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ABSTRACT 

SIX-LEGGED WALKING MACHINE: THE ROBOT-EA308 

Erden, Mustafa Suphi 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Kemal Leblebicioğlu 

 

July 2006, 157 pages 

 

The work presented in this thesis aims to make contribution to the understanding and application of 

six-legged statically stable walking machines in both theoretical and practical levels. In this thesis 

five pieces of work, performed with and for the three-joint six-legged Robot-EA308, are presented: 

1) Standard gaits, which include the well-known wave gaits, are defined and a stability analysis, in 

the sense of static stable walking, is performed on an analytical level. Various definitions are given; 

theorems are stated and proved. 2) A free gait generation algorithm with reinforcement learning is 

developed. Its facilities of stability improvement, smooth speed changes, and adaptation in case of a 

rear-leg deficiency with learning of five-legged walking are experimented in real-time on the Robot-

EA308. 3) Trajectory optimization and controller design is performed for the protraction movement 

of a three-joint leg. The trajectory generated by the controller is demonstrated with the Robot-

EA308. 4) The full kinematic-dynamic formulation of a three-joint six-legged robot is performed 

with the joint-torques being the primary variables. It is demonstrated that the proposed torque 

distribution scheme, rather than the conventional force distribution, results in an efficient distribution 

of required forces and moments to the supporting legs. 5) An analysis of energy efficiency is 

performed for wave gaits. The established strategies for determination of gait parameters for an 

efficient walk are justified using the Robot-EA308. 

Keywords: Six-legged robot, walking, wave gaits, trajectory optimization, torque distribution, force 

distribution, reinforcement learning.   
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ÖZ 

ALTI BACKLI YÜRÜYEN MAKİNA: ROBOT-EA308 

Erden, Mustafa Suphi 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Kemal Leblebicioğlu 

 

Temmuz 2006, 157 sayfa 

 

Bu tez, altı-bacaklı durağan-kararlı olarak yürüyen makinalar üzerine, anlamaya ve uygulamaya 

yönelik olarak hem teorik hem de pratik düzeyde katkı sunmayı amaçlamaktadır. Tezde üç-eklemli 

altı-bacaklı Robot-EA308 için ve onu kullanarak gerçekleştirilen beş parça çalışma sunulmuştur: 1) 

Dalgalı yürüyüşleri de içeren standart yürüyüşler tanımlanmış ve analitik düzeyde, durağan-kararlı 

yürüyüş olmaları anlamında, kararlılık analizleri gerçekleştirilmiştir. Çeşitli tanımlamalar verilmiş, 

teoremler ifade edilip ispatlanmıştır. 2) Pekiştirmeli öğrenme içeren bir serbest yürüme algoritması 

geliştirilmiştir. Bu algoritma Robot-EA308 üzerinde gerçek zamanda uygulanmış, sağladığı 

kararlılık gelişimi, farklı hızlar arasında yumuşak geçiş yapabilme ve arka bacaklardan birinin 

arızalanması durumunda beş bacaklı yürümeyi öğrenerek uyum sağlayabilme özellikleri 

gözlenmiştir. 3) Üç-eklemli bir robot bacağının ileri atılımı için yörünge eniyilemesi ve kontrolcü 

tasarımı gerçekleştirilmiştir. Kontrolcünün ürettiği yörünge Robot-EA308 kullanılarak gösterilmiştir. 

4) Üç-eklemli altı-bacaklı bir robotun tam kinematik ve dinamik formulasyonu, torklar birincil 

değişken olmak üzere, gerçekleştirilmiştir. Gerekli kuvvet ve momentleri destek sağlayan bacaklara 

dağıtmak için önerilen tork dağıtımının, yaygın olarak kullanılan kuvvet dağıtımı yaklaşımından 

daha verimli sonuç verdiği gösterilmiştir. 5) Dalgalı yürüyüşler için enerji verimliliği analizi 

gerçekleştirilmiştir. Yürüme parametrelerini verimli bir yürüyüş sağlayacak şekilde belirlemek üzere 

geliştirilen stratejiler gerçek Robot-EA308 üzerinde doğrulanmıştır.  

 

Anahtar Kelimeler: Altı-bacaklı robot, yürüme, dalgalı yürüyüş, yörünge eniyilemesi, tork 

dağıtımı, kuvvet dağıtımı, pekiştirmeli öğrenme.   
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CHAPTER 1  

INTRODUCTION 

1.1. A Comparison of Wheeled, Tracked, and Legged Locomotion  

Although many animals in nature have legs for locomotion, the very first vehicles developed 

by human have been with wheels. Following the invention of the steam engine and widespread use 

of the railways, and then the development of the combustion engines, wheeled locomotion has 

become the most widespread technology of transportation. Despite its success on predetermined and 

plane surfaces, wheeled locomotion is not proper for unknown and rough terrains. The tracked 

(palette) locomotion is developed in order to cope with this problem. However, tracked locomotion 

is also not without problems, since it destroys the terrain on which the vehicle is moving. As an 

alternative to both wheeled and tracked forms, legged locomotion is developed by imitating the 

legged animals in nature (Mahajan et al., 1997). 

The terrain properties are of most importance in determining the kind of robot to be used in 

applications. The “geometric properties” such as roughness and inclination, the “material properties” 

such as friction and hardness, and “temporal properties” such as changing of surface in time, like on 

the river surface under the water, are three items cited in Hardarson (1998) in this regard. Besides 

these terrain properties, the mission to be performed and the criteria efficiency are important items to 

be considered in choosing the robot. Following Hardarson (1998), it is worth here to mention the 

advantages and disadvantages of wheeled, tracked and legged locomotion respectively. 

The wheeled locomotion is most advantageous in hard and even terrains. It provides smooth 

and fast locomotion with a high payload-weight-to-mechanism-weight ratio, and efficient energy 

consumption. However, wheeled locomotion is disadvantageous in uneven and smooth terrains. In 

the existence of obstacles higher than the radius of the wheels or big holes on the surface, the 

wheeled locomotion becomes impossible. Since the wheeled vehicle follows exactly the ground 

surface the locomotion is subject to rocking and vibrations due to the steps and holes on the ground. 

If the surface is not hard enough, for example sandy, muddy or snowy surfaces, the wheels are 

unable to drag the vehicle. From technology and application point of view, the manufacturing and 

control of wheeled systems is simple, very much studied and widespread in all field of 

transportation. This simplicity of application makes wheeled systems attractive also for robotics 

researchers. 
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Track locomotion is advantageous especially on loose surfaces, in unknown environments 

with steep hills, big holes and obstacles. Since the palettes provide a wide surface to hold on the 

ground, traction on sandy and snowy surfaces become possible. The technology of tracked 

locomotion is also simple, well developed, and the control is again easy. It has a good payload 

capacity. Despite the good payload capacity, high-energy consumption is an important disadvantage 

of tracked vehicles. The machine has to be heavy because it carries the whole palette mechanism. 

Due to the friction in the tracks there is a considerable amount of energy loss. Another important 

disadvantage is that tracked locomotion damages a wide part of the surface. Especially the turning of 

palette vehicles damages the surface since it has to be with slip friction. The vehicle contacts the 

ground with a plate, inflexible surface; therefore it suffers from the sharp orientation changes on the 

ground, mostly due to large-hard obstacles (rocks) and sharp inclinations. 

Legged locomotion is a proper solution for movements on loose-rough-uneven terrains. This 

advantage of legged locomotion is mostly due to the fact that legged systems use isolated footholds. 

Wheeled and tracked systems follow the surface in a continuous manner; therefore their performance 

is limited by the worst parts on the terrain. A legged system, on the other hand, can choose the best 

places for foot placement. These footholds are isolated from the remaining parts, hence the 

performance of the legged system is limited by the best footholds. Besides using isolated footholds, 

the legged system can provide active suspension, which does not exist in wheeled or tracked 

systems. This means that the system can have control on the force distribution through the foothold 

points. In this way an efficient utilization of the footholds provides further improvement of the 

vehicle-ground interaction. A legged system is well adaptive to uneven terrains, namely the legs can 

be arranged (lengthened and shortened) according to the level changes, and they can jump over 

obstacles or holes. Therefore, the body can be moved in a desired orientation, for example 

horizontally, whatever the ground structure is. Considering the vehicle-environment interaction, the 

legged locomotion is the most advantageous, since it gives the less damage to the surface compared 

to wheeled and tracked systems.  

The legged locomotion is disadvantageous considering the system control and energy 

consumption. Legged mechanisms have complicated kinematics and dynamics, and a lot of actuators 

have to be controlled in continuous coordination; therefore, control of legged systems is more 

difficult in comparison to wheeled and tracked systems. Since they are comparatively novel 

development, there are no well-established technologies for legged systems. Another drawback of 

legged systems is the high-energy consumption due to the active suspension of the body by the 

supporting legs; therefore, the payload-weight-to-mechanism-weight ratio is considerably low 

compared to wheeled and tracked systems. In multi legged systems generally each joint is driven by 

a separate motor, which is mostly the heaviest component in the system (there are designs outside of 

this general scheme (Ota et al., 1998)). Therefore, in general, there are as many motors as the joints 

in the multi legged systems. Since these motors are generally placed on the links of the legs (again 

different designs outside this general scheme exist (Gonzales de Santos et al., 2004; Lin and Song, 
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2001; Clark et al., 2001)), the weights of the legs are quite comparable to that of the main robot 

body. In the general scheme, the actuators on a leg are serially connected. Therefore the weight a leg 

can carry is limited by the power of the weakest actuator on the leg. While walking, some of the legs 

are in the swing phase for protraction (three of the legs are in swing in tripod gait), which means that 

they do not contribute to lifting although they exists as extra weight. These factors due to the “legs” 

also contribute to the low ratio of payload-weight-to-mechanism-weight of legged-systems. Another 

disadvantage mentioned in Hardarson (1998), is that the vehicle suffers a force impact in a pulse 

form in every step. These pulses may result in rocking on the body.  (There are studies to overcome 

such impulses with proper force distribution (Martins-Filho et al., 2000). The results of such studies 

are promising to take out this last item out of the disadvantages list of legged systems.) 

Due to its advantages over wheeled and tracked systems, legged locomotion has found 

applications in various fields with multi legged robots. Particle gathering from unknown surfaces (of 

the earth or moon), recoveries from the regions of fire or earthquake disasters, locomotion in forest 

for harvesting trees (Hardarson, 1998), de-mining tasks (Gonzalez de Santos et al., 2004), and safe 

transportation in crowded places are some of the areas that legged locomotion can be utilized. The 

studies to incorporate intelligent systems with robotic applications result in promising developments 

for learning in control of robot manipulators (Erden et al., 2004). When legged robots are equipped 

with intelligent self-learning and vision systems, autonomous systems that can adapt to different 

circumstances emerge. 

In this work, a kinematically controlled three-joint six-legged robot, named the Robot-EA308 

(Figure 1.1), is developed in our laboratory, to be used in the experimental parts of the study. This 

robot is only for experimental purposes; therefore, it is limited to indoor usages being connected to 

an external power supply and controlling computer. The control of the robot is achieved by a 

MATLAB program, which continuously sends the information for the joint angles of the legs via the 

serial port of the computer to the servo-controllers on the robot body. The controllers on the body 

control the angular positions of the servo-motors on the joints. All the mechanical construction and 

software development is performed during this study. (The motors and servo-controllers are 

purchased.) This robot is used for calculating the actual energy dissipation while walking with 

different gait patterns (Chapter 6), for real-time learning of five-legged gait patterns with an external 

reinforcement signal signaling the falls (Chapter 3), for visual testing and demonstrative purposes for 

the developed control structure of protraction (Chapter 4). 
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Figure 1.1: The robot EA308 developed in our laboratory. 

1.2. Biological Inspirations for Legged Locomotion Systems 

Many of the animals in nature have adopted legs for various environmental conditions. 

Centipedes, spiders, cockroaches, cats, camels, kangaroos, and human are among those, either with 

different number of legs or with different kind of walking. It is understandable that people turned 

their attention to those walking animals, after it was recognized that the human invented wheeled 

and tracked systems did not satisfy all the needs. In this sense, legged systems have a peculiarity of 

imitating the nature. This imitation is obvious in structural similarity between legged robots and 

imitated animals; however, for today the imitation is not limited to structural design. Today 

researchers are trying to understand the underlying biological principles of walking in animals, 

namely the operational and control structures (Hughes, 1965; Wilson, 1966; Pearson, 1976; Cruse, 

1979; Cruse et. al, 1983; Cruse, 1990). The results of such biological researches have been utilized 

in robotics via inspirations. Among many of them are Cruse et al.(1998), Espenschied et al. (1996), 

Pfeiffer et al. (1995), and Clark et al. (2001). 

In research in biological sciences and robotics applications the most important item is the plan 

and coordination of leg movements. The plan of walking, namely the “gait pattern”, determines the 

sequence of stepping of legs with their stance and swing durations in each step. Mahajan et al.(1997) 

gives the following definition for gait: “The gait of an articulated living creature, or a walking 

machine, is the corporate motion of the legs, which can be defined as the time and location of the 

placing and lifting of each foot, coordinated with the motion of the body, in order to move the body 

from one place to another.” Animal gaits can be divided into two main groups as statically stable 

and dynamically stable. In statically stable gaits, the ground projection of the center of gravity of the 

system always lies in the polygon determined by the supporting legs. In every step, a new polygon is 

formed and the center of gravity always stays inside these polygons. The six and eight-legged 

animals adopt, mostly, statically stable gaits (Figure 1.2). The disadvantage of such gaits is that the 

locomotion is considerably slow in order to sustain the static stability. Dynamically stable gaits, on 
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the other hand, are the fast gaits, in which the center of the body is always in a dynamical motion. In 

dynamically stable gaits the center of gravity is not always inside a polygon determined by the 

supporting legs. This means that, in dynamically stable gaits there occur orientations in which the 

animal cannot stand statically without falling down. Therefore, the animal has to be in motion in all 

phases of dynamically stable gaits. Two legged animals have to adopt dynamically stable gaits, and 

four legged animals mostly adopt dynamically stable gaits, although they can also adopt statically 

stable gaits (Figure 1.3). The walk gait that is adopted by almost all four legged animals, the trot gait 

of horses, the rack gait of camels, the canter and gallop gaits of horses, and the bound gait of dogs 

are some of the dynamically stable gaits of four legged animals in nature. (Lasa, 2000) 

 

Figure 1.2: Tetrapod and tripod gaits for six legged insects (statically stable gaits) [Adapted from Pfeiffer et al. 
(1995)]. 

 

(a)       (b)   (c) 

Figure 1.3: Three examples of four-legged animal gaits (dynamically stable gaits): (a) Ox in walk gait, (b) 
camel in rack gait, (c) horse in transverse-gallop gait. [Adapted from Lasa (2000).] 

The aim of the studies in biological sciences is to understand the mechanisms underlying the 

gaits of living creatures and to develop models based on those. In robotic applications modified 

versions of such models are applied to artificial robots. In Ferrel (1995), six important terms that are 

frequently used in describing gaits are given. In Pfeiffer (1995), three variables that fully define a 

regular gait pattern, in which all the legs perform the same movements with phase differences, are 
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given. For convenience of reading the introduction chapter here will be given slightly modified 

definitions of these nine terms adopted from Ferrel (1995) and Pfeiffer (1995). (For some of these 

terms a more mathematical definition is given in Chapter 2.) 

Protraction: The movement of the leg in which the leg moves towards the front of the body. 

Retraction: The movement of the leg in which the leg moves towards the rear of the body. 

Power Stroke: The phase of stepping of one leg, in which the foot is contacting the ground, 

the leg is supporting the body (contributing to lifting) and propelling the body. In forward walking, 

the leg retracts during this phase. It is also called stance phase or support phase. 

Return Stroke: The phase of stepping of one leg, in which the foot is in the air, being carried 

to the starting point of the next power stroke. In forward walking the leg protracts during this phase. 

It is also called swing phase or recovery phase. 

Anterior Extreme Position (AEP): The extreme forward position that the foot can be placed. 

In forward walking, this is mostly the target of the foot in return stroke, and starting point of the foot 

for power stroke. 

Posterior Extreme Position (PEP): The extreme backward position that the foot can be 

placed. In forward walking, this is mostly the position of the foot where the power stroke ends, and 

the return stroke starts. 

Duty Factor: The ratio of the part of the walking cycle during which the leg makes contact 

with the ground. 

Ipsilateral Phase: The phase lag between two neighboring legs on the same part of the body. 

Contralateral Phase: The phase lag between opposing legs in the two parts. 

The six-legged walking research reveal that insects mostly adopt regular walking (regular-

periodic gaits) in which all the legs perform periodic motions; the motions of different legs are 

similar in structure with the same period, but differ in their phase of oscillation. The speed of 

walking is determined by the speed of oscillation of the legs. Research results reveal that six-legged 

insects adopt different gait patterns according to the speed of walking (Figurw 1.2; Pfeiffer et al., 

1995). In slow walking the insects use gaits in which most of the legs have contact with the ground 

(for example the tetrapod wave gait in which four legs have contact to the ground at any time); when 

the speed is increased the gait changes towards the tripod gait where three legs have contact to the 

ground at any time. This passage between gaits is a smooth one and achieved by continuous change 

of the parameters mentioned by Pfeiffer (1995) (the last three parameters above).  

Ferrel (1995) gives a brief review of the three biologically inspired models for six-legged 

insect gaits, proposed by Wilson (1966), Cruse (1990), and Pearson (Pearson, 1976; Wilson, 1966). 

Wilson’s model is a descriptive one based on rules imposed on the variables and parameters. In fact, 
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the work of Wilson seems to have established the basic principles that are used also in the other two 

models. The Pearson model is based on neurological models and oscillators working together to 

control the leg movements, speed, and coordination. In the Pearson model the motor neurons, the 

oscillators and the command neuron maintain the rhythmic walking. The servomechanism and reflex 

modules modify this rhythmic walking according to the feedbacks. Ferrell (1995) argues that this 

modification may even lead to walking with five legs in case of leg amputation. The Cruse model is 

based on mechanisms that excite or inhibit the starting and ending of return and power strokes. The 

modifications on the PEP make up the basics of the Cruse model. The other mechanisms can be 

considered as modifications on the basic pattern. In the following will be given a summary of these 

three models based on the explanations in the mentioned references. 

The rules in the Wilson model are as follows: (adapted from Ferrell, 1995; Donner, 1987) 

1. A wave of protraction runs from rear to front, and no leg recovers from the power 

stroke until the one behind is placed in a supporting position. 

2. Contra-lateral legs of the same segment alternate in phase. 

3. Protraction time is constant. 

4. Frequency of the oscillation of legs varies (retraction time decreases as frequency 

increases). 

5. The intervals between the steps of the hind leg and the middle leg and between the 

middle leg and the foreleg are constant, while the interval between the steps of 

foreleg and hind leg varies inversely with frequency. 

Basic elements in the Pearson model (refer to Figure 1.4): (adapted from Ferrell, 1995) 

1. Flexor motor neurons: The neurons that protract the leg when activated. A flexor 

motor neuron exists for each leg. 

2. Extensor motor neurons: The neurons that retract the leg when activated. An 

extensor motor neuron exists for each leg. 

3. Oscillator: Generates the stepping pattern by controlling the activation of the flexor 

and extensor neurons. Protraction time is constant; retraction time varies with the 

frequency of oscillation. Speed of walking is determined by the frequency of 

oscillation. The oscillators that control contra-lateral legs of the same segment 

oscillate with 1800 phase difference. The three oscillators along either side of the 

body maintain the same temporal lag. When the frequency of oscillation changes, the 

phase difference between the ipsilateral legs changes due to the constant temporal 

difference. Therefore, changing the oscillation frequency generates different gaits. It 

should be noted that there exist a unique gait for each frequency of oscillation, 

namely for each value of speed. An oscillator exists for each leg. 
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4. Command neuron(s): The neuron that determines the speed of walking by changing 

the frequency of oscillators controlling the legs. 

5. Servomechanism circuit: Uses feedback from the joint receptors to adjust the 

strength of the supporting and pushing according to the load. 

6. Reflex circuit: Delays or prevents the command that protracts the leg forward. This 

reflex considers whether another leg has taken up some of the load. This reflex is 

important in cases of amputated leg or gait transition. 

 

Figure 1.4: Schematic diagram showing the oscillatory structure of the Pearson model. The oscillators that 
control contra-lateral legs of the same segment oscillate with 180 degrees phase difference. The three oscillators 
along either side of the body maintain the same temporal lag. When the frequency of oscillation changes, the 
phase difference between the ipsilateral legs changes due to the constant temporal difference. Therefore, 
changing the oscillation frequency generates different gaits. [Adapted from Ferrell (1995).] 

The six mechanisms of the Cruse model can be mentioned as follows (refer to Figure 1.5): 

(adapted from Cruse et al., 1998; Ferrell, 1995) 

1. A rostrally directed influence inhibits the start of the return stroke in the anterior leg 

by shifting the PEP to a more posterior position. This is active during the return 

stroke of the posterior leg. 

2. A rostrally directed influence excites the start of the return stroke in the anterior leg 

by shifting the PEP to a more anterior position. This is active during the beginnings 

of the power stroke of the posterior leg. It also applies to the contra-lateral leg. 

3. A caudally directed influence, depending upon the position of the anterior leg, 

excites the start of a return stroke in the posterior leg by shifting the PEP to a more 

anterior position. The start of the return stroke is more strongly excited (occurs 

earlier) as the anterior leg is moved more rearward during the power stroke. This 

causes the posterior leg to perform the return stroke before the anterior leg begins its 



9

return stroke. This is active during the power stroke of the anterior leg. It also applies 

to the contra-lateral leg. 

4. The AEP is modulated by a single, caudally directed influence depending on the 

position of the anterior leg. This mechanism is responsible for the targeting behavior; 

namely the placement of the foot at the end of protraction is made close to the foot of 

the anterior leg. (This behavior is described as follow-the-leader strategy in Donner 

(1987), and its facilities for the walking system are discussed in detail. Briefly, the 

advantage of follow-the-leader strategy can be explained as follows: With this 

strategy the rear legs follow the placement of the one in the front. The animal 

searches foot places only for the front legs. Afterwards it is assured that the middle 

and hind legs will automatically be placed in safe positions.) 

5. This mechanism has to do with distributing propulsive force among the legs. 

6. This mechanism serves to correct errors in foot placement. 

 

Figure 1.5: Schematic representation of the six mechanisms in the Cruse model. [Adapted from Cruse et al. 
(1998).] 

The Wilson and Pearson models are more based on regular walk of six legged insects, namely 

they give descriptions and parameters of regular-periodic gaits, in which the legs make the same 

movements with phase differences. These two models do not seem to be compatible with free gaits, 

in which at least one of the legs on one side has a differently structured stepping (the duty factor of 

some of the legs may be different than the others, or there can be no constant ipsilateral or 

contralateral phase differences, or the protraction time may be different for different legs). Different 

structured legs, different robot configurations, and results of some learning algorithms might 

necessitate usage of free gaits. Especially deficiency or non-symmetries in the legs might necessitate 

adopting free gait patterns. Among the three models, the Cruse model seems to be more compatible 

with those. The Cruse model does not impose structured movement but it defines mechanisms whose 
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results depend on the existing condition of the legs. For example, compared to the other two models, 

the Cruse model seems to be more applicable to five legged walking with some modifications on the 

excitation and inhibition mechanisms. Therefore, the Cruse model seems to be most significant of 

the three for robotic researches dealing with free gaits. 

The above three models point to a common structure for six-legged systems. In this structure 

there is a central pattern generator mechanism and a reflex mechanism. (Klaassen, 2002) The central 

pattern generator mechanism produces rhythmic motions without the need of sensory feedback. It 

corresponds to the open loop control in the overall system. The central pattern generator mechanism 

is able to manage walking in normal conditions where no exceptions, such as obstacles, deficiencies, 

or slippage occur. Considering the lists for the three models above, all the rules of the Wilson model, 

the first four elements for the Pearson model, and the first three mechanisms of the Cruse model 

correspond to this central pattern generator mechanism in their own models.  

The reflex mechanism, on the other hand, compensates for the deficiencies from the central 

pattern due to unexpected effects. It takes feedback from the actuators and tip point sensors, and 

modifies the central pattern accordingly. The reflex mechanism corresponds to the closed loop 

control in the overall system. Such reflexes may prolong the retraction phase, may increase the 

height of the foot in protraction, or may change the force on actuators. The fifth and sixth elements 

in the Pearson model, and the last three mechanisms in the Cruse model correspond to the reflex 

mechanism in their models. (In Klassen (2002), the Cruse model is interpreted as a model using only 

reflexes. This interpretation is correct, considering the fact that the Cruse model works only based on 

inhibitory and excitatory mechanisms, all of which need some feedback. Therefore, all the 

mechanisms in the list are reflexive. However, since the feedbacks necessary for the first three are 

only contact information, it makes sense to consider these as the central pattern generation 

mechanism. Despite of this consideration, it should be again noted that the Cruse model seems to be 

the most flexible one to handle free gait patterns.) 

1.3. Multi Legged Walking     

In light of the above reviewed biological inspirations, here will be given five items as the 

tasks to be accomplished in order to maintain a multi legged locomotion control in robotic 

applications. In literature there can be found various studies on each of these items. It should be 

noted that each of these items is a field of research in robotics, and there are various approaches and 

very different solutions for every of them. In these works, mostly the interested item of the research 

is studied in detail. The remaining items are mostly left out of the study either with the assumption 

that they are already maintained at the background, or with utilizing very simplified-straightforward 

solutions. Here, the listing below is intended to be a guide in classifying these researches, and to give 

an idea about the total detailed work on multi legged robots. 

A generalized list of items of tasks for the work of a multi-legged robot system is as follows: 
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1. A gait pattern generation module. 

2. A coordination and control module that controls the legs according to the gait 

pattern generator and compensates unexpected disturbances. 

3. Control of protraction of one leg. 

4. Control of retraction of one leg. 

5. Regulation of the force distribution to the legs. 

Gait pattern generation corresponds to the central pattern generation; namely, the generation 

of rhythmic plan that determines which leg will be in power or return stroke in any time. This plan 

also determines the duration of these strokes for each leg. Based on the biological inspirations above, 

this module is an open loop command generator that takes no feedback from the legs. It outputs the 

power or return stroke commands for the legs. In Pfeiffer (1995) an oscillatory gait pattern generator, 

very close to the Pearson model, is adopted, where the parameters of oscillation determine the gait 

and speed of walking. In Cymbalyuk (1998) the Cruse model is adapted, and the parameters of the 

mechanisms are optimized to obtain the most stable gait pattern generator. In Mahajan (1997) and 

Huang and Nomani (2003) constant gait patterns are adopted, where the gait pattern generator 

continuously generates these constant gaits. 

The coordination and control module controls the legs according to the commands of gait 

pattern generator and unexpected disturbances from external or internal effects. The stroke 

commands of the gait pattern generator and the feedback from the legs (actuators and tip points) are 

input to the coordination and control module. In normal conditions, namely in existence of no 

disturbances, the coordination and control module directly applies the command of the gait pattern 

generator. However, in case of disturbances (a leg may be deficient, there may be obstacles or holes, 

the ground may be slippery), it delays or modifies the commands of the gait pattern generator. 

Furthermore, it adopts some reflexive behaviors for the legs in special cases. For example in case of 

an obstacle or a hole, it commands the leg to adopt search reflexes that would result to place the foot 

above, right or left of the obstacle or on the other side of the hole (Espenschied, 1996). Turning is 

also a task of the coordination and control module. It achieves turning by changing the AEP and PEP 

of the legs. The coordination and control module outputs commands for the control of retraction and 

protraction of the legs. Based on these, the coordination and control module can be considered as an 

intermediary reflex and control level between the central pattern generator and the individual legs. In 

Celaya and Porta (1998), the advancement of the robot is determined by an optimization on the 

coordinated retraction movement of the legs. In every step the PEPs of the supporting legs are 

determined by this optimization. This might be considered as an example of the coordination and 

control module that maintains the advancement of the robot in each step. 

Retraction and protraction are the two basic movements for stepping of legs. Every leg has a 

retraction and protraction module. These modules are excited by the coordination and control 
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module, with the input of AEP and PEP in every step. The retraction module generates the retraction 

movement from the given AEP to PEP; the general protraction module generates the protraction 

movement from the given PEP to AEP (Erden and Leblebicioğlu, 2004). The retraction module 

performs the retraction of the supporting legs whose trajectory are definite once the movement of the 

robot body is given. The protraction module performs the protraction of the returning legs, whose 

trajectory are not definite but might be the subject of an optimization. Therefore, while retraction is 

trivial once the body motion is given, protraction is non-trivial with existence of many possibilities. 

The protraction and retraction modules send the angle commands to the actuators. 

The force distribution module manages the regulation of torques on the joints of both 

retracting and protracting legs. Force distribution to supporting legs is an important problem in multi 

legged systems. In statically stable robots at least three legs should support the body at any time. The 

equations relating the body dynamics to feet-ground contact forces make up an indeterminate system 

of six equations for nine (when three legs are on the ground) or more (more than three legs are on the 

ground) unknown foot forces. Therefore, the foot-ground interaction forces can be distributed in 

infinitely many ways. The problem in force distribution is to find the most efficient distribution 

among the infinitely many possibilities. The legs in protraction should also be dynamically 

controlled according to the trajectory of protraction. Given the body acceleration and leg kinematics 

the required torques on protracting leg-joints can be found using conventional robotic formulations. 

Therefore, while determination of forces on the protracting legs is a matter of calculation, the 

distribution of forces to the supporting legs is a matter of optimization among the infinite 

possibilities. The solution of the force distribution in all legs, maintains the required motion of the 

body platform with the given kinematic positioning of the legs determined by the other modules. The 

force distribution problem is more related to the dynamics of the robot, while the former items 

maintain the kinematics of walking. 

1.4. Content of the Thesis 

In this thesis five pieces of study are performed for the walking of the six-legged Robot-

EA308, respectively in the following five chapters. These five chapters do not correspond one by 

one to the five items of tasks given above, but the five items are still useful for theexplanation of the 

content.  

Chapter 2, and Chapter 6 are directly related to the first item, since they deal with analysis of 

gaits, and provide insight for constructing the gait pattern generation modules. In Chapter 2 an 

analytical study of  “standard gaits” are performed. Analytical study of gaits is a rather rare work in 

the literature. In this chapter the definitions and mathematical tools for analysis are provided, a 

classification of orderly gaits (including the wave gaits) is introduced, various theorems for stability 

analysis and calculations are stated and proved. It is argued that, the chapter provides an easier and 
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more insightful approach to stability analysis, although its results are redundant from theoretical 

point of view.  

Chapter 3 is related with both the first and second items of tasks. In this chapter a free gait 

generation algorithm is presented, which can be considered mainly as a task of the first item, but also 

as a task of the second since the AEP and PEP are inherently determined by the free gait generation. 

This free generation is equipped with reinforcement learning in order to achieve improvement of 

stability and adaptation to unexpected conditions. This reinforcement learning can be considered as a 

reflexive mechanism that adapts the robot to changing environmental conditions, therefore 

strengthens the chapter’s relation with the second item. The adaptation facility of the scheme is 

presented with learning of five-legged walking in case of deficiency on one of the rear legs. By using 

the free gait generation with reinforcement learning, the central pattern generation and reflex models 

are conciliated. The developed free gait generation with reinforcement learning is applied to the 

Robot-EA308 in real time. The robot improves its stability during regular walking, and learns to 

walk with five-legs without any falling in case of a deficiency on one of the rear legs. Another 

approach for conciliating the central pattern generation and reflexive model with reinforcement 

learning was presented in Erden and Leblebicioğlu (2005).  

Chapter 4 is directly related with the third item of tasks, since it aims to find the optimum 

trajectory and perform the control for a leg in protraction. In this chapter the energy optimal 

trajectories of protraction are generated by using the optimal control technique, but with some 

modifications to avoid sticking in local optimums. Using the optimum trajectories, a controller is 

designed for the three-joint leg system, by making use of the approach of “multi agent system based 

fuzzy controller design for robot manipulators” (Erden et al., 2004). The performeance of the 

controller is demonstrated with the Robot-EA308. 

Chapter 5 is related with the fifth item of tasks. In this chapter the required forces and 

moments for the kinematic motion of the robot are distributed to the supporting legs by making use 

of the approach of “torque distribution”. Rather than the tip point forces, the square-sum of the joint 

torques are minimized. Since the square-sum of joint torques is a close indicator of dissipated power, 

the distribution proposed in the chapter is regarded as “energy optimal torque distribution”. For the 

distribution, a quadratic programming problem corresponding to the desired objective and 

constraints, is solved. The protraction movement used in the example of tripod-gait walking in this 

chapter is generated by the controller developed in Chapter 4. 

In Chapter 6, an energy analysis of wave gaits is performed. This chapter, though related with 

the first item of tasks, is put in the last; since, it extensively makes use of the torque distribution 

developed in Chapter 5 and the mathematical tools of stability analysis developed in Chapter 2. In 

Chapter 6, an energy efficiency analysis of wave gaits is performed by tabulating the calculated 

energy criteria using a simulation model. Based on this analysis, strategies are derived in order to 
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determine the parameters of wave gaits for the most efficient walk. The strategies are justified with 

using the actual Robot-EA308.  

There is no chapter specifically dealing with retraction of legs mentioned as the fourth item of 

tasks. This is because, as explained before, once the body motion is given, the trajectories of the 

retracting legs are definite. The only matter with this item is to perform the retraction of all 

supporting legs in coordination with each other. This is inherently achieved both in simulations and 

in applications with the Robot-EA308 throughout the work. 

Chapter 7 concludes the work by summarizing the contributions of each of the cited chapters.  

In the following, each chapter is presented as a work in itself. Although the results of the 

preceding chapters are used in some of them, these are not significant for comprehension of the work 

in a single chapter. Therefore, interested reader can read any of the chapters without having read the 

others. In each chapter there is an introduction section, main body sections, and a concluding section. 

In the introduction the problem handled in the chapter is introduced with extensive review of the 

related literature, and the distinguishing features of the chapter are mentioned in relation to those. In 

the main body sections the approaches to address the highlighted problems are presented. The 

concluding section summarizes the results of the chapter, and highlights the contributions. 
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CHAPTER 2  

STABILITY ANALYSIS OF “STANDARD GAITS” 

2.1. Introduction 

Studies on the multi-legged animals in nature and the inspirations derived from those (Ferrell, 

1995; Kar et al., 2003; Erden and Leblebicioglu, 2005) reveal that wave gaits are frequently 

observed in nature because of their high stability. Doner (1987) makes an intuitive illustration of 

why rear-to-front waves of stepping, which is the case in wave gaits, is more stable than front-to-rear 

waves. Besides, it mentions the advantage of the follow-the-leader strategy, which is realized with 

wave gaits, and with which the insect needs to make search for foot placement of only the front legs. 

As a result of their good stability, wave gaits are widely used in multi-legged walking machines; 

moreover, they have become the conventional frame of comparison for research results (Inagaki, 

1997; Preumont et al., 1991; Pal et al., 1994; Inagaki and Kobayashi, 1994; Ye, 2003).  

Despite their wide range of application, there are very few researches on the analytical 

analysis of the stability of multi-legged gaits. Song and Waldron (1987) provided the basic 

definitions for the analytical study of wave gaits; then, stated and proved the basic theorems to 

calculate their stability margin. This paper is the basic source of inspiration for the definitions and 

theorems presented in this chapter. Later, Song and Choi (1990) published another paper where the 

range of duty factors, in which the wave gaits are optimally stable, were determined for four, six, and 

larger number of legs. In this paper the phase conditions violating the general optimality of wave 

gaits are tabulated one by one, and the ranges of duty factor in which wave gaits are optimally stable 

for these conditions are given. Considering the six legged walking, this paper proves that the wave 

gait is optimally stable among all periodic and regular gaits (the definitions are to be given) for all 

possible values of duty factor (β), namely in the range of 1/2≤β<1. The nine-pages of proof for the 

single basic theorem in this paper clearly demonstrates how tedious it is to prove the optimal 

stability of wave gaits in the universe of periodic and regular gaits: the authors had to analyze 19 

cases for derivation of the violating conditions, and then 31 cases to check these conditions for the 

six-legged case, and 5 cases to check them for the eight legged case; totally 55 cases are analyzed 

one by one. Though the proof is very important to show the optimum stability of wave gaits in the 

determined ranges, it is overwhelmed by analysis of various particular cases, rather than narrowing 

down from the general to the optimum. The approach of the paper makes it difficult to get a 
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comprehensive understanding of the nature of stable walk in multi-legged systems. In fact, it is 

possible to come up with a simpler and more insightful proof of the optimal stability of wave gaits 

for six (and four)-legged walking if the universe of search is limited to periodic, regular, and 

constant phase increment gaits, which are defined to be “standard gaits” in this chapter (the 

definitions are to be given).  

In the chapter here the stability margin for the gaits of this limited universe is derived based 

on some theorems, and the optimality of the wave gaits in this universe is proved for six (and four)-

legged walking. To mention again, the ranges of the optimality of the wave gaits are already 

determined by Song and Choi (1990) considering all the periodic and regular gaits; hence, the 

optimality of wave gaits among all the standard gaits, which constitute a subset of regular and 

periodic gaits, is already proved. Therefore, what this chapter does is in fact redundant from a 

theoretical point of view. However, it is believed that the proof here is significant from analytical 

point of view for the following reasons: 1) the proof is not based on analyzing single cases one by 

one, but follows a path of narrowing down from the general (standard gaits) to the particular (wave 

gaits), 2) therefore, the proof is more comprehensible, 3) it provides more insight to the nature of the 

stability of wave gaits, and 4) it provides a more systematic approach which can be very useful to 

analyze the effect of modifications on wave gaits (this fourth item is especially important in relation 

to the “phase modified wave gaits” introduced in Chapter 6). 

Furthermore, this chapter systematizes the basic definitions of multi-legged walking, most of 

which were provided by Song and Waldron (1987). This systematization is performed by adding 

new definitions and establishing the enclosure and intersection relations between the defined sets of 

gaits. As a result, the chapter provides the general set picture of the gaits under the “orderly gaits”. 

Such systematization is considered to be significant in order to guide the theoretical work on stability 

of multi-legged walking. Lastly, this chapter provides the analytical proofs of the very basic 

propositions (e.g., the range of duty factor, and superior stability of rear-to-front waves). To our 

knowledge, this chapter is the first to attempt to make such systematization and to prove of such 

basic propositions. 

2.2. Definitions and Theorems for Stability Analysis of Periodic Gaits 

In this section, some definitions and theorems are given for stability analysis of gaits for 

multi-legged walking. These definitions and theorems are for the 2n-legged system in Figure 2.1. 

The definitions in this section are adopted with some modifications and additions from Song and 

Waldron (1987). At the end of the section, the set relations among the defined gaits are demonstrated 

in Figure 2.3. The reader is invited to refer to this figure while reading the definitions. 
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Figure 2.1: The numbering of the six legs and the parameters related to legs-body structure. 

2.2.1. Definitions 

Fractional Function: A fractional function F[Ψ] of a real number Ψ is defined as follows: 

F the fractional part of , 0
1 the fractional part of , 0  

Orderly Gait: A gait is called orderly if each leg steps with a period of its own, not 

necessarily being equal to the period of any other leg. 

Periodic Gait: An orderly gait is said to be periodic if all the legs have the same period of one 

step cycle. This period is called the period of the gait. All the legs pass through the same phase of 

stepping in every period of the gait. 

Phase difference: In a periodic gait, the ratio of the duration between two instants of walking 

to the duration of a full period is called the phase difference between those two instants. 

Relative Phase and Local Phase: In a periodic gait, the phase difference with which a leg is 

leading the left-front leg (leg-n) is called the relative phase of the leg; the relative phase of leg-i is 

denoted by φi. By definition, φi is restricted to 0≤φi <1. The self-phase difference of the leg with 

respect to the phase of putting the foot on the ground is called the local phase of the leg; the local 

phase of leg-i is denoted by ψi. For example, if the local phase of leg-n is given by t, and leg-i is 

leading leg-n with a phase difference of φi, the following equations hold: 

n t n 1 F t n 1

2 F t 2 2 n 1 F t 2 n 1

1 F t 1 2 n F t 2n
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Ipsilateral Phase Difference, φ: If a gait has the same phase difference between the 

successive legs on a side, this phase difference is called the ipsilateral phase difference of that side. 

By definition, the ipsilateral phase difference is limited to the interval [0, 1). Namely, 0≤φ <1 holds. 

Contralateral Phase Difference, ϕ: If a gait has the same phase difference between the legs 

of all right-left couples, this phase difference is called the contralateral phase difference of that gait. 

By definition, the contralateral phase difference is limited to the interval [0, 1). Namely, 0≤ϕ <1 

holds. 

Constant Phase Increment Gait: A periodic gait is said to be constant phase increment if it 

has the same ipsilateral phase difference on each side. The ipsilateral phase difference is the constant 

phase increment of that gait. For a gait with the constant increment of φ, the local phases of the legs 

take the following form, where ϕ is the contralateral phase difference: 

n t n 1 F t

2 F t n 2 2 n 1 F t n 2
1 F t n 1 2 n F t n 1

                  (2.1) 

Symmetric Gait: A gait is said to be symmetric if the phase difference between the right and 

left legs (contralateral) is ½. If ϕ=½, in (2.1), then a symmetric constant phase increment gait is 

obtained. 

Support and Return Phases, Retraction and Protraction: Considering the stepping of one 

leg, the motion has two phases. In the support phase the leg is placed on the ground, supports the 

body and propels the body towards the direction of the motion. The movement of the leg in the 

support phase is called retraction. In the return phase of stepping the leg is lifted, and the foot is 

moved in the air towards the starting point of the support. The movement of the leg in the return 

phase is called protraction.  

Duty Factor: In an orderly gait, each leg has a duty factor of its own, given by the ratio of the 

duration of the support phase to the duration of full stepping. For the possibility of advancement, the 

duty factor has to be less than 1. The duty factor of the leg-i is denoted by βi.  

Regular Gait: An orderly gait is said to be regular if all the legs have the same duty factor, βi.  

Standard Gait: A gait is standard if it is (periodic,) constant phase increment, and regular. 

Wave Gait: A periodic, regular, symmetric and constant phase increment gait is a wave gait if 

the constant phase increment is (1-β). Namely, the gait defined by (2.1) is a wave gait if φ=1-β and 

ϕ=1/2. Wave gaits are rear-to-front gaits, in which a leg starts protraction immediately after the rear 

leg is put down. Therefore, the gait creates a wave of stepping from rear to front. A wave gait phase 

distribution can be given as follows: 
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n t n 1 F t 1 2

2 F t n 2 1 2n 1 F t n 2 1 1 2
1 F t n 1 1 2 n F t n 1 1 1 2

 

For the case of six-legs, the phase distribution of wave gaits take the following form: 

3 t 4 F t 1 2
2 F t 5 F t 1 2
1 F t 2 6 F t 2 1 2

                                         (2.2) 

Support polygon: It is defined as the polygon whose vertexes are constructed on the 

horizontal plane by vertical projections of the foot-ground interaction points of the supporting legs. 

A support polygon is possible only if at least two legs on one side and one leg on the other are 

supporting. (Figure 2.2). 
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Figure 2.2: Support polygon, front and rear longitudinal stability margins for the six-leg case. 

Front and Rear Stability Margins: For any support polygon, the distance between “the 

projection of the center of gravity on the support polygon” and “the intersection of the front edge (in 

the walking direction) of the polygon with the longitudinal centerline of the body” is called the front 

stability margin. The distance between “the projection of the center of gravity on the support 

polygon” and “the intersection of the rear edge (in the opposite direction of walking) of the polygon 

with the longitudinal centerline of the body” is called the rear stability margin. 

Longitudinal Stability Margin: The minimum of the front and rear stability margins is called 

the longitudinal stability margin of the support polygon.  

(Longitudinal Gait) Stability Margin: The minimum of the longitudinal stability margins of 

all possible support polygons during walking according to a gait is called the stability margin of that 

gait. If the stability margin of a gait is larger than that of another gait, the former gate is called to be 

more stable than the latter. 
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Statically Stable Gait: A gait is said to be statically stable if its stability margin is greater than 

zero. Otherwise, the gait is said to be statically unstable. If a gait is stable this means that the 

projection of the center of gravity on the horizontal plane always remains inside the support polygon; 

otherwise, the center of gravity remains outside the support polygon in some instant of the walk and 

the body falls down. 

Stroke length (R): The distance that the body moves throughout the support phase of a leg. 

(Figure 2.1) 

Pitch length (P): The distance between the centers of stroke of the ipsilateral legs. (Figure 

2.1) 

Throughout the chapter it will be assumed that the stroke length is less than the pitch length, 

namely R<P, which is the case in Figure 2.1. In Figure 2.3, the enclosure relations of the subsets of 

“orderly gaits” are demonstrated based on the given definitions. In this figure it is clearly observed 

that wave gaits are the regular, symmetric, and constant phase increment gaits with the ipsilateral 

phase difference of φ=1-β. Song and Choi (1990) considered the gray colored region of periodic and 

regular gaits for the general case of 2n-legged walking. In this region, they determined the ranges 

where the wave gaits are optimally stable. Namely, wave gaits are not optimally stable among all 

periodic and regular gaits for 2n-legged walking, but only in the determined ranges. However, for 

the case of six and four-legged walking their paper proves that wave-gaits are optimally stable 

among all periodic and regular gaits for all possible ranges of duty factors. In this chapter the striped 

region of standard gaits is considered for six(and four)-legged walking. The stability margin of the 

standard gaits is derived and the wave gaits are proved to be optimally stable among all the standard 

gaits for the six(and four)-legged case. This figure clearly demonstrates that the proof of Song and 

Choi (1990) is more general than the one here. However, a comparison of the analysis of this chapter 

and that of Song and Choi (1990) reveals that the proof here is much more comprehensible and 

systematic. 
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Figure 2.3: Demonstration of the enclosure relations between the subsets of orderly gaits. 

2.2.2. Theorems 

Song and Waldron (1987) stated and proved four theorems that simplify the stability analysis 

of periodic, regular, symmetric, and constant phase increment gaits. Afterwards, based on these four 

theorems and an additional fifth theorem, they derived the formula for the stability margin of wave 

gaits. The aim here is to generalize the analysis of Song and Waldron (1987) to standard gaits 

(periodic, regular, constant phase increment gaits), namely to perform the same analysis without the 

limitation of symmetry and fixation of the constant phase increment to φ=1-β. With this 

generalization the stability formula of standard gaits is derived and the wave gaits, which compose a 

subset of standard gaits, are proved to be most stable in the universe of standard gaits for six(and 

four)-legged walking. Before going in those analysis, first the very basic theorem of duty factor is 

proved; then the three theorems of Song and Waldron (1987), which are applicable to standard gaits 

are stated without repeating the proofs; and lastly the theorems related to standard gaits are stated 

and proved.  

Theorem 2.1: (Basic Theorem of Duty Factor) For a 2n-legged periodic and regular gait, the 

minimum possible duty factor with which static stability can be achieved is 3/(2n); namely β≥3/(2n). 

Proof: A gait can be stable only if at least three legs, two being on one side and one being on 

the other, are supporting at any instant of the walk. If this is violated at any instant the gait is 

statically unstable. Here will be shown that, this condition is violated for some instant if β<3/(2n). 

Let's assume that β<3/(2n) and consider one side of the robot. If none of the any two legs support at 

the same time, namely if only one leg supports at any time, the duration of total support resulting 
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from all the legs on one side would be βn. This is the longest duration that can be achieved by single 

leg support on one side. Since β<3/(2n), βn<3/2 holds. It is clear that 1<βn should hold, otherwise 

there would occur durations within which no leg is supporting on that side. As a result, the maximum 

duration of a single leg support would be more than one period, but less than one and a half. Let's 

denote the excessive part as γ; then γ=βn-1 holds. This excessive part can be transformed to the 

duration of one period, so that in one period a duration of this excessive amount happens to be 

supported by two legs. Therefore, the longest duration that can be supported by two legs on one side 

in a period is γ. If this duration of two-leg support is increased or any part of this duration is 

supported by more than two legs, in the remaining part of the period, there would occur instants 

without any support. Therefore, the shortest duration that has to be supported by single leg on one 

side is α=1-γ=2-βn. Since βn<3/2 is valid, α>1/2 holds. If this shortest duration of single leg 

support were less than half of the period, this duration would be compensated with the double leg 

support of the other side. However, this is not the case, and the shortest single leg support on the 

other side is also greater than half of the period; therefore, the longest double leg support on the 

other side is less than half the period. This results that there has to occur single leg support on both 

sides at least for the duration of δ=2α-1=3-2βn. Single leg support on both sides results in statical 

instability. As a result, this duration has to be made less than zero, which necessitates that 3-2βn≤0 

holds, or equivalently β≥3/(2n). ▄ 

Lemma 2.1: (Due to Theorem 2.1) The minimum duty factor for a statically stable periodic 

and regular gait of six-legged walking is 1/2. Therefore for a six-legged statically stable periodic and 

regular gait, 1/2≤β<1. The minimum duty factor for a statically stable periodic and regular gait of 

four legged walking is 3/4. Therefore for a four-legged statically stable periodic and regular gait, 

3/4≤β<1. 

Adaptations from (Song and Waldron, 1987): 

Theorem 2.2: If the body is moved unidirectionally along the longitudinal body axis, then the 

minimum stability margin in the period of a support pattern is the lesser of the rear stability margin 

at the beginning and the front stability margin at the end of that support pattern. [Adopted from Song 

and Waldron (1987), the proof can be found on ibid.p.64.] 

Theorem 2.3: If the body is moved unidirectionally along the longitudinal body axis, then the 

minimum stability margin during a full cycle of walking time is the minimum of the following – the 

rear margins immediately after a leg is lifted from the rear boundary and the front margins 

immediately before a leg is placed ahead of the front boundary. [Adopted from Song and Waldron 

(1987), the proof can be found on ibid.p.64.] 

Theorem 2.4: For a 2n-legged periodic, regular, and constant phase increment gait, any 

support pattern has a second support pattern that is mirror symmetrical with it about the lateral body 

axis, which goes through the center of the body and is perpendicular to the longitudinal body axis in 
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a locomotion cycle. [Adopted from Song and Waldron (1987), the proof can be found on ibid.pp.65-

66.] 

Lemma 2.2: (Due to Theorems 2.2-2.4) The stability margin of periodic, regular and constant 

phase increment gaits (standard gaits) can be found by taking the minimum of all the rear 

longitudinal stability margins after a leg is lifted from the rear boundary during a full locomotion 

cycle.  

Lemma 2.3: For a 2n-legged walking machine with the configuration given in Figure 2.1, the 

y component of the support position of a supporting leg with phase ψi is given as follows:  

Pi Ci R 2 i R  

where the y component of the position of the stroke center, Ci is given by, 

Ci

1
2

2 i n 1 P ,i n

1
2

3n 2i 1 P , i n
 

Theorems for Standard Gaits: 

The Rule of Neighborhood: Considering all the legs in clockwise direction, namely in the 

circle of 1_2_3_..._(2n-1)_(2n)_1, if a leg is lifted, then both of the legs in the neighborhood of the 

lifted leg should be supporting.  

Theorem 2.5: The rule of neighborhood for a standard gait for 2n-legs with duty factor β is 

satisfied if and only if 

β≥φ≥1-β      and        β≥ϕ≥1-β  .                                            (2.3) 

Proof:  According to the rule of neighborhood, the neighboring legs must be supporting 

throughout the period that a leg is lifted. It is obvious that the ipsilateral and contralateral phase 

differences have to be greater than zero; otherwise, the rule of neighborhood will not be satisfied 

between the successive legs on one side and between the front or rear legs of both sides, 

respectively. Therefore, 0<φ<1 and 0<ϕ<1 hold from the beginning. 

It should be noted that the duration of protraction is less than a period and there is only one 

continuous duration of protraction throughout a period. Therefore, if the neighboring legs are 

supporting at the instants that a leg is just lifted and just placed, then the neighboring legs are 

supporting throughout the protraction of the leg. The proof will be performed for all the legs, and it 

will be shown that the neighboring legs are supporting at the lifting and placing instants of all the 

legs provided that the given conditions hold. 

   Leg 1: At the instant rear-left leg is lifted the local phases of the legs 2, 1, and 2n will be as 

follows: 
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2 F ; 1 ; 2 n F .                            (2.4) 

The condition that leg-2 is supporting is 0≤ψ2=F[β-φ]≤β. If β-φ<0, then ψ2=1+β-φ, and the 

condition that leg-2 is supporting leads to 1+β≥φ≥1, which cannot happen since 0<φ<1. Therefore, 

β-φ≥0, which leads to ψ2=β-φ, and hence the condition that leg-2 is supporting reduces to β≥φ≥0. 

The condition that leg-2n is supporting is 0≤ψ2n=F[β+ϕ]≤β. If 0≤β+ϕ<1, then ψ2n=β+ϕ, 

and the condition that leg-2n is supporting leads to 0≤β+ϕ≤β, which cannot happen since 0<ϕ<1. 

Therefore, β+ϕ≥1, which leads to ψ2n=β+ϕ-1, and hence the condition that leg-2n is supporting 

reduces to 1≥ϕ≥1-β. 

At the instant rear left leg is placed the local phases of the legs 2, 1, and 2n will be as follows: 

2 F ; 1 1 ; 2 n F .                              (2.5) 

The condition that leg-2 is supporting is 0≤ψ2=F[-φ]≤β; this leads to the condition that 

1≥φ≥1-β.  

The condition that leg-2n is supporting is 0≤ψ2n=F[ϕ]=ϕ≤β; this leads to the condition that 

β≥ϕ≥0. 

The conditions that leg-2 is supporting when leg-1 is lifted and leg-1 is placed should hold 

together. Then it is assured that leg-2 is supporting throughout the protraction of leg-1. Therefore, 

β≥φ≥0 and 1≥φ≥1-β should hold together, which means β≥φ≥1-β. The same argument is valid for 

leg-2n, and the conditions lead to β≥ϕ≥1-β. As a result, the rule of neighborhood around leg-1 is 

satisfied only if both of the conditions of (2.3) are satisfied. 

   Leg i, 1<i<n: At the instant a non-extreme leg-i on the left side is lifted the local phases of 

the legs (i+1), i, and (i-1) will be as follows: 

i 1 F ; i ; i 1 F .                          (2.6) 

At the instant leg-i is placed the local phases of the legs (i+1), i, and (i-1) will be as follows: 

i 1 F ; i 1 ; i 1 F .                                   (2.7) 

The phase difference between leg-i and leg-(i+1) in (2.6) and (2.7) is the same as the phase 

difference between leg-1 and leg-2 in (2.4) and (2.5). Therefore the condition that leg-(i+1) is 

supporting during the protraction of leg-i is the same as the condition that leg-2 is supporting during 

the protraction of leg-1, namely β≥φ≥1-β. The phase difference between leg-i and leg-(i-1) in (2.6) 

and (2.7) is the same as the phase difference between leg-1 and leg-2n in (2.4) and(2.5), provided 

that ϕ is replaced with φ. Since the mathematical analysis will follow the same lines, the condition 

that “leg-(i-1) is supporting during the protraction of leg-i” is the same as the condition that “leg-2n 

is supporting during the protraction of leg-1”, provided that ϕ is replaced with φ. The result is again 
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β≥φ≥1-β. As a result, the rule of neighborhood around leg-i is satisfied only if the first condition of 

(2.3) is satisfied. 

   Leg n: At the instant front left leg is lifted and placed, the local phases of the legs (n-1), n, 

and (n+1) will be as in the following equations, respectively: 

n 1 F ; n ; n 1 F  

n 1 F ; n 1 ; n 1 F . 

   Leg (n+1): At the instant front right leg is lifted and placed, the local phases of the legs n, 

(n+1), and (n+2) will be as in the following equations, respectively: 

n F ; n 1 ; n 2 F  

n F ; n 1 1 ; n 2 F . 

   Leg i, n<i<2n: At the instant a non-extreme leg-i on the right side is lifted and placed, the 

local phases of the legs (i-1), i, and (i+1) will be as in the following equations, respectively: 

i 1 F ; i ; i 1 F  

i 1 F ; i 1 ; i 1 F . 

   Leg 2n: At the instant rear right leg is lifted and placed, the local phases of the legs (2n-1), 

2n, and 1 will be as in the following equations, respectively: 

2 n 1 F ; 2n ; 1 F  

2 n 1 F ; 2 n 1 ; 1 F . 

In the equations of leg n, (n+1), i (n<i<2n), and 2n, in all cases, the phase differences 

between the supporting legs and their neighbors are one of φ, -φ, ϕ, -ϕ. As it is demonstrated for the 

case of Leg i,1<i<n, the mathematical analysis for all these cases will be the same as that of Leg1 

with proper substitutions; therefore all these phase differences will lead to the same conditions 

derived for the case of Leg 1, which can be restated as β≥φ≥1-β and β≥ϕ≥1-β. 

Since the rule of neighborhood is satisfied for all the legs with the conditions of (2.3), these 

are also the conditions for the rule of neighborhood for the gait.▄ 

Theorem 2.6: (Stability for the Rule of Neighborhood) For the “standard gaits satisfying the rule of 

neighborhood” (SGSRN), the stability margin is given by Sr=min{Sr1, Sr2n}, where 

Sr1
1
2

2 n 4 P 2 R R 2 1  

Sr2n
1
2

2 n 4 P 2 R R 2
                                      (2.8) 
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Proof: Based on Lemma 2.2, the stability analysis, namely the search for the minimum 

stability margin throughout one period of walk, can be performed in the rear borders of all the 

supporting polygons, by analyzing all the instants that a leg is lifted from a rear boundary during a 

full locomotion cycle. If the rule of neighborhood is satisfied, the lift from the rear boundary occurs 

when either leg-1 or leg-2n is lifted; because, when leg-2 or leg-(2n-1) is lifted, respectively, leg-1 or 

leg-2n will already be supporting due to the rule of neighborhood. Therefore, the minimum stability 

margin when the rule of neighborhood is satisfied is the minimum of margins at the instants leg-1 

and leg-2n are lifted. 

At the instant leg-1 is lifted, leg-2 and leg-2n are supporting. The local phases of legs 2, 1, and 

2n are 

2 F ; 1 ; 2 n F . 

Due to the condition of –1<-φ≤0, for the phase of leg-2 the condition β-1<β-φ≤β holds. Since leg-2 

is supporting, this interval has to be shrunk to 0≤β-φ≤β; therefore 0≤ψ2=β-φ≤β. Due to the condition 

of 0≤ϕ<1, for the phase of leg-2n the condition β≤β+ϕ<β+1 holds. Since leg-2n is supporting, this 

interval has to be shrunk to 1≤β+ϕ<β+1; therefore 0≤ψ2n=β+ϕ-1<β. For these local phases, the 

position of the supporting points of legs 2 and 2n, and the resulting rear margin are as follows: 

P2 3 n P 2 R 2 R
P2 n 1 n P 2 R 2 R 1

S r1
1
2

P2 P2 n
1
2

2n 4 P 2 R R 2 1
 

At the instant leg-2n is lifted, leg-1 and leg-(2n-1) are supporting. The local phases of legs 1, 

2n, (2n-1) are 

1 F ; 2 n ; 2 n 1 F  

Due to the condition of –1<-ϕ≤0, for the phase of leg-1 the condition β-1<β-ϕ≤β holds. Since 

leg-1 is supporting, this interval has to be shrunk to 0≤β-ϕ≤β; therefore 0≤ψ1=β-ϕ≤β. Due to the 

condition of –1<-φ≤0, for the phase of leg-(2n-1) the condition β-1<β-φ≤β holds. Since leg-(2n-1) is 

supporting, this interval has to be shrunk to 0≤β-φ≤β therefore 0≤ψ2n-1=β-φ≤β. For these local 

phases, the position of the supporting points of legs 1 and (2n-1), and the resulting rear margin are as 

follows: 

P1 1 n P 2 R 2 R
P2 n 1 3 n P 2 R 2 R

S r2n
1
2

P1 P5
1
2

2n 4 P 2 R R 2
 

The stability margin when the rule of neighborhood is satisfied can be stated as, Sr=min{Sr1, 

Sr2n}. ▄ 
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Theorem 2.7: For n≥3, any SGSRN is stable. 

Proof: The stability margin of the SGSRN is given as the minimum of the two equations in 

(2.8). In both of these equations, the term (2n-4)P/2-R is always greater than zero, since P>R. Then 

the phase terms should be dealt with. Due to the satisfaction of the rule of neighborhood the 

inequalities of β≥φ≥1-β and β≥ϕ≥1-β hold. These inequalities lead to the inequalities of 0≤2β-φ+ϕ-

1≤4β-2 and 0≤2β-φ-ϕ≤4β-2, which mean that the phase terms in the equations are both greater than 

or equal to zero. Therefore, both of the margins are greater than zero; hence the stability margin of 

any SGSRN is greater than zero, namely the gait is stable. ▄ 

Theorem 2.8: Among all the SGSRN with duty factor β, the most stable one is the wave gait 

corresponding to the duty factor β. This wave gait is given by φ=1-β and ϕ=1/2. The stability 

margin of the wave gait is  

Sw
1
2

2 n 4 P 2 R R 3 3
2

                                          (2.9) 

Proof: The most stable SGSRN with duty factor β, is the one that maximizes the stability 

margin, which corresponds to maximizing the minimum of the margins given in (2.8). The variables 

φ and ϕ, which determine the standard gait, are related only to the terms of (2β-φ+ϕ-1) and (2β-φ-

ϕ); therefore the minimum of these two terms should be maximized with respect to these two 

parameters. Both of the terms are monotone decreasing with respect to φ; therefore φ should take the 

least possible value to maximize the minimum of them. The minimum of φ, given in (2.3) is φ=1-β. 

The first term is monotone increasing, and the second term is monotone decreasing with respect toϕ; 

therefore, in order to maximize the minimum of the two terms, ϕ should take the value that equates 

them. This value is ϕ=1/2, which is in the range allowed by (2.3). With these substitutions, the phase 

terms take the value of (3β-3/2). With this phase term, both of the stability margins given in (2.8) 

take the value given in (2.9), hence the stability margin of the wave gait. ▄ 

Theorem 2.9: Considering six(and four)-legged walking, the wave gait for a given duty factor 

β is more stable than any standard gait that does not satisfy the rule of neighborhood for the given 

duty factor. 

Proof: First of all, it is obvious that, for four-legged walking, any gait that does not satisfy the 

rule of neighborhood is unstable (at most two legs are supporting if the rule is not satisfied). 

Therefore, the proof will deal with the six-legged case, where n=3. The proof will be based on 

examining the four cases, which cover all the range of standard gaits that do not satisfy the rule of 

neighborhood. For each case it will be assumed that the generic gait representing the case is more 

stable than the wave gait, and a contradiction will be found related to the minimum duty factor for 

six-legged walking (Lemma 2.1). As a result, it will be shown that no gait for any of the four cases 

can be more stable than the wave gait. 
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Based on the condition given in (2.3), the four cases that together cover the range of standard 

gaits that do not satisfy the rule of neighborhood are (i) φ<1-β, (ii) φ>1-β, (iii) ϕ<1-β, and (iv) ϕ>1-

β. 

(i) φ<1-β:  

Consider the case that leg-2 is lifted. 

3 F 2 n 2 F
2 2 n 1 F
1 F 2 n F . 

Since β<β+φ<1, leg-1 is lifted. If leg-3 or leg-2n is lifted, the stability margin will 

automatically be less than that of the wave gait, since R<P. Therefore, both leg-3 and leg-2n should 

be supporting. Related to the phase of leg-2n, β+ϕ<β+φ+ϕ<1+ϕ, which means 1<β+φ+ϕ<1+β 

should hold for supporting; therefore, ψ2n=β+φ+ϕ-1. Related to the phase of leg-3, 2β-1<β-φ<β, 

which means 0<β-φ<β should hold for supporting; therefore, ψ3=β-φ. With these local phases the 

resulting supporting point positions and the stability margin will be as follows: 

P3 5 n P 2 R 2 R
P2 n 1 n P 2 R 2 R 1

Si2
1
2

P3 P2 n
1
2

2n 6 P 2 R R 2 1
 

In order this stability margin to be larger than the wave gait margin, Si2>Sw should be 

satisfied. If this inequality is combined with the inequality of P>R, the inequality requirement 

reduces to β<(2β+ϕ-1)-(3β-3/2), in which the right hand side is a comparison of the phase related 

terms in Si2 and Sw. The same reduction of inequality will occur in the other cases as well. Therefore, 

only this reduced form of inequality with the phase related terms will be mentioned in (ii), (iii), (iv) 

cases. The inequality, after some arithmetic, reduces to 2β-1/2<ϕ. 

Now, consider the case that leg-(2n-1) is lifted: 

3 F 2 n 2 F
2 F 2 n 1

1 F 2 n F  

Since β<β+φ<1, leg-2n is lifted. If leg-1 or leg-(2n-2) is lifted, the stability margin will 

automatically be less than that of the wave gait, since R<P. Therefore, both leg-1 and leg-(2n-2) 

should be supporting. Related to the phase of leg-1, β-ϕ<β+φ-ϕ<1-ϕ, which means 0<β+φ-ϕ<β 

should hold for supporting; therefore, ψ1=β+φ-ϕ. Related to the phase of leg-(2n-2), 2β-1<β-φ<β, 

which means 0<β-φ<β, should hold for supporting; therefore, ψ2n-1=β-φ. With these local phases the 

resulting supporting point positions and the stability margin will be as follows: 
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P2 n 2 5 n P 2 R 2 R
P1 1 n P 2 R 2 R

Si 2 n 1
1
2

2 n 6 P 2 R R 2
 

In order this stability margin to be larger than that of the wave gait, Si(2n-1)>Sw should be 

satisfied, which reduces to β<(2β-ϕ)-(3β-3/2), and then to ϕ<3/2-2β. 

The conditions 2β-1/2<ϕ and ϕ<3/2-2β together require β<1/2, which is a contradiction 

related to the minimum duty factor for six-legged walking (Lemma 2.1). Therefore for six-legged 

walking, no standard gait satisfying φ<1-β, can be more stable than the wave gait with the same duty 

factor. 

(ii) φ>β:  

Consider the case that leg-1 is lifted. 

3 F 2 2 n 2 F 2
2 F 2 n 1 F
1 2 n F  

Since β-1<β-φ<0, β<1+β-φ<1, hence leg-2 is lifted. If leg-3 or leg-2n is lifted, the stability 

margin will automatically be less than that of the wave gait, since R<P. Therefore, both leg-3 and 

leg-2n should be supporting. Related to the phase of leg-2n, β<β+ϕ<1+ϕ, which means 

1<β+ϕ<1+β should hold for supporting; therefore, ψ2n=β+ϕ-1. Related to the phase of leg-3,           

-2+β<β-2φ<-β, which means -1+β<β-2φ+1<1-β, therefore, 0<β-2φ+1<β should hold for 

supporting; hence, ψ3=β-φ+1. With these local phases the resulting supporting point positions and 

the stability margin will be as follows: 

P3 5 n P 2 R 2 R 2 1
P2 n 1 n P 2 R 2 R 1

Sii1
1
2

2 n 6 P 2 R R 2 2
 

In order this stability margin to be larger than the wave gait margin, Sii1>Sw should be 

satisfied, which reduces to β<(2β+ϕ-2φ)-(3β-3/2). When this inequality is combined with the 

inequality of φ>β, the condition reduces to ϕ>-3/2+4β. 

Now, consider the case that leg-(2n) is lifted: 

3 F 2 2 n 2 F 2
2 F 2 n 1 F
1 F 2 n  

Since β-1<β-φ<0, leg-(2n-1) is lifted. If leg-1 or leg-(2n-2) is lifted, the stability margin will 

automatically be less than that of the wave gait, since R<P. Therefore, both leg-1 and leg-(2n-2) 

should be supporting. Related to the phase of leg-1, β-1<β-ϕ<β, which means 0<β-ϕ<β, should 
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hold for supporting; therefore, ψ1=β-ϕ. Related to the phase of leg-(2n-2), -2+β<β-2φ<-β, which 

means -1+β<β-2φ+1<1-β; therefore, 0<β-2φ+1<β should hold for supporting; hence,                 

ψ2n-2=β-2φ+1. With these local phases the resulting supporting point positions and the stability 

margin will be as follows: 

P2 n 2 5 n P 2 R 2 R 2 1
P1 1 n P 2 R 2 R

Sii2n
1
2

2 n 6 P 2 R R 2 2 1
 

In order this stability margin to be larger than the wave gait margin, Si2n>Sw should be 

satisfied, which reduces to β<(2β-ϕ-2φ+1)-(3β-3/2). When this inequality is combined with the 

inequality of φ<β, the condition reduces to -4β+5/2>ϕ. 

The conditions ϕ>-3/2+4β and -4β+5/2>ϕ together require β<1/2, which is a contradiction 

related to the minimum duty factor for six-legged walking (Lemma 2.1). Therefore for six-legged 

walking, no standard gait satisfying φ>β can be more stable than the wave gait with the same duty 

factor. 

(iii) ϕ<1-β:  

Consider the case that leg-1 is lifted: 

3 F 2 2 n 2 F 2
2 F 2 n 1 F
1 2 n F  

Since β<β+ϕ<1, leg-2n is lifted. If leg-2 or leg-(2n-1) is lifted, the stability margin will 

automatically be less than that of the wave gait, since R<P. Therefore, both leg-2 and leg-(2n-1) 

should be supporting. Related to the phase of leg-2, -1+β<β-φ<β, which means 0<β-φ<β should 

hold for supporting; therefore, ψ2=β-φ. Related to the phase of leg-(2n-1), -1+β<β-φ+ϕ<1-β; 

therefore, 0<β-φ+ϕ<β should hold for supporting; hence, ψ2n-1=β-φ+ϕ. With these local phases the 

resulting supporting point positions and the stability margin will be as follows: 

P2 3 n P 2 R 2 R
P2 n 1 3 n P 2 R 2 R

Siii1
1
2

2n 6 P 2 R R 2 2
 

In order this stability margin to be larger than the wave gait margin, Siii1>Sw should be 

satisfied, which reduces to β<(2β+ϕ-2φ)-(3β-3/2). When this inequality is combined with the 

inequality of ϕ<1-β, the condition reduces to 5/4-(3/2)β>φ. 
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Now, consider the case that leg-2 is lifted: 

3 F 2 n 2 F
2 2 n 1 F
1 F 2 n F  

If leg-1 is supporting, 1<β+φ<1+β should hold, which means 1-β<φ. The conditions 1-β<φ 

and 5/4-(3/2)β>φ necessitate β<1/2, which is a contradiction related to the minimum duty factor; 

therefore, leg-1 cannot be supporting; hence, β<β+φ<1. Then, leg-3 and leg-2n must be supporting. 

Related to the phase of leg-3, 0<β-φ<β should hold for supporting; hence, ψ3=β-φ. Related to the 

phase of leg-2n, since β<β+φ<1, β<β+φ+ϕ<2-β holds; therefore, 1<β+φ+ϕ<1+β should hold for 

supporting; hence, ψ2n=β+φ+ϕ-1.  With these local phases the resulting supporting point positions 

and the stability margin will be as follows: 

P3 5 n P 2 R 2 R
P2 n 1 n P 2 R 2 R 1

Siii2
1
2

2n 6 P 2 R R 2 1
 

In order this stability margin to be larger than the wave gait margin, Siii2>Sw should be 

satisfied, which reduces to β<(2β+ϕ-1)-(3β-3/2). The conditions β<(2β+ϕ-1)-(3β-3/2) and ϕ<1-β 

together require β<1/2, which is a contradiction related to the minimum duty factor for six-legged 

walking (Lemma 2.2). Therefore for six-legged walking, no standard gait satisfying ϕ<1-β can be 

more stable than the wave gait with the same duty factor. 

(iv) ϕ>β:  

Consider the case that leg-2n is lifted: 

3 F 2 2 n 2 F 2
2 F 2 n 1 F
1 F 2 n  

Since –1+β<β-ϕ<0, β<β-ϕ+1<1 holds; therefore, leg-1 is lifted. If leg-2 or leg-(2n-1) is 

lifted, the stability margin will automatically be less than that of the wave gait, since R<P. 

Therefore, both leg-2 and leg-(2n-1) should be supporting. Related to the phase of leg-(2n-1),            

-1+β<β-φ<β, which means 0<β-φ<β should hold for supporting; therefore, ψ2n-1=β-φ. Related to 

the phase of leg-2, -β<β-φ-ϕ<-1+β; therefore, 1-β<β-φ-ϕ+1<β, and 0<β-φ-ϕ+1<β should hold for 

supporting; hence, ψ2n=β-φ-ϕ+1. With these local phases the resulting supporting point positions 

and the stability margin will be as follows: 

P2 n 1 3 n P 2 R 2 R
P2 3 n P 2 R 2 R 1

Siv2n
1
2

2 n 6 P 2 R R 2 2 1
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In order this stability margin to be larger than the wave gait margin, Siv2n>Sw should be 

satisfied, which reduces to β<(2β-2φ-ϕ+1)-(3β-3/2). When this inequality is combined with the 

inequality of ϕ>β, the condition reduces to 5/4-(3/2)β>φ. 

Now, consider the case that leg-(2n-1) is lifted: 

3 F 2 n 2 F
2 F 2 n 1

1 F 2 n F  

If leg-2n is supporting, 1<β+φ<1+β should hold, which means 1-β<φ. The conditions 1-β<φ 

and 5/4-(3/2)β>φ necessitate β<1/2, which is a contradiction related to the minimum duty factor; 

therefore, leg-2n cannot be supporting; hence, β<β+φ<1. Then, leg-1 and leg-(2n-2) should be  

supporting. Related to the phase of leg-(2n-2), 0<β-φ<β should hold for supporting; hence,           

ψ2n-2=β-φ. Related to the phase of leg-1, since β<β+φ<1, β-1<β+φ-ϕ<1-β hold; therefore, 0<β+φ-

ϕ<β should hold for supporting; hence, ψ1=β+φ-ϕ.  With these local phases the resulting supporting 

point positions and the stability margin will be as follows: 

P2 n 2 5 n P 2 R 2 R
P1 1 n P 2 R 2 R

Siv 2 n 1
1
2

2 n 6 P 2 R R 2
 

In order this stability margin to be larger than the wave gait margin, Siv(sn-1)>Sw should be 

satisfied, which reduces to β<(2β-ϕ)-(3β-3/2). The conditions β<(2β-ϕ)-(3β-3/2) and ϕ>β together 

require β<1/2, which is a contradiction related to the minimum duty factor for six-legged walking 

(Lemma 2.2). Therefore for six-legged walking, no standard gait satisfying ϕ>β can be more stable 

than the wave gait with the same duty factor. 

For all the four cases that together cover all the range of standard gaits that do not satisfy the 

rule of neighborhood, it is shown that the wave gait is more stable. Hence, for six(and four)-legged 

walking, for the same duty factor, the wave gait is more stable than any standard gait which does not 

satisfy the rule of neighborhood. ▄ 

Theorem 2.10: For six(and four)-legged walking, among all the standard gaits with duty 

factor β, the most stable gait is the wave gait corresponding to that duty factor; namely, for six(and 

four)-legged walking, the most stable gait among the standard gaits with duty factor β occurs when 

φ=1-β and ϕ=1/2. The stability margin of the wave gait is given in (2.9). 

Proof: The proof trivially follows from Theorems 2.8 and 2.9.▄ 

Theorem 2.11: (Theorem of φ limitation) Any wave gait for 2n-legs, is more stable than any 

standard gait with a constant-phase-increment of φ≤(1-β)/2.  
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Proof: Any wave gait has the phase variables of φ=1-β and ϕ=1/2; therefore, it satisfies the 

condition for the rule of neighborhood given in (2.3). As a result, the stability margin of any wave 

gait is larger than the minimum rear stability margin that can be obtained by the support of leg-2 and 

leg-2n, or leg-1 and leg-(2n-1).  

Consider the case that leg-3 is lifted: 

3 2n 2 F
2 F 2n 1 F
1 F 2 2 n F 2  

If φ≤(1-β)/2 holds, β≤β+φ≤1 and β≤β+2φ≤1 will both hold, and leg-1 and leg-2 will both be 

lifted. Then the maximum rear stability margin will be the one that can be achieved by the support of 

leg-3 and leg-2n, which will be less than the minimum stability margin of the wave gait, since R<P. 

It should be noticed that, a stable standard gait with the condition φ≤(1-β)/2, is not possible for a six 

or four-legged walking for any duty factor. ▄ 

Theorem 12: (Theorem of rear-to-front waves) For SGSRN, for the same duty factor β and 

contralateral phase difference ϕ, any rear-to-front gait is more stable than any front-to-rear gait. 

Proof: A standard gait is said to be rear-to-front if the ipsilateral phase difference is in the 

region of 0≤φ≤1/2, and front-to-rear if 1/2≤φ≤1. The stability margin of the standard gaits satisfying 

the rule of neighborhood is given as the minimum of the two equations in (2.8). In both of these 

equations the term for the ipsilateral phase difference has a negative sign; namely, the smaller the 

ipsilateral phase difference the larger both of the margins are. Since the ipsilateral phase difference 

of any rear-to-front gait is less than that of any front-to-rear gait, it follows that the stability margin 

of the former is larger than the stability margin of the latter. Hence, the proof of the theorem. ▄ 

2.3. Conclusion 

This chapter dwells upon the stability of six(and four)-legged walking from an analytical 

point of view. The definitions and theorems presented in the chapter are developed on the basis of 

Song and Waldron (1987). The chapter proves the optimal stability of wave gaits in the range of 

standard gaits for six(and four)-legged walking. For six(and four)-legged walking, Song and Choi 

(1990) had in fact proved the optimal stability of wave gaits in the range of periodic and regular 

gaits, which is more general than standard gaits. However, their proof is tedious, and does not 

provide much insight regarding to the nature of stable walk. Although the proof of this chapter is 

redundant from a theoretical point of view, its systematics of narrowing down provides more insight 

compared to the proof of Song and Choi (1990).  

For the proof of the optimal stability of wave gaits, the chapter makes use of the concepts of 

standard gaits and the rule of neighborhood, and demonstrates the functionality of these for gait 

analysis. The rule of neighborhood, for example, is used in some other multi-legged walking 
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researches (Porta and Celaya, 2004; Song and Waldron, 1987). The chapter here defines these 

concepts in an analytically systematic way, rather than with intuitive definitions. It is believed that, 

this chapter provides a systematic approach to the tedious work of analytical study of the stability of 

multi-legged walking, and provides analytical proof for the intuitively accepted propositions. 

The analyzes of both the chapter here and Song and Choi (1990) reveal that, though wave 

gaits are optimally stable in particular regions, they are not so in all the range of “orderly gaits”. The 

systematic analytical representation of non-periodic, irregular, or non-standard gaits is not trivial; 

and the analysis in these regions is considerably difficult. For multi-legged walking, another 

challenging issue, besides stability, is energy consumption. The analysis of energy efficiency of 

wave gaits (Chapter 3) reveals that it is possible to obtain more energy efficient gaits by deviating 

from the optimally stable wave gaits. Therefore, analyzing the unexplored regions of orderly gaits 

from stability point of view still remains as a topic for future work. 
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CHAPTER 3  

FREE GAIT GENERATION WITH REINFORCEMENT 
LEARNING  

3.1. Introduction 

In the literature there exists two opposing views about how gait control is achieved in nervous 

system of animals, and what is best to be applied in multi legged robots. These views lead to two 

models for multi-legged locomotion. The “reflex model” composes of local controllers in the legs 

based on the sensory-motor-feedback between the local agents. The well-known example of reflex 

model controlled walking is the one developed in Cruse et al. (1998), where the legs interact with 

each other via some mechanisms (Chapter 1). The “Central Pattern Generator (CPG) model”, on the 

other hand, is based on a feed forward central controller which generates rhythmic motions of the 

legs without the need of sensory feedback. The various applications of CPGs utilizing oscillatory 

neural networks (Inagaki et al., 2003), are based on the Pearson model of insect locomotion (Ferrell, 

1995; Chapter 1).  

Donner (1987) and Klaassen et al. (2002) provide brief comparisons of CPG and reflex 

models. The core of the discussion about pattern generation is how to manage adaptability and 

smooth passage from one to another gait pattern during continuous walking. The CPG models 

generate continuous patterns, mostly by oscillators controlling the leg movements, without using any 

feedback. It is easy to manage smooth passages between gait patterns by smoothly changing the 

oscillation constants. However, the CPG models are not as adaptive as the reflex models considering 

the changing environment and system conditions. For example, if one of the legs is out of order the 

CPG model collapses. The reflex model, on the other hand, can manage such situations; because, it 

gets feedback from the legs and determines the commands accordingly. The problem with the reflex 

model is the lack of a durable walking pattern, and the necessity of processing the feedback from all 

legs for every step. The authors of both Donner (1987) and Klaassen et al. (2002) conclude that the 

CPG and reflex models should be conciliated in order to achieve the best performance. The approach 

presented in this chapter is an attempt to conciliate the CPG and reflex models with central 

generation of free gaits and reinforcement learning for state transitions. Free gait generation and 

reinforcement learning are performed on the developed discrete model of stepping. The resulting 

Free Gait Generation with Reinforcement Learning (FGGRL) is applied in order to generate gaits 
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with large stability margin while walking with different speeds, and a stable gait in case of a rear leg 

deficiency. 

In the literature reinforcement learning is widely applied to walking machines in order to 

obtain improvement in various robot behaviors. Among those, Ilg and Berns (1995) and Ilg et al., 

(1997) make use of reinforcement learning in order to develop suitable protraction and retraction 

movements with off-line learning. In Ilg et al. (1997), of-line learning is performed with a real robot 

leg. In Ilg and Berns (1995), it is stated that the developed learning structure is applied also for leg 

coordination during walking, but the results are not reported. In Kirchner (1998), real time 

reinforcement learning is applied to a six-legged robot in order to develop, first, the four elementary 

leg movements of moving up, moving down, swinging forward, and retracting, then, the tripod gait. 

However, the paper does not provide detailed results related to learning of the tripod gait. In Huber 

and Grupen (1997), real time reinforcement learning is applied to a four-legged robot in order to 

develop a turning gait, using a hybrid discrete event dynamic system structure. In Porta and Celaya, 

(2001), Kimura et al. (2001), Svinin et al. (2001), and Karalarli et al. (2004) reinforcement learning 

is specifically used in order to obtained efficient gait generations.  

There are attempts of free gait generation, in which off-line learning or programming in 

advance is applied. In Pratihar et al. (2002), a genetic-fuzzy approach is followed in order to achieve 

an optimal path and gait generation simultaneously. In their structure the fuzzy logic controllers 

change the stroke lengths to handle the turning of the robot and to avoid ditches while walking. The 

rules of the fuzzy controllers are learned off-line by using genetic algorithms. In Pal et al. (1994) 

free-gait generation is performed by using a graph search among the predefined states delineating the 

supporting and returning legs. Their search maximizes the number of leg transfers in each step, 

therefore whenever it is possible it catches the state transitions that lead to wave gaits, which are 

noted to be optimal in that sense. The authors claim that their algorithm combines the efficiency of 

the wave gait with the terrain adaptivity of the free gait. In Porta and Celaya (2004), a reactive free-

gait generation is proposed. In this scheme, also, the gait is generated and modified as a result of the 

interaction of the robot with the environment. For example, if one of the legs does not find a proper 

position to place the tip on the front side of its stroke, it places it somewhere in the middle or rear of 

the stroke. The gait of the machine is modified immediately depending on the current stroke 

positions of the legs. In their free-gait generation they make use of the stability rule, which is 

denoted as “the rule of neighborhood” in this thesis; therefore, their algorithm guarantees stability in 

every instant throughout the walk. This feature exists also for the free-gait generation proposed in 

this chapter. All of the three mentioned works are simulation based. All the three algorithms are 

intended for real-time modification of gaits according to the interaction of the robot with the 

environment. However, this modification is limited with the capabilities of the off-line developed 

structures. Neither the rule structure of the first, nor the recorded possible state transitions of the 

second, nor the rules used for free gait generation in the third are intended for continuous 

improvement. They cannot handle new situations which are not estimated during off-line training or 
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programming; because, they do not have an adaptation mechanism to unexpected situations. For 

example, in case of deficiency in any of the legs, their algorithms are not expected to function 

properly. The superiority of reinforcement learning is that it provides a learning structure for 

continuous development and adaptation to unexpected situations. Therefore, researchers of multi-

legged walking are attracted by application of reinforcement learning to their systems.  

Frequently, the applications of reinforcement learning to gait generation aim to maximize the 

speed. In Kimura et al. (2001), for example, sequential angular positions of the actuators of a four-

legged robot is aimed to be learned in order to maximize the speed. The reinforcement learning 

algorithm is realized on an actual robot system, in which two wheels attached to the rear of the robot 

measure the advancement and provide the reinforcement signal to the robot. In Karalarli et al. 

(2004), reinforcement learning is used to maximize the speed and stability margin using a gait 

generation frame with fuzzy controllers. The fuzzy controllers command the linguistic thresholds 

that determine the transition of legs from stance to swing, or vice versa. Reinforcement learning is 

used to tune the centers and spreads of the membership functions. The authors have applied their gait 

generation to the case of leg deficiency. Although the algorithm could not find a pattern, it managed 

to make the robot walk with some instances of instability. In Porta and Celaya (2001), reinforcement 

learning is used with their free-gait generation structure explained extensively in Porta and Celaya 

(2004). In their application they aimed to maximize the speed within the framework of their free-gait 

generation structure. The results show that the scheme with reinforcement learning is more efficient 

than their hand-programmed reactive free gait generation. The superiority of their learning scheme is 

that it is possible to be applied on real robot; because, as mentioned in relation to Porta and Celaya 

(2004), their free gait generation always guarantees stability and avoids the robot from falling. This 

facility exists also in the reinforcement learning scheme developed in this chapter. In the application 

here the free gait generation already adopts the commanded speed; therefore, there is no need of 

speed optimization. Rather, the stability of the gait is optimized. Besides that, the application here 

accepts an external reward signaling if the robot falls or not due to some unexpected reasons. For 

example, a rear-leg might be deficient and the robot does not know that. In that case, the 

reinforcement learning makes the robot learn the transitions that do not result in falling.  

In Svinin et al. (2001), reinforcement learning is used to learn the sequential action patterns 

that result in a stable straight walk. In this application, as the one here, falling of the robot results in a 

negative reinforcement, and the algorithm learns to avoid those. However, the application is pure 

simulative. It is strongly emphasized that learning procedure may take too much time if it is applied 

to an actual robot in real-time. In fact, this difficulty is pointed out also in Ilg and Berns (1995), Ilg 

et al. (1997), and Kirchner (1998), noting that real-time application of reinforcement learning to 

actual robotic sytems is extremely difficult because of the necessity of large number of training 

cycles. It is recommended to incorporate a priori knowledge or to make use of a biased learning 

strategy in order to simplify and speed up the learning process. Therefore, application of a real-time 

learning to an actual walking robot in this chapter is noteworthy with the ones in Kimura et al. 
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(2001), Kirchner (1998), and Huber and Grupen (1997). In order to cope with large number of 

training cycles, this chapter applies the reinforcement learning, not starting from a tabula rasa, but 

with the peculiar free-gait generation algorithm that guarantees stability for all states. Such an 

approach, does not only guarantee stable walk in normal conditions, but also makes learning faster 

even when stability is not guaranteed when one of the legs is disfunctioning.  

In the following, first the discrete model of stepping is introduced. Then the free gait 

generation on this model and the reinforcement learning scheme applied for learning the state 

transitions are explained. These together constitute the FGGRL. Following that the FGGRL is 

applied to learn walking when one of the rear legs is out of order. Lastly the results obtained on 

simulation and real experimental setup are given.  

3.2. Discrete Model of Stepping and Explanation of States for the Learning 
Task 

The model is developed on a discrete model of the possible positions of the tip point of a 

single leg. In Figure 3.1, the discrete positions of stepping are shown. There are five support 

positions (leg-states) on the ground labeled from 1 to 5. Considering the walking direction as 

positive, the position 1 corresponds to the maximum possible anterior extreme position, while the 

position 5 corresponds to the minimum possible posterior extreme position. The position 3 is in the 

middle of the support line; it is the closest support position to the attachment of the leg to the body. 

In position 3 the leg can support without any extension. The position 0 is the single position that the 

tip point stays when the leg is not supporting. This will be mentioned as the return position. 

In a regular stepping, which is not the case here, there is a single tip point trajectory. 

Therefore the anterior and posterior extreme positions are fixed. According to such a regular scheme 

the transitions between the six states in Figure 3.1 would be fixed as from 0 to 1, 1 to 2, 2 to 4, 3 to 

4, 4 to 5, and 5 to 0; or if the intermediate support states are not mentioned, it becomes from 0 to 1, 1 

to 5, and 5 to 0. However, in order to generate a free gait, the stepping must also be free; namely, the 

leg must be able to start supporting on any position on the support line and to pass to the return 

position from any support position. The discretization in Figure 3.1 prepares the frame for such a 

free stepping. 
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Figure 3.1: Discrete positions of stepping, and the possible transition for a velocity of two units per 
iteration. 

In free stepping the steps are performed with discrete transitions between the leg-states. These 

transitions are conditioned by the speed of walk that determines how much unit the tip point will be 

retracted in the support phase. In the model here the tip point has to be in one of the leg-state 

positions at the end of every iteration. For the simulation and actual robot used here, one unit of 

distance corresponds to 2cm. In Figure 3.1 the transitions for a walk with two units per iteration are 

given, which corresponds to 4cm per iteration or 4cm per step. With this speed the leg has to retract 

two units if it is supporting. Accordingly, the transitions from 1 to 3, 2 to 4, and 3 to 5 are allowed. 

The transition from 1 to 2, for example, is not allowed; otherwise, the body would not be advanced 

by two units. The leg cannot pass to any supporting state from the state 0. The first supporting state 

it visits has to satisfy the condition that it allows the required amount of advancement in the 

following iteration. Accordingly, for the iteration of two units the first visits from 0 to 4, or from 0 to 

5 are not allowed. The first visit from 0 has to be either to 1, 2, or 3. 

The transition from state 0 to the first supporting state has nothing to do with the advancement 

of the body; therefore, such a transition will be mentioned as a sub-transition. A sub-transition can 

take place before the following transition within the supporting states, during a single iteration. Then 

the stepping from state 0 in one iteration can be as follows: first the sub-transition from state 0 to the 

anterior supporting state takes place, then the transition from that anterior supporting state to the next 

supporting state takes place. As a result, in one iteration, considering two units of advancement, 

transitions from 0 to 3 ,4 , or 5 are possible. Given the unit of advancement and any transition from 

state 0 to a supporting state, the sub-transition that takes place in advance of the transition on the 

supporting line can easily be determined. A leg in state 0 can stay in return position, so the transition 

from 0 to 0 is also possible. 
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The leg-states of the six legs, together, construct the state of the robot. Accordingly, there are 

66=46656 possible states for the robot. The supporting legs in any state of the robot correspond to a 

supporting polygon. In order the state to be statically stable, the projection of the center of gravity of 

the robot on the horizontal plane should remain within this supporting polygon. In Figure 3.2 

examples of stable and unstable support polygons are given. The stability margin of a support 

polygon, and that of the corresponding state of the robot, is defined as the minimum of the front and 

rear stability margins shown on the figure. Theoretically, a state is stable if this stability margin is 

greater than zero. However, with the actual Robot-EA308, the minimum margin for a stable walk is 

2cm. Therefore, throughout this chapter the minimum stability margin will be taken as 2cm, rather 

than zero. In Figure 3.2 and 3.3 the convention of numbering the legs is revealed.  

 

L4 

L5 

L3 

L1 

projection of the 
center of gravity on 
the support polygon 

front stability margin

rear stability margin
suppor polygon 

L4 

L5 

L3 

L1 

Stable support polygon Unstable support polygon   

Figure 3.2: Examples of stable and unstable support polygons. 

According to the 2cm minimum stability margin assumption, 41510 of the 46656 states are 

statically stable. However, not all of these stable states can be used during an actual walk. This is 

because some of those are either dead-end states, or states that are impossible to be reached. For 

example the state 5-5-5-5-5-5 is a dead end state, since the next state after one iteration has to be 0-

0-0-0-0-0, which is an unstable state. The state 2-2-2-2-2-2 is impossible to be reached, because the 

robot has to be in the unstable state of 0-0-0-0-0-0 in advance of the iteration, considering the 

minimum speed of one unit per iteration. The state 1-1-1-1-1-1 is impossible to be reached even with 

a sub-transition due to the same reason. While the states that are impossible to be reached do not 

create a problem while learning state transitions, the dead-end states do.  

The learning of walking in general corresponds to learning the possible transitions from any 

visited stable state to another stable state that is not dead-end. Although the total number of unstable 

states (5146) is much less than the number of stable states (41510), many of the unstable states are 

always reachable while only some of the stable states conditioned by the walking speed are 

reachable from any given stable state. For example the state 0-0-0-0-0-0 is reachable from any given 
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stable state. Here is given an example based on computer calculations: For the state of 3-0-3-0-3-3, 

with the walking speed of 2 units per iteration, there are 26=64 possible transitions (the legs in leg-

state 3 can go to the leg-state of either 5 or 0; the legs in leg-state 0 can go to the leg-state of either 0 

or 2). Among these only 21 of them are statically stable, considering a minimum of 2cm stability 

margin. Among the stable ones only 8 of them are not -1 or -2 states (to be explained in the 

following). Therefore, the machine has to learn to choose 8 of the 64 possible transitions from this 

particular state. This ratio is as low as 2/64 for the state 3-3-3-3-3-3 with the same speed. These are 

low ratios for real time learning applications. Therefore, learning of walking in the very general 

sense is a tedious task (Svinin et al., 2001; Ilg and Berns, 1995; Ilg et al., 1997; Kirchner, 1998). In 

order to cope with the problem of high dimension of possible transitions, the paper here adopts the 

idea of stable free state generation, which guarantees generation of statically stable next states that 

are not dead-end. 

3.3. Free Gait Generation (FGG) 

The FGG developed here is based on successive stable free state generations (FSG). This FSG 

is performed by a random choice of a state from the subset of stable non-dead-end states that satisfy 

the rule of neighborhood and fulfill the advancement of the robot with the commanded velocity. In 

this generation satisfaction of the rule of neighborhood is critical in order to guarantee the stability. 

3.3.1. The Rule of Neighborhood 

The idea of “satisfying the rule of neighborhood” is used also in Song and Waldron (1987), 

and to our knowledge, first applied in generation of free next states in Porta and Celaya (2004). In 

Section 2.2.2 of this thesis, the definition of the rule of neighborhood is given and it is analytically 

proved that for robots with more than six-legs, standard-gaits (a set including the wave gaits) 

satisfying the rule of neighborhood are statically stable. In fact it can be easily shown that any 

support polygon satisfying the rule of neighborhood is statically stable, provided that the pitch length 

(the distance between the middle points of stroke lines) is greater than the stroke length.  

Theorem 3.1: Any support polygon, and the corresponding state of the six-legged robot, 

satisfying the rule of neighborhood is statically stable provided that the pitch length is greater than 

the stroke length (P>R). The minimum possible stability margin of a support polygon satisfying the 

rule of neighborhood is (P-R)/2. 
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Figure 3.3: Figure showing the pitch (P) and stroke (R) lengths. 

Proof: Due to the rule of neighborhood the front stability margin is determined by the support 

of one of the following three couples of legs: 2-4, 3-4, 3-5. Due to the geometry in Figure 3.3 the 

minimum front stability margin occurs when the couples 2-4 or 3-5 are supporting. For both cases 

the minimum margin occurs when the front leg (3 or 4) and rear leg (2 or 5) of the couples support at 

their posterior extreme positions. In this case the line connecting the support positions of the couples 

crosses the centerline at a point where y=(P-R)/2. Then the minimum front stability margin is (P-

R)/2. The same arguments go for the rear stability margin, whose possible minimum can again be 

calculated as (P-R)/2. Then the possible minimum of the stability margin of the polygon, given as 

the minimum of these two margins, is (P-R)/2. Due to the assumption of (P>R), the minimum 

possible stability margin of a polygon satisfying the rule of neighborhood is always greater than 

zero, hence the polygon is stable.▄ 

In the case of Robot-EA308, the pitch length is 17cm, and the stroke length is 8cm. The 

minimum possible stability margin of a polygon satisfying the rule of neighborhood for the actual 

robot is then (17-8)/2=4.5cm, which is greater than the required minimum of 2cm. Therefore, the 

theorem applies to the Robot-EA308, and in its discrete stepping model any state satisfying the rule 

of neighborhood (SSRN) is statically stable. 

As stated before dead-end states are a problem for learning of walking. Therefore, the free 

gait generation should avoid generation of any dead-end states. The following definitions and 

theorems deal with avoiding dead-end state generation. 

-1 State: Given the speed of walk in units per iteration, a SSRN is designated as a -1 state if it 

does not lead to any SSRN; in other words, a dead-end state is a -1 state.  

-2 State: Given the speed of walk in units per iteration, a SSRN is designated as a -2 state if it 

does not lead to any SSRN which is not -1. 
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-3 State: Given the speed of walk in units per iteration, a SSRN is designated as a -3 state if it 

does not lead to any SSRN which is not -2. 

Theorem 3.2: Given the speed of walk in units per iteration as v_unit, where v_unit takes one 

of the values from {1,2,3,4}, a -1 state has to have two successive supporting leg states greater than 

or equal to (6-v_unit). 

Proof: A -1 state, P-1, has to lead only to states that violate the rule of neighborhood. This 

means, the state of P-1 is such that it cannot avoid two of the legs to have the leg state of 0 in any of 

the succeeding states. Without violating the generality, let's assume the pair of legs Li-Li+1 have to 

take the values 0-0 in the succeeding state of P0. Since P-1 satisfies the rule of neighborhood it is 

known that at least one of these two legs is supporting in state P-1. If the remaining is not supporting, 

namely if it is in state 0 in P-1, then that leg can take any leg state in accordance with the speed in the 

succeeding state; namely, that leg does not have to be in state 0 in P0. However, this contradicts with 

the condition that Li-Li+1 have to take the values 0-0 in P0. Therefore, both of the legs are supporting 

in P-1. In order to have to generate 0-0 in the succeeding state, these two legs have to have the state 

of at least (6-v_unit) in P-1, otherwise they could take another supporting state. For example if one of 

the legs were (5-v_unit), it could take the leg state 5 in the succeeding state. As a result, any -1 state, 

P-1, has to have two successive leg states greater than or equal to (6-v_unit).▄ 

Theorem 3.3: Given the speed of walk in units per iteration as v_unit, where v_unit takes one 

of the values from {1,2,3,4}, a -2 state has to have the pattern of si-1-si-si+1-si+2 in any of its four 

successive legs, where (6-2v_unit)≤{si,si+1}<(6-v_unit) and {si-1,si+2}≥ (6-v_unit) holds. 

Proof: A -2 state, P-2, has to lead to only -1 states. This means, according to theorem 3.2, the 

state P-2 is such that it cannot avoid two of the legs to have the successive leg states greater than or 

equal to (6-v_unit) in any of the succeeding states. Without violating the generality, let's assume the 

pair of legs Li-Li+1 have to be in this condition in the succeeding state of P-1. Using the same 

reasoning in the proof of theorem 3.2, these two legs have to be supporting with the states s1, s2 in 

state P-2, where (6-v_unit) <{s1,s2}≤ (6-2v_unit) holds. However, this condition is necessary but not 

sufficient to have the states greater than or equal to (6-v_unit) in the succeeding state. This is 

because any supporting leg can take a supporting leg state or the leg-state 0 in the succeeding state. 

There must be a condition that forces these two legs to stay in supporting in the succeeding state. 

This condition is due to the satisfaction of the rule of neighborhood by the succeeding state of P-1. 

The couple of legs Li-Li+1 have to be supporting in state P-1 only if the two legs in the vicinity of the 

couple are in leg-state 0. Again following the reasoning in the proof of theorem 3.2, if these two legs 

have to be in leg-state 0 in state P-1, they have to have a state greater than or equal to (6-v_unit) in 

state P-2.▄  
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Theorem 3.4: There does not exist any -3 state.  

Proof: A -3 state is defined as a state which has to lead to a -2 state. By theorem 3.3, a -2 

state, P-2, has to have the pattern of si-1-si-si+1-si+2 in any of its four successive legs, where (6-

2v_unit)≤{si,si+1}<(6-v_unit) and {si-1,si+2}≥ (6-v_unit) holds. Following the reasoning used in the 

previous theorems, in order to have to be supporting with these specific states in P-2, the legs must be 

supporting in the previous state. Any four successive supporting legs, whatever their supporting 

states are, can not be forced to support in the successive state with the rule of neighborhood; since, 

any of the two legs in between can pass to the leg-state 0 without violating the rule of neighborhood. 

Then a SSRN, which is not -2 is achieved. Therefore, it is impossible to have a -3 state which has to 

be succeeded by a -2 state.▄  

Theorem 3.5: If a free gait generation algorithm avoids any -1 or -2 states in successive state 

generations, the gait will visit no dead-end states. 

Proof: If -1 states are avoided, there will be no visits to any direct dead-end states. Then, -2 

states will become the dead-ends of the new situation. If those are also avoided, there will be no 

visits to the states that have to lead to a -1 state. Once, -2 and -1 states are avoided there will be no 

dead-end states of the new situation; since, there are no -3 states. As a result the free gait generation 

will be free of any dead-ends.▄  

3.3.2. Free State Generation Algorithm 

Based on the above theorems, the following state generation algorithm is developed. This 

algorithm guarantees the satisfaction of the rule of neighborhood and avoids any -1 or -2 states. It 

takes the current state, which is neither -1 nor -2, and the speed of walk in units per iteration as the 

input, and generates the next state as the output.  

Given: Current state P=[s1, s2, s3, s4, s5, s6] and the speed of walk v_unit=v. 

Step 1: Find a succeeding state in which all the legs that can support are supporting: 

P'=[s1
', s2

', s3
', s4

', s5
', s6

'], where                                                                      . 

Step 2: Construct the state P'' by transferring the supporting legs in state P' to the leg-state 0 

with a probability of 0.2, 0.3, 0.4, 0.5, and 0.6 for the leg states 1, 2, 3, 4, and 5, 

respectively. (These probability values are determined so that the leg is more likely to 

stay in support if its tip point is in a front position, and it is more likely to transfer to the 

return state if its tip point is in a rear position on the support line.) 

Step 3: Check if P'' satisfies the rule of neighborhood. If it does not satisfy, change the state of 

the legs with leg-state zero to their values in P' with a probability of 0.5. Repeat this 

process till a state satisfying the rule of neighborhood is obtained. This state will be P'''. 

si
' mod 6, si v unit , if si 0

random 1,2 , ... ,5 v unit , if si 0
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Step 4: Check if P''' is a -1 or -2 state. If it is either -1 or -2, go to step 1. Otherwise P''' is a 

succeeding state of P, which is neither -1 nor -2 and satisfies the rule of neighborhood. 

Output: P'''. 

This random generation of the next state is guaranteed to stop in finite cycles, because the 

initial state P is already a non-dead-end state generated by the algorithm, hence there exists at least 

one SSRN to be reached by the random generation. The successive usage of the free state generation 

algorithm results in the FGG of this paper. With this FGG the machine can walk with a given speed 

without any fall. However, the states generated by the FGG do not have any specificity rather than 

being a SSRN. Among the possible gaits with a given speed there are some with more static stability, 

while there are some that hardly satisfy the stability condition. Although the FGG guarantees stable 

states, it is still possible to improve the stability of walk by making use of the most stable states. This 

improvement can be achieved by a learning with which the best state transitions are memorized and 

utilized, besides new state generations. The next section will introduce the application of 

reinforcement learning for this purpose.  

3.4. Free Gait Generation with Reinforcement Learning (FGGRL) 

The reinforcement learning adopted here is based on updating the utilities of state transitions 

according to a reinforcement signal. A similar application of reinforcement learning of walking to an 

eight-legged robot can be found in Svinin et al. (2001).  

3.4.1. Updating the utilities of State Transitions 

After every (n)th iteration, the transition from a state P(n) to P(n+1) is assigned a reinforcement 

signal depending on the stability margin of the next state P(n+1). For this purpose a nominal stability 

margin value of 7cm is used, and the reinforcement takes a value in comparison to this nominal 

margin as in (3.1). The subscript sm in the reinforcement term indicates that it is used to maximize 

the stability margin. 

                             

              (3.1) 

 

 

In (3.1), sm
(n+1) stands for the stability margin of the next state P(n+1). The third line of the 

reinforcement signal might be encountered during speed transitions, which will be explained in the 

end of this section. The visited states, and the experienced transitions within these visited states are 

recorded with their corresponding utilities in a lookup table. After every iteration the utilities of 

r sm
n

2
1 e 7 sm

n 1 1 , if sm
n 1 7

2
1 e 7 sm

n 1 1.5 , if sm
n 1 7

1.5 , if vunit v commanded
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memorized transitions, which can take a value in the range of [0,1], are updated. In the following the 

items of updating are explained.  

Utility initialization: If the transition is experienced the first time it is assigned the utility of 

0.5. 

                                                            (3.2) 

 

Evaporation: After every iteration, all the utilities in the lookup table are discounted with a 

factor of 0.9. In this way, non-used utilities and states are eliminated in time. 

Utility elimination: The transitions with utilities less than 0.02 are cleaned from the lookup 

table. 

Memorized state elimination: If the sum of the utilities of all experience transitions from a 

state are less than 0.1, that state is totally eliminated from the lookup table. 

Reward distribution: The reward rsm
(n) achieved by the transition from P(n) to P(n+1) at iteration 

(n), is used to update the utilities of the last five transitions that lead to P(n+1). The updating of the 

utilities is as in (3.3). The learning rate denoted by the term γ is taken to be 0.8. 

        (3.3) 

3.4.2. Selection or Generation of Transitions  

The next state is determined either by selection among the memorized transitions, or by 

generation of a new transition, depending on the utilities of the current state P(n). If there are k 

memorized transitions from the state P(n) each with utility 
j,P )n(u ,one of these transitions are realized 

with probability pu, and a new transition is created with probability (1-pu), where pu is given as in 

(3.4). 

 
                                                       (3.4) 

 

If one of the memorized transitions is to be realized, a random selection is performed with a 

distribution proportional to the utilities of the transitions. Otherwise a new transition is created.  

A new transition can be created in two ways. First, the FSG algorithm can be used to generate 

the next state. The generated next state might still coincide with one of the memorized states; then 

the table is updated with the existing states, otherwise the generated state is considered as a new 

state. Second, one of the memorized states can directly be used as the next state, although it does not 

exist within the transitions experienced from the current state P(n). Such a direct utilization makes it 

easier for the algorithm to catch cycles of transitions, which correspond to a patterned periodic walk. 

In case of existence of such a transition to a memorized state, the two possibilities of new transition 

uP i P i 1 uP i P i 1
i n r sm

n 1 uP i P i 1 , i n 5, n 4, ... n.

uP n P n 1 0.5

pu
j 1

k uP n , j

k
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generation are performed with equal probabilities of 0.5. If there are more than one possible 

transitions to a memorized state, and it is decided to make transition to a memorized state, then one 

of them is selected randomly with a distribution proportional to the sum of the transition utilities of 

the candidates. If there does not exist any memorized state proper for transition, then the FSG 

algorithm is directly used.  

If the command of speed is changed at an instant, the memorized transitions cannot be used. 

Therefore, the memorized state transition intended to be utilized has to be checked if it is fitting to 

the commanded speed. It is easy to achieve this check by comparing the state of supporting legs in 

the next state candidate and the current state. If the speed requirement is not satisfied the memorized 

transition selected for realization cannot be used; then, a new state is generated using the FSG 

algorithm according to the commanded speed.  

3.4.3. Smooth Transition of Gait Patterns for Different Speeds 

The FSG described above guarantees SSRN which are not -1 or -2 for the given speed. 

However, when the speed command is changed at an instant, the machine might be in a state which 

is -1 or -2 according to the new commanded speed. (Such a situation might occur when the speed 

command is increased. In the case of decreasing the speed command, it does not occur, because any 

state which is not -1 or -2 for a given speed, is also not -1 or -2 for any speed lower than that. 

Consider that the supporting legs will retract less in lower speeds. Less retraction is always less 

likely to create a dead end state compared to more retraction.) In order to detect such situations, the 

current state input to the FSG is tested if it is a -1 or -2 state regarding to the given speed. If it is so, 

the speed is temporarily reduced to 1 unit per iteration till a state which is not -1 or -2 is reached 

with respect to the newly commanded speed. It is clear that, any state visited by the robot, according 

to whichever speed it is generated, is neither -1 nor -2 with respect to the speed of 1 unit per 

iteration. Moreover, it is possible to reach every SSRN which is not -1 or -2 for any given speed, 

with generation according to the speed of 1 unit per iteration. Therefore, generations with 1 unit per 

iteration are guaranteed to reach a non -1 and non -2 SSRN for the commanded speed, and from that 

state on the robot can walk with the commanded speed. In this way smooth transitions between 

different speeds is achieved. The robot changes the speed only with slowing down the walk, not with 

stopping. The state transitions get the negative reward of -1.5 when the speed is lowered to 1 unit per 

iteration for transition purposes. In this way memorization of the transition states are avoided. That 

is why there is the third line in the formula of the reward in (3.1).  

3.5. FGGRL when There is an External Stability Problem of Leg Deficiency 

The necessity of handling the case of deficiency in one of the legs is addressed in Inagaki, 

(1997) and Karalarli et al. (2004). In Karalarli et al. (2004), the authors content with observation of 

the behavior of their gait generation algorithm, making use of reinforcement learning, when one of 
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the legs is deficient. Although the algorithm results in an improvement, it does not end up with a 

stable pattern. In Inagaki (1997), on the other hand, the author dwells upon generating a stable 

periodic gait for five legs. The analysis reveals that, with the settings of the paper, there exists no 

stable periodic gait with five legs for the general rectangular leg arrangement of hexapod robots. The 

paper shows that stable periodic gaits with five legs can be achieved with an assymmetric pentagonal 

leg arrangement. The paper proposes to shift to the developed assymmetric pentagonal leg 

arrangement in case of deficiency in any of the legs. However, in order to achieve this, the 

workspace of the legs should be quite large. The analysis and results of these two papers reveal that 

static-stable five legged walking is a hard task. Considering this, the chapter here does not claim to 

have solved the five-legged walking problem. Rather, five-legged walking is used as a case in which 

adoptability of the robot to an unexpected failure is tested. Moreover, the five-legged walking in this 

chapter is limited to a pseudo-static-stable walk, which will be introduced in the following, with 

deficiency in one of the rear-legs. The peculiarity of the chapter, however, is that the learning of five 

legged walking is realized on the actual robot. 

In the above introduced FGGRL, the generated transitions are guaranteed to be stable, and 

only learning of state transitions with larger stability margins is performed. When there is an external 

stability problem, as a defect in one of the legs, a SSRN cannot guarantee static stability any more. 

Moreover, the detections for -1 and -2 states developed till here, do not work for the five-legged 

case. When a rear leg is out of order the FSG algorithm will not know it, and will continue to 

generate states as if all the six legs were in order. Then, the task of learning stable transitions with 

states neither -1 nor -2 for the five-legged case will be loaded on the reinforcement learning part of 

FGGRL. The robot will fall down with many of the transitions, will stand up again and will try new 

transitions. During all these, learning will be performed. For the case of five-legged walking only the 

speed of 1 unit per iteration is used, since any other speed is impossible with five legs for the Robot-

EA308.  

The stability margin with six-legged walking is assured to be larger than 4.5cm in any instant 

of the walk, due to the satisfaction of the rule of neighborhood. For the five-legged case such a 

stability margin cannot be guaranteed. Moreover, even satisfying static stability in all instants is 

impossible for the Robot-EA308. Therefore, the concept of quasi-static-stability is developed for 

five-legged walking. 

3.5.1. Quasi-Static-Stability for Five-Legged Walking 

In explaining the discrete model of stepping the transitions from leg-state 0 to the first 

supporting states were mentioned as sub-transitions, which do not have anything to do with 

advancement of the robot. It was again stated that these sub-transitions could take place before a 

transition within the supporting states during a single iteration. In walking of the Robot-EA308 in 

control of the FGGRL, this is exactly realized. In this way, the legs that will transform to a 

supporting position from the return position are put in support position, before the legs that will 
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transform to the return state of 0 are raised. Then, in the very beginning of retraction, more legs than 

the actual ones in the next state are supporting the robot. Since retraction happens in a short time, a 

statically unstable situation in the beginning of retraction is easily compensated. Then it is enough 

for a state to sustain the minimum static stability margin of 2cm at the end of retraction. For that 

reason, any state that sustains the minimum static stability margin of 2cm after retraction is 

designated as quasi-static-stable for the Robot-EA308. In the simulations for learning of five-legged 

walking, and also in calculation of the reinforcement signal for the six-legged walking in (3.1), this 

quasi-static-stability margin is used. (Since the quasi-static-stability is calculated after the legs are 

retracted, there is a dissymmetry considering the front and rear stability margins. This is because 

when the legs are retracted, the front stability margin is more likely to be less than the rear stability 

margin. As a result the quasi-static-stability margin is limited mostly by the positions of the front 

legs. Therefore, it becomes very hard for the Robot-EA308 to walk even with a quasi-static-stable 

gait when one of the front or middle legs is out of order. Because of this reason, the five legged 

walking adopted here is limited to one of the rear legs being out of order, rather than any of the six.) 

In the learning scheme for the five-legged case the reinforcement signal and the probability of 

using an existing state for transition generation are modified. For the learning of five-legged 

walking, it is not meaningful to try to improve the static stability margin, because to achieve a five-

legged quasi-static-stable state is already a hard task, and five-legged quasi-static-stable states can 

hardly satisfy the minimum stability criterion. What is learned for five-legged walking is just the 

transitions to quasi-static-stable states. The reinforcement signal is modified as in (3.5). The 

subscript sw in the reinforcement term indicates that it is used to achieve a stable walk. 

 
                                    (3.5) 

 

In this way only transitions to quasi-static-stable states get positive rewards, and transitions to 

unstable states are cleaned from the memory just after they are experienced. As a result, the 

memorized states are all quasi-static-stable, and it is reasonable to make use of those whenever it is 

possible. Therefore, for the five-legged case, the probability of using an existing state for transition 

generation is made 1, rather than 0.5. The robot creates transition to a memorized state whenever it is 

possible. In this way it is made easier to catch a cycle of state transitions that will result in five 

legged walking.  

3.5.2. Learning Algorithm for Five-Legged Walking 

The following algorithm is adopted for learning walking when one of the rear legs is out of 

order: 

Initialization state: Pi=[1 1 1 1 1 1] This state is used to initialize the walk if the robot cannot 

find a stable next state succeeding its current state. It should be noted that, because of the 

r sw
n 1 , if P n 1 is quasi static stable

1.5 , if P n 1 is statically unstable
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rear-leg deficiency, either the first or the last leg-state is realized as 0, although it is 

commanded as 1.  

Current state at iteration n: P(n) This is equalized to the initialization state at the beginning of 

learning. 

Number of learning steps: N  

for n=1 to N, 

Step 1: Determine the next state candidate P*. 

If there is any state possible to make a transition, it will be realized. Such memorized 

candidates might or might not have been memorized as a possible transition from P(n) 

Step 1.i: Check if there is any memorized transition from P(n). If not go to Step 1.ii. If 

there is, the next state will be selected among them with probability pu (3.4). The 

selection will be performed randomly according to a distribution proportional to 

the transition utilities of P(n). If this is performed, go to Step 2. With probability 1-

pu, go to Step 1.ii. 

Step 1.ii: Check if there is any memorized state that is possible to make a transition. If 

not, go to Step 1.iii. If there is, the selection will be performed randomly according 

to a distribution proportional to the sum of the transition utilities of the memorized 

next state candidates. Then, go to Step 2. 

Step 1.iii: Use FSG algorithm to generate a new next state from P(n). 

Step 2: Make the transition from P(n) to P*.  

If the transition is stable, memorize the transition, update the lookup table according to 

the reinforcement signal with value 1, assign P(n+1):=P*, n:=n+1, and go to Step 1.  

Step 3: Transition is unstable. The robot falls down. Make the robot stand at the state P(n). 

Step 4,5: Repeat Step 1, Step 2, and Step 3.  

In this way try to find a stable transition from P(n) for two more times.  

Step 6: Three attempts have been performed to make a stable transition from P(n), but non of 

them has created a stable next state. Give up trying to find a stable transition from P(n). 

Assign P(n+1) to the initialization state, update the lookup table according to the 

reinforcement signal with value -1.5, assign P(n+1):=Pi, n:=n+1, and go to Step 1. 
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3.6. Simulation Results 

The success of the FGGRL is evaluated first with computer simulation. The simulation is 

performed for 500 steps of the robot. Table 3.1 shows the successive commands that are sent to the 

simulation robot during these 500 steps.  

Table 3.1: Successive epochs and commands sent to the simulation robot within one episode of FGGRL. 

 

 

 

 

 

In the first four epochs the reinforcement in (3.1), for the last epoch the reinforcement in (3.5) 

are used. In the first four epochs the FGGRL is used as it is described in Section 3.4, and for the last 

epoch it is used with its form given in Section 3.5. In the epochs of A and C the FGGRL is expected 

to generate gaits that have a stability margin close to or larger than the nominal value of 7cm. There 

is a single gait with which the robot can walk with the speed of 4 units per iteration: the tripod gait 

with the successive states of 0-5-0-5-0-5 and 5-0-5-0-5-0. Therefore there cannot be any 

improvement in the stability margin in epoch B. The reinforcement in epoch B is always a large 

negative value, so that no state transition is memorized. In other words, the reinforcement learning 

part of FGGRL is not functioning. The epoch B demonstrates only the smooth passage from the 

speed of 1 to 4 units per iteration, and the successful generation of the single choice of states by free 

state generation algorithm. The passage from epoch C to D might also demonstrate the smooth 

passage feature of the FGGRL. Within epoch D, although there are a few different gaits that can be 

followed, very few of them have a stability margin close to 7cm. Although a slight improvement can 

be expected in stability margin, it is impossible to come close to the nominal value in the average.  

In the end of epoch D and start of epoch E, the rear left leg is disfunctioned. The FGGRL 

algorithm is not aware of this situation. In the simulation the robot falls while walking with the speed 

of 3 units, and it is assumed that it gets an external signal. With this signal the robot only 

understands that there is a stability problem without knowing its reason. Then it passes to the speed 

of 1 unit per iteration and adopts the form of FGGRL for external stability problem situations. In 

this epoch the robot tries successive states making state generations as if all the legs were in order. 

Epochs A B C D E 

Commands 

speed: 
(cm/step) 

v_unit=1 v_unit=4 v_unit=2 v_unit=3 

Deficiency 
on rear left 

leg 

(v_unit=1) 

Step 
numbers 1-100 101-200 201-300 301-400 401-500 
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Many of these states result in falling of the robot, while some result in stable transitions. What is 

expected from the robot is to memorize the stable transitions it experiences and come up with a five-

legged gait pattern that results in a continuously stable walk. 

The success of the FGGRL is evaluated based on its performance in epochs A, C, and E. If the 

robot achieves a walk with continuous stability margin larger than 6cm in the last ten steps of the 

epochs A and C it is considered to be successful, respectively in these epochs. If the robot can 

achieve a continuous stable walk with five legs in the last ten steps it is considered to be successful 

in epoch E. 

In computer simulation the described 500 step walk was performed for 1000 episodes. The 

FGGRL was successful 891 times in epoch A, 996 times in epoch C, and 685 times in epoch E. 

Among those, in 604 of the trials the algorithm was successful in three of the epochs together. The 

algorithm is more successful with the speed of 2 units per iteration compared to 1 units. This 

inclines one to comment that the ratio of the number of states with stability margin larger than 7cm 

to the all possible stable states is larger for the speed of 2 units per iteration compared to 1. 

Although the computer calculations for the state 3-0-3-0-3-3 given in Section 3.2 support this 

comment, it needs a mathematical proof, which will not be dealt here. 

In Figure 3.4, the results of a successful trial is shown. In (a) the actual reward returned after 

each iteration is plotted. In (b) the average reward in the vicinity of each step is given. The averages 

in the figures are calculated using the results of preceding ten steps. In the epochs A, C, and E one 

can observe the increase and stabilization of the value of rewards. In epochs A and C the average 

reward is managed to be raised above 0 in the last 40 and 60 steps, respectively. In epoch E, the 

average reward is 1 in the last 50 steps. This shows that the robot learned to walk with five legs in 

about 50 steps. In this figure, the number of attempts performed after falling, which are explained in 

4th and 5th steps of the five-legged learning algorithm, are not included. The number of these 

attempts for this result is 23. The pattern of successive states learned for five legged walking is as 

follows, 

[4 3 0 4 0 4] → [5 4 0 5 2 0] → [0 5 3 0 3 3] → [2 0 4 2 4 4] → [3 2 5 3 5 0] → [4 3 0 4 0 4]  

with the respective stability margins of 2, 5.5, 2, 8.5, 10.5, and again 2 cm. The state of the 

sixth leg is signed with double strike, because it is not used by the robot, although commanded by 

the FGGRL. 

In (c) and (d), in Figure 3.4, the average stability margin for each iteration, and the actual 

stability margin after each iteration are given, respectively. One can observe the affinity between the 

stability margin and reward traces for the epochs A, B, C, and D. Such an affinity is already not 

expected for the epoch E, because the reward does not depend directly on the stability margin as in 

the others. In (e) and (f), the average number of utilization of memorized states or transitions and the 

number of states memorized are given respectively. As it is observed, in the beginning of the epochs 
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A, C, and E the number of memorized states increases, and in the middle or towards the end it 

decreases and remains at a constant value. Accordingly, the utilization of the memorized states is 

low at the beginning of the three epochs, and full utilization is performed after the middle. For the 

epoch B the utilization is always in the zero level, while in C it remains in very low values. The two 

states memorized in epoch B are the initialization state which always exists in the memory, and the 

current state; namely, no new state memorization is performed in epoch B. In figure (f) the actual 

speed of the robot is given for each step. One should observe that immediately after the 100th and 

300th steps, the actual speed is not the commanded speed but 1 unit per step. This is because the 

robot advances with the speed of 1 unit per step in order to catch a suitable state from which it can 

change to the commanded speed. 

 

 
(a)                                                                        (b) 

 
(c)                                                                         (d) 

 
                            (e)                                                        (f)                                                       (g) 

Figure 3.4: Results for a successful FGGRL in computer simulation.(a) Reward for each step, (b) average 
reward of the last ten steps for each step, (c) stability margin for each step, (d) average stability margin of the 
last ten steps for each step, (e) number of memorized states for each step, (f) average number of utilization of 
the memorized transitions or states, (g) speed of the robot at each step.  
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Figure 3.5: Experimental setup for the Robot-EA308 for learning of five-legged walking. 

3.7. Results with the Actual Robot-EA308 

The FGGRL is applied to the Robot-EA308 with the experimental setup shown in Figure 3.5. 

For the learning of five-legged walking the robot is equipped with four switches beneath its body 

frame, and the necessary hardware to send the signal of falling to the computer. When one of these 

switches is closed, the robot is considered to fall down, and the controlling computer can detect this 

through the connection between the hardware on the robot and its parallel port. The successive joint 

angle commands, which result in motions of the legs, are calculated by the controlling computer 

according to the output of the FGGRL algorithm. These comments are sent to the servo-controllers 

on the robot via the serial port of the computer. 

It should be remembered that in the first 400 steps, the reinforcement is based on stability 

margin; therefore, it is calculated internally by the computer simulation. It is only in the last 100 

steps, namely after one of the rear legs is out of order, that a real feedback from the actual robot is 

used as the reinforcement signal.  

In Figure 3.6, the results of a successful FGGRL application on the actual Robot-EA308 are 

shown. For this result, again the right rear leg (sixth leg) is out of order in epoch E. Since the results 

obtained on the real robot are very similar to the ones obtained from the computer simulations, only 

the figures for average reward, average stability margin, and stability margin are given. In the 

application on the real robot, the length of epochs B and D are limited to 50 steps, because the gait 

patterns generated in these epochs do not differ much in time. The epoch E, on the other hand, is 

enlarged to 150 steps, in order to see the robot walking with five legs for some time. 
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              (a)                                                   (b)                                                 (c) 

Figure 3.6: Results for a successful FGGRL on the actual Robot-EA308. (a) Reward for each step, (b) average 
reward of the last ten steps for each step, (c) stability margin for each step. 

For the epochs A and C, the robot manages a walk with large stability margins towards the 

middle of the epochs. Especially for the epoch C, it was possible to observe that the robot was 

walking with a poor stability in the beginning, and could manage a safe walk only afterwards. It was 

also possible to observe the smooth passage from 2 units to 3 units per step in the very beginning of 

the epoch D: the robot first made steps with 1 unit advancement, and passed to 3 units after three 

steps. 

One can observe in Figure 3.6, that the robot learned to walk with five legs after about 23 real 

steps. The number of attempts due to the falling throughout these 23 steps was 18. The states that 

constitute the five-legged walk after the 23 steps are  

[0 5 0 3 5 3]→[4 0 2 4 0 4]→[5 0 3 0 4 0]→[0 5 0 3 5 3] 

with stability margins of 4, 2, 7.5, and again back to 4cm respectively. The slights that show the 

robot in these states are given in Figure 3.7, with the same order. 

 

 

Figure 3.7: Slights showing the Robot-EA308 while walking with the five-legged gait pattern composed of the 
sequential states [0 5 0 3 5 3]→[4 0 2 4 0 4]→[5 0 3 0 4 0]→[0 5 0 3 5 3], from left to right, respectively. 
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Figure 3.8: Results of a five-legged learning episode, in which the “on-the-border” problem is observed. (a) 
Reward for each step, (b) average reward of the last ten steps for each step, (c) the first and second patterns of 
states with their stability margins.  

For the application in Figure 3.6, it is observed that although the robot found a pattern of five 

legged walking, it occasionally lost its stability on the state with the minimum stability margin of 

2cm. However, in its first attempt it managed to have a stable step with the same state. (Since the 

attempts are not considered as real steps, the fallings are not observed on the figures.) Therefore, 

these fallings did not alter the learned pattern in this example. However, in some other episodes of 

learning of five-legged walking with the actual robot, the irregular stability with a state created 

problems for learning. For example, a state with stability margin of 2cm resulted in falling in some 

cases; or, a state with stability margin of 1cm, which was considered to be unstable in the simulation, 

resulted in a stable standing in some cases, but falling in others. Such an “on-the-border” state results 

the following: First the robot considers the state as stable, and starts to establish a pattern with it. But 

after some time the state either becomes totally unstable, or sometimes stable but sometimes 

unstable. In such a case, if the robot manages to make the state stable in its attempts, the learned 

pattern is preserved, with occasional falls and recoveries. Otherwise, the learned pattern is lost with 

cleaning of the problematic state from the memory. These two phenomena are easily observable; 

because, the on-the-border state damages an already established pattern. However, an on-the-border 

state might also result in delaying of learning of a pattern, which is harder to be observed. 

In Figure 3.8, the results of a five-legged learning episode is given as an example in which the 

problem of on-the-border state is observed. During this episode a pattern (First Pattern) is established 

and used between the 24th and 47th steps. In step 48, the state with stability margin of 2cm, behaved 

unstable and the pattern was lost. The robot managed to establish another pattern (Second Pattern) 

with a state of 1cm stability margin, and used it between the 118th and 123rd steps. However, at the 

124th step this state behaved unstable and the pattern was again lost. 

With the actual robot 30 episodes of 150 steps were performed separately for learning of five-

legged walking. In half of those the right, and in the other half the left rear leg was deficient. No 

difference was observed between the right or left one being deficient, concerning the success of 

learning. The result of each episode is categorized with one of the four success categories of 

“perfect”, “acceptable”, “late”, and “not-learned”. “Perfect” means that the robot learned a five-

First Pattern       Stab.marg. (cm) 
[4 0 2 0 5 0]                7.5 
[5 3 0 5 0 2]                  4 
[0 4 5 0 5 3]                  3 
[3 5 0 5 0 4]                  2 
[4 0 2 0 5 0]                7.5 
 
Second Pattern   Stab.marg. (cm) 
[3 5 2 0 4 4]                8.5 
[4 0 3 5 0 5]                  3 
[5 3 4 0 2 0]                8.5 
[0 4 0 5 3 3]                  1 
[3 5 2 0 4 4]                8.5 
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legged walking pattern in the first 100 steps and managed to finish the total 150 steps with the same 

pattern. “Acceptable” means that the robot managed to learn a five-legged walking pattern in the 

first 100 steps, but because of on-the-border states, lost the learned pattern. “Late” means that the 

robot could learn a five-legged walking pattern only in the last 50 steps. And lastly, “not-learned” 

means the robot could not learn a pattern in all 150 steps. Among the 30 episodes, the results of 9 

were “perfect”, 10 were “acceptable”, 5 were “late”, and 6 were “not-learned”. With the perfect 

results the robot learned five-legged walking in about 5 to 10 minutes and finished the 150 steps in 

less than 15 minutes. With the acceptable results, although a pattern is generated again in 5 to 10 

minutes, the fulfillment of 150 steps lasted up to 20 minutes. The late and not-learned episodes were 

finished in between 20 to 25 minutes.  

If having established a five-legged walking pattern in the first 100 steps is considered as 

“successful”, as done for the simulation results, 19 of the episodes (“perfect” or “acceptable”) were 

successful, and the remaining 11 (“late” and “not-learned”) were unsuccessful, with a success ratio 

of 63%. This is slightly larger than that of the five-legged learning with the simulation. Why is there 

such a slight increase despite the negative effects of the “on-the-border” phenomena? Because, with 

the actual robot some states with a stability margin of 1 or even 0cm, result in stable standings and 

are used in the patterns. This is not possible with the simulation, where any state with a stability 

margin less than 2cm is consistently unstable. Existence of such states in the real robot application, 

enlarges the space of stable states in the search space, and makes learning easier. It should be noted, 

however, that the negative effect of on-the-border states, might be larger than the mentioned positive 

effect in other samples of episodes. Therefore, “on-the-border” effect should be stressed here as a 

severe problem to be considered in application of reinforcement learning to learning of walking.  

3.8. Conclusion 

In this chapter the problems of free gait generation, continuous improvement of gaits, and 

adaptation to unexpected conditions are addressed for a six-legged robot. While the free gait 

generation corresponds to the central part of gait generation, the reinforcement learning incorporated 

with this corresponds to the reactive part. The possible walking patterns are generated by the free 

gait generation, and among these the ones most successful for adaptation are memorized and utilized 

by the reinforcement learning. In this way the approaches of central pattern generation and reflex 

model are somewhat conciliated and their efficiency are utilized in a single gait generation scheme. 

The reinforcement learning makes the robot adopt more stable gaits in normal conditions of 

no external effect of instability. As a result, the stability of walking with a commanded speed is 

continuously increased till a pattern with each state having good stability margin is achieved. When 

the speed command is changed, the robot performs a smooth passage with probably slowing down to 

the speed of 1 units per step, and then adopting the new speed in a few steps. This smooth passage 

between commanded speeds should be noted as a peculiar feature of the algorithm here. Both 
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increasing the stability margin and smooth passage between different speeds are successfully 

observed on the real Robot-EA308. 

The adaptation capability of the learning scheme is tested on an unexpected case for the robot, 

namely when there occurs a deficiency on one of the rear-legs. In this application the robot is not 

aware of the cause, but experiences falls although it generates statically stable gaits. The fallings 

result in negative reinforcement and the robot learns to avoid them by memorizing and making use 

of the stable states. The learning of five-legged walking is realized with the actual Robot-EA308. 

The switches beneath the robot body enabled the computer to realize the falls.  

The main difference between applying the reinforcement learning with simulation and with 

the actual robot is designated as the effect of “on-the-border” situations. This problem rises 

especially because the reinforcement signal taken from the actual robot has a binary character. The 

robot either falls or not. The scheme here cannot handle the situations when a state behaves 

indefinitely. If the reinforcement signal could designate a continuous stability value it would be 

better for the algorithm to avoid on-the-border states. However, for the case of avoidance of falling, 

such a reinforcement signal is not easy to be generated with simple switches. One way to overcome 

this problem might be to incorporate the internal reinforcement, designating the stability margin 

depending on the simulation model, with the reinforcement taken from the actual robot. Future work 

based on this chapter might focus on developing the reinforcement signal in order to handle the 

external indefiniteness in learning of durable five-legged stable gaits.  
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CHAPTER 4  

PROTRACTION OF A THREE-JOINT ROBOT LEG: 
TRAJECTORY OPTIMIZATION AND CONTROLLER DESIGN 

4.1. Introduction: Protraction of Legs 

The focus of this chapter is the protraction movement of a single three-joint robot leg. 

Protraction of a leg corresponds to carrying the tip point from a given PEP to a given AEP, by 

following a proper trajectory. In the literature there are quite scarce studies that explicitly deal with 

the protraction movement of robot legs. Ilg and Berns (1995) and Ilg et al. (1997) are two papers that 

deal with application of reinforcement learning for the power stroke (retraction) and return stroke 

(protraction) of a robot leg. In these papers the focus is the reinforcement learning scheme which is 

used to learn the parameters of some oscillatory networks controlling the leg movements. The 

efficiency of the resulting movements are out of concern. In Cruse et al. (1998) a general control 

structure for protraction is described under the subtitle of “control of the swing movement”. 

Similarly, in Dürr et al. (2004) protraction is explicitly mentioned as one of the four mechanically 

uncoupled swing movements of robot legs. The other three movements mentioned are searching, 

grasping, and grooming. These papers content with description of very general, and in fact similar, 

kinematic control models, which aim to imitate the biologically inspired movements observed in 

insects. However, the stress on the similarities between the mentioned four movements in Dürr et al. 

(2004) reveal the importance of the control for such group of swing movements. This points to the 

fact that a protraction movement generator should be applicable to be used for similar swing 

movements other than protraction. Such movements are especially the reflex movements to be 

performed when the robot comes across unexpected obstacles, holes, or hills (Espenschied et al., 

1996). The optimization and control structure developed in this chapter is generalizable to any 

similar movement once the initial-final tip point positions are provided. In Erden and Leblebicioğlu 

(2004) we had performed a preliminary work for the approaches developed in this paper.  

The biological observations reveal that the protraction time in six-legged insects is constant 

regardless of the speed of walking. In two of the models of legged locomotion (Section 1.2; Ferrell, 

1995), namely in the Wilson and Pearson models, it is explicitly stated that the protraction time is 

constant. This is sense-full since there is no power load on the leg during the swing motion, and it is 

possible to protract in a quite short and constant time. Therefore, it is a reasonable approach to 

follow this biological observation in robotic applications. The aim in this work is to generate an 

efficient trajectory to carry the tip point of the leg from any given PEP to any given AEP in a given 
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time which is taken to be 1.5 seconds, as a value proper for the Robot-EA308. Efficiency means 

dissipation of minimum energy in the three actuators during protraction.  

The chapter is organized as follows: Section 4.2 gives the kinematic and dynamic modeling of 

a three-joint leg. Section 4.3 gives the problem formulation and introduces the “object function 

modified optimization” approach for trajectory optimization. In this section, also the usage of radial 

basis function neural network (RBFNN) for interpolation of optimal trajectories is mentioned. In 

Section 4.4 the controller design in order to make the tip point to follow any guiding trajectory is 

presented. Section 4.5 gives the results that compare the performance of the controller with 

optimized trajectories. In this section, also some slights of the Robot EA308 are given while 

protracting through the trajectory generated by the designed controller. Section 4.6 gives concluding 

remarks with mentioning of probable future work. 

4.2. Three-Joint Robot Leg: Kinematic Model and Dynamic Equations 

A three-joint robot leg can be considered as a three-link revolute joint (RRR) manipulator, 

which is attached to a stationary base (robot body). Therefore, the kinematic modeling and 

derivation of dynamic equations can be performed following the conventional robotics approaches 

(Fu et al., 1987). The kinematic model here is derived by defining the reference frames according to 

the Denavit-Hartenberg convention. In Figure 4.1 a graphical representation of a three joint robot leg 

is given, with the attached reference frames and corresponding joint variables. In this figure the body 

(b) and the zeroth (0) reference frames are attached to the stationary robot body. Therefore they can 

be both considered as inertial frames. (It is assumed throughout the chapter that the motion of the 

body is much more slower than the motion of the leg during protraction. Therefore, the body is 

assumed to be stationary.) The axes of the body frame are arranged to be in accord with the actual 

robot-body orientation. The Denavit-Hartenberg link parameters based on Figure 4.1 are given in 

Table 4.1. The resulting homogeneous transformation matrices between the body and the zeroth 

frame, and between the sequential link frames are given in (4.1). In the formulas the variables 

represented by ai stand for the length of the ith link (namely, the length of the portion of the link 

between the origins of i-1st and ith reference frames). The variables represented by θij mean the sum 

of the ith and jth joint angles (θij=θi+θj). C and S correspond to cosine and sinus functions, 

respectively. The values used for these parameters belong to the Robot-EA308: Ψ=450; a1=1.5 (cm); 

a2=5.25 (cm); a3=13.25 (cm). Homogeneous matrices are used in derivation of positional relations 

between the successive frames. In (4.3) the tip point position with respect to the body frame is given. 

The rotation matrices between the frames are given in (4.2). These rotation matrices are used in 

vector equations, especially while deriving the dynamic equations. 
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Figure 4.1: Three-joint robot leg: Reference frames and joint variables.  

Table 4.1: Denavit-Hartenberg link parameters for the three joint robot leg. 

 

 

H b ,0

0 cos sin 0
1 0 0 0

0 sin cos 0
0 0 0 1  

H k 1,k

cos k sin k cos k sin k sin k ak cos k

sin k cos k cos k cos k sin k ak sin k

0 sin k cos k d k

0 0 0 1 (4.1)                               

H 0,3 H 0,1 H 1,2 H 2,3 H b ,3 H b ,0 H 0,3  

 

C b ,0
0 cos sin
1 0 0

0 sin cos
C k 1,k

cos k sin k cos k sin k sin k

sin k cos k cos k cos k sin k

0 sin k cos k

 (4.2) 

 

Pe
b

C a1 S 1 a2 S 1C 2 a3 S 1 C 23 S a2 S 2 a3 S 23

a1C 1 a2 C 1 C 2 a3C 1C 23

S a1 S 1 a2 S 1C 2 a3 S 1 C 23 C a2 S 2 a3 S 23

            (4.3) 

Joint θi αi ai di 

1 θ1 π/2 a1=1.5cm 0 

2 θ2 0 a2=5.25cm 0 

3 θ3 0 a3=13.25cm 0 
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In order to derive the dynamic equations, first the inertia matrices of the links should be 

determined. Since the kth reference frame is stationary with respect to the kth link, the inertia tensor 

of the kth link around its center of mass appears to be a constant matrix with respect to the kth 

reference frame, as in (4.4). In Appendix A one can find the formulas for calculation of link inertia 

matrices. The values used in these formulations belong to the Robot- EA308. The resulting matrices 

for each link are in the form of (4.5). 

 

                                 (4.4) 

 

(4.5) 

 

The dynamic equations are derived using the Lagrangian formulation. The Lagrange function 

(L) is defined as the difference between the kinetic (K) and potential (U) energies. In the general 

sense, the generalized forces of a conservative system are determined as in (4.6). 

 
                                                               (4.6) 

 

Application of this principle to the three-joint leg system leads to (4.7) where, kq =joint 

variables (joint angles θk); kq& =derivative of joint variables (joint angle velocities kθ& ); kQ =joint 

actuator torques; kD =effect of the external forces on the joints. Since there is no external effect on 

the leg throughout the protraction phase, the term kD is equal to 0 ; therefore it will be omitted from 

the other equations. 

 
                                             (4.7) 

 

The kinetic energy and potential energy of the system are given as in (4.8) and (4.9), 

respectively, where kv
r

stands for the mass-center velocity, kω
r

for the angular velocity, and km
r

for 

the mass of the kth link; kp
r

 stands for the mass-center position of the kth link from the origin of the 

zeroth reference frame, and g
r

 stands for the gravitation. 

 

                       (4.8) 
 
 

                                              (4.9) 
 

k
d
dt

L
qk

L
qk

L K U

d
dt

K
qk

K
qk

U
qk

Qk Dk

K
k 1

3 1
2

mk vk vk
1
2 k J k k

k 1

3 1
2

mk vk
0 t vk

0 1
2 k

k t J k
k

k
k

U
k 1

3

mk g pk
k 1

3

mk g 0 t pk
0

J k

J k1 0 0
0 J k2 0
0 0 J k3

J k
k J k

k J k



63

Once the kinetic energy is represented in the form of (4.10), and the gravitational term of Gk is 

defined as in (4.11), the general dynamic equation of (4.7) can be written more explicitly as in (4.12) 

and (4.13). 

 
                                       (4.10) 

 
 
 

                                                                    (4.11) 
 
 
 

                                    (4.12) 
 
 
 

                                    (4.13) 
 

Equation (4.13) can be put in a matrix form, which will gather all three joint variables, as in 

(4.14). In equation (4.14), M̂ is the mass (inertia) matrix; C is the vector of coriolis, centrifugal, and 

gyroscopic terms; G is the vector of gravitational terms; and Q is the vector of the three joint 

torques. The values of these variables can be found in Appendix B. 

 M q q C q ,q G q Q                                             (4.14) 

4.3. Trajectory Optimization 

The trajectory optimization is performed by using the gradient based “optimal control theory” 

(Kirk, 1970, pp.184-209, 236-240, 330-343). It is well known that gradient based optimization 

algorithms suffer from sticking to local optimums. Especially when the dimension of vectors to be 

optimized is large, this problem is more severe. In trajectory optimization problems the dimension of 

vectors that represent the whole trajectory happen to be quite large. In order to cope with this 

problem it is a common approach to represent trajectories with parametrized polynomials which 

satisfy the initial and final position requirements. Cubic splines are widely used for this purpose 

(Bobrow et al., 2001; Chettibi et al, 2004; Garg and Kumar, 2002; Saramago and Stefen, 1998). 

Once the trajectories are represented by a small number of spline parameters, the trajectory 

optimization problem is reduced to optimize those parameters with respect to a given objective 

function. Application of non-gradient based optimization algorithms is also common to be used with 

such reduced representation of trajectories. Genetic algorithms is one of the most popular of those 

applied in trajectory optimizations. In Garg and Kumar (2002), trajectory optimization for a two-link 

manipulator is reduced to optimization of two parameters with genetic algorithms.   
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With polynomial representations trajectories are prisoned to a limited search space defined by 

the structure of the polynomial. Many of the feasible trajectories are excluded from the solution 

space. Therefore the most optimistic solution of those approaches is the best solution in the space 

represented by the structure of the polynomial. The search is then not performed everywhere in the 

solution space. If it is not desired to sacrifice the freedom of the trajectory, it is not proper to adopt 

reduced representations of trajectories based on polynomial parameters. The attempt in this chapter 

is to utilize full trajectory representation in optimization, in order to have access to the whole 

solution space. However, the usage of full trajectory representation necessitates a large number of 

unknowns to be optimized. This makes it difficult to be handled by non-gradient based optimization 

algorithms. For example, the coding of a large input vector leads to too large chromosomes for 

genetic algorithms. Moreover, in evolutionary optimizations, the parameters are optimized 

independently, which may lead to non-smooth (non-continuous) solution sets. Gradient based 

optimization is more proper from the stand point of handling high dimensionality, and producing 

analytical solutions, however, with the problem of sticking to local optimums. The approach here 

attempts to utilize gradient-based optimization using the optimal control theory. The problem of 

local optimality is intended to be overcome by objective function modification in different epochs of 

gradient-based optimization. In the following the formulation for optimal control, the objective 

function modification, and optimization results are presented. The optimal trajectories are processed 

and an interpolating RBFNN is constructed to produce near-optimal trajectories for any given initial 

and final point positions. 

4.3.1. State Space Representation and Hamiltonian Formulation of a Three-Joint Leg System        

In a robotic manipulator the actual inputs to the system are the voltages supplying the energy 

to the actuators. Once the actuators are omitted from the formulation the inputs to the mechanical 

system remain to be the actuator forces and torques. Namely, for a mechanical formulation of three 

joint leg system the actual inputs are the three joint torques, )Q( . However, if the aim is trajectory 

optimization, some auxiliary control variables can be chosen as the input, and then the required 

torques can be calculated using (4.14) (this approach is followed also in Frangos et al. (2001)). 

Accordingly, the inputs to the system here are chosen to be the angular accelerations of the joints, 

)(θ .  

There are three kinds of requirements in the formulation: system dynamics, initial and final 

state conditions, and joint angle constraints. In handling these requirements the approaches in Kirk 

(1970) are followed. Initial state conditions are imposed in the initialization of the optimization; the 

final state conditions are imposed in the objective function as a penalty term; joint angle constraints 

are imposed using a supplementary state variable, named as the constraint-state; and the system 

dynamics are imposed in the dynamic equations of the state variables. There is no restriction on the 
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control input. The states are of three groups: the joint angles )(θ ; the joint velocities )(θ& ; and a 

constraint-state.  The state and input vectors of the overall system are given in (4.15). 

 
 
 
 
 

                                                             (4.15) 
 
 
 
 
 

Following the notation in Kirk (1970) the system dynamics can be given as 

x a x t ,u t ,t                                                     (4.16) 

where the state derivatives are defined as follows: 

 
 
 
 

                            (4.17) 
 

 

The seventh state is the constraint-state whose dynamics is defined by the function 

)t),t(u),t(x(fc . There are two kinds of constraints on the joint angles: the ones imposed by the 

mechanical construction of the joints, and the one that limits the tip point from going under the 

ground level. These constraints are given in (4.18), where t1a=300 ; t1b=1500 ; t2a=00 ; t2b=1350;   

t3a=-1500 ; t3b=-350 ;and the ground level is taken to be zg=-9 cm. 

t 1 a 1 t 1 b

t 2 a 2 t 2 b

t 3 a 3 t 3 b

pz S a1 S 1 a2 S 1 C 2 a3 S 1C 23 C a2 S 2 a3 S 23 z g

                (4.18) 

Related to those constraints the following seven f functions are determined, all of which 

should be greater than 0 in order the constraints to be satisfied.  
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f 1 x t , t 1 t1 a 0
f 2 x t ,t t 1b 1 0
f 3 x t , t 2 t 2 a 0
f 4 x t , t t 2 b 2 0
f 5 x t , t 3 t3 a 0
f 6 x t ,t t3 b 3 0
f 7 x t ,t 1000 p z zg 0

                                        (4.19) 

The dynamics of the constraint-state is defined by 

xc t f c x t
i 1

7

f i x t 2 f i                                      (4.20) 

where 

f i
0, for f i x t , t 0
1, for f i x t , t 0

for i 1,2 ,...7                    (4.21) 

The initial and final conditions for the constraint-state are set to be 0. Since the ϕ function is 

positive if the constraint is not satisfied, and zero if the constraint is satisfied, the derivative of the 

constraint-state happens to be either positive (if any of the constraints is not satisfied) or zero. The 

conditions that the initial and final values are zero, and the derivative is non-negative force the 

constraint-state to remain zero throughout the protraction period. In this way all the seven constraints 

in (4.19) are satisfied. 

It is a common approach to use the integral of torque squares as an index of energy dissipation 

in the actuators of robotic manipulators (Bobrow et al., 2001; Garg and Kumar 2002; Liu and Abdel-

Malek 2000). The torque vector of the three-joint leg system is given in (4.22). Combining the 

torque square integration with the final state conditions leads to the objective function in (4.23), in 

which again the notation of Kirk (1970) is followed.   
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J u h x t f , t f J s xs , u

h x t f ,t f
t0

t f

g x t , u t , t dt

x t f xtf
T Dh x t f xtf

t0

t f

Q x t , u t T Dg Q x t ,u t dt

       (4.23) 

 

 

 



67

The optimization problem can be stated as  

Minimize J u

subject to
x t a x t , u t , t

x to xo

                                               (4.24) 

This leads to a two-point boundary value problem in which the state and control variables are 

not constrained by any boundaries, the final time tf is fixed, and )t(x f is free (in fact it is not free, 

but it can be considered as free in the formulation since the requirement is imposed in the objective 

function by )t),t(x(h ff ). Following the optimal control approach with the notation in Kirk (1970), 

the Hamiltonian function for this optimization can be written as: 

H x t , u t , p t , t g x t , u t ,t p t T a x t , u t , t           (4.25) 

where )t(p corresponds to the costate vector. 

The necessary and boundary conditions for an optimal solution can be written as follows: 

 Necessary conditions for optimality: 

x t a x t , u t , t                                                       (4.26) 

p t H
x

x t , u t , p t , t                                            (4.27) 

0 H
u

x t , u t , p t , t                                                 (4.28) 

Boundary conditions: 

x t 0 x0                                                               (4.29) 

p t f
h
x

x t f                                                       (4.30) 

The first two equations of the necessary conditions make up two differential equations whose 

initial and final conditions are given by the boundary conditions equations. The trajectory of input 

vector is approximated with a dense discretization of 51 instants, which results in quite a high 

dimensional optimization input of 3×51 length. Starting with an initial input trajectory, namely 51 

values of the vector )t(u for the discretized instances, the state and costate equations can be solved 

numerically, by forward and reverse integrations, respectively. The third equation of necessary 

conditions is in fact nothing but the gradient of the objective function with respect to the input 

vector. Therefore, )t(u can be updated in the negative direction of this gradient in order to minimize 

the objective function, as in (4.31), where i stands for the iteration number. After some iteration the 

optimal )t(u trajectory, which makes the third necessary condition as close as possible to zero, can 
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be achieved. This technique is called “the method of steepest descent for two-point boundary-value 

problems” (Kirk, 1970). The initial )t(u trajectory in this work is taken to be a zero matrix of 3×51 

dimension. The value of α in (4.31) is determined by a one-dimensional search in every step. The 

optimization is terminated when the difference between two successive objective functions is less 

than 0.01. 

u i 1 t k u i t k
H
u

tk , t k k 1
t f

50
, k 1,2 ,... ,51                  (4.31) 

4.3.2. Optimization with Objective Function Modification 

In the objective function of (4.23), there are two terms, respectively related to final state 

conditions and energy integration. These terms are weighted by the constant matrices of hD̂ and gD̂ , 

respectively. These two are taken to be diagonal matrices as follows: 

 
 
 
 

                                 (4.32) 
 
 
 
 
 

The elements of hD̂ and gD̂ are arranged to have comparable values for the corresponding 

two terms in the objective function. The entry corresponding to the constraint-state in the hD̂ matrix 

is chosen to be very large in order to guarantee the satisfaction of the constraints. The dh and dg 

values determine the relative strength of the two terms with respect to each other. Choosing a large 

dh and a small dg will result in a better achievement of final state requirements with little decrease in 

total energy dissipation; while a small dh and a large dg will result in a big decrease of total energy 

dissipation with non-achievement of final state requirements. Therefore, there is a trade-off between 

the two considerations represented by these two terms. Another problem is that, whatever values 

these two parameters are assigned, the optimization will stop in a local optimum, which does not 

give a satisfactory trajectory. For example, even though dh is chosen very large compared to dg the 

optimization will stop at a local minimum in which the tip point is not brought to the desired tip 

point position. Therefore, the problem is of two fold: sticking to local optimums, and trade-off 

between the two terms. 

The approach adopted to overcome these two problems is to make optimizations with 

changing the dh and dg parameters sequentially. In this way the local optimum is jumped over by the 

change of objective function, and the two terms are enforced sequentially one after the other. The 

optimization with objective function modification can be described as follows: 

Dh d h

500 0 0 0 0 0 0
0 500 0 0 0 0 0
0 0 500 0 0 0 0
0 0 0 20 0 0 0
0 0 0 0 20 0 0
0 0 0 0 0 20 0
0 0 0 0 0 0 107

Dg d g

106 0 0
0 106 0
0 0 106
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Step 1:   
i) Initialize  0)t(u k = for k=0,1,…,51.  
ii) dh=dh,1; dg=dg,1. 
iii) Perform optimization. 
iv) Output [ ]2

kk )t(u)t(u =  for k=0,1,…,51. 
Step i:   

v) Initialize  [ ]1i
kk )t(u)t(u −=  for k=0,1,…,51. 

vi) dh=dh,i; dg=dg,i. 
vii) Perform optimization. 
viii) Output [ ]i

kk )t(u)t(u =  for k=0,1,…,51. 
for i=2,...,6. 

 

The changing values of dh and dg are given in Table 4.2. In Steps 1-4, a regular change is 

followed. In the step before the last, the jump of dg is increased to give a last impulse in the direction 

of increased dg. It should be noted that the last step corresponds to the actual objective function 

intended to be minimized by the overall optimization. 

The movement of protraction is carrying the tip-point of the leg from a given position located 

on the ground in the backward of the leg origin, to another given position located on the ground in 

the forward of the leg origin. Therefore it is possible to determine a region of departure in the 

backward of the leg, and a region of arrival in the forward. These regions are determined to be two 

squares whose corners are given as [(8,-7,-9);(12,-7,-9);(12,-3,-9);(8,-3,-9)] and [(8,3,-9);(12,3,-

9);(12,7,-9);(8,7,-9)] (cm), respectively, with respect to the body frame. The tip point is assumed to 

depart from a point in the square of departure to a point in the square of arrival. The ground level is 

taken to be -9cm in the z-direction. Nine points from each square are chosen as the positions for 

optimization. Eight of these are distributed homogeneously throughout the periphery of the square, 

and the remaining is taken to be the center point. As a result, 9× 9=81 initial-final position pairs are 

used in the optimization; therefore, a total of 81 optimal trajectories are obtained to represent the 

protraction from the square of departure to the square of arrival. These trajectories will be used to 

interpolate a trajectory for any given initial-final point positions in those squares. The set of the 

initial and final point positions used for optimization are given in Table 4.3. 

Table 4.2: Sequential values of the weights of the objective function for "objective function modified 
optimization" 

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

dh 1 10 1 10 1 10 
dg 10 1 10 1 100 1 
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Table 4.3: Set of initial and final tip-point positions used for optimization. 

 

 

4.4. Comparative Results of “Optimization With Single Objective Function” 
and “Optimization With Objective Function Modification”: 

Before giving the optimization results with the “objective function modification”, here will be 

given the optimization results with the conventional approach, which corresponds to using the last 

objective function determined by the values in Step 6 of Table 4.2. These results will be a basis to 

observe the improvement by the objective function modified optimization. 

In Figure 4.2 the joint angles, velocities, and accelerations resulted from the 81 optimizations 

with “single objective function” are given in the first three rows, respectively. The last row shows 

the tip point position errors, namely the differences between the actual tip point and desired final tip 

point positions in the three coordinate axes. Among these results, a few of the optimizations resulted 

in feasible trajectories, which came close to the desired final tip point position with a movement of 

lifting up the tip point in the start. Some of these feasible ones are shown by arrows on some of the 

figures. Most of the remaining optimizations created unfeasible trajectories, which cannot be 

considered as a proper protraction at all. The important point here is that, not only the unfeasible 

ones but also the few feasible trajectories are the local minimums of the single objective function. A 

much more better improvement of those trajectories will be possible with the objective function 

modified optimization. 

In Figure 4.3 the joint angles, velocities, and accelerations resulted from the 81 optimizations 

with “objective function modification” are given in the first three rows, respectively. Again the last 

row shows the tip point position errors. It is immediately realized how structured the figures are 

compared to the ones in Figure 4.2. In 79 of the results given in Figure 4.3, the optimization was 

successful to create a reasonable behavior of protraction: In the starting phase the leg is first 

retracted towards the body with raising the tip point above the ground level; in the middle phase the 
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protraction towards the front is maintained; and in the end phase the leg is extracted carrying the tip 

point towards the desired final position. Among the 81 optimizations, only two of them resulted in a 

different behavior. These two are shown with arrows on the figures. In these two, the optimization 

did not manage to bring the tip point to the desired final position. 

A comparison of the two optimizations regarding to cost minimization are given in Figures 

4.4 and 4.5. Figure 4.4 shows the improvement for an infeasible case with “single objective function 

optimization”. The fist row figures show the leg movement from different sights for the optimization 

result with “single objective function”. The second row figures show the leg movement for the 

optimization result with “objective function modification”. It is clear how feasible and reasonable 

the movement on the second row figures is. The figures in the last row of Figure 4.4 show the main 

cost function values (nominal cost), whose parameters are given by the Step 6 of Table 4.2. The 

dashed lines show the values for “optimization with single objective function”, and the solid lines 

show the values for “optimization with modified objective function”. The most left one of these 

depict the change of the main objective function (nominal cost). The ultimate aim of both 

optimizations is to minimize this function. As expected the cost decreases continuously in the case of 

“optimization with single objective function”. In the case of “optimization with objective function 

modification” the nominal cost increases and decreases with the modifications in the cost function. 

However, ultimately when the nominal cost function of Step 6 is used, the resulting nominal cost is 

considerably lower than the one with “optimization with single objective function”. The middle 

figure in the row depicts the value of )t),t(x(h ff , which is related with the achievement of final 

state requirements with the dh value in Step 6. A lower value of this function means that the final 

state requirements are attained better. It is seen that this value is lower in the “optimization with 

objective function modification” compared to the case of “optimization with single objective 

function”. The right most figure in the bottom row of Figure 4.4 depicts the value 

of ∫
f

0

t

t

dt)t),t(u),t(x(g , which signify the sum of torque squares with the dg value in Step 6. The 

difference for this value is striking for the two cases of “optimization with objective function 

modification” and “optimization with single objective function”.  In the case of “optimization with 

objective function modification” a step-by-step decrease to much more lower values than those of 

the “optimization with single objective function” is observed.  

Figure 4.5 shows the improvement in the case of a feasible trajectory found with 

“optimization with single objective function”. Similar arguments made above go for these figures, 

too. The only difference is that the result of “optimization with single objective function” is feasible, 

in the sense that the trajectory both reaches to the desired final position and follows a reasonable 

path. However, the result of “optimization with objective function modification” is both feasible and 

much more efficient compared to the former. 
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The “optimization with single objective function” suffers from the local optimums, which 

mostly lead to unfeasible trajectories. With the “optimization with objective function modification” 

it is possible to jump over these local optimums and generate more feasible and efficient trajectories. 

With the six steps and the associated cost parameters mentioned in Table 4.2, the “optimization with 

objective function modification” was successful to generate feasible and more efficient trajectories 

for the 79 cases of the 81 optimizations. These results, however, are sure not the global optimums, 

since the optimization is still based on the gradient information. A problem related to “optimization 

with objective function modification” is the long time required for the termination. As can be seen in 

Figures 4.4 and 4.5 the “optimization with objective function modification” necessitates around 200 

iterations, which is quite much for a gradient-based optimization. However, the improvement is 

considerable and leads to satisfactory results to be used in controller design. The long time of 

termination did not create a problem for this work, since the optimization is performed only to create 

a training set to be used in the design of protraction controller.     
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Figure 4.2: Results of "optimization with single objective function". First row: joint angles; second row: joint 
angle velocities; third row: joint angle accelerations; fourth row: tip point position errors. 
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Figure 4.3: Results of “optimization with objective function modification". First row: joint angles; second row: 
joint angle velocities; third row: joint angle accelerations; fourth row: tip point position errors. 
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Figure 4.4: Results of "optimization with single objective function" (the first row and the dashed lines in the 
last row) and "optimization with objective function modification" (the second row and solid lines in the last 
row). The result of "optimization with single objective function" is infeasible. (Unit of first two row figures: cm; 
initial tip point position: [12, -7, -9] (cm); final tip point position: [8, 3, -9] (cm).) 
 

 
 
 

 

 

 
 

Figure 4.5: Results of "optimization with single objective function" (the first row and the dashed lines in the 
last row) and "optimization with objective function modification" (the second row and solid lines in the last 
row). The result of "optimization with single objective function" is feasible. (Unit of first two row figures: cm; 
initial tip point position: [12, -3, -9] (cm); final tip point position: [12, 5, -9] (cm).) 
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Figure 4.6: Effect of the modification on optimized trajectories. (unit: m) 

4.4.1. Manipulation of Optimal Trajectories: 

The optimization is capable of decreasing the torque-square-sum with approaching the tip 

point to the final position; however, this approaching does not result in exact placement of the tip 

point to the desired final position. Most of the time slight, but sometimes considerable, position 

differences occur between the actual and desired final tip point positions. For the interpolation 

purposes, this is an improper situation regarding to the data set. In order to overcome this final 

position deviation, the optimized trajectories are modified to bring the final tip-points to the desired 

positions. This is performed by adding the difference vector between the actual and desired final tip-

point positions to all position vectors, multiplied with a weight decreasing towards the start of the 

trajectory, as in (4.33). This manipulation effects the most successful optimizations in a negligible 

amount. However, the less successful optimizations, in which the final point position is not close to 

the desired position, are manipulated in a considerable way. The effect of optimal trajectory 

manipulation is shown in Figure 4.6 for two sample initial-final position pairs. 

Pmod t k Pop t k P f Pmod t51
k

51
k 0,1,2 , ... ,51.                      (4.33) 

4.4.2. RBFNN for Interpolation: 

In order to utilize the optimal trajectories for control of protraction, it is necessary to construct 

an interpolation algorithm, which will generate the trajectory for any given initial and final tip-point 

positions. For this purpose a RBFNN with pure-linear output neurons is a proper choice (Figure 4.7). 

The inputs of this interpolating network are the coordinates of the initial and final tip point positions; 

that makes up 6 input variables. The outputs are the tip point positions corresponding to the 51 

discretized instances throughout the protraction period, which makes up a total of 153 output 

variables. The inner neurons in an RBFNN correspond to the representatives of clusters of the input 
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space. The weights between the input and inner neurons determine the location of the representatives 

in the input space.  

Given any input, its distance to the representatives are calculated, and the inner neurons are 

activated with an inverse proportion to this distance. Namely, the representative, which is closest to 

the input is activated most. The weights between the inner and output neurons correspond to the 

output vectors associated with the representative neurons. Since these weights are multiplied with 

the activation of inner neurons, the output is a weighted sum of the effect of all representatives. 

Training of the RBFNN according to the optimized trajectories is a matter of generating the inner 

neurons, namely the cluster representatives, and the weights corresponding to those. An approach to 

this problem is to introduce an inner neuron, and then to optimize all the weights according to the 

data set, in each iteration. The center of the introduced neuron is chosen to be the data to which the 

RBFNN fits worst at that instant. Then the weights between all the inner neurons and output layer 

are optimized to minimize the least square error of all the data set. The number of neurons to be 

generated is a matter of design preference, in which data storage capabilities should be considered. 

In this work the function, newrb(), in the neural network toolbox of MATLAB is utilized for 

performing the described procedure with 30 inner neurons. The resultant RBFNN is used as the 

guiding trajectory generator for the controller introduced in the next section. The output values of the 

RBFNN are given in (4.34). Two trajectories produced by the interpolation of the RBFNN for two 

sample initial-final position points from the training set are shown in Figure 4.8.  

 

output j
n 1

30

wnj an
n 1

30

wnj gaussian
i 1

6

input i cin                                   (4.34) 

 

 

Figure 4.7: Trajectory interpolating RBFNN. i=1,2..,6 ; n=1,2,..,30 ; j=1,2,...,153. The vector cn=[c1n c2n ... c6n] 
determine the center of the nth neuron; an=gaussian(|[input]-cn|) determines the activation of the nth neuron; the 
vector wn =[wn1 wn2 ... wn3] determine the effect of the nth neuron on the output.  
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Figure 4.8: The trajectories produced as a result of the interpolation with the RBFNN for two trained input of 
initial-final tip point positions. (unit: m) 

 

For convenience, here two more results are given in order to present the performance of the 

interpolating RBFNN for two untrained data. The initial-final tip point positions, the optimized 

trajectories, and the output of the interpolating RBFNN are depicted in Figure 4.9 for two untrained 

cases. 

  

Figure 4.9: The trajectories produced as a result of the interpolation with the RBFNN for two untrained input of 
initial-final tip point positions. (unit: m) 
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4.5. Controller Design 

The controller design problem for the protraction of a three-joint robot leg is formulated as 

follows: “to generate the joint angle accelerations in order to bring the tip point of the leg from any 

given initial position to any given final position following a near-optimal path, with handling of 

disturbances and deviations, and with minimum oscillations”. The near-optimal path will be 

generated using the RBFNN designed in the previous section. This path will be the guiding path for 

the controller. Then the aim is to make the leg follow a guiding trajectory in the required time 

interval, with stability at the final point. In order to achieve this, first it is necessary to design a 

controller that will bring the tip point from any given initial position to any given final position. 

Afterwards, this controller can be incorporated with the guiding trajectory.  

Fuzzy logic based controller design technique is used to control the joint accelerations. The 

major problem in the controller design is to achieve fast response and stability at the same time. The 

protraction movement has to be accomplished in a given time (taken 1.5 seconds here) and the tip 

point must remain stationary without any oscillation at the final tip point position. The trade-off 

between fast response and oscillation is easier to be handled with fuzzy controllers due to the 

flexibility of rules and their weights.  

In Erden et al. (2004) the idea of “multi agent based fuzzy controller design for robot 

manipulators” was already developed. The idea there was to design a fuzzy controller for each joint, 

in a way that each joint would act independently, and their total sum of actions would result in the 

desired system response. The controllers in that work were designed considering the infinitesimal tip 

point position change due to an infinitesimal change in the joint angles. The inputs to the controllers 

were directly the tip point position errors. In this work similar ideas are followed with a more 

sophisticated model. A single controller is designed to be used by all the joints independent of the 

others. Rather than taking the tip point position error as a direct input, this error is transformed to an 

angle error for each joint. Namely, a “pseudo joint angle error”, which signifies the share of the joint 

in the tip point position error, is defined for every single joint. The pseudo joint angle errors and 

angular velocities of the joints are input to the fuzzy controllers. The output of the controllers are the 

angular accelerations of the joints. These ideas will be described for a general manipulator in the 

following. 

In Figure 4.10 a graphical representation of the jth joint of any multi-link revolute joint 

manipulator is given. In this figure the actual and desired tip point position vectors are depicted by 

tipP
r

and dP
r

, respectively. The aim is to generate the Pseudo_theta_error, which corresponds to the 

share of the jth joint in the position error of the tip point. The contribution of the jth joint to carry the 

tip point to the desired position can only be with a rotation of the jth joint, around its direction of 

rotation. This direction is represented by )1j(
3u −r

in the figure. The amount of rotation of the jth joint 

can be represented as an angle in the plane perpendicular to the direction of rotation, )1j(
3u −r

. This 
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plane is shown as the big rectangle in Figure 4.10. In order to find the necessary rotation of the jth 

joint, it is necessary to obtain the projections of the actual and desired tip point positions on the plane 

perpendicular to the direction of rotation. Then the vectors between the origin of the (j-1)st frame 

and these projection points can be determined as tipv
r

and dv
r

, respectively, as in the figure. 

Once tipv
r

and dv
r

are determined, the angle between these two vectors can easily be found using the 

inverse cosine formula. The actual pseudo joint angle error (Pseudo_error) related to the jth joint is 

generated by multiplying the Pseudo_theta_error with the length of the projection vector of the 

actual tip point position. The change in the tip point position error due to the rotation of the jth joint 

will be proportional to the magnitude of tipv
r

. The vector equations and formulas related to those 

calculations are given in (4.35). The values of the vectors of tipP
r

and 1j,0r −
r

with respect to the zeroth 

reference frame can be found in Appendix C. 

 

Figure 4.10: Representation of pseudo joint angle error for joint j of a multi-link revolute manipulator. 
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                                         (4.35) 
 
 
 
 
 

 

A fuzzy controller is designed to be used in the three joints. The inputs of this controller are 

the Pseudo_error and joint angle velocity; the output is the joint angle acceleration. The flexibility 

of fuzzy rules gives way to a very effective design to overcome the trade off between fast response 

and oscillations. Two groups of rules are written to handle the decreasing of error, and repression of 

oscillations, respectively. The first group of rules depend on the magnitude of Pseudo_error: If  

Pseudo_error is large, the output acceleration is big in the direction to decrease the error, otherwise 

it is small. The method for rule aggregation is chosen to be “sum”, rather than the more commonly 

used “max” option. This is because, using the “sum” aggregation, it is possible to easily arrange the 

output to any value between the tip points of output membership functions. For this purpose, two 

similar rules can be written with the same premises but different consequences, which results in a 

rule with a weighted average consequence. This technique is followed in the first group of rules. The 

second group of rules depend on the Pseudo_error and joint angle velocity: In the fuzzy regions that 

Pseudo_error is zero, these stabilization rules contribute to the joint acceleration in the opposite 

direction of joint velocity. The details of the fuzzy rules can be followed in the MATLAB fuzzy 

system file in Appendix D.  

The guiding trajectory gives the coordinates of 51 instances throughout the protraction. The 

actual tip point position in any instant is closest to one of these 51 positions. Once this closest 

position is found the reference tip point position can be generated by following the guiding 

trajectory, and taking the position which is some time ahead of the closest position. When the actual 

position comes near to the desired final position (nearer than the second entry from the last instant of 

the guiding trajectory), the desired final tip point can be generated as the reference tip point position. 

In this way, the reference tip point positions are iterated through the guiding trajectory till the desired 

final position. The controller follows this guiding. The overall block diagram of the control system 

for the protraction is given in Figure 4.11. In this diagram the generation of reference position from 

the guiding trajectory, and generation of the pseudo error signal are performed in the “Pseudo Error 

Generator” box. 
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Figure 4.11: Block diagram of the overall control system of protraction. 

In Figure 4.12 the SIMULINK block diagram is given to illustrate the realization of the 

overall protraction control. The association with the block in Figure 4.11 can easily be observed. The 

system in Figure 4.11 gives the very basic structure of the control system. Adopting this structure to 

the actual control case means arranging some parameters in order to maintain desired behavior for 

the specific cases. This adaptation procedure corresponds to arranging the gain parameters in Figure 

4.12. The arrangement of these parameters is performed by trial and error; however, it is still 

possible to give the basic logic followed in tuning. Since the controllers take normalized inputs and 

provide normalized outputs, first the velocity and acceleration gains are arranged. The acceleration 

gains (Gains 7, 8, 9) are arranged to a high value, and the velocity gains (Gains 1, 3, 5) are divided 

by the same high value. This value is one that produces a reasonably fast output on which work can 

be performed. Then the pseudo_error gains (Gains 2, 4, 6) are arranged in order to have a close trace 

of the guiding trajectory. Since the responses of the second and third joints are faster than the first 

joint (Figure 4.3, acceleration figures) it necessitates to have higher gains for the pseudo_errors of 

the second and third joints with respect to the first one. A ratio of 1:10, with values 0.5:5, was proper 

to have a close tracing of the guiding trajectory. Lastly, the velocity and acceleration gains are tuned 

to arrange the velocity properly for changing initial-final position pairs. The resultant values for the 

velocity and acceleration gains are as in (4.36). It might be realized that increasing μ in these 

equations corresponds to decreasing the velocity gains that are input to the controllers, hence 

increasing the actual accelerations and velocities of the system and speeding up the system response. 

 

dP Pi P f

400 160 dP 0.08
0.04

acceleration gains : Gains 7,8,9

velocity gains : Gains 1,3 ,5 1

                                              (4.36) 
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Figure 4.12: SIMULINK block diagram illustrating the realization of overall protraction control. 

4.6. Results 

In order to test the performance of the overall controller, initial-final tip point position pairs, 

which do not exist in the training set are used. The optimization algorithm is run with the input of 

these pairs, and the output trajectories of the actual controller are compared with the optimized ones. 

Here will be given the results for two such cases.  

In Figure 4.13, the optimal and controller output results for the initial and final tip point 

positions of [0.11, -0.04, -0.09] and [0.09, 0.04, -0.09] are given. The interpolated trajectory in this 

case is quite close to the optimal one. The tip point trajectory created by the controller is very close 

to the interpolated trajectory, which is used as the guiding trajectory throughout the control. In the 

joint angle figures it is apparent that the resulting trajectories are very close to the optimal ones in 

the position level. In the velocity and acceleration levels, the optimal behavior is closely imitated by 

the controller. 

In Figure 4.14, the results for the initial and final tip point positions of [0.09, -0.06, -0.09] and 

[0.11, 0.06, -0.09] are given. In this case the interpolated trajectory, namely the guiding trajectory is 

not very close to the optimal one but the structure is similar. This can be observed in the tip point 
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trajectory and joint velocity graphs. The controller is again successful to follow the reference 

trajectory quite closely.  

In some cases the interpolation might result trajectories comparatively far from the optimal 

ones (even from the manipulated forms of the optimized trajectories), as in the case of Figure 4.14. 

This is a matter related to the interpolation structure, which is not the main focus here. However, it 

can be stated that interpolations closer to the optimal trajectories is always possible by increasing the 

dimension of the interpolating network, with the cost of more memory storage. 

In Figure 4.15, three slights are given to show the Robot-EA308 while the right-middle leg is 

in protraction, following the path generated by the controller. The left most figure shows how the leg 

is pulled towards the body while the tip point is raised up. In the middle and right-most figures the 

whole protraction can be seen from different perspectives. These results, and also the joint angle 

trajectories in Figures 4.13 and 4.14, reveal that the energy optimal protraction has the following 

character: The leg is pulled towards the body while the tip point is raised up; then, it is stretched out 

while the tip point is going down to approach to the destination. This behavior is quite different from 

the conventionally adapted protraction movements in which the leg is first stretched out while 

raising the tip point, and then pulled towards the body while the tip point is approached down to the 

destination. 
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Figure 4.13: First example for comparison of the trajectory results generated by the protraction controller with 
the optimized results. The initial and final tip point positions are [0.11, -0.04, -0.09] and [0.09, 0.04, -0.09], 
respectively. Dotted lines are for the optimized results, solid lines are for the generated results by the controller. 

 



86

 

 

 

 
Figure 4.14: Second example for comparison of the trajectory results generated by the protraction controller 
with the optimized results. The initial and final tip point positions are [0.09, -0.06, -0.09] and [0.11, 0.06, -0.09], 
respectively. Dotted lines are for the optimized results, solid lines are for the generated results by the controller. 

 

Figure 4.15: Protraction of the right middle leg of robot EA308, following the trajectory generated by the 
controller. The initial and final tip point positions are [0.11, -0.06, -0.09] and [0.11, 0.06, -0.09], respectively.  
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4.7. Conclusion 

In this work the protraction movement of a three-joint robot leg is handled. Considering the 

literature on multi legged walking, protraction of legs is a very little worked subject. In multi-legged 

system applications, mostly, some limited protraction behaviors are adopted based on intuitive 

feeling of physical behavior. Those applications limit the freedom of leg placements since the system 

can use only the preplanned structures. Moreover, mostly, the adapted behaviors are not optimized 

considering energy consumption. The work here presents two crucial applications to overcome these 

limitations: The optimization of protraction creates energy optimal trajectories for any given initial-

final tip-point position pairs. The controller for protraction generates near-optimal trajectories based 

on the generalization of 79 optimal trajectories. With this generalization the system does not need to 

be limited to some specific protraction behaviors, but it can handle any protraction once the initial-

final tip-point positions are given in the range of the design. The results of this work show that an 

energy optimal protraction is characterized by pulling the leg towards the body, rather than 

stretching out, in the rising phase of the movement.  

The optimization is based on the gradient descent algorithm, with the Hamiltonian 

formulation for optimal control problems. The conventional application suffers from sticking to 

unfeasible and inefficient local optimums. To overcome this, the approach of “optimization with 

objective function modification” is introduced. In this application the objective function is changed 

in steps once the optimization stops with the previous step. The last step makes optimization with the 

nominal objective function. The results reveal that this method is successful to overcome both 

feasible and unfeasible local optimum solutions of conventional “optimization with single objective 

function”. The obtained trajectories are efficient and feasible. The interpolation of optimal 

trajectories are used as guiding trajectories for the protraction controller. 

The controller design is based on the idea of controlling each joint independently of the 

others. A similar idea was introduced in Erden et al. (2004) as “multi agent system based control of 

robot manipulators”. For the independent control of a joint a pseudo_error is produced, which 

corresponds to the share of the joint in the tip point position error. The joint velocity and the 

pseudo_error are input to the fuzzy controller of each joint. The controller commands the joint angle 

accelerations to the three-joint leg system. The overall system response is generated together by the 

all three resultant actions. The significance of this novel approach in the controller design is its 

simplicity of application and its requirement of no inverse kinematic solutions throughout the 

movement. The protraction controller designed with this approach is successful to follow any given 

guiding trajectory with closeness sufficient for protraction movements.  

For the optimization algorithm, a considerable drawback is the long duration for termination. 

This is because a full optimization is performed for all the objective functions described separately 

by the steps. This was not a problem for the work presented here, because the optimization is 

performed once and the recorded results are used in generalizations. However, it may be a significant 
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problem in some applications in which fast responses of optimization are required. The improvement 

of the idea of “optimization with modified objective function”, in the direction of speeding up the 

algorithm, remains as a future work. A crucial attempt may be to modify the objective function not 

in steps of sequential optimizations, but continuously throughout a single optimization. This might 

be performed by some intelligent and continuous modification of the objective function based on the 

values of a nominal objective function and its gradient. Considering the control structure developed 

here, in some cases the guiding trajectories generated by the RBFNN happen to be somewhat 

different from the optimized trajectories. As mentioned before, this is a matter of the interpolation 

algorithm. It is possible to improve the interpolation in a way to make all the trajectories very close 

to the optimized ones used for training. However, whatever is done, the trade off between better 

performance and high memory storage will persist. Despite this trade off, the performance of 

interpolation can always be improved by adopting more successful structures. 
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CHAPTER 5  

“TORQUE DISTRIBUTION” IN A SIX-LEGGED ROBOT 
SYSTEM: KINEMATIC-DYNAMIC FORMULATION AND 

ENERGY OPTIMAL DISTRIBUTION 

5.1. Introduction 

An important drawback of legged systems is the high-energy consumption due to the active 

suspension of the body by the supporting legs. Most of the energy is consumed in the retraction 

(repelling back while supporting in power stroke) phases of the steps. The trajectories that the 

supporting legs follow throughout retraction are definite once the motion of the robot body is given. 

However, the torques to be applied on their joints in order to achieve this determined motion is not 

definite. This chapter deals with the energy efficient “torque distribution” problem in multi legged 

systems. In contrast to the general literature, the distribution of required forces and moments is not 

handled as a tip point “force distribution”. It is demonstrated that the proposed “torque distribution” 

scheme results in a much more energy efficient distribution than the conventional “force 

distribution”; because, it makes use of the internal forces and friction to minimize the required joint-

torques. In this comparison, as in many robotic applications (Bobrow et al., 2001; Garg and Kumar, 

2002; Liu and Abdel-Malek, 2000; Marhefka and Orin, 1998), the integral of the squares of the joint-

torques is used as an index of energy dissipation. In the chapter a detailed mathematical formulation 

of the dynamics of the six-legged robot with the primary variables being the joint-torques is given. A 

compact matrix representation for handling the “torque distribution” problem is formulated. 

Since the topology of a multi-legged robot is continuously altered, the dynamic analysis tools 

developed for serial manipulators (Fu et al., 1987) and parallel manipulators (Ji and Wu, 2003; Beji 

and Pascal, 1999; Carvalho and Ceccarelli, 2001; Liu et al., 2003) are not directly applicable. 

Therefore, the dynamic equations here are derived using the approach of “free body diagrams” 

(Barreto et al., 1998; Lin and Song, 2001), which is based on relating the force-moment equations of 

rigid pieces to each other. Systematic applications of this approach results in the recursive 

formulations of the dynamics of multi-linked vehicles (Cheng and Orin, 1991; Hung et al., 2000). In 

Cheng and Orin (1991), a computationally efficient formulation of the closed-chain mechanisms is 

presented for the force distribution problem. Hung et al. (2000) presents a recursive and 

computationally efficient algorithm for general tree-structured mechanisms. The effects of the 



90

inertial-gravitational forces and contact forces on the links are decoupled, and later they are 

combined by using the superposition principle. Both Cheng and Orin (1991) and Hung et al. (2000) 

use the contact-friction forces, rather than the joint-torques, as the primary variables. If the robot is 

joint-torque controlled, the results of the distribution problem formulated by any of the two has to be 

converted into the torque space, so that a computation burden will be introduced. In the case that an 

energy-related optimization is performed, the objective function has to have a quadratic term of 

joint-torques (Marhefka and Orin, 1998). Then, if the primary variables of formulation are not the 

joint-torques but tip-point forces, some linear terms will appear and this will also introduce a 

computational burden. In this chapter, the formulation of dynamics of the six-legged robot uses the 

joint-torques as the primary variables; therefore, the results of the distribution do not need any 

conversion for a torque-controlled system, and the objective function is pure quadratic.  

The general optimization problem for force-moment distribution requires minimization of an 

objective function with respect to linear equality and inequality constraints. This is the general form 

the problem is reduced whether the matter is force distribution as in Klein and Kittivatcharapong 

(1990), Cheng and Orin (1990), and Nahon and Angeles (1992) or torque distribution as formulated 

here. Cheng and Orin (1990) formulates the force distribution problem as a linear-programming 

problem. Klein and Kittivatcharapong (1990) formulates the objective function as the pure sum of 

the squares of the tip point force components and concludes that the linear programming approach 

leads to “discontinuities” in the solution. Nahon and Angeles (1992) formulates the force distribution 

problem as a quadratic programming problem. The paper concludes that the quadratic programming 

solution leads to continuous and faster solutions compared to linear programming formulations. 

Following the discussions in these three papers, this chapter formulates the torque distribution as a 

quadratic programming problem. 

Minimizing the sum of the squares of the components of the tip point forces in the multi-

legged robot studies seems to be an extension of the application of force distribution in robot hand 

studies (Cheng and Orin, 1990; Nahon and Angeles, 1992; Kumar and Waldron, 1998). Kumar and 

Waldron (1998) introduces the decomposition of contact forces into “equilibrating forces” and 

“interaction forces”. Accordingly, in Galvez et al. (2003) the tip-point forces are classified as the 

ones that “contribute to the robot's support and drive without causing the feet to fight each other”, 

and “the ones that cause the feet to fight each other”, respectively. Following this idea, the 

distribution problem is formulated in order to get rid of the interaction forces. The problem then 

turns out to be minimizing the sum of the squares of the tip point force components. This approach is 

applied in many other studies on multi-legged systems (Lin and Song, 2001; Klein and 

Kittivatcharapong, 1990; Preumont et al., 1997; Martins-Filho and Prajoux, 2000; Zhao et al., 2000). 

In these works either the direct pseudo-inverse of the matrix related to the equality constraints (Lin 

and Song, 2001; Preumont et al., 1997) or the pseudo-inverse of the enlarged form of that matrix 

with linearized active constraints (Martins-Filho and Prajoux, 2000) are used, or the direct pseudo-

inverse solution of that equality matrix is used to initialize the optimization of the forces in the space 
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determined by the inequality constraints (Klein and Kittivatcharapong, 1990; Galvez et al., 2003). In 

fact, the pseudo-inverse solution of the force equality constraints is indeed a practical and effective 

solution for those cases, whether it is used directly or as a starting guess. The reason is that, the 

resulting forces are minimal; therefore, the effect of inequality constraints related to friction are 

either eliminated or reduced to a minimum. This is the underlying reason that the pseudo-inverse 

solution for force distribution works so effectively in practice, hence receives such attention.  

However, as it is demonstrated in Kar et al. (2001), Jiang et al. (2004), and Marhefka and Orin 

(1998), behind this computational efficiency, underlies energy inefficiency due to formulating the 

problem as minimization of the tip point force components. In Kar et al. (2000), the objective 

function is formulated as the sum of the multiplication of joint-torques with joint velocities. In Jiang 

et al. (2004), one of the three objective functions, formalized in an approximate and simplified way 

to achieve fast solutions, aims to minimize the energy consumption during locomotion. The results 

show that this simplified formulation performs better than the foot-force formulation for the 

objective it represents. In both of these papers, the formulation for minimization of energy 

dissipation does not consider the fact that there is still power dissipation on the motors (due to 

gravitation) even though the joints are not moving. In Marhefka and Orin (1998) the power 

consumption is calculated based on a DC motor model in terms of the joint-torques. It is concluded 

that “minimization of a weighted norm of joint-torques” produces good results considering real 

power dissipation; however “minimization of internal forces” may often produce poor power 

performance. The results of this paper are important for the justification of formulating the objective 

as “minimizing the sum of the squares of the joint-torques” for minimum energy consumption. In all 

of these three papers – in fact in most of the other literature that deal with “force distribution” (Klein 

and Kittivatcharapong, 1990; Preumont et al., 1997; Martins-Filho and Prajoux, 2000; Galvez et al., 

2001; Pfeiffer et al., 2000) – either the inertial effects or totally the masses of the legs are ignored; 

hence, the tip point forces are related to the joint-torques via a simple Jacobian matrix multiplication. 

In Table 5.1, the masses of the components of the Robot-EA308 are given. The total mass of the legs 

is more than the mass of the body frame. Therefore, the assumption of negligible leg masses and 

inertia is not valid in practical applications. Interestingly, and to our knowledge, the work here seems 

to be unique to make use of the full dynamics of the legs in solving the “distribution” problem. 

Table 5.1: The masses of the components of the Robot EA308. 
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In Galvez et al. (2001) and Pfeiffer et al. (2000), the force-moment distribution problem is 

formulated as torque distribution for the two-joint eight-legged tube crawling robot. The 

optimization problem is formulated to minimize the maximum of the joint-torques. Although this is a 

torque distribution approach, it differs from that of this chapter: while the objective function for the 

tube crawling robot is “oriented to avoid overload on the motors”, the objective function here is 

“oriented to dissipate minimum total energy”. The formulation for the pipe crawling robot results in 

a min-max problem that can be transformed into a linear programming problem (Gill et al., 1981) 

and solved by the simplex method. In Galvez et al. (2001), in order to overcome the problem of 

discontinuity, a quadratic term of the joint-torques is added to the objective function. With this 

addition, it becomes a quadratic programming problem, which is then transformed into a linear 

complementarity problem and solved by using Lemke’s algorithm. The aim of introducing the 

quadratic term is to penalize the fast changes of the objective function, rather than formulating the 

objective in a genuine quadratic form. In their objective function, there is always a trade-off between 

the optimum values and the discontinuous character of the solution; it has to be handled by arranging 

the constants in the quadratic term. In the study here the objective function is genuinely quadratic; 

therefore, there appears no problem of discontinuity. In the solution of the quadratic programming 

problem, the approach of eliminating the equality constraints is followed. Afterwards, the problem is 

converted into a linear complementary problem and solved by using Lemke’s pivoting algorithm. 

The details of operations and handling the cycling problem in this solution are presented. 

Considering all the reviewed papers, the distinguishing features of the chapter here are as 

follows: 1) the dynamic formulation and solution of the torque distribution are presented together; 2) 

the formulation is performed with using the joint-torques as the primary variables throughout the 

derivation, not only in the formulation of the optimization problem; 3) no simplification related to 

the mass and inertia of the legs is assumed in the solution of the distribution problem; 4) the 

simulation results are performed considering the whole robot system, namely the protracting legs are 

not ignored in the torque distribution solution. 

5.2. Kinematic and Dynamic Modeling of a Six-Legged Robot With Three-
Joint Legs 

In the literature dealing with dynamics of walking machines it is usual that the very general 

equation of multi-link system dynamics is assumed to be given and that the explanations are 

performed using this general model (Zhao et al., 2000; Garcia et al., 2003; Pfeiffer et al., 1991). 

However, with such a general equation, it is hard to get insight into the particular case of a parallel 

system with changing topology as in walking-machines. In reality, while the system configuration 

changes, the matrices and variables in the very general formulas change both in value and 

dimension. The approach of “free body diagrams” (Barretto et al., 1998; Lin and Song, 2001), which 

is straightforward but applicationally very insightful, can be considered as an attempt to cope with 
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these difficulties. As mentioned before, the method of free body diagrams is based on writing the 

force moment equations (Newton-Euler) for every rigid piece of the system, and to relate them to 

each other considering the physical interaction principles. The crucial thing is to perform the 

calculations and derive the equations in a systematic way, and to come up with a compact-simple-

useful-insightful representation of the whole system dynamics. The chapter presented here makes 

use of this approach for deriving the dynamic equations with the joint-torques being the primary 

variables.  

In mathematical modeling of kinematics and dynamics of the six-legged robot, it is assumed 

that the kinematics (translational and angular positions, velocities, and accelerations) of the main 

body of the robot is given. Then the aim is, first, to derive the kinematic equations of all the links on 

the legs and to determine the required joint velocities in order to achieve the given body motion; and 

second, to derive the dynamic equations related to all links and determine the force-moment relations 

that sustain the kinematic motions. The four steps below are followed to serve these calculations: 

1) Kinematics of a single three-joint leg is handled (Chapter 4). The Jacobian matrix, which 

relates the “tip point velocity with respect to the robot body” to the “three-joint angular 

velocities” is derived.  

2) The joint angle velocities of all the legs are determined. The legs of the robot are grouped 

into two: the ones in protraction (swing), and the ones in retraction (stance) phases. The 

legs in protraction are assumed to have predetermined tip point trajectories with respect 

to the robot body (this predetermined trajectory is assumed to be a proper one that will 

carry the tip point from the anterior to the posterior position, Chapter 4). The legs in 

retraction are assumed to be supporting the body without any slippage on their tip points. 

Namely, the tip points of the legs in retraction are stationary with respect to the ground 

frame. This means that the tip point velocity of a leg in retraction with respect to the 

robot body is equal to the negative of the velocity of the robot body with respect to the 

ground frame. As a result, given any desired body trajectory, the tip point velocities of 

the legs both in protraction and retraction are definite. Then using the inverse of the 

Jacobian matrix, it is possible to determine the joint angle velocities (accelerations) of all 

legs.  

3) The kinematic equations of the links relating the link velocities and accelerations, both 

translational and rotational, to the joint angle velocities and accelerations are derived. 

4) The dynamic equations of the links are derived using the method of free body diagrams. 

There are two basic equations, namely the Newton and Euler equations, that are related to 

translational and rotational motions, respectively. These equations are based on the 

principles that relate the external effects (forces and moments) acting on a rigid body to 

its inertia (mass and moment of inertia) and kinematics (translational acceleration, 
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angular acceleration, and angular velocity). Since the kinematics and inertia of the body 

and links are known, the total external forces and moments can be determined.  

5.2.1. Kinematics of a Single Three-Joint Leg 

A three joint robot leg (Figure 4.1) can be considered as a three link revolute joint (RRR) 

manipulator which is attached to a base (robot body). Therefore, the kinematic modeling can be 

performed following the conventional robotics approaches (Fu et al., 1987). The kinematic model of 

a three-joint leg was introduced in the previous chapter, Section 4.2. Here will only be mentioned 

some extra information needed for incorporation of the leg kinematics to the whole robot body. 

The reference frame attachment in Figure 4.1 is valid for the three right side legs, but not for 

the ones on the left. One should notice that the frame attachments for the left side legs is not 

achieved by merely taking the symmetric form of the ones on the right with respect to the robot 

body. (In such a case the principality of the axes would not be sustained.) In the left side case, for the 

same leg configuration with the same joint angle values, the directions of the third components of the 

left leg frames are in the opposite direction with respect to the symmetric form of the ones on the 

right leg.  The directions of the first components are determined accordingly to fit all the system to 

the Denavit-Hartenberg convention. For the left side legs, only the transformation matrices between 

the body and zeroth frames, and between the zeroth and first frames change. The change in the 

transformation matrix between the zeroth and first frames is simply a change on one of the Denavit-

Hartenberg link parameters in Table 4.1. The change is α1=-π/2, for the left legs. With these changes 

for the legs on the left side, the formulations in Section 4.2 fit all the six legs.  

The equations of kinematic relations are given in (5.1-5.7). Among these, some of them were 

given before in Section 4.2, but they are repeated here for convenience of gathering all the equations 

in relation to this section. The resulting transformation matrices between the ground and body frame, 

between the body and the zeroth frame, and between the sequential link frames are given in (5.1) and 

(5.2). The transformation matrices between the body and first frames are given separately for the 

right and left sides (5.2). In the formulas, (as in Section 4.2) the variables represented by ai stand for 

the length of the ith link. The variables represented by θij mean the sum of the ith and jth joint angles 

(θij=θi+θj). C and S correspond to cosine and sinus functions, respectively. For the transformation 

between the body and ground frames (5.1), the Euler sequence of 312 (yaw: Φy, pitch: Φp, roll: Φr) is 

used. In (5.3) the tip point position (end point) with respect to the body frame, )b(
eP , is given. In 

(5.4), the position of the tip point with respect to the zeroth reference frame, )0(
eP , is given. Using 

the partial derivatives of this position with respect to the joint angles, as in (5.5), the Jacobian matrix, 

vpĴ , related to the tip point translational velocity can be obtained, as given in (5.6). This matrix can 

be used to relate the tip point velocity of the leg, )0(
pv , to the joint angle velocities as in (5.7). 
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C k 1,k
C k S k C k S k S k

S k C k C k C k S k

0 S k C k  

Pe
b

C a1 S 1 a2 S 1C 2 a3 S 1 C 23 S a2 S 2 a3 S 23

a1C 1 a2 C 1 C 2 a3C 1C 23

S a1 S 1 a2 S 1C 2 a3 S 1 C 23 C a2 S 2 a3 S 23

       (5.3) 

Pe
0

a1C 1 a2 C 1C 2 a3 C 1 C 23

a1 S 1 a2 S 1C 2 a3 S 1C 23

a2 S 2 a3 S 23

                                        (5.4) 

J pj
Pe

0

j
           J pv

J p1 J p2 J p2                                             (5.5) 

J pv

a1 S 1 a2 S 1C 2 a3 S 1C 23 a2 C 1 S 2 a3C 1 S 23 a3C 1 S 23

a1 C 1 a2C 1C 2 a3 C 1C 23 a2 S 1 S 2 a3 S 1 S 23 a3 S 1 S 23

0 a2 C 2 a3 S 23 a3 C 23

  (5.6) 

p
0 J pv

1

2

3

     
1

2

3

J pv

1
p

0                                            (5.7) 

5.2.2. Kinematic Equations of the Links (Vectorial Relations) 

It is assumed that the translational and angular accelerations of the body are already given as 

parameters of the desired motion. Besides, it is assumed that the legs in protraction follow a 

predetermined path with respect to the body; the legs in retraction also follow a determined path 

according to the body motion, since their tip points remain stationary on the ground. Since the tip 

point motions of the legs with respect to the body frame are all known, the velocities of the joint 

angles can easily be determined using the Jacobian matrix.  These joint angle velocities and 

accelerations (derivatives of the velocities) will be used in deriving the link kinematics.  

The kinematics of the links, namely translational accelerations, rotational velocities and 

rotational accelerations of the links, are considered to be the corresponding accelerations and 

velocities of the frames fixed to those links. Since each jth frame is fixed to the jth link, the 

C g ,b
C yC r S y S p S r S yC p C y S r S y S pC r

S yC r C y S p S r C yC p S y S r C y S pC r

C p S r S p C pC r
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velocities and accelerations of the jth frame on the ith leg will give the kinematics of the jth link of 

the ith leg. All the kinematic relations in this section will be represented as vectorial relations. Once 

these vectorial relations are obtained, they can be computed in any desired reference frame and 

converted to any other frame using the transformation matrices.  

Using the general kinematic relations of moving frames (Fu et al., 1987, pp. 107-109), the 

angular velocities, angular accelerations, and translational accelerations of the three links of the ith 

leg can be calculated sequentially starting from the body going to the third link. Since the zeroth 

frame of the ith leg is stationary with respect to the body frame, the rotational velocity and 

acceleration of the zeroth frame with respect to the ground frame is equal to the rotational velocity 

and acceleration of the body frame with respect to the ground frame, which is already given (5.8 and 

5.9).   

Robot Body: 

i0 g b g b i0 b 0                                                      (5.8) 

i0 g b g b i0 b 0                                                        (5.9) 

From now on, all the rotational and translational vectors will be with respect to the ground 

frame; therefore, the term g will be dropped from the equations. In the following are the rotational 

velocity and acceleration equations for the links of the ith leg. These equations are sequential in the 

sense that each uses the variable calculated in the previous equation. These variables are encircled in 

the equations. 

Link 1 of the ith leg: 

i1 b i1 u3
i0

                                                           (5.10) 

i1 b i1 u3
i0

i1 b u3
i0

                                              (5.11) 

Link 2 of the ith leg: 

i2 i1 i2u3
i1

                                                          (5.12) 

i2 i1 i2 u3
i1

i2 i1 u3
i1

                                               (5.13) 

Link 3 of the ith leg: 

i3 i2 i3u3
i2

                                                          (5.14) 

i3 i2 i3 u3
i2

i3 i2 u3
i2

                                               (5.15) 

To relate the translational acceleration of the zeroth frame of the ith leg (
0i0a

r
) to the 

acceleration of the body frame (
b0a

r ), the position vector from the origin of the body frame to the 
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origin of the zeroth frame of the ith leg ( bir
r

) is needed (5.16). These vectors can be observed in 

Figure 5.1.  

Robot Body: 

aOi0
aOb i0 r bi i0 i0 rbi aO i0 b r bi b b r bi                 (5.16) 

It is possible to obtain the acceleration of link mass centers by using the accelerations of the 

link frame origins. For this purpose the “vector from the link frame origin to the link mass center” 

( ijc
r

) is needed. This vector is the negative of the vector ( )1j(ijc +
r

) in Figure 5.1: ( )1j(ijij cc +−=
rr

).  In 

the following are the translational acceleration equations for the origins of the link frames (
ijOa

r
) and 

the link mass centers ( ija
r

).  

Link 1 of the ith leg: 

aOi1
aOi0

ai1 i1 u1
i1 ai1 i1 i1 u1

i1
                                        (5.17) 

ai1 aO i1 i1 ci1 i1 i1 ci1                                               (5.18) 

Link 2 of the ith leg: 

aOi2
aOi1

ai2 i2 u1
i2 ai2 i2 i2 u1

i2
                                       (5.19) 

ai2 aO i2 i2 ci2 i2 i2 ci2                                              (5.20) 

Link 3 of the ith leg: 

aOi3
aOi2

ai3 i3 u1
i3 ai3 i3 i3 u1

i3
                                       (5.21) 

ai3 aO i3 i3 ci3 i3 i3 ci3                                              (5.22) 

 

5.2.3. Force and Moment Equations Based on Free Body Diagrams (Vectorial Relations) 

In order to derive the dynamic equations, the Newton and Euler equations should be applied 

to every rigid piece of the total system. Considering a moving rigid body, Newton's Equation relates 

“the acceleration of the mass center of the body with respect to the inertial frame” to “the total 

external forces applied on the body”. Euler's Equation, on the other hand, relates “the change of the 

angular momentum of the body with respect to the inertial frame” to “the total external moments 

applied on the body”. 

In the case of the six-legged robot, there are 19 rigid pieces: the robot body, and the three 

links of the six legs. In Figure 5.1, the free body diagrams of the robot body and three links of a leg 

are shown with the external forces and moments acting on each. It should be noted that all the 

motions, namely the translational and rotational accelerations and velocities of all the rigid pieces, 
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are determined by the preceding formulations. The aim now is to find the forces and moments 

required to achieve these motions. 

For the robot body, the left-up figure in Figure 5.1 can be considered. The two equations for 

all rigid pieces take the following form. In these equations the variables related to the other equations 

are again encircled. 

Robot Body: 

mb ab mb g
i 1

6

F ib                                                           (5.23) 

J b b b J b b
i 1

6

M ib
i 1

6

r ib Fib
                                      (5.24) 

Link 1 of the ith leg: 

mi1 ai1 mi1 g Fib F i21                                                       (5.25) 

J i1 i1 i1 J i1 i1 M ib M i21 ci1b F ib ci12 Fi21                       (5.26) 

 

Link 2 of the ith leg: 

mi2 ai2 mi2 g Fi21 F i32                                                      (5.27) 

J i2 i2 i2 J i2 i2 M i21 M i32 ci21 F i21 ci23 F i32                    (5.28) 

Link 3 of the ith leg: 

mi3 ai3 mi3 g Fi32 Fig3                                                      (5.29) 

J i3 i3 i3 J i3 i3 M i32 M ig3 ci32 F i32 ci3g Fig3                   (5.30) 

 

For the legs in protraction, the tip points are on the air, namely there is no external force 

acting on the last link of the leg other than the joint torque and gravity ( 0MF 3ig3ig

rrr
== ). Since the 

“total external force and moment on the link” can be found using the kinematics and inertia relations, 

the “gravitational effect” can be subtracted from that and the “required interaction force and torque 

between the last and the second links” can be determined. For the second link, this time, “the 

interaction effect between the second and first links” can be found by subtracting “the interaction 

effect between the second and last links” and “the gravity effect” from “the required force and 

moment”. The same logic can be applied to the first link. In this way, for a leg in protraction, its 

effect (force and moment effects) on the body can be determined. With this logic, rearranging the 

force and moment equations of the links leads to the equations of (5.31-38). 
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Figure 5.1: The free body diagrams for the robot body, and three links of one leg. 

F ib Fi21 mi1 g ai1                                                    (5.31) 

F i21 F i32 mi2 g ai2                                                   (5.32) 

F i32 Fig3 mi3 g ai3                                                   (5.33) 

F ib Fig3 mi3 g ai3 mi2 g ai2 mi1 g ai1 F ig3 f imga                 (5.34) 

f imga mi3 g ai3 mi2 g ai2 mi1 g ai1                               (5.35) 

M ib M i21 ci1b Fib ci12 Fi21 J i1 i1 i1 J i1 i1                     (5.36) 

M i21 M i32 ci21 F i21 ci23 F i32 J i2 i2 i2 J i2 i2                    (5.37) 

M i32 M ig3 ci32 F i32 ci3g Fig3 J i3 i3 i3 J i3 i3                    (5.38) 

Equating the ground tip point interaction terms to zero, 0MF 3ig3ig

rrr
== , and performing the 

above calculations sequentially, all the force moment relations for the protracting legs can be found, 

and most importantly the effect of retracting legs on the robot body ( ibF
r

 and ibM
r

) can be computed. 

For the legs in retraction, the ground tip point interaction terms ( 3igF
r

 and 3igM
r

) are not 

necessarily zero. However, it is a common and reasonable approach, followed in all reviewed 

literature of legged systems, to assume a hard point contact between the tip point and ground; which 

means there is only a translational force interaction, and no moment components. Consequently, the 
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moment interaction is taken to be zero ( 0M 3ig

rr
= ) and the force interaction 3igF

r
 is left to be 

determined. (In fact, the formulation here is not limited to this assumption. The cases where moment 

interactions are considered, especially robot hand applications, can also be handled with the 

formulation presented here.) Since the tip point-ground force interaction is unknown, the method of 

computation from the tip towards the body cannot be applied to retracting legs. In fact, the tip point 

forces on these legs are dependent on the torques applied on the joints. It should be noticed that the 

only unknown for the group of force moment equations (5.31-38) for a retracting leg is the force 

interaction with the ground, 3igF
r

. Once the force equations (5.31-34) are substituted into the moment 

equations (5.36-38), and a rearrangement is performed, the moment equations take the following 

form: 

M ig3 0                                                                                                                          (5.39) 

M i32 ci32 ci3g Fig3 ci32 mi3 g ai3

J i3 i3 i3 J i3 i3
                                                      (5.40) 

M i21 ci32 ci3g ci21 ci23 Fig3

ci32 ci21 ci23 mi3 g ai3 ci21 mi2 g ai2

J i3 i3 i3 J i3 i3 J i2 i2 i2 J i2 i2

                                (5.41) 

M ib ci32 ci3g ci21 ci23 ci1b ci12 Fig3

ci32 ci21 ci23 ci1b ci12 mi3 g ai3

ci21 ci1b ci12 mi2 g ai2

ci1b mi1 g ai1

J i3 i3 i3 J i3 i3 J i2 i2 i2 J i2 i2

J i1 i1 i1 J i1 i1

                                         (5.42) 

These equations for the moments between the links (5.40-42) can be written in a more 

compact form as in (5.43-45). The values of the vectors ( 03ir
r

, 13ir
r

, 23ir
r

, ibm
r

, 21im
r

, 32im
r

) in these 

equations are explicitly revealed by the comparison of (5.43-45) and (5.40-42). 

M ib r i03 Fig3 mib                                                           (5.43) 

M i21 r i13 F ig3 mi21                                                          (5.44) 

M i32 r i23 Fig3 mi32                                                          (5.45) 

5.2.4. Torque Calculations 

Up to this point, all the moment relations between the links and between the first links and 

robot body are determined for both protracting and retracting legs. For the protracting legs, the 

determined equations can directly be calculated since there are no unknowns. For the retracting legs, 

on the other hand, the tip point ground interaction forces do still remain as unknowns. The aim in 

this section is to derive the equations for the joint-torques, and with these equations, to relate the 
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joint-torques to the tip point-ground force interactions for the retracting legs. It is well known that 

the magnitude of a joint-torque is equal to the magnitude of the component of the moment 

interaction between the two links in the rotation direction. Therefore, the three torques on the joints 

of a leg can be written as follows: 

i1 M ib u3
i0                  i1 r i03 F ig3 mib u3

i0

u3
i0 r i03 Fig3 mib u3

i0                          (5.46) 

i2 M i21 u3
i1                 i2 ri13 F ig3 mi21 u3

i1

u3
i1 r i13 Fig3 mi21 u3

i1                          (5.47) 

i3 M i32 u3
i2                 i3 r i23 F ig3 mi32 u3

i2

u3
i2 r i23 F ig3 mi32 u3

i2                          (5.48) 

If these equations are put in a matrix form the following relations can be obtained. In these 

relations the values of the tensor 
∨

iR  and the column im are explicit. 

i1

i2

i3

u3
i0 ri03

u3
i1 r i13

u3
i2 r i23

F ig3

mib u3
i0

mi21 u3
i1

mi32 u3
i2

                                        (5.49) 

i Ri F ig3 mi                                                        (5.50) 

F ig3 Ri
1

i mi Ri
1

i Ri
1 mi                                        (5.51) 

5.2.5. Relating the Body Equations to Tip Point Forces and Joint Torques 

The total force and moment affect of the six legs on the robot body can be found by the 

following equations: 

mb ab mb g
i 1

6

F ib Fb
i 1

6

Fib mb ab g                                 (5.52) 

J b b b J b b
i 1

6

M ib
i 1

6

r bi F ib

M b
i 1

6

M ib
i 1

6

r bi Fib J b b b J b b

                       (5.53) 

The two equations above give the effect of all the legs on the robot body. Since the effect of 

the protracting legs on the body is explicitly known, it is possible to subtract these effects from the 

total, and remain with the equations of effects of the retracting (supporting) legs on the robot body. 

Let's assume that the set of legs in protraction is given by LP={i : if the leg i is in retraction}={r1, r2, 

..., rs}, and the set of legs in protraction is given by LP={i : if the leg i is in protraction}={p1, p2, ..., 

pt}. It is clear that s+t=6. Then (5.52) and (5.53) can be rewritten in the following form:  

F b
'

r i 1

s

Fr i b
mb ab g

pi 1

t

F pi b
                                              (5.54) 
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M b
'

ri 1

s

M r ib
ri 1

s

rb r i
F ri b

J b b b J b b
pi 1

t

M pi b
pi 1

t

r b pi
F pi b

                         (5.55) 

If these two equations are put in a matrix form, they reduce to (5.56). In this equation, the 

right hand side is known, and the left hand side is to be rearranged in order to lead the calculations to 

the joint torques.  

ri 1

s

F ri b

ri 1

s

M r i b
r i 1

s

r b ri
F r ib

Fb
'

M b
'                                            (5.56) 

Rearranging (5.56) and representing the vectors with respect to the ground frame, the matrix 

equality in terms of the force and moment effect of the retracting legs can be achieved as in (5.57).  

The notation (g) on the force and moment columns is used to mean “the column representation of the 

vector with respect to the ground frame”.  

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

...
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

...
0 0 0
0 0 0
0 0 0

.......................................................................................................................

r br1

g rbr 2

g ... r brs

g
1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

...
1 0 0
0 1 0
0 0 1

F r1 b
g

Fr 2 b
g

...
F rs b

g

......
M r1 b

g

M r2 b
g

...
M r sb

g

F b
' g

M b
' g

  (5.57) 

 

The large matrix on the left side can be denoted by ( L̂ ), and the vector representation can be 

replaced by the column representation of those vectors with respect to the ground frame. Then the 

equation reduces to the simple representation of 

L

F r1 b
g

F r2 b
g

...
F r sb

g

......
M r1 b

g

M r2 b
g

...
M r sb

g

F b
' g

M b
' g

Fbx
'

F by
'

Fbz
'

M bx
'

M by
'

M bz
'

                                                  (5.58) 

L̂
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Substitution of (5.51) in (5.34) and (5.43), and representation with respect to the ground frame 

leads to the following equations relating the actuator torques to the effect of the legs on the robot 

body: 

F ib
g F ig3

g f imga
g T if i t if f imga

g
                                      (5.59) 

M ib
g r i03

g Fig3
g mib

g T im i t im mib
g

                                 (5.60) 

T if Ri
g 1 ; t if T if mi

T im ri03
g T if ; t im ri03

g t if
                                         (5.61)             

For the legs in retraction the two equations of (5.59) and (5.60) can be put in a matrix form, in 

which the vector and tensor representations with respect to the ground frame are replaced by their 

column and matrix representations. 

Fr 1 b
g

F r 2 b
g

Fr s b
g

........
M r1 b

g

M r 2 b
g

M rs b
g

T r1 f 0 0 0
0 T r2 f 0 0

0 0 0 T r s f

..................................
T r1 m 0 0 0
0 T r 2 m 0 0

0 0 0 T r s m

r 1

r 2

r s

t r1 f f r1 mga
g

t r2 f f r2 mga
g

t rsf
f r smga

g

.................
t r1 m mr1 b

g

t r 2 m mr2 b
g

t rs m mr sb
g

                    (5.62) 

 

Representing the big matrix and the column on the right side by ( fmĈ ) and ( fmc ), 

respectively, (5.62) takes the following simple form: 

Fr 1 b
g

F r 2 b
g

Fr s b
g

........
M r1 b

g

M r 2 b
g

M rs b
g

C fm

r 1

r 2

rs

c fm
                                                (5.63) 

 

 

fmĈ  fmc
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Substituting (5.63) into (5.58) leads to the equality of 

L C fm

r 1

r 2

r s

Fbx
'

Fby
'

F bz
'

M bx
'

M by
'

M bz
'

L c fm
                                               (5.64) 

 

The very standard equality for the joint torques of retracting (supporting) legs is obtained as 

follows, where ( Â ) is a 6×3s matrix and ( b ) is a 6×1 column: 

A
r 1

r 2

r s

b                                                          (5.65) 

It is clear that at least three legs have to be supporting the body in order to achieve the static 

stability. This means that the value of s is at least 3 (s≥3). Considering that there are three joints in 

each leg, the number of unknowns (joint torques) in (5.65) will always be greater than the number of 

equations, which is always 6. There are infinitely many solutions to (5.65). Consequently, the 

calculation of torques for the legs on the ground is a “determination” among the infinite possibilities. 

The problem now is to solve (5.65) in a way to minimize energy consumption. This 

optimization should consider the constraints due to friction and joint-torque limits. However, since 

minimizing the energy consumption is considered to be equivalent to minimizing the joint-torque 

squares, it makes sense to omit the constraints on the joint-torque limits. (In cases where these limits 

are considerably small, they should also be included in the formulation.) 

5.2.6. Friction Constraints 

The relation between the tip point forces and joint-torques of a supporting leg are determined 

by (5.51) and (5.61) as  

 

 

                                                           (5.66) 

 

 

 

Â b  

F ig3
g Fig3

f ix

f iy

f iz

T if i t if
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Here two kind of constraints for each supporting leg on a flat surface are considered: 

1) The third component of the force applied to the tip from the ground has to be in the 

negative direction of the gravitation. Therefore, 

(5.67) 

2) The horizontal component of the force applied to the tip from the ground has to be smaller 

than the limit determined by the friction coefficient and the vertical component. This constraint takes 

the following form where μf is the friction coefficient: 

 (5.68) 

This non-linear inequality corresponds to a friction cone (Nahon and Angeles, 1992). Due to 

the difficulty of handling non-linear constraints, it is a common approach to transform them into 

linear constraints that are tighter than the original. In the case here, the friction cone is transformed 

into a friction pyramid (Klein and Kittivatcharapong, 1990; Nahon and Angeles, 1992) by the 

following four linear inequalities: 

 

    ⇒                                                                                 (5.69) 

 

The inequalities of (5.69) already imply (5.67). Therefore, for each supporting leg, the four 

constraints in (5.69) are sufficient for the formulation. For representational purposes, (5.69) will be 

put in a matrix form, and then converted to a matrix inequality in terms of joint-torques. Considering 

(5.66), the following equations perform this transformation. The values of the matrix M̂ and column 

m  are explicit in (5.72). 

 

                                  and  (5.69)  ⇒                                                              (5.70) 

 

 

 

(5.71) 

 

 

(5.72) 

f iz 0

eff
f

2

eff f iz f ix 0
eff f iz f ix 0
eff f iz f iy 0
eff f iz f iy 0

eff

1 0 eff

1 0 eff

0 1 eff

0 1 eff

eff F ig3 0

M m

f
2 f z

2 f x
2 f y

2

eff T r 1 f 0 0
0 eff T r2 f 0

0 0 eff T r s f

r1

r2

r s

eff t r 1 f

eff t r 2 f

eff t r s f
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5.2.7. The Minimization Problem 

The objective function to be minimized was mentioned as “the sum of the squares of the joint-

torques on the supporting legs”. This objective function is quadratic, and can be represented by the 

following term, where the positive definite weight matrix Ĥ  takes the proper entries. 
 

(5.73) 
 

It should be stated that the formulations and solution algorithms proposed from now on, 

require only the term Ĥ  to be positive-definite and symmetric. Combining (5.65), (5.72), and (5.73) 

the overall optimization problem can be written as follows: 

 

(5.74) 

 

 

5.2.8. Computational Cost of the Formulation  

For convenience, the results of the computational cost analysis for the formulation of (5.74) 

are given in Table 5.2. The formulation presented here is compared with the efficient formulations in 

which the tip point force components are the primary variables (Cheng and Orin, 1991; Hung et al., 

2000). For the analysis of Table 5.2, the operations are assumed to be performed in an efficient way 

(e.g., symmetry of matrices are considered, multiplications and additions with zero entries are 

avoided, efficient matrix inversion with Gauss elimination (Noble and Daniel, 1977) is assumed.) 

The number of multiplications and additions for a three-joint n-legged robot, with m legs supporting 

is calculated to be [384n+128m+100 (×); 270n+109m+67 (+)]. This means [3172 (×); 2341 (+)] 

operations for a six-legged robot with all the legs supporting.  

The number of operations for the formulation in Cheng and Orin (1991) is given by [(180N-

46)m+27 (×); (147N-46)m+27 (+)] for an m legged, each with N degrees of freedom, robot. This 

makes [2991 (×); 2415 (+)] operations for a three-joint six-legged robot with all the legs supporting. 

If the algorithm in Hung et al. (2000) is applied to a three-joint n-legged robot for the case of m 

supporting legs, the number of necessary multiplications and additions can be calculated to be 

[354n+134m+29 (×); 267n+108m+45 (+)]. For the three-joint six-legged robot with six legs 

supporting, this makes [2957 (×); 2295 (+)] operations. The amount of computation in this chapter is 

slightly more than the ones in Cheng and Orin (1991) and Hung et al. (2000). The operations of 

matrix inversion in (5.61), which are needed for the transformation of force equations into torque 

equations, do not exist in the formulations of these two papers. These inversions result in [27m (×); 

12m (+)]=[142 (×); 72 (+)] operations, which constitute much of the difference. However, since the 

difference is not significant (less than 8%), it can be concluded that the computational cost of the 

formulation here is almost on the level of the mentioned two efficient formulations.   

Objective Function 1
2

T H

Minimize 1
2

T H

subject to A b
M m
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Table 5.2: Computational cost of formulation for a three-joint n-legged robot with m-legs supporting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3. Torque Distribution: Solution of the Quadratic Programming Problem 

The minimization problem stated in (5.74) is a typical quadratic programming problem with 

linear equality and inequality constraints. Although some general-purpose packages are available in 

commercial software for the solution of such quadratic programs, it is significant to mention the 

steps of solution explicitly for two purposes. First, the microprocessors used in robotics applications 

have limited memory capacities, so that they cannot make use of the packages of mathematical 

programs; hence, every step of the computational routines has to be implemented on 

microprocessors. The algorithm here is simple to be implemented on microprocessors. This is 

because it makes use of the tableau method, which is commonly used in linear programming 

problems, and which is based on simple row operations. Second, the general-purpose routines might 

not be very efficient for the problem here. In the paper here, the approach of eliminating the equality 

constraints in advance (Cheng and Orin, 1990; Nahon and Angeles, 1992) is followed. It is observed 

that by this elimination the required time for the solution is decreased by almost 50%.  Furthermore, 

the approach here uses a “modified simplex type method” (Goldfarb and Idnani, 1983), but, by 

transforming the primal problem into a “linear complementary problem” (Bazaraa et al., 1993). In 

this way, the computationally costly phase-I solution of other modified simplex type methods for 

quadratic programming (Bazaraa et al., 1993; Dantzig, 1963) is avoided. The steps of the solution 

are as follows: 

 Related equations Number of 
multiplications 

Number of 
additions 

Transformation matrices (1), (2) 12n+16 4 
Transformation matrices from each 
reference frame to the ground frame 

(matrix-matrix 
multiplications) 72n+12 45n+12 

Transformation of the inertia matrices to the 
ground frame 

(matrix-matrix-matrix 
multiplications) 135n+45 90n+30 

Transformation of the link vectors to the 
ground frame 

(matrix-vector 
multiplications) 33n 3n 

Force moment equations and torque 
calculations for the protracting legs (12)-(17), (21) 126n-126m 120n-120m 

Vectors of force-moment relations for the 
supporting legs  (18)-(20) 117m 126m 

Vectors and matrices for relating the torques 
to the effect of the supporting legs on the 
robot body. 

(33) 87m 45m 

The forces and moments required to be 
supplied by the supporting legs on the robot 
body  

(27), (28) 6n-6m+27 12n-12m+21 

The matrix A (30), (34), (35) 18m 39m 
The vector b (30), (34), (35) 6m 12m+6 
Constraint matrices  (40-42) 32m 16m 
 
Total Computation  384n+128m+100 270n+109m+67 
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1) The equality constraints are eliminated in an optimal way. With this, the optimal 

particular solution for the equality constraints is obtained. The search for the optimal 

homogeneous solution is formulated as a quadratic programming with inequality 

constraints only.  

2) The problem is put in a standard form by manipulating the joint-torque variables in the 

homogeneous part. 

3) The linear complementary problem is generated using the Karush-Kuhn-Tucker 

Conditions of the system. 

4) The linear complementary problem is solved using Lemke's Complementary Pivoting 

Algorithm (Bazaraa et al., 1993). 

5) The homogeneous solution is obtained from the solution of the quadratic programming. 

6) The general solution is obtained by combining the particular and homogeneous solutions.  

For the case in Figure 5.4, the average CPU time required to solve the optimization problem is 

15-16ms, with an unoptimized MATLAB coding on a 2.4 GHz Pentium IV processor. This time is 

considered to be fast enough for real-time applications. (In Nahon and Angels (1992), 38ms is 

considered to be fast enough to supply the set points for a force controller.) 

The elimination of the equality constraints corresponds to solving the following problem: 

 

(5.75) 

 

This problem can easily be solved by using Lagrange multipliers (Sabes, 2001). Considering 

the fact that Ĥ  is symmetric, the solution for (5.75), hence the particular solution for (5.74), can be 

given as follows: 

(5.76) 

The general solution to the problem in (5.74) can now be stated as 

 
 

(5.77) 
 

where the columns of AN̂ are a basis for the null-space of Â  (Desoer, 1970). Substituting (5.77) in 

(5.74) the equivalent modified problem can be stated as follows: 

 

(5.78) 

where 

                                                                                   .                                (5.79) 

Minimize 1
2

T H

subject to A b

0 H 1 AT A H 1 AT 1 b

0 N A 1

Minimize 1
2 1

T H 1 1

subject to M 1 1 m1

H 1 N A
T H N A ; M 1 M N A ; m1 m M 0
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It should be noted here that the matrix 1Ĥ  is positive- definite (due to the positive definiteness 

of Ĥ  and the columns of AN̂  being linearly independent); and there appears no linear term in the 

objective function after the substitution. However, the problem in (5.78) is not in a standard form 

since the torque variables can take both positive and negative values. In order to transform this into a 

quadratic programming problem in the standard form (Bazaraa et al., 1993), the torque variables can 

be decomposed into two positive components as 

 where                   and                .                                (5.80) 

If the new vector of variables is defined as 

(5.81) 

the problem in standard form can be stated as 

 

 (5.82) 

where 

     .                           (5.83) 

In (5.82), the symmetric weight matrix pn1Ĥ  is positive-semi-definite (guaranteed by its 

special form and the positive-definiteness of 1Ĥ ); hence, the objective function is “convex” 

(Bertsekas, 1999; Gill et al., 1981). For the problems of convex objective functions with linear 

constraints, the Karush-Kuhn-Tucker (KKT) necessary conditions for local optimality turn out to be 

the sufficient conditions for global optimality (Bazaraa et al., 1993). With some algebraic 

manipulations the KKT conditions for problem (5.82) can be written in a special form (Bazaraa et 

al., 1993) as in (5.83).  

 

 

(5.83) 

 

These KKT conditions can be put in a matrix form as 

(5.84) 

 

where 

 (5.85) 

 

1 1 p 1 n 1 p 0 1 n 0

1 pn
1 p

1n

w z q
wT z 0

w , z 0

Minimize 1
2 1 pn

T H1 pn 1 pn

subject to A1 pn 1 pn b1 pn

1 pn 0

H 1 pn
H 1 H 1

H 1 H 1

; A1 pn M 1 M 1 ; b1 pn m1

0 A1 pn

A1 pn
T H 1 pn

; q b1 pn

0
; w y

v
; z u

1 pn

.

A1 pn 1 pn y b1 pn

H 1 pn 1 pn A1 pn
T u v 0

1 pn
T v 0 , uT y 0

1 pn , y , u , v 0
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The system in (5.83) is a linear complementary problem, which can be solved by using 

“Lemke's Complementary Pivoting Algorithm” (Bazaraa et al., 1993). This algorithm can easily be 

implemented using the tableau method described in the mentioned reference. In case of non-

degeneracy (which is important for pivoting), the positive-semi-definiteness of the matrix pn1Ĥ  and 

existence of no linear terms in the objective function of (5.82) are sufficient conditions for the 

algorithm to stop in a finite number of iterations with a KKT point (Bazaraa et al., 1993). (If a linear 

term exist in the objective function – which is the case for the “force distribution” applied in this 

paper for comparative purposes – in case of non-degeneracy, the positive-semi-definiteness of pn1Ĥ  

is a sufficient condition for the algorithm to find a KKT point in finite steps only if it exists, namely 

only if the problem is consistent. In our case, the “force distribution” system is guaranteed to be 

consistent; because, a change of the primal variables to the tip-point forces in the “force distribution” 

problem will again result in a system like (5.82) without any linear terms.) However, the problem of 

degeneracy, which is noted to exist in most real-world problems (Bazaraa et al., 1990), exists also 

here and leads to infinite cycling (circling) of pivoting (Bazaraa et al., 1993; Dantzig, 1963). A 

practical solution to overcome degeneracy is perturbing the column of constants ( q ) by adding very 

small random numbers (in the level of 10-9) to its entries (Bazaraa et al., 1990). Any feasible basis 

derived from the solution of the non-degenerate problem obtained in this way is also a basis for the 

degenerate problem (Murty, 1983). The feasibility for the original degenerate problem is violated 

only in the range of 10-9; therefore, this basis can be considered as a feasible basis for the original 

degenerate problem. It should be noted that the analytical rules for avoiding cycling are mostly 

computationally expensive (Bazaraa et al., 1990); hence, such a practical solution is desirable for 

robotic applications. 

5.4. Comparison of “Torque Distribution” with Tip-point “Force Distribution” 

In this section the results of the comparison of “torque distribution” and “force distribution” 

schemes are given. For convenience, a brief introduction for the handling of “force distribution” will 

be given first. 

The “force distribution” scheme is obtained by replacing the objective function in (5.74) with 

the quadratic term of the tip-point forces. The new objective function corresponds to the sum of the 

squares of the tip-point force components. As a result, the problem in (5.74) takes the new form of  

Minimize 1
2

F g3
T H F g3

subject to A b
M m

                                                      (5.86) 

where 3gF  represents the column of the components of all the tip-point forces on the supporting 

legs. This column can easily be found in terms of joint-torques, by using the equalities of (5.66). 
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Then, the objective function in (5.86) has both a linear and quadratic term of the joint-torque 

variables. The linear term changes the form of the homogeneous torque solution in (5.76) as follows: 

0 H T
1 AT A H T

1 AT 1 b A HT
1 cT H T

1 cT                                 (5.87) 

Here, Tc and TĤ are the resulting column and matrix for respectively the linear and quadratic terms 

of joint-torques in (5.86). The remaining formulation and solution follows the described procedure 

for the “torque distribution” scheme. 

5.4.1. Observations on Stationary Standing  

In Table 5.3, two stationary standing situations on a flat surface are considered with friction 

coefficient of μ=0.3 between ground and tip-points. In the example of the left table, the robot is 

standing with six supporting legs (the value of “stroke” is 1 for all the six legs), all the legs being in 

a nominal supporting position with joint angles of ±900. For the case of the right table, the robot is 

supported by three legs, two extreme legs of the left side and the middle leg of the right side (the 

value of “stroke” is [1 0 1 0 1 0] for the legs). The left rear leg supports with an extension to the 

back, while the left front and right middle legs support with an extension to the front. In the tables 

the resulting joint torques and tip point forces are given for both “torque distribution” and “force 

distribution”. For both of the cases, the “force distribution” resulted in forces with zero horizontal 

components, which means that with those distributions the robot can stand on ice (frictionless 

environment). One can feel that the robot must be dissipating excessive energy since it does not need 

to behave as if it is standing on ice. This means that the robot does not make good use of the friction. 

In the torque distribution cases, however, there are significant horizontal components of the tip point 

forces. In both tables, the “cost_torques”, namely the sum of the squares of the joint-torques, is 

smaller in the torque distribution case, whereas the “cost_forces”, namely the sum of the squares of 

the components of the tip-point forces, is smaller in the force distribution case. It should be noted 

that both of these solutions satisfy the dynamic equations as well as the constraints imposed by the 

friction between the ground and the tip-point. What shall be highlighted about the results is that, the 

decrease in the “cost_torques” by using the torque distribution instead of the force distribution is not 

insignificant. The decrease is more than 25% for the case of the left table, and more than 18% for the 

case of the right table. Since the “sum of the squares of the torques”, rather than the “sum of the 

squares of the components of tip-point forces”, is a close indicator of dissipated energy, the decrease 

in the “cost_torques” corresponds to more or less the same amount of decrease in the dissipated 

power in the motors driving the joints. As a result it can be concluded that, the “torque distribution” 

is much more energy efficient than the “force distribution”, since it makes use of the friction and 

does not eliminate the useful contribution of internal forces.  This conclusion is briefly affirmed, also 

in  (Kar et al., 2001), which states “the horizontal foot force components reduce energy consumption 

significantly”. 
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Table 5.3: Two examples of standing on flat surface for comparison of "torque distribution" with "force 
distribution". 

 

 

 

5.4.2. Observing the Effect of Friction Coefficient  

To our knowledge the only work that mentions the effect of friction coefficient on the 

dissipated energy of a multi-legged robot is (Kar et al., 2001). Here, the conclusion that the “energy 

consumption...reduces gradually with an increase in the value of the coefficient of friction” will be 

approved, but it will be demonstrated that this is possible only if “torque distribution”, rather than 

the “force distribution”, is used.  

The example will be given for the stationary standing with six-legs described on the left table 

of Table 5.3. In Figure 5.2, the effect of the friction coefficient on the sum of the squares of the joint-

torques on the six supporting legs is depicted for both “force distribution” and “torque distribution” 

cases. As it is observed there is no change of dissipated energy if the “force distribution” is used. 

This is expected, since the “force distribution” eliminates the horizontal tip point forces and gives 

the same result of distribution whatever the friction coefficient is. The “torque distribution”, on the 

other hand, makes quite good use of the margin allowed by the friction coefficient. The energy 

dissipation decreases with the increasing friction coefficient.  
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Figure 5.2: Effect of the friction coefficient on dissipated energy for "force distribution" and "torque 
distribution" schemes. 

 

5.4.3. Observations on Tripod Gait Walking 

In this section the results mentioned above will be demonstrated on a full walking of a 

simulative six-legged robot. The aim is to make the comparison of the results of the two distribution 

schemes, based on a full epoch of walk, rather than a stationary standing position. The data of this 

simulative robot is derived from the actual three-joint six-legged Robot-EA308. The approximated 

values of the physical variables can be found in Appendices A and B. The arrangement of 

calculations for a whole period of walking necessitates a detailed programming and tedious 

combining of the calculations described in previous sections. In the simulative model here, all the 

mathematical calculations of dynamics, both of retracting and protracting legs, are performed 

without any simplification mentioned in relation to the reviewed references. The protraction 

movement of the legs is constructed in an energy optimal way as introduced in Chapter 4. To 

demonstrate the arguments mentioned above, a four step constant speed walking is performed on a 

flat surface using the tripod gait. The friction coefficient between the ground and the leg tips is taken 

to be 0.3. Since, in a regular tripod gait the duty factor (ratio of the protraction time to the elapsed 

time for a full step) is ½, the retraction and protraction times are equal for all legs. The protraction 

time here is taken to be 1.5 seconds. The walk is repeated for both “torque distribution” and “force 

distribution” calculations.  
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Figure 5.3: SIMULINK block diagram for the calculations of the six-legged robot model. (The robot body is 
moving with constant speed.)  

In Figure 5.3, the MATLAB SIMULINK model used for the calculations throughout the 

walking is given. This model, in a way, summarizes the basics of the calculations described in 

previous sections. According to the steps of calculations the diagram is labeled by sequential letters. 

In region (A) the predetermined traces of joint angles, in region (B) the kinematics of the body frame 

are input to the system. In region (B) the required force and moment for the body frame are 

calculated using body kinematics variables. Since the example is for a constant speed walk, the 

accelerations of the body frame are all zero. In region (C) the stroke configuration is determined 

based on the joint angle inputs of the legs. This stroke configuration is used in region (D) to 

determine the returning (protracting) legs. In this region the calculations related to the returning legs 

are performed; the effect of these on the body frame and the joint torques on these returning legs are 

calculated. In region (E) the effect of returning legs is combined by the required force and moment 

for the body frame. In this way, the amount of force and moment to be supplied by the supporting 

legs is determined. In region (F) these force and moment are distributed to the supporting legs. It is 

this point that either the “torque distribution” or “force distribution” scheme is used. Lastly, in region 

(G) all the joint-torques of the six legs are obtained, combining the results of the calculations for 

returning legs and torque/force distribution. 

In Figure 5.4 the leg configurations and the tripod gait plan for four steps are given. In Figure 

5.5 and the left side of Figure 5.7, the results for the “torque distribution” scheme, in Figure 5.6 and 

the right side of Figure 5.7, the results for the “force distribution” scheme are given. 



115

In Figure 5.5, the joint-torque traces of the six legs are depicted with the figures being placed 

in accordance to the given leg configuration. One can easily observe that for all the legs, the joint-

torques in retraction take significant values while the joint-torques in protraction are close to zero. 

Throughout the walk, the average of the sum of the torque squares is recorded to be 0.7178. In 

Figure 5.6, the results for the “force distribution” scheme are given in the same order. One can 

observe that the joint-torques take considerably larger values than those of the “torque distribution” 

scheme. Therefore, the average of the sum of the torque squares, which is recorded to be 1.3295, is 

almost twice that of the “torque distribution” scheme. Since these are considered to be proportional 

to the average dissipated power on the motors, it can be concluded that the “torque distribution” 

scheme results in an almost twice-efficient distribution compared to the “force distribution”, for the 

tripod-walking example given here. 

On the left side of Figure 5.7, one can observe that the torque distribution limited the ratios of 

horizontal over vertical components to the friction coefficient; namely, the maximum possible value. 

On the right side, on the other hand, these ratios remain very close to zero. This shows that the 

“torque distribution” achieves efficiency by making use of the friction between the ground and tip-

points of the supporting legs. In other words, it uses the internal forces to decrease the dissipated 

energy. It can easily be guessed that if the friction coefficient were taken to be larger, the efficiency 

of the “torque distribution” would be much better compared to the “force distribution”. (In fact, 0.3 

seems to be a small value compared to many possible surface interactions. To give an idea, some 

kinetic friction coefficients for some surface interactions are as follows: rubber on concrete: 0.8; 

steel on steel: 0.57; aluminum on steel: 0.47; copper on steel:0.36; glass on glass: 0.4; wood on 

wood: 0.2; teflon on teflon: 0.04.) 
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5.5. Conclusion 

In this chapter a full kinematic and dynamic modeling of a three-joint six-legged robot is 

derived, taking into account the detailed dynamical formulations of all the links on both retracting 

and protracting legs. The derivation is performed by using the joint-torques as the primary variables. 

The distribution of forces and moments is formulated as a “torque distribution” problem with an 

energy efficiency oriented objective function. The resultant quadratic programming problem is 

solved by eliminating the equality constraints, converting the problem into a linear complementary 

problem, and using Lemke's Complementary Pivoting Algorithm. The simulation results 

demonstrate that by formulating the objective function as “minimizing the sum of the squares of the 

joint-torques”, rather than the more common approach of “minimizing the sum of the squares of the 

tip point force components”, a much more energy efficient distribution is achieved. Moreover, it is 

demonstrated that, the “torque distribution” scheme makes good use of the friction between the tip 

points of the supporting legs and the ground. The “force distribution” scheme, on the other hand, 

does not make use of this friction since it eliminates all the internal forces in the system. 

The results presented here emphasize the following three items: 1) Rather than the tip point 

forces, the joint-torques should be minimized in distributing the required forces and moments to the 

supporting legs; 2) the legs on walking machines usually have considerable weight and inertia with 

respect to the body frame, therefore it is not realistic to ignore the mass and inertia of either 

supporting or returning legs in dynamic formulations; 3) friction helps considerably to minimize the 

dissipated energy if the “torque distribution” scheme is used; therefore any system should have an 

adaptive structure to estimate the friction coefficient in different surfaces, and perform the torque 

distribution calculations accordingly. 
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Leg 1 
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Figure 5.4: The leg configuration and the tripod gait plan for four steps. 

 

 

 
 

Figure 5.5: The graphs of joint-torques for tripod gait walking on level surface with "torque distribution". (Duty 
factor is ½: retraction and protraction times are 1.5 seconds. Friction coefficient: 0.3. Average of the sum of the 
torque squares: 0.7178.) 
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Figure 5.6: The graphs of joint-torques for tripod gait walking on level surface with "force distribution". (Duty 
factor is ½: retraction and protraction times are 1.5 seconds. Friction coefficient: 0.3. Average of the sum of the 
torque squares: 1.3295.) 

 

Figure 5.7: The ratios of the horizontal over vertical components of the tip point forces for “torque distribution” 
(left) and “force distribution” (right) cases. 
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CHAPTER 6  

ANALYSIS OF WAVE GAITS FOR ENERGY EFFICIENCY 

6.1. Introduction 

As mentioned in Chapter 2, wave gaits are widely used in multi-legged walking machines due 

to their high stability. The choice of a particular wave gait for a walking machine corresponds to 

determining the parameters delineating the gait (duty factor, stroke length, protraction time), in 

accordance with the mechanical design limitations (maximum stroke length, minimum protraction 

time, etc.) and preferences of walking (speed). However, since there are more than one choices, this 

is not a trivial task. In this chapter, minimizing the power consumption throughout the walk is taken 

to be the criterion to determine such parameters. The chapter aims to develop some strategies to 

adopt the best walking, in the vicinity of wave gaits and in the set of standard gait (Chapter 2), in 

order to minimize the power consumption. 

In Kar et al. (2001) an analysis of energy efficiency of wave gaits is performed with respect to 

the structural parameters, interaction forces, friction coefficient, and duty factor, based on a 

simulation model of a three-joint six-legged robot. The aim is mainly to introduce the developed 

method of force distribution rather than arriving to some guiding principles for finding the most 

efficient parameters of wave gaits. The structural parameters that are chosen are the lateral offset of 

the legs from the robot body and the ratio of the links on the legs. It is observed that considering 

“specific energy consumption” (energy consumption per weight per traveled length), there is an 

optimum lateral offset which makes the ground reaction force vectors pass close to the hip or knee 

points of the legs throughout the walk. The link ratio, as well, is observed to have an optimum value 

minimizing the specific energy consumption. In the paper a force distribution scheme that minimizes 

the power consumption is used, though different from that of Chapter 5 (Section 5.1). It should be 

noted that the analysis of the paper makes the assumption of massless legs. The following three 

conclusions of Kar et al. (2001) should be considered: 

1) Power consumption characteristics improve when legs are at their midstroke. 

2) Power consumption characteristics improve when more legs are on the ground. 

3) Based on the depicted figure in the paper, the specific energy consumption has more than 

one local minimum with respect to the duty factor. It should be noted that the analysis is 

performed with a fixed value of stroke length. 
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Kar et al. (2001) does not make an analysis on the effect of the stroke length; therefore, it is not 

possible to observe the interfering effects of duty factor and stroke length in that paper.  

Marhefka and Orin (1997) made a more focused analysis of the gait parameters considering 

energy efficiency. This analysis is also based on a simulative model of a six-legged robot, in which 

each leg has a three-degrees of freedom. In this paper also, a force distribution scheme that 

minimizes the power consumption, rather than the tip point force components, is used (Marhefka and 

Orin, 1998) (again somewhat different from that of Chapter 5, Section 5.1). The analysis is based on 

observations on the tabulated data obtained from the simulation of a cycle of walk. The effects of 

duty factor, stroke length, body height, midstroke foothold, and velocity are investigated. The paper 

concludes the analysis with some “rules” which point to the relation between the average power 

consumption and the analyzed parameters. The rules are aimed to give an intuitive idea, rather than 

providing solid strategies, to determine the best parameters. The tabulated data in the paper give the 

average power consumption during a cycle of walk; in these tables, the authors make no 

consideration of the traveled distance. To observe the effect of velocity on power dissipation the 

authors make use of the mechanical “specific resistance”, which corresponds to the energy 

consumption per weight per traveled length. The following can be concluded based on the arguments 

of the paper: 

1) Average power consumption increases with increasing velocity. 

2) Specific resistance decreases with increasing velocity. 

3) For constant stroke walk, for all the ranges of velocity they observed, average power 

consumption tends to decrease with increasing duty factor. This is because more legs are 

supporting when the duty factor is increased. However, for very high duty factors, the 

legs have to be transferred very fast in the protraction phase. The power required for fast 

leg transfer may dominate the decreasing effect of increased duty factor; therefore, for a 

constant stroke length walk, power consumption may increase if the duty factor is 

increased too much. In their tabulated data, this has occurred only for the case of 0.2m/s 

speed walk with the duty factor of 0.8 and stroke length of 0.3m. For this case the 

protraction time can be calculated to be 0.375sec., which is much less than many realistic 

situations. 

4) For a fixed duty factor, for a constant speed walk, there is an optimum value of the stroke 

length that minimizes the power consumption. When the stroke length is increased from 

this optimum value, power consumption increases due to larger deviation from the 

midstroke position. When it is decreased from the optimum value the power consumption 

again increases; this time due to the decrease in transfer time in the protraction phase.  

The analysis of the lateral offset of the legs and the ratio of the links in Kar et al. (2001), and 

the body height and midstroke foothold in Marhefka and Orin (1997) do not lead to generalizable 
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conclusions. This is because either the optimum value of these variables are dependent on the robot 

structure, or other considerations – such as enlargement of workspace – are more dominant than the 

power consumption in their determination. Therefore, in the work here those structural parameters 

will not be examined. Rather, the parameters of gait, namely duty factor, stroke length, phase 

difference between ipsilateral legs, protraction time, retraction time and velocity will be considered. 

Similar to Marhefka and Orin (1997), the analysis and derivation of strategies will be based on the 

tabulated results.  

Nishii (1998) performed an analysis of “energetic cost” (dissipated energy per weight per 

traveled length) with respect to the duty factor and velocity in walking of a two-joint six-legged 

robot. The analysis is mainly motivated to demonstrate that energy efficiency is the major cause 

shaping the walking of legged animals; hence, the paper does not provide solid strategies for robotic 

applications. In their analysis the authors used the optimal stroke length, rather than a fixed stroke 

length or fixed protraction time, in every case. Therefore, the analysis does not provide simultaneous 

observation of the interfering effects of the duty factor and stroke length. On the other hand, the 

results are in agreement with those of the aforementioned two papers: cost of transport decreases 

with increasing velocity; in low speeds cost of transport decreases with increasing duty factor; but in 

high speeds the inertia of the leg links start to be significant due to the decreased protraction time, 

hence the cost of transport increases with increasing duty factor. The paper also provides a graph 

depicting the optimal duty factor as a function of velocity, provided that the stroke length is again 

optimized for each value. In this graph, the optimal duty factor decreases with increasing velocity, 

which is in accordance with the fact that six-legged insects make use of the tripod gait (the minimum 

duty factor) for fast walking. 

Lin and Song (2001) introduced a model for dynamic formulation and force distribution, and 

made an analysis of stability and energy efficiency with respect to the duty factor and velocity for a 

quadrupled walking machine. The paper uses a concept of “dynamic stability margin” for stability 

analysis of statically stable locomotion. The analysis shows that this dynamic stability margin 

decreases with increasing velocity and decreasing stroke length; it takes a maximum value for an 

optimal value of the duty factor. The machine used for this paper has massive legs; therefore, the 

results concerning energy dissipation are dominated by the effect of the high inertia of the legs. 

Because of this fact, the analysis presents conflicting results to those of the aforementioned three 

papers: for constant stroke length, “specific resistance” increases with increasing duty factor, and 

increases with increasing velocity. For a constant stroke length walk, both of increasing duty factor 

and increasing velocity are equal to decreasing protraction time. Since the inertia of the legs are 

high, the decrease in protraction time, which means faster transfer of legs, causes a considerable 

increase in dissipated power. Based on the data provided in their paper the ratio of the mass of one 

leg to the total mass of the machine is 0.1437. For the Robot-EA308 used in this thesis, this ratio is 

as low as 0.086. (Kar et al. (2001) makes the assumption of massless legs; although the data is not 

provided in Marhefka and Orin (1997), the ratio there is expected to be close to that of the Robot-
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EA308). This difference is intelligible, since a leg in a four-legged machine comprises more of the 

total mass compared to a leg in a six-legged machine. Consequently, this comparison should reveal 

that the analysis of energy dissipation and gait parameters is very much dependent on the number of 

legs and range of velocity. Hence, the analysis here is significant for only the six-legged machines, 

whose ratio of leg-mass-to-total-body-mass and velocity of walk are around those of the Robot-

EA308. The conclusions and strategies of this paper should not arbitrarily be generalized to any 

number of legs. Lastly, Muraro et al. (2003) made an analysis of energy efficiency for the three 

dynamically stable (statically unstable) trot, amble and curvet gaits of a quadruped robot, with a 

virtual leg model. The paper concludes that the curvet gait is the less efficient of the three for all 

velocities, the amble gait is more efficient in high velocities, and the trot gait is more efficient for 

low velocities. 

In all these reviewed papers the work is based on simulations, and neither of the results are 

tested on a realistic system. Moreover, in neither of them the aim is to arrive to some solid strategies 

for finding the best parameters of the gait for the most energy efficient walk. This chapter aims to fill 

the gap in these two regards. In this work, a concentrated energy efficiency analysis of wave gaits on 

a three-joint six-legged robot is performed. The analysis intends to arrive to some strategies that will 

be guiding to determine the parameters of wave gaits for the most energy efficient walk. In 

developing these strategies, a phase modification in the wave gaits is proposed. This deviation from 

the wave gaits, which are optimally stable, results in a loss of the stability margin. Therefore, the 

analysis of stability of standard gaits, performed in Chapter 2, will be extensively used to observe the 

amount of loss with the proposed modification. The resultant strategies are justified on the realistic 

data obtained from an actual experimental setup. This setup is composed of the three-joint six-legged 

Robot-EA308, a controlling software, a computer that communicates with the robot, and the data 

management system that records the data of the energy consumption of the robot while walking.  

In the following section, an analysis of energy efficiency of wave gaits is performed based on 

the simulation model of the Robot-EA308, by tabulating the energy consumption with respect to 

duty factor and velocity. Based on these tables strategies are derived in the third section. In the 

fourth section similar tables are constructed using the actual experimental setup. The strategies 

derived from the simulation data are justified on this realistic data. The last section conclude the 

work. 

6.2. Energy Efficiency Analysis of Gaits Based on Simulation Data 

For robot applications one of the most challenging problems is to achieve a task with 

minimum energy consumption. In fact, often, the total energy consumption for a given task is more 

important than the average power consumption. It may be possible that a task is accomplished in a 

shorter time with higher average power consumption, and the total dissipated energy happens to be 

less. Therefore, the energy consumption per length of travel is more relevant considering the multi-
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legged walking. In Kar et al. (2001), Nishii (1998), and Lin and Song (2001) the criterion of “the 

energy per weight per traveled length” is considered. In Marhefka and Orin (1997), average power 

consumption is depicted on the tables and “energy per weight per traveled length” is considered for 

the variations in velocity.  

In Marhefka and Orin (1997) a model of a DC motor with a gear system is used in order to 

obtain the power consumption from the required current and voltage values. The power variables of 

this paper are therefore dependent on the motor-gear model. In Kar et al. (2001) and Lin and Song 

(2001), instantaneous power is taken to be “the product of instantaneous joint torques and joint 

velocities”. Such modeling ignores the fact that a considerable amount of power is dissipated on the 

joints of the supporting legs even though the joints are not moving. In order to eliminate such 

limitations it is a common approach to consider “the integral of the sum of the squares of the joint-

torques” as a criterion of dissipated energy in the actuators of robotic manipulators (Bobrow et al., 

2001; Garg et al., 2002; Liu et al., 2000). Accordingly, Nishii (1998) used the integral of the 

weighted sum of “the product of instantaneous joint torques and joint velocities” and “the sum of the 

squares of the joint-torques” as the energetic cost; and Muraro et al. (2003) used the criteria of “the 

integral of the square of the joint-torques per traveled length” and “the energy loss due to Joule 

effect per traveled length” separately. For the simulations in this chapter, “the integral of the sum of 

the squares of the joint-torques”, both of retracting and protracting legs, is used to correspond to the 

energy dissipation. Then, the criterion of “dissipated energy per length” is chosen to be minimized, 

and it is denoted by the term Ecpl. (energy criterion per length). (The criterion is not divided by the 

total weight of the robot (2.03kg) as in the other papers.)  

The simulation is performed in MATLAB and its SIMULINK environments. The trajectories 

of all the joints of the legs, both supporting and returning, are generated for a cycle of walk for the 

given gait parameters. Then using these joint trajectories the overall model of the six-legged Robot-

EA308 is simulated. In this simulation, the distribution of necessary forces and moments to the 

supporting legs is performed in an energy optimal way by the “torque distribution” scheme 

introduced in Chapter 5. The friction coefficient between the tip points of the supporting legs and 

ground is taken to be 0.3. 

6.2.1. Relations Between the Gait Parameters 

Before going into the analysis, it is worth mentioning the mathematical relations between the 

investigated gait parameters (duty factor (β), stroke length (R),  ipsilateral phase difference (φ), 

protraction time (tp), retraction time (tr), and velocity (v)). The relation between the protraction time 

and retraction time is determined by the duty factor: β=tr/(tr+tp). Increase in duty factor results in the 

increase of the retraction time, or decrease of the protraction time. With high duty factors the leg has 

to have faster transfer in the return phase. The ipsilateral phase difference, φ, is an independent 

variable. The velocity is given by the relation: v=R/tr. Based on these equations the stroke length is 
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given by R=vtpβ/(1-β). For a constant stroke length and constant velocity, the protraction time 

decreases with increasing duty factor. If the velocity and protraction time are held constant, the 

stroke length increases with increasing duty factor. These relations will be helpful in the following 

analyzes.  

The observations follow four steps; each step is performed on a particular table of data. The 

first step examines the most generally applied walk, namely constant stroke wave gaits. The second 

step introduces the phase modified-wave gaits in order to minimize the dissipated energy. In the 

third and fourth steps the wave gaits and phase modified wave gaits, respectively, are observed for 

the case of constant protraction time.   

6.2.2. Observations for the Constant Stroke – Wave Gaits 

The first observation is for the constant stroke walk, with the stroke length of 0.14m, which is 

the maximum for the Robot-EA308. This kind of walk is very much used in multi-legged robot 

applications due to its simplicity regarding to trajectory generation for protraction and retraction 

phases. In Table 6.1, the Ecpl. values are given with respect to the duty factor and velocity. In 

constant stroke walk, for a given velocity the retraction time is constant. The protraction time, on the 

other hand, decreases with increasing duty factor. The actual mechanical and control systems have a 

limitation that the protraction time cannot be decreased without limit. For the Robot-EA308, the 

minimum proper protraction time is 1.5sec. When this minimum is exceeded the protraction 

becomes improper; namely, the legs are commanded too fast, so that they are not raised enough 

above the ground, and the commanded trajectory is not properly followed. If it is exceeded more and 

more, the protraction is totally unacceptable, in the sense the legs are not lifted from the ground and 

the walk of the robot is impossible. For simulations, however there is no such limitation; therefore, 

the data in Table 6.1 is extended to the regions that cannot be properly handled by the actual Robot-

EA308. In Table 6.1, the region with the white background corresponds to the proper protraction for 

the actual Robot-EA308. The region with the gray background corresponds to protraction times 

between 1.5 and 0.5sec.  In all the tables demonstrating the Ecpl. values, the minimums for the 

particular velocities (in one column) are written in bold. 

The first striking observation is the decrease of Ecpl. with increasing velocity. This is in 

accordance with the observation in Marhefka and Orin (1997). It should be noted that if the Ecpl. 

values are multiplied by the velocity, the outcome is the energy dissipation per time, i.e. the power 

dissipation. If this operation is performed on Table 6.1, it will be observed that power dissipation 

increases with increasing velocity, which is again in accordance with the tabulated data in Marhefka 

and Orin (1997). In the following three tables, the relations between the Ecpl. values and velocity, 

and the power dissipation and velocity will remain the same. Therefore, this observation will not be 

repeated. 
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In order to observe the relation between the Ecpl. values and the duty factor, the table is 

separated into two regions with a thick line. Above the thick line is the region for duty factors less 

than two third (β≤2/3). In this region, for every velocity, the Ecpl. values decrease continuously with 

increasing duty factor, without any exception. Therefore, it can be stated that energy per traveled 

length decreases continuously with increasing duty factor for constant stroke wave gaits in the region 

β≤2/3.  

Table 6.1: Ecpl. values for wave gaits with constant stroke of 0.14m. (Duty factor (df) versus velocity (vel, 
m/sec)). 

df / vel 0,005 0,010 0,015 0,020 0,025 0,030 0,035 0,040 0,045 0,050 0,055 0,060 0,065 0,070 0,075 0,080 0,085 0,090 0,095 0,100
0,500 90.9465 45.4914 30.7886 22.8744 18.2077 15.4452 12.9644 11.3256 10.2042 9.1894 8.3156 7.6610 7.0687 6.5435 6.0884 5.7247 5.3381 5.0954 4.8562 4.5873
0,525 76.3919 37.3877 26.0520 19.0676 15.6804 12.7877 10.9192 9.4132 8.3352 7.6872 6.9113 6.4103 5.7466 5.4603 5.0259 4.8876 4.4641 4.1409 3.9971 3.8669
0,550 63.0653 31.5824 20.6389 15.4492 12.3650 10.3750 8.9610 7.8019 6.9385 6.2786 5.7596 5.2755 4.9605 4.4820 4.2984 4.0288 3.6786 3.5363 3.3102 3.1961
0,575 53.5772 26.7167 17.8631 13.3326 10.6775 8.7303 7.6850 6.7051 5.9590 5.3875 4.7711 4.3727 4.0392 3.8591 3.5562 3.3894 3.2407 2.9121 2.8644 2.7366
0,600 46.2489 23.1154 15.5652 11.5741 9.3178 7.7263 6.6252 5.8510 5.2055 4.6376 4.2596 3.8411 3.5982 3.3287 3.0712 2.9396 2.7776 2.6166 2.4859 2.3463
0,625 41.7924 21.1999 13.9329 10.4746 8.4613 7.0433 6.0452 5.3063 4.6951 4.2637 3.8629 3.5491 3.2784 3.0740 2.8290 2.6815 2.5413 2.3821 2.2903 2.1977
0,650 39.6800 19.9080 13.3476 9.9231 7.9347 6.6009 5.7088 5.0340 4.4177 3.9365 3.6964 3.3959 3.0893 2.9186 2.7079 2.5598 2.4136 2.2552 2.1902 2.0426

0,675 38.9310 19.4910 12.9711 9.7759 7.8259 6.5492 5.6607 4.9090 4.3612 3.9019 3.5310 3.2747 3.0011 2.7810 2.6338 2.4661 2.2817 2.1671 2.1273 2.0734
0,700 38.9195 19.4703 13.0105 9.6729 7.7551 6.4910 5.5456 4.8767 4.3612 3.8574 3.5432 3.2164 2.9837 2.7685 2.5832 2.4482 2.2836 2.1638 2.0325 1.9413
0,725 38.5751 19.4020 12.9741 9.6448 7.7512 6.4314 5.5441 4.8918 4.3055 3.8445 3.5954 3.3050 3.0270 2.7877 2.6578 2.4826 2.3843 2.2224 2.1149 2.0287
0,750 38.7579 19.3288 13.1571 9.6895 7.7679 6.5146 5.6610 4.8466 4.3344 3.9073 3.7269 3.3015 3.0729 2.7873 2.6645 2.4461 2.3232
0,775 39.0983 19.4413 13.1319 9.7735 7.9029 6.4825 5.5690 4.8717 4.3761 3.9596 3.5957 3.2587 3.1346 2.9019 2.7324
0,800 38.5708 19.0102 12.8933 9.7213 7.5961 6.4577 5.5043 4.8974 4.3562 3.9064 3.5547 3.3145 3.1151 2.7998
0,825 38.0073 19.1491 12.7162 9.5112 7.6688 6.4404 5.4567 4.8715 4.3201 3.8737 3.4777
0,850 37.5388 18.7104 12.4537 9.2730 7.6695 6.2667 5.4036 4.8890 4.2209
0,875 36.7854 18.6948 12.2428 9.1738 7.4402 6.1918 5.4221 4.6965
0,900 35.2898 17.6491 11.9877 8.9451 7.2691 6.0600
0,925 34.7462 17.0492 11.3652 8.4927
0,95 33.3278 16.1290  

 

 

Below the thick line is the region for duty factors larger than two third (β>2/3). In this region 

the Ecpl. values for a given velocity do not demonstrate a regular behavior; rather, some waves of 

decrease and increase are observed (for example, observe the increases and decreases for the case of 

vel=0.04m/s). Such an irregular behavior was observed also in Marhefka and Orin (1997), as 

mentioned as the third item in the relevant review. The comment of Marhefka and Orin (1997) for 

this behavior was that, the decrease in protraction time increases the required power to move the leg 

faster in the return stroke. Although this might be the reason for systems with comparatively massive 

legs, here will be proposed another explanation. It will be demonstrated that the proposed 

explanation, rather than the effect of decreased protraction time, will provide the dominant reason 

for the irregularity. Moreover, this explanation will lead to a modification on the wave gaits in order 

to achieve more energy efficient walk. 

In Figure 6.1, the stroke trajectories of the left side legs are given for the duty factor of 0.875. 

Because of the increased duty factor the protraction time takes a very small fraction (0.125) of the 

step cycle. Due to the characteristics of wave gaits the protractions take place one after the other as a 

wave from rear to front. As a result, the protraction of three legs are concentrated on less than a half 

cycle of the whole period. This configuration results in durations in which all the supporting legs are 

in either the first or the second half of their retraction phases, hence they are supporting with their 
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tip-points being either all on the first or all on the second half of the stroke line. For example, in the 

encircled region in Figure 6.1, all the legs have passed their mid-stroke positions and are supporting 

in the second half of their stroke lines. Since a big and constant stroke length is used, the deviation 

from the mid-stroke means a lot of power dissipation for the support. For the situation in Figure 6.1, 

all the left legs are supporting, but in an inefficient way. This effect will be designated as inefficient 

phase distribution. The reason of the irregular behavior of the Ecpl. values for increased duty factor 

might be the interference of “the decreasing effect of the increased duty factor” with “the increasing 

effect of the inefficient phase distribution”. If this proposal is correct, or at least if it captures the 

dominant effect, the wavy behavior should disappear once the inefficient phase distribution is 

overcome. 

 

Leg 3

Leg 2

Leg 1
 

Figure 6.1: Stroke trajectory for the left side legs for duty factor 0.875. Low level: power stroke (retraction); 
high level: return stroke (protraction). 

To overcome the inefficient phase distribution it is necessary to make a slight modification on 

the wave gait ipsilateral phases given in (2.2). In wave gaits, the ipsilateral phase differences are 

determined according to the duty factor: φ=1-β. In order to distribute the protraction phases of the 

same side legs equally, the ipsilateral phase differences should be chosen to be 1/3: φ=1/3. However, 

this cannot be made for the duty factors less than 2/3; otherwise, the condition for the rule of 

neighborhood is not satisfied, and the gait is not guaranteed to be stable. In fact, there is already no 

necessity for modification for the range β≤2/3; because, the effect of inefficient phase distribution is 

not observed in this range. The resulting gait pattern will be designated by phase modified wave gait 

and the phase distribution is given as follows: 

3 t 4 F t 1 2

2
F t , 2 3
F t 1 3 , 2 3 5

F t 1 2 , 2 3
F t 5 6 , 2 3

1
F t 2 , 2 3
F t 2 3 , 2 3 6

F t 2 1 2 , 2 3
F t 1 6 , 2 3

                (6.1) 
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6.2.3. Observations for the Constant Stroke - Phase Modified Wave Gaits 

With the phase modification of (6.1), only the region of β>2/3 will be affected. Therefore, for 

the phase modified wave gait tables, only the region for β>2/3 will be given. In Table 6.2, again the 

region with white background corresponds to protraction time larger than 1.5sec., and the region 

with gray background corresponds to protraction time between 1.5 and 0.5sec.. As it is observed, the 

irregular behavior in Table 6.1 disappeared in Table 6.2: the Ecpl. values continuously decrease with 

increasing duty factor for all the velocities. This observation proves that the irregularity in Table 6.1 

was determined dominantly by the inefficient phase distribution, rather than the decrease of 

protraction time. Considering the combination of the upper part of Table 6.1 with Table 6.2, it can be 

stated that energy per traveled length decreases continuously with increasing duty factor for 

constant stroke – phase modified wave gaits.  

Moreover, for all combinations of duty factor and velocity, the values in Table 6.2 are less 

than the values in Table 6.1. This points to the observation that constant stroke – phase  modified 

wave gaits are more energy-efficient than constant stroke – wave gaits. In Table 6.3, the best Ecpl. 

values applicable to the Robot-EA308 for the wave gaits and phase modified wave gaits are 

depicted. As it is observed the energy dissipation is decreased by up to 30% in low velocities. For 

higher velocities the energy decrease by shifting to the phase modified wave gaits is less significant, 

although still on a positive level. The reason is that the best applicable Ecpl. values for higher 

velocities occur with higher duty factors (close to 0.675), where the effect of the inefficient phase 

distribution is weak.  

As a result of the continuous decrease with increasing duty factor, the minimum Ecpl. values 

of the  constant stroke – phase modified wave gaits occur on the extreme regions determined by the 

minimum protraction time (observe the regularity of the placing of the minimums). Therefore, 

considering the regions allowed by the physical system, it can be stated that the less the protraction 

time, the better the energy efficiency is (this is proved by the given data at least for the range of 

protraction time larger than 0.5 seconds for the simulated mechanical configuration of the Robot-

EA308). In the next two subsections the analysis of wave gaits and phase modified wave gaits will 

be performed with the minimum applicable protraction time. But before that, the phase modified 

wave gaits need to be compared with the wave gaits considering the variation in stability margin. 

The mentioned phase modification results in a SGSRN (Chapter 2). Therefore, the phase 

modified wave gaits are guaranteed to be stable. However, as will be remembered, wave gaits are the 

most stable among the standard gaits. Therefore, any modification on a wave gait, provided that the 

new gait is standard, results in a less stable gait. This is the case for the mentioned modification, and 

it matters how much of the stability is lost. Based on (2.8), the stability margin of a phase modified 

wave gait for the region of β>2/3 is given as follows: 

Sr1
1
2

2n 4 P 2 R R 2 5
6                                       (6.2) 
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Table 6.2: Ecpl. values for phase modified wave gaits with constant stroke of 0.14m. (Duty factor(df) versus 
velocity(vel, m/sec).)  

df / vel 0,005 0,010 0,015 0,020 0,025 0,030 0,035 0,040 0,045 0,050 0,055 0,060 0,065 0,070 0,075 0,080 0,085 0,090 0,095 0,100
0,675 38.7687 19.2797 12.8975 9.6444 7.7183 6.4476 5.5407 4.8145 4.2894 3.9148 3.5656 3.2121 2.9840 2.8539 2.5665 2.5327 2.2779 2.1900 2.0893 1.9247
0,700 36.5597 18.4139 12.2563 9.0092 7.3482 6.1193 5.2534 4.5582 4.0444 3.6464 3.3782 3.0049 2.8636 2.6227 2.4556 2.3003 2.1611 2.0914 1.9742 1.8672
0,725 34.8662 17.1777 11.6114 8.6684 6.9752 5.8103 5.0032 4.3040 3.8575 3.5055 3.1996 2.9231 2.7015 2.5247 2.3141 2.1875 2.0878 1.9893 1.8704 1.9069
0,750 33.2715 16.5039 10.9178 8.1874 6.5659 5.5367 4.6992 4.1014 3.7001 3.3105 3.0077 2.8640 2.5207 2.4385 2.2415 2.1385 1.9990
0,775 30.8783 15.5607 10.4502 7.7800 6.2560 5.1922 4.4817 3.9331 3.4929 3.1653 2.9083 2.6215 2.5060 2.2871 2.1839
0,800 29.6924 14.7936 9.9304 7.3813 5.9145 4.9325 4.2416 3.7046 3.3162 3.0062 2.7115 2.5409 2.3768 2.2167
0,825 28.0506 14.2191 9.4938 6.9961 5.5687 4.7359 4.1219 3.6240 3.1888 2.8529 2.6544
0,850 26.8125 13.5292 8.8942 6.6882 5.4009 4.5147 3.8827 3.4551 3.0396
0,875 25.3060 12.7222 8.4559 6.3654 5.1385 4.3144 3.7457 3.3531
0,900 24.0414 12.1179 8.0417 6.0414 4.8426 4.0946
0,925 23.0009 11.5218 7.8109 5.9222
0,95 21.9988 10.9077  

 

Table 6.3: Comparison of the best Ecpl. values 
applicable to the Robot-EA308 for the constant 
stroke – wave gaits and constant stroke – phase 

modified wave gaits. 

 

 

Table 6.4: Comparison of stability margins for the 
constant stroke – wave gaits and constant stroke – 

phase modified wave gaits.      

    

 

 

 

 

 

 

 

 

 

 

 

 

This stability margin is the same as that of the wave gait (2.9) if β=2/3, and smaller than that 

of the wave gait if β>2/3. In Table 6.4, the stability margins for the constant stoke-wave gaits and 

constant stroke-phase modified wave gaits are given with respect to the duty factor. For these 

constant stroke gaits, the stability margin does not change with changing velocity. As it is observed, 

the decrease in stability margin is less than 20% for all the duty factors. Therefore, it can be 

concluded that by passing to the constant-stroke phase modified wave gaits the increase in energy 

efficiency happens in the expense of no significant stability loss. 

constant 
stroke

constant phase 
stroke modified

velocity wave gait wave gait
(m/sec) best Ecpl. best Ecpl. %decrease
0,005 34,7462 23,0009 33,8031
0,010 17,6491 12,1179 31,3398
0,015 12,4537 8,8942 28,5819
0,020 9,6448 7,3813 23,4686
0,025 7,7512 6,2560 19,2899
0,030 6,4314 5,5367 13,9114
0,035 5,5441 5,0032 9,7563

0,040 4,8767 4,5582 6,5311
0,045 4,3612 4,2894 1,6463  

constant 
stroke

constant phase 
stroke modified

df wave gait wave gait
stab. marg. stab. marg. %decrease

0,5000 0,0150 0,0150 0,0000
0,5250 0,0250 0,0250 0,0000
0,5500 0,0341 0,0341 0,0000
0,5750 0,0424 0,0424 0,0000
0,6000 0,0500 0,0500 0,0000
0,6250 0,0570 0,0570 0,0000
0,6500 0,0635 0,0635 0,0000
0,6750 0,0694 0,0686 1,2444
0,7000 0,0750 0,0717 4,4444
0,7250 0,0802 0,0745 7,0251
0,7500 0,0850 0,0772 9,1503
0,7750 0,0895 0,0797 10,9309
0,8000 0,0938 0,0821 12,4444
0,8250 0,0977 0,0843 13,7468
0,8500 0,1015 0,0864 14,8792
0,8750 0,1050 0,0883 15,8730
0,9000 0,1083 0,0902 16,7521
0,9250 0,1115 0,0919 17,5354
0,9500 0,1145 0,0936 18,2375
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Table 6.5: Ecpl. values for wave gaits with constant protraction time of 1.5sec. (Duty factor(df) versus 
velocity(vel, m/sec).) 

df / vel 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100
0.500 42.2655 21.2429 14.3716 11.0182 9.0570 7.7748 6.8677 6.2317 5.7428 5.4397 5.2345 5.0309 4.8844 4.8432 4.7539 4.7525 4.8627 4.8913 4.9004 5.0854
0.525 40.1280 20.0722 13.7949 10.4573 8.4034 7.2110 6.3892 5.8340 5.4126 5.0557 4.8572 4.7143 4.5269 4.4548 4.4573 4.4724 4.4742 4.5812 4.6943
0.550 38.6626 19.1255 12.8605 9.8283 7.9179 6.7839 6.0598 5.4263 5.0763 4.7452 4.4759 4.2988 4.2053 4.0720 4.0929 4.0961 4.0923 4.2790
0.575 36.6796 18.4996 12.0584 9.2711 7.5819 6.3904 5.6050 5.1257 4.6185 4.3303 4.1292 3.9781 3.8936 3.9257 3.8671 3.9407
0.600 34.9793 17.3802 11.7762 8.8579 7.1779 6.0572 5.3180 4.9063 4.4483 4.1091 3.9756 3.7643 3.7061 3.6295 3.6315
0.625 33.0379 16.8756 11.0536 8.3937 6.8264 5.7740 5.1682 4.6220 4.2033 3.9801 3.7884 3.7122 3.5778
0.650 31.0336 15.6570 10.3979 7.9199 6.5988 5.5449 5.0129 4.6045 4.2689 4.0082 3.8122 3.7615

0.675 29.3503 14.9678 10.1518 7.7596 6.3591 5.5719 5.0411 4.6311 4.3743 4.1910
0.700 28.4611 14.3514 9.9711 7.6511 6.4556 5.6942 5.1742 4.8767 4.6558
0.725 27.2374 14.1026 9.8149 7.7953 6.7274 5.9641 5.5098 5.2456
0.750 26.2926 13.7914 10.0017 8.0888 7.0577 6.3713 5.9847
0.775 25.9336 13.6971 10.0479 8.1994 7.3566 7.0172
0.800 24.7297 13.6817 10.1809 8.7275 8.1696
0.825 24.3944 13.8034 10.6946 9.6199
0.850 23.5268 14.2456 11.6988 11.5210
0.875 22.9857 14.9350 13.7126
0.900 23.3299 17.0970
0.925 25.2384
0.950 32.0959  

 

 

6.2.4. Observations for the Constant Protraction Time – Wave Gaits 

In this section the wave gaits are analyzed with respect to the duty factor and velocity with a 

constant protraction time, which is taken to be 1.5sec., the minimum applicable to the Robot-EA308. 

Since the protraction time is constant, the retraction time is determined by the duty factor, and then 

the stroke length is determined by the velocity. Namely, the stroke length changes with changing 

duty factor and velocity, and the maximum possible stroke length will be the limiting factor of the 

following constant protraction time analyzes. The physically applicable maximum stroke length to 

the Robot-EA308 is 0.14m. In the constant protraction time tables the region with white background 

corresponds to stroke length less than this maximum  (stl≤0.14m). However, within the simulation 

environment the analysis is performed also for the range where the stroke length is larger than the 

applicable maximum but smaller than the pitch length (0.14m<stl≤0.17m). The region with gray 

background corresponds to this range.  

In Table 6.5, it is observed that, for all velocities, the change of the Ecpl. values with 

increasing duty factor has a regular characteristic: it first decreases, makes a minimum, and then 

increases. The minimum applicable Ecpl. values for constant protraction time wave gaits are 

observed to be less than those of the constant stroke wave gaits, except for the velocity of 0.05m/s. 

(For this single case, the minimum applicable Ecpl. value for constant protraction time wave gait 

(3.9801) is only slightly larger than that of the constant stroke wave gait (3.9365).) It should be 

noted that the decrease in the Ecpl. values before the minimum and the increase after are both 

continuous. This regular behavior points that there is a dominating factor other than the inefficient 

phase distribution for the constant protraction time wave gaits: obviously it is the stroke length. In 

the regions where the stroke length is small, the increase of the duty factor is the dominant factor in 

decreasing behavior of the Ecpl. values; whereas, in the regions where the stroke length is large the 

increase of the stroke length becomes the dominant factor in the increasing behavior of the Ecpl. 
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values. Although the inefficient phase distribution is not dominant in the constant protraction time 

wave gaits, the experience of the former analysis reveals that there can be further improvement in the 

high duty factor regions by shifting to the phase modified wave gaits. The next section will analyze 

this case. 

6.2.5. Observations for the Constant Protraction Time – Phase Modified Wave Gaits 

In Table 6.6, the Ecpl. values are given for constant protraction time – phase modified wave 

gaits for the region of β>2/3. The region with white background again corresponds to stroke length 

less than the maximum applicable (stl≤0.14m). The region with gray background corresponds to 

stroke length greater than the maximum applicable but smaller than the pitch length                          

(0.14m<stl≤0.1mm). The same regular behavior of the Ecpl. values in Table 6.5 is observed in Table 

6.6; but, the minimums occur with higher duty factors. It is further observed that the minimum 

applicable Ecpl. values in Table 6.6 are the smallest of the ones in all the previous tables. This leads 

to the conclusion that the minimum Ecpl. is achieved with the constant protraction time – phase 

modified wave gaits.  

In Table 6.7, a comparison of the best Ecpl. values applicable to the Robot-EA308 for the 

constant stroke length – wave gaits and constant protraction time – phase modified wave gaits is 

given. In this table the region with gray background corresponds to the range where β≤2/3; namely, 

there is no phase modification for these parts and the values for the constant protraction time – phase 

modified gaits are taken from the upper part of Table 6.5. The region with white background 

corresponds to the best values in Table 6.6, where β>2/3. Similarly, a comparison of the stability 

margins for the best applicable Ecpl. cases for the constant stroke length – wave gaits and constant 

protraction time – phase modified wave gaits is given in Table 6.8. It can be observed that there is a 

significant energy gain in the phase modified region, and a moderate energy gain in the other region 

(a slight loss occurs for the velocity of 0.05m/sec.). The stability margin loss is less than 20% in all 

cases; there occur significant stability gains in many cases (especially in the part for β≤2/3). 

Therefore in general, it can be stated that the shift to constant protraction time – phase modified 

wave gaits from the constant stroke – wave gaits results in more energy efficient gaits, with 

negligible exceptions, with tolerable stability losses. 
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Table 6.6: Ecpl. values for phase modified wave gaits with constant protraction time of 1.5sec. (Duty factor(df) 
versus velocity(ve, m/secl).) 

df / vel 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
0.675 29.2677 14.9340 10.0498 7.7058 6.3491 5.5109 4.9620 4.5771 4.3112 4.0891
0.700 28.2762 14.3165 9.7094 7.5409 6.2100 5.4384 4.9425 4.5583 4.3958
0.725 27.1517 13.6565 9.3537 7.2051 6.1657 5.4129 4.9732 4.6562
0.750 26.1627 13.3115 9.0469 7.0747 6.0525 5.3594 5.0497
0.775 25.1796 12.9967 8.8280 6.9937 6.0182 5.4750
0.800 24.2676 12.3289 8.6624 6.9352 6.1848
0.825 23.1485 11.9904 8.4564 7.0542
0.850 22.3879 11.6679 8.5850 7.5094
0.875 21.4573 11.3867 9.1215
0.900 20.4646 11.9293
0.925 20.2677
0.950 22.5439  

 

 

Table 6.7: Comparison of the best Ecpl. values 
applicable to the Robot-EA308 for the constant 

stroke length wave gaits and constant protraction 
time phase modified wave gaits. 

 

Table 6.8: Comparison of the stability margins for 
the best applicable Ecpl. cases for the constant 

stroke length wave gaits and constant protraction 
time phase modified wave gaits.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

constant
constant prot. time

stroke phase mod.
velocity wave gait wave gait
(m/sec) best Ecpl. best Ecpl. %decrease
0.005 34.7462 20.2677 41.6693
0.010 17.6491 11.3867 35.4828
0.015 12.4537 8.4564 32.0973
0.020 9.6448 6.9352 28.0939
0.025 7.7512 6.0182 22.3578
0.030 6.4314 5.3594 16.6682
0.035 5.5441 4.9425 10.8512
0.040 4.8767 4.5583 6.5290
0.045 4.3612 4.3112 1.1465
0.050 3.9365 3.9801 -1.1076
0.055 3.8629 3.7884 1.9286
0.060 3.8411 3.7643 1.9994
0.065 4.0392 3.8936 3.6047
0.070 4.4820 4.0720 9.1477
0.075 5.0559 4.0929 19.0471
0.080 4.8876 4.4724 8.4950
0.085 5.3381 4.8627 8.9058
0.090 5.0954 4.8913 4.0056

constant
constant prot. time

stroke phase mod.
velocity wave gait wave gait
(m/sec) stab. marg stab. marg %decrease
0.005 0.1115 0.0896 19.6413
0.010 0.1083 0.0875 19.2059
0.015 0.1015 0.0845 16.7488
0.020 0.0802 0.0825 -2.8678
0.025 0.0802 0.0801 0.1247
0.030 0.0802 0.0775 3.3666
0.035 0.0802 0.0733 8.6035
0.040 0.0750 0.0717 4.4000
0.045 0.0694 0.0686 1.1527
0.050 0.0635 0.0600 5.5118
0.055 0.0570 0.0575 -0.8772
0.060 0.0500 0.0512 -2.4000
0.065 0.0424 0.0449 -5.8962
0.070 0.0341 0.0383 -12.3167
0.075 0.0250 0.0350 -40.0000
0.080 0.0250 0.0282 -12.8000
0.085 0.0150 0.0213 -42.0000
0.090 0.0150 0.0175 -16.6667
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6.3. Heuristic Strategies to Find an Energy Efficient Standard Gait 

In development of the strategies in this section the exceptional case that is not fitting to the 

general trend, the case of velocity 0.05m/s in Table 6.7, will be ignored. This approach is acceptable 

since the violation of the general trend does not occur in a significant degree. The general conclusion 

is that, the gaits with minimum protraction time result in more efficient walk than the gaits with 

constant stroke length; moreover, in each case the walk is more efficient if the phase modified wave 

gait is used instead of the wave gait. The most energy efficient walk is achieved with phase modified 

wave gaits where protraction time is fixed to the minimum. The second and third strategies will 

handle this observation. But before that, the first strategy will deal with the relation between energy 

efficiency and velocity. 

Strategy 1: If the velocity is free and the aim is to travel a given distance with minimum 

energy dissipation, choose the maximum possible velocity. On the other hand, if the velocity is free 

but the aim is to dissipate the minimum power, choose the minimum possible velocity. 

Strategy 2: If the stroke length is allowed to be varied, choose the minimum possible 

protraction time to be applied. 

Strategy 3: If it is allowed, switch to the phase modified wave gait in order to achieve more 

efficient walk for β>2/3. 

Depending on the applicability of strategies two and three, one should make a search on a 

hypothetical table like Table 6.1, 6.2, 6.5, or 6.6. (It should be remembered that the upper parts 

(β≤2/3) of the Tables 6.2 and 6.6 are the same as the ones in Tables 6.1 and 6.5, respectively; 

therefore, these regions are not shown on Tables 6.2 and 6.6.) Strategy 1 will determine the velocity. 

Then, the search will aim to find the best duty factor in the column of the hypothetical table for the 

given velocity. The following strategies for the search of the best duty factor will depend on the kind 

of the hypothetical table determined by the second and third strategies. 

Strategy 4.i: If the constant stroke – wave gait is to be applied, the hypothetical table is like 

Table 6.1. For the given velocity, if the maximum applicable duty factor is less than two over three 

(β≤2/3), use that maximum as the duty factor. Otherwise, a search is required in the region 2/3<β≤1. 

Since there is no regular behavior of the Ecpl. values in this region, all the possible duty factors 

should be checked, and the one resulting in the minimum Epl. (energy per length) should be chosen. 

Strategy 4.ii: If the constant stroke – phase modified wave gait is to be applied, the 

hypothetical table is like Table 6.2, with the upper part given in Table 6.1. In this table the Ecpl. 

values continuously decrease with increasing duty factor; therefore, for the given velocity choose the 

maximum applicable duty factor.  

Strategy 4.iii: If the constant protraction time – wave gait is to be applied, the hypothetical 

table is like Table 6.5.  In this table the Ecpl. values have a regular behavior of first decreasing and 
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then increasing with respect to the increasing duty factor. The minimum Ecpl. value is somewhere in 

between, but mostly close to the maximum applicable duty factor. Therefore, start from the 

maximum applicable duty factor and increase the duty factor till a local minimum of the Epl. value, 

which is also the global minimum of the associated column, is found. Choose the duty factor 

corresponding to this minimum Epl. value. 

Strategy 4.iv: If the constant protraction time – phase modified wave gait is to be applied, the 

hypothetical table is like Table 6.6, with the upper part given in Table 6.5.  In this table also the 

Ecpl. values have a regular behavior of first decreasing then increasing with respect to the increasing 

duty factor. The minimum Ecpl. value is somewhere in between, but mostly close to the maximum 

applicable duty factor. Therefore, start from the maximum applicable duty factor and increase the 

duty factor till a local minimum of the Epl. value, which is also the global minimum of the 

associated column, is found. Choose the duty factor corresponding to this minimum Epl. value. 

6.4. Testing the Strategies on the Experimental Setup 

Experimental studies are performed using the Robot-EA308. The energy consumption of the 

Robot-EA308 is recorded while walking with different gait plans and tabulated in tables. The 

mechanical six-legged system can be controlled with a computer program via the servo-motor 

controllers on the joints. The computer program is developed in the MATLAB and its SIMULINK 

environments, and communication is established via the serial port of the computer. Once the joint 

trajectories corresponding to a particular gait plan are developed in the computer program, they can 

be sent to the robot to achieve the desired walk. The servo-motors of the robot are fed by an 

approximately 7volt DC current power supply. A data management system records the instantaneous 

voltage and current, and hence the dissipated power, in every 0.1sec. The average energy per meter 

length of travel corresponding to the gait pattern is obtained by dividing the integral of the power by 

the covered distance. Therefore, for the case of the actual system, the data corresponds to actual 

dissipated energy per travelled length, which is denoted by acEpl. (actual energy per length) and has 

the unit of joule/meter. For each gait pattern, the robot is made to walk for six cycles of the period of 

the gait. In Figure 6.2 a photo of the overall experimental setup is given. 
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Figure 6.2: Experimental setup for recording energy dissipation of the Robot-EA308 while walking. 

Table 6.9: The acEpl. values for different gait patterns for the Robot-EA308. The unit of acEpl. values is 
joule/meter. (a) Constant stroke – wave gaits; (b) constant stroke – phase modified wave gaits; (c) constant 

protraction time – wave gaits; (d) constant protraction time – phase modified wave gaits.  
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In Table 6.9, the acEpl. values obtained for different gait patterns are given. The tables (a), 

(b), (c), and (d) correspond to the Tables 6.1, 6.2, 6.5, and 6.6 of the previous section, respectively. 

In table (a) the acEpl. values for constant stroke – wave gaits, in table (b) the acEpl. values for 

constant stroke – phase modified wave gaits are given. For both of these tables, the constant stroke 

length is taken to be 0.14m. The regions with white background correspond to the ranges where 

protraction time is larger than 1.5sec., the minimum for a proper protraction of the actual robot. The 

regions with grey background correspond to the ranges where protraction time is less than the proper 

minimum, but still applicable for an acceptable walk. Therefore, they are included in the table to 

reveal the energy consumption profile, which is less affected by the protraction phases than the 

retraction. In table (c) the acEpl. values for constant protraction time – wave gaits, in table (d) the 

acEpl. values for constant protraction time – phase modified wave gaits are given. For these tables 

the constant protraction time is taken to be 1.5sec., the minimum for a proper protraction. The tables 

are restricted to the regions where the maximum stroke length is 0.14m. (In actual robot, the stroke 

length is not possible to be exceeded without disturbing the walk.) 

In all four tables, it is observed that the acEpl. values decrease with increasing velocity. The 

power consumption, which can be found in watts by multiplying the acEpl. values by the velocity, 

on the other hand, increases with increasing velocity. These confirm the observations made on the 

simulation data for the relation between energy consumption and velocity, and they justify Strategy 

1. The acEpl. values in the constant stroke tables (a) and (b) are generally higher than the 

corresponding ones in the constant protraction time tables (c) and (d). The exception is only in the 

velocity column of 0.01m/s for the three duty factors of 0.6, 0.65, and 0.7 between the tables (a) and 

(c), and for the duty factor of 0.7 between the tables (b) and (d). But, even for these cases the 

violation is insignificant and can be ignored in the general trend. Therefore, the actual data support 

that more efficient walk is achieved with minimum protraction time; hence, Strategy 2 is justified. 

All the acEpl. values in the phase modified wave gait tables (b) and (d) are lower than the 

corresponding ones in the wave gait tables (a) and (c). This approves the observation that shifting to 

the phase modified wave gaits results in more energy efficient walk for the range β>2/3; hence 

Strategy 3 is justified. 

In table (a), all the acEpl. values in the region of β≤2/3, demonstrate a continuous decrease 

with increasing duty factor. In the region of β>2/3, the acEpl. values demonstrate an irregular 

behavior with increases and decreases. These are in accordance with the observations on the 

simulation data of Table 6.1. The minimum of the columns occur in the region of β>2/3 in all 

simulation and real data cases except for the 0.01m/s velocity column of table (a). The minimum of 

this column is the minimum of the region β≤2/3, namely the one corresponding to the largest duty 

factor for β≤2/3. However, the difference between this minimum of the column (1103.71 joule/m) 

and the minimum of the region β>2/3 (1109.78 joule/m) is so little that, this exception can be 



136

ignored in the general trend. Therefore, it can be concluded that the observations on table (a) justify 

Strategy 4.i. 

Considering table (b) with the upper region (β≤2/3) of table (a), the actual data supports the 

observation that for a given velocity, dissipated energy continuously decreases with increasing duty 

factor for constant stroke – phase modified wave gaits; hence the minimums of table (b) occur with 

maximum duty factor. This observation justifies Strategy 4.ii. 

The table (c) for the constant protraction time – wave gaits, and table (d) for the constant 

protraction time – phase modified wave gaits (also considering the upper part of table (c) for the 

region β≤2/3), demonstrate that the acEpl. values have the regular behavior of decreasing and 

increasing with respect to the increasing duty factor, and the minimum acEpl. occurs somewhere 

close to the maximum duty factor. These are in accordance with the observations made on the 

simulation data of Tables 6.5 and 6.6; hence Strategy 4.iii and Strategy 4.iv are justified.   

6.5. Conclusion 

Despite the various literature on gait generation and stability analysis of gaits, there has been 

comparatively less research on energy efficiency of gait patterns. Wave gaits, which are proved to be 

the most stable and are most frequently applied in multi-legged robots, especially deserve to be 

analyzed from energy dissipation point of view. This chapter aims to fill this gap, and to derive some 

strategies in order to determine the best parameters of the wave gaits for minimum energy 

consumption. The chapter seems to be the first in establishing solid strategies to determine the 

parameters of the gaits, and justifying the strategies on realistic data obtained from a real 

experimental setup with a six-legged robot.  

The analysis of wave gaits on the simulation data pointed to a modification of the ipsilateral 

phase difference of the wave gaits for a more efficient walk. The resultant gaits with this 

modification are still periodic, regular, symmetric, and constant phase increment; but differently 

from the wave gaits, the increment of the constant ipsilateral phase difference is fixed to 1/3 for large 

duty factors. The loss in stability due to this modification is analyzed; and, it is concluded that the 

loss in stability is insignificant. The effect of the duty factor, stroke length, phase difference between 

ipsilateral legs, protraction time, retraction time, and velocity on energy consumption are analyzed. 

In general, the dissipated energy increases with increasing stroke length and protraction time and 

with decreasing duty factor and velocity (hence, retraction time). However, since all these 

parameters are dependent on each other, it is not meaningful to speak about the effects of the 

independent changes of these parameters. Rather, the observations in particular mode of walking is 

more useful in determining the best parameters. The approach here is based on determining the duty 

factor and velocity, for the given mode of walk. If the mode is free, the phase modified wave gait 
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with minimum protraction time is the best for an efficient walk. The strategies are developed to 

minimize the search effort for determining the best duty factor and velocity. 

The energy analysis here is performed in the vicinity of the wave gaits without sacrificing the 

stability in a significant degree. However, there can be situations that more sacrifice from stability is 

tolerable for more energy efficiency. Namely, just the achievement of static stability may be enough, 

which is possible when the gait deviates more from the wave gait. The search of more efficient but 

just statically stable gaits, which are not necessarily in the vicinity of the optimal stable wave gaits, 

remains open as a future work based on this chapter.  
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CHAPTER 7  

SUMMARY AND CONCLUSION: CONTRIBUTIONS 

In this thesis, basically five pieces of work, performed for the three-joint six-legged Robot-

EA308, are presented in Chapters 2-6. In these work, the aim was to provide contribution to 

understanding and application of six-legged walking, with using an actual robot. In each chapter, a 

particular side of six-legged walking is handled. The contributions of each chapter are intended both 

for researchers interested in multi-legged walking in general, and also for the researchers who are 

interested in particular topics that are in relation to this. Theoretical analysis of gaits, real-time 

application of reinforcement learning to robots, trajectory optimization and controller design for 

robot manipulators, kinematic-dynamic formulation of parallel systems with changing configuration, 

force distribution in multi-linked systems, and energy-efficient walking can be cited in this regard. In 

the following brief summaries of the contributions of the work presented in Chapters 2-6 are given.  

In Chapter 2 an analytical study of stability of “standard gaits” is presented. The 

mathematical tools and definitions of terms for such analytical study are provided: 

1) A systematic of set relations – including the standard, periodic, regular, and wave gaits – 

is developed under the general set of “orderly gaits”.  

2) A systematic approach of analysis of standard gaits is presented with the stated theorems 

and their proofs. 

3) The stability margin of “standard gaits” is calculated. 

4) A proof of the optimum stability of wave gaits within standard gaits is performed by 

narrowing down to the specific from the general. 

5) Proofs are provided for the intuitively accepted propositions about duty factor limits, 

stability guarantee with the rule of neighborhood, superior stability of rear-to-front wave 

gaits, and maximum phase increment. 

In Chapter 3 a free gait generation with reinforcement learning is developed and applied to 

the actual Robot-EA308: 

1) A discrete model of stepping is introduced. Using this model, a free gait generation 

algorithm, which guarantees static stability in all instances, is developed. 
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2) The central pattern generation and reflex models for multi-legged walking are 

conciliated by combining the developed free gait generation with reinforcement learning. 

3) Continuous improvement of stability, smooth passages between differently commanded 

speeds, and adaptation to the case of a rear leg deficiency in real-time walking are 

achieved. 

4) The algorithm is successfully applied to the actual Robot-EA308. Continuous 

improvement of stability for a given speed, smooth passages between different speed 

commands, and learning of five-legged walking in case of a rear leg deficiency are 

successfully realized on the robot in real-time. 

5) The difference between the experiments with the actual robot and simulations, due to the 

irregular behavior of some standing states, is delineated as the problem of “on-the-

border” situations. The effects of on-the-border situations in the real-time applications 

are highlighted. 

In Chapter 4 a trajectory optimization and controller design is performed for the protraction 

movement of a three-joint robot leg: 

1) The trajectory optimization is performed by making use of the gradient-based optimal 

control method.  

2) The dynamic equations of the three-joint leg system are obtained by Lagrange formalism. 

The Hamiltonian formulation is given for this system. 

3) The optimization is performed by making use of a dense discretization, rather than a 

parametrized trajectory. In this way the search space is not restricted. 

4) In order to come over the problem of sticking to local optimums, the approach named 

“optimization with objective function modification” is developed and applied. 

5) The results of optimization with objective function modification for 79 initial-final tip 

point cases are used to construct an interpolating network, to be used to generate the 

guiding trajectories for the controller. 

6) The idea of “multi agent system based fuzzy controller design for manipulators” is 

improved and applied for the controller design of the three-joint leg system. 

7) The performance of the controller is demonstrated with the actual Robot-EA308 

In Chapter 5, the force-moment distribution of a six-legged robot is handled as a “torque 

distribution” problem, rather than the conventional approach of tip-point “force distribution”: 

1) A full kinematic and dynamic formulation of a six-legged robot is performed, considering 

both retracting and protracting legs, and without neglecting any leg-link masses. 
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2) The derivation of equations is performed by taking the joint-torques, rather than the tip-

point forces, as the primary variables. 

3) The torque distribution problem is formulated as a quadratic programming problem, and 

a compact matrix representation is provided for this purpose, with the joint-torques being 

the primary variables. 

4) The quadratic programming problem is solved by using Lemke’s Complementary 

Pivoting Algorithm. The problem of cycling of pivoting is addressed with practical 

solution methods. 

5) The results of “torque distribution” and “force distribution” are compared for power 

consumption, with the cases of stationary standing and tripod gait walking. 

6) It is demonstrated that the “torque distribution” is more efficient, because it makes use of 

the friction and interaction forces to minimize the joint-torqes on the supporting legs.   

In Chapter 6, the wave gaits are analyzed from the point of view of energy consumption: 

1) The energy consumption data of four modes of walking are generated with simulation, 

and tabulated in a descriptive way. 

2)  Due to the analysis of conventional wave gaits with constant stroke, a modification of 

wave gaits is proposed with the name of “phase modified wave gaits”. 

3) Using the formulas derived in Chapter 2, the stability margins of phase modified wave 

gaits and conventional wave gaits are calculated and compared. It is demonstrated that 

the loss of stability by passing to the phase modified wave gaits is insignificant. 

4) It is demonstrated that, for the general-purpose robots with similar dimensions and 

facilities as the Robot-EA308, the gaits with higher speeds and lesser protraction time 

are more efficient. Besides, phase modified wave gaits are more efficient that the 

conventional wave gaits. 

5) Strategies are established in order to adopt the best mode of walking, and to minimize 

the search effort for the best duty factor and velocity for the given conditions of the robot 

and the task. 

6) The strategies are justified on realistic data obtained by using the actual Robot-EA308. 

The results of the five pieces of work point to some possible directions of future work. Some 

of these are already mentioned in the concluding sections of the chapters; however, they will be 

reemphasized here for convenience of the concluding chapter.   

Chapter 2 reveals that, a systematic approach based on relations of different clusters of gaits is 

useful for the analysis of gaits. The proposed relations under the set of “orderly gaits” provided an 

easier comprehension of gait classification, and made it easier to establish a systematic approach. 
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Considering the fact that, analytical work of gaits is a tedious work, such systematization of relations 

is very important. The analytical work on gaits can be furthered by detailing the sets under the 

orderly gaits, by analyzing their stability properties, and by establishing relations between the 

different clusters. This should not be considered only as a matter of proving the optimal stability of 

wave gaits, but also as a research of the unexplored gait models, which can result in better 

performance for different preoccupations. 

The basic difficulty of application of reinforcement learning to real world problems is 

mentioned as the necessity of large number of trials; therefore, it is frequently suggested that 

reinforcement learning should be biased to speed up the learning, for example by equipping it with a 

priori knowledge of the programmer. In the application in Chapter 3, this was performed by using 

the free state generation algorithm, which guarantees stability for six-legs. In case of rear-leg 

deficiency, it is only with this bias that the robot can learn to walk. A branch of future work might be 

to improve this bias by making use of the experiences of the robot in the free state generation 

algorithm. The learning scheme presented here is based on memorizing the stable transitions. 

Namely, the unstable transitions are not memorized in a set of bad experiences. The learning 

algorithm can be made faster by memorizing the bad experiences as well. However, since the 

number of bad experiences generally far exceeds the number of useful experiences, a problem of 

memory storage and processing might occur during real-time applications. To determine the bad 

experiences to be memorized, to incorporate bad experiences with the learning scheme, and to utilize 

those can be considered as a future work in order to speed up the learning. In this way learning of 

five-legged walking only with a few-falls can be possible. The problem of “on-the-border” 

situations, faced in the learning of five-legged walking with the real robot, is also a subject of future 

work considering the real-world applications of learning with binary reinforcement signal. 

In Chapter 4, “optimization with modified objective function” is proposed. The main 

drawback of this approach is that it necessitates a long time for termination. An intelligent and 

continuous modifier was suggested in order to speed up the process. This can be achieved by 

modifying the objective function according to the values of different segments of the nominal 

objective function, and some other gradient information. Developing such an intelligent optimal 

control algorithm might be a future work on the proposed optimization scheme. In achieving this, the 

main problem can be expected to be that the algorithm will be stuck in new kind of local optimums 

that are not experienced before. The main task will be to handle such sticking to the new experienced 

local optimums and to improve the algorithm as far as possible. The future work for the approach of 

“multi agent system based fuzzy controller design for robot manipulators” might be to develop a 

systematic to write the rules for the joints of a manipulator considering different expectations, such 

as minimum time, minimum distance, or minimum power dissipation. The proposed control scheme 

should also be tested with more complex manipulators of six-degree of freedom.    
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The basic future work for the “torque distribution” proposed in Chapter 5 might be to develop 

a joint-torque controlled walking machine and to apply the scheme on an actual system. In force-

moment distribution, it can be the case that objectives other than power consumption are considered. 

For example, when the friction coefficient is not known, although it results in a very inefficient 

distribution, it might be desirable to apply the “force distribution” scheme in order to minimize the 

horizontal components of tip-point forces. For such a case, the future work for Chapter 5 might be to 

develop a structure, which can shift between different distribution schemes, or come to a 

compromise between the two, according to the environmental conditions. Considering the torque 

distribution scheme, a system that estimates the friction coefficient would be very useful. 

Developing such a system, which makes use of the previous experiences, might be another branch of 

future work. 

The energy analysis in Chapter 6 pointed to a modification in wave gaits, which have 

optimum stability. The modification is an example that a kind of gaits, which does not have optimum 

stability, might be desirable from the point of view of other objectives. This situation strengthens the 

importance of the future work of development of set relations of gaits and examination of those, as 

mentioned above in relation to Chapter 2. As mentioned before, the analysis of Chapter 6 is 

performed only in the vicinity of the wave gaits. The aim in doing this was not to sacrifice the 

stability in significant degrees. However, with strong machines walking with very small stability 

margins can be possible. This allows the gaits to deviate more from the wave gaits. The search and 

analysis of more efficient, though less stable, gaits in the unexplored regions can be a future work 

based on Chapter 6. 
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APPENDIX 

A. Inertia Matrices for the Body Frame and the Three-Joint Legs of the Six-
Legged Robot-EA308 

The rotational inertia of a link around a given point is a tensor, which can be represented as a 

3×3 matrix with respect to any reference frame. In derivation of dynamical equations, it is common 

that the inertia tensor is calculated around the center of mass of the link. The representation of the 

inertia tensor of the link with respect to a frame fixed the link is a constant matrix, which can be 

calculated by the below formulas:  

J k
k J k

k J k

J k11 J k12 J k13

J k21 J k22 J k23

J k31 J k32 J k33

   

J kij
B

r k
2

ij xki x kj dm      r k
2 r k

2 xk1
2 xk2

2 xk3
2

   ij
1, if i j
0, if i j  

The representation of the inertia tensor of the link, with respect to any other reference frame 

can be found as: 

J k
j J k

j C j , k J k
k C k , j

 

Body Frame: 

The calculation of the inertia matrix for the body frame is performed with respect to the 

configuration in Figure A.1. The body of the robot, which is composed of the plastic frame and the 

six first joint motors, as seen in Figure 1.1, is approximated as a rigid rectangular frame. The values 

of the parameters in Figure A.1 are given in Table A.1. The center of mass of the body frame is 

assumed to coincide with the origin of the body reference frame. The resultant inertia matrix of the 

robot body with respect to the body reference frame is given below Table A.1. 
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Figure A.1: Robot body frame and reference frame configuration for the calculation of inertia matrix. 

Table A.1: Parameters for inertia matrix calculation of the body frame. (These parameters belong to the Robot-
EA308) 

 

 

 

J b
b J b

1
12

mb Lb2
2 Lb3

2 0 0

0 1
12

mb Lb1
2 Lb3

2 0

0 0 1
12

mb Lb1
2 Lb2

2

 

 
Links of the Legs: 

The calculations of the inertia matrices for the three links of a leg are performed with respect 

to the sample configuration in Figure A.2. The values of the parameters in this figure are given in 

Table A.2 for the three links. These are approximated values for the three-joint six-legged Robot-

EA308. The center of mass of the kth link (Ocm,k) is assumed to be in the middle of the line 

connecting the origins of k-1st and kth reference frames, shown in Figure 4.1 (ck=ak/2). The inertia 

matrix of the kth link is calculated around this center of mass, and represented with respect to the kth 

reference frame fixed to the link. 

 mb (g) Lb1 (cm) Lb2 (cm) Lb3 (cm) 
Body Frame 992 16.5 44 3 
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Figure A.2: Sample leg-link and the reference frame configuration for the calculation of the related inertia 
matrix. 

Table A.2: Parameters for the inertia matrix calculation of leg-links. (These parameters belong to the legs of the 
Robot-EA308). 

Link k m (g) Lk1 (cm) Lk2 (cm) Lk3 (cm) dk (cm) ck=ak/2 (cm)

k=1 67 4.3 2 3.8 1 0.75 
k=2 88 6 2 3.8 1 2.625 
k=3 18 14.2 0.5 1 0 6.625 

 

 

The entries of the inertia matrices are calculated as follows (k=1, 2, 3):  

J k1 mk

Lk2
2 Lk3

2

12  

J k2 mk

3 d k ck
2 3 d k ck Lk1 Lk1

2

3
Lk3

2

12  

J k3 mk

3 d k ck
2 3 d k ck Lk1 Lk1

2

3
Lk2

2

12  

J k

J k1 0 0
0 J k2 0
0 0 J k3    
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B.  Entries of the Matrices in the Equation of the Dynamic Motion of a Three-
Joint Leg 

 

 

In the formulas the variables represented by ai stand for the length of the ith link (namely, the 

length of the portion of the link between the origins of i-1st and ith reference frames). The variables 

represented by θij mean the sum of the ith and jth joint angles (θij=θi+θj). C and S correspond to 

cosine and sinus functions, respectively. The variables represented by ci designate the position of the 

center of gravity of the ith link: (-ci,0,0) represents the position of the center of gravity of the ith link 

with respect to the ith reference frame. Namely, the term (ai-ci) designates the distance of the center 

of gravity of the ith link from the ith joint. For the Robot-EA308, the center of mass of the ith link is 

assumed to be in the middle of the line connecting the origins of i-1st and ith reference frames 

(ci=ai/2). 

The mass (inertia) matrix M̂ is in the form of 

M
m11 m12 m13

m21 m22 m23

m31 m32 m33 . 

The entries are calculated as follows: 

m11 m2 m3 a1
2 m1 a1 c1

2 m2 a2 c2
2 C 2

2 m3 a2
2 C 2

2 m3 a3 c3
2 C 23

2

2 m2 a1 a2 c2 C 2 2 m3 a1a2 C 2 2m3 a1 a3 c3 C 23 2 m3 a2 a3 c3 C 2C 23

J 12 J 21 S 2
2 J 22 C 2

2 J 31 S 23
2 J 32 C 23

2

m22 m2 a2 c2
2 m3a2

2 m3 a3 c3
2 m3 2 a2 a3 c3 C 3 J 23 J 33

m33 m3 a3 c3
2 J 33

m23 m32 m3 a2 a3 c3 C 3 m3 a3 c3
2 J 33

m12 m21 m13 m31 0  

C  is the vector of coriolis, centrifugal, and gyroscopic terms. It is in the following form: 

C q ,q
C1

C 2

C 3
i 1

3

j 1

3

ckij qi q j

 

 

The ckij variables are calculated as in the following formulas:  

M q q C q , q G q Q
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c111 0
c112 2 a2 c2

2 m2 C 2 S 2 a2
2 2C 2 S 2 m3 a3 c3

2 2C 23 S 23 m3

2a1 a2 c2 S 2 m2 2 a1 a2 S 2m3 2a1 a3 c3 S 23m3

2a2 a3 c3 S 2 C 23 C 2 S 23 m3 2 J 21 S 2C 2 2 J 22C 2 S 2

J 31 2S 23 C 23 2 J 32 C 23 S 23

c113 a3 c3
2 2C 23 S 23 m3 2a1 a3 c3 S 23 m3 2a2 a3 c3 C 2 S 23 m3

2 J 31 S 23 C 23 2 J 32 C 23 S 23

c121 0
c122 0
c123 0
c131 0
c132 0
c133 0
c211 1 2 c112

c212 0
c213 0
c221 0
c222 0
c223 m3 2a2 a3 c3 S 3

c231 0
c232 0
c233 m3 a2 a3 c3 S 3

c311 1 2 c113

c312 0
c313 0
c321 0
c322 1 2 m3 2a2 a3 c3 S 3

c323 m3a2 a3 c3 S 3 1 2 m3a2 a3 c3 S 3

c331 0
c332 1 2 m3 a2 a3 c3 S 3

c333 0  
 

G is the vector of gravitational terms. Its entries are given as follows: 

                             

G1 g S m1 a1 c1 C 1 m2 a1 C 1 a2 c2 C 1C 2

g S m3 a1C 1 a2 C 1 C 2 a3 c3 C 1C 23

G 2 m2 g S a2 c2 S 1 S 2 C a2 c2 C 2

m3 g S a2 S 1 S 2 a3 c3 S 1 S 23 C a2C 2 a3 c3 C 23

G3 m3 g S a3 c3 S 1 S 23 C a3 c3 C 23  

 

 

 

 

G
G1

G2

G3
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C.  Joint Related Position Vectors 

The vectors pointing from the origin of the zeroth reference frame to the joints (to the origins 

of the link reference frames) represented in the zeroth reference frame are as follows: 

r 0,0
0

0
0
0  

r 0,1
0

a1 C 1

a1 S 1

0  

r 0,2
0

a1 C 1 a2C 1 C 2

a1 S 1 a2 S 1 C 2

a2 S 2  

The vector pointing from the origin of the zeroth reference frame to the tip point position 

represented in the zeroth reference frame is as follows: 

Ptip
0

a1 C 1 a2C 1C 2 a3 C 1C 23

a1 S 1 a2 S 1C 2 a3 S 1 C 23

a2 S 2 a3 S 23  

 

 

D.  MATLAB Fuzzy System File for the Joint Acceleration Controller 

dth: Joint angle velocity (normalized rad/sec). 
alpha: Pseudo_error (normalized rad.m) 
output: Joint angle acceleration (normalized rad/s2) 
 
.fis file: 
[System] 
Name='input_acc_director_u123' 
Type='mamdani' 
Version=2.0 
NumInputs=2 
NumOutputs=1 
NumRules=13 
AndMethod='min' 
OrMethod='max' 
ImpMethod='min' 
AggMethod='sum' 
DefuzzMethod='centroid' 
 
[Input1] 
Name='dth' 
Range=[-1 1] 
NumMFs=5 
MF1='NB':'trimf',[-1.5 -1 -0.5] 
MF2='NS':'trimf',[-1 -0.5 0] 
MF3='Z':'trimf',[-0.5 0 0.5] 
MF4='PS':'trimf',[0 0.5 1] 
MF5='PB':'trimf',[0.5 1 1.5] 
 
[Input2] 
Name='alpha' 
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Range=[-1 1] 
NumMFs=5 
MF1='NB':'trimf',[-1.5 -1 -0.5] 
MF2='NS':'trimf',[-1 -0.5 0] 
MF3='Z':'trimf',[-0.5 0 0.5] 
MF4='PS':'trimf',[0 0.5 1] 
MF5='PB':'trimf',[0.5 1 1.5] 
 
[Output1] 
Name='output1' 
Range=[-1 1] 
NumMFs=7 
MF1='NB':'trimf',[-1.333 -1 -0.6666] 
MF2='NM':'trimf',[-1 -0.6666 -0.3334] 
MF3='NS':'trimf',[-0.6666 -0.3334 0] 
MF4='Z':'trimf',[-0.3334 0 0.3334] 
MF5='PS':'trimf',[0 0.3334 0.6666] 
MF6='PM':'trimf',[0.3334 0.6666 1] 
MF7='PB':'trimf',[0.6666 1 1.334] 
 
[Rules] 
0 1, 3 (0.03) : 1 
0 1, 4 (0.3) : 1 
0 2, 3 (0.03) : 1 
0 2, 4 (0.3) : 1 
0 3, 4 (0.01) : 1 
0 4, 5 (0.03) : 1 
0 4, 4 (0.3) : 1 
0 5, 5 (0.03) : 1 
0 5, 4 (0.3) : 1 
1 3, 7 (1) : 1 
2 3, 7 (1) : 1 
3 3, 4 (0) : 1 
4 3, 1 (1) : 1 
5 3, 1 (1) : 1 
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