
m

m
e
d

ia
te

S
u

c
c
e
s
s
o

r

T
a
s
k

I
m

m
e
d

ia
te

S
u

c
c
e
s
s
o

r

1 7 1 24 1 24 1 24

1 57 1 7 1 7 1 7

1 237 1 57 1 57 1 57

1 36 1 237 1 237 1 73

1 33 1 36 1 36 1 237

1 12 1 33 1 40 1 36

1 6 1 12 1 33 1 40

1 2 1 6 1 12 1 12

1 3 1 2 1 6 1 6

1 4 1 3 1 2 1 10

1 5 1 4 1 3 1 2

1 58 1 5 1 4 1 3

1 27 1 58 1 5 1 4

1 122 1 27 1 58 1 5

1 236 1 122 1 27 1 58

2 72 1 19 1 122 1 27

3 72 1 236 1 19 1 122

4 49 2 46 1 236 1 19

5 48 3 47 2 46 1 236

6 21 4 49 3 47 2 46

7 8 5 48 4 49 3 47

8 9 6 21 5 48 4 49

9 62 7 8 6 21 5 48

12 13 8 9 7 8 6 21

13 14 9 62 8 9 7 8

14 15 12 13 9 62 8 9

 117

Table C.1 (Continued)

15 16 13 14 12 13 9 62

16 17 14 15 13 14 10 11

17 18 15 16 14 15 11 21

17 75 16 17 15 16 12 13

18 20 17 18 16 17 13 14

20 21 17 75 17 18 14 15

20 25 18 20 17 75 15 16

21 22 19 245 18 20 16 17

22 23 20 21 19 245 17 18

23 72 20 25 20 21 18 20

25 26 21 22 20 25 19 245

26 72 22 23 21 22 20 21

27 28 23 72 22 23 20 25

28 29 24 240 23 72 21 22

29 63 25 26 24 240 22 23

30 31 26 72 25 26 23 72

31 32 27 28 26 72 24 240

32 41 28 29 27 28 25 26

33 34 29 63 28 29 26 72

34 30 30 31 29 63 27 28

35 30 31 32 30 31 28 29

36 37 32 41 31 32 29 63

37 35 33 34 32 45 30 31

37 38 34 30 32 44 31 32

37 61 35 30 35 39 32 45

38 30 36 37 36 37 32 44

41 42 37 35 37 35 35 39

42 43 37 38 37 38 36 37

43 45 37 61 37 61 37 35

45 72 38 30 38 39 37 38

48 72 41 42 39 30 37 61

49 72 42 43 40 30 38 39

57 60 43 45 44 72 39 30

58 59 45 72 45 72 40 30

59 63 46 72 46 72 44 72

59 83 47 72 47 72 45 72

60 62 48 72 48 72 46 72

60 83 49 72 49 72 47 72

61 86 57 60 57 60 48 72

62 87 58 59 58 59 49 72

63 88 59 63 59 63 50 51

64 86 59 83 59 83 51 52

 118

Table C.1 (Continued)

66 69 60 62 60 62 51 55

67 68 60 83 60 83 52 53

68 86 61 86 61 86 53 54

69 86 62 87 62 87 54 207

70 86 63 88 63 88 55 56

71 86 65 86 65 86 56 234

72 310 66 69 66 69 57 60

72 107 67 68 67 68 58 59

72 67 68 86 68 86 59 63

72 66 69 86 69 86 59 83

72 64 70 86 70 86 60 62

72 89 71 86 71 86 60 83

72 70 72 310 72 310 61 86

72 59 72 107 72 107 62 87

72 235 72 67 72 67 63 88

72 77 72 66 72 66 65 86

72 76 72 65 72 65 66 69

72 71 72 89 72 89 67 68

72 81 72 70 72 70 68 86

72 60 72 59 72 59 69 86

72 144 72 235 72 235 70 86

72 121 72 77 72 77 71 86

72 115 72 76 72 76 72 310

75 72 72 71 72 71 72 107

76 86 72 81 72 81 72 50

77 78 72 60 72 60 72 67

78 79 72 144 72 144 72 66

79 80 72 121 72 121 72 65

80 83 72 115 72 115 72 89

81 82 75 72 75 72 72 70

82 87 76 86 76 86 72 59

83 84 77 78 77 78 72 235

83 85 78 79 78 79 72 77

84 86 79 80 79 80 72 76

85 86 80 83 80 83 72 71

86 88 81 82 81 82 72 81

86 105 82 87 82 87 72 60

86 101 83 84 83 84 72 144

86 100 83 85 83 85 72 121

86 99 84 86 84 86 72 115

86 91 85 86 85 86 73 74

86 191 86 88 86 88 74 72

 119

Table C.1 (Continued)

86 108 86 101 86 105 74 249

86 96 86 100 86 102 76 86

86 87 86 99 86 99 77 78

87 109 86 91 86 91 78 79

88 109 86 191 86 191 79 80

89 90 86 108 86 108 80 83

90 86 86 96 86 96 81 82

91 92 86 87 86 87 82 87

91 93 87 109 87 109 83 84

91 94 88 109 88 109 83 85

91 95 89 90 89 90 84 86

92 103 90 86 90 86 85 86

93 103 91 92 91 92 86 88

94 103 91 93 91 93 86 99

95 198 91 94 91 94 86 91

96 97 91 95 91 95 86 191

97 98 92 103 92 103 86 108

98 109 93 103 93 103 86 96

99 198 94 103 94 103 86 87

100 198 95 198 95 198 87 109

101 102 96 97 96 97 88 109

102 198 97 98 97 98 89 90

103 104 98 109 98 109 90 86

104 198 99 198 99 198 91 92

105 198 100 198 102 198 91 93

106 199 101 102 103 104 91 94

106 200 102 198 104 198 91 95

106 201 103 104 105 198 92 103

106 202 104 198 106 199 93 103

107 161 106 199 106 200 94 103

108 109 106 200 106 201 95 198

108 182 106 201 106 202 96 97

109 110 106 202 107 161 97 98

109 126 106 203 108 109 98 109

109 128 107 161 108 182 99 198

109 129 108 109 109 110 103 104

109 114 108 182 109 126 104 198

109 116 109 110 109 128 106 199

109 113 109 126 109 129 106 200

109 112 109 128 109 116 106 201

109 111 109 117 109 113 106 202

109 118 109 114 109 112 106 203

 120

Table C.1 (Continued)

109 125 109 116 109 111 107 161

109 142 109 113 109 118 108 109

110 131 109 112 109 125 108 182

111 131 109 111 109 142 109 205

112 131 109 118 110 131 109 204

113 131 109 123 111 131 109 120

114 131 109 125 112 131 109 130

115 239 109 142 113 131 109 110

115 247 110 131 115 238 109 126

115 244 111 131 115 239 109 128

116 131 112 131 115 247 109 117

118 119 113 131 115 243 109 116

119 131 114 131 115 244 109 113

121 239 115 239 116 131 109 112

121 247 115 244 118 119 109 111

121 244 115 247 119 131 109 118

122 207 116 131 121 238 109 123

125 127 117 131 121 239 109 125

126 131 118 119 121 247 110 131

127 131 119 131 121 243 111 131

128 131 121 239 121 244 112 131

129 131 121 244 122 207 113 131

131 132 121 247 125 127 115 234

131 133 122 207 126 131 116 131

131 134 123 124 127 131 117 131

131 135 124 131 128 131 118 119

131 138 125 127 129 131 119 131

131 139 126 131 131 132 120 221

131 146 127 131 131 133 121 234

132 171 128 131 131 134 122 207

133 136 131 132 131 135 123 124

134 137 131 133 131 138 124 131

135 147 131 134 131 139 125 127

136 147 131 135 131 146 126 131

137 147 131 138 132 171 127 131

138 140 131 139 133 136 128 131

139 141 131 146 134 137 130 131

140 147 132 171 135 147 131 132

141 147 133 136 136 147 131 133

142 131 134 137 137 147 131 134

143 195 135 147 138 140 131 135

144 145 136 147 139 141 131 138

 121

Table C.1 (Continued)

145 170 137 147 140 147 131 139

146 147 138 140 141 147 131 146

147 148 139 141 142 131 132 171

148 149 140 147 143 195 133 136

148 150 141 147 144 145 134 137

148 151 142 131 145 170 135 147

148 152 143 195 146 147 136 147

149 164 144 145 147 148 137 147

149 143 145 170 148 149 138 140

149 153 146 147 148 150 139 141

150 164 147 148 148 151 140 147

150 143 148 149 148 152 141 147

150 153 148 150 149 164 143 195

151 240 148 151 149 143 144 145

152 245 148 152 149 153 145 170

153 154 149 164 150 164 146 147

154 155 149 143 150 143 147 148

155 163 149 156 150 153 148 149

155 162 150 164 151 240 148 150

160 284 150 143 152 245 148 151

160 286 150 156 153 154 148 152

160 287 151 240 154 155 149 164

160 291 152 245 155 162 149 143

160 292 153 154 155 163 149 156

161 293 154 155 160 284 150 164

161 294 155 157 160 286 150 143

161 295 156 153 160 287 150 156

161 297 157 158 160 291 151 240

162 178 158 159 160 292 152 245

163 178 159 162 161 293 153 154

164 165 159 163 161 294 154 155

165 166 160 284 161 295 155 157

166 167 160 286 161 297 156 153

167 170 160 287 162 178 157 158

170 171 160 291 163 178 158 159

171 172 160 292 164 165 159 178

172 173 161 293 165 166 160 284

173 174 161 294 166 167 160 286

173 178 161 295 167 170 160 287

174 175 161 297 170 171 160 291

175 176 162 178 171 172 160 292

176 177 163 178 172 173 161 293

 122

Table C.1 (Continued)

177 179 164 165 173 174 161 294

178 173 164 168 173 178 161 295

178 181 165 166 174 175 161 297

179 180 166 167 175 176 164 165

180 181 167 169 176 177 164 168

181 207 168 166 177 179 165 166

182 183 169 170 178 173 166 167

182 184 170 171 178 181 167 169

183 185 171 172 179 180 168 166

184 185 172 173 180 181 169 170

185 186 173 174 181 207 170 171

185 187 173 178 182 183 171 172

186 188 174 175 182 184 172 173

186 197 175 176 183 185 173 174

187 188 176 177 184 185 173 178

187 197 177 179 185 186 174 175

188 198 178 173 185 187 175 176

189 207 178 181 186 188 176 177

189 213 179 180 186 197 177 179

190 252 180 181 187 188 178 173

191 192 181 207 187 197 178 181

191 193 182 183 188 198 179 180

192 312 182 184 189 207 180 181

192 160 183 185 189 213 181 207

192 248 184 185 190 252 182 183

193 160 185 186 191 192 182 184

193 312 185 187 191 193 183 185

194 312 186 188 192 312 184 185

194 160 186 197 192 160 185 186

195 214 187 188 192 248 185 187

196 289 187 197 193 160 186 188

197 198 188 198 193 312 186 197

198 106 189 207 194 312 187 188

198 266 189 213 194 160 187 197

199 189 190 252 195 214 188 198

200 189 191 192 196 289 189 207

201 189 191 193 197 198 189 213

202 189 192 312 198 106 190 252

206 131 192 160 198 266 191 192

207 208 192 248 199 189 191 193

207 209 193 312 200 189 192 312

208 210 193 160 201 189 192 160

 123

Table C.1 (Continued)

209 210 194 312 202 189 192 248

210 211 194 160 207 208 193 160

211 212 195 214 207 209 193 312

212 216 196 289 208 210 194 312

213 214 197 198 209 210 194 160

214 216 198 106 210 211 195 214

216 289 198 266 211 212 196 289

216 239 199 189 212 216 197 198

216 247 200 189 213 214 198 106

216 244 201 189 214 216 198 266

217 218 202 189 216 289 199 189

217 220 203 189 216 238 200 189

217 227 207 208 216 239 201 189

218 219 207 209 216 247 202 189

218 226 208 210 216 243 203 189

219 223 209 210 216 244 204 206

220 222 210 211 217 218 205 215

222 224 211 212 217 220 206 131

223 228 212 216 217 227 207 208

224 225 213 214 218 219 207 209

225 228 214 216 218 226 208 210

226 228 216 289 219 223 209 210

227 228 216 239 220 222 210 211

228 229 216 244 222 224 211 212

228 190 216 247 223 228 212 216

229 230 217 218 224 225 213 214

229 231 217 220 225 228 214 216

230 232 217 227 226 228 215 131

230 233 218 219 227 228 216 289

231 232 218 226 228 229 216 234

231 233 219 223 228 190 217 218

232 279 220 222 229 230 217 220

233 279 222 224 229 231 217 227

235 232 223 228 230 232 218 219

235 233 224 225 230 233 218 226

236 245 225 228 231 232 219 223

237 240 226 228 231 233 220 222

239 240 227 228 232 279 221 131

240 241 228 229 233 279 222 224

241 242 228 190 235 232 223 228

241 251 229 230 235 233 224 225

242 275 229 231 236 245 225 228

 124

Table C.1 (Continued)

244 245 230 232 237 240 226 228

245 246 230 233 239 240 227 228

246 242 231 232 240 241 228 229

246 250 231 233 241 242 228 190

247 240 232 279 241 251 229 230

248 313 233 279 242 275 229 231

250 275 235 232 243 245 230 232

251 275 235 233 244 245 230 233

252 253 236 245 245 246 231 232

252 255 237 240 246 242 231 233

252 261 239 240 246 250 232 279

252 262 240 241 247 240 233 279

252 263 241 242 248 313 234 238

252 264 241 251 250 275 234 239

253 254 242 275 251 275 234 247

254 257 244 245 252 253 234 243

255 256 245 246 252 255 234 244

256 254 246 242 252 261 235 232

257 258 246 250 252 262 235 233

258 265 247 240 252 263 236 245

259 161 248 313 252 264 237 240

261 265 250 275 253 254 238 240

262 265 251 275 254 257 239 240

263 265 252 253 255 256 240 241

264 265 252 255 256 254 241 242

265 194 252 261 257 258 241 251

266 268 252 262 258 265 242 275

267 269 252 263 259 161 243 245

267 270 252 264 261 265 244 245

267 276 253 254 262 265 245 246

268 267 254 257 263 265 246 242

269 271 255 256 264 265 246 250

270 271 256 254 265 194 247 240

271 278 257 258 266 268 248 313

272 280 258 265 267 269 249 260

273 280 259 161 267 270 250 275

274 280 261 265 267 276 251 275

275 272 262 265 268 267 252 253

275 273 263 265 269 271 252 255

275 274 264 265 270 271 252 261

275 279 265 194 271 278 252 262

276 271 266 268 272 280 252 263

 125

Table C.1 (Continued)

277 312 267 269 273 280 252 264

277 160 267 270 274 280 253 254

278 277 267 276 275 272 254 257

279 280 268 267 275 273 255 256

280 275 269 271 275 274 256 254

280 312 270 271 275 279 257 258

280 160 271 278 276 271 258 265

281 313 272 280 277 312 259 161

282 313 273 280 277 160 260 234

283 313 274 280 278 277 261 265

284 290 275 272 279 280 262 265

285 288 275 273 280 275 263 265

286 288 275 274 280 312 264 265

287 288 275 279 280 160 265 194

288 296 276 271 281 313 266 268

289 217 277 312 282 313 267 269

289 259 277 160 283 313 267 270

290 285 278 277 284 290 267 276

291 161 279 280 285 288 268 267

292 161 280 275 286 288 269 271

296 161 280 312 287 288 270 271

298 132 280 160 288 296 271 278

298 300 281 313 289 217 272 280

298 303 282 313 289 259 273 280

299 298 283 313 290 285 274 280

300 301 284 290 291 161 275 272

300 307 285 288 292 161 275 273

301 309 286 288 296 161 275 274

303 304 287 288 298 132 275 279

304 305 288 296 298 300 276 271

305 306 289 217 298 303 277 312

306 308 289 259 299 298 277 160

307 305 290 285 300 301 278 277

308 309 291 161 300 307 279 280

309 131 292 161 301 309 280 275

310 196 296 161 303 304 280 312

312 281 298 132 304 305 280 160

312 282 298 300 305 306 281 313

312 283 298 303 306 308 282 313

 299 298 307 305 283 313

 300 301 308 309 284 290

 300 307 309 131 285 288

 126

Table C.1 (Continued)

 301 309 310 196 286 288

 303 304 312 281 287 288

 304 305 312 282 288 296

 305 306 312 283 289 217

 306 308 289 259

 307 305 290 285

 308 309 291 161

 309 131 292 161

 310 196 296 161

 312 281 298 132

 312 282 298 300

 312 283 298 303

 299 298

 300 301

 300 307

 301 302

 302 311

 303 304

 304 305

 305 306

 306 308

 307 305

 308 309

 309 131

 310 196

 311 309

 312 281

 312 282

 312 283

 128

APPENDIX D

PSEUDOCODE OF THE WHOLE ALGORITHM

STEP-0: Calculate the remaining time and beginning cycle time.

STEP-1: S1=Ø, i=1, assigned=0, WC(i)=0

STEP-2: Determine and extract the tasks that can be assigned to ith station

according to the precedence relationships and zoning restrictions

among the non-assigned tasks and then put them into set S1.

STEP-3: Extract a task (k) from S1 randomly.

STEP-4: a) If C-WC(i)<t(k) then i=i+1

 b) Assign task k to station i

STEP-5: assigned=assigned+1

STEP-6: If assigned<N then go to STEP-2

STEP-7: Calculate Ffirst(current);

 Ffirst(current)=F1(current)+F3(current)+F5(current)

STEP-8: Best=current, Ffirst(Best)=Ffirst(current)

STEP-9: n1=0, n2=0, n3=1, worse=0, acc=0

STEP-10: temp=K1/n3

STEP-11: candidate=current

STEP-12: Choose a task (k) randomly

STEP-13: Determine the set (S2) of stations that task k can be assigned

according to the precedence relationships, zoning restrictions, station

times, cycle time and task time of task k, considering the candidate

solution.

STEP-14: Transfer the task k to a new station which is chosen from S2

randomly.

STEP-15: Adjust the station times.

STEP-16: Calculate Ffirst(candidate)

 129

STEP-17: If Ffirst(candidate)<=Ffirst(Best) then

 Best=Candidate and Ffirst(Best)=Ffirst(candidate)

STEP-18: If Ffirst(candidate)<=Ffirst(current) then go to STEP-21

STEP-19: worse=worse+1

STEP-20: If Unif(0,1)>exp[(Ffirst(current)-Ffirst(candidate))/temp] then go to

STEP-22 else acc=acc+1

STEP-21: current=candidate, Ffirst(current)=Ffirst(candidate)

STEP-22: n1=n1+1, n2=n2+1, n3=n3+1

STEP-23: If n2<100 then go to STEP-10

STEP-24: n2=0

STEP-25: If (worse>90) and (acc<9) then

a) n3=round(acc*K1/worse)

b) If n3=0 then n3=1

STEP-26: If n1<number of iterations then go to STEP-10

STEP-27: current=Best

STEP-28: Calculate Fsecond(current);

 Fsecond(current)=F2(current)+F4(current)+F5(current)

STEP-29: Fsecon(Best)=Fsecond(current)

STEP-30: n1=0, n2=0, n3=1, worse=0, acc=0

STEP-31: temp=K2/n3

STEP-32: candidate=current

STEP-33: Choose a task (k) randomly

STEP-34: Determine the set (S2) of stations that task k can be assigned

according to the precedence relationships, zoning restrictions, station

times, cycle time and task time of task k, considering the candidate

solution.

STEP-35: Transfer the task k to a new station which is chosen from S2

randomly.

STEP-36: Adjust the station times.

STEP-37: Calculate Fsecond(candidate)

 130

STEP-38: If Fsecond(candidate)<=Fsecond(Best) then

 Best=Candidate and Fsecond(Best)=Fsecond(candidate)

STEP-39: If Fsecond(candidate)<=Fsecond(current) then go to STEP-42

STEP-40: worse=worse+1

STEP-41: If Unif(0,1)>exp[(Fsecond(current)-Fsecond(candidate))/temp] then

go to STEP-43 else acc=acc+1

STEP-42: current=candidate, Fsecond(current)=Fsecond(candidate)

STEP-43: n1=n1+1, n2=n2+1, n3=n3+1

STEP-44: If n2<100 then go to STEP-31

STEP-45: n2=0

STEP-46: If (worse>90) and (acc<9) then

a) n3=round(acc*K2/worse)

b) If n3=0 then n3=1

STEP-47: If n1<number of iterations then go to STEP-31

STEP-48: Repeat the all previous steps for each model and for each sequence

and then STOP.

 131

APPENDIX E

RESULTS OF THE EXPERIMENTAL RUNS

Table E.1 Test problems and deviations of the found solutions from the

optimum solutions for SALBP-I

problem # of tasks
of pre.

relations
C

of stations

(optimum)

of stations

(found)
(found-opt)/opt

arcus1 83 112 3786 21 21 0

arcus1 83 112 3985 20 20 0

arcus1 83 112 4206 19 19 0

arcus1 83 112 4454 18 18 0

arcus1 83 112 4732 17 17 0

arcus1 83 112 5048 16 16 0

arcus1 83 112 5408 15 15 0

arcus1 83 112 5824 14 14 0

arcus1 83 112 5853 14 14 0

arcus1 83 112 6309 13 13 0

arcus1 83 112 6842 12 12 0

arcus1 83 112 6883 12 12 0

arcus1 83 112 7571 11 11 0

arcus1 83 112 8412 10 10 0

arcus1 83 112 8898 9 9 0

arcus1 83 112 10816 8 8 0

arcus2 111 176 5755 27 27 0

arcus2 111 176 5785 27 27 0

arcus2 111 176 6016 26 26 0

arcus2 111 176 6267 25 25 0

arcus2 111 176 6540 24 24 0

arcus2 111 176 6837 23 23 0

arcus2 111 176 7162 22 22 0

arcus2 111 176 7916 20 20 0

arcus2 111 176 8356 19 19 0

arcus2 111 176 8847 18 18 0

arcus2 111 176 9400 17 17 0

arcus2 111 176 10027 16 16 0

arcus2 111 176 10743 15 15 0

arcus2 111 176 11378 14 14 0

arcus2 111 176 11570 13 14 0.076923

arcus2 111 176 17067 9 9 0

barthold 148 173 403 14 14 0

barthold 148 173 434 13 13 0

barthold 148 173 470 12 12 0

 132

Table E.1 (Continued)

barthold 148 173 513 11 11 0

barthold 148 173 564 10 10 0

barthold 148 173 626 9 9 0

barthold 148 173 705 8 8 0

barthold 148 173 805 7 7 0

barthold2 148 173 84 51 51 0

barthold2 148 173 85 50 51 0.02

barthold2 148 173 87 49 49 0

barthold2 148 173 89 48 48 0

barthold2 148 173 91 47 47 0

barthold2 148 173 93 46 46 0

barthold2 148 173 95 45 45 0

barthold2 148 173 97 44 44 0

barthold2 148 173 99 43 43 0

barthold2 148 173 101 42 42 0

barthold2 148 173 104 41 41 0

barthold2 148 173 106 40 40 0

barthold2 148 173 109 39 39 0

barthold2 148 173 112 38 38 0

barthold2 148 173 115 37 37 0

barthold2 148 173 118 36 36 0

barthold2 148 173 121 35 35 0

barthold2 148 173 125 34 34 0

barthold2 148 173 129 33 33 0

barthold2 148 173 133 32 32 0

barthold2 148 173 137 31 31 0

barthold2 148 173 142 30 30 0

barthold2 148 173 146 29 29 0

barthold2 148 173 152 28 28 0

barthold2 148 173 157 27 27 0

barthold2 148 173 163 26 26 0

barthold2 148 173 170 25 25 0

bowman 8 8 20 5 5 0

buxey 29 36 27 13 13 0

buxey 29 36 30 12 12 0

buxey 29 36 33 11 11 0

buxey 29 36 36 10 10 0

buxey 29 36 41 8 8 0

buxey 29 36 47 7 8 0.142857

buxey 29 36 54 7 7 0

gunther 35 45 41 14 14 0

gunther 35 45 44 12 12 0

gunther 35 45 49 11 11 0

gunther 35 45 54 9 9 0

gunther 35 45 61 9 9 0

gunther 35 45 69 8 8 0

gunther 35 45 81 7 7 0

hahn 53 82 2004 8 8 0

hahn 53 82 2338 7 7 0

hahn 53 82 2806 6 6 0

hahn 53 82 3507 5 5 0

 133

Table E.1 (Continued)

hahn 53 82 4676 4 4 0

heskiaof 28 39 138 8 8 0

heskiaof 28 39 205 5 5 0

heskiaof 28 39 216 5 5 0

heskiaof 28 39 256 4 4 0

heskiaof 28 39 324 4 4 0

heskiaof 28 39 342 3 3 0

jackson 11 13 7 8 8 0

jackson 11 13 9 6 6 0

jackson 11 13 10 5 5 0

jackson 11 13 13 4 4 0

jackson 11 13 14 4 4 0

jackson 11 13 21 3 3 0

jaeschke 9 11 6 8 8 0

jaeschke 9 11 7 7 7 0

jaeschke 9 11 8 6 6 0

jaeschke 9 11 10 4 4 0

jaeschke 9 11 18 3 3 0

kilbridge 45 62 56 10 10 0

kilbridge 45 62 57 10 10 0

kilbridge 45 62 62 9 9 0

kilbridge 45 62 69 8 8 0

kilbridge 45 62 79 7 7 0

kilbridge 45 62 92 6 6 0

kilbridge 45 62 110 6 6 0

kilbridge 45 62 111 5 5 0

kilbridge 45 62 138 4 4 0

kilbridge 45 62 184 3 3 0

lutz1 32 38 1414 11 11 0

lutz1 32 38 1572 10 10 0

lutz1 32 38 1768 9 9 0

lutz1 32 38 2020 8 8 0

lutz1 32 38 2357 7 7 0

lutz1 32 38 2828 6 6 0

lutz2 89 118 11 49 49 0

lutz2 89 118 12 44 44 0

lutz2 89 118 13 40 40 0

lutz2 89 118 14 37 37 0

lutz2 89 118 15 34 34 0

lutz2 89 118 16 31 31 0

lutz2 89 118 17 29 29 0

lutz2 89 118 18 28 28 0

lutz2 89 118 19 26 26 0

lutz2 89 118 20 25 25 0

lutz2 89 118 21 24 24 0

lutz3 89 118 75 23 23 0

lutz3 89 118 79 22 22 0

lutz3 89 118 83 21 21 0

lutz3 89 118 87 20 20 0

lutz3 89 118 92 19 19 0

lutz3 89 118 97 18 18 0

 134

Table E.1 (Continued)

lutz3 89 118 103 17 17 0

lutz3 89 118 110 15 16 0.066667

lutz3 89 118 118 14 15 0.071429

lutz3 89 118 127 14 14 0

lutz3 89 118 137 13 13 0

lutz3 89 118 150 12 12 0

mansoor 11 11 48 4 4 0

mansoor 11 11 62 3 3 0

mansoor 11 11 94 2 2 0

mertens 7 6 6 6 6 0

mertens 7 6 7 5 5 0

mertens 7 6 8 5 5 0

mertens 7 6 10 3 3 0

mertens 7 6 15 2 2 0

mertens 7 6 18 2 2 0

mitchell 21 27 14 8 8 0

mitchell 21 27 15 8 8 0

mitchell 21 27 21 5 5 0

mitchell 21 27 26 5 5 0

mitchell 21 27 35 3 3 0

mitchell 21 27 39 3 3 0

mukherje 94 181 176 25 25 0

mukherje 94 181 183 24 24 0

mukherje 94 181 192 23 23 0

mukherje 94 181 201 22 22 0

mukherje 94 181 211 21 21 0

mukherje 94 181 222 20 20 0

mukherje 94 181 234 19 19 0

mukherje 94 181 248 18 18 0

mukherje 94 181 263 17 17 0

mukherje 94 181 281 16 16 0

mukherje 94 181 301 15 15 0

mukherje 94 181 324 14 14 0

mukherje 94 181 351 13 13 0

roszieg 25 32 14 10 10 0

roszieg 25 32 16 8 8 0

roszieg 25 32 18 8 8 0

roszieg 25 32 21 6 6 0

roszieg 25 32 25 6 6 0

roszieg 25 32 32 4 4 0

sawyer 30 32 25 14 14 0

sawyer 30 32 27 13 13 0

sawyer 30 32 30 12 12 0

sawyer 30 32 33 11 11 0

sawyer 30 32 36 10 10 0

sawyer 30 32 41 8 8 0

sawyer 30 32 47 7 8 0.142857

sawyer 30 32 54 7 7 0

sawyer 30 32 75 5 5 0

scholl 297 423 1394 50 51 0.02

scholl 297 423 1422 50 50 0

 135

Table E.1 (Continued)

scholl 297 423 1452 48 49 0.020833

scholl 297 423 1515 46 47 0.021739

scholl 297 423 1548 46 46 0

scholl 297 423 1584 44 45 0.022727

scholl 297 423 1620 44 44 0

scholl 297 423 1659 42 43 0.02381

scholl 297 423 1742 40 41 0.025

scholl 297 423 1787 39 40 0.025641

scholl 297 423 1834 38 39 0.026316

scholl 297 423 1883 37 38 0.027027

scholl 297 423 1935 36 37 0.027778

scholl 297 423 1991 35 36 0.028571

scholl 297 423 2049 34 35 0.029412

scholl 297 423 2111 33 34 0.030303

scholl 297 423 2177 32 33 0.03125

scholl 297 423 2247 31 32 0.032258

scholl 297 423 2322 30 31 0.033333

scholl 297 423 2402 29 30 0.034483

scholl 297 423 2488 28 29 0.035714

scholl 297 423 2580 27 28 0.037037

scholl 297 423 2680 26 27 0.038462

scholl 297 423 2787 25 26 0.04

tonge 70 86 160 23 23 0

tonge 70 86 168 22 22 0

tonge 70 86 176 21 21 0

tonge 70 86 185 20 20 0

tonge 70 86 195 19 19 0

tonge 70 86 207 18 18 0

tonge 70 86 220 17 17 0

tonge 70 86 234 16 16 0

tonge 70 86 251 14 15 0.071429

tonge 70 86 270 14 14 0

tonge 70 86 293 13 13 0

tonge 70 86 320 11 11 0

tonge 70 86 364 10 10 0

tonge 70 86 410 9 9 0

tonge 70 86 468 8 8 0

tonge 70 86 527 7 7 0

warnecke 58 70 54 31 31 0

warnecke 58 70 56 29 29 0

warnecke 58 70 58 29 29 0

warnecke 58 70 60 27 27 0

warnecke 58 70 62 27 27 0

warnecke 58 70 65 25 25 0

warnecke 58 70 68 24 24 0

warnecke 58 70 71 23 23 0

warnecke 58 70 74 22 22 0

warnecke 58 70 78 21 21 0

warnecke 58 70 82 20 20 0

warnecke 58 70 86 19 19 0

warnecke 58 70 92 17 17 0

 136

Table E.1 (Continued)

warnecke 58 70 97 17 17 0

warnecke 58 70 104 15 15 0

warnecke 58 70 111 14 14 0

wee-mag 75 87 28 63 63 0

wee-mag 75 87 29 63 63 0

wee-mag 75 87 30 62 62 0

wee-mag 75 87 31 62 62 0

wee-mag 75 87 32 61 61 0

wee-mag 75 87 33 61 61 0

wee-mag 75 87 34 61 61 0

wee-mag 75 87 35 60 60 0

wee-mag 75 87 36 60 60 0

wee-mag 75 87 37 60 60 0

wee-mag 75 87 38 60 60 0

wee-mag 75 87 39 60 60 0

wee-mag 75 87 40 60 60 0

wee-mag 75 87 41 59 59 0

wee-mag 75 87 42 55 55 0

wee-mag 75 87 43 50 50 0

wee-mag 75 87 45 38 38 0

wee-mag 75 87 46 34 34 0

wee-mag 75 87 49 32 32 0

wee-mag 75 87 50 32 32 0

wee-mag 75 87 52 31 31 0

wee-mag 75 87 54 31 31 0

wee-mag 75 87 56 30 30 0

 137

Table E.2 Descriptive statistics of deviations for SALBP-I

problem
average of

deviations

std.dev. of

deviations
min. deviation max. deviation

arcus1 0 0 0 0

arcus2 0.00480769 0.0192308 0 0.0769231

barthold 0 0 0 0

barthold2 0.00074074 0.003849 0 0.02

bowman 0 0 0 0

buxey 0.02040816 0.0539949 0 0.1428571

gunther 0 0 0 0

hahn 0 0 0 0

heskiaof 0 0 0 0

jackson 0 0 0 0

jaeschke 0 0 0 0

kilbridge 0 0 0 0

lutz1 0 0 0 0

lutz2 0 0 0 0

lutz3 0.01150794 0.0268959 0 0.0714286

mansoor 0 0 0 0

mertens 0 0 0 0

mitchell 0 0 0 0

mukherje 0 0 0 0

roszieg 0 0 0 0

sawyer 0.01587302 0.047619 0 0.1428571

scholl 0.02548726 0.0112679 0 0.04

tonge 0.00446429 0.0178571 0 0.0714286

warnecke 0 0 0 0

wee-mag 0 0 0 0

 138

Table E.3 Test problems and deviations of the found solutions from the

optimum solutions for SALBP-II

problem
of

tasks

of pre.

relations
m

Cycle time

(unit)

(optimum)

Cycle time

(unit)

(found)

(found-opt)/opt

arcus1 83 112 3 25236 25236 0

arcus1 83 112 4 18927 18928 5.28346E-05

arcus1 83 112 5 15142 15145 0.000198124

arcus1 83 112 6 12620 12620 0

arcus1 83 112 7 10826 10830 0.000369481

arcus1 83 112 8 9554 9557 0.000314005

arcus1 83 112 9 8499 8504 0.000588305

arcus1 83 112 10 7580 7594 0.001846966

arcus1 83 112 11 7084 7091 0.000988142

arcus1 83 112 12 6412 6422 0.001559576

arcus1 83 112 13 5864 5913 0.008356071

arcus1 83 112 14 5441 5441 0

arcus1 83 112 15 5104 5117 0.002547022

arcus1 83 112 16 4850 4889 0.008041237

arcus1 83 112 17 4516 4581 0.014393268

arcus1 83 112 18 4317 4362 0.010423905

arcus1 83 112 19 4068 4091 0.005653884

arcus1 83 112 20 3882 3904 0.005667182

arcus1 83 112 21 3691 3691 0

arcus1 83 112 22 3691 3691 0

arcus2 111 176 3 50133 50133 0

arcus2 111 176 4 37600 37600 0

arcus2 111 176 5 30080 30080 0

arcus2 111 176 6 25067 25067 0

arcus2 111 176 7 21486 21486 0

arcus2 111 176 8 18800 18801 5.31915E-05

arcus2 111 176 9 16711 16713 0.000119682

arcus2 111 176 10 15040 15043 0.000199468

arcus2 111 176 11 13673 13676 0.000219411

arcus2 111 176 12 12534 12537 0.000239349

arcus2 111 176 13 11570 11574 0.000345722

arcus2 111 176 14 10747 10751 0.000372197

arcus2 111 176 15 10035 10040 0.000498256

arcus2 111 176 16 9412 9424 0.001274968

arcus2 111 176 17 8855 8874 0.00214568

arcus2 111 176 27 5689 5694 0.000878889

barthold 148 173 3 1878 1878 0

barthold 148 173 4 1409 1409 0

barthold 148 173 5 1127 1127 0

barthold 148 173 6 939 939 0

barthold 148 173 7 805 805 0

barthold 148 173 8 705 705 0

barthold 148 173 9 626 626 0

barthold 148 173 10 564 564 0

barthold 148 173 11 513 513 0

 139

Table E.3 (Continued)

barthold 148 173 12 470 470 0

barthold 148 173 13 434 434 0

barthold 148 173 14 403 403 0

barthold 148 173 15 383 383 0

barthold2 148 173 27 157 157 0

barthold2 148 173 28 152 152 0

barthold2 148 173 29 146 146 0

barthold2 148 173 30 142 142 0

barthold2 148 173 31 137 137 0

barthold2 148 173 32 133 133 0

barthold2 148 173 33 129 129 0

barthold2 148 173 34 125 125 0

barthold2 148 173 35 121 121 0

barthold2 148 173 36 118 118 0

barthold2 148 173 37 115 115 0

barthold2 148 173 38 112 112 0

barthold2 148 173 39 109 109 0

barthold2 148 173 40 106 106 0

barthold2 148 173 41 104 104 0

barthold2 148 173 42 101 101 0

barthold2 148 173 43 99 99 0

barthold2 148 173 44 97 97 0

barthold2 148 173 45 95 95 0

barthold2 148 173 46 93 93 0

barthold2 148 173 47 91 91 0

barthold2 148 173 48 89 89 0

barthold2 148 173 49 87 87 0

barthold2 148 173 50 85 86 0.011764706

barthold2 148 173 51 84 84 0

buxey 29 36 7 47 48 0.021276596

buxey 29 36 8 41 41 0

buxey 29 36 9 37 37 0

buxey 29 36 10 34 34 0

buxey 29 36 11 32 32 0

buxey 29 36 12 28 28 0

buxey 29 36 13 27 27 0

buxey 29 36 14 25 25 0

gunther 35 45 6 84 84 0

gunther 35 45 7 72 72 0

gunther 35 45 8 63 63 0

gunther 35 45 9 54 54 0

gunther 35 45 10 50 50 0

gunther 35 45 11 48 48 0

gunther 35 45 12 44 44 0

gunther 35 45 13 42 42 0

gunther 35 45 14 40 40 0

gunther 35 45 15 40 40 0

hahn 53 82 3 4787 4787 0

hahn 53 82 4 3677 3677 0

hahn 53 82 5 2823 2823 0

hahn 53 82 6 2400 2400 0

 140

Table E.3 (Continued)

hahn 53 82 7 2336 2336 0

hahn 53 82 8 1907 1907 0

hahn 53 82 9 1827 1827 0

hahn 53 82 10 1775 1775 0

kilbridge 45 62 3 184 184 0

kilbridge 45 62 4 138 138 0

kilbridge 45 62 5 111 111 0

kilbridge 45 62 6 92 92 0

kilbridge 45 62 7 79 79 0

kilbridge 45 62 8 69 69 0

kilbridge 45 62 9 62 62 0

kilbridge 45 62 10 56 56 0

kilbridge 45 62 11 55 55 0

lutz1 32 38 8 1860 1860 0

lutz1 32 38 9 1638 1638 0

lutz1 32 38 10 1526 1526 0

lutz1 32 38 11 1400 1400 0

lutz1 32 38 12 1400 1400 0

lutz2 89 118 9 54 54 0

lutz2 89 118 10 49 49 0

lutz2 89 118 11 45 45 0

lutz2 89 118 12 41 41 0

lutz2 89 118 13 38 38 0

lutz2 89 118 14 35 35 0

lutz2 89 118 15 33 33 0

lutz2 89 118 16 31 31 0

lutz2 89 118 17 29 29 0

lutz2 89 118 18 28 28 0

lutz2 89 118 19 26 26 0

lutz2 89 118 20 25 25 0

lutz2 89 118 21 24 24 0

lutz2 89 118 22 23 23 0

lutz2 89 118 23 22 22 0

lutz2 89 118 24 21 21 0

lutz2 89 118 25 20 20 0

lutz2 89 118 26 19 19 0

lutz2 89 118 27 19 19 0

lutz2 89 118 28 18 18 0

Lutz3 89 118 3 548 548 0

Lutz3 89 118 4 411 411 0

Lutz3 89 118 5 329 329 0

Lutz3 89 118 6 275 275 0

Lutz3 89 118 7 236 236 0

Lutz3 89 118 8 207 207 0

Lutz3 89 118 9 184 185 0.005434783

Lutz3 89 118 10 165 166 0.006060606

Lutz3 89 118 11 151 151 0

Lutz3 89 118 12 138 138 0

Lutz3 89 118 13 128 128 0

Lutz3 89 118 14 118 119 0.008474576

Lutz3 89 118 15 110 111 0.009090909

 141

Table E.3 (Continued)

Lutz3 89 118 16 105 105 0

Lutz3 89 118 17 98 98 0

Lutz3 89 118 18 93 93 0

Lutz3 89 118 19 89 89 0

Lutz3 89 118 20 85 85 0

Lutz3 89 118 21 80 80 0

Lutz3 89 118 22 76 77 0.013157895

Lutz3 89 118 23 74 74 0

mukherje 94 181 3 1403 1403 0

mukherje 94 181 4 1052 1052 0

mukherje 94 181 5 844 844 0

mukherje 94 181 6 704 704 0

mukherje 94 181 7 621 621 0

mukherje 94 181 8 532 532 0

mukherje 94 181 9 471 471 0

mukherje 94 181 10 424 424 0

mukherje 94 181 11 391 391 0

mukherje 94 181 12 358 358 0

mukherje 94 181 13 325 326 0.003076923

mukherje 94 181 14 311 311 0

mukherje 94 181 15 288 288 0

mukherje 94 181 16 268 270 0.007462687

mukherje 94 181 17 251 251 0

mukherje 94 181 18 239 239 0

mukherje 94 181 19 226 226 0

mukherje 94 181 20 220 221 0.004545455

mukherje 94 181 21 208 208 0

mukherje 94 181 22 200 200 0

mukherje 94 181 23 189 189 0

mukherje 94 181 24 179 179 0

mukherje 94 181 25 172 172 0

mukherje 94 181 26 171 171 0

sawyer 30 32 7 47 48 0.021276596

sawyer 30 32 8 41 41 0

sawyer 30 32 9 37 37 0

sawyer 30 32 10 34 34 0

sawyer 30 32 11 31 31 0

sawyer 30 32 12 28 28 0

sawyer 30 32 13 26 26 0

sawyer 30 32 14 25 25 0

scholl 297 423 25 2787 2796 0.003229279

scholl 297 423 26 2680 2687 0.00261194

scholl 297 423 27 2580 2587 0.002713178

scholl 297 423 28 2488 2496 0.003215434

scholl 297 423 29 2402 2408 0.002497918

scholl 297 423 30 2322 2330 0.003445306

scholl 297 423 31 2247 2257 0.004450378

scholl 297 423 32 2177 2195 0.008268259

scholl 297 423 33 2111 2127 0.007579346

scholl 297 423 34 2049 2068 0.009272816

scholl 297 423 35 1991 2007 0.008036163

 142

Table E.3 (Continued)

scholl 297 423 36 1935 1952 0.00878553

scholl 297 423 37 1883 1901 0.009559214

scholl 297 423 38 1834 1849 0.008178844

scholl 297 423 39 1787 1798 0.006155568

scholl 297 423 40 1742 1757 0.008610792

scholl 297 423 42 1659 1671 0.007233273

scholl 297 423 43 1621 1634 0.008019741

scholl 297 423 44 1584 1592 0.005050505

scholl 297 423 45 1549 1558 0.0058102

scholl 297 423 46 1515 1532 0.011221122

scholl 297 423 47 1483 1506 0.015509103

scholl 297 423 48 1452 1474 0.015151515

scholl 297 423 50 1394 1419 0.017934003

scholl 297 423 51 1386 1395 0.006493506

scholl 297 423 52 1386 1386 0

tonge 70 86 3 1170 1170 0

tonge 70 86 4 878 878 0

tonge 70 86 5 702 702 0

tonge 70 86 6 585 585 0

tonge 70 86 7 502 502 0

tonge 70 86 8 439 439 0

tonge 70 86 9 391 391 0

tonge 70 86 10 352 352 0

tonge 70 86 11 320 320 0

tonge 70 86 12 294 294 0

tonge 70 86 13 271 271 0

tonge 70 86 14 251 252 0.003984064

tonge 70 86 15 235 235 0

tonge 70 86 16 221 221 0

tonge 70 86 17 208 209 0.004807692

tonge 70 86 18 196 197 0.005102041

tonge 70 86 19 186 190 0.021505376

tonge 70 86 20 177 178 0.005649718

tonge 70 86 21 170 172 0.011764706

tonge 70 86 22 162 162 0

tonge 70 86 23 156 157 0.006410256

tonge 70 86 24 156 156 0

tonge 70 86 25 156 156 0

warnecke 58 70 3 516 516 0

warnecke 58 70 4 387 388 0.002583979

warnecke 58 70 5 310 310 0

warnecke 58 70 6 258 258 0

warnecke 58 70 7 222 222 0

warnecke 58 70 8 194 194 0

warnecke 58 70 9 172 173 0.005813953

warnecke 58 70 10 155 156 0.006451613

warnecke 58 70 11 142 142 0

warnecke 58 70 12 130 130 0

warnecke 58 70 13 120 120 0

warnecke 58 70 14 111 111 0

warnecke 58 70 15 104 104 0

 143

Table E.3 (Continued)

warnecke 58 70 16 98 98 0

warnecke 58 70 17 92 92 0

warnecke 58 70 18 87 87 0

warnecke 58 70 19 84 84 0

warnecke 58 70 20 79 79 0

warnecke 58 70 21 76 76 0

warnecke 58 70 22 73 73 0

warnecke 58 70 23 69 69 0

warnecke 58 70 24 66 66 0

warnecke 58 70 25 64 65 0.015625

warnecke 58 70 26 64 64 0

warnecke 58 70 27 60 60 0

warnecke 58 70 28 59 59 0

warnecke 58 70 29 56 56 0

wee-Mag 75 87 3 500 500 0

wee-Mag 75 87 4 375 375 0

wee-Mag 75 87 5 300 300 0

wee-Mag 75 87 6 250 250 0

wee-Mag 75 87 7 215 215 0

wee-Mag 75 87 8 188 188 0

wee-Mag 75 87 9 167 167 0

wee-Mag 75 87 10 150 150 0

wee-Mag 75 87 11 137 137 0

wee-Mag 75 87 12 125 125 0

wee-Mag 75 87 13 116 116 0

wee-Mag 75 87 14 108 108 0

wee-Mag 75 87 15 100 100 0

wee-Mag 75 87 16 94 94 0

wee-Mag 75 87 17 89 89 0

wee-Mag 75 87 20 77 77 0

wee-Mag 75 87 21 72 72 0

wee-Mag 75 87 22 69 69 0

wee-Mag 75 87 24 66 66 0

wee-Mag 75 87 25 66 66 0

wee-Mag 75 87 26 65 65 0

wee-Mag 75 87 29 63 63 0

wee-Mag 75 87 30 56 56 0

 144

Table E.4 Descriptive statistics of deviations for SALBP-II

problem
average of

deviations

std.dev. of

deviations
Min. deviation Max. deviation

arcus1 0.00305 0.004244 0 0.014393

arcus2 0.000397 0.000586 0 0.002146

barthold 0 0 0 0

barthold2 0.000471 0.002353 0 0.011765

Buxey 0.00266 0.007522 0 0.021277

gunther 0 0 0 0

hahn 0 0 0 0

kilbridge 0 0 0 0

lutz1 0 0 0 0

lutz2 0 0 0 0

lutz3 0.00201 0.003931 0 0.013158

mukherje 0.000629 0.001822 0 0.007463

sawyer 0.00266 0.007522 0 0.021277

scholl 0.00727 0.004281 0 0.017934

tonge 0.002575 0.005163 0 0.021505

warnecke 0.001129 0.00335 0 0.015625

wee-mag 0 0 0 0

 145

Table E.5 Sequences and number of common tasks between successive models

in a sequence

sequence Model

of common tasks

between first and

second model

of common tasks

between second and

third model

of common tasks

between third and

fourth model

1 1 2 3 4 267 264 264

2 1 2 4 3 267 269 264

3 1 3 2 4 261 264 269

4 1 3 4 2 261 264 269

5 1 4 2 3 254 269 264

6 1 4 3 2 254 264 264

7 2 1 3 4 267 261 264

8 2 1 4 3 267 254 264

9 2 3 1 4 264 261 254

10 2 3 4 1 264 264 254

11 2 4 1 3 269 254 261

12 2 4 3 1 269 264 261

13 3 1 2 4 261 267 269

14 3 1 4 2 261 254 269

15 3 2 1 4 264 267 254

16 3 2 4 1 264 269 254

17 3 4 1 2 264 254 267

18 3 4 2 1 264 269 267

19 4 1 2 3 254 267 264

20 4 1 3 2 254 261 264

21 4 2 1 3 269 267 261

22 4 2 3 1 269 264 261

23 4 3 1 2 264 261 267

24 4 3 2 1 264 264 267

 146

Table E.6 Average values of common tasks that are assigned to the same

stations with low level of the weight of the third objective

sequence
Average # of common tasks assigned to

the same stations by the algorithm

Average % of common tasks assigned to

the same stations by the algorithm

Average of the

percentages

1 143.9 116.4 115.7 0.539 0.441 0.438 0.47271

2 132.1 141.3 122.2 0.495 0.525 0.463 0.4943

3 122.8 126.7 124.1 0.47 0.48 0.461 0.47059

4 118.3 122.3 135.1 0.453 0.463 0.502 0.47291

5 122 128.7 118.3 0.48 0.478 0.448 0.46895

6 128.3 118 113.3 0.505 0.447 0.429 0.46042

7 133.9 111.5 122.1 0.501 0.427 0.463 0.46373

8 135.7 128.6 123 0.508 0.506 0.466 0.49348

9 132.4 132 113.7 0.502 0.506 0.448 0.48497

10 124.4 117.4 124.4 0.471 0.445 0.49 0.46856

11 125.4 121.3 115.7 0.466 0.478 0.443 0.46234

12 140.2 121.2 118.3 0.521 0.459 0.453 0.47785

13 138.2 133.6 134.3 0.53 0.5 0.499 0.50971

14 129.9 119.7 141.2 0.498 0.471 0.525 0.49796

15 126.6 137.1 108.9 0.48 0.513 0.429 0.47392

16 130 142.2 132.3 0.492 0.529 0.521 0.51397

17 110.9 122 119.3 0.42 0.48 0.447 0.44907

18 117.6 130.6 137.9 0.445 0.486 0.516 0.48248

19 123.4 138.3 120.5 0.486 0.518 0.456 0.48675

20 128.5 119.8 114.1 0.506 0.459 0.432 0.4657

21 133 138.8 108.2 0.494 0.52 0.415 0.47628

22 130.1 131.4 136.1 0.484 0.498 0.521 0.50094

23 119.3 126.5 123.5 0.452 0.485 0.463 0.46637

24 115.5 132.4 131.6 0.438 0.502 0.493 0.4773

Average of percentages 0.485 0.484 0.468 0.4788

 147

Table E.7 Average values of common tasks that are assigned to the same

stations with intermediate level of the weight of the third objective

sequence
Average # of common tasks assigned to

the same stations by the algorithm

Average % of common tasks assigned to

the same stations by the algorithm

Average of the

percentages

1 243.2 238.4 230 0.911 0.903 0.871 0.89503

2 240.4 229.2 240.4 0.9 0.852 0.911 0.88768

3 230 236.8 236.4 0.881 0.897 0.879 0.88567

4 233.8 235 242.7 0.896 0.89 0.902 0.89606

5 218 242.8 241.8 0.858 0.903 0.916 0.89226

6 206 235.4 242 0.811 0.892 0.917 0.87312

7 252.2 234.2 230 0.945 0.897 0.871 0.90437

8 249.4 218.8 242.4 0.934 0.861 0.918 0.90456

9 237 241.6 209.2 0.898 0.926 0.824 0.88234

10 237.8 230.4 227.2 0.901 0.873 0.894 0.88932

11 230.1 226.6 231.6 0.855 0.892 0.887 0.87829

12 230.4 236.8 238.2 0.857 0.897 0.913 0.88871

13 233.4 244 238.6 0.894 0.914 0.887 0.89837

14 237.2 216.8 243 0.909 0.854 0.903 0.88857

15 229 248 224.4 0.867 0.929 0.883 0.89324

16 228.6 223.4 224 0.866 0.83 0.882 0.85943

17 216.6 221.6 249.6 0.82 0.872 0.935 0.87591

18 215.4 239.1 253 0.816 0.889 0.948 0.88411

19 205.2 249.2 242.2 0.808 0.933 0.917 0.88621

20 205.2 235.8 240.8 0.808 0.903 0.912 0.87448

21 218.3 251.6 236 0.812 0.942 0.904 0.88602

22 218.1 241.6 242.6 0.811 0.915 0.93 0.88514

23 213.4 234 244.2 0.808 0.897 0.915 0.87316

24 217 222 251.2 0.822 0.841 0.941 0.8679

Average of percentages 0.862 0.892 0.902 0.88541

 148

Table E.8 Average values of common tasks that are assigned to the same

stations with high level of the weight of the third objective

sequence
Average # of common tasks assigned to

the same stations by the algorithm

Average % of common tasks assigned to

the same stations by the algorithm

Average of the

percentages

1 255.1 259 254.2 0.955 0.981 0.963 0.96646

2 251.1 242.7 253.8 0.94 0.902 0.961 0.93468

3 251.7 254.5 260.8 0.964 0.964 0.97 0.96597

4 243.1 233 263.8 0.931 0.883 0.981 0.93155

5 233.2 262.2 250.9 0.918 0.975 0.95 0.94774

6 224.3 255.5 251.5 0.883 0.968 0.953 0.93451

7 253.9 251.8 250.4 0.951 0.965 0.948 0.95472

8 257.2 239.7 258.2 0.963 0.944 0.978 0.96168

9 244.3 246.5 244 0.925 0.944 0.961 0.94348

10 240.9 227.4 248 0.913 0.861 0.976 0.91675

11 234.1 244.3 258.3 0.87 0.962 0.99 0.94058

12 238.8 252.8 253.5 0.888 0.958 0.971 0.93886

13 231.2 245.4 256.6 0.886 0.919 0.954 0.91961

14 239 231.7 259.7 0.916 0.912 0.965 0.93111

15 222.2 254.9 245.9 0.842 0.955 0.968 0.92149

16 227.7 234.8 242.8 0.863 0.873 0.956 0.89709

17 217.3 237.8 261.9 0.823 0.936 0.981 0.91341

18 216.5 253.2 259.9 0.82 0.941 0.973 0.91158

19 244.8 260.4 255.7 0.964 0.975 0.969 0.96921

20 244.2 252.3 258.2 0.961 0.967 0.978 0.9687

21 251 258.8 253.6 0.933 0.969 0.972 0.95801

22 242.8 248 246.9 0.903 0.939 0.946 0.92932

23 255.5 247.2 262.2 0.968 0.947 0.982 0.96565

24 246.2 248.3 251.4 0.933 0.941 0.942 0.93823

Average of percentages 0.913 0.941 0.966 0.94002

 149

Table E.9 Average values of TSTs at the beginning of the runs with low level

of the weight of the third objective

Sequence

Average

Values of

TST

Average

Values of

TST

Average

Values of

TST

Average

Values of

TST

1 256.2 300.8 317.4 315.47

2 256.2 333.78 305.69 327.74

3 256.2 294.4 319.72 356.2

4 256.2 299.2 319.7 330.43

5 256.2 293.57 306.65 318.31

6 256.2 289.7 296.94 331.9

7 242 265.16 366.44 307.83

8 242 263.2 309.94 369.02

9 242 289.83 270.48 375.93

10 242 270.71 267.71 273

11 242 284.14 265.16 315.31

12 242 268.32 294.3 268.8

13 282 260.96 330.19 341.02

14 287.04 262.36 319.5 338.03

15 287.04 246.64 268.52 358.63

16 287.04 245.77 266.71 271.04

17 276.96 270.54 261.52 361.08

18 292.08 281.91 247.22 268.8

19 281.84 256.2 320.42 321.52

20 276.8 257.88 286.55 329.82

21 266.72 242.87 267.12 282.94

22 266.72 243.45 281.98 272.16

23 266.72 282.57 259.84 343.63

24 281.84 282.87 248.38 267.96

Avg. of the columns 264.25 274.4513 291.5867 318.6071

StdD. of the columns 17.3995 21.98391 30.27326 34.967
Avg. of the values of

Model1 in the column
256.2 260.96 265.44 270.2933

StdD. of the values of

Model1 in the column
0 3.36932 4.111331 2.062646

Avg. of the values of

Model2 in the column
242 268.885 295.43 339.1483

StdD. of the values of

Model2 in the column
0 38.94301 37.6472 11.98248

Avg. of the values of

Model3 in the column
285.36 286.5967 307.2683 322.4733

StdD. of the values of

Model3 in the column
5.20529 10.12599 31.45644 27.66503

Avg. of the values of

Model4 in the column
273.44 281.3633 298.2083 342.5133

StdD. of the values of
Model4 in the column

7.587948 10.13691 24.62165 26.45846

 150

Table E.10 Average values of TSTs at the end of the runs with low level of the

weight of the third objective

Sequence

Average

Values of

TST

Average

Values of

TST

Average

Values of

TST

Average

Values of

TST

1 97.62 77.07 48.35 68.46

2 79.45 66.22 66.81 46.6

3 81.05 69.83 64.57 66.61

4 84.13 53.69 57.44 62.06

5 97.66 67.3 77.09 50.8

6 74.26 55.69 67.66 86.67

7 83.81 87.77 66.47 66.37

8 85.3 86.26 71.27 61.31

9 81.68 69.05 96.79 52.13

10 90.78 69.32 81.43 84.71

11 81.75 73.81 93.74 58.35

12 87.17 80 71.44 88.14

13 69.54 83.18 60.18 61.89

14 64.75 96.09 60.95 71.87

15 75.45 81.83 95.94 63.44

16 67.43 84.46 77.42 85.31

17 58.48 84.78 93.5 63.96

18 70.98 86.14 91.54 82.02

19 85.49 89.22 94.22 56.77

20 81.22 88.56 65.21 67.6

21 81.94 61.68 71.66 73.15

22 73.95 86.34 72.64 86.91

23 80.14 72.67 96.5 79.71

24 67.66 67.54 88.68 89.24

Avg. of the columns 79.23708 76.60417 76.3125 69.75333

StdD. of the columns 9.702825 11.30089 14.42611 12.90015
Avg. of the values of

Model1 in the column
85.695 88.51333 91.355 86.055

StdD. of the values of

Model1 in the column
9.789294 4.289101 9.748997 2.602604

Avg. of the values of

Model2 in the column
85.08167 76.26667 79.38 71.97833

StdD. of the values of

Model2 in the column
3.497664 10.1381 14.4762 9.565273

Avg. of the values of

Model3 in the column
67.77167 67.01667 65.295 57.83

StdD. of the values of

Model3 in the column
5.795852 6.740753 8.784351 9.205874

Avg. of the values of

Model4 in the column
78.4 74.62 69.22 63.15

StdD. of the values of
Model4 in the column

6.464206 11.64014 9.311241 5.893186

 151

Table E.11 Average values of numbers of stations at the beginning of the runs

with low level of the weight of the third objective

Sequence
Average

Values of m

Average

Values of m

Average

Values of m

Average

Values of m

1 34 34.1 32.8 34.7

2 34 34.5 35.3 32.7

3 34 33.1 34 34.2

4 34 33.1 36 34

5 34 36.3 34.3 32.6

6 34 36 33.2 34.2

7 35 34 31.5 31.3

8 35 34 34.1 32

9 35 35 34 28.3

10 35 34.6 37.5 34

11 35 38 34 31.6

12 35 37.7 35.1 34

13 35 34 32.7 33

14 35.1 34 35.9 34

15 35.1 35 34 28.4

16 35.1 35 37.5 34

17 34.9 37.8 34 32.9

18 35.2 38 35 34

19 38.1 34 33.8 32.3

20 38 34 33.1 34.2

21 37.8 35 34 26.4

22 37.8 35 34.8 34

23 37.8 35 34 32.9

24 38.1 35 35 34

Avg. of the columns 35.5 35.09167 34.4 32.65417

StdD. of the columns 1.501014 1.475279 1.395334 2.144351
Avg. of the values of

Model1 in the column
34 34 34 34

StdD. of the values of

Model1 in the column
0 0 0 0

Avg. of the values of

Model2 in the column
35 34.76667 34.13333 33.7

StdD. of the values of

Model2 in the column
0 0.382971 0.861781 0.626099

Avg. of the values of

Model3 in the column
35.06667 34.3 33.41667 31.26667

StdD. of the values of

Model3 in the column
0.10328 0.942338 1.337784 2.417988

Avg. of the values of

Model4 in the column
37.93333 37.3 36.05 31.65

StdD. of the values of

Model4 in the column
0.150555 0.903327 1.311106 2.811939

 152

Table E.12 Average values of numbers of stations at the end of the runs with

low level of the weight of the third objective

Sequence
Average

Values of m

Average

Values of m

Average

Values of m

Average

Values of m

1 31.7 30.8 28.4 30.9

2 31.4 30.3 31.4 28.3

3 31.4 29.5 30.2 30.1

4 31.5 29.1 31.7 29.9

5 31.6 32.6 30.8 28.6

6 31.2 32 29.5 30.6

7 32.8 31.6 27.4 28.1

8 32.6 31.4 30.7 27.6

9 32.6 31.6 31.6 25.5

10 32.9 31.4 34.6 31.4

11 32.5 34.7 31.2 27.8

12 32.5 34.5 31.4 31.4

13 31.5 31.6 28.7 29.2

14 31.7 31.4 31.7 29.6

15 31.6 32.5 31.6 25.7

16 31.3 32.7 34.2 31.3

17 31.1 34.7 31.6 28.5

18 31.5 34.4 32.6 31.2

19 34.5 31.6 30.2 28.4

20 34.7 31.3 29.6 29.8

21 34.5 32.4 31.7 24.1

22 34.6 32.7 31.5 31.2

23 34.4 31.3 31.6 28.9

24 34.3 31.5 32.3 31.3

Avg. of the columns 32.51667 31.98333 31.09167 29.14167

StdD. of the columns 1.28153 1.478444 1.633858 2.012551
Avg. of the values of

Model1 in the column
31.46667 31.48333 31.55 31.3

StdD. of the values of

Model1 in the column
0.175119 0.132916 0.176068 0.089443

Avg. of the values of

Model2 in the column
32.65 31.9 30.8 29.55

StdD. of the values of

Model2 in the column
0.164317 1.063955 1.457395 0.750333

Avg. of the values of

Model3 in the column
31.45 30.73333 29.63333 27.46667

StdD. of the values of

Model3 in the column
0.216795 1.121903 1.620699 1.691942

Avg. of the values of

Model4 in the column
34.5 33.81667 32.38333 28.25

StdD. of the values of

Model4 in the column
0.141421 1.195687 1.609244 2.255438

 153

Table E.13 Average values of the differences between the theoretical

minimum numbers of used stations and the numbers of used

stations found with the algorithm at the end of the runs with low

level of the weight of the third objective

Sequence
Average

Values of Dm

Average

Values of Dm

Average

Values of Dm

Average

Values of Dm

1 2.002462 1.465766 0.879251 1.209113

2 1.634437 1.249198 1.205739 0.844662

3 1.665297 1.310623 1.212582 1.137272

4 1.73107 1.003551 1.058022 1.153746

5 1.995505 1.274139 1.470622 0.930914

6 1.522345 1.03938 1.273001 1.628217

7 1.723067 1.807455 1.137211 1.040282

8 1.738687 1.76473 1.245544 1.063856

9 1.669324 1.415249 1.979346 0.714893

10 1.862918 1.409516 1.642727 1.735505

11 1.664292 1.502035 1.891445 1.019748

12 1.767437 1.609982 1.450264 1.800613

13 1.419473 1.719305 1.062125 1.019269

14 1.336705 1.95067 1.121023 1.31054

15 1.538226 1.66592 1.963168 0.859854

16 1.367748 1.728966 1.544385 1.739955

17 1.185486 1.712381 1.917162 1.117986

18 1.4468 1.720048 1.856795 1.670468

19 1.713913 1.835425 1.730395 1.026397

20 1.644462 1.801831 1.235272 1.249307

21 1.646704 1.270443 1.501047 1.05161

22 1.499696 1.764922 1.478526 1.763238

23 1.606978 1.468081 1.973819 1.400141

24 1.363838 1.380621 1.782871 1.81419

Avg. of the columns 1.614453 1.53626 1.483848 1.262574

StdD. of the columns 0.200055 0.25847 0.341323 0.344074
Avg. of the values of

Model1 in the column
1.758519 1.813236 1.870998 1.753995

StdD. of the values of

Model1 in the column
0.198135 0.078383 0.18451 0.051764

Avg. of the values of

Model2 in the column
1.737621 1.524203 1.519232 1.309989

StdD. of the values of

Model2 in the column
0.073271 0.229519 0.326615 0.186738

Avg. of the values of

Model3 in the column
1.382406 1.331274 1.242254 0.989531

StdD. of the values of

Model3 in the column
0.119064 0.168614 0.220405 0.084939

Avg. of the values of

Model4 in the column
1.579265 1.476328 1.302906 0.99678

StdD. of the values of
Model4 in the column

0.126836 0.270351 0.236462 0.181896

 154

Table E.14 Average values of cycle times at the beginning of the runs with

low level of the weight of the third objective

Sequence
Average

Values of C

Average

Values of C

Average

Values of C

Average

Values of C

1 50.4 54.24 55.93 57.78

2 50.4 54.57 56.15 56.54

3 50.4 54.43 55.04 60.31

4 50.4 54.6 55.19 55.42

5 50.4 53.8 54 56.39

6 50.4 54.19 54.3 55.06

7 50.4 50.72 60.75 65.34

8 50.4 50.65 58.84 59.67

9 50.4 50.67 50.91 79.03

10 50.4 50.71 50.91 51

11 50.4 50.63 50.72 58.85

12 50.4 50.61 50.65 50.85

13 50.4 50.57 58.2 62.72

14 50.4 50.62 55.38 55.7

15 50.4 50.56 50.84 78.36

16 50.4 50.53 50.88 50.93

17 50.4 50.52 50.59 59.01

18 50.4 50.56 50.58 50.85

19 50.4 50.4 55.51 57.14

20 50.4 50.46 54.11 54.97

21 50.4 50.43 50.79 72.14

22 50.4 50.45 50.75 50.97

23 50.4 50.42 50.53 58.22

24 50.4 50.43 50.62 50.82

Avg. of the columns 50.4 51.49042 53.42375 58.66958

StdD. of the columns 1.49E-06 1.668145 3.1085 7.993274
Avg. of the values of

Model1 in the column
50.4 50.57 50.73 50.90333

StdD. of the values of

Model1 in the column
6.03E-07 0.120333 0.146833 0.073666

Avg. of the values of

Model2 in the column
50.4 51.79667 53.99167 56.39667

StdD. of the values of

Model2 in the column
6.03E-07 2.023677 2.970592 1.755866

Avg. of the values of

Model3 in the column
50.4 51.87667 54.415 60.12167

StdD. of the values of

Model3 in the column
6.03E-07 2.047825 3.745428 6.031674

Avg. of the values of

Model4 in the column
50.4 51.71833 54.55833 67.25667

StdD. of the values of

Model4 in the column
6.03E-07 1.768224 3.123481 9.211012

 155

Table E.15 Average values of cycle times at the end of the runs with low level

of the weight of the third objective

Sequence
Average

Values of C

Average

Values of C

Average

Values of C

Average

Values of C

1 48.75 52.58 54.99 56.62

2 48.61 53.01 55.41 55.17

3 48.67 53.28 53.25 58.57

4 48.6 53.5 54.29 53.79

5 48.94 52.82 52.42 54.57

6 48.78 53.58 53.15 53.23

7 48.64 48.56 58.45 63.8

8 49.06 48.88 57.22 57.63

9 48.93 48.79 48.9 72.92

10 48.73 49.18 49.57 48.81

11 49.12 49.14 49.56 57.22

12 49.32 49.69 49.26 48.95

13 48.99 48.38 56.66 60.72

14 48.44 49.26 54.37 54.84

15 49.05 49.12 48.87 73.78

16 49.3 48.85 50.13 49.03

17 49.33 49.51 48.77 57.21

18 49.06 50.08 49.3 49.1

19 49.88 48.61 54.45 55.31

20 49.39 49.15 52.79 54.11

21 49.76 48.55 47.74 69.56

22 49.31 48.92 49.13 49.29

23 49.87 49.5 48.89 56.93

24 49.61 48.92 49.74 49.19

Avg. of the columns 49.08917 50.0775 51.97125 56.68125

StdD. of the columns 0.412858 1.847502 3.181611 7.166972
Avg. of the values of

Model1 in the column
48.725 48.80667 48.78833 49.06167

StdD. of the values of

Model1 in the column
0.127867 0.34938 0.587245 0.171396

Avg. of the values of

Model2 in the column
48.96667 50.17167 52.63667 55.01833

StdD. of the values of

Model2 in the column
0.25343 2.044773 2.807936 1.674615

Avg. of the values of

Model3 in the column
49.02833 50.52833 52.96167 58.24333

StdD. of the values of

Model3 in the column
0.320588 2.230986 3.540759 5.675095

Avg. of the values of

Model4 in the column
49.63667 50.80333 53.49833 64.40167

StdD. of the values of

Model4 in the column
0.243776 1.896256 3.022227 7.334773

 156

Table E.16 Average values of the differences between the theoretical

minimum cycle times and the cycle times found with the

algorithm at the end of the runs with low level of the weight of

the third objective

Sequence
Average

Values of DC

Average

Values of DC

Average

Values of DC

Average

Values of DC

1 0.30795 0.250227 0.170246 0.221553

2 0.253025 0.218548 0.212771 0.164664

3 0.258121 0.236712 0.213808 0.221296

4 0.267079 0.184502 0.181199 0.207559

5 0.309051 0.206442 0.250292 0.177622

6 0.238013 0.174031 0.229356 0.283235

7 0.255518 0.277753 0.242591 0.236192

8 0.261656 0.274713 0.23215 0.222138

9 0.250552 0.218513 0.306297 0.204431

10 0.275927 0.220764 0.235347 0.269777

11 0.251538 0.212709 0.300449 0.209892

12 0.268215 0.231884 0.227516 0.280701

13 0.220762 0.263228 0.209686 0.211952

14 0.204259 0.306019 0.192271 0.242804

15 0.238766 0.251785 0.303608 0.246848

16 0.215431 0.258287 0.226374 0.272556

17 0.188039 0.244323 0.295886 0.224421

18 0.225333 0.250407 0.280798 0.262885

19 0.247797 0.282342 0.311987 0.199894

20 0.234063 0.282939 0.220304 0.226846

21 0.237507 0.19037 0.226057 0.303527

22 0.213728 0.264037 0.230603 0.278558

23 0.232965 0.232173 0.30538 0.275813

24 0.197259 0.214413 0.274551 0.285112

Avg. of the columns 0.243857 0.239463 0.24498 0.238762

StdD. of the columns 0.030318 0.03381 0.042327 0.036995
Avg. of the values of

Model1 in the column
0.272206 0.281166 0.289613 0.274931

StdD. of the values of

Model1 in the column
0.029654 0.014123 0.031365 0.008092

Avg. of the values of

Model2 in the column
0.260568 0.238876 0.256854 0.243446

StdD. of the values of

Model2 in the column
0.010029 0.028536 0.040117 0.030188

Avg. of the values of

Model3 in the column
0.215432 0.217846 0.220103 0.212956

StdD. of the values of

Model3 in the column
0.017585 0.018405 0.025465 0.049088

Avg. of the values of

Model4 in the column
0.22722 0.219966 0.213352 0.223712

StdD. of the values of
Model4 in the column

0.018378 0.028311 0.022295 0.015566

 157

Table E.17 Average values of TSTs at the beginning of the runs with

intermediate level of the weight of the third objective

Sequence

Average

Values of

TST

Average

Values of

TST

Average

Values of

TST

Average

Values of

TST

1 256.2 313.22 318.65 329.15

2 256.2 296.93 265.11 279.11

3 256.2 302.47 304.07 322.97

4 256.2 317.61 327.35 310.69

5 256.2 326.3 327.11 319.24

6 256.2 284.18 285.02 293.37

7 242 261.52 313.69 331.53

8 242 263.76 289.04 289.62

9 242 275.2 265.44 303.6

10 242 268.37 264.84 263.48

11 242 283.5 262.36 284.44

12 242 274.03 278.84 264.04

13 292.08 260.4 300.45 297.76

14 287.04 263.76 302.77 303.04

15 292.08 247.8 263.2 328.34

16 282 244.61 277.17 260.96

17 297.12 286 260.12 305.79

18 271.92 271.16 247.22 262.64

19 256.64 257.6 309.32 302.72

20 266.72 257.88 289.56 308.62

21 256.64 242.87 260.4 306.66

22 261.68 242.87 280.98 263.76

23 261.68 293.24 257.88 293.88

24 276.8 278.68 245.19 260.12

Avg. of the columns 262.15 275.5817 283.1575 295.2304

StdD. of the columns 17.53099 23.58185 24.88857 23.42245
Avg. of the values of

Model1 in the column
256.2 260.82 261.5667 262.5

StdD. of the values of

Model1 in the column
0 2.719029 2.658772 1.610913

Avg. of the values of

Model2 in the column
242 264.7167 288.8933 302.565

StdD. of the values of

Model2 in the column
0 31.73414 34.31705 7.392999

Avg. of the values of

Model3 in the column
287.04 289.2617 294.4567 296.965

StdD. of the values of

Model3 in the column
9.015826 18.65518 17.28449 15.18496

Avg. of the values of

Model4 in the column
263.36 287.5283 287.7133 318.8917

StdD. of the values of
Model4 in the column

7.587948 19.91554 24.26846 14.49998

 158

Table E.18 Average values of TSTs at the end of the runs with intermediate

level of the weight of the third objective

Sequence

Average

Values of

TST

Average

Values of

TST

Average

Values of

TST

Average

Values of

TST

1 71.72 137.75 152.95 148.88

2 97.89 125.67 111.5 177.57

3 73.21 154.64 136.95 138.93

4 83.16 150.95 141.95 182.42

5 75.17 134.93 207.53 178.09

6 84.43 119.93 173.22 182.83

7 87.06 136.35 144.09 142.12

8 86.49 152.21 114.85 212.59

9 78.16 123.41 145.63 142.47

10 82.86 130.83 110.58 182.19

11 89.17 113.35 167.16 159.8

12 78.36 102.71 158.54 159.34

13 64.27 118.59 150.3 144.15

14 60.55 131.55 124.19 184.86

15 67.15 122.02 161.65 153.06

16 80.91 114.62 103.47 163.64

17 64.2 113.76 161.1 163.53

18 65.82 100.68 148.25 195.97

19 75.43 174.9 188 198.48

20 76.48 167.43 173.34 166.18

21 88.4 143.18 177.4 210.61

22 88.11 133.2 146.55 171.51

23 73.23 159.02 162.72 166.13

24 79.23 167.14 119.99 160.95

Avg. of the columns 77.9775 134.5342 149.2463 170.2625

StdD. of the columns 9.413729 20.57389 26.10953 20.92796
Avg. of the values of

Model1 in the column
80.93 146.8383 162.61 172.2667

StdD. of the values of

Model1 in the column
9.823081 21.82675 10.30515 14.35603

Avg. of the values of

Model2 in the column
83.68333 129.4067 158.5033 174.325

StdD. of the values of

Model2 in the column
4.667028 10.59128 32.84484 9.988807

Avg. of the values of

Model3 in the column
67.15 147.665 158.115 189.5233

StdD. of the values of

Model3 in the column
7.094553 16.96688 12.78491 21.04291

Avg. of the values of

Model4 in the column
80.14667 114.2267 117.7567 144.935

StdD. of the values of
Model4 in the column

6.571212 12.47628 13.63754 5.14306

 159

Table E.19 Average values of numbers of stations at the beginning of the runs

with intermediate level of the weight of the third objective

Sequence
Average

Values of m

Average

Values of m

Average

Values of m

Average

Values of m

1 34 34 32.8 34.6

2 34 34.7 36.1 33.4

3 34 32.9 33.5 35.2

4 34 33.2 35.9 33.5

5 34 36 33.9 32.6

6 34 36.2 33.3 34

7 35 34 33.7 35.5

8 35 34 36.5 33.5

9 35 34.7 34 34.7

10 35 34.6 37.6 34

11 35 38 34 32.6

12 35 37.8 34.8 34

13 35.2 34 34.9 36.2

14 35.1 34 36.7 34.5

15 35.2 35 34 35.6

16 35 35 37.9 34

17 35.3 38.1 34 34.9

18 34.8 37.8 35 34

19 37.6 34 34.7 33.1

20 37.8 34 33.7 34.5

21 37.6 35 34 33.1

22 37.7 35 34.9 34

23 37.7 35.2 34 34.6

24 38 34.9 35 34

Avg. of the columns 35.45833 35.0875 34.7875 34.17083

StdD. of the columns 1.416031 1.497625 1.350785 0.916268
Avg. of the values of

Model1 in the column
34 34 34 34

StdD. of the values of

Model1 in the column
0 0 0 0

Avg. of the values of

Model2 in the column
35 34.78333 34.5 34.33333

StdD. of the values of

Model2 in the column
0 0.402078 0.641872 0.500666

Avg. of the values of

Model3 in the column
35.1 34.25 33.86667 33.05

StdD. of the values of

Model3 in the column
0.178885 0.956556 0.831064 0.383406

Avg. of the values of

Model4 in the column
37.73333 37.31667 36.78333 35.3

StdD. of the values of

Model4 in the column
0.150555 0.951665 0.806019 0.6

 160

Table E.20 Average values of numbers of stations at the end of the runs with

intermediate level of the weight of the third objective

Sequence
Average

Values of m

Average

Values of m

Average

Values of m

Average

Values of m

1 31.3 31.3 30.5 31.8

2 31.4 31.6 33.3 31.7

3 31.4 30.5 30.7 32.3

4 31.6 30.6 32.8 31.4

5 31.5 32.8 32 30.7

6 31.3 33.3 31.5 32.1

7 32.5 31.9 31.2 32.4

8 32.7 32.1 33.4 32.3

9 32.6 31.9 31.9 32.2

10 32.5 32 34.6 32.6

11 32.6 34.7 32.5 30.9

12 32.4 34.5 32.6 32.1

13 31.3 31.5 32.3 33.5

14 31.8 31.8 33.5 32.6

15 31.6 32.7 32.2 32.7

16 31.4 32.6 34.5 32.3

17 31.2 34.8 32.3 32.6

18 31.4 34.5 33.2 32.9

19 34.6 32.9 32.9 31.8

20 34.8 32.7 31.9 32.3

21 34.8 33.3 32.7 31.6

22 34.8 33.1 32.6 32.6

23 34.4 32.7 32.4 32.5

24 34.7 32.9 32.6 32.2

Avg. of the columns 32.525 32.6125 32.50417 32.17083

StdD. of the columns 1.36326 1.188464 0.994541 0.616779
Avg. of the values of

Model1 in the column
31.41667 32.15 32.33333 32.45

StdD. of the values of

Model1 in the column
0.116905 0.543139 0.273252 0.301662

Avg. of the values of

Model2 in the column
32.55 32.43333 32.28333 32.25

StdD. of the values of

Model2 in the column
0.104881 0.809115 0.884119 0.459347

Avg. of the values of

Model3 in the column
31.45 31.76667 31.71667 31.5

StdD. of the values of

Model3 in the column
0.216795 1.01915 0.823205 0.596657

Avg. of the values of

Model4 in the column
34.68333 34.1 33.68333 32.48333

StdD. of the values of

Model4 in the column
0.160208 0.83666 0.713909 0.577639

 161

Table E.21 Average values of the differences between the theoretical

minimum numbers of used stations and the numbers of used

stations found with the algorithm at the end of the runs with

intermediate level of the weight of the third objective

Sequence
Average

Values of Dm

Average

Values of Dm

Average

Values of Dm

Average

Values of Dm

1 1.478763 2.564699 2.811064 2.560275

2 1.984391 2.389163 2.100999 3.35798

3 1.513541 2.839515 2.490453 2.472944

4 1.718892 2.789688 2.571092 3.299928

5 1.557927 2.456399 3.776706 3.237411

6 1.723061 2.24546 3.260919 3.396433

7 1.765565 2.734657 2.739354 2.522542

8 1.767989 3.03873 2.165347 4.008863

9 1.601639 2.452991 2.899841 2.502547

10 1.685517 2.595833 2.18624 3.624229

11 1.81203 2.244554 3.3499 2.93696

12 1.593655 2.034667 3.151262 3.164019

13 1.307098 2.374174 2.885945 2.674893

14 1.259098 2.637858 2.336155 3.496501

15 1.378567 2.428259 3.216915 2.741046

16 1.630264 2.285088 2.048505 3.263662

17 1.300385 2.259833 3.219424 3.143599

18 1.34217 1.997223 2.947902 3.90223

19 1.52816 3.537621 3.592586 3.714072

20 1.558907 3.380376 3.315608 3.151527

21 1.786942 2.868189 3.55511 3.864404

22 1.78144 2.668269 2.93923 3.439142

23 1.475519 3.17152 3.258963 3.175875

24 1.606448 3.338127 2.382645 3.20426

Avg. of the columns 1.589915 2.638871 2.883423 3.202306

StdD. of the columns 0.187076 0.418258 0.505731 0.452205
Avg. of the values of

Model1 in the column
1.662763 2.950569 3.250026 3.432924

StdD. of the values of

Model1 in the column
0.188332 0.450283 0.213445 0.286402

Avg. of the values of

Model2 in the column
1.704399 2.533945 3.012706 3.27731

StdD. of the values of

Model2 in the column
0.092249 0.212023 0.567442 0.146107

Avg. of the values of

Model3 in the column
1.369597 2.864612 3.036239 3.519948

StdD. of the values of

Model3 in the column
0.13393 0.336549 0.240838 0.410197

Avg. of the values of

Model4 in the column
1.622903 2.206356 2.234723 2.579041

StdD. of the values of
Model4 in the column

0.13199 0.168276 0.191393 0.105911

 162

Table E.22 Average values of cycle times at the beginning of the runs with

intermediate level of the weight of the third objective

Sequence
Average

Values of C

Average

Values of C

Average

Values of C

Average

Values of C

1 50.4 54.82 55.97 59.05

2 50.4 52.89 53.2 53.28

3 50.4 55.15 55.5 56.93

4 50.4 55.11 55.64 55.74

5 50.4 55.41 55.5 56.38

6 50.4 53.67 53.72 54.12

7 50.4 50.59 54.01 56.83

8 50.4 50.67 53.32 53.49

9 50.4 50.69 50.73 57.9

10 50.4 50.63 50.66 50.66

11 50.4 50.61 50.62 55.65

12 50.4 50.63 50.64 50.68

13 50.4 50.55 52.61 54.12

14 50.4 50.67 53.43 53.49

15 50.4 50.6 50.65 56.33

16 50.4 50.49 50.57 50.57

17 50.4 50.53 50.54 52.79

18 50.4 50.54 50.58 50.63

19 50.4 50.45 53.31 54.78

20 50.4 50.46 53.1 53.67

21 50.4 50.43 50.55 55.1

22 50.4 50.43 50.54 50.67

23 50.4 50.44 50.46 53.03

24 50.4 50.46 50.51 50.54

Avg. of the columns 50.4 51.53833 52.34833 54.01792

StdD. of the columns 1.49E-06 1.81435 1.979527 2.535847
Avg. of the values of

Model1 in the column
50.4 50.565 50.59167 50.625

StdD. of the values of

Model1 in the column
6.03E-07 0.097108 0.094956 0.057533

Avg. of the values of

Model2 in the column
50.4 51.61 53.00167 53.80667

StdD. of the values of

Model2 in the column
6.03E-07 1.844007 2.227316 1.057519

Avg. of the values of

Model3 in the column
50.4 52.08 52.99667 54.78

StdD. of the values of

Model3 in the column
6.03E-07 2.364504 2.097166 1.211066

Avg. of the values of

Model4 in the column
50.4 51.89833 52.80333 56.86

StdD. of the values of

Model4 in the column
6.03E-07 2.119268 1.920694 1.653602

 163

Table E.23 Average values of cycle times at the end of the runs with

intermediate level of the weight of the third objective

Sequence
Average

Values of C

Average

Values of C

Average

Values of C

Average

Values of C

1 48.5 53.71 54.41 58.15

2 49.33 52.6 53.07 52.88

3 48.37 54.46 54.99 56.18

4 48.38 54.11 55.21 55.28

5 48.25 54.93 54.95 55.01

6 49 53.41 53.12 53.83

7 49.31 49.86 52.6 56.34

8 48.92 50.09 53.04 53.03

9 48.8 50.31 50.22 56.93

10 49.16 50.4 50.58 50.27

11 49.21 50.5 49.9 54.41

12 49.17 50.48 50.31 50.36

13 49.17 49.95 52.08 53.89

14 48.09 49.87 53.16 52.87

15 48.71 50.25 50.25 55.84

16 49.63 50.16 50.51 50.14

17 49.37 50.34 50.04 52.02

18 49.04 50.41 50.29 50.22

19 49.36 49.44 52.33 53.44

20 49.06 49.53 52.28 52.73

21 49.47 49.92 49.9 54.5

22 49.46 49.92 49.86 49.87

23 49.63 50.14 49.93 52.31

24 49.32 50.07 50.36 50.23

Avg. of the columns 49.02958 51.03583 51.80792 53.36375

StdD. of the columns 0.440568 1.734775 1.849945 2.401255
Avg. of the values of

Model1 in the column
48.63833 49.79 50.04 50.18167

StdD. of the values of

Model1 in the column
0.428458 0.251794 0.159875 0.168691

Avg. of the values of

Model2 in the column
49.095 51.09333 52.5 53.17333

StdD. of the values of

Model2 in the column
0.193365 1.640289 2.091488 1.202775

Avg. of the values of

Model3 in the column
49.00167 51.58167 52.09667 53.87833

StdD. of the values of

Model3 in the column
0.543412 2.100204 1.72514 0.87844

Avg. of the values of

Model4 in the column
49.38333 51.67833 52.595 56.22167

StdD. of the values of

Model4 in the column
0.191485 1.989788 1.788214 1.401305

 164

Table E.24 Average values of the differences between the theoretical

minimum cycle times and the cycle times found with the

algorithm at the end of the runs with intermediate level of the

weight of the third objective

Sequence
Average

Values of DC

Average

Values of DC

Average

Values of DC

Average

Values of DC

1 0.229137 0.440096 0.501475 0.468176

2 0.311752 0.39769 0.334835 0.560158

3 0.233153 0.507016 0.446091 0.430124

4 0.263165 0.493301 0.432774 0.580955

5 0.238635 0.411372 0.648531 0.580098

6 0.269744 0.36015 0.549905 0.569564

7 0.267877 0.427429 0.461827 0.438642

8 0.264495 0.474174 0.343862 0.658173

9 0.239755 0.386865 0.45652 0.442453

10 0.254954 0.408844 0.319595 0.558865

11 0.273528 0.326657 0.514338 0.517152

12 0.241852 0.29771 0.486319 0.496386

13 0.205335 0.376476 0.465325 0.430299

14 0.190409 0.413679 0.370716 0.567055

15 0.2125 0.37315 0.502019 0.468073

16 0.257675 0.351595 0.299913 0.506625

17 0.205769 0.326897 0.498762 0.501626

18 0.209618 0.291826 0.446536 0.595653

19 0.218006 0.531611 0.571429 0.624151

20 0.21977 0.512018 0.543386 0.514489

21 0.254023 0.42997 0.542508 0.666487

22 0.25319 0.402417 0.44954 0.526104

23 0.212878 0.4863 0.502222 0.511169

24 0.228329 0.508024 0.368067 0.499845

Avg. of the columns 0.239814 0.41397 0.460687 0.52968

StdD. of the columns 0.028303 0.069749 0.086577 0.067813
Avg. of the values of

Model1 in the column
0.257598 0.455898 0.502728 0.53058

StdD. of the values of

Model1 in the column
0.031236 0.060194 0.027817 0.039351

Avg. of the values of

Model2 in the column
0.257077 0.399153 0.490997 0.54081

StdD. of the values of

Model2 in the column
0.013991 0.033397 0.101045 0.03531

Avg. of the values of

Model3 in the column
0.213551 0.465058 0.498742 0.601037

StdD. of the values of

Model3 in the column
0.022922 0.053159 0.041367 0.058701

Avg. of the values of

Model4 in the column
0.231032 0.335769 0.350283 0.446295

StdD. of the values of
Model4 in the column

0.018182 0.044388 0.046864 0.017572

 165

Table E.25 Average values of TSTs at the beginning of the runs with high

level of the weight of the third objective

Sequence

Average

Values of

TST

Average

Values of

TST

Average

Values of

TST

Average

Values of

TST

1 256.2 308.33 336.28 325.2

2 256.2 334 307.17 323.53

3 256.2 328.46 364.82 346.1

4 256.2 304.62 335.9 303.62

5 256.2 313.61 348.2 301.57

6 256.2 296.98 313.63 338.53

7 242 269.64 317.45 374.09

8 242 266.84 311.12 348.64

9 242 257.73 271.32 338.4

10 242 260.58 268.4 276.64

11 242 274.7 264.04 332.64

12 242 256.49 267.05 274.12

13 292.08 263.2 312.39 341.16

14 276.96 264.04 294.41 296.28

15 297.12 246.64 263.2 333.17

16 292.08 246.64 269.89 263.76

17 292.08 274.34 263.48 329.08

18 276.96 258.84 249.25 264.04

19 256.64 257.32 306.24 320.11

20 271.76 257.6 298.18 317.64

21 286.88 242.87 262.08 314.17

22 256.64 243.74 275.22 269.08

23 271.76 288.49 261.24 345.11

24 281.84 273.64 247.51 266

Avg. of the columns 264.25 274.5558 292.0196 314.2783

StdD. of the columns 18.80841 26.52214 33.08313 31.5232
Avg. of the values of

Model1 in the column
256.2 263.1067 264.2267 268.94

StdD. of the values of

Model1 in the column
0 4.925666 3.61912 5.396814

Avg. of the values of

Model2 in the column
242 270.37 304.735 321.71

StdD. of the values of

Model2 in the column
0 40.20291 48.81304 19.3664

Avg. of the values of

Model3 in the column
287.88 285.5867 301.3017 323.4433

StdD. of the values of

Model3 in the column
8.680903 27.39661 26.4553 16.09352

Avg. of the values of

Model4 in the column
270.92 279.16 297.815 343.02

StdD. of the values of
Model4 in the column

12.51572 22.24549 25.96786 16.81791

 166

Table E.26 Average values of TSTs at the end of the runs with high level of

the weight of the third objective

Sequence

Average

Values of

TST

Average

Values of

TST

Average

Values of

TST

Average

Values of

TST

1 106.7 211.23 216 178.94

2 92.26 227.18 175.26 314.76

3 78.33 199.82 313.7 286.18

4 101.72 197.62 158.78 256.06

5 93.97 202.44 349.52 335.9

6 101.31 166.59 276.71 315.14

7 93.41 184.79 274.85 269.45

8 96.31 170.37 255.76 374.97

9 96.33 205.57 222 258.92

10 94.6 207.93 141.2 295.34

11 89.62 155.29 278.69 282.85

12 91.5 155.14 303.85 317.56

13 94.21 163.99 253.51 192.33

14 95.76 162.1 213.45 335.9

15 123.85 167.21 219.19 225.85

16 112.25 163.43 156.38 279.75

17 88.33 160.89 278.95 344.71

18 112.51 150.45 256.84 302.76

19 132.09 305.17 307.85 315.67

20 102.12 275.1 290.29 314.32

21 106.19 234.16 302.25 313.28

22 97.83 221.59 263.37 293.05

23 103.04 263.27 293.06 333.03

24 110.69 286.22 263.46 321.26

Avg. of the columns 100.6221 201.5646 252.705 294.0825

StdD. of the columns 11.70225 44.74557 54.54121 46.41638
Avg. of the values of

Model1 in the column
95.715 210.2533 265.69 301.62

StdD. of the values of

Model1 in the column
10.05241 63.10684 36.06007 15.699

Avg. of the values of

Model2 in the column
93.62833 204.1333 290.8133 316.5267

StdD. of the values of

Model2 in the column
2.686212 31.00949 38.87017 31.95308

Avg. of the values of

Model3 in the column
104.485 226.7383 270.845 322.905

StdD. of the values of

Model3 in the column
13.72869 38.07087 30.27119 30.6443

Avg. of the values of

Model4 in the column
108.66 165.1333 183.4717 235.2783

StdD. of the values of
Model4 in the column

12.25424 19.10117 43.17931 43.41675

 167

Table E.27 Average values of numbers of stations at the beginning of the runs

with high level of the weight of the third objective

Sequence
Average

Values of m

Average

Values of m

Average

Values of m

Average

Values of m

1 34 33.5 32.5 31.2

2 34 34 35.2 32.4

3 34 32.4 32.7 31.7

4 34 33.1 36 33.3

5 34 34.8 33.2 31.2

6 34 35.6 33 33.4

7 35 34 30.9 29.4

8 35 34 33 30.2

9 35 34.3 34 30.5

10 35 34.3 37.4 34

11 35 37.8 34 30

12 35 37.3 34.4 34

13 35.2 34 33.9 35.8

14 34.9 34 35 32.7

15 35.3 35 34 31.7

16 35.2 35 37.7 34

17 35.2 37.8 34 33.6

18 34.9 37.5 35 34

19 37.6 34 33.8 30.8

20 37.9 34 32.9 32.5

21 38.2 35 34 32.4

22 37.6 35 34.7 34

23 37.9 35.1 34 34

24 38.1 34.8 35 34

Avg. of the columns 35.5 34.84583 34.17917 32.53333

StdD. of the columns 1.480599 1.440102 1.489377 1.642285
Avg. of the values of

Model1 in the column
34 34 34 34

StdD. of the values of

Model1 in the column
0 0 0 0

Avg. of the values of

Model2 in the column
35 34.58333 33.93333 33.25

StdD. of the values of

Model2 in the column
0 0.66458 0.933095 0.561249

Avg. of the values of

Model3 in the column
35.11667 34 33.06667 31.16667

StdD. of the values of

Model3 in the column
0.17224 1.03923 1.377921 1.046263

Avg. of the values of

Model4 in the column
37.88333 36.8 35.71667 31.71667

StdD. of the values of

Model4 in the column
0.248328 1.279062 1.732532 2.181208

 168

Table E.28 Average values of numbers of stations at the end of the runs with

high level of the weight of the third objective

Sequence
Average

Values of m

Average

Values of m

Average

Values of m

Average

Values of m

1 32.2 32.5 32.6 33.1

2 31.9 32.4 33.4 33.4

3 32 32.4 32.8 33.9

4 31.9 32 33.1 33

5 32.4 33.6 33.6 33.8

6 32 33.6 33.6 33.6

7 33.5 33.5 33.6 34.4

8 33.3 33.4 34.3 34.2

9 33.3 33.9 33.9 34.8

10 33.6 34.1 35.2 34.9

11 32.7 35.7 35.4 36.1

12 33.5 35.7 35.6 35.4

13 32.5 32.7 33 33.9

14 32.6 33 34.8 34.6

15 32.6 33.7 33.8 34.7

16 32.4 33.6 35.6 35

17 32.2 35.8 35 35

18 32.7 35.5 35.3 35.2

19 35.8 35.9 35.9 36.1

20 35.2 35.3 35.6 35.8

21 35.2 35.3 35.3 35.7

22 35.2 35.2 35.2 35.3

23 35.2 35.2 35.3 35.4

24 35.5 35.6 35.8 35.8

Avg. of the columns 33.30833 34.15 34.4875 34.7125

StdD. of the columns 1.308473 1.292453 1.074735 0.931251
Avg. of the values of

Model1 in the column
32.06667 33.96667 34.78333 35.26667

StdD. of the values of

Model1 in the column
0.196638 1.310979 0.73598 0.320416

Avg. of the values of

Model2 in the column
33.31667 33.78333 34.4 34.56667

StdD. of the values of

Model2 in the column
0.325064 1.257643 1.426885 1.076414

Avg. of the values of

Model3 in the column
32.5 33.86667 34.36667 34.88333

StdD. of the values of

Model3 in the column
0.178885 1.447296 1.267544 1.222157

Avg. of the values of

Model4 in the column
35.35 34.98333 34.4 34.13333

StdD. of the values of

Model4 in the column
0.250998 1.075949 0.993982 0.63456

 169

Table E.29 Average values of the differences between the theoretical

minimum numbers of used stations and the numbers of used

stations found with the algorithm at the end of the runs with

high level of the weight of the third objective

Sequence
Average

Values of Dm

Average

Values of Dm

Average

Values of Dm

Average

Values of Dm

1 2.215992 3.910942 4.114286 3.199356

2 1.9153 4.147134 3.175 5.768004

3 1.649747 3.822843 5.489064 4.92141

4 2.096455 3.730791 2.875407 4.680314

5 1.984164 3.627957 6.142707 6.156525

6 2.096214 3.055576 5.24072 5.655779

7 1.955002 3.791342 5.214381 4.765653

8 1.997304 3.518587 4.533948 6.784331

9 1.997305 4.138716 4.495747 4.673646

10 1.985726 4.209109 2.791617 5.884439

11 1.827488 3.09281 5.715546 5.817565

12 1.918641 3.089823 6.06366 6.341054

13 1.959035 3.318964 4.648148 3.509031

14 1.995 3.317642 3.963052 6.175768

15 2.527551 3.339525 4.431662 4.143276

16 2.292688 3.261425 3.101547 5.650374

17 1.824623 3.203066 5.641052 6.39299

18 2.324587 2.985711 5.097043 6.064904

19 2.680942 6.248362 6.026821 6.350231

20 2.073082 5.633832 5.843196 6.100932

21 2.149595 4.719065 6.076598 6.230708

22 1.992059 4.489263 5.329219 5.928586

23 2.090485 5.328274 5.929988 6.304998

24 2.257137 5.779887 5.29355 6.484861

Avg. of the columns 2.075255 3.990027 4.884748 5.582697

StdD. of the columns 0.225117 0.935749 1.073015 0.962567
Avg. of the values of

Model1 in the column
1.992979 4.304788 5.381765 6.059036

StdD. of the values of

Model1 in the column
0.197494 1.293977 0.72797 0.308351

Avg. of the values of

Model2 in the column
1.946911 3.977892 5.449555 5.88513

StdD. of the values of

Model2 in the column
0.065897 0.594104 0.566765 0.64334

Avg. of the values of

Model3 in the column
2.153914 4.501603 5.30091 6.184561

StdD. of the values of

Model3 in the column
0.2682 0.84729 0.677621 0.373709

Avg. of the values of

Model4 in the column
2.207217 3.175824 3.406762 4.202062

StdD. of the values of
Model4 in the column

0.24825 0.232403 0.691031 0.713674

 170

Table E.30 Average values of cycle times at the beginning of the runs with

high level of the weight of the third objective

Sequence
Average

Values of C

Average

Values of C

Average

Values of C

Average

Values of C

1 50.4 55.64 57.3 66.87

2 50.4 55.6 56.43 57.06

3 50.4 57.2 59.71 67.29

4 50.4 54.78 55.73 55.86

5 50.4 57.49 57.83 59.24

6 50.4 55.23 55.37 57.08

7 50.4 50.88 60.76 76.88

8 50.4 50.78 61.81 64.55

9 50.4 50.79 50.94 72.65

10 50.4 50.89 51.1 51.13

11 50.4 50.65 50.68 64.04

12 50.4 50.88 50.94 51.04

13 50.4 50.65 55.03 56.46

14 50.4 50.68 57 58.04

15 50.4 50.56 50.65 67.35

16 50.4 50.56 50.66 50.67

17 50.4 50.64 50.66 56.23

18 50.4 50.63 50.65 50.68

19 50.4 50.44 54.99 60.9

20 50.4 50.45 55.02 58.58

21 50.4 50.43 50.61 56.71

22 50.4 50.46 50.69 50.86

23 50.4 50.45 50.58 56.01

24 50.4 50.46 50.59 50.75

Avg. of the columns 50.4 51.9675 53.98875 59.03875

StdD. of the columns 1.49E-06 2.431021 3.708968 7.256734
Avg. of the values of

Model1 in the column
50.4 50.64667 50.68667 50.855

StdD. of the values of

Model1 in the column
6.03E-07 0.175917 0.129254 0.192743

Avg. of the values of

Model2 in the column
50.4 52.20833 54.8 56.96667

StdD. of the values of

Model2 in the column
6.03E-07 2.643213 3.696609 1.135811

Avg. of the values of

Model3 in the column
50.4 52.42833 55.01333 60.41667

StdD. of the values of

Model3 in the column
6.03E-07 2.868375 3.838321 3.371579

Avg. of the values of

Model4 in the column
50.4 52.58667 55.455 67.91667

StdD. of the values of

Model4 in the column
6.03E-07 3.01036 4.141433 6.867464

 171

Table E.31 Average values of cycle times at the end of the runs with high level

of the weight of the third objective

Sequence
Average

Values of C

Average

Values of C

Average

Values of C

Average

Values of C

1 48.15 54.01 52.5 55.93

2 48.17 54.78 55.2 54.57

3 47.48 52.27 57.15 58.15

4 48.52 52.97 55.22 54.71

5 47.36 55.8 56.9 54.56

6 48.33 54.52 52.8 55.72

7 47.78 48.74 52.71 56.54

8 48.22 48.42 56.41 55.27

9 48.23 49.67 49.38 55.4

10 47.64 49.4 50.58 50.19

11 49.04 50.21 48.76 48.62

12 47.69 50.21 50.11 50.08

13 48.09 49.41 54.54 54.81

14 48 48.86 53.86 54.39

15 49 50.07 49.46 54.51

16 48.96 50.11 50.42 49.51

17 48.41 50.23 49.45 53.92

18 48.4 50.39 50.39 49.92

19 49.27 48.84 51.08 49.71

20 49.26 48.83 49.68 51.52

21 49.4 49.62 49.74 50.28

22 49.11 49.36 49.42 49.43

23 49.29 49.41 49.42 52.82

24 49.04 49.52 49.77 49.54

Avg. of the columns 48.45167 50.65208 51.87292 52.92083

StdD. of the columns 0.627893 2.158153 2.73561 2.831441
Avg. of the values of

Model1 in the column
48.00167 48.85 49.36833 49.77833

StdD. of the values of

Model1 in the column
0.471314 0.31975 0.324371 0.325786

Avg. of the values of

Model2 in the column
48.1 51.325 53.305 53.84667

StdD. of the values of

Model2 in the column
0.528583 2.406896 3.321968 1.484772

Avg. of the values of

Model3 in the column
48.47667 50.54 51.20333 52.16833

StdD. of the values of

Model3 in the column
0.422974 1.629208 1.624619 2.943069

Avg. of the values of

Model4 in the column
49.22833 51.89333 53.615 55.89

StdD. of the values of

Model4 in the column
0.130754 2.563409 2.544781 1.329857

 172

Table E.32 Average values of the differences between the theoretical

minimum cycle times and the cycle times found with the

algorithm at the end of the runs with high level of the weight of

the third objective

Sequence
Average

Values of DC

Average

Values of DC

Average

Values of DC

Average

Values of DC

1 0.331366 0.649938 0.662577 0.540604

2 0.289216 0.701173 0.524731 0.942395

3 0.244781 0.616728 0.956402 0.844189

4 0.318871 0.617563 0.479698 0.775939

5 0.290031 0.6025 1.040238 0.993787

6 0.316594 0.495804 0.823542 0.937917

7 0.278836 0.551612 0.818006 0.783285

8 0.289219 0.51009 0.745656 1.096404

9 0.289279 0.606401 0.654867 0.744023

10 0.281548 0.609765 0.401136 0.846246

11 0.274067 0.434986 0.78726 0.783518

12 0.273134 0.434566 0.853511 0.897062

13 0.289877 0.501498 0.768212 0.567345

14 0.293742 0.491212 0.613362 0.970809

15 0.379908 0.496172 0.648491 0.650865

16 0.346451 0.486399 0.43927 0.799286

17 0.274317 0.449413 0.797 0.984886

18 0.344067 0.423803 0.727592 0.860114

19 0.368966 0.850056 0.857521 0.874432

20 0.290114 0.77932 0.815421 0.877989

21 0.301676 0.663343 0.856232 0.877535

22 0.277926 0.629517 0.74821 0.83017

23 0.292727 0.747926 0.830198 0.940763

24 0.311803 0.803989 0.735922 0.897374

Avg. of the columns 0.302022 0.589741 0.732711 0.846539

StdD. of the columns 0.032315 0.123151 0.156921 0.130045
Avg. of the values of

Model1 in the column
0.298477 0.613965 0.762341 0.855042

StdD. of the values of

Model1 in the column
0.031197 0.158415 0.089168 0.03844

Avg. of the values of

Model2 in the column
0.281014 0.604424 0.847648 0.914717

StdD. of the values of

Model2 in the column
0.007085 0.090754 0.128236 0.077324

Avg. of the values of

Model3 in the column
0.321394 0.667062 0.786878 0.928012

StdD. of the values of

Model3 in the column
0.041328 0.086295 0.07002 0.108799

Avg. of the values of

Model4 in the column
0.307202 0.473512 0.533975 0.688385

StdD. of the values of
Model4 in the column

0.032327 0.068099 0.127089 0.12188

 173

 174

 175

 176

 177

 178

 179

 180

 181

 182

 183

 184

 185

 186

 187

 188

APPENDIX F

CURRENT AND SUGGESTED ASSIGNMENTS

Table F.1 Current and suggested assignments

Number of Station That

the Task Assigned

(Current)

Number of Station That

the Task Assigned

(Suggested Multi-

Model)

Number of Station That

the Task Assigned

(Suggested Mixed-

Model)

TASK

CODE

M
O

D
E

L
1

M
O

D
E

L
2

M
O

D
E

L
3

M
O

D
E

L
4

M
O

D
E

L
1

M
O

D
E

L
2

M
O

D
E

L
3

M
O

D
E

L
4

M
O

D
E

L
1

M
O

D
E

L
2

M
O

D
E

L
3

M
O

D
E

L
4

1 1 1 1 1 1 1 1 1 1 1 1 1

2 3 3 3 3 12 12 12 12 1 1 1 1

3 2 2 2 2 4 4 4 4 1 1 1 1

4 2 2 2 2 2 2 2 2 1 1 1 1

5 5 5 5 5 1 1 1 4 4 4 4 4

6 3 3 3 3 1 1 1 1 1 1 1 1

7 1 1 1 1 4 4 4 20 2 2 2 2

8 1 1 1 1 11 11 11 20 12 12 12 12

9 5 5 5 5 20 20 20 20 20 20 20 20

10 0 0 0 1 0 0 0 1 0 0 0 2

11 0 0 0 3 0 0 0 2 0 0 0 4

12 11 11 11 11 11 11 11 11 11 11 11 11

13 11 11 11 11 11 11 11 11 11 11 11 11

14 11 11 11 11 11 11 11 11 11 11 11 11

15 11 11 11 11 11 11 11 11 11 11 11 11

16 11 11 11 11 11 11 11 11 11 11 11 11

17 11 11 11 11 11 11 11 11 11 11 11 11

18 11 11 11 11 11 11 11 11 11 11 11 11

19 0 1 1 1 0 1 50 1 0 21 21 21

20 11 11 11 11 11 11 11 11 11 11 11 11

21 12 12 12 12 12 12 12 11 11 11 11 11

22 12 12 12 12 12 12 12 12 12 12 12 12

23 12 12 12 12 12 12 12 12 12 12 12 12

 189

Table F.1 (Continued)

24 0 21 21 21 0 23 23 23 0 11 11 11

25 11 11 11 11 11 11 11 11 12 12 12 12

26 11 11 11 11 11 11 11 11 12 12 12 12

27 3 3 3 3 4 4 4 4 1 1 1 1

28 5 5 5 5 4 4 4 12 2 2 2 2

29 5 5 5 5 12 12 12 12 18 18 18 18

30 3 3 3 4 4 4 4 4 5 5 5 5

31 5 5 5 5 4 4 4 4 5 5 5 5

32 5 5 5 5 4 4 4 4 5 5 5 5

33 1 1 0 0 4 4 0 0 2 2 0 0

34 3 3 0 0 4 4 0 0 2 2 0 0

35 2 2 2 2 2 2 2 2 5 5 5 5

36 2 2 2 2 1 1 1 1 2 2 2 2

37 2 2 2 2 2 2 2 2 2 2 2 2

38 2 2 2 2 4 4 4 4 4 4 4 4

39 0 0 3 4 0 0 4 4 0 0 5 5

40 0 0 3 4 0 0 1 4 0 0 4 4

41 5 5 0 0 4 4 0 0 5 5 0 0

42 12 12 0 0 4 4 0 0 5 5 0 0

43 12 12 0 0 12 12 0 0 11 11 0 0

44 0 0 12 12 0 0 4 12 0 0 12 12

45 12 12 12 12 12 12 12 12 12 12 12 12

46 0 3 3 4 0 12 12 12 0 12 12 12

47 0 3 3 4 0 11 11 11 0 5 5 5

48 5 5 5 5 12 12 12 12 12 12 12 12

49 2 2 2 2 2 2 2 2 2 2 2 2

50 0 0 0 18 0 0 0 28 0 0 0 21

51 0 0 0 18 0 0 0 28 0 0 0 24

52 0 0 0 20 0 0 0 30 0 0 0 25

53 0 0 0 24 0 0 0 33 0 0 0 32

54 0 0 0 34 0 0 0 33 0 0 0 44

55 0 0 0 20 0 0 0 44 0 0 0 34

56 0 0 0 38 0 0 0 44 0 0 0 38

57 18 18 18 18 1 1 1 1 18 18 18 18

58 3 3 3 4 1 1 1 1 5 5 5 5

59 18 18 18 18 20 20 20 20 18 18 18 18

60 18 18 18 18 19 19 19 19 20 20 20 20

61 19 19 19 19 2 2 2 23 2 2 2 2

62 18 18 18 18 20 20 20 20 20 20 20 20

63 20 20 20 20 25 25 25 25 20 20 20 20

64 20 0 0 0 20 0 0 0 23 0 0 0

65 0 21 21 21 0 23 23 23 0 18 18 18

66 21 21 21 21 20 20 20 20 20 20 20 20

 190

Table F.1 (Continued)

67 18 18 18 18 23 23 23 23 20 20 20 20

68 19 19 19 19 23 23 23 23 21 21 21 21

69 23 23 23 23 20 20 20 20 21 21 21 21

70 20 20 20 20 20 20 20 20 20 20 20 20

71 18 18 18 18 23 23 23 23 21 21 21 21

72 17 17 17 17 17 17 17 17 17 17 17 17

73 0 0 0 3 0 0 0 1 0 0 0 4

74 0 0 0 3 0 0 0 2 0 0 0 4

75 11 11 11 0 11 11 11 0 12 12 12 0

76 18 18 18 18 19 19 19 19 20 20 20 20

77 19 19 19 19 19 19 19 19 18 18 18 18

78 19 19 19 19 19 19 19 19 18 18 18 18

79 20 20 20 20 19 19 19 19 18 18 18 18

80 20 20 20 20 19 19 19 19 20 20 20 20

81 18 18 18 18 19 19 19 19 18 18 18 18

82 20 20 20 20 26 19 19 19 24 24 24 24

83 21 21 21 21 20 20 20 20 20 20 20 20

84 21 21 21 21 20 20 20 20 21 21 21 21

85 21 21 21 21 20 20 20 20 21 21 21 21

86 23 23 23 23 23 23 23 23 23 23 23 23

87 23 23 23 23 26 24 24 24 24 24 24 24

88 24 24 24 24 25 25 25 25 23 23 23 23

89 19 19 19 19 19 19 19 19 20 20 20 20

90 20 20 20 20 23 23 23 23 20 20 20 20

91 23 23 23 23 23 23 23 23 23 23 23 23

92 24 24 24 24 24 24 24 24 23 23 23 23

93 23 23 23 23 25 25 25 25 27 27 27 27

94 24 24 24 24 24 24 24 24 25 25 25 25

95 24 24 24 24 25 25 25 25 27 27 27 27

96 23 23 23 23 23 23 23 23 23 23 23 23

97 24 24 24 24 24 24 24 24 23 23 23 23

98 24 24 24 24 24 24 24 24 24 24 24 24

99 26 26 26 26 24 24 24 24 25 25 25 25

100 23 23 0 0 23 23 0 0 27 27 0 0

101 23 23 0 0 23 23 0 0 26 26 0 0

102 23 23 23 0 26 26 26 0 26 26 26 0

103 26 26 26 26 26 26 26 26 27 27 27 27

104 26 26 26 26 26 26 26 26 27 27 27 27

105 23 0 23 0 23 0 23 0 23 0 23 0

106 28 28 28 28 27 33 27 33 34 34 34 34

107 55 55 55 55 55 55 55 55 55 55 55 55

108 23 23 23 23 23 23 23 23 23 23 23 23

109 24 24 24 24 26 25 25 25 24 24 24 24

 191

Table F.1 (Continued)

110 27 27 27 27 28 25 25 25 24 24 24 24

111 25 25 25 25 28 30 30 30 27 27 27 27

112 26 26 26 26 30 30 30 30 25 25 25 25

113 27 27 27 27 26 26 26 26 24 24 24 24

114 27 27 0 0 26 27 0 0 27 27 0 0

115 19 19 19 19 23 23 23 23 25 25 25 25

116 30 30 30 30 28 25 25 25 27 27 27 27

117 0 27 0 27 0 25 0 25 0 28 0 28

118 24 24 24 24 26 26 26 26 26 26 26 26

119 26 26 26 26 27 26 26 26 27 27 27 27

120 0 0 0 25 0 0 0 26 0 0 0 24

121 21 21 21 21 28 20 20 20 20 20 20 20

122 2 2 2 2 12 12 12 12 25 25 25 25

123 0 24 0 24 0 26 0 26 0 26 0 26

124 0 25 0 25 0 27 0 27 0 28 0 28

125 25 25 25 25 27 27 27 27 26 26 26 26

126 25 25 25 25 28 27 27 27 24 24 24 24

127 25 25 25 25 28 27 27 27 26 26 26 26

128 25 25 25 25 27 27 27 27 30 30 30 30

129 30 0 30 0 28 0 25 0 25 0 25 0

130 0 0 0 25 0 0 0 27 0 0 0 25

131 30 30 30 30 30 30 30 30 30 30 30 30

132 32 32 32 32 32 32 32 32 33 33 33 33

133 30 30 30 30 30 30 30 30 30 30 30 30

134 31 31 31 31 30 30 30 30 30 30 30 30

135 30 30 30 30 30 30 30 30 31 31 31 31

136 31 31 31 31 30 30 30 30 30 30 30 30

137 31 31 31 31 30 30 30 30 31 31 31 31

138 30 30 30 30 30 30 30 30 30 30 30 30

139 30 30 30 30 30 30 30 30 30 30 30 30

140 31 31 31 31 30 30 30 30 30 30 30 30

141 31 31 31 31 30 30 30 30 31 31 31 31

142 27 27 27 0 30 30 30 0 30 30 30 0

143 33 33 33 33 38 38 38 38 32 32 32 32

144 19 19 19 19 24 24 24 24 20 20 20 20

145 21 21 21 21 27 31 31 31 27 27 27 27

146 30 30 30 30 30 30 30 30 31 31 31 31

147 31 31 31 31 31 31 31 31 31 31 31 31

148 31 31 31 31 31 31 31 31 31 31 31 31

149 31 31 31 31 31 31 31 31 31 31 31 31

150 31 31 31 31 31 31 31 31 31 31 31 31

151 38 38 38 38 50 33 44 33 38 38 38 38

152 38 38 38 38 38 38 38 38 38 38 38 38

 192

Table F.1 (Continued)

153 32 32 32 32 31 31 31 31 32 32 32 32

154 33 33 33 33 31 32 31 32 33 33 33 33

155 33 33 33 33 32 32 32 32 33 33 33 33

156 0 32 0 32 0 31 0 31 0 32 0 32

157 0 33 0 33 0 33 0 33 0 33 0 33

158 0 33 0 33 0 33 0 33 0 34 0 34

159 0 34 0 34 0 33 0 33 0 34 0 34

160 55 55 55 55 55 55 55 55 55 55 55 55

161 55 55 55 55 55 55 55 55 55 55 55 55

162 34 34 34 0 32 33 32 0 34 34 34 0

163 34 34 34 0 32 33 32 0 34 34 34 0

164 31 31 31 31 31 31 31 31 31 31 31 31

165 32 32 32 32 31 31 31 31 31 31 31 31

166 32 32 32 32 32 32 32 32 32 32 32 32

167 32 32 32 32 32 32 32 32 32 32 32 32

168 0 32 0 32 0 31 0 31 0 32 0 32

169 0 32 0 32 0 32 0 32 0 32 0 32

170 33 33 33 33 32 32 32 32 32 32 32 32

171 33 33 33 33 32 32 32 32 33 33 33 33

172 34 34 34 34 32 32 32 32 33 33 33 33

173 34 34 34 34 32 33 32 33 38 38 38 38

174 34 34 34 34 32 38 32 38 38 38 38 38

175 34 34 34 34 38 38 38 38 38 38 38 38

176 34 34 34 34 38 38 38 38 38 38 38 38

177 38 38 38 38 38 38 38 38 38 38 38 38

178 34 34 34 34 32 33 32 33 38 38 38 38

179 38 38 38 38 38 38 38 38 38 38 38 38

180 38 38 38 38 38 38 38 38 38 38 38 38

181 44 44 44 44 44 38 44 38 38 38 38 38

182 23 23 23 23 24 24 24 24 23 23 23 23

183 25 25 25 25 24 24 24 24 25 25 25 25

184 26 26 26 26 24 24 24 24 23 23 23 23

185 26 26 26 26 24 24 24 24 25 25 25 25

186 27 27 27 27 25 25 25 25 26 26 26 26

187 27 27 27 27 24 24 24 24 25 25 25 25

188 27 27 27 27 25 26 26 26 28 28 28 28

189 28 28 28 28 27 33 27 33 34 34 34 34

190 50 50 50 50 51 50 51 50 51 51 51 51

191 38 38 38 38 51 52 51 52 44 44 44 44

192 53 53 53 53 53 52 53 52 53 53 53 53

193 53 53 53 53 53 52 53 52 53 53 53 53

194 50 50 50 50 51 50 51 50 51 51 51 51

195 43 43 43 43 43 43 43 43 43 43 43 43

 193

Table F.1 (Continued)

196 38 38 38 38 25 25 25 25 32 32 32 32

197 28 28 28 28 25 25 25 25 26 26 26 26

198 28 28 28 28 26 26 26 26 28 28 28 28

199 28 28 28 28 27 33 27 33 34 34 34 34

200 28 28 28 28 27 33 27 33 34 34 34 34

201 28 28 28 28 27 33 27 33 34 34 34 34

202 28 28 28 28 27 33 27 33 34 34 34 34

203 0 28 0 28 0 33 0 33 0 34 0 34

204 0 0 0 26 0 0 0 28 0 0 0 26

205 0 0 0 24 0 0 0 28 0 0 0 24

206 0 0 0 26 0 0 0 28 0 0 0 26

207 44 44 44 44 44 44 44 44 44 44 44 44

208 44 44 44 44 44 44 44 44 44 44 44 44

209 44 44 44 44 44 44 44 44 44 44 44 44

210 44 44 44 44 44 44 44 44 44 44 44 44

211 44 44 44 44 44 44 44 44 44 44 44 44

212 44 44 44 44 44 44 44 44 44 44 44 44

213 38 38 38 38 38 38 38 38 38 38 38 38

214 44 44 44 44 44 44 44 44 44 44 44 44

215 0 0 0 27 0 0 0 28 0 0 0 28

216 44 44 44 44 44 44 44 44 44 44 44 44

217 49 49 49 49 49 49 49 49 50 50 50 50

218 49 49 49 49 49 49 49 49 50 50 50 50

219 49 49 49 49 49 49 49 49 50 50 50 50

220 49 49 49 49 49 49 49 49 50 50 50 50

221 0 0 0 26 0 0 0 28 0 0 0 24

222 49 49 49 49 49 49 49 49 50 50 50 50

223 49 49 49 49 49 49 49 49 50 50 50 50

224 49 49 49 49 49 49 49 49 50 50 50 50

225 49 49 49 49 49 49 49 49 50 50 50 50

226 49 49 49 49 49 49 49 49 50 50 50 50

227 49 49 49 49 49 49 49 49 50 50 50 50

228 49 49 49 49 49 49 49 49 50 50 50 50

229 49 49 49 49 49 49 49 49 50 50 50 50

230 49 49 49 49 50 50 50 50 51 51 51 51

231 49 49 49 49 52 49 52 49 52 52 52 52

232 50 50 50 50 52 50 52 50 52 52 52 52

233 50 50 50 50 52 51 52 51 52 52 52 52

234 0 0 0 44 0 0 0 44 0 0 0 44

235 38 38 38 38 52 19 52 19 51 51 51 51

236 1 1 1 1 2 2 2 2 21 21 21 21

237 19 19 19 19 2 2 2 51 5 5 5 5

238 0 0 50 50 0 0 56 51 0 0 49 49

 194

Table F.1 (Continued)

239 44 44 44 44 49 44 44 44 49 49 49 49

240 51 51 51 51 50 49 49 51 49 49 49 49

241 51 51 51 51 50 50 50 51 50 50 50 50

242 52 52 52 52 51 51 51 51 50 50 50 50

243 0 0 44 44 0 0 44 44 0 0 44 44

244 44 44 44 44 44 44 44 44 49 49 49 49

245 51 51 51 51 44 44 50 49 49 49 49 49

246 51 51 51 51 49 44 50 50 49 49 49 49

247 49 49 49 49 49 44 49 44 49 49 49 49

248 53 53 53 53 53 52 53 52 53 53 53 53

249 0 0 0 4 0 0 0 19 0 0 0 21

250 52 52 52 52 50 50 50 50 51 51 51 51

251 51 51 51 51 50 51 50 51 52 52 52 52

252 50 50 50 50 51 50 51 50 51 51 51 51

253 50 50 50 50 51 50 51 50 51 51 51 51

254 50 50 50 50 51 50 51 50 51 51 51 51

255 50 50 50 50 51 50 51 50 51 51 51 51

256 50 50 50 50 51 50 51 50 51 51 51 51

257 50 50 50 50 51 50 51 50 51 51 51 51

258 50 50 50 50 51 50 51 50 51 51 51 51

259 54 54 54 54 54 54 54 54 54 54 54 54

260 0 0 0 4 0 0 0 28 0 0 0 34

261 50 50 50 50 51 50 51 50 51 51 51 51

262 50 50 50 50 51 50 51 50 51 51 51 51

263 50 50 50 50 51 50 51 50 51 51 51 51

264 50 50 50 50 51 50 51 50 51 51 51 51

265 50 50 50 50 51 50 51 50 51 51 51 51

266 28 28 28 28 26 26 26 26 28 28 28 28

267 28 28 28 28 27 27 27 27 28 28 28 28

268 28 28 28 28 27 27 27 27 28 28 28 28

269 30 30 30 30 28 27 27 27 30 30 30 30

270 30 30 30 30 27 27 27 27 30 30 30 30

271 32 32 32 32 38 38 38 38 33 33 33 33

272 52 52 52 52 52 51 52 52 52 52 52 52

273 52 52 52 52 52 51 52 52 52 52 52 52

274 52 52 52 52 52 51 52 52 52 52 52 52

275 52 52 52 52 52 51 52 52 52 52 52 52

276 31 31 31 31 38 38 38 38 31 31 31 31

277 38 38 38 38 53 52 53 52 53 53 53 53

278 38 38 38 38 52 52 52 52 53 53 53 53

279 52 52 52 52 52 51 52 52 52 52 52 52

280 52 52 52 52 52 51 52 52 52 52 52 52

281 53 53 53 53 53 52 53 56 53 53 53 53

 195

Table F.1 (Continued)

282 53 53 53 53 53 52 53 56 53 53 53 53

283 53 53 53 53 53 52 53 56 53 53 53 53

284 55 55 55 55 55 55 55 55 55 55 55 55

285 55 55 55 55 55 55 55 55 55 55 55 55

286 55 55 55 55 55 55 55 55 55 55 55 55

287 55 55 55 55 55 55 55 55 55 55 55 55

288 55 55 55 55 55 55 55 55 55 55 55 55

289 45 45 45 45 45 45 45 45 45 45 45 45

290 55 55 55 55 55 55 55 55 55 55 55 55

291 55 55 55 55 55 55 55 55 55 55 55 55

292 55 55 55 55 55 55 55 55 55 55 55 55

293 56 56 56 56 56 56 56 56 56 56 56 56

294 56 56 56 56 56 56 56 55 56 56 56 56

295 56 56 56 56 56 56 56 55 56 56 56 56

296 55 55 55 55 55 55 55 55 55 55 55 55

297 56 56 56 56 56 56 56 55 56 56 56 56

298 29 29 29 29 29 29 29 29 29 29 29 29

299 29 29 29 29 29 29 29 29 29 29 29 29

300 29 29 29 29 29 29 29 29 29 29 29 29

301 29 29 29 29 29 29 29 29 29 29 29 29

302 0 0 0 29 0 0 0 29 0 0 0 29

303 29 29 29 29 29 29 29 29 29 29 29 29

304 29 29 29 29 29 29 29 29 29 29 29 29

305 29 29 29 29 29 29 29 29 29 29 29 29

306 29 29 29 29 29 29 29 29 29 29 29 29

307 29 29 29 29 29 29 29 29 29 29 29 29

308 29 29 29 29 29 29 29 29 29 29 29 29

309 29 29 29 29 29 29 29 29 29 29 29 29

310 22 22 22 22 22 22 22 22 22 22 22 22

311 0 0 0 29 0 0 0 29 0 0 0 29

312 53 53 53 53 53 52 53 56 53 53 53 53

313 53 53 53 53 53 52 53 56 53 53 53 53

