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ABSTRACT 

OPTIMIZATION OF NON-UNIFORM PLANAR ARRAY 

GEOMETRY FOR DIRECTION OF ARRIVAL 

ESTIMATION 

 

Birinci, Toygar 

 

Ph. D., Department of Electrical and Electronics Engineering  

Supervisor : Prof. Dr. Yalçın Tanık 

 

July 2006, 117 pages 

 

In this work, a novel method is proposed to optimize the array geometry for DOA 

estimation. The method is based on minimization of fine error variances with the 

constraint that the gross error probability is below a certain threshold. For this 

purpose, a metric function that reflects the gross and fine error characteristics of the 

array is offered. Theoretical analyses show that the minimization of this metric 

function leads to small DOA estimation error variance and small gross error 

probability. Analyses have been carried out under the assumptions of planar array 

geometry, isotropic array elements and AWGN. Genetic algorithm is used as an 

optimization tool and performance simulation is performed by comparing the DOA 

estimation errors of optimized array to a uniform circular array (UCA). Computer 

simulations support the theoretical analyses and show that the method proposed 

leads to significant improvement in array geometry in terms of DOA estimation 

performance. 
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ÖZ 

GEL�� YÖNÜ KEST�R�M� �Ç�N DÜZENL� OLMAYAN 

DÜZLEMSEL D�Z� GEOMETR�S� EN�Y�LE�T�RMES� 

 

Birinci, Toygar 

 

Doktora, Elektrik Elektronik Mühendisli�i Bölümü 

Tez Yöneticisi : Prof. Dr. Yalçın Tanık 

 

Temmuz 2006, 117 sayfa 

 

Bu çalı�mada, geli� yönü kestirimi için, dizi geometrisi eniyle�tirilmesi için yeni bir 

yöntem önerilmi�tir. Yöntem, hassas hataların sapmasının, kaba hata ihtimalinin 

belirli bir e�i�in altında olmasına ba�lı olarak azaltılmasını temel almaktadır. Bu 

amaçla, hem kaba hem de hassas hataların karakteristiklerini yansıtan bir ba�arım 

fonksiyonu önerilmi�tir. Teorik analizler göstermi�tir ki, bu ba�arım fonksiyonun 

de�erinin azaltılması daha dü�ük geli� yönü kestirimi hata sapmasına ve daha dü�ük 

kaba hata ihtimaline yol açmaktadır. Analizler, düzlemsel dizi geometrisi, e�yönlü 

dizi elemanları, belirli gelen i�aret ve toplanan beyaz Gauss gürültüsü varsayılarak 

yapılmı�tır. Eniyile�tirme yöntemi olarak genetik algoritma kullanılmı�tır ve 

düzgün dairesel dizinin geli� açısı kestirim hataları kar�ıla�tırılarak ba�arım analizi 

yapılmı�tır. Bilgisayar benze�imleri, kuramsal analizleri desteklemi� ve önerilen 

yöntemin geli� açısı kestirimi ba�arımında önemli iyile�meler sa�ladı�ını 

göstermi�tir. 
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CHAPTER 1  

 

INTRODUCTION 

This thesis is focused on the optimization of the sensor array geometry for direction 

of arrival estimation. The area of sensor array processing has received considerable 

amount of interest in the literature during the last few decades. The aim of the 

sensor array processing is the estimation of the parameters by using the collected 

data with a set of properly placed sensor elements. In array signal processing 

literature, main effort has been spent on parameter estimation methods and a good 

survey on this particular subject can be found in [1] and [2]. However, the 

performances of the suggested parameter estimation methods are heavily dependent 

on the geometry of the array elements. Array aperture size, number of array 

elements and the placement of the sensors play a crucial role on the overall 

performance of the application, yet there is only a very limited number of papers 

present on those subjects. 

Extending the array aperture (spatial distribution) is the only option if a higher 

resolution and a better accuracy are needed for an array signal processing estimation 

application. For most of the applications, uniform arrays are the first choice for their 

isotropic estimation performance. On the other hand, if the number of array 

elements is restricted, large uniform arrays are usually avoided for their 

vulnerability to frequent gross errors. In that case, it is more proper to use non-

uniform arrays in order to reduce the rate of gross errors while keeping the spatial 

extent of the array elements. Hence, the main motivation of this work is to optimize 
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the localization of array elements in an arbitrarily bounded region to attain a better 

estimation performance. 

1.1 Background 

The idea of using non-uniform arrays has been introduced more than four decades 

ago. One of the earliest works on non-uniform arrays is based on redundancy 

concepts [3]. Redundancy in array design is provided in order to maximize the 

resolution of an array for a given number of sensors. Sensor elements are arranged 

in a fashion that the pairwise differences of the array element integer locations di, 

i=1,2,…,M, exhaust the set {0, 1, 2,…,N ≤ M(M-1)/2} where N represents the array 

length. The structure of differences is first introduced in [4] which treats the 

problem in an abstract mathematical manner and then adapted to array geometry 

problem. However, finding the exact solution for large number of array elements 

requires intensive computations. Some methods that require less computational load 

have been offered for suboptimal placement of elements [5], [6]. In [7], different 

non-uniform linear array structures were compared by considering the probability of 

outliers and it was shown that using minimum redundant arrays is not the optimal 

way of direction of arrival estimation. 

Some statistical approaches have been used for the array geometry design problem. 

In [8], the authors presented a D-optimality based design criterion, which is related 

to the minimization of the covariance matrix of the direction of arrival estimates. 

Simulations showed that arrays that were formed by using D-optimality criterion 

had better performances than the uniform arrays and the minimum redundant arrays. 

Although the method is not directly associated with any specific direction of arrival 

algorithm, it requires certain reference information about direction of arrivals and 

the environment. 

Estimation accuracy is one of the most critical issues for a good array design and a 

good estimate on its limit is the Cramer-Rao Bound (CRB). CRB on estimation 
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accuracy has been widely analyzed and there are many good works available in the 

literature [9]-[16]. Optimization of the array geometry with the constraint of CRB is 

one of the options to design an array. In [17], expressions for stochastic CRB and 

asymptotic root mean square error of MUSIC were used as objective functions and 

a genetic algorithm was utilized to optimize the array geometry. In [18], average 

CRB over the possible DOA values was chosen as a performance criterion. 

However, these measures are not sufficient to optimize a large array since gross 

errors are not taken into account. 

Maintaining accuracy together with an attempt to keep the probability of gross 

errors small is limited in the literature. In [19], again the CRB was chosen as the 

criterion and MUSIC simulations of each candidate were performed as an empirical 

approach for ambiguity measure. Also, some other bounds on DOA estimation have 

been used in array geometry optimization such as Weiss-Weinstein lower bound 

(WWLB) which takes gross errors into account and gives more realistic bounds for 

low SNR regions [20]. The method was applied to linear arrays and the 

optimization results showed that the performance is not satisfactory and about the 

same as minimum redundancy arrays. Besides, the use of WWLB brings 

considerable computational burden. In [21], an intuitive similarity measure is 

defined between the array steering vectors and the authors relate this measure to the 

ambiguity probability in a practical, yet incomplete way, by using a binary 

hypothesis testing procedure which can not be fully adequate to make such an 

analysis. The resulting procedure is considerably complicated for two dimensional 

arrays and the authors state that an alternative efficient way of performing the task 

is still under study. [22] is another work that uses a similar function to measure the 

similarity between the array steering vectors and simplifies the procedure to some 

extent and provides some examples by using the linear arrays. 

Among all the cited papers, only a few of them; [18], [21] and [22] are stated to be 

applied to two dimensional arrays. Hence, the optimization of two dimensional 
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array geometries which is the problem we will attempt to solve, is a subject that has 

received less attention than it deserves. 

In this work, we propose a method to optimize the array geometry by taking both 

gross errors and fine errors into account in an efficient way. For this purpose, a 

metric function is proposed to reflect the gross and fine error characteristics of the 

array that can be used as an optimization constraint. The proposed optimization 

method has been applied to a circularly bounded planar region with 8 isotropic 

sensors, and the performance of the optimized array was compared with the UCA 

by using the MUSIC algorithm [23] as the direction finding method. It should be 

emphasized that the estimation method and the dimensionality of the array do not 

pose any restrictions to the proposed method: The method can be used for any 

number of sensors, and it can be extended to three dimensional arrays, in a trivial 

fashion. 

1.2 Outline 

The thesis is organized as follows: In Chapter 2, array manifold representation of 

two dimensional arrays based on [24] is given and the mathematical models used in 

this work are presented. In Chapter 3, the probability of gross errors is derived and a 

concise review of previous results on CRB is presented. In Chapter 4, a metric is 

proposed for optimization which simultaneously works on CRB for fine errors and 

probability of gross errors and the optimization procedure is summarized and in 

Chapter 5 the estimation performance of the optimized array is compared with the 

UCA and as an example to a real life problem, optimized sensor placement is 

presented on an aircraft1. 

                                                

 
1 This work has been presented in part in European Signal Processing Conference [25] 2005 in 
Antalya, Turkey. 



5 

 

CHAPTER 2  

 

ARRAY MANIFOLD REPRESENTATION AND THE 

SIGNAL MODEL 

Antenna arrays are the collection of sensors to observe the spatial and temporal 

characteristics of the impinging wavefield on the sensors. Field which is observed 

by the antenna array consists of any combination of a single or multiple signals, 

noise and interference depending on the application of interest. Since the objective 

of using an antenna array is to take the sample of the field in a certain space-time 

domain, the spatial configuration of the sensors is important as well as the spatial 

and temporal characteristics of the signal received by the array. General array and 

signal configuration is given in Figure 2-1. 

The first issue is the array configuration. The array configuration consists of two 

parts. The first part is the antenna array pattern of the individual elements. It is 

usually a function of the specific sensor configuration and the distribution of the 

other elements. In many cases, for simplicity, it is assumed that the elements have 

an isotropic pattern, which is uniform in all directions. The antenna patterns are 

included in the analysis afterwards for application specific purposes. The second 

part of the array configuration is the array geometry. Array geometry defines the 

physical locations of the sensors: It can be linear, planar or volumetric. Within each 

geometry, sensors can be distributed uniformly or non-uniformly.  
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Figure 2-1 General array characteristics 

The second issue is the structure of the signal. Signal of interest falls in one of the 

three categories. First one is the known signals. Second one is the random signals 

which are the signals whose statistics are known. Third one is the non-random 

signals which have unknown statistics. 

The third issue is the structure of the noise. A noise component is always included 

that is essentially a white Gaussian noise process, statistically independent from 

sensor to sensor. 

For this particular work, we assumed planar array geometry, known signal and 

independent additive white Gaussian noise for the analyses. The estimation of the 

DOA is carried out in the azimuth direction only. Further assumptions are stated in 

the discussions wherever are necessary. 
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In this chapter, we focus on the array configuration and give analysis on the array 

manifold representation and our signal model that is used in further analyses 

throughout the text. 

2.1 Array Manifold Representation of Two Dimensional Arrays 

Geometry of a generic two dimensional array is given in Figure 2-2. 
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Figure 2-2 Planar array geometry 

Locations of the sensors are represented by the position vector p in the figure. The 

sensors are assumed to be isotropic. The azimuth angle of the incoming signal is θ. 

Array sensors at locations [ ]T
nnn yxp =  receive the incoming signals. Received 
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signal at each sensor can be expressed as a delayed version of the incoming signal 

g(t). 
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where the delays are functions of the array sensor locations and the incidence angle 
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θθτ sincos −−
= . (2-2) 

If g(t) is assumed to be a narrowband bandpass signal, it can be represented as, 

 ( ) ( ){ }tjetgtg ω~Re= , (2-3) 

and the signal at the nth sensor is, 

 
( ) ( )

( ) ( ){ }ntj
n

nn

etg

tgtg
τωτ

τ
−−=

−=
~Re

. (2-4) 

The narrowband assumption implies that the delay between the maximum 

propagation time across the sensors can be approximated by a phase shift; 

 ( ) ( )tgtg n
~~ ≅−τ . (2-5) 

Using (2-5) in (2-4); 

 ( ) ( ){ }tjj
n eetgtg n ωωτ−= ~Re . (2-6) 

Prior to time domain processing, a quadrature demodulation of the sensor outputs is 

performed. The quadrature demodulation process is shown in Figure 2-3. The 

lowpass filter in the figure has a bandwidth of B. 
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Figure 2-3 Quadrature demodulation 

Therefore, the complex envelope of gn(t) will be 

 ( ) ( ) nj
n etgtg ωτ−= ~~  (2-7) 
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As a result, for any arbitrary N-element planar array, the array steering vector is 

given by 
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The N dimensional vector A(θ) is usually referred to as the steering vector and it 

represents the array response to an incident wave from direction of arrival θ.  

2.2 Signal Model 

The received signal vector of the array is 
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After bandpass filtering, coherent demodulation and Nyquist rate sampling, the 

model can be reduced to the following and is usually referred to as the narrowband 

time domain snapshot model: 

 ( ) ( ) ( ) ( ) Kkkkgk ,,2,1 �=+= nAx θ . (2-11) 

The above model for a single signal can be extended to the case of M signals using 

superposition: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )kkkkgk
M

m
mm ng�AnAx +=+=�

=1

θ , (2-12) 

where 
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There are two commonly used temporal models for g(t) available in the literature. 

First one is the stochastic model or usually referred to as unconditional model. For 

this case g(t) is modeled as the realization of a stationary, zero mean Gaussian 

stochastic process that the parameters such as covariance matrix is to be 

determined. The second one is the deterministic model that each sample of g(t) is 

regarded as a nonrandom parameter to be estimated. These assumptions do not 

exclude the possibility that the samples of g(t) are the samples from a random 

process since the distributional results are conditioned on the samples of g(t). Thus, 

the model is referred to as the conditional model in most of the cases. Throughout 

the text the conditional model will be used. 

The noise is assumed to be a zero mean, complex, Gaussian random process that is 

both spatially and temporally uncorrelated and circularly symmetric: 
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Note that σ2 is the noise sample power in the receivers of bandwidth B and equals 

2N0B. 
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CHAPTER 3  

 

PROBABILITY OF GROSS ERRORS AND THE 

CRAMER RAO BOUND 

In the first part of this chapter, we are going to derive the probability of gross errors 

in direction of arrival estimation for an array of sensors. Array geometry 

optimization process aims to minimize the probability of gross errors. For this 

purpose, we have attempted to find the probability of gross error and commented on 

the behavior of the function. 

It will be helpful to state the terminology we will be using throughout this chapter, 

in order to increase the readability of the text. We will be talking about two kinds of 

probabilities when we deal with the subject. The first one is the individual pairwise 

gross error probability. This stands for deciding a specific wrong incidence angle 

instead of the correct one. This wrongly estimated angle should not reside in the 

same lobe with the correct incidence angle by definition. Otherwise the erroneous 

estimate is interpreted to be a fine error. Since there may be infinitely many 

candidates of these wrong estimates, the total probability of gross errors for a given 

incidence angle is not the same as these individual pairwise gross error 

probabilities. Hence the second probability that we will be talking about is the total 

probability of gross errors. 

Seeking the probability of gross errors has received limited attention in the 

literature. In [21] gross error probability is derived by using the simple binary 
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hypothesis testing. Probability of gross error was calculated as the probability of 

deciding a wrong DOA instead of the correct one. This approach may be practical 

to find a close form expression for the probability but will be incomplete since there 

will be definitely more than one (infinitely many) candidates of wrong decisions. 

Hence, the analysis in [21] may be used as the intuitive and practical approach to 

the probability of gross errors which may give satisfactory results to some extent 

but obtaining the exact probability of gross error requires a more substantial effort. 

In [26], an upper bound was proposed as the measure of the probability of gross 

errors. This upper bound was obtained by using a union bound on the individual 

pairwise error probabilities and how the individual pairwise error probabilities were 

found will be explained in this chapter. In order to find the probability of gross 

errors, some ideas are borrowed from the cited paper however the suggested method 

presented in this thesis makes it possible to have a close approximation rather than 

an upper bound in expense of some computational power. In that sense, derivation 

of probability of gross errors presented in this thesis can be considered as original. 

Nevertheless, individual pairwise error probabilities provide the sufficient 

information for us to validate our metric function which will be proposed later in 

this thesis. 

In the second part, we have derived the CRB on the estimation of direction of 

incidence. For a better array performance, the next step is to minimize the fine 

errors. This can be achieved by minimizing the estimation error variance, hence 

minimizing the CRB. Since our original problem is to correctly place the sensor 

array elements; in the next chapter we will state the link between the array element 

locations and the CRB by using the results of this derivation. 

Second part has been widely analyzed in the literature and many different kinds of 

derivations can be found, all lead to the same result. Derivation outlined in this 

thesis uses the analyses for the general case given in [24] and the derivation in [16] 

partially. 
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3.1 Conditional Maximum Likelihood Estimators 

For the signal model stated in Section 2.2 and assuming the conditional model for 

which the source signals are unknown nonrandom signals whose elements are 

unknown complex baseband samples, g(k) given as 

 ( )
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Assuming that the noise sample power σ2 is known and there is only one impinging 

source waveform, the joint probability density of received signal is 

 ( ) ( ) ( ) ( ) ��

�
��

� −−= ∏
=

2

2
1

2

1
exp

1
kgkxp

K

k

θ
σπσ

Ax
I

. (3-2) 

The log likelihood function is 
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Maximization of (3-3) is equivalent to minimization of  
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If θ is fixed and minimized over g(k), an estimate of g(k) is found as  
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Using (3-5) in (3-4), 
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Minimizing (3-6) is equivalent to maximizing the following: 
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which simplifies to 
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3.2 Probability of Gross Errors for Single Snapshot 

For any θm different from the correct incident angle θc, gross error occurs only when 

 ( ) ( )cm LL θθ 33 > , (3-9) 

provided that θm is in a sidelobe different from the main lobe that θc resides. 

Assuming a single snapshot, that is K=1, individual pairwise probability of gross 

errors can be calculated for a given θm by following the analysis described below. 
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where  
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and rm and rc are given as, 
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rc and rm are gaussian random variables with the following properties: 
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A(θc) and A(θm) are simplified as Ac and Am in (3-13) and from this point on, for 

simplicity: 
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The joint probability density in (3-10) can be found by defining, 

 [ ]mImRcIcR rrrrr ,,,= , (3-15) 

where rcR and rmR are the real parts, rcI, rmI are the imaginary parts of rc and rm, 

respectively. The signal g is a complex baseband signal given as 

 βα jeg = . (3-16) 

Mean vector of r will be 

 [ ]βαβαβαβα sin,cos,sin,cos c
H
mc

H
mNNm AAAA= . (3-17) 
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The covariance matrix of r will be 
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where 
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rcR , rmR ,rcI, rmI are jointly Gaussian random variables and their joint probability 

density function is given by 
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By defining  
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By integrating and noting that 
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mmcc γψγψ == , (3-24) 

and changing variables; 
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where I0 is the modified Bessel function of the first kind. Here, a convenient 

definition of SNR will be the signal energy over noise spectral density: 
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By using the joint density function in (3-25), probability of error for a given angle 

that is the individual pairwise error probability can be calculated by (3-10). 

Although there is no analytical solution for (3-10), solving it numerically is 

possible. The results are given in Figure 3-1 for a UCA with an aperture of 2λ and 

SNR of 0 dB and the incidence angle θ=0. 

The individual pairwise probability of gross error around θ=0 is meaningless since 

they are not considered as gross errors. At θ=0 the integral given in (3-10) is 

indefinite. 

If Figure 3-1 is compared to the MUSIC spectrum of the same array as given in 

Figure 3-2, it is clearly seen that when the peaks of gross error probability get 

higher, the MUSIC spectrum of those angles get closer to the value of the correct 

angle. For -10 dB SNR, the graphs are shown in Figure 3-3 and Figure 3-4. Similar 

observations can be made by using these two graphs, besides if we compare Figure 

3-3 and Figure 3-1, the angles of the peaks do not change, only the probability of 

gross errors increase as SNR gets low. This would be an interesting observation and 

helps us to obtain a method to calculate the overall probability of gross errors by 

using the individual pairwise gross error probabilities. 

Before going into details of obtaining the overall probability of gross errors, an 

important result should be stated here. The probability of gross error of each 

individual angle follows the value of 
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It is not a surprising result since b2 explicitly resides in (3-25) and can be 

interpreted as a similarity between the two array steering vectors. The more the 

similarity between the vectors increase, the more the probability of pairwise gross 

error increase. This is evident, if we compare the graph of b2 for incidence angle 

θ=0 for UCA which is plotted in Figure 3-5 with Figure 3-1 . It will be shown that 

this result is also valid for multiple snapshots and will play a major role in Chapter 

4 when we propose a metric function to measure the array performance.  
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Figure 3-1 Calculated probability of gross errors for the UCA when SNR = 0 dB 
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Figure 3-2 MUSIC Spectrum of the UCA when SNR = 0 dB 
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Figure 3-3 Calculated probability of gross error for the UCA when SNR= -10 dB 
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Figure 3-4 MUSIC Spectrum of the UCA when SNR = -10 dB 
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Figure 3-5 Plot of b2 with respect to θ for the UCA when the incidence angle is 0° 
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In order to find the probability of gross error for a given incidence angle, the 

following approach can be used. 

The profile of b2 sketched in Figure 3-5 can be divided into M different regions as 

shown in Figure 3-6. Each region contains a peak and therefore M is the total 

number of peaks in the b2 plot. 
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Figure 3-6 Partitioning of b2 

As it was stated before, as SNR gets low, the probability of gross error in each 

region increases but the peak point in each region does not change, which means the 

most probable candidate of erroneous angle estimate does not change with SNR. 

Since the probability of gross errors is continuous with respect to θ, it is true to state 

that 

 ( ) ( ) MiRPRP igeipeakpeakge ,,2,1,, �=∈∀≥∈ θθθθ . (3-28) 
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Therefore, the total probability of gross error can be calculated by only considering 

the peak values in each region. This is due to the assumption that if the spectrum 

value of an angle, which is in a certain region, exceeds the spectrum value of the 

correct incidence angle, then most probably the spectrum value of the peak angle in 

that region also exceeds the spectrum value of the correct incidence angle. Hence, 

the total probability of gross error will be 
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where each ri i=1,2,..,M corresponds to the peak values in each region. Similarly, 
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The joint probability density function in (3-30) can be written by using the same 

analysis in development of (3-25). But the resulting integral will be difficult to 

solve even numerically. 

In order to find a numerical result the following analysis is useful. 

The probability density functions of individual ψc and ψi  i=1,2,…,M  are in 

quadratic forms and have the non-central chi-squared forms with two degrees of 

freedom [28]; 
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Since the contributions of the greater values of b2 to the mean values of the random 

variables are greater; each p(ψi) can be assumed to be a Gaussian random variable. 

The mean and the variance of each random variable can be found as 
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The random variables are correlated and the covariance can be found by 
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p(ψi, ψj) can be found by the same way as (3-25). 

After finding the means, the variances and the covariance, joint pdf can be written 

as 
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and probability of gross errors can be found numerically by using (3-30). Linear 

combinations of non-central chi-squared random variables were considered in [29] 

and the exact distribution was given. In order to have a simpler form, some 

approximations were also given that the linear combination of the non-central chi-

squared distributions is also a non-central chi-square distribution [30] and in that 

sense joint pdf of the random variables in (3-30) can be considered as Gaussian. 
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Numerical computation of multivariate normal probabilities in the form of (3-30) 

can be carried out by using the procedure given in [31]. 

3.3 Probability of Gross Errors for Multiple Snapshots 

For multiple snapshots (3-10) can be written as  
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For this case ψm and ψc can be considered as the summation of 2K random 

variables: 
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where rcR, rcI, rmR and rmI are real Gaussian random variables. Thus, both ψm and ψc 

will have non-central chi-square forms with 2K degrees of freedom, with the 

following density functions: 
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where 
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Note that ψm and ψc always have positive valued means. As the number of 

snapshots gets higher, these positive means get larger values. It is known that for 

this case it can be assumed that ψm and ψc have approximately Gaussian 

distributions and their joint distribution will also be Gaussian. These two random 

variables are not independent. Their covariance can be estimated by using the 

following: 
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Since different snapshots are independent from each other, 
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(3-42) can be written as 
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For each snapshot, all the expected values inside (3-44) can be calculated by using 

the probability density functions derived in Section 3.2: 
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The joint probability density function can be written as 
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where C is the covariance matrix and µ is the mean vector. The probability of gross 

error for each angle can be calculated by using (3-36). 

In Figure 3-7, the probability of gross error for each angle is plotted. A UCA with 

eight elements and an aperture of 2λ are chosen as in the previous section. SNR is 

chosen as -20 dB and the number of snapshots is equal to 101. 
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Figure 3-7 Calculated probability of gross error for the UCA when SNR = -20 dB 

The same response is obtained as in the single snapshot case. Hence, it is true to 

state that as in the single snapshot case, probability of gross errors gets higher if the 

value of b2 gets higher. b2 is given in (3-27) and rewritten here for convenience: 
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By using the same technique described in the previous section, the total probability 

of gross error for a given incidence angle can be obtained by evaluating the integral 
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When the number of integrands increases in (3-48), evaluation of the integral as 

well as the calculation of required parameters to evaluate the integral such as the 

first and the second order statistics and the covariance matrix of the random 

variables, gets complicated and requires large amount of time to produce results. On 

the other hand, calculation of the total probability of gross error for a given 

incidence angle is still possible by using the method described here. As far as 

known it is the first approximate calculation of the probability of gross errors in the 

literature. 

3.4 Alternative Interpretation of Individual Pairwise Probability of 

Gross Errors of Different Angles 

In this section, an alternative way of interpretation will be given. This interpretation 

was published in [26] and is based on the derivation of “Error Probability for 

Multichannel Binary Signals” given in App. B of [28]. According to this 

interpretation, the probability of deciding a different angle θm instead of the correct 

DOA θc is given as 
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where Im is the mth order modified Bessel function of the first kind and Q is the 

Marcum’s Q function which is given by 
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In (3-49), b is given in (3-27) and S is the signal energy to noise power spectral 

density S=E/N0 where E is the energy of the received bandpass signal on any of the 

sensors; 
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In [26], the union bound that serves as a loose upper bound on total probability of 

gross errors is given after obtaining the pairwise error probabilities by (3-49). The 

derivation of pairwise error probabilities which was given in Section 3.2 and 

Section 3.3 yields the same results with this interpretation. The reason to suggest 

the method in Section 3.2 and Section 3.3 is that, it makes the approximation to the 

total gross error probability possible. 

This interpretation has a comparable computational complexity with the one that we 

suggested. Therefore, the only advantage of this interpretation is to have an 

expression for the pairwise probability of gross errors in closed form as in (3-49). 
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3.5 Cramer-Rao Bound for Direction of Arrival Estimation 

The log likelihood function is given in (3-3) for the signal model in Section 2.2 and 

it is repeated here: 

 ( ) ( ) ( ) ( ) ( )�
=

−−−=
K

k

kkKNL
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2

2
2 1

ln g�Ax
σ

πσθ . (3-52) 

The CRB provides a bound on the covariance matrix of any unbiased estimate of ΘΘΘΘ. 

The covariance matrix of the estimation errors is given by 

 ( ) ( )( ){ }T
E �����C −−=

∆
ˆˆ . (3-53) 

The multiple-parameter CRB states that 

 ( ) ( ) 1−
∆
=≥ J�C�C CR . (3-54) 

The matrix J is referred to as Fisher’s information matrix [27].  

The nonrandom (conditional) signal model is given by 

 ( ) ( ) ( ) ( ) Kkkkk ,,2,1 �=+= ng�Ax . (3-55) 

In (3-55), g(k) and θθθθ are given as vectors so that the derived CRB will be valid for 

multiple simultaneous M distinct signals. 

The unknown parameters that will be estimated are 

 �
�

�
�
�

�= 2,, σg�� , (3-56) 

where g is a real vector that contains the signal values at each snapshot time. 

 ( ){ } ( ){ } ( ){ } ( ){ } ( ){ } ( ){ }[ ]TTTTTTT KK ggggggg Im,Re,,2Im,2Re,1Im,1Re �= ,(3-57) 
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where each g(k) is an M dimensional vector. 

The unknown parameters are given in (3-56) and we let the FIM be in the structure 
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where each Jxy is given by 
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and for the general case it will be  
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where Kx is the covariance matrix of the received signal and m is the mean vector 

of the received signal. The derivation of (3-60) can be found in Appendix A. 

For the conditional signal model case  
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To find Jθθθθθθθθ we use 
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where 
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In order to get the second principal submatrix Jgg, we need to differentiate L with 

respect to each element of matrix g: 
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Elements of Jgg are, 
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The noise samples are uncorrelated for different snapshots, hence, the elements of 

Jgg that correspond to different snapshots will be zero. Jgg will be in the form of 
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where 
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The third principle sub-matrix is a scalar. By using (3-60) with (3-61) 
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Similarly, by using (3-60) with (3-61), it is seen that σ2 is not coupled with other 

parameters and 
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The other off-diagonal term will be evaluated by first writing  
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We define  
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By combining the above results, the Fisher’s information matrix becomes, 
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CRB on θ can be found by taking inverse of the upper left portion of the Fisher 

information matrix and taking the upper left section of the inverse. That is, CRB on 

θ is the upper left subsection of the matrix 
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Hence, 
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Next, by observing that 
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where 

 1−= VW  (3-76) 

and 
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we obtain 
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CRB on θ can be obtained and by using (3-62), (3-67) and (3-71) it is simplified to 
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This result will be used in Chapter 4, when we will attempt to propose a metric 

function that serves as an optimization constraint on array geometry. 
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CHAPTER 4  

 

PROPOSED METRIC AND THE ARRAY 

OPTIMIZATION 

Probability of gross errors and the Cramer-Rao bound for estimation errors, i.e., the 

bound on fine errors have been derived in the previous chapter. For a good array 

design, one should minimize both errors. In this chapter, we will state a metric 

function that can be used to minimize both parameters in an array design problem. 

In this chapter, we state the relation between the locations of the array elements and 

both the probability of gross errors and the CRB. The main emphasis of this chapter 

is that a single function which is given in (4-1) directly reflects the behavior of the 

functions derived for both CRB and the probability of gross errors and hence can be 

used to minimize both. 

Considering the effects of the gross errors in array optimization process has 

received limited attention in the literature [21][22]. Available work on this subject 

proposes similar functions to optimize the array performance. These functions are 

offered intuitively which applied to linear array models and yielded satisfactory 

results. As far as known to this author, the metric function presented in this chapter 

is a novel function and the idea behind to use this function is theoretically justified. 

The last part of this chapter contains the outline of a generic genetic optimization 

algorithm used to obtain the results presented in the next chapter. 
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4.1 Minimization of Probability of Gross Errors and CRB 

In the previous chapter it is shown that the probability of gross error for a given 

incidence angle follows the value of b2 which is given as 
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= , (4-1) 

where θc is the correct incidence angle and θm is any other angle different from the 

correct incidence angle. N is the number of sensors in the array. We have stated that 

the function in (4-1) is a measure of similarity between the array steering vectors 

and if this similarity increases, then the probability of making the wrong decision 

gets higher as well. Obviously, when these two angles are taken to be the same, the 

similarity will be equal to the highest value that it can take. 
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In this section, we will attempt to show that the similarity between a steering vector 

that corresponds to a specific angle and the other vectors that lie in its small angular 

neighborhood, can be used as a measure on the CRB of that array. To achieve this, 

we will define a new function which shows the similarity between two steering 

vectors separated by an offset, that is; 
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In order to obtain the similarity measure between two steering vectors that lie in a 

small angular neighborhood, we will analyze the new function given in (4-3) around 

φ=0. 
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A(θ) is the antenna steering vector given in (2-9). Without loss of the validity of 

derivation given in Section 2.1, the center of the array can be taken as the reference 

point for the array. Hence (2-9) can be rewritten as  
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where xc and yc are the coordinates of the center of the array and given by, 
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The value of b2 around θm equals θc can be found by following the analysis: 

In order to find the behavior of the function B around φ=0, 
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If we expand (4-7) around φ=0, 
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The second part of (4-8) evaluates to zero, since we have (4-5). 

This is reasonable since around φ=0, B is purely real. Hence, 
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If we consider the CRB on estimation of θ for a single source, and evaluate it in 

terms of the array element locations we have 
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The next step is to observe that DH(θ)A(θ) evaluates to zero when the array center is 

chosen as a reference point. 

D(θ) is given as 
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Hence CRB can be written as 
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By using (4-11) in (4-13) 
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If we compare (4-14) with the function ( ) ( ) 2
φθθ +AA H  given in (4-9), we can 

conclude that minimization of ( ) ( ) 2
φθθ +AA H  around φ=0 results in smaller CRB 

so that less error on estimation of direction of arrival error. Since B is given by 
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minimization of B is the same as minimization of ( ) ( ) 2
φθθ +AA H . Thus one can 

conclude that the minimization of the function B around φ=0 yields less fine errors. 

When φ is taken to be a larger value, we have already shown that in Section 3.3, (4-

3) can be used as a measure of the similarity between two array steering vectors that 

are separated by the amount of φ. Since this value is directly proportional to the 

pairwise error probabilities, this gives us the probability of deciding the angle, that 

falls apart φ degrees from the correct angle, instead of the correct angle and hence, 

the gross error probability. This can be better visualized by using a generic 

example. 

Let us choose an arbitrary two dimensional array which is given in Figure 4-1. 

Figure 4-2 shows the graph of B(θ,φ) when the correct incidence angle, i.e., θ is 

chosen to be 100°. B is a measure of the similarity between the array steering 

vectors that corresponds to different angle of arrivals. Therefore, Figure 4-2 

demonstrates us that array steering vector at 100° is fairly similar to the array 

steering vector that lies 50° away from it which is 150°. Therefore, all the peaks 

present in the graph are the potential erroneous estimate candidates at 100° . The 

fine error performance of the array when the correct incidence angle is 100° can be 

extracted by the curvature around the main lobe as the analysis has shown. Steeper 

main lobe indicates the better fine error performance. 

The three dimensional graph of B(θ,φ) for all values of θ is given in Figure 4-3. It 

shows the overall performance of the array at all possible incidence angles. The 

graph in Figure 4-2, is obtained by cutting the three dimensional graph in Figure 4-3 

by a plane at θ=100°.  
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Figure 4-1 Geometry of an arbitrary array 
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Figure 4-2 B(φ) when θ=100° 
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Figure 4-3 Sketch of B(θ,φ) 

The symmetry properties of the function B(θ,φ) can be used to perform the 

calculations faster. There are two types of symmetry that the function B(θ,φ) has. 

The first one is the symmetry that is caused by the magnitude square. Since, 

 ( ) ( ) ( ) ( ) 22
θφθφθθ AAAA +=+ HH  (4-16) 

then, 

 ( ) ( )φφθφθ −+= ,, BB . (4-17) 

An other type of symmetry, originates from the definition of the array steering 

vector: From (4-4), it can be deduced that 

 ( ) ( )φπθφθ ,, += BB . (4-18) 
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4.2 Proposed Metric 

For a good array design we want less fine estimation error as well as less 

probability of gross errors. For a given angle of incidence we showed that 

probability of gross errors follows the pattern of the function B which is given as 

 ( )
( ) ( )

2

2

,
N

B
H φθθ

φθ
+

=
AA

. (4-19) 

The same function can be a measure for CRB. We showed that in the previous 

section as well. The steepness of the curvature of B around φ=0, which is the 

second derivative of the function, is directly linked to the CRB of the array for a 

given θ. 

In order to design an array that has the least probability of gross error at any angle, 

the maximum value of B(φ) outside the main peak should be minimized for all 

angles θ. 

If we consider the main peak around φ=0, the steepness of the curvature of the main 

peak of B(φ) is proportional to the CRB of that angle θ. Again in order to design an 

array that has the least variance of fine errors, the maximum value of B(φ) at the 

main peak should be minimized for all angles θ. 

The idea can be visualized by the help of Figure 4-4. Finding maximum along θ 

outside the main peak gives the worst case of probability of gross errors and finding 

the maximum along θ at the main peak gives the worst case of the CRB. 
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Figure 4-4 Procedure of forming M(φ) 

Therefore, the following function can effectively be used to design the array: 

 

( ) ( )

( ) ( )
2

2

max

,max

N

BM

H θφθ

φθφ

θ

θ

AA +
=

=
∆

 (4-20) 

It is equivalent to maximize the square root of M(φ) and since N is the number of 

sensors which is a constant and can be omitted, an equivalent metric function is 

 ( ) ( ) ( )θφθφ
θ

AA += H
eqM max . (4-21) 

For the array given in Figure 4-1, Meq(φ) is sketched in Figure 4-5. 
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Figure 4-5 Meq(φ) of the array 

In Figure 4-5 both fine error and gross error regions are shown. It is seen that the 

risk of ambiguity is very high for this particular array. Following analysis is 

provided for the UCA of 8 elements given in Figure 4-6. Figure 4-7 shows the 

Meq(φ) of the UCA. 
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Figure 4-6 UCA of 8 elements and aperture of 2λ 
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Figure 4-7 Meq(φ) of the UCA 
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Figure 4-8 shows that the arbitrary array given in Figure 4-1, has a relatively good 

gross error performance compared to UCA. However, UCA has much better 

performance around the main peak and therefore has a better fine error variance as 

expected. The calculated CRB of both arrays are sketched in Figure 4-9 for SNR=0 

dB. In this figure, CRB of both arrays are normalized with respect to the CRB of the 

UCA. Figure 4-9, validates the conclusion we drew from Figure 4-8. The CRB of 

the UCA is approximately 3 times better than that of  the other array. 

4.3 Optimization 

The metric function which was given in (4-21) is a function that helps us to assess 

the performance figure of a certain array in terms of both gross and fine errors. Here 

is the optimization steps that we are going to use: 

1. A bounded region that the sensors can be located is defined. Any arbitrary 

region can be specified. 

2. The number of array elements is determined. 

3. By using (3-36), the maximum allowed probability of gross error is set for a 

certain SNR. 

4. Corresponding Meq(φ) value is determined for the maximum allowed 

probability of gross error. As an example, Figure 4-10 and Figure 4-11 show 

the relation between the Meq(φ) and Pgem based on the discussion in Section 

3.3. These figures are generated for 101 and 11 snapshots. 

5. The value found in step 4 is set as a threshold for Meq(φ) for the gross error 

region. 

6. An optimization is carried out to find the maximum curvature of the main 

beam that satisfies the threshold in step 4. 
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Figure 4-8 Meq(φ) of the UCA and the array given in Figure 4-1 
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Figure 4-9 Comparison of the CRB of both arrays 
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Figure 4-10 Pgem versus Meq(φ) for 101 snapshots 
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Figure 4-11 Pgem versus Meq(φ) for 11 snapshots 
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At this point, a significant observation should be stated about the relation between 

the Meq(φ) and Pgem. For the conditional maximum likelihood estimators, a 

sufficient statistic is given as in (3-8). 

 ( ) ( ) ( )�
=

=
K

k

H k
N

L
1

2

3

1 xA θθ  (4-22) 

where x(k) was given in (2-11). 

 ( ) ( ) ( ) ( ) Kkkkgk c ,,2,1 �=+= nAx θ  (4-23) 

where θc represents the incidence angle of the incoming signal. If we use (4-23) in 

(4-22) we get 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )[
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )]θθ

θθθ
θθθ

θθθθθ

AnnA

AAnA

AnAA

AAAA

kk

kgk

kkg

kgkg
N

L

HH

c
HH

H
c

H

K

k
c

H
c

H

+

+

+

= �
=

*

1

*
3

1

. (4-24) 

In (4-24), there are two noise cross signal terms and a noise cross noise term. When 

the SNR is sufficiently high, the noise cross signal terms dominate and it will be 

sufficient to calculate the relation between the Meq(φ) and the Pgem for only one 

snapshot value. The relation between the Meq(φ) and the Pgem for other snapshot 

values can be obtained by using the linear relation with the calculated one. On the 

other hand, if the SNR is not high enough, then the noise cross noise term cannot be 

ignored and the relation between the Meq(φ) and the Pgem should be calculated for all 

desired snapshot values. 

4.3.1 Optimization Algorithm 

A generic genetic algorithm is used to perform the optimization [32]. The algorithm 

is shown in Figure 4-12.  
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Figure 4-12 The applied genetic algorithm 
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The purpose of the genetic algorithm is to adapt the array geometry to certain 

conditions. Array geometry has the form of the coordinates of the sensor array 

elements. Assuming N array elements it has the structure {(x1,y1), (x2,y2), 

…,(xN,yN)}. 

Initially, a sample population is created. The sample population consists of different 

individuals that correspond to a single array structure. The size of the sample 

population is decided by considering the array size and the number of elements. 

Sample population is created randomly but is subject to a certain criterion. The 

array elements are forced to lie in the given bounded region. In an array structure, 

any two array elements can not be closer to each other than a certain distance. This 

is provided by controlling the creation of the sample population and as well as the 

mutual coupling and mutation operations. Structure of the sample population is 

given in Table 4-1. 

Table 4-1 Structure of the population of individuals 

Individuals 
Individual Number 

Sensor Locations Fitness 

1 S1={(x1,y1), (x2,y2), …, (xN,yN)} F1 

2 S2={(x1,y1), (x2,y2), …, (xN,yN)} F2 

3 S3={(x1,y1), (x2,y2), …, (xN,yN)} F3 

: 

: 

: 

: 

: 

: 

MaxPop SMaxPop={(x1,y1), (x2,y2), …, (xN,yN)} FMaxPop 
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Each individual that passes the threshold set for the gross errors is assigned a fitness 

value. The fitness is set to zero for the individuals that cannot pass the threshold  

For the others, the fitness value is determined by using the curvature of the main 

lobe.  

After the sample population is created and fitness values are determined, the 

crossover operation is performed. Crossover is carried out by choosing two parents, 

namely, parent1 and parent2 and producing two new offsprings, namely, child1 and 

child2. In order to choose the two parents, a selection procedure is performed by 

giving more chance to higher fitness valued individuals. This selection procedure is 

usually called weighted roulette wheel operation in the literature. The crossover 

procedure is visualized in Figure 4-13. 

A cross point is randomly determined and two parent’s chromosomes, namely, their 

sensor location positions, are exchanged. Hence, the offsprings are produced. 

In order to achieve a more extensive search, mutation may be produced at the 

crossover phase. Mutation is a procedure that occurs with a certain probability and 

replaces the mutant child’s chromosomes with new ones. This is carried out again 

within certain rules. Newly generated array elements must lie in the bounded region 

and cannot be closer to the other array elements than a certain distance. The process 

of generation of the new population is depicted in Figure 4-14. 

After the crossover, a new generation is constructed and fitness values of all are 

determined. Until a certain number of generations is produced or the improvement 

of the fitness values slows down, the algorithm halts. 
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Figure 4-13 Crossover 
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Figure 4-14 Production of a new generation 
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CHAPTER 5  

 

RESULTS 

In this chapter, the optimization procedure outlined in the previous chapter is 

applied to certain regions and the results are discussed. 

Firstly, optimization is performed on a circular aperture and two different apertures 

are used to demonstrate the effect of the aperture length on the procedure. Both 

examples use the same number of sensors and the thresholds are set to a value to 

assure that the gross error specifications of the array restrict the fine error 

performance from reaching to its maximum possible figure. Results are compared to 

the UCA. 

The next example is arranged to show the outcome of the method in more realistic 

circumstances. The procedure is applied to place the array elements on an aircraft. 

Finally, different threshold values are set for the previous examples, in order to see 

the effect on optimized array geometries. 

Throughout the simulations, some default values are chosen for the number of 

snapshots that the MUSIC algorithm uses. The method proposed in this work is 

independent of the number of snapshots as long as the required calculations such as 

the ones presented in Figure 4-10 and Figure 4-11 are carried out. Thus, the number 

of snapshots can be chosen according to the requirements of the specific application 

of interest. 
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5.1 Circular Aperture of 2λλλλ with 8 Elements 

For the first example, bounded region is set to a circle of 2λ which is a relatively 

short aperture that will possibly have some application areas on mobile platforms. 

For this particular example, the maximum allowed Pgem is set to 0.15 at SNR=-15 

dB when the number of snapshots is 101. By using Figure 4-10, Meq(φ) can be 

found as 6. This value is set as a threshold and the optimization is performed. The 

array shown in Figure 5-1 was obtained. The array element locations are depicted in 

Table 5-1. 

Table 5-1 Array element locations of the optimized array of the circular aperture of 
2λ case 

Array Element Number 1 2 3 4 5 6 7 8 

x (in λ) -0.4 0 0 0.8 -1.6 -0.6 1.9 1.9 

y (in λ) 0.9 -1.6 1.7 1.4 0.2 -0.8 0.1 -0.4 

 

The dashed curve in Figure 5-1 shows the bounded region. The corresponding 

metric function of the array is shown in Figure 5-2. 
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Figure 5-1 The optimized array 
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Figure 5-2 The metric function of the optimized array 
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Note that the sidelobe levels are under the threshold. The optimized array is 

compared with the UCA that uses the same aperture and is given in Figure 5-3. 

Array element locations of UCA are listed in Table 5-2 and the metric function of 

the UCA which was previously given in Figure 4-7 is sketched again in Figure 5-4 

for convenience. 

Table 5-2 Array element locations of the UCA that has the aperture of 2λ 

Array Element Number 1 2 3 4 5 6 7 8 

x (in λ) 1.41 0 -1.41 -2 -1.41 0 1.41 2 

y (in λ) 1.41 2 1.41 0 -1.41 -2 -1.41 0 
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Figure 5-3 Geometry of the UCA 
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Figure 5-4 Metric function of the UCA 

If the two metric functions are compared, it can be seen that probability of gross 

error is significantly reduced. It can be observed from Figure 5-4 that the highest 

peak value of the UCA’s metric function is around 7.8. Thus, we can deduce from 

Figure 4-10 that under the same conditions, i.e. for 101 snapshots and -15 dB SNR, 

probability of gross errors can reach 0.35 for the UCA, while this value is 0.15 for 

the optimized array. On the other hand, if we zoom in on the metric function graphs 

of both arrays, around φ=0, as in Figure 5-5, it can be seen that CRB of the UCA is 

slightly better than that of the optimized array. This result is expected since the 

UCA uses the full aperture, by paying the price of increased probability of gross 

errors. Calculated CRB of both arrays are also compared in Figure 5-6. In this 

figure, CRB is normalized to the CRB of UCA in order to compare the estimation 

errors of both arrays. Effect of the expansion of the main lobe is seen in this figure 

clearly. A small relaxation in CRB pulls the probability of gross errors to much 

lower values. In other words, a smart trade off is performed for a much less 
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ambiguity risk to a bit worse performance for high SNR values. This will be much 

more obvious when we look at the MUSIC spectra and the total error variances. 

MUSIC spectra of a single run of the MUSIC estimator for UCA and optimized 

array are given for different bearing angles and for different SNR values: Figure 5-7 

shows the function b and the MUSIC spectra of UCA for different SNR values at 

incidence angle 0°. As SNR gets lower, the peaks of the MUSIC spectrum get 

higher at the peaks of b. Hence, the gross error risk would be significantly high at 

those incidence angles. If it is compared to the optimized array given in Figure 5-8, 

it is clearly seen that, since the peaks of the function b are much lower than the 

peaks of UCA, the MUSIC spectrum is considerably flat at those values. Similar 

observations can be made at different incidence angles. Figure 5-9 and Figure 5-10 

show the function of b and the MUSIC spectra at 15° and Figure 5-11 and Figure 

5-12 show the same information at θ=45°. It is evident from the figures that gross 

errors are highly probable under   -6 dB SNR values when the UCA is used. In 

contrast, the gross errors are much less probable when the optimized array is used 

even in -9 dB SNR values.  
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Figure 5-5 Comparison of the UCA and the optimized array 
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Figure 5-6 Comparison of the CRB of both arrays 
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Figure 5-7 MUSIC spectrum of the UCA when the incidence Angle is 0° and 
SNR=0,-3,-6,-9 dB 
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Figure 5-8 MUSIC spectrum of the optimized array when the incidence angle is 0° 
and SNR = 0,-3,-6,-9 dB 
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Figure 5-9 MUSIC spectrum of the UCA when the incidence angle is 15° and 
SNR=0,-3,-6,-9 dB 
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Figure 5-10 MUSIC spectrum of the optimized array when the incidence angle is 
15° and SNR = 0,-3,-6,-9 dB 



68 

 

-200 -150 -100 -50 0 50 100 150 200
0

0.5

1
b at θ=45

-200 -150 -100 -50 0 50 100 150 200
0

0.5

1
MUSIC Spectrum SNR=0 dB

-200 -150 -100 -50 0 50 100 150 200
0

0.5

1
MUSIC Spectrum SNR=-3 dB

-200 -150 -100 -50 0 50 100 150 200
0

0.5

1
MUSIC Spectrum SNR=-6 dB

-200 -150 -100 -50 0 50 100 150 200
0

0.5

1
MUSIC Spectrum SNR=-9 dB

φ

 

Figure 5-11 MUSIC spectrum of the UCA when the incidence angle is 45° and 
SNR=0,-3,-6,-9 dB 
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Figure 5-12 MUSIC spectrum of the optimized array when the incidence angle is 
45° and SNR = 0,-3,-6,-9 dB 
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One more remark on these figures is that, as SNR gets lower, the main peaks of the 

MUSIC spectra that correspond to the optimized array gets rounder compared with 

the MUSIC spectra of the UCA which indicates larger fine errors. This is apparent 

from Figure 5-12 that the estimated angle is slightly larger than 50° when the 

incidence angle is 45° at -9 dB SNR. If it is compared with Figure 5-11, although 

the MUSIC estimator made a gross error at -6 dB SNR, it made a correct estimate at 

-9 dB for that particular run and the peak is observed to be sharper than the MUSIC 

spectrum of the optimized array. The fine error performances of both arrays will be 

analyzed further in the text by the simulation results on estimation error variances.  

By observing the MUSIC spectra, the probability of gross errors for the optimized 

array are expected to decrease in comparison to the case of the UCA. This makes 

the estimation error variances to reduce significantly at low SNR values. However, 

since the CRB of UCA is lower than that of the optimized array, estimation error 

variance is expected to be larger than that of the UCA at high SNR values. This 

expectation is justified as can be seen in the following figure: Figure 5-13 shows the 

total probability of gross errors of both arrays when the incidence angle is 45°. 

Gross error is defined as the estimated bearing which is out of the main beam of the 

function b. If the estimated angle is in the main beam of b, it is considered as a fine 

error. The figure shows that at 45°, the probability of gross error is significantly 

reduced by the optimization. 
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Figure 5-13 Comparison of the probability of gross errors when the incidence angle 
is 45° 

Another observation can be made by comparing the total estimation variances for 

different SNR values. Figure 5-14 shows the result for incidence angle 45°. Both 

the gross and the fine errors are considered together in this figure. Simulations were 

carried out by taking 5000 different runs in each SNR value and statistics are 

calculated by using the MUSIC estimation results. The graph in the figure fits well 

to the expected results. Since the UCA has more gross errors than the optimized 

array, at low SNR region optimized array has a lower estimation error variance. As 

the SNR gets higher, UCA is expected to have a lower estimation error variance. 

This can be seen if the high SNR region of Figure 5-14 is zoomed, as shown in 

Figure 5-15. Above the 4 dB SNR point, estimation error variance of the UCA gets 

lower than that of the optimized array which supports our expectation. 
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Figure 5-14 Comparison of the estimation error variances when the incidence angle 
is 45° 
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Figure 5-15 Effect of the main lobe expansion to the error variances 
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Since we have made the observations only for the incidence angle at 45° these 

results do not reflect the overall array performance. Figure 5-16, Figure 5-17 and 

Figure 5-18 show the results when the incidence angle is randomly changed in each 

run, hence they are representative for the overall array performance. The results are 

the generalization of the previous analyses which were carried out at 45° and it can 

be deduced that the estimation error variance is significantly reduced by the 

optimization process when compared to the UCA. By comparing the equal 

estimation error variance points of both arrays in Figure 5-17, we can say that in 

low SNR region, significant amount of performance can be gained by using a non-

uniform array that is optimized by the method outlined in this work. 

In Figure 5-18, Figure 5-17 is zoomed at high SNR region to show the fine error 

performance is dominant at high SNR and the UCA has better performance at those 

values, as expected. 
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Figure 5-16 Comparison of the probability of gross errors for random incidence 
angle 
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Figure 5-17 Comparison of the estimation error variances for random incidence 
angle 
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Figure 5-18 Effect of the main lobe expansion to the error variances 
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Up to this point, we have given extensive comparisons between the optimized array 

and the UCA which uses the entire specified region of 2λ, as the aperture size. 

However, the optimized array does not use the total aperture in order to compromise 

between the gross errors and fine errors. This raises the question, what will be the 

performance of the UCA, compared to the optimized array, which does not use the 

full aperture but a narrower aperture instead, to minimize the gross errors? 

We have already shown by the theoretical analyses and verified by the simulations 

that the metric function given in (4-21) represents the gross and fine errors for any 

antenna array. Therefore, the comparison of the UCA with the optimized array will 

be carried out by changing the aperture size of the UCA and comparing the metric 

functions. 

In order to perform this two cases will be generated: First case is the one for the 

UCA and the optimized array have the same fine error performance. The aperture 

radius of the UCA has been shrunk until the main lobes of the metric functions of 

both arrays will be equal in width. This condition is satisfied when the aperture 

radius of the UCA is 1.4λ . The metric functions of both arrays are shown in Figure 

5-19. Note that, the main lobe of the metric functions of both arrays have the same 

lobe width, so that they will have the same fine error estimation performance. In 

Figure 5-20, calculated CRB of the optimized array and the UCA are shown with 

respect to the incidence angle. This sketch validates that the worst CRB value of the 

optimized array is almost the same as the UCA. This is due to the fact that the main 

lobe width of our metric function reflects the worst possible fine error performance. 

Since the condition of equal fine error performances is satisfied, we can analyze the 

gross error performances of the optimized array and the UCA that has an aperture of 

1.4λ. 
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Figure 5-19 Metric functions of the optimized array and the UCA with aperture 
length 1.4 λ 
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Figure 5-20 CRB of the optimized array and the UCA with aperture length 1.4 λ 
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Figure 5-19 indicates that while the fine error performances of both arrays are 

almost equal, expected gross error performance of UCA is worse than that of the 

optimized array. This is because the metric function of the UCA has higher peaks 

than the optimized array. The simulation results support this observation and Figure 

5-21 shows the estimation error variance of the optimized array is lower in low 

SNR region. 
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Figure 5-21 Estimation error variances of the optimized array and the UCA with 
aperture length 1.4 λ 

We mentioned that these two arrays would have almost the same fine error 

performances and validated this by analyzing the CRB of both arrays as shown in 

Figure 5-20. Figure 5-22 shows the SNR region where the fine errors dominate the 

error variance: The error variances are almost the same.  
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Figure 5-22 Fine error performances of the optimized array and the UCA with 
aperture length 1.4 λ 

The next step is to shorten the aperture length of the UCA further and generate the 

second case which is the one that the UCA and the optimized array have the same 

gross error performance. In order to satisfy this condition the aperture radius of 

UCA has been shrunk until the peaks of the metric function of the UCA reduce to 

the threshold level which was the initial design criterion of the optimized array. 

This condition occurs when the aperture length of the UCA is 0.73 λ.  

The metric functions, which are shown in Figure 5-23, show that the main lobe of 

the UCA is much wider than that of the optimized array when the required gross 

error specification is satisfied. Therefore, the CRB of the UCA is expected to be 

higher and no significant difference of the gross error performance is expected 

between the two arrays. This expectation is validated by the simulations. Figure 

5-24 shows the estimation error variances of the two arrays. In low SNR region, the 

performances of the arrays are quite similar. However, in the high SNR region 
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which is zoomed in Figure 5-25, it is seen that the optimized array has a better 

performance than that of the UCA which has the narrower aperture. Figure 5-26 

shows that the calculated CRB of the optimized array is much less than that of the 

UCA at all incidence angles. 
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Figure 5-23 Metric functions of the optimized array and the UCA with aperture 
length 0.73 λ 

As a result, we can conclude that using the non-uniform array structure for which 

the element locations are optimized by using the metric function proposed, yields a 

better estimation performance than the UCA does. 
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Figure 5-24 Estimation error variances of the optimized array and the UCA with 
aperture length 0.73 λ 
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Figure 5-25 Fine error performances of the optimized array and the UCA with 
aperture length 0.73 λ 
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Figure 5-26 CRB of the optimized array and the UCA with aperture length 0.73 λ 

Before proceeding, a few comments should be stated here on how the sensors are 

placed by the optimization procedure. The array elements are spread out to use the 

full aperture to get a higher resolution while they are kept together, sometimes in 

couples or triplets, in order to satisfy the gross error probability requirements. This 

behaviour is intuitively logical and similar observations have been made in array 

geometry optimization literature and an intuitive approach of using the array 

elements in clusters for large aperture arrays has been proposed [17][20].  

All of these observations such as the symmetry, closely spaced elements and using 

the aperture as a whole are intuitively used in such applications. The optimization 

procedure we have offered makes this implementation more controllable by putting 

the gross error and the fine error probabilities into the process and, moreover, 

makes it more flexible by allowing to change the requirements depending on the 

application. This flexibility can be attained by using different probability of gross 

error thresholds, initially. 
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5.1.1 Effect of Setting Different Probability of Gross Error 

Thresholds for the Optimization Algorithm 

Some applications require operation in low SNR environments. In such 

applications, the array element locations should be decided accordingly. The 

optimization procedure we proposed has the ability to adjust the probability of gross 

errors for a certain SNR value and makes the design more flexible for different 

conditions. In this section, we will examine the effect of setting different thresholds 

for the gross error probability in optimization of the sensor locations. 

Different thresholds are set for the uniform circular region which has a radius of     

2λ. The same geometry is used in Section 5.1. In Section 5.1, the threshold was set 

to 6 and the array shown in Figure 5-1 was obtained. Here, Meq(φ) threshold is set to 

7 and the array shown in Figure 5-27 is obtained. The array element locations are 

listed in Table 5-3. In Figure 5-27, dashed line shows the bounded region. The 

metric function of the array is shown in Figure 5-28. 

Table 5-3 Array element locations of the optimized array when the threshold is 7 

Array Element Number 1 2 3 4 5 6 7 8 

x (in λ) 0.2 0.6 -1.3 0.1 -1.5 1.5 1.9 -1.2 

y (in λ) -1.7 1.6 1.0 2.0 0.2 0.6 -0.1 -0.2 

 

In this example we raise the probability of gross error threshold to a higher value. 

This may be a suitable condition if the fine error performance of the array is more 

important or high resolution is needed for the application and the array is supposed 

to operate in high SNR region which is above 0 dB. It is seen from Figure 5-27 that 

the array sensors have moved apart from each other, closer to the bound of the 
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allocated region, since we relaxed the threshold a little bit. Therefore, better fine 

error can be achieved with this array compared to the array given in Figure 5-1. 

Although we move the threshold to a higher state, it still imposes some bound on 

the probability of gross errors and hence the array elements are clustered in pairs to 

achieve the requirement.  
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Figure 5-27 The optimized array 
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Figure 5-28 The metric function of the optimized array 

The next step is to set the threshold to a lower value and see the optimization 

results. For this example we set the threshold on Meq(φ) to 5 and performed the 

optimization to obtain the array shown in Figure 5-29. The array element locations 

are listed in Table 5-4. The metric function of the array is shown in Figure 5-30. 

Table 5-4 Array element locations of the optimized array when the threshold is 5 

Array Element Number 1 2 3 4 5 6 7 8 

x (in λ) 0.3 -0.2 0.2 -1.4 -0.7 -1.0 0.2 0.3 

y (in λ) -0.9 -0.7 0.2 -0.1 0.6 0.3 1.0 0.6 
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Figure 5-29 The optimized array 
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Figure 5-30 The metric function of the optimized array 
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When a tight bound is applied on the gross error probability, the fine error 

performance clearly gets worse. The metric function in Figure 5-30 has a wider 

main lobe than the metric functions in Figure 5-28 and Figure 5-2. As expected, the 

distance between the sensor array elements are set to lower values in order to satisfy 

the relatively low probability of gross error specification. As a result, the total 

aperture size shrinks and hence the fine error performance gets worse. 

Figure 5-31 shows the estimation error variances of the arrays shown in Figure 5-27 

and Figure 5-29. If we compare this figure with Figure 5-17 we can observe that the 

estimation error variance curve of the optimized array with a threshold at 6 falls in 

between the two curves shown in Figure 5-31. Figure 5-32 shows the error 

variances at high SNR region. From these figures, we verify that as the total array 

aperture gets smaller the probability of gross errors gets lower and fine errors get 

higher.  
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Figure 5-31 Error variances for the arrays optimized for different thresholds 
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Figure 5-32 Comparison of error variances at high SNR values 

5.2 Circular Aperture of 10λλλλ with 8 Elements 

As the allowed region gets larger, the arrays that utilize the whole region can be 

used to gain better DOA estimation resolution. However, as the array elements get 

further away from each other, the risk of ambiguities drastically increases and the 

gross errors may be intolerable. This particular example is given in order to show 

the advantage of using non-uniform arrays when the allowed region is large and the 

number of array elements is limited. For this purpose, we extent the allowed region 

to a circle of radius 10λ and number of array elements is kept limited to 8. The 

analysis will be quite the same as in the previous section, yet the gain of using an 

optimized array in this situation is expected to increase considerably. 

For this particular problem we set the threshold value at 7.2 which keeps the 

pairwise probability of gross errors under %3 for -10 dB SNR and 101 snapshots. 
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The optimized array and the bounded region are given in Figure 5-33. The 

coordinates of the sensors of the optimized array are given in Table 5-5. 

Table 5-5 Array element locations of the optimized array of the circular aperture of 
10λ case 

Array Element Number 1 2 3 4 5 6 7 8 

x (in λ) 3.5 0.1 -6.7 7.1 -1.4 4.1 4.4 -2.1 

y (in λ) -8.1 7.2 0.6 -0.9 -8 2.6 2.3 -3.5 
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Figure 5-33 The optimized array 
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At this point it is seen that some of the array elements are kept close to each other 

while the others are placed near the edge of the allowed region as we discussed 

before. 

The metric function of the optimized array is given in Figure 5-34. Since the 

aperture length is high, the peak of the metric function around φ=0 is very steep. 

The other peaks of the metric function are kept below the threshold to keep the 

probability of gross errors within the limit. 
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Figure 5-34 The metric function of the optimized array 

The optimized array is compared to the UCA of the same aperture given in Figure 

5-35 and the coordinates of array elements are given in Table 5-6. The metric 

function of the UCA is given in Figure 5-36. Note that since the aperture length is 

large, the probability of gross error is very high for the UCA. There are numerous 

“almost ambiguous” angles observed. 
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Table 5-6 Array element locations of the UCA that has the aperture of 10λ 

Array Element Number 1 2 3 4 5 6 7 8 

x (in λ) 7.07 0 -7.07 -10 -7.07 0 7.07 10 

y (in λ) 7.07 10 7.07 0 -7.07 -10 -7.07 0 
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Figure 5-35 Geometry of the UCA 
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Figure 5-36 The metric function of the UCA 

Increasing the aperture of the array means better resolution in the DOA estimation. 

Hence, the advantage of the UCA that spreads out to whole aperture is the reduced 

CRB. This can be observed from Figure 5-37 and Figure 5-38. Figure 5-37 shows 

the main lobe of the metric functions given in Figure 5-34 and Figure 5-36 that 

correspond to the optimized array and the UCA, respectively. Apparently, the UCA 

has a steeper main lobe and hence a better fine error performance. Figure 5-38 

shows the calculated CRB’s of both arrays. The effect of a steeper main lobe can 

also be observed in Figure 5-38. The CRB of the UCA is lower than that of the 

optimized array, which is the expected result. 

In order to see the advantage of using the optimized array we will focus on the 

probability of the gross errors. The same probability of gross errors and the 

estimation error variance analyses have been carried out as we have performed in 

the previous case. Figure 5-39 shows the total probability of gross errors of both 

arrays when the incidence angle is randomly changed and Figure 5-40 shows the 
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estimation error variances for both arrays. For the low SNR region, the gain of 

using the optimized array is increased drastically, as expected.  

By using the results of the last two sections, it can be stated that for the conditions 

of a large bounded region and a limited number of sensors, using non-uniform 

arrays is inevitable and the placing of array elements can be carried out successfully 

by using the optimization procedure outlined in this work. 

The next example will be given in order to see how the optimization procedure 

places the sensors on a more realistic platform. The bounded region will be chosen 

in such a way that reflects the characteristics of an aircraft and optimization will be 

carried out. 
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Figure 5-37 Comparison of the UCA and the optimized array 



93 

 

-150 -100 -50 0 50 100 150
0

1

2

3

4

5

6

7

8

9

10

θ

C
R

B
( θ

)

Optimized Array
UCA

 

Figure 5-38 Comparison of the CRB of both arrays 
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Figure 5-39 Comparison of the probability of gross errors for random incidence 
angle 
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Figure 5-40 Comparison of the estimation error variances for random incidence 
angle 

5.3 Placing Sensors on an Aircraft 

One of the most critical problems in avionics that deserves significant attention is 

the placement of the antenna array elements on an aircraft with a good estimation 

performance. Although this complicated problem has many real life issues that are 

hard to solve, we will ignore some of the complications and assume a simple 

aircraft model, isotropic antenna elements and apply the optimization method 

introduced in this work, just to give an idea for the resulting geometry. 

The first step of the algorithm is to set the bounded region where the sensors will be 

placed. In this case, the bounded region is set to the whole body of the aircraft and 

plotted in Figure 5-41. 
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Figure 5-41 The aircraft model 

The next step is to set the number of array elements and the threshold value. In this 

example, 8-element and 9-element arrays are optimized. The threshold is set to 7.7 

for the 8-element case and 8.6 and for the 9-element case. These thresholds are 

relatively high and relax the requirements for the gross errors. 

The optimization results are given in Figure 5-42 and Figure 5-44 for the 8 and 9-

element cases, respectively. Figure 5-43 and Figure 5-45 show the metric function 

of both arrays. Note that the sensor elements in both cases are placed nearly 

symmetric at the edge of the bounded region so that the full aperture is used to 

increase the fine error performance. Additionally, in order to avoid the high gross 

error probabilities in such a wide aperture, the array elements are used in closely 

spaced pairs or triples. 
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Figure 5-42 The optimized array of 8 elements when the threshold is 7.7 
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Figure 5-43 The metric function of the optimized array of 8 elements 



97 

 

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

x in (λ)

x 
in

 ( λ
)

 

Figure 5-44 The optimized array of 9 elements when the threshold is 8.6 
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Figure 5-45 The metric function of the optimized array of 9 elements 
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The last example is on application of a different threshold value to the optimization 

of the array that is going to be placed on the aircraft given in Figure 5-41. For this 

example the number of array elements is 8 which is the same as before and the 

threshold on the metric function is set to 7 instead of 7.7. The optimized array and 

the metric function of this array are given in Figure 5-46 and Figure 5-47, 

respectively. 

The same discussion also applies to this example: As we limit the probability of 

gross errors to a lower value, optimized array’s elements are placed close to each 

other. The array elements are gathered together at the middle of the aircraft. 

Although the aperture of the array gets smaller compared to the previous example, it 

is still considerably large and to satisfy the lower probability of gross error 

specification the array elements are placed in closely spaced pairs and the symmetry 

is preserved. 
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Figure 5-46 The optimized array of 8 elements when the threshold is 7 



99 

 

-150 -100 -50 0 50 100 150
1

2

3

4

5

6

7

8

9

φ

M
eq

( φ
)

 

Figure 5-47 The metric function of the array 

5.4 Array Performances When There Are Multiple Incident Signals 

It is obvious that dealing with more than one incoming signal adds considerable 

complexity resulting from the angle separation of the signals, the correlation 

between the signals or the power differences between the signals. Although these 

issues are kept out of the scope of this work, a special case of the multiple signal 

condition is simulated here just to give an idea about how the estimation 

performances would be for the case of multiple incident signals. 

We stated that (4-3) can be used to calculate the similarity between the array 

steering vectors that belong to different incidence angles and proposed a metric 

function to minimize the similarity of the array steering vectors. Although we 

assumed only one incoming signal throughout all our analyses and simulations, 

intuitively it will not be unexpected that minimizing the similarity results in better 

estimation performance when there is more than one incident signal at a time.  



100 

 

In this section we compare the estimation performances of the optimized array and 

the UCA when there are two incoming signals. The optimized array in Section 5.1 

and the UCA that has the aperture length of 2λ are compared in terms of the 

probability of gross errors and the estimation of error variances for different SNR 

values. In these simulations, the incidence angles of the two arrays are randomly 

changed in each run of the simulation and 5000 runs are carried out for each SNR 

value to collect the statistics. The incident waves are restricted to have an angle 

separation of more than 10 degrees. The two incoming signals are assumed to be 

uncorrelated and equal in power. A priori knowledge of the number of incoming 

signals is assumed. 

Figure 5-48 shows the estimation error variances of the UCA and the optimized 

array. The error variance is calculated separately for each incident wave. Figure 

5-49 shows the comparison of the probability of gross errors of the two arrays. In 

this figure, the estimation error that is greater than a certain value in at least one of 

the two signals DOA estimation is considered as the gross error.  
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Figure 5-48 Estimation error variances of the UCA and the optimized array when 
there are two incident signals 
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Figure 5-49 Probability of gross errors of the UCA and the optimized array when 
there are two incident signals 

Signal1 
Signal2 
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Although this simulation is a particular special case of the multiple signal condition, 

it indicates us that the estimation performance of the non-uniform optimized array 

that is optimized by using the procedure described in this thesis is better than the 

UCA. This is an intuitively expected result. However, this discussion should be 

extended by a detailed analysis of the multiple signal case which is not in the scope 

of this thesis and remains as a future work. 
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CHAPTER 6  

 

CONCLUSIONS 

In this work, we have searched an answer to the question: How can the array 

sensors be correctly positioned for a better direction of arrival estimation? 

The conventional approach to the solution of the problem could have been the 

minimization of Cramer-Rao Bound of the array. This approach has been applied 

and analyzed in the literature. Unfortunately, this approach is valid only for high 

SNR conditions. In low and moderate SNR conditions, analyses show that the gross 

errors have much greater effect on direction of arrival estimation variance than fine 

errors have. Therefore, in order to improve the direction of arrival estimation 

performance of an array, gross errors were also considered. 

For this purpose, we first propose a method to calculate the pairwise gross error 

probability which was previously handled in [26]. We established a mathematical 

link between the probability of gross errors and the function 

 
( ) ( )

2

2

2

N
b

cm
H θθ AA

= , (6-1) 

where A is the array manifold vector, θm is the angle of possible erroneous estimate, 

θc is the incidence angle and N is the number of array elements. 
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The method that we propose allows us to develop the calculation of the pairwise 

error probabilities further to calculate the total probability of gross errors of an array 

for a given incidence angle. An upper bound was proposed by using the union 

bound of the pairwise error probabilities is proposed before [26]. This bound is not 

tight and gives very coarse results in low SNR values. The method we proposed in 

this thesis is an approximation of the total probability of gross errors, which is a 

novel method. It requires the numerical calculations of means, variances and the 

covariance matrix of numerous correlated random variables. The number of random 

variables is equal to the number of the peaks in the function b2. Hence, if the array 

aperture increases, the number of the peaks will drastically increase. As the number 

of random variables increases the numerical calculation becomes complicated and it 

takes too much time to produce results. Therefore, when the b2 graph has several 

peaks, forming the covariance matrix and numerically calculating the result of (3-

30) becomes a cumbersome task. On the other hand, the described method has an 

academic value, since it is the first attempt to obtain an approximate gross error 

probability, although it needs some further simplifications. 

Nevertheless, pairwise error probabilities have provided us sufficient information to 

propose our metric function: 

 ( ) ( ) ( )θφθφ
θ

AA += H
eqM max . (6-2) 

We also showed that the curvature of the metric function around φ=0, which 

corresponds to the main lobe of the metric function, reflects the behavior of the 

CRB. This function allows us to optimize the array’s fine error performance with 

the constraint on probability of gross errors, by setting a threshold on it. 

This metric function can be considered as a similarity measure of two different 

array steering vectors. Similar measures have already been offered in the literature 

[21][22]. These measures were offered intuitively and limited theoretical analyses 

have been given. The main contribution of this work is to establish the link between 

the proposed metric function and the two important constraints that can be used in 
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array design by providing extensive theoretical analyses. These two constraints are 

the fine error and gross error specifications and the metric function allows us to 

control both parameters at the same time and therefore cuts down the optimization 

effort considerably. 

The proposed optimization method is a procedure that uses the advantage of the 

metric function and tries to improve fine error variance under the constraint of a 

maximum allowed probability of gross errors. A generic genetic algorithm was 

implemented as an optimization tool. The results show that the overall direction of 

arrival estimation performance is significantly improved by using non-uniformly 

optimized arrays. 

It should be kept in mind that the proposed metric function minimizes the maximum 

possible probability of gross error and the worst fine error performance for the array 

for any incidence angle. Therefore the resulting optimized arrays do not yield the 

same estimation performance for all possible incidence angles and they do not 

possess structural symmetry, necessarily. 

Since the convergence of the genetic algorithm is not guaranteed, the optimized 

arrays given in this thesis should be considered as local optima. If we investigate 

the optimized arrays, some general conclusions can be drawn such as the symmetric 

pairwise placements of the array elements or the usage of the aperture according to 

the gross error probability specifications, which were discussed in the main body of 

the text. However, we can not guarantee that the outcome of the optimization 

procedure is the global optimum for the given conditions. In order to illustrate this, 

the outcomes of three consecutive optimization runs are shown in Figure 6-1, 

Figure 6-2 and Figure 6-3. 
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Figure 6-1 First run of the optimization algorithm 
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Figure 6-2 Second run of the optimization algorithm 
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Figure 6-3 Third run of the optimization algorithm 

These three arrays are almost equal in their performances together with the array 

given in Figure 5-44. All of these arrays have very similar topologies, there are only 

small displacement differences between the arrays. Although the placement of the 

array elements fits the observations we have made, it shows that some further 

optimization is possible by giving a small displacement to the array elements in 

order to reach the global optimum. Therefore, as a future work, a gradient based 

optimization algorithm can be applied after the genetic algorithm, to obtain better 

results. On the other hand, the similarity of the distribution of the array elements 

between the arrays which are almost equal in their performance, indicates the 

performance insensitivity of the array to small displacements of the sensors, which 

is desirable in the implementation. 

In order to keep the analyses simple, we assumed that the sensors are isotropic and 

there is no mutual coupling between them. However, in real life problems, these 

assumptions are not valid. The analyses in this work can also be applied to the 
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directive antennas easily and mutual coupling can be included in the analyses after a 

suitable modeling. Similarly, the discussion may be extended to three dimensional 

case by adding a new search dimension. By this way, it can be possible to place the 

sensors in an allocated volume rather than a two dimensional region. We imposed 

narrowband assumptions on the received signal and assumed coherent 

demodulation which can be possible when the carrier frequency of the received 

signal is known. The case where the received signal is wideband and coherent 

demodulation is not possible may be addressed as a future work. Also the analysis 

of the multiple incident signals can be performed by considering the angle 

separation of the signals, the correlation between the signals or the power 

differences between the signals. 

An interesting advantage of the proposed method is that it can handle different 

incidence angles separately. In other words, by setting different threshold values for 

different sectors, one can adjust the array performance according to the region of 

interest.  
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APPENDIX A  

 

DERIVATION OF (3-60) 

For an N element array, the probability density for a single snapshot is 

 ( ) ( ) ( )( ) ( ) ( )( )[ ]�mx�K�mx
�K

x xxx
x

−−−= −1exp
1 HHp

π
, (A-1) 

where x is an Nx1 complex Gaussian random variable and ΘΘΘΘ is an Mx1 unknown 

vector that contains the parameters of interest that we want to estimate. 

Successive snapshots are statistically independent, the joint probability density for 

K snapshots can be found as, 

 ( ) ( ) ( )( ) ( ) ( )( )[ ]∏
=

− −−−=
K

k
k

HH
kxp

1

1exp
1

�mx�K�mx
�K xxx

xπ
. (A-2) 

The log-likelihood function is 

 
( ) ( )

( ) ( )( ) ( ) ( )( )�
=

− −−−−−=

=
K

k
k

HH
kKNK

pL

1

1lnln

ln

�mx�K�mx�K

x�

xxxx

x

π
 (A-3) 

The elements of Fisher Information Matrix are 
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The second derivative of (A-3) can be found by using the following properties, 
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Hence the first and second derivative will be, 
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In order to take the expectation of the first term in the following is used, 
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Hence the expectation will be, 
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After the cancellations we finally have the following result: 
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