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ABSTRACT

CONTEXT-SENSITIVE MATCHING OF TWO SHAPES

Başeski, Emre

M.Sc., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Sibel Tarı

July 2006, 70 pages

The similarity between two shapes is typically calculated by measuring how well

the properties and the spatial organization of the primitives forming the shapes

agree. But, when this calculations are done independent from the context, i.e.

the whole set of shapes in the experiments, a priori significance to the primitives

is assigned, which may cause problematic similarity measures. A possible way of

using context information in similarity measure between shape A and shape B is

using the category information of shape B in calculations. In this study, shapes

are represented as depth-1 shape trees and the dissimilarity between two shapes

is computed by using an approximate tree matching algorithm. The category

information is created as the union of shape trees that are in the same category

and this information guides the matching process between a query shape and a

shape whose category is known.

Keywords: tree editing distance, shape matching.
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ÖZ

İKİ ŞEKLİN BAĞLAMA DUYARLI KARŞILAŞTIRILMASI

Başeski, Emre

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Assoc. Prof. Dr. Sibel Tarı

Temmuz 2006, 70 sayfa

İki şekil arasındaki benzerlik, tipik olarak şekilleri oluşturan yapıtaşlarının özellik-

leri ve uzaysal organizasyonlarının ne kadar uyumlu olduğunu ölçerek hesaplanır.

Fakat, bu hesaplamalar bağlamdan, örneğin deneylerin yapıldığı tüm şekillerin

kümesinden, bağımsız yapılırsa yapıtaşlarına fazla önem atanır ki bu da prob-

lematik benzerlik ölçütlerine sebebiyet verebilir. A ve B şekilleri arasındaki ben-

zerlik ölçütünde bağlam bilgisini kullanmanın muhtemel bir yolu, B şeklinin kat-

egori bilgisini hesaplarda kullanmaktır. Bu çalışmada, şekiller 1 derinlikli şekil

ağaçları olarak betimlenmektedir ve iki şekil arasındaki benzerlik, yaklaşımsal

bir ağaç karşılaştırma algoritması ile hesaplanmaktadır. Kategori bilgisi, aynı

kategorideki şekil ağaçlarının birleştirilmesi ile yaratılmaktadır ve bu bilgi, sorgu-

lanan bir şekil ve kategorisi bilinen bir şekil arasındaki karşılaştırma işlemine yol

göstermektedir.

Anahtar Kelimeler: ağaç değiştirme mesafesi, şekil karşılaştırma.
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CHAPTER 1

INTRODUCTION

Matching two shapes and measuring their similarity is an important task for vi-

sion. Typically, shape similarity is a measure of how well the primitives forming

two shapes and their spatial organization agree. Hence the tree data structure

provides a very natural way of storing the shape primitives according to their

spatial organization (inclusion relation), it is widely used to represent a shape.

When a shape (primitives + inclusion relations) is expressed by a tree, the shape

dissimilarity can be computed as the tree editing distance. To find the similarity

among two shapes using skeletal trees, the basic steps are: a) computation of

shape primitives, b) formation of shape trees, c) comparison of shape trees.

Quite a significant majority of tree or graph based shape matching schemes

make use of some axial a.k.a skeletal representation to determine the primitives

and the inclusion relations [4, 5, 6, 7]. Skeleton extraction is quite a sensitive

procedure and one of the most promising developments is the concept of shape

scale space by Kimia, Tanenbaum and Zucker. [8]. Alternative formulations are

in Tari, Shah and Pien. [9], Latecki and Lakamper [10] and Imiya and Eckhardt

[11].

The obtained shape primitives and their spatial organization are used in

shape tree formation. In the shock tree of Siddiqi et. al. [4], the center of

the largest circular piece is designated as the root and the primitives (pieces

1



of skeletons) are represented by vertices. In the shape axis tree of Liu and

Geiger [5], on the other hand, primitives are represented by the tree edges. A

major source of difficulty in tree based approaches is that small changes in a

shape can lead to a major reorganization of the tree making the representation,

hence, the matching schemes built on this representation very unstable. To

make skeletal tree based methods work in practice, various ideas have been

developed. An interesting idea is the incorporation of top-down verification

process as in [6] to adjust bottom-up skeleton extraction. To compensate for the

errors in the skeleton computation, Liu and Geiger [5] consider not only node-to-

node correspondences but also node-to-path correspondences. The motivation

behind both approaches is to allow multiple parses of the same shape to deal

with instabilities of the skeleton extraction.

After shape tree formation, the similarity between two shapes can be found

by comparing their shape trees. One alternative is to formulate the partial

match computation as a sub-graph isomorphism problem. Another alternative

is to formulate it via tree edit operations which transforms one tree to another

as in Shasha and Zhang [12]. In such case, the distance between two shapes

is measured by the minimum cost of editing which is referred as the tree edit

distance.Typically, this cost is symmetric.

In the shape matching literature, similarity is traditionally defined via met-

rics as such it is symmetric and satisfies triangle inequality, with the exception

of most recent works in computer vision, including [1, 13]. Jacobs, Weinshall

and Gdalyahu [13] discuss the motivations for using non-metric measures of sim-

ilarity and gives a good account of examples from the recent literature, focusing

on the departure violation of triangle inequality. In Figure 1.1, an experiment

from [1] is presented. Hence the observers states that the dissimilarity between

person and horse is more than twice as great as the dissimilarity between either

shape and the centaur, there is a violation of triangle inequality.

Experimental studies also demonstrates that human similarity judgements

are asymmetric [14, 15]. Both Mumford [16] and Edelman et.al. [17] interprets

this asymmetry as context dependence. The experiment conducted by Tversky

2



Figure 1.1: An experiment from [1]

[14] shows that, for the discrimination of A,B,C, and D, if C and D are very

different from A and B, A and B are often confused.

In this study, the effect of context to the calculation of similarity between

two shapes is discussed. The main idea is using the guidance of context to obtain

a bias which is used to find a similarity measure. To test the approach, image

retrieval problem is studied, where the aim is finding the most similar shapes in

an image database for a query shape.

Context sensitive matching is investigated by letting the category descrip-

tions to represent the context information and influence the process of editing

one skeletal tree into another. Even though the underlying similarity measure is

symmetric, the bias due to assumed category distorts the symmetry. Departure

from a symmetry may be very useful in a shape retrieval application, where a

query (stimulus input) is compared against a prototype (memory benchmark).

For the experiments, a shape database composed of 180 shapes with 30 cat-

egories, collected from various sources [7, 2] is used (see Figure 1.2).

In this thesis, attributed, ordered, depth-1 tree is the main data structure for

both category and shape representation. A category tree is sort of a union tree

which captures the within category variability of the primitives and the inclusion

relations via vector valued attributes attached to nodes and vertices. Forming

union of tree representations has been addressed by Torsello and Hancock [18].

Unlike Torsello and Hancock’s construction in which union of trees may not

result in a tree structure, our category construction always produces a depth-1

tree.

As demonstrated in this work, using depth-1 trees offer both computational

3



human star

elephant tortoise

misc1 dumbell

misc2 misc3

cat palm

hand ship

embryo turtle

club flower

misc5 crocodile

squirrel frog

rabbit misc6

misc7 horse

umbrella crown

dino fish

key dog

Figure 1.2: The shape database used in the experiments. There are 180 shapes
from 30 categories.

and conceptual advantages as:

• tree editing distance computation becomes equivalent to string edit dis-

tance computation

• category prototype construction process becomes trivial

• representing both individual shapes and categories with the same data

4



structure leads to a quite trivial mechanism for introducing bias for shape

primitives

• allows individual shape and category comparison via a tree editing distance

algorithm

What makes depth-1 trees partially possible is a new axis extraction method

of Aslan and Tari [2] which extracts the axes at a very coarse scale at which

the shape is perceived as a single blob. He refers to this representation as the

disconnected skeleton.

Thesis Organization

In Chapter 2, the disconnected skeleton representation of Aslan and Tari [2] is

reviewed. In Chapter 3, the methodology that is used to parse a disconnected

skeleton into a pair (or more) of ordered depth-1 trees is discussed. An approx-

imate tree matching algorithm is given in Chapter 4. In Chapter 5, the branch

and bound matching scheme in [2] is studied from a tree matching perspective

and its limitations are explored. Then, by letting the category of second shape

to influence the tree-to-tree matching in Chapter 6, the matching problem is

examined by using a context, which is referred as context-sensitive matching.

Finally, in Chapter 7, the presented work is concluded.

Contributions

The contributions of this thesis are: a) reducing the algorithmic complexity of

the matching scheme presented in [2] by using an approximate tree matching

algorithm b) calculating dissimilarity between two shapes by paying attention

to the context, in which the calculation is performed c) allowing shape-category

and category-category comparisons by using the shape-category tree.

5



CHAPTER 2

REVIEW OF DISCONNECTED SKELETON

In this chapter, the disconnected skeleton representation of Aslan and Tari [2]

is reviewed. After presenting how disconnected skeletons are computed, the

canonical coordinate frame that is used to determine the spatial organization of

primitives is discussed.

2.1 Disconnected Skeleton

Consider a shape whose boundary is Γ. Let v be the solution of the following

differential equation:

∇2v =
v

ρ2
, v|Γ = 1 (2.1)

As shown in [9], successive level curves of v are gradually smooth versions

of Γ and the amount of smoothing increases with increasing ρ. v function is

closely related to the Ambrosio-Tortorelli approximation [19] of Mumford-Shah

segmentation functional [20]. In [9], this connection is explored and v function is

proposed as a multiscale alternative to distance transform which can be directly

computed from unsegmented real images. Recently, Aslan et. al. [2] showed

that, by selecting a small ρ in Equation (2.1) and increasing it until a function

with a single extremum point is obtained, all shapes shrink into a single point.

This numerical trick leads to unique shape center for any shape.
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Resulting surface v permits to a very stable shape analysis by capturing the

ribbon-like sections in the form of a disconnected skeleton – a set of disconnected

protrusion and indentation branches. Each protrusion branch emanates from a

boundary protrusion and ends at an interior point or at the shape center. The

interior points are very stable to articulations and boundary perturbations [3]

(see Figure 2.1). There are at least two protrusion and two indentation branches

which reach to shape center. These branches are called major branches. If the

symmetry at the center is more than 2-fold than the number of major branches

increase to n > 2 to reflect the n-fold symmetry [3].

(a) (b)

Figure 2.1: Disconnected skeletons from [2, 3]

The evolution of level curves determines the sign of symmetry branches.

Symmetry points that track the evolution of the protrusions of a shape form

positive symmetry branches and symmetry points that track the evolution of

the indentations of a shape form negative symmetry branches.

In case of perfect mirror symmetry about a skeletal branch, three branches

(two positive and one negative) may join, forming a triple junction. A sample

shape with a triple junction is shown in Figure 2.2 (a). The object part that

is shown in Figure 2.2 (b) is mirror symmetric and the two positive branches

emanating from the two curvature maxima (corners) and the negative branch

emanating from the curvature minima intersect and continue as a single positive

branch(Figure 2.2 (c)).

Triple junctions are instable configurations. Slight deviation from perfect

mirror symmetry will change the axis section shown in Figure 2.2(c) to the either

one of the axis sections shown in Figure 2.2(d) and 2.2(e). Triple junctions also

disappear when sharp corners are replaced by smooth corners. Consider the

sample in Figure 2.3(a). When corners are smoothed (Figure 2.3(b)), the triple

7



(a) (b) (c) (d) (e)

Figure 2.2: Triple junction example (a) Shape with mirror symmetry (b)Part of
the shape that causes triple junction (c)Part of the symmetry axis: Intersecting
branches at junction point (d)-(e) Skeletal configurations which arise as a result
of slight deviation from mirror symmetry

junction disappear. As such, the descriptions shown in Figure 2.2(d)-(e) are

more stable.

(a) (b)

Figure 2.3: (a) Triple junction in the case of perfect mirror symmetry. (b)Triple
junction disappear when corners are smoothed.

The good news is that, triple junctions rarely occur in disconnected skeletons.

The bad news is that they are not completely impossible.Hence, whenever a

triple junction is detected, both stable alternatives are kept as multiple parses.

2.2 Canonical Coordinate Frame

The center point of a shape and one of the major axes can be used to set up a

canonical coordinate frame (Figure 2.4). The line connecting the shape center

and a nearby point on the selected major axis defines the reference axis. In

[2], the negative major axes are used as reference axis. Spatial organization of

symmetry branches and their lengths are measured according to the selected

coordinate frame.

The length between the termination point of a symmetry branch and the

shape center is called r. The angle between the reference axis and the arrow

connecting the shape center and the termination point of a symmetry branch

defines θ. Note that, even under significant bendings and articulations, since

8



Figure 2.4: Four possible reference axes of the hand shape from [2]

the termination points of symmetry branches remain stable as demonstrated in

[3, 2], they are used to determine the polar location of branches. An example

coordinate frame is shown in Figure 2.5. Note that, in [2], the shape is divided

into two halves for efficient matching and polar angles are calculated in counter-

clockwise direction.

Figure 2.5: A sample coordinate frame from [2]

For each major negative branch, a different coordinate frame is created.

Therefore, if there are n major negative axes that reach the shape center, n

possible descriptions are generated.

9



CHAPTER 3

FROM DISCONNECTED SKELETON TO

SHAPE TREE

In previous chapter, the computation of disconnected skeletons has been re-

viewed. In this chapter, ordered, unlabeled, attributed, depth-1 tree is presented

as our basic data structure to represent a shape. Notice that, two important

properties of the disconnected skeleton scheme in [2] that allows this study to

obtain shape trees from the disconnected skeletons are: a) the unique shape

center b) canonical coordinate frame.

3.1 Construction of Ordered Attributed Depth-1 Shape

Tree from Symmetry Branches

We consider a disconnected skeleton as an initial shape description which will

be parsed into a tree. Due to uniqueness of its center, we express a shape as a

rooted tree whose nodes are the disconnected branches. Using n major negative

branches, we define n rooted ordered trees by clockwise ordering to serve as

alternative descriptions (parses) of the same object as illustrated in Figure 3.1.

Root of the tree holds the unique shape center and the leaves hold the discon-

nected branches. Each leaf is associated with a set of attributes (normalized

length and sign of the branches and the location of the interior (disconnection)

points) presented in the previous chapter.

10



(a) (b) (c)

Figure 3.1: (a) Disconnected skeleton of an elephant shape. (b)-(c) Two alter-
native parses.

Skeleton to tree conversion process is illustrated in Table 3.1 using human

and star shapes. In the first column of the table, the shapes and their discon-

nected skeletons are shown. Both shapes have exactly two negative branches

flowing into the shape center. Therefore, two shape trees are created for each

shape. The first descriptions are located in the first and third rows of the sec-

ond column. The branches are numbered according to a post-ordered numbering

scheme. The reference branch is numbered as 0 and other branches are num-

bered according to their relative order. For a branch denoting an object section,

the numbering depends on the choice of reference axis. In the first description of

the human shape, since the branch labeled as a is used as the reference branch,

the node corresponding to the branch that denotes the head of the human shape

is located as the fourth child of the root in the shape tree. But in the second

representation of the human shape, the branch labeled as g is used as the refer-

ence branch. Therefore the node corresponding to the branch that denotes the

head of the human shape is located as the eighth child.

Note that, the character labeling is merely used for illustrative purposes. We

neither explicitly compute parts that form the shape structure nor associate any

meaning to any branch.

3.1.1 Attributes of a Node in the Shape Tree

A nodal attribute can be defined as an application-dependent, user-defined value.

In this study, attributes of a node are used to store the polar location, normalized

length and the sign of a symmetry branch. In the canonical frame of Aslan and

Tari [2], these attributes are all invariant to Euclidean transformations (scaling,

11



Table 3.1: Sample Skeleton to Tree Conversions

0⇒ a 6⇒ g
1⇒ b 7⇒ h
2⇒ c 8⇒ i
3⇒ d 9⇒ j
4⇒ e
5⇒ f

human first description first shape tree
0⇒ g 6⇒ c
1⇒ h 7⇒ d
2⇒ i 8⇒ e
3⇒ j 9⇒ f
4⇒ a
5⇒ b

skeleton second description second shape tree

0⇒ a 6⇒ g
1⇒ b 7⇒ h
2⇒ c 8⇒ i
3⇒ d 9⇒ j
4⇒ e
5⇒ f

star first description first shape tree
0⇒ e 6⇒ a
1⇒ f 7⇒ b
2⇒ g 8⇒ c
3⇒ h 9⇒ d
4⇒ i
5⇒ j

skeleton second description second shape tree

rotation, translation) and very insensitive to articulations and local deforma-

tions.

Polar Coordinate

Polar coordinate of end-point of a symmetry branch is used to represent the

location of the branch. The location information is used to find the relative

arrangement of the branches. For example, if the symmetry branch representing

the head of a human shape is between the branches representing the arms, this

arrangement must be preserved in representation of the shape.

12



Normalized Length

Normalized lengths of similar branches must also be similar. Therefore, normal-

ized length of a branch is stored as an attribute in the corresponding node.

Sign

Because of different type of deformation, two branches with similar normal-

ized length and polar location can not be similar, if their signs are different.

Therefore, sign information of a branch must be taken into account in visual

recognition processes.

3.2 Sample Shape Trees

In retrieval processes that are discussed in following chapters, shape trees are

used to obtain similarity measure among shapes. Therefore, in Table 3.2, some

shape trees prior to ordering are shown to give an idea about the relative ar-

rangement of branches. Note that, the skeleton branches are also shown merely

for illustrative purpose.
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Table 3.2: Sample skeletons from each class in shape database

human star

elephant tortoise

misc1 dumbell

misc2 misc3

cat palm

hand ship
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Table 3.2 (continued)

embryo turtle

club flower

misc5 crocodile

squirrel frog

rabbit misc6

misc7 horse

15



Table 3.2 (continued)

umbrella crown

dino fish

key dog
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CHAPTER 4

APPROXIMATE TREE MATCHING

In previous chapter, we demonstrated how we parse a disconnected skeleton into

a tree data structure. In this chapter, we explain how we determine the best

partial match between two trees, using tree editing distance.

When a shape (primitives + inclusion relations) is expressed by a tree, best

correspondence or best matching between two shapes is determined by comput-

ing best partial match between the trees and the shape dissimilarity is computed

as a tree editing distance.

Tree editing distance is the minimum cost of operations necessary to convert

one tree to another. The edit-distance concept is originated in a paper by

Wagner and Fisher [21] on comparing two character strings where they have

defined three edit operations: deleting a character, inserting a character and

changing one character into another.

It is quite natural to formulate both exact and approximate matches between

two objects; i.e. string ”w ∗ ing” matches to ”widen” approximately whereas it

matches to ”willing” and ”windsurfing” exactly.

Most of the work on edit-distance in trees addresses the computation of

distance between ordered rooted trees. Ordered trees are special kind of trees

in which the left-to-right order among the siblings is important.

The comparison of rooted trees is mostly used in applications where hier-

archies must be represented like parse trees and image decomposition. String
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comparison is also an area where approximate tree matching is widely used.

Selkow [22] presented a restricted tree-editing distance algorithm for string-like

trees whose algorithmic complexity is O(|T1| × |T2|). The first non-exponential,

non-restricted tree-editing distance algorithm had been proposed by Tai [23].

Although it could be able to solve the approximate tree matching problem, its

space and time complexity is O(|T1| × |T2| × depth(T1)
2 × depth(T2)

2).

In [12], Zhang and Shasha proposed an algorithm with a time complexity

O(|T1| × |T2| × min(depth(T1), leaves(T1)) × min(depth(T2), leaves(T2))). The

worst case bound for this algorithm is O(n4). Klein [24] has proposed an al-

gorithm with a better worst case bound, which is O(n3log(n)). However, the

performance of these two algorithms depends on the shape of trees that are

being compared.

The focus of this chapter is to review Shasha and Zhang’s ([12]) tree editing

distance algorithm, as it forms the backbone of our matching scheme. Although

the original algorithm that calculates the editing-cost between two trees does

not create a mapping, it is possible to use back tracking on the set of whole

editing operations to find the correct mapping. The algorithm that finds the

mapping between two trees is presented in 4.2.

4.1 Tree Editing Distance Algorithm of Shasha and Zhang

Edit Operations

To convert one tree to another, three operations attribute change, delete,

insert are used. The operations are illustrated in Figure 4.1. The attribute

change operation is used to change the attribute of a node and has the meaning

”The attached properties of a given node is changed from a to b”. When delete

operation is applied to a node, all of its children becomes the children of its

parent.

The last editing operation is the insert operation. In Figure 4.1(c) a sample

insert operation is presented. The location of the new node is determined by

the context and this issue is clarified in the algorithm section.

Generally, an editing operation is denoted as a ⇒ b. When a 6= Λ and
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(a) (b) (c)

Figure 4.1: Edit operations (a)label change (b)delete (c)insert

b 6= Λ, the operation is a change operation where Λ denotes an empty node.

When a 6= Λ and b = Λ, the operation is a delete operation and when a = Λ

and b 6= Λ, the operation is an insert operation.a ⇒ b will be used as the general

editing operation in the rest of this document.

Definitions

Each editing operation needed to convert one tree to another has a cost. Cost

function of editing operation a ⇒ b is denoted as γ (a ⇒ b).

Since the goal of tree editing distance algorithms is to find the minimum

editing cost necessary to convert one tree to another,we will denote the tree to

be modified as T1 and the reference tree as T2.

As a result of editing operations, a graphical representation can be obtained

that shows deleted nodes of the first tree, deleted nodes of the second tree and

related nodes of the first and the second tree. In Figure 4.2, node with label b

in T1 is deleted. The lines from T1 to T2 show the relations between two trees.

A line from T1 to T2 means, the node at the beginning of the line corresponds to

the node that is at the end of the line. The whole relation is called a mapping.

Figure 4.2: A sample mapping

19



Let T [i] be the ith node of the tree in the specified numbering scheme. In

notation T [i], i is the unique id number of the node.

Let l(i) be the unique number of the left-most-leaf of the sub-tree rooted at

T [i]. The concept is illustrated in Figure 4.3. Note that if T [i] is a leaf, l(i)=i.

Figure 4.3: l(5) = 1 and l(2) = 2

depth(i) is used to denote the depth of T [i].

T [i..j] is the collection of nodes from T [i] to T [j]. This collection is called

ordered sub-forest. Figure 4.4 shows T [2..4] of the tree in Figure 4.3.

If i > j then T [i..j] = ∅. T [l(i)..i] is referred as tree(i). LR keyroots of a tree

is defined as :

LR keyroots(T ) = {k|there exists no k′ > k such that l(k) = l(k′)}

This definition means k is either the root of the tree or it has no left siblings,

where k denotes the unique id number of the node. Consider the tree in Figure

4.3. By definition, root of the tree, 5, is in LR keyroots list. Since l(2)=2 and

there exists no node with a greater unique id number and same l, 2 is also in

LR keyroots list. So LR keyroots of the tree in Figure 4.4 are {2, 4, 5}.

Figure 4.4: T [2..4] of the tree in Figure 4.3
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Editing distance between sub-forests T1[i
′..i] and T2[j

′..j] is denoted as

forestdist(T1[i
′..i],T2[j

′..j]) or forestdist(i’..i,j’..j).

The Algorithm

In this section, the tree editing algorithm in [12] and mapping algorithm that has

been used in this study are presented. The tree editing algorithm is presented

to create a notion about the usage of editing operations, since these operations

are modified to compare two shapes in this study. Details of the algorithm and

proofs can be found in the original paper.

The following pseudo-code presents the main loop of the algorithm. Note

that, as a preprocessing, LR keyroots and l() values of compared trees are cal-

culated.

Algorithm FindDistance()

Input: Tree T1 and T2

Output: Editing distance between T1 and T2

(∗ Compute l() for T1 and T2, LR keyroots(T1),LR keyroots(T2)aspreprocessing ∗)

1. for i′ ← 1 to |LR keyroots(T1)|

2. for j′ ← 1 to |LR keyroots(T2)|

3. i = LR keyroots[i′]

4. j = LR keyroots[j′]

5. compute treedist(i,j)

6.

Dynamic programming is used to compute treedist(i,j). So a computed value

does not need to be computed again. The following pseudo code presents the

algorithm that computes treedist(i,j).

Algorithm treedist(i, j)

1. forestdist(φ, φ) = 0

2. for i1 ← l(i) to i

3. forestdist(T1[l(i)..i1], φ) = forestdist(T1[l(i)..i1 − 1], φ) + γ(T1[i1] ⇒ Λ)

4. for j1 ← l(j) to j

5. forestdist(φ, T2[l(j)..j1]) = forestdist(φ, T2[l(j)..j1 − 1]) + γ(Λ ⇒ T2[j1])

6. for i1 ← l(i) to i

21



7. for j1 ← l(j) to j

8. if l(i1) = l(i) and l(j1) = l(j)

9. forestdist(T1[l(i)..i1], T2[l(j)..j1]) = min{

10. forestdist(T1[l(i)..i1 − 1], T2[l(j)..j1]) + γ(T1[i1] ⇒ Λ),

11. forestdist(T1[l(i)..i1], T2[l(j)..j1 − 1]) + γ(Λ ⇒ T2[j1]),

12. forestdist(T1[l(i)..i1 − 1], T2[l(j)..j1 − 1]) + γ(T1[i1] ⇒ T2[j1])}

13.

(∗ put in permanent array ∗)

14. treedist(i1, j1) = forestdist(T1[l(i)..i1], T2[l(j)..j1])

15. else

16. forestdist(T1[l(i)..i1], T2[l(j)..j1]) = min{

17. forestdist(T1[l(i)..i1 − 1], T2[l(j)..j1]) + γ(T1[i1] ⇒ Λ),

18. forestdist(T1[l(i)..i1], T2[l(j)..j1 − 1]) + γ(Λ ⇒ T2[j1]),

19. forestdist(T1[l(i)..i1 − 1], T2[l(j)..j1 − 1]) + treedist(i1, j1)}

20.

The time complexity of the algorithm is O(|T1|x|T2|×min(depth(T1), leaves(T1))×

min(depth(T2), leaves(T2))) and the space complexity is O(|T1| × |T2|). The

proofs can be found in [12].

4.2 Mapping Algorithm

In this section, the used back tracking algorithm for mapping is discussed. Note

that a left-to-right post-order numbering scheme is used for tree nodes.

The editing distance between two trees is calculated from a set of sub-forest

distance costs. One can find the correct mapping between the nodes of com-

pared trees by traversing the sub-forest costs that are used in editing distance

cost calculation. For each forest-distance calculation, two sub-forests and an

operation are stored in a list to find the sub-forest that has been used in the

calculation of forest-distance.For example, for the forest-distance:

forestdist(i1..i2, j1..j2) = forestdist(i1..i3, j1..j2) + γ(T1[i2]) → T2[i3])

forestdist(i1..i2, j1..j2) is stored as resultant forest-distance, forestdist(i1..i3, j1..j2)

is stored as used forest-distance and ATTRIBUTE CHANGE is stored as the

used operation.
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Before going into the details of the algorithm, some definitions have to

be done. Let editOps be the list that contains the set of whole editing op-

erations. Every element in the list contains a resultant forest-distance, used

forest-distance and a used operation. For the ith element of the list, these val-

ues are denoted as, editOps[i].resForestDist, editOps[i].usedForestDist and

editOps[i].usedOp respectively. Let results be the stack that stores the map-

ping. A node is pushed into the stack with its operation. For example, for the

compared trees T1 and T2, if the ith node of T1 is detected as deleted, it is pushed

into the stack as results.push(i, deleted). The elements of the stack gives the

correct mapping with inserted and deleted nodes.

The following pseudo-code fills the results stack. Note that, the list editOps

had to be filled with the whole set of forest-distance calculation operations,

before calling the following function.

Algorithm FindMapping(index, editOps, results)

Input: Index of the list element,list of editing operations,stack that holds results

1. subforest(i11..i
1
2, j

1
1 ..j1

2) = editOps[index].resForestDist

2. subforest(i21..i
2
2, j

2
1 ..j2

2) = editOps[index].usedForestDist

3. if editOps[index].usedOp = DELETE

4. for i ← (i22 + 1) to i12

5. if i 6= 0 results.push(i, deleted)

6. if editOps[index].usedOp = INSERT

7. for i ← (j2
2 + 1) to j1

2

8. if i 6= 0 results.push(i, inserted)

9. if editOps[index].usedOp = ATTRIBUTE CHANGE

10. if (i12 − i22) ≥ (j1
2 − j2

2)

11. s ← i12 , k ← j1
2 , l ← j2

2 , m ← i22 + 1

12. else

13. s ← j1
2 , k ← i12 , l ← i22 , m ← j2

2 + 1

14. for i ← k to l i −−

15. results.push(s, i)

16. s −−

17. for i ← m to s

18. if (i12 − i22) ≥ (j1
2 − j2

2)
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19. results.push(i, deleted)

20. else

21. results.push(i, inserted)

22. if (j2
1 = 0)and(j2

2 = 0)

23. for i ← i21 to i22

24. if i 6= 0 results.push(i, deleted)

25. return

26. if (i21 = 0)and(i22 = 0)

27. for i ← j2
1 to j2

2

28. if i 6= 0 results.push(i, inserted)

29. return

30. find index of subforest(i21..i
2
2, j

2
1 ..j2

2) in editOps list and assign it to newIndex

31. FindMapping[newIndex, editOps, results]
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CHAPTER 5

SHAPE MATCHING USING TREE EDITING

DISTANCE

In this chapter, we utilize the editing distance algorithm given in Chapter 4

to compute the best partial correspondence between two shape trees and the

corresponding cost of morphing one shape tree into another. The key idea in

these computations is using the shape primitives in editing cost calculations.

Because of insertion and deletion costs, not only the scalar values of primitives

but also their spatial organization play role on calculation of similarity. Note

that, in [2], two shapes are compared with a branch and bound algorithm that

uses the same shape primitives. By using a tree comparison algorithm, the

algorithmic complexity of the matching operation is reduced.

If two trees are identical, the cost of converting one tree to the other is 0 and

the cost increases proportional to the degree of dissimilarity between the trees.

Therefore, the conversion cost is a measure of dissimilarity. Since dissimilarity is

reversely proportional to similarity, a tree editing cost can be used as a similarity

measure.

To test the approach, shape retrieval problem is used. The experiments are

performed on the shape database shown in Figure 1.2. Note that, the corre-

spondence between two shape trees is symmetric.
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5.1 Calculation of Dissimilarity Measure

The idea behind the computation of the measure of dissimilarity between two

shapes is calculating the tree editing distance between all descriptions of the

shapes and using the minimum cost as the measure of dissimilarity. To use the

tree editing distance algorithm in [12] for shape trees, shape primitives must be

incorporated in the calculation of tree-to-tree conversion cost. By using shape

primitives in editing operations, the tree-to-tree conversion cost becomes the

dissimilarity measure between compared shape trees. The focus of this section

is to present how shape primitives can be used in editing operations.

5.1.1 Insertion and Deletion Costs

The longest branch in a shape is one of the positive main axes. Usually, the

contribution of a long axis to represent the characteristics of a shape is higher

than a short axis with the same sign. The importance of a long branch in a

shape can easily be seen in Figure 5.1. If the longest branch is deleted as shown

in Figure 5.1 (b), the remaining branches may not represent a shape similar to

the original one.

(a) (b) (c)

Figure 5.1: Deleting a long branch may convert the shape to a totally different
shape. (a)Original shape (b)Shape tree of a (c) The longest branch in b is deleted

In calculation of deletion cost, the following rules are applied:

• the deletion cost of a branch must decrease, as the distance between the

branch and the shape center increases.

• the deletion cost of a long branch must be higher than the deletion cost of

a shorter branch

According to these rules, (a) the deletion cost of two branches with same

length and same polar distance to shape center must be equal, (b) the deletion
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cost of the longest branch must be high and deletion cost of other branches must

be calculated proportional to this node.

Let (r1
i , θ1

i ), (r2
j , θ2

j ) be the polar coordinates of two branch nodes i and j

of the shape trees T1 and T2 respectively. Also let l1i and l2j be the normalized

lengths of corresponding branches. The deletion cost is defined as:

DELETION COST = (1 − r1
i ) ×

l1i × DEL COST

l1max

where l1max is the normalized length of the longest branch of T1 and DEL COST is

a constant which corresponds to the deletion cost of the longest branch.

Similar arguments can be made for insertion cost. If trees T1 and T2 are

being compared, in an insertion to T1, the node to be inserted must already

exist in T2. Hence, the insertion cost of the node must be calculated relative to

the longest branch of T2. We define the insertion cost as:

INSERTION COST = (1 − r2
j ) ×

l2j × INS COST

l2max

where l2max is the normalized length of the longest branch of T2 and INS COST is

a constant which corresponds to the insertion cost of longest branch.

5.1.2 Attribute Change Cost

If the attribute change cost is used as 0, deletion cost is used as 1 and insertion

cost is used as 1, the tree editing distance algorithm in [12] can be used to

compare two trees according to the relative arrangement of their nodes. In

Figure 5.2, the shape trees of a human shape and a star shape are shown. If the

tree editing distance algorithm is used to find the tree-to-tree conversion cost as

defined above, since the number of nodes in Figure 5.2(a) is equal to the number

of nodes in Figure 5.2(b), the cost is calculated as 0. Therefore, attributes of

nodes must incorporate in the calculation of attribute change cost.

For the calculation of attribute change cost, the following rules are applied:

• if two branches are similar, their lengths must be similar

• if two branches are similar, their polar coordinates must be similar
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(a) (b)

Figure 5.2: Number of nodes in shape trees of different shapes may be equal

According to these rules, if two branches are identical, the attribute change

cost between the nodes corresponding to these branches must be 0 and the cost

increases as the similarity between branches decreases. The attribute change

cost (ATTRIBUTE CHANGE ) is defined as:

2×
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where (r1
i , θ1

i ), (r2
j , θ2

j ) are the polar coordinates of two branch nodes i and j of

the shape trees T1 and T2 respectively and l1i and l2j are the normalized lengths

of corresponding branches.

For the attribute change cost, more emphasize is given to normalized length

of branches. As will be discussed later, this behavior is not always valid and

may cause mismatches for some shapes.

5.2 Mapping

The editing operations give rise to a mapping that is a graphical specification

of matching branches of shape trees. In Figure 5.3, two sample mapping results

are shown. In Figure 5.3(a), the branches of two shapes that are in the same

category are matched. Despite significant articulations, correct correspondence

between the branches are found. In Figure 5.3(b), the mapping of branches

of two shapes from different categories is presented. Since not only the branch

lengths, but also the polar locations of branches are used in tree editing distance

calculations, similar parts of objects are mapped.

The mapping process is also successful for objects with missing parts. In

Figure 5.4, the mapping result of a normal hand shape and a hand shape with
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M=(9 7→ 9,8 7→ 8,7 7→ 7, 6 7→ 6, 5 7→ 5, 4 7→ 4,3 7→ 3,2 7→ 2,1 7→ 1,0 7→ 0)

(a)

M=(13 7→ 9, 12 7→ 8,11 7→ deleted, 10 7→ deleted, 9 7→ 7, 8 7→ 6,7 7→ 5,

6 7→ deleted, 5 7→ deleted, 4 7→ 4, 3 7→ 3, 2 7→ 2, 1 7→ 1, 0 7→ 0)

(b)

Figure 5.3: Sample mappings

a missing finger is shown. The branches that correspond to the missing finger

(the branches that are numbered as 6 and 7) are deleted and other branches of

two shapes are matched properly.

M=(11 7→ 9,10 7→ 8,9 7→ 7, 8 7→ 6, 7 7→ deleted, 6 7→ deleted,

5 7→ 5,4 7→ 4,3 7→ 3,2 7→ 2,1 7→ 1,0 7→ 0)

Figure 5.4: Mapping of two hand shapes one with a missing finger

5.3 Experiments

After computing all costs for all shape pairs in the database (total 180 × 180),

each one of the 180 shapes is selected as a query shape(stimulus input) and the
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top twelve (twice the number of shapes in a category) lowest cost matches are

retrieved. The retrieval rate is 98.7%. This scoring, referred to as Bull’s eye test,

is the common practice [25, 10]. If we consider only the top 6 matches, retrieval

rate is 92.3%. The results are presented in Table 5.1. Note that, number of

wrong retrievals in the top 5 category are [1,6,13,21,41] respectively.

5.3.1 Clustering Results

Normalized cuts clustering algorithm [26] is a graph based clustering algorithm

that is used for perceptual grouping of a feature space where the nodes of the

graph are the points in this space and an edge is formed between every node

whose weight is a function of similarity between corresponding nodes. After

applying the matching algorithm to the image database, we obtain a symmetric

matrix that contains the degree of dissimilarity between each shape. If we con-

vert this dissimilarity matrix into a similarity matrix, we can apply normalized

cuts clustering to obtain an idea about the perceptual grouping of the shapes.

To obtain a similarity matrix, the following function has been applied to the

dissimilarity measures between shapes.

f(x) =
1

e
√

x
(5.1)

In Figure 5.5, a subset of the database which is used in clustering experiments

is shown. When these shapes are grouped into three disjoint sets by using

normalized cuts algorithm, three clusters shown in Figure 5.6 are obtained. As

seen in Figure 5.6, the dumble-like shapes form one group, star-like shapes form

one group and remaining shapes form another group.

Figure 5.5: Sample shapes to be clustered with NCuts clustering algorithm
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Figure 5.6: Shapes in 5.5 clustered into 3

When the shapes shown in 5.5 are seperated into 5 groups, the clusters shown

in Figure 5.7 are obtained. In this case, tortoise-like shapes form the first group,

four leg animals form the second group, star-like shapes form the third group,

dumble-like shapes form the fourth group and remaining shapes which are also

in the same class form the last group.

Figure 5.7: Shapes in 5.5 clustered into 5

When the shapes shown in 5.5 are seperated into 10, the clusters shown in

Figure 5.8 are obtained. As presented in the results, shapes in classes cat, misc1,

cat, misc3, elephant and human are perceptually grouped perfectly. Although

shapes from two different classes form the first and third groups, the shapes are

structurally similar. Also, the high dissimilarity measure among dumbell shapes

has split the class into 3 more similar subclasses.

5.4 Discussions

The aim of this section is to discuss the behaviors that causes mismatches, to

give a notion about how matching can be improved. We categorize the sources

of mismatches into 4 and analyze them separately.
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Figure 5.8: Shapes in 5.5 clustered into 10

5.4.1 Structurally Different Shapes with Similar Shape Trees

Two perceptually dissimilar shapes may have similar shape trees. A sample

situation is illustrated in Figure 5.9. One can observe the close resemblance

between shape trees of elephant and squirrel when branches 4 and 5 are deleted

from the shape tree of the former. Since branches 4 and 5 of the elephant are

short branches, their deletion cost is small and this small penalty gives raise to

a wrong match. Clearly, assigning importance by branch length is not always

valid. Branches 4 and 5 are two characteristic branches of an elephant shape.

Therefore, they should not be treated as spurious branches and the penalty of

deletion must be high to overcome this kind of mismatches.

M=(9 7→ 7,8 7→ 6,7 7→ 5, 6 7→ 4, 5 7→ deleted, 4 7→ deleted,3 7→ 3,2 7→ 2,1 7→ 1,0 7→ 0)

Figure 5.9: Similar skeletons for an elephant shape and a squirrel shape

32



5.4.2 Structurally Similar Shapes

The second type of problematic shapes contains shapes that looks like each

other. Perceptually similar shapes have naturally similar shape trees. Notice

that, in Figure 5.10,the cat shape and horse shape have same number of branches

with similar characteristics. Therefore, the dissimilarity measure between these

shapes is similar to the dissimilarity measures among cat shapes.

M=(11 7→ 11,10 7→ 10,9 7→ 9, 8 7→ 8, 7 7→ 7, 6 7→ 6,5 7→ 5,4 7→ 4,3 7→ 3,2 7→ 2,1 7→ 1,0 7→ 0)

Figure 5.10: Similar shapes. A cat shape and a horse shape

5.4.3 Shapes with Extra Branches

Indentations and protrusions may give raise to extra branches in a shape. Dur-

ing the matching process, these extra features increase the matching cost and

may cause mismatches. In Figure 5.11, two embryo shapes are shown one with

extra branches. The extra branches in the second embryo shape cause a high

dissimilarity measure which is the source of a mismatch.

M=(5 7→ 9,4 7→ 8,3 7→ 7, inserted 7→ 6, inserted 7→ 5, 2 7→ 4,

inserted 7→ 3,inserted 7→ 2,1 7→ 1,0 7→ 0)

Figure 5.11: Problematic embryo shapes one with more branches

33



5.4.4 Outliers in Distribution of Lengths of Branches

Certain irregularities in the distribution of branch lengths may also cause prob-

lems, i.e the existence of an outlier branch. Since the insertion/deletion costs

are calculated relative to the longest branch, an outlier causes short branches to

have small insertion/deletion costs. An example shape is shown in Figure 5.12

(a). Most of the branches are short and there exists a long branch which reduces

the insertion/deletion costs of other branches although the sort branches are also

important. Since deleting a short node is not too costly, the short branches in

Figure 5.12 (a) are deleted to convert the shape tree into the shape tree in Figure

5.12 (b) and causes a mismatch. As also became clear in 5.4.1 and 5.4.3,using

branch length as a significance measure is not always valid.

(a) (b)
M=(9 7→ 5,8 7→ 4, 7 7→ 3, 6 7→ deleted, 5 7→ deleted,

4 7→ 2,3 7→ 1,2 7→ deleted,1 7→ deleted,0 7→ 0)

Figure 5.12: A mismatch because of an outlier. (a)key shape (b)misc5 shape
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Table 5.1: Retrieval results

0.622 0.683 0.704 0.748 0.774 1.808 1.887 1.894 1.989 2.020 2.060

0.553 0.622 0.711 0.841 0.885 1.857 1.900 1.903 1.931 1.974 1.992

0.487 0.553 0.774 0.802 0.907 1.802 1.931 1.954 1.960 1.998 2.011

0.291 0.748 0.752 0.802 0.841 1.785 1.792 1.799 1.930 1.940 1.968

0.487 0.683 0.711 0.752 0.806 1.857 1.931 1.998 2.022 2.030 2.035

0.291 0.704 0.806 0.885 0.907 1.734 1.840 1.877 1.878 1.942 1.958

0.904 1.245 1.341 1.460 1.510 1.610 1.711 1.748 1.817 2.034 2.128

0.904 1.224 1.305 1.337 1.378 1.396 1.680 1.728 1.995 2.002 2.073

0.864 1.109 1.378 1.402 1.510 1.658 1.741 1.758 1.806 1.914 1.971

0.795 1.023 1.396 1.402 1.460 1.661 1.734 1.785 1.785 1.802 1.808

0.795 0.821 1.109 1.305 1.341 1.812 1.821 1.859 1.942 1.968 2.011

0.821 0.864 1.023 1.224 1.245 1.745 1.773 1.776 1.783 1.816 1.840

0.906 0.994 1.040 1.157 1.459 1.492 1.536 1.632 1.646 1.734 1.734

0.846 0.994 1.033 1.420 1.580 1.676 1.691 1.695 1.715 1.744 1.757

0.901 0.906 1.033 1.122 1.657 1.663 1.842 1.848 1.848 1.909 1.946

1.122 1.157 1.420 1.536 1.562 1.772 1.782 1.798 1.825 1.899 1.899

1.459 1.562 1.663 1.708 1.744 1.958 1.963 1.967 2.032 2.158 2.158
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Table 5.1 (continued)

0.846 0.901 1.040 1.536 1.646 1.708 1.733 1.743 1.779 1.835 1.835

1.124 1.300 1.402 1.412 1.542 1.676 1.699 1.749 2.004 2.028 2.100

0.900 1.124 1.440 1.443 1.490 1.580 1.601 1.808 1.941 1.994 2.123

0.542 1.290 1.443 1.503 1.542 1.544 1.590 1.590 1.709 2.116 2.284

1.490 1.599 1.676 1.715 1.914 1.944 1.950 1.989 2.040 2.065 2.107

0.900 1.300 1.338 1.424 1.425 1.590 1.599 1.718 1.784 1.815 2.012

0.542 1.370 1.483 1.522 1.580 1.599 1.671 1.749 1.784 2.232 2.550

0.628 1.488 1.644 1.749 1.992 2.341 2.395 2.426 2.429 2.430 2.436

0.628 1.649 1.655 1.770 1.931 2.275 2.325 2.394 2.427 2.448 2.484

1.488 1.649 1.667 1.681 1.985 2.286 2.312 2.319 2.384 2.385 2.458

1.555 1.681 1.749 1.770 1.907 2.185 2.352 2.374 2.394 2.439 2.463

1.624 1.644 1.655 1.667 1.907 2.526 2.535 2.546 2.599 2.628 2.628

1.555 1.624 1.931 1.948 1.970 1.985 1.992 2.076 2.131 2.148 2.199

0.572 1.202 1.359 1.430 1.514 2.599 2.692 2.770 3.003 3.251 3.279

0.892 1.286 1.436 1.514 1.960 2.245 2.626 2.747 2.922 3.005 3.380

1.359 1.432 1.591 1.914 1.960 2.902 3.054 3.110 3.127 3.282 3.327

0.572 1.337 1.432 1.436 1.483 2.730 2.858 3.130 3.316 3.320 3.501
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Table 5.1 (continued)

1.202 1.205 1.286 1.337 1.591 2.559 2.606 2.750 2.932 3.057 3.090

0.892 1.205 1.430 1.483 1.914 2.269 2.513 2.650 2.929 2.998 3.319

0.595 0.980 1.219 1.290 1.370 1.412 1.424 1.440 1.444 1.455 1.914

0.782 0.897 0.980 1.078 1.338 1.483 1.503 1.699 1.759 1.808 2.402

0.595 0.782 1.187 1.312 1.359 1.402 1.425 1.544 1.601 1.671 1.950

1.312 1.444 1.706 1.759 1.848 1.989 2.012 2.100 2.116 2.169 2.232

0.897 0.967 1.359 1.455 1.522 1.590 1.815 1.848 1.941 2.028 2.572

0.967 1.078 1.187 1.219 1.599 1.706 1.709 1.718 1.994 2.004 2.436

0.166 0.262 0.692 0.710 0.717 1.477 1.479 1.496 1.517 1.518 1.567

0.084 0.166 0.618 0.641 0.710 1.136 1.495 1.519 1.553 1.600 1.604

0.084 0.171 0.603 0.647 0.692 1.156 1.488 1.495 1.540 1.580 1.582

0.166 0.189 0.603 0.618 0.649 1.513 1.521 1.559 1.572 1.612 1.686

0.189 0.262 0.641 0.644 0.647 1.502 1.525 1.571 1.582 1.613 1.673

0.166 0.171 0.644 0.649 0.717 1.171 1.432 1.529 1.561 1.608 1.614

0.757 1.256 1.466 1.483 1.487 1.941 1.989 2.085 2.186 2.243 2.252

1.031 1.116 1.461 1.487 1.527 1.731 1.920 2.002 2.069 2.156 2.329

1.033 1.116 1.466 1.474 1.531 1.723 1.764 1.781 1.993 2.017 2.060

37



Table 5.1 (continued)

0.757 1.175 1.256 1.527 1.531 1.970 2.028 2.046 2.163 2.171 2.177

1.256 1.461 1.474 1.483 1.555 1.606 1.646 1.840 1.906 2.065 2.265

1.031 1.033 1.175 1.256 1.518 1.555 1.827 1.908 1.930 1.949 1.958

0.994 1.218 1.531 1.536 1.566 1.971 2.034 2.068 2.081 2.287 2.352

0.374 1.146 1.220 1.372 1.536 1.680 1.745 1.806 1.817 1.821 1.842

0.994 1.129 1.224 1.372 1.445 1.658 1.711 1.816 2.016 2.068 2.073

1.028 1.181 1.220 1.224 1.531 1.758 1.867 1.908 2.081 2.224 2.238

1.028 1.129 1.146 1.218 1.237 1.337 1.610 1.661 1.741 1.783 1.859

0.374 1.181 1.237 1.445 1.566 1.728 1.748 1.773 1.785 1.812 1.914

0.914 1.085 1.095 1.501 1.890 2.940 2.991 3.072 3.123 3.139 3.157

0.914 1.098 1.106 1.702 1.890 2.741 2.864 3.023 3.106 3.140 3.142

0.264 1.095 1.098 1.568 1.661 2.551 2.795 2.930 2.964 3.000 3.014

1.501 1.568 1.596 1.648 1.702 2.711 2.716 2.833 2.847 2.930 2.975

0.264 1.085 1.106 1.596 1.671 2.505 2.804 2.894 2.935 2.935 2.988

1.648 1.661 1.671 1.890 1.890 2.627 2.628 2.652 2.727 2.758 2.861

0.558 0.783 1.029 1.048 1.049 1.643 1.763 1.814 1.835 2.056 2.066

0.711 0.783 1.185 1.233 1.342 1.887 1.901 1.965 2.008 2.206 2.272

38



Table 5.1 (continued)

0.558 0.711 1.178 1.200 1.226 1.844 1.882 1.912 1.974 2.136 2.243

0.379 0.493 1.029 1.185 1.226 1.902 1.950 1.993 1.999 2.058 2.083

0.185 0.379 1.048 1.178 1.233 1.853 1.904 1.950 1.966 2.029 2.075

0.185 0.493 1.049 1.200 1.342 1.798 1.896 1.919 1.951 1.973 2.012

0.329 0.364 0.697 0.770 1.337 1.511 1.664 1.672 1.708 1.737 1.741

0.149 0.329 0.676 0.797 1.261 1.635 1.768 1.803 1.830 1.876 1.891

0.770 0.788 0.797 1.055 1.588 1.671 1.674 1.711 1.718 1.728 1.733

0.676 0.697 0.757 1.055 1.596 1.705 1.811 1.855 1.936 1.952 1.986

1.261 1.301 1.337 1.596 1.733 2.115 2.163 2.178 2.189 2.197 2.219

0.149 0.364 0.757 0.788 1.301 1.657 1.819 1.831 1.834 1.879 1.881

0.572 0.750 0.952 1.083 1.403 1.751 1.810 1.816 1.848 1.902 2.039

0.402 0.952 0.985 1.103 1.161 1.889 1.890 1.941 2.057 2.079 2.306

0.327 0.572 0.985 1.046 1.345 1.869 1.898 1.941 1.952 1.969 2.116

0.402 1.046 1.083 1.093 1.162 1.841 1.886 1.926 2.038 2.059 2.258

0.327 0.750 1.093 1.103 1.465 1.841 1.867 1.889 1.909 1.914 2.102

1.161 1.162 1.345 1.403 1.465 2.129 2.215 2.248 2.275 2.292 2.307

0.746 0.778 0.943 0.972 1.580 1.600 1.608 1.666 1.780 1.789 1.792
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Table 5.1 (continued)

0.746 1.056 1.110 1.285 1.432 1.488 1.488 1.495 1.567 1.636 1.673

0.778 0.794 0.838 1.056 1.628 1.634 1.636 1.663 1.775 1.824 1.828

1.136 1.156 1.171 1.383 1.395 1.461 1.466 1.502 1.507 1.517 1.521

0.838 0.972 1.118 1.285 1.690 1.691 1.704 1.710 1.794 1.841 1.943

0.794 0.943 1.110 1.118 1.507 1.776 1.788 1.816 1.872 1.875 1.959

1.214 1.249 1.252 1.489 1.654 1.656 1.788 1.828 1.846 1.875 1.881

0.483 1.218 1.339 1.394 1.656 1.728 1.808 1.816 1.858 1.875 1.876

0.354 0.701 1.249 1.295 1.394 1.395 1.409 1.636 1.674 1.704 1.775

0.701 0.702 1.196 1.214 1.218 1.383 1.491 1.726 1.813 1.838 1.850

0.483 1.071 1.196 1.295 1.489 1.576 1.588 1.686 1.693 1.741 1.803

0.354 0.702 1.071 1.252 1.339 1.461 1.534 1.671 1.692 1.789 1.794

0.487 0.570 0.637 0.668 0.733 1.836 1.902 1.945 1.949 1.971 1.984

0.547 0.586 0.614 0.665 0.668 1.992 2.026 2.045 2.083 2.084 2.098

0.487 0.541 0.582 0.614 0.666 1.888 2.024 2.030 2.058 2.065 2.069

0.411 0.541 0.547 0.573 0.637 1.959 2.006 2.011 2.052 2.056 2.057

0.411 0.570 0.582 0.586 0.734 1.946 1.949 1.957 1.989 2.057 2.060

0.573 0.665 0.666 0.733 0.734 2.072 2.078 2.109 2.186 2.208 2.222
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Table 5.1 (continued)

0.414 1.214 1.274 1.389 1.536 1.734 1.870 1.905 1.905 1.961 2.013

1.286 1.532 1.536 1.713 1.772 1.825 1.836 1.836 1.843 1.897 1.955

1.286 1.313 1.389 1.555 1.572 1.680 1.681 1.754 1.801 1.801 1.852

1.189 1.274 1.434 1.754 1.955 2.134 2.169 2.256 2.322 2.322 2.327

0.414 1.044 1.189 1.313 1.532 1.759 1.871 1.956 1.982 1.982 2.001

1.044 1.214 1.434 1.852 1.897 1.924 2.118 2.128 2.128 2.147 2.172

0.469 0.681 0.720 0.947 0.947 1.555 1.632 1.676 1.743 1.825 1.825

0.441 0.469 0.770 0.927 0.927 1.536 1.681 1.695 1.733 1.772 1.772

0.448 0.448 0.667 0.720 0.770 1.572 1.580 1.646 1.657 1.713 1.734

0.441 0.667 0.681 0.873 0.873 1.492 1.646 1.680 1.691 1.798 1.842

0.000 0.448 0.873 0.927 0.947 1.734 1.757 1.801 1.835 1.836 1.848

0.000 0.448 0.873 0.927 0.947 1.734 1.757 1.801 1.835 1.836 1.848

1.042 1.131 1.274 1.367 1.951 2.589 2.688 2.775 2.803 2.844 2.849

1.131 1.137 1.545 1.767 2.070 2.640 2.737 2.857 2.869 2.901 2.912

1.042 1.306 1.323 1.767 1.774 2.757 2.787 2.845 2.868 2.891 2.912

1.681 1.774 1.951 2.042 2.070 2.503 2.531 2.542 2.597 2.612 2.617

1.306 1.358 1.367 1.545 1.681 2.614 2.617 2.631 2.657 2.695 2.830
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Table 5.1 (continued)

1.137 1.274 1.323 1.358 2.042 2.452 2.565 2.598 2.643 2.698 2.699

0.506 0.653 0.729 1.312 1.708 1.829 1.879 1.891 1.918 1.952 2.045

1.084 1.180 1.312 1.331 1.664 1.768 1.819 1.855 2.022 2.034 2.048

0.535 0.653 0.747 1.084 1.627 1.672 1.803 1.811 1.831 1.992 2.197

0.506 0.747 0.859 1.331 1.737 1.819 1.915 1.925 1.952 2.008 2.083

1.627 1.634 1.819 1.829 1.895 1.986 2.007 2.034 2.034 2.129 2.163

0.535 0.729 0.859 1.180 1.511 1.634 1.635 1.657 1.705 1.921 2.189

0.520 0.609 0.652 0.759 1.817 2.448 2.452 2.483 2.488 2.518 2.582

0.258 0.343 0.520 0.990 1.889 2.238 2.239 2.275 2.361 2.429 2.480

0.759 0.990 1.045 1.105 1.447 2.315 2.387 2.409 2.412 2.412 2.426

0.226 0.258 0.609 1.045 2.001 2.143 2.172 2.218 2.292 2.395 2.415

1.447 1.817 1.889 2.001 2.043 2.178 2.229 2.295 2.312 2.405 2.447

0.226 0.343 0.652 1.105 2.043 2.229 2.235 2.264 2.354 2.430 2.458

1.634 2.444 2.447 2.613 2.743 2.922 2.932 2.998 3.003 3.110 3.268

1.483 1.498 2.003 2.613 2.626 2.650 2.750 2.770 3.130 3.230 3.243

1.483 2.137 2.245 2.269 2.447 2.581 2.599 2.606 2.730 3.054 3.214

1.634 2.003 2.309 2.372 2.581 2.929 3.005 3.127 3.232 3.251 3.370
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Table 5.1 (continued)

1.498 2.137 2.293 2.372 2.513 2.559 2.692 2.743 2.747 2.858 2.902

2.293 2.309 2.444 3.057 3.279 3.308 3.316 3.320 3.327 3.327 3.450

1.787 1.843 1.974 2.024 2.028 2.122 2.158 2.195 2.225 2.260 2.269

1.204 1.480 1.606 1.872 1.920 1.949 1.993 2.107 2.282 2.329 2.337

1.204 1.442 1.518 1.535 1.646 1.723 1.731 1.970 1.989 2.083 2.085

0.788 1.442 1.480 1.764 1.840 1.908 1.992 2.069 2.196 2.266 2.277

0.788 1.535 1.781 1.827 1.872 1.906 2.002 2.104 2.171 2.239 2.241

1.787 2.046 2.252 2.291 2.314 2.329 2.397 2.441 2.470 2.670 2.679

0.294 0.312 0.516 0.822 0.849 1.751 1.841 1.841 1.869 1.889 2.213

0.516 0.531 0.560 0.593 0.669 1.810 1.867 1.898 1.926 1.941 2.091

0.531 0.686 0.792 0.822 0.831 1.902 1.909 1.969 2.038 2.042 2.044

0.312 0.403 0.593 0.806 0.831 1.816 1.889 1.952 2.057 2.059 2.170

0.294 0.403 0.560 0.792 0.815 1.848 1.886 1.890 1.914 1.941 2.118

0.669 0.686 0.806 0.815 0.849 2.182 2.212 2.224 2.258 2.306 2.329

0.517 2.144 2.240 2.290 2.299 2.370 2.383 2.421 2.439 2.656 2.799

2.127 2.240 2.717 2.790 2.854 2.888 3.060 3.094 3.136 3.150 3.159

0.517 2.117 2.127 2.283 2.287 2.383 2.388 2.391 2.494 2.738 2.768
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Table 5.1 (continued)

1.556 1.714 2.290 2.388 2.649 2.658 2.668 2.672 2.689 2.717 2.725

0.430 1.714 2.287 2.299 2.329 2.486 2.531 2.598 2.599 2.610 2.741

0.430 1.556 2.117 2.144 2.453 2.621 2.645 2.646 2.711 2.730 2.730

0.227 0.722 1.550 2.064 2.091 2.260 2.271 2.378 2.462 2.476 2.530

0.227 0.621 1.670 2.161 2.169 2.198 2.204 2.299 2.414 2.440 2.451

0.546 0.944 1.900 1.998 1.998 2.036 2.052 2.057 2.064 2.066 2.088

0.546 0.806 1.887 1.903 1.929 1.931 1.931 1.971 2.037 2.064 2.073

0.621 0.722 1.575 2.052 2.064 2.242 2.272 2.346 2.477 2.477 2.493

0.806 0.944 1.550 1.575 1.670 1.894 1.977 2.000 2.005 2.030 2.055

0.136 0.246 0.959 1.163 1.292 1.496 1.559 1.571 1.582 1.604 1.614

0.522 0.959 1.001 1.042 1.293 1.614 1.667 1.686 1.706 1.723 1.726

0.136 0.208 1.001 1.207 1.397 1.518 1.572 1.582 1.594 1.616 1.626

1.292 1.293 1.363 1.371 1.397 1.409 1.466 1.477 1.488 1.491 1.534

0.522 1.163 1.207 1.228 1.363 1.804 1.852 1.908 1.930 1.933 1.943

0.208 0.246 1.042 1.228 1.371 1.479 1.495 1.513 1.519 1.525 1.529

0.673 0.756 1.565 1.605 1.711 1.937 2.009 2.023 2.086 2.298 2.337

0.673 1.144 1.718 1.793 1.798 1.915 1.935 1.943 2.115 2.243 2.294
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Table 5.1 (continued)

1.740 1.824 1.831 2.058 2.086 2.243 2.256 2.266 2.287 2.316 2.327

0.756 1.144 1.500 1.506 1.753 2.012 2.058 2.087 2.102 2.384 2.486

0.481 1.506 1.605 1.793 1.831 2.163 2.323 2.476 2.504 2.801 2.814

0.481 1.500 1.565 1.740 1.798 2.165 2.311 2.407 2.434 2.775 2.776

0.286 1.106 1.189 1.740 1.745 1.814 1.844 1.864 1.901 1.945 1.949

0.267 1.692 1.700 1.745 1.792 1.815 1.834 1.877 1.919 1.947 1.950

0.504 1.058 1.106 1.643 1.690 1.700 1.788 1.873 1.882 1.887 1.896

0.267 1.690 1.728 1.740 1.772 1.799 1.868 1.878 1.931 1.951 1.954

0.504 1.163 1.189 1.692 1.728 1.763 1.798 1.828 1.850 1.853 1.875

0.286 1.058 1.163 1.772 1.815 1.835 1.865 1.912 1.921 1.949 1.957
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CHAPTER 6

CONTEXT SENSITIVE MATCHING

In the previous chapter, we concluded that assigning a priori significance to

the shape forming primitives is the primary source of wrong correspondences

between two shapes. In this chapter, we explore how we can modify the im-

portance of primitives by putting them in a context. Thus, matching A to B is

interpreted as matching the stimulus input A to memory benchmark B, whose

category is known. It is assumed that, the general characteristic of category is

known and is called context information.

A category of objects is a group of similar type of objects. In this study, con-

text information is used to put some restrictions on the possibility of occurrence

of shape primitive values. For example, for the human category, if the normal-

ized length of the branch that represents the head of the human shape is defined

in interval [lmin..lmax], the normalized length of a possible similar branch must

be in this interval. Otherwise, the attribute change cost is increased drastically

to penalize this abnormal behavior.

Context information is not only used for restricting shape primitive values

but also used to minimize the effect of non-salient branches in a class. Notice

that, additional branches in a shape increase the dissimilarity between a shape

in the same category, because of the extra insertion and deletion costs.

In this study, since the shape primitives are stored as ordered trees, a com-

mon tree is constructed from the shape trees in the same category to find the
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Figure 6.1: Shapes in the same category may contain extra branches

general characteristic of the category. We call this common tree a shape-category

tree.The main idea behind using shape-category trees in this study is to find pos-

sible occurrence intervals for shape primitives. These intervals are taken into

account during the comparison of shape primitives in cost calculations. While

comparing shape A and shape B with context sensitive matching, the key point

is using the shape-category tree of B in cost calculations. Notice that, the

category of A is not known.

In this chapter, details of the context sensitive matching and its results are

discussed. Note that, the construction process of shape-category trees is a pre-

processing for context sensitive matching and because of the multiple description

property of the representation, more than one shape-category tree can be con-

structed for a shape category.

6.1 Construction of Shape-Category Tree

Since a shape category is composed of similar shapes, shape trees of the shapes

in the category must also be similar. For example, a human shape is composed

of a head, two legs, two arms and a body. All shapes in the human category

must include at least one of these parts. Due to within category variability or

local deformation and articulations, some shapes in the category may contain

extra branches as shown in Figure 6.1.

A shape-category tree must hold all the observed and required nodes of each

shape tree in the category. Therefore, the category tree construction process

must unite the related nodes. Since all shape trees in a category are depth-1,

the union of shape trees can be used as the shape-category tree.
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To construct a shape-category tree, the shape tree in the category with most

populated nodes is chosen as the base-tree. The key idea in the construction

process is to find the correspondence between the branches of base-tree and the

branches of other trees in the same category. Once a correspondence is found,

shape primitives of the non-base node is stored in the corresponding node of the

shape-category tree.

Before discussing the pseudo code of the shape-category tree construction

process, let us work on an example to clarify the concept. An example category

that is composed of three shapes is shown in Figure 6.2. Assume that, all shapes

in this category have only one description. For each shape, the attributes are

listed at the bottom of the related tree figure.

Node Attributes

a (l1, r1, Θ1, +)

b (l2, r2, Θ2,−)

c (l3, r3, Θ3, +)

Node Attributes

a (l4, r4, Θ4, +)

c (l5, r5, Θ5, +)

Node Attributes

a (l6, r6, Θ6, +)

b (l7, r7, Θ7,−)

c (l8, r8, Θ8, +)

T1 T2 T3

Figure 6.2: A sample shape category

The first step of shape-category tree construction process is the determina-

tion of a base-tree. Number of nodes in T1 and T3 are equal and greater than

the number of nodes in T2. Therefore, one of T1 or T3 can be chosen as the

base-tree. We choose T1 the tree with smaller index as the base-tree.

The second step is the initialization of the shape-category tree. Shape-

category tree is a clone of base-tree which stores not attributes but list of at-

tributes in its nodes. In Figure 6.3, the initial category tree of our example is

presented. As shown in the figure, the attribute lists are initialized with the

attributes of the base-tree.

The third step is the formation of mapping between T1 and T2. In the

resultant mapping, node of T1 labeled as a is mapped to node of T2 labeled as

a and node of T1 labeled as c is mapped to node of T2 labeled as c. Since the

mapping between T1 and category tree is one-to-one, the mapping between T2
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Node Attribute Lists

a ([l1], [r1], [Θ1], +, 1/1)

b ([l2], [r2], [Θ2],−, 1/1)

c ([l3], [r3], [Θ3], +, 1/1)

Figure 6.3: Initial shape-category tree of the category in Figure 6.2

and category tree is equivalent to the mapping between T1 and T1. The attributes

of nodes of T2 are inserted into attribute lists of category tree according to the

mapping between the nodes of T2 and category tree. The resultant category tree

is shown in Figure 6.4.

Node Attribute Lists

a ([l1, l4], [r1, r4], [Θ1, Θ4], +, 2/2)

b ([l2], [r2], [Θ2],−, 1/2)

c ([l3, l5], [r3, r5], [Θ3, Θ5], +, 2/2)

Figure 6.4: Shape-category tree of the category in Figure 6.2 after adding T2

The last step is finding the mapping between T1 and T3, then, inserting

the attributes of nodes of T3 to attribute lists of category tree. The resultant

category tree is shown in Figure 6.5. The important point is that, the final

category tree (Figure 6.5) contains all nodes that are contained in the category.

Notice that,at the end of attribute lists, a term indicating the frequency of

occurrence of branch is added.

Node Attribute Lists

a ([l1, l4, l6], [r1, r4, r6], [Θ1, Θ4, Θ6], +, 3/3)

b ([l2, l7], [r2, r7], [Θ2, Θ7],−, 2/3)

c ([l3, l5, l8], [r3, r5, r8], [Θ3, Θ5, Θ8], +, 3/3)

Figure 6.5: Shape-category tree of the category in Figure 6.2 after adding T3

At this point, the shape-category tree construction process is over, however,

multiple descriptions of shapes must be handled. Although only one description

exists for all shapes in this example, real life shapes may contain more than one

descriptor for any of the shapes in a category. Therefore, the contributor tree

descriptions also must be stored in the shape-category tree. In this example,

T1,T2 and T3 are stored as the contributor trees.

The following pseudo-code summarizes the shape-category tree construction
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process. Let S1..Sn be a shape category containing n shapes, T
j
i be the ith

description of Sj, SB be the shape whose descriptions are used as base-tree,

β(Sj) be the number of descriptions of Sj,|T
j
i | be the number of nodes in T

j
i and

CT1..CTβ(SB) be the list of resultant category trees.

Algorithm ConstructCategoryTreeList()

Input: Shape class (S1..Sn)

Output: List of category trees (CT1..CTβ(SB))

(∗ Find the first most populated shape ∗)

1. B ← 1

2. for j ← 1 to n

3. if |T j
i | > |TB

i |

4. B ← j

5.

(∗ Create category trees ∗)

6. for i ← 1 to β(SB)

7. insert attributes of TB
i to CTi

8.

(∗ Find mappings with other trees and complete construction ∗)

9. for k ← 1 to β(SB)

10. for j ← 1 to n

11. if j 6= B

12. cost ← ∞

13. index ← −1

14. for i ← 1 to β(SB)

15. temp ← editDistance between TB
k and T

j
i

16. if temp < cost

17. cost ← temp

18. index ← i

19. Insert attributes of T
j
index to TB

k

20. Insert T
j
index as contributor to TB

k

The category tree generated for the hand category is shown in Figure 6.6,for

illustrative purposes. Gaussians are fit to disconnection points and the boundary

of one of the shapes in this category is drawn.

To conclude, just like shape trees, category trees are ordered and depth-1.

The difference lies in the attributes. Each edge (inclusion property) of a category
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Figure 6.6: Category tree for the hand.

tree carry an attribute denoting the probability that the edge exists in a random

shape in that particular category. Unlike scalar-valued nodal attributes of a

shape tree, nodal attributes of a category tree are vector-valued, reflecting the

observed distribution.

6.2 Using Shape-Category Trees In Matching

Let B be a shape in category k and A be a shape that is queried to find a

similarity measure with B. If shape A is similar to shape B, it must be also

similar to the other members of the category k. Therefore, attribute lists that

are stored in shape-category tree of k guides the matching between shape A and

shape B. The process is shown in Figure 6.7.

Figure 6.7: Using shape-category tree in matching

As discussed before, shape-category tree construction process may lead to

more than one category tree for a category. Each category tree construction

process has a construction cost which is the summation of editing distance costs
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between base-tree and contributor trees of the category tree. Because of inden-

tations and articulations, the shape whose descriptions are used as base-tree

may have more descriptions than other shapes in the same class. This behav-

ior leads to unequal construction costs for shape-category trees. The category

tree of a class with minimum construction cost is called best shape-category tree.

In matching process of a queried shape and a benchmark shape, for efficiency,

all descriptions of queried shape are matched with only the description of the

benchmark shape which is a contributor tree to the best shape-category tree.

6.2.1 Context Guided Editing Operation Costs

The matching of two shapes is the process of matching two shape trees. Let the

ith node of Tk be associated with the jth node of the category tree T cat
c(k) where

c(k) denotes the category to which shape k may belong. Then a node in T cat
c(k)

holds information related to n nodes from m shape trees forming the category

tree (n ≤ m). The observed range values for r, θ, l of the jth node of T cat
c(k) are

[rmin . . . rmax]j, [θmin . . . θmax]j and [lmin . . . lmax]j.

Let T1 be one of the shape trees of the queried shape and T2 be the shape

tree of the benchmark object. Matching of T1 and T2 can be guided or influenced

by the category tree T cat
c(k). For that purpose, we have defined a generic function

f(x, y, [min,max]) which calculates a cost in a given range (see Figure 6.8). In

the experiments, we take θ1 = π
4

and θ2 = 2π
9

.

Figure 6.8: The cost function f(x, y, [min,max]) used in prior-guided matching.

CHANGE COST which is the modified cost of changing the attributes of the ith

node of T1 to the attributes of the jth node of T2 with the assumption that both

nodes are associated to the kth node of the category tree T cat
c(2) is given by:
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3 × f(l1i , l
2
j , [lmin, lmax]k) + f(r1

i , r
2
j , [rmin, rmax]k) + f(θ1

i , [θmin, θ2
j , θmax]k)

5
×

n

m

where n
m

can be interpreted as the frequency term which reflects the promi-

nent strongness of the primitive.

Similarly, deletion and insertion costs are defined as follows:

DELETION COST = (1 − r1
i ) ×

l1i × DEL COST

l1max

INSERTION COST = (1 − r2
j ) ×

l2j × INS COST

l2max

×
n

m

Note that we always apply operations to T1 to morph it to T2. Hence, deletion

implies deleting a primitive from T1 whereas insertion implies inserting a node of

T2 to T1 which does not exist in T1. This fact is reflected in the cost definitions.

6.3 Experiments

To test the approach, the retrieval problem is used. Each shape in the image

database is used as query shape and compared with all other shapes, except itself.

Note that, the query shape is not used in any shape category tree construction.

The results are presented in Table 6.2.According to Bull’s eye test[25, 10], the

retrieval rate is 99.111% for top 12 matches. The retrieval rate decreases to

97.44%, if top 6 matches are taken into account.

When the query shape is very different from other shapes in the same cat-

egory, the retrieval lives trouble, as shown in Figure 6.9. In Table 6.1, the

normalized lengths of tails of crocodiles are presented. Observe that, the tail of

second crocodile (query shape in Figure 6.9) is smaller than others. Because of

the high penalizing to primitives that do not lie in the possible occurrence in-

terval determined by category, outlier primitives cause problems. This problem

occurs for the categories that have shapes containing primitives with low vari-

ability. Notice the continues dissimilarity measures in Figure 6.9. For successful

retrievals, the dissimilarity measures are not continues (see Table 6.2), i.e. the
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2.588 2.604 2.612 2.671 2.676 2.678 2.705 2.751 2.751 2.794 2.813

Figure 6.9: An outlier shape in the category

0.5487 0.4730 0.6368 0.5492 0.5502 0.5311

Table 6.1: Normalized lengths of tails of crocodiles

dissimilarity measures belonging to shapes from other categories are relatively

high.

When a shape containing outlier primitives is refused by its own category,

it may be accepted by another category that have shapes containing primitives

with high variability. A sample situation is illustrated in Figure 6.10.

1.922 2.094 2.133 2.207 2.227 2.292 2.363 2.427 2.431 2.484 2.490

Figure 6.10: A shape accepted by another category

A shape in a category may be more similar to some shapes in other categories,

as illustrated in Figure 6.11. Observe that, for such shapes, the dissimilarity

measures do not contain strong jumps for similar categories.

1.434 1.505 1.539 1.539 1.616 1.618 1.646 1.659 1.719 1.832 1.880

2.056 2.085 2.196 2.263 2.309 2.322 2.627 2.726 2.751 2.768 3.353

Figure 6.11: Structurally similar shapes from different categories

As seen in Table 6.2, the dissimilarity measures are not symmetric. That is,

if the dissimilarity measure between shape A and shape B is α, the dissimilarity

measure between shape B and shape A does not need to be α. The reason of this

behavior is that the used shape-category trees for matching between A-B and

B-A may be different. During the matching process of A-B, the shape-category

tree of B restricts the attribute intervals and determines the frequency terms.

But, during the matching process of B-A, the shape-category tree of A guides
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the matching. Therefore, the context sensitive matching is not symmetric.
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Table 6.2: Retrieval results

0.298 0.345 0.348 0.354 0.378 2.440 2.472 2.482 2.507 2.537 2.630

0.478 0.517 0.607 0.609 0.622 2.458 2.519 2.529 2.537 2.550 2.554

0.337 0.396 0.404 0.504 0.560 2.574 2.601 2.685 2.686 2.698 2.788

0.228 0.358 0.437 0.455 0.463 2.399 2.418 2.440 2.484 2.560 2.566

0.534 0.633 0.684 0.708 0.763 2.643 2.657 2.669 2.722 2.749 2.960

0.355 0.491 0.578 0.637 0.645 2.394 2.407 2.408 2.495 2.518 2.596

1.420 1.512 1.597 1.610 1.635 2.957 2.976 3.019 3.052 3.086 3.093

0.650 0.687 0.693 0.696 0.737 2.777 2.815 2.846 2.864 2.890 2.937

1.434 1.505 1.539 1.539 1.616 1.618 1.646 1.659 1.719 1.832 1.880

0.715 0.882 0.928 1.030 1.097 2.361 2.444 2.559 2.585 2.597 2.622

0.641 0.735 0.852 1.036 1.042 1.967 2.078 2.162 2.215 2.268 2.312

0.952 1.071 1.112 1.155 1.300 1.340 1.393 1.401 1.496 1.519 1.555

0.375 0.438 0.451 0.596 0.722 2.122 2.132 2.149 2.184 2.190 2.197

0.551 0.621 0.625 0.876 1.000 2.100 2.129 2.129 2.170 2.203 2.213

0.670 0.744 0.748 1.026 1.270 2.456 2.505 2.505 2.553 2.573 2.595

0.725 0.806 0.878 0.908 0.908 2.207 2.252 2.357 2.366 2.392 2.426

1.941 2.082 2.188 2.193 2.250 2.265 2.300 2.309 2.327 2.344 2.344
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Table 6.2 (continued)

0.494 0.560 0.572 0.858 1.011 2.394 2.422 2.494 2.515 2.540 2.540

0.727 0.815 0.845 0.990 1.081 2.097 2.137 2.212 2.258 2.267 2.430

0.410 0.450 0.466 0.715 0.796 2.577 2.622 2.682 2.686 2.778 2.903

0.426 0.848 0.849 0.974 1.113 1.943 2.051 2.060 2.061 2.123 2.337

1.103 1.129 1.205 1.615 1.722 2.355 2.477 2.535 2.542 2.626 2.678

0.632 0.714 0.760 1.062 1.124 2.078 2.121 2.124 2.198 2.238 2.378

0.835 1.339 1.348 1.446 1.628 2.238 2.325 2.327 2.373 2.379 2.757

0.609 0.906 0.949 1.028 1.435 2.935 2.962 2.987 3.004 3.005 3.009

0.457 0.806 0.835 1.056 1.265 2.958 2.962 2.967 2.992 3.029 3.048

1.067 1.107 1.170 1.288 1.442 2.553 2.585 2.659 2.665 2.706 2.754

1.034 1.059 1.068 1.244 1.298 3.471 3.553 3.600 3.614 3.625 3.628

1.176 1.269 1.289 1.311 1.706 3.338 3.348 3.356 3.404 3.415 3.415

2.119 2.301 2.366 2.372 2.481 2.869 2.955 2.986 3.105 3.177 3.195

0.437 0.657 0.709 0.829 0.940 1.872 1.963 1.994 2.012 2.169 2.231

0.672 0.969 1.070 1.155 1.187 1.711 1.801 1.868 1.975 1.983 2.202

2.046 2.085 2.197 2.417 2.578 2.779 2.810 2.904 2.910 2.951 3.311

0.258 0.290 0.532 0.570 0.665 2.005 2.131 2.154 2.226 2.254 2.292
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Table 6.2 (continued)

0.322 0.339 0.471 0.618 0.714 1.667 1.713 1.793 1.828 1.858 1.932

1.287 1.421 1.558 1.577 1.971 1.980 2.029 2.052 2.165 2.247 2.359

0.382 0.441 0.589 0.606 1.087 1.284 1.297 1.300 1.300 1.368 1.389

0.288 0.357 0.425 0.542 0.773 1.768 1.809 1.814 1.833 1.894 1.977

0.286 0.295 0.547 0.565 0.643 1.641 1.647 1.705 1.718 1.732 1.740

2.448 2.549 2.576 2.710 2.736 3.026 3.074 3.088 3.103 3.149 3.249

0.926 0.973 1.022 1.050 1.434 2.085 2.098 2.153 2.156 2.167 2.328

1.099 1.132 1.170 1.195 1.535 2.167 2.189 2.212 2.214 2.312 2.349

0.208 0.248 0.474 0.474 0.489 2.690 2.716 2.815 2.826 2.845 2.872

0.124 0.150 0.365 0.376 0.403 2.464 2.487 2.512 2.590 2.591 2.618

0.054 0.056 0.284 0.309 0.336 2.499 2.546 2.571 2.626 2.626 2.632

0.123 0.152 0.362 0.362 0.382 2.777 2.784 2.860 2.908 2.924 2.926

0.177 0.188 0.362 0.375 0.376 2.731 2.787 2.823 2.838 2.840 2.898

0.151 0.180 0.393 0.426 0.448 2.545 2.547 2.574 2.629 2.634 2.654

0.912 1.105 1.147 1.326 1.337 2.561 2.601 2.605 2.734 3.079 3.104

1.503 1.503 1.520 1.594 1.649 2.549 2.627 2.658 2.690 2.701 2.762

0.442 0.542 0.611 0.703 0.746 2.707 2.724 2.836 2.865 2.871 2.943
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Table 6.2 (continued)

0.484 0.567 0.607 0.778 0.843 2.815 2.816 2.830 3.030 3.037 3.195

1.346 1.392 1.405 1.421 1.506 1.764 1.827 1.847 1.892 2.226 2.690

0.555 0.615 0.766 0.799 0.841 2.472 2.473 2.478 2.733 2.751 2.764

1.173 1.432 1.581 1.599 1.628 1.636 1.717 1.751 1.769 1.788 1.852

0.288 0.772 0.848 0.927 0.944 1.346 1.359 1.396 1.401 1.508 1.602

0.589 0.650 0.898 0.903 1.033 1.816 1.826 1.888 1.895 1.949 2.058

1.161 1.429 1.544 1.557 1.598 1.918 1.978 2.045 2.060 2.143 2.190

0.526 0.572 0.768 0.770 0.823 0.997 1.146 1.164 1.171 1.239 1.274

0.217 0.799 0.802 0.898 1.104 3.022 3.059 3.114 3.193 3.256 3.358

0.613 0.711 0.712 0.892 0.981 3.569 3.600 3.710 3.812 3.904 4.001

0.637 0.726 0.729 0.976 0.999 2.869 2.946 3.074 3.143 3.158 3.261

0.172 0.438 0.447 0.633 0.763 3.412 3.470 3.564 3.572 3.593 3.616

1.432 1.437 1.481 1.485 1.492 3.761 3.776 3.814 3.881 3.886 3.892

0.318 0.587 0.594 0.827 0.933 3.155 3.282 3.352 3.397 3.424 3.473

1.782 1.829 1.843 1.914 1.917 2.857 2.860 2.872 2.993 3.011 3.035

0.399 0.442 0.494 0.573 0.578 2.556 2.589 2.828 2.852 2.860 2.946

0.651 0.654 0.780 0.843 0.880 3.010 3.043 3.085 3.111 3.154 3.163
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Table 6.2 (continued)

0.613 0.652 0.814 0.875 0.887 2.855 2.873 2.922 2.930 2.932 2.965

0.388 0.420 0.493 0.566 0.600 2.769 2.779 2.793 2.814 2.833 2.877

0.073 0.207 0.392 0.449 0.480 2.724 2.731 2.791 2.825 2.902 3.009

0.181 0.348 0.505 0.595 0.601 2.600 2.603 2.677 2.712 3.013 3.060

0.109 0.128 0.295 0.318 0.385 2.190 2.228 2.229 2.245 2.350 2.444

0.046 0.091 0.266 0.302 0.384 2.464 2.485 2.560 2.576 2.625 2.723

1.059 1.067 1.079 1.256 1.381 2.316 2.319 2.328 2.331 2.444 2.457

0.552 0.554 0.580 0.706 0.831 2.474 2.490 2.663 2.780 2.784 2.832

1.491 1.507 1.515 1.605 1.702 2.332 2.390 2.613 2.815 2.855 2.900

0.101 0.166 0.313 0.383 0.447 2.486 2.507 2.593 2.609 2.646 2.792

0.470 0.567 0.747 0.783 0.812 2.548 2.567 2.568 2.611 2.730 2.778

0.171 0.437 0.672 0.709 0.709 2.781 2.806 2.824 2.836 2.891 2.904

0.212 0.279 0.520 0.547 0.617 2.851 2.863 2.866 2.928 2.987 3.029

0.207 0.478 0.711 0.715 0.761 2.734 2.763 2.790 2.795 2.837 2.844

0.405 0.570 0.736 0.750 0.875 2.777 2.780 2.797 2.883 2.887 2.947

1.161 1.166 1.394 1.398 1.458 3.159 3.171 3.196 3.226 3.308 3.317

0.378 0.440 0.458 0.673 0.817 2.894 2.901 2.909 2.951 2.978 3.005
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Table 6.2 (continued)

0.950 1.076 1.132 1.224 1.299 2.701 2.810 2.866 2.881 2.971 3.069

0.461 0.511 0.677 0.736 0.941 2.461 2.521 2.558 2.581 2.599 2.618

1.870 1.896 1.912 1.935 1.962 1.970 1.980 1.985 2.066 2.092 2.160

1.162 1.294 1.328 1.394 1.615 2.753 2.759 2.764 2.795 2.803 2.888

0.359 0.422 0.575 0.784 0.785 2.654 2.700 2.715 2.748 2.792 2.831

1.327 1.337 1.380 1.474 1.536 2.420 2.451 2.484 2.549 2.551 2.580

0.804 0.989 1.040 1.055 1.177 2.556 2.565 2.571 2.585 2.616 2.625

0.227 0.441 0.587 0.607 0.658 2.395 2.420 2.446 2.459 2.522 2.609

0.680 0.681 0.815 0.880 0.884 2.206 2.211 2.255 2.274 2.282 2.333

0.417 0.531 0.573 0.601 0.640 2.318 2.435 2.467 2.477 2.490 2.499

0.156 0.372 0.466 0.505 0.603 2.386 2.412 2.431 2.450 2.507 2.604

1.215 1.227 1.256 1.281 1.292 2.279 2.279 2.348 2.376 2.400 2.435

0.482 0.495 0.525 0.533 0.553 2.303 2.307 2.336 2.359 2.365 2.407

0.301 0.364 0.379 0.399 0.406 2.122 2.181 2.182 2.195 2.197 2.212

0.347 0.403 0.466 0.550 0.561 2.245 2.290 2.302 2.397 2.425 2.436

0.180 0.265 0.273 0.317 0.340 2.247 2.326 2.365 2.411 2.416 2.428

0.519 0.556 0.564 0.640 0.659 2.685 2.693 2.728 2.753 2.754 2.778
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Table 6.2 (continued)

0.247 0.596 0.597 0.699 1.156 2.877 2.908 2.945 2.962 2.962 3.011

2.588 2.604 2.612 2.671 2.676 2.678 2.705 2.751 2.751 2.794 2.813

1.127 1.285 1.291 1.411 1.545 2.350 2.530 2.593 2.663 2.677 2.717

0.962 0.972 1.088 1.185 1.395 2.578 2.669 2.738 2.804 2.846 2.916

0.197 0.537 0.554 0.655 1.130 2.931 2.937 2.963 2.967 2.991 2.991

1.678 1.722 1.839 1.983 2.414 3.248 3.289 3.352 3.366 3.382 3.393

0.749 0.812 0.886 0.979 0.979 2.069 2.170 2.185 2.213 2.321 2.361

0.267 0.395 0.570 0.646 0.646 1.801 1.829 1.859 2.080 2.121 2.138

0.213 0.213 0.460 0.473 0.498 1.921 1.951 1.954 1.977 1.995 2.021

0.344 0.535 0.622 0.711 0.711 1.855 1.892 1.937 2.038 2.093 2.129

0.000 0.237 0.577 0.586 0.599 1.947 1.997 1.999 2.001 2.112 2.112

0.000 0.237 0.577 0.586 0.599 1.947 1.997 1.999 2.001 2.112 2.112

0.561 0.587 0.611 0.778 1.050 3.258 3.374 3.383 3.447 3.479 3.592

0.753 0.794 0.976 0.996 1.208 3.306 3.418 3.463 3.565 3.625 3.680

0.793 0.910 0.968 0.989 1.177 3.118 3.148 3.223 3.305 3.324 3.351

1.999 2.209 2.252 2.287 2.380 3.026 3.064 3.274 3.428 3.494 3.553

0.980 0.981 0.996 1.022 1.038 3.265 3.302 3.346 3.370 3.390 3.399
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Table 6.2 (continued)

0.902 0.912 1.006 1.121 1.444 3.402 3.527 3.545 3.565 3.569 3.598

0.231 0.255 0.272 0.546 1.162 2.258 2.362 2.459 2.724 2.728 2.769

1.878 1.885 1.886 1.936 2.239 2.375 2.380 2.414 2.538 2.599 2.624

0.165 0.225 0.234 0.584 0.856 2.314 2.426 2.517 2.865 2.937 2.983

0.208 0.273 0.293 0.719 0.941 2.334 2.462 2.617 2.741 2.765 2.772

1.508 1.562 1.567 1.574 1.877 2.678 2.775 2.817 2.855 2.872 2.985

0.186 0.265 0.275 0.678 0.848 2.195 2.294 2.459 2.798 2.860 2.917

0.234 0.277 0.293 0.294 0.748 2.725 2.776 2.786 2.817 2.884 2.904

0.078 0.137 0.180 0.332 0.761 2.685 2.759 2.764 2.783 2.849 2.864

0.425 0.518 0.547 0.606 0.759 2.913 2.948 2.996 2.999 3.066 3.087

0.117 0.152 0.262 0.400 0.833 2.685 2.756 2.768 2.781 2.847 2.864

2.667 2.694 2.709 2.728 2.756 3.379 3.393 3.401 3.416 3.565 3.578

0.298 0.322 0.425 0.605 1.014 2.708 2.786 2.790 2.805 2.871 2.888

1.715 2.137 2.145 2.328 2.395 4.127 4.193 4.261 4.265 4.380 4.401

1.008 1.038 1.234 1.615 1.843 2.107 2.243 2.327 2.432 2.523 2.813

2.056 2.085 2.196 2.263 2.309 2.322 2.627 2.726 2.751 2.768 3.353

0.727 0.757 1.025 1.034 1.357 3.573 3.669 3.734 3.837 3.844 3.920
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Table 6.2 (continued)

0.629 0.872 0.957 1.185 1.367 1.856 1.870 1.916 2.075 2.102 2.339

2.158 2.179 2.208 2.649 2.855 3.487 3.489 3.592 3.608 3.794 3.875

1.237 1.606 1.722 1.799 1.917 2.923 2.960 2.979 2.985 2.998 3.031

1.501 1.599 1.697 1.932 2.345 2.676 2.779 3.048 3.109 3.110 3.133

0.628 0.666 0.810 1.286 1.540 2.567 2.600 2.633 2.713 2.715 2.767

0.492 0.752 0.994 1.477 1.711 2.489 2.490 2.540 2.585 2.619 2.626

0.548 0.770 1.148 1.566 1.934 2.433 2.523 2.634 2.649 2.659 2.659

1.785 2.606 2.643 2.801 2.844 3.600 3.625 3.707 3.724 3.725 3.767

0.142 0.156 0.260 0.426 0.449 2.097 2.181 2.224 2.278 2.301 2.444

0.246 0.246 0.271 0.297 0.314 2.345 2.438 2.480 2.556 2.566 2.588

0.746 0.767 0.875 0.889 0.891 2.351 2.452 2.470 2.613 2.726 2.759

0.210 0.221 0.338 0.464 0.505 2.284 2.376 2.408 2.538 2.555 2.661

0.125 0.150 0.242 0.392 0.419 2.186 2.278 2.317 2.402 2.421 2.535

0.577 0.581 0.680 0.681 0.697 2.634 2.717 2.724 2.743 2.802 2.880

0.333 0.861 0.948 1.004 1.389 2.375 2.383 2.391 2.490 2.503 2.579

3.732 3.747 3.768 3.803 3.822 3.841 4.032 4.047 4.052 4.056 4.071

0.156 0.715 0.806 0.871 1.267 2.303 2.309 2.324 2.412 2.434 2.482
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Table 6.2 (continued)

1.061 1.085 1.498 1.505 1.816 3.368 3.523 3.533 3.596 3.600 3.604

0.253 0.484 0.831 0.848 1.108 3.457 3.510 3.511 3.646 3.688 3.695

0.226 0.433 0.714 0.734 1.196 3.429 3.437 3.465 3.484 3.618 3.666

0.084 0.273 1.012 1.284 1.307 2.928 2.939 2.955 2.987 3.008 3.082

0.091 0.246 1.086 1.359 1.385 2.724 2.757 2.789 2.818 3.096 3.135

0.632 0.822 1.602 1.613 1.653 2.331 2.331 2.385 2.388 2.483 2.511

0.466 0.607 1.412 1.425 1.461 2.046 2.077 2.132 2.134 2.229 2.249

0.621 0.656 1.288 1.554 1.576 3.025 3.029 3.117 3.128 3.152 3.158

0.412 0.461 0.945 0.964 0.993 2.423 2.472 2.495 2.504 2.510 2.558

0.076 0.119 0.355 0.391 0.592 2.076 2.191 2.212 2.219 2.224 2.271

0.383 0.574 0.587 0.630 0.891 2.390 2.528 2.555 2.610 2.637 2.713

0.120 0.139 0.411 0.450 0.708 2.240 2.321 2.342 2.348 2.371 2.386

1.922 2.094 2.133 2.207 2.227 2.292 2.363 2.427 2.431 2.484 2.490

0.388 0.615 0.629 0.679 0.857 2.518 2.683 2.711 2.723 2.747 2.766

0.325 0.349 0.641 0.685 0.921 2.121 2.147 2.168 2.204 2.218 2.267

0.263 0.691 0.874 0.933 1.211 2.038 2.088 2.092 2.118 2.148 2.297

0.615 1.216 1.249 1.301 1.530 1.632 1.664 1.668 1.682 1.695 1.896
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Table 6.2 (continued)

1.412 1.741 1.749 1.764 1.801 2.552 2.646 2.652 2.707 2.724 2.767

0.912 0.919 0.958 1.008 1.189 2.608 2.754 2.772 2.778 2.827 2.831

0.399 0.969 1.065 1.092 1.322 2.874 2.990 3.018 3.019 3.040 3.045

0.164 0.758 0.861 0.999 0.999 2.919 2.924 2.974 2.976 2.982 3.023

0.222 0.712 0.773 0.786 0.793 2.522 2.537 2.689 2.767 2.810 2.867

0.268 0.928 0.954 1.003 1.026 2.419 2.597 2.617 2.683 2.699 2.712

0.261 0.631 0.667 1.062 1.063 2.496 2.507 2.586 2.598 2.598 2.610

0.166 0.834 0.847 0.910 0.924 2.486 2.652 2.671 2.731 2.749 2.761

0.253 0.625 0.653 0.999 1.008 2.596 2.619 2.649 2.659 2.712 2.747

0.199 0.576 0.579 0.949 0.954 2.459 2.471 2.635 2.722 2.746 2.823
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CHAPTER 7

CONCLUSION

In this thesis,calculation of dissimilarity between two shapes using skeletal trees

has been presented. After converting shapes into depth-1 shape trees, a tree

editing distance algorithm is used to find the dissimilarity between the shapes.

Shape primitives and their spatial organizations are used to find the cost to

morph one shape tree into another. As discussed in detail, assigning a priori

significance to shape primitives may cause wrong correspondence between two

shapes.

To modify the importance of primitives, they are put in context. In this

study, characteristics of shape categories are used as context information. To

find the dissimilarity between shape A and shape B, category characteristics of

shape B guide the cost calculations. Recall that, characteristics of a category are

obtained from shape-category trees that are constructed by uniting the shape

trees in a category.

The shape retrieval problem is used for experiments. When dissimilarity

calculations are done with the guidance of context, better retrieval results are

obtained. Also, the obtained dissimilarity measures violate the symmetry met-

ric. That is, the dissimilarity between A and B is not equal to dissimilarity

between B and A. This behavior is supported by experimental results of [14, 15]

and a natural result of using the guidance of different category trees to compare

A-B and B-A.
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Hence the shape category trees are also depth-1, it is possible to compare

a shape with a category and a category with a category.Therefore, as a future

work, it is possible to use the shape category trees for classification. Also, the

proposed context sensitive approach can be used for clustering, if a technique

that uses asymmetric similarity matrix is developed.
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