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ABSTRACT 

APPLICATION OF ODSA TO POPULATION CALCULATION 

 

 

 

 

Ulukaya, Mustafa 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Kerim Demirbaş 

 

 

April 2006, 102 pages 

 

 

 

In this thesis, Optimum Decoding-based Smoothing Algorithm (ODSA) is applied to 

well-known Discrete Lotka-Volterra Model. The performance of the algorithm is 

investigated for various parameters by simulations. Moreover, ODSA is compared 

with the SIR Particle Filter Algorithm. The advantages and disadvantages of the both 

algorithms are presented. 
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ÖZ 

POPULASYON HESAPLAMALARINA ODSA UYGULANMASI 
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Bu tezde Optimum Kodlamaya Dayalı Yumuşatma Algoritması bilinen Sayısal 

Lotka-Volterra modeline uyarlandı. Algoritmanın performansı çeşitli değişkenlere 

göre benzetimler gerçekleştirilerek incelendi. Ayrıca ODSA SIR Parçacık Filtresi 

Algoritması ile karşılaştırıldı. İki Algoritmanın da avantajlı ve dezavantajlı yönleri 

gösterildi.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

Interaction between species has been studied by scientists for several 

centuries. There are numerous scientists spent their lives on studying the interaction 

of the species. 

Competition and mutualism are two important interactions among species. 

According to definitions by Krebs [9], competition occurs when two species use the 

same resources or harm each other when sharing resource; mutualism is defined as 

living of two species in close association with one another with the benefit of both. 

Competition also occurs among individuals or groups within species, often more 

furiously because they use the very similar resources. Within species, mutualism is 

called cooperation [10], which is commonly seen in social animals and in human 

society.  

The famous competition model was proposed independently by Lotka (1925) 

[2] and Volterra (1926) [2] in Italy. In this model, coexistence occurs only when the 

crowd-tolerability and competitive capacity of species are well balanced. Otherwise, 

low crowd-tolerable and low competitive species (inferior competitor) will be 

removed by the superior competitor. Many competitive models or community 

models were further developed by slightly modifying the Lotka-Volterra (LV) 

model, often by introducing non-linear isoclines, but without changing the 

monotonous and negative relationship between the growth rate of the focal species 

(e.g. Paine, 1966[11]; May, 1973 [12]; Renshaw, 1991 [13]; Zhang and Hanski, 1998 

[14]).  
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Leslie [21] gave the general Lotka-Volterra Model that investigates the 

interaction between species. The species are classified as competitors, predator-prey 

and symbiosis via the model parameters. Since these relations occur not only 

between species in biology, but also in economy, political sciences, food 

engineering, etc. as well. Actually, Lotka Volterra Model is used in various fields 

where competition is involved. First of all, in biology, Lotka Volterra Model is 

applied to investigate the relationship between the species of animals by several 

scientists [22, 23, 24, 25] in addition the relationship between plants is also 

investigated by several scientists [26, 27, 28] using Lotka Volterra Model. On the 

other hand, S.J Lee and Y.Louzoun applied LV model to economical systems, which 

investigate the stock market analysis [15] and market volatility [16], respectively. 

Moreover, Lotka Volterra Model is used in Political Sciences; Francisco modeled the 

interaction between coercion and protest using Lotka Volterra Model [17]. In 

addition, Lotka Volterra Model is used in Chemistry [18], Food Engineering [19], 

Computer Sciences [20], etc. Briefly, as soon as interaction between two phenomena 

that have competition, predator-prey or symbiosis relationship; Lotka Volterra Model 

is a powerful tool to analyze the interaction.  

In some applications, measurements are taken in discrete time. In order to use 

discrete time data, it is necessary to convert the Lotka-Volterra equation into discrete 

time version. Dubious [7] and Murray [8] give the discrete time version of the Lotka 

Volterra Model. Then, Discrete Lotka Volterra Model can be used for finding the 

population of the species in an ecosystem. If the parameters of the system that 

exposes the interaction of the species, and the previous number of the species are 

known, by using Discrete Lotka Volterra Model, the present value of the population 

of the species can be predicted. 

At this point, the problem of predicting the new species population can be 

regarded as a discrete-time state estimation problem. Let the populations of two 

species  size is regarded as state variables, since the previous values and the system 

parameters are known, the future state values can be predicted. To solve the state 

estimation problem Optimum Decoding-based Smoothing Algorithm (ODSA) [1] is 

a powerful algorithm that gives suboptimum prediction. ODSA obtains a Trellis 
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Diagram for the state values and estimates the new values for the state values of the 

using Viterbi Algorithm [3, 4]. 

ODSA can be used for both linear and nonlinear models. In addition ODSA is 

capable to estimate both new states and the new parameters of the system whenever 

system parameters either unknown or changing. 

In this thesis, ODSA is applied to Stochastic Discrete Lotka-Volterra Model 

to estimate the population of two species. The algorithm is implemented in 

MATLAB® environment and some simulations are performed in order to evaluate 

the state estimation performance. Also ODSA is compared with SIR Particle Filter 

Algorithm and advantageous and disadvantageous parts of the both algorithm are 

presented. In addition, Lotka Volterra Model is compared with the Lanchester War 

Model and similarities and differences between the models are explained. 

In Chapter 2, the well-known Lotka-Volterra model is presented; the Discrete 

Lotka-Volterra Model and Stochastic Discrete Lotka-Volterra Model are given. 

In Chapter 3, Lanchester War model is given and the comparison between 

Lanchester War Model and Lotka Volterra Model is made. Similarities and 

differences between the two models are presented. 

In Chapter 4 ODSA Algorithm is explained in detail. Gazioğlu [5] used 

ODSA in one-dimensional problems; since in Discrete Lotka Volterra Model there 

are populations of two species, the two-dimensional ODSA is discussed. In addition, 

the complexity analysis of ODSA is done. 

In Chapter 5 Particle Filter Algorithm is introduced. For Lotka-Volterra 

model, SIR type Particle Filter is used. In addition, sample run of Particle Filter 

algorithm is given for Stochastic Discrete Lotka Volterra Model.  

In Chapter 6 simulation results of ODSA are presented and the effects noise 

variances, initial state variance and ODSA parameters are discussed.  

In Chapter 7, simulations of Particle Filter algorithm are done for various Ns 

values and resultant error performance is plotted. Moreover, the comparison of 
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ODSA and Particle Filter Algorithm is done in this chapter. The advantageous and 

disadvantageous parts of the both algorithm is presented.  

In Chapter 8 Comments on the simulation results of the ODSA algorithm on 

Lotka-Volterra model is given. The advantages and the disadvantages of the 

algorithm are discussed by considering the simulation results. 

In Appendix A, the possible values and the corresponding probabilities of the 

discrete random variable which approximates the Gaussian distributed continuous 

random variables up to 50 possible values are given. These values are used by the 

ODSA algorithm while obtaining the trellis diagram for the target motion model.  
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CHAPTER 2 

 

2.1 LOTKA VOLTERRA MODEL 

 

 

 The interaction between two species can be expressed in general terms via the 

Lotka Volterra Model. When two species, X and Y, interacting in the same 

environment, we may write as follows [6]: 

XYcXaXYca
dt
dX

1111 )( −=−=      (2.1) 

  

YXcYaYXca
dt
dY

2222 )( −=−=      (2.2) 

Where X is the population size of the species X and Y is the population size 

of the species Y. This system of equations contains all fundamental parameters that 

impact the rate of growth of both species. Namely, ai is the logistic parameter for the 

species i when living alone, ci is the interaction parameter with the other species. A 

simulation of Lotka-Volterra Model is given in Figure 1 
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Figure 1. Lotka-Volterra Predator Prey Population Model 

 

 

The parameter ai gives the birth and/or death rate of the species when it is 

living alone. Therefore ai can be modeled as  

 a1=1+br;       (2.3) 

 a2=1–dr;       (2.4) 

where br gives you the birth rate of the species and dr gives the death rate of 

the species, respectively.  

The parameter ci gives the interaction between the species. Especially, by the 

sign of c1 and c2, we can determine the type of the competitive roles as shown in 

Table 1[15].  
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Table 1.The type of competitive roles according to the signs of c1 and c2 

c1 c2 Type Explanation 

+ + Pure Competition Occurs when both species suffers from each other’s 
existence 

+ – Predator – Prey  Occurs when one of them serves direct food to the 
other 

– – Mutualism Occurs in case of symbiosis  

 

 

2.2 DISCRETE LOTKA VOLTERRA MODEL 

 

This thesis considers discrete time Lotka-Volterra Model which is given by 

Dubious [7] and Murray [8] as follows: 

X[k+1]=X[k]+brX[k]-a1X[k]Y[k]     (2.5) 

Y[k+1]=Y[k] –drY[k]-a2Y[k]X[k]     (2.6) 

where, 

X[k]: The number of first species in the ecosystem 

Y[k]: The number of second species in the ecosystem 

br: The annual birth rate of the first species, including partial death rate 

dr: The annual death rate of the second species, including partial death rate 

a1: The interaction parameter between first species and second species 

a2: The interaction parameter between second species and first species 
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2.2.1 Stochastic Discrete Lotka-Volterra Model 

 

Since the life is not perfect and the nature is not deterministic, some of the 

terms cannot be fully explained by the deterministic model. Always there are noises 

that affect the system. In Lotka Volterra model, we assumed that there are only two 

species interacting between each other, which is not the usual case. Moreover, there 

are several effects that have role in the population of the species in the ecosystem. 

Although these effects have not too much deviation in the population of the species 

in the ecosystem, they should be taken into account. These effects are modeled as 

Gaussian disturbance noises w1 and w2 where w1 is normal distributed with zero 

mean and varw1 variance and w2 is normal distributed with zero mean and varw2 

variance. In addition for the observations X[k] and Y[k], there are always 

observation errors for specie populations. These errors are modeled as observation 

noise, namely, v1 is counting errors for species 1, i.e., X; v2 is counting errors for 

species 2, i.e., Y. The observation noise is also modeled as Gaussian distributed white 

noise. 

When these noises appended to the system, the state equations (2.5) and (2.6) 

of the model become: 

X[k+1]=X[k]+brX[k]-a1X[k]Y[k]+w1[k]    (2.7) 

Y[k+1]=Y[k] –drY[k]-a2Y[k]X[k]+w2[k]    (2.8) 

 The observation equation is, 

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=

][
]

][
][

][
2

1

kv
kv

kY
kX

kZ       (2.9) 

where  

v1~N(0, 2
1vσ )  and       (2.10) 
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v2~N(0, 2
2vσ )        (2.11) 

That is, v1 is a Gaussian distributed random noise with zero mean and 2
1vσ  

variance, and v2 is also a Gaussian distributed random noise with zero mean and 2
2vσ  

variance. 

  Moreover, since the birth and death rate of the species are not constant and 

also they deviate from year to year due to several effects e.g. migration, unexpected 

diseases etc., a noise term should also be added on these parameters. Let us define 

the br and dr as follows: 

 br ~ N(µbr, σbr
2)       (2.12) 

 dr ~ N(µdr, σdr
2)       (2.13) 

where µbr is the mean of the birth rate of the first species, σbr
2 is the variance of the 

birth rate of the first species, µdr is the mean if the death rate of the second species 

and σdr
2 is the variance of the death rate of the second species. A simulation of 

Stochastic Discrete Lotka Volterra Model is given in Figure 2. For this simulation, 

the following model parameters are chosen:  

• Mean of initial state X0 (meanX0) :  20 

• Mean of initial state Y0 (meanY0) :  25 

• Variance of initial state X0 (varX0) : 4 

• Variance of initial state Y0 (varY0) : 9 

• Mean of birth rate of X (meanbr) : 0.7 

• Mean of death rate of X (meandr) : 0.5 

• Variance birth rate of X (varbr) : 0.1 

• Variance death rate of X (vardr) :0.1 

• The interaction parameter between X and Y (a1) : 0.007 

• The interaction parameter between Y and X (a2) : 0.006 

• Variance of disturbance noise w1 (varw1) : 4 

• Variance of disturbance noise w2 (varw2) : 4 



10 

• Variance of observation noise v1 (varv1) : 1 

• Variance of observation noise v2 (varv2) : 4 

 

 

Figure 2. Stochastic Discrete Lotka-Volterra Population Model 
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CHAPTER 3 

 

LANCHESTER WAR MODELLING 

 

 

3.1 Lanchester War Modeling  

 

Lanchester War modeling is first introduced by British Scientist F. W. 

Lanchester (1868 - 1946). German scientist, Bernard Koopman (1900-1981) 

developed and modified the Lanchester’s law into Lanchester’s strategy model, and 

widely used in World War II.  

 

 Lanchester War model consists of two general differential equations, 

including both conventional and guerilla combat terms. Özdemir [34] derived this 

general model, seen in equation (3.1).  

)()()()1()()()(

)()()()1()()()(

tRRtytxprvtxprvtdy
dt

tdy

tRRtytxprvtyprvtax
dt

tdx

yxxgyyxxcyy

xyygxxyycxx

+−−−−=

+−−−−=

αα

αα
  (3.1) 

where 

Operational Loss Rates: 

• -ax(t): operational losses of General X, 

• -dy(t): operational losses of General Y, 

Combat Loss Rates: 
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• )(- typrv yycxxα : General X is combating conventionally and incurring a 

loss where  

 xα  is the ratio of General X conventional combat forces over 

whole forces of General X, ( 10 ≤≤ xα ), 

 vcx is the visibility coefficient of a General X’s soldier, 

combating conventionally. 

 ry is the firing rate, rate of ammunition that is utilized by the 

army (shots/combatant/day), 

 py is the probability that a single shot kills an opponent. 

 y(t) is the number of General Y force at time t. 

• )()()1( tytxprv yygxxα−− : General X is guerilla combating and incurring 

a loss where 

 xα−1  is the ratio of General X forces guerilla combating over 

whole forces of General X, ( 1)1(0 ≤−≤ xα ), 

 vgx is the visibility coefficient of a General X’s soldier, guerilla 

combating. This parameter is a dynamic one depending on the total 

number of guerillas in the area and the predefined maximum amount 

of guerillas that the area can hold. 

 ry is the firing rate, rate of ammunition that is utilized by the 

army (shots/combatant/day), 

 py is the probability that a single shot kills an opponent. 

 x(t) is the number of General X force at time t. 

Reinforcement Rates: 

• RRx(t) is the reinforcement rate in numbers of combatants per day. It is 

controlled by General X. 

As it can be seen in the equation (3.1), Lanchester War Model is a deterministic, 

differential model. Without loss of generality, the model is very similar to the Lotka-

Volterra Model in Chapter 2. To see this fact clearly, the Lanchester War model can 

be written as: 
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tftytxtytxa
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tdy

tftytxtytxa
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tdx

y

x

+++=

+++=

γβ

γβ
  (3.2) 

 

 On the other hand, LV model can be written as: 

=
dt

tdX )( X(t)+brX(t)-a1X(t)Y(t)+w1(t) 

=
dt

tdY )( Y(t) –drY(t)-a2Y(t)X(t)+w2(t) 

 

As it can be seen from the equations (3.2) and (3.3), the equations are very 

similar in type. However, we derived Stochastic Lotka Volterra Model to explain the 

noisy variations as well as use ODSA and Particle Filter, the Lanchester War model 

is again deterministic and to use these models, stochastic version should be derived 

to use ODSA and Particle Filter Algorithm. In the following table (Table.2), the 

Lanchester War Model and Stochastic Lotka Volterra Model are compared. To make 

the comparison more clear, without changing the structure, let us change the name of 

the parameters of Lotka Volterra Model (3.4).  

 

=
dt

tdX )( α1X(t)+γ1X(t)Y(t)+w1(t) 

=
dt

tdY )(  α2Y(t)+ γ2Y(t)X(t)+w2(t) 

  

 

 
 
 
 
 
 

(3 4) 

(3.3) 
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Table 2.Similarities and Differences Between Lotka Volterra Model and Lanchester 

War Model 

 Lotka Volterra Model Lanchester War Model 

1. α1 and α2 Varying and noisy Constant 

2. β1 and β2 Not exist Varying as a function of both x and y

3. γ1 and γ2 Constant Varying as a function of both x and y

4. fx(t) and fy(t) Gaussian Disturbance 

Noise 

Varying with respect to x and y,  

respectively 

5. Observation There exist 

observation equation 

There is no observation equation 
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CHAPTER 4 

 

OPTIMUM DECODING BASED SMOOTHING ALGORITHM 

 

 

 

Optimum Decoding-Based Smoothing Algorithm [1] is used for the target 

tracking problems have the following form 

 

 Motion model, ))(),(),(,()1( kwkukxkfkx =+ , (4.1) 

 Observation model, ))(),(,()( kvkxkgkz = , 

where x(0) is an nx1 initial state random vector which determines the considered 

target location at time 0. x(k) is an nx1 state vector at time k which determines the 

considered target location at time k. u(k) is a qx1 input vector at time k. w(k) is a px1 

disturbance noise vector at time k with zero mean and known statistics. In the 

observation model, v(k) is an lx1 observation noise vector at time k with zero mean 

and known statistics. z(k) is an rx1 observation vector at time k. Time k is time 

t0+kT0 where t0 and T0 are the initial time and the observation interval, respectively. 

Furthermore, the random vectors x(0), w(j), w(k), v(l) and v(m) are assumed to be  

statistically independent for all j, k, l, m. The aim is to estimate the state sequence 

{x(0), x(1), x(2), … x(L)} by using the observation sequence {z(1), z(2), z(3), … z(L)} 

where L is a chosen integer. The estimation algorithm presented is capable not only 

the target tracking algorithms but also the whole estimation problems that can be 

modeled in equation (4.1).  
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4.1 Quantization of the States and Transition Probabilities 

 First of all, we are going to make some definitions before proceeding further. 

Let us consider the state x(k), it is a random vector whose range is in the space Rn. 

Let us divide Rn into non-overlapping subspaces Ri
n and assign each subspace, Ri

n , a 

unique value xqi. Note that subscript q refers to quantization.  

Definition 4.1: A function xq(.)  Q{x(.)} is a quantizer for the state x(.) if the 

following hold: 

1) A function xq(.)  Q{x(.)} = xqi whenever x(.) є Ri
n; and 

2) xqi is unique for each Ri
n 

Definition 4.2: The function xq(.) is the quantized state vector at time (.), and 

its possible values are called quantization levels of the state x(.). 

Definition 4.3: Subspace Ri
n is called gate (or sometimes called cell) Ri

n. 

Definition 4.4: The value xqi is called the quantization level for the gate Ri
n. 

Quantization means that whenever a random state vector falls into a gate of 

Ri
n the state is quantized to the value xqi.  

Definition 4.5: The transition probability πjm(k) is the probability that the 

state x(k+1) will lie in the gate Rm
n when the state x(k) is in the gate Rj

n; i.e., 

 πjm(k)  Prob { x(k+1) є Rm
n | x(k) є Rj

n }   (4.2) 

The transition probability πjm(k) is a conditional probability. Hence it can be 

written as : 
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 It is not usually easy to evaluate transition probability πjm(k) analytically. 

Evaluation of the integral above is not usually possible even if the system is linear. If 

the system is nonlinear, difficulty of evaluation increases. Therefore, numerical 

evaluation will be needed for πjm(k). Even this may be difficult, therefore it will be 

discussed that an approximate target motion model by approximating the disturbance 

noise vector w(k) and the initial state vector x(0) by discrete random vectors. In the 

following section this approximation of the continuous random vectors by discrete 

random vectors will be explained. 

 

 

4.2 Approximation of an Absolutely Continuous Random Vector by 

a Discrete Random Vector 

 We want to approximate an absolutely continuous random vector by a 
discrete random vector. Let Fx(.) be the distribution function of an absolutely 
continuous random vector x. And let (.)

0yF  be the approximation of Fx(.). To make 
(.)

0yF  the best approximation of Fx(.) the following objective function J(.) should be 
minimized by (.)

0yF . 
 
    (4.3) 
   (.))(min (.) gJg=  
where  

 [ ]∫
∞

∞−

−= daaFaFFJ yxy
2)()((.))(     (4.4) 

and g(.) is a step function that minimizes J(g(.)).  

[ ] [ ]
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If g0(x) is a step function which minimizes (4.5), it must satisfy the following set of 

equations: 
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xiii

nxn
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x

            (4.7) 

If the mean (µ) and the variance (σ) of the random variable are different than 

0 and 1 respectively, it maps the new discrete values according to the mean and 

variance of the random variable by using the formula given in (4.9).  

 niPPyy iii ,...,2,1, 0,0,0, ==′+=′ µσ  (4.9) 

 

 

4.3 Finite State Observation Model 

The gates are assumed to be generalized rectangles such that the zero vector 0 

(origin) is located in the center of a generalized rectangle, say R0
n (see Figure 3). Let 

the lengths of the sides of a generalized rectangle say Ri
n, be gi1, gi2, … gin. These 

lengths are the sizes of the gate Ri
n. On the other hand, for the sake of simplicity, we 

are going to choose the length of the gates equal. In addition, the quantization levels 

for gates are assumed to be the center points of the gates.  
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Figure 3. Quantization with Generalized Rectangles 

 

 

 The flowchart of the finite-state model is in Figure 4. For each k, the 

disturbance noise vector w(k) is approximated by discrete random vector wd(k) whose 

possible values are wd1(k), wd2(k), … , 
kdmw (k). The corresponding probabilities are 

pd1(k), pd2(k), … , 
kdmp (k), where i=1,2, … , mk. Also the initial stat vector x(0) is 

approximated in the same manner with w(k) by n0 possible values. mk and n0 is 

chosen so that w(k) and x(0) are satisfactorily approximated by discrete random 

vectors xd(0) and wd(k) for the considered estimation problem, respectively.  
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Figure 4. Flowchart of the Finite State Model 

 

 

 After x(0) and w(k) is approximated by xd(0) and wd(k), respectively, the 

model can be written as: 

xq(k+1)= Q{f(k, xq(k), u(k), wd(k))}      (4.8) 

 In equation (4.8) the variables and the functions are explained as follows: 

• Q{.} is the quantizer function  

• xq(k) is quantized state vector at time k  and its possible values are { xq1(k), 

xq2(k), … , 
kqnx (k). } where nk is the number of possible quantization levels of the 

state vector x(k)  

• xq(0)  xd(0) [by definition, xqi(0)  xdi(0), i=1, 2, … n0 ] 

• u(k) is the input vector to the system. 

• wd(k) is the approximated discrete disturbance noise random vector of the 

system.  
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The transition probability πjl(k), which is defined by the conditional probability 

that the quantized state vector xq(k+1) will be equal to the quantization level xql for 

gate Rl
n, given that the quantized state vector xq(k) is equal to the quantization level 

xqj for gate Rj
n, namely, 

 πjl(k)= Prob{xq(k+1)=xql | xq(k)=xqj}                (4.9) 

is determined as follows (Figure 3 ): 

 Let us assume that xq(k) is xqj at time k. The transitions from this level to next 

state is decided by the random vector wd(k) and the function Q{f(k, xq(k)= xqj, u(k), 

wd(k))}. Discrete random vector wd(k) can take any value in the set {wd1(k), wd2(k), … 

, 
kdmw (k)} with corresponding probabilities pd1(k), pd2(k), … , 

kdmp (k). Thus the 

quantized xq(k+1) can be equal to at most mk various quantization levels. Then the 

transition probability of being xq(k+1) given xq(k) will be equal to the corresponding 

wdi(k)’s probability. That is, πji(k) will be equal to wdi(k)’s probability, pdi(k).  

However, if the function Q{f(k, xq(k)= xqj, u(k), wd(k))} maps xqj into another gate, 

say Rl
n, for more than one possible value, say wd1(k) and wd2(k) of wd(k), the 

transition probability πjl(k) from gate Rj
n to gate Rl

n is the probability that the discrete 

random vector wd(k) is equal to either of the possible values wd1(k) or wd2(k), i.e., 

πjl(k)=∑n dn kP )( =Pd1(k)+Pd2(k), where the summation is over all n such that Q{f(k, 

xq(k)= xqj, u(k), wd(k))}= xql. Having determined the finite-state model, we can 

present the target motion by a Trellis Diagram. 

 

 

4.4 A Trellis Diagram For the Target Motion 

Since we approximated the state values and noises by discrete random 

vectors, we can arrange the system as a Trellis Diagram. To present the system by a 

graph we adopt the following conventions: 

1. Each possible value of xq(k) is represented on the kth column by a point 

(sometimes called node) with the corresponding quantization level so that the kth 

column contains the possible quantization levels of x(k) (in other words, the possible 

gates in which the target can lie a time (k)) where k=0, 1, 2, … . 
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2. A line having a direction indicating the direction of the target motion 

represents the transition from one quantization level to another 

Therefore, the target motion from time 0 to L can be represented by a directed graph 

(Trellis Diagram) shown in the following figure (Figure 5) 

 

 

 

Figure 5. The Trellis Diagram For The Target Motion 

 

 

4.5 Approximate Observation Models 

 Since in previous sections we reduced the system model to a finite-state 

model, which uses quantized xq(k), we should use the reduced state in also 

observation model. When we use the reduced model in observation model, the 

observation model becomes: 
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 z(k) = g(k, xq(k), v(k))        (4.10) 

 In further analysis, we will use the equation (4.10) as observation model. At 

this point, it will be better to define the some symbols that will be used in our further 

analysis.  

ni Number of quantization levels for the gates in which the target may lie at time i. 

Hm The mth path through the Trellis Diagram, indicated by a bold line in Figure 5 

xm
q Quantization level for the gate in which the target lies at time i when it follows the 

path Hm. In other words, the possible value of the quantized state vector xq(i) through 

which the mth path passes. For example, in Trellis Diagram of Figure 5, xm
q(0)= 

xm
q2(0);       xm

q(1)= xm
q2(1), xm

q(2)= xm
q2(2) 

π0
m Probability that the mth path passes through initial state xd(0). That is,  

π0
m=Prob{xd(0)= xm

q(0)} 

πi
m Transition probability from the (i-1)th gate (i.e., the gate for the target passes at time 

i-1 when it follows the path Hm) to the ith gate for the mth path. That is, 

πi
m=Prob{xq(i)=xq

m(i)|xq(i-1)=xq
m(i-1)} 

m

L
x
~

 m

L
x
~

{ xm
q (0), xm

q (1), … xm
q (L)} The sequence of the quantization levels (nodes) 

which the mth path passes through. 

zL zL {z(1), z(2), z(3), … z(L)} The observation sequence from time 1 to time L 

 It is obvious that, the target will follow one of the m paths that can be seen in 

the Trellis Diagram. Our aim is to find the most likely path that can be followed by 

the target.  Because of the randomness in the model, our approach must be statistical. 

That is, statistical optimization problem. The most likely path should be chosen from 

the possible m paths; therefore to find the best path among the others, a criterion is 

needed. Our criterion will be the Minimum Error Probability Criterion, which is a 

special case of the Bayes’ criterion in detection theory. Using this criterion reduces 
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the problem of finding the path most likely followed by the target to a multiple 

hypothesis-testing problem. 

4.6 Minimum Error Probability Criterion 

 Let we have M possible paths in the Trellis Diagram for the target to follow. 

We can refer these paths as M hypotheses to be determined. We would like to decide 

which hypothesis is true, that is, which path is most likely followed by the target.  

To do this analysis, we should develop a decision rule that assigns each point 

in the observation space D to one of the hypotheses. Therefore, the decision rule 

divides the whole observation space into M subspaces. We must choose the decision 

regions D1, D2, … , DM in such a way that overall error probability is minimized. 

 The overall error probability, sometimes called Bayes’ risk, R is defined by: 

R  ∑∑ ∫
=

≠
= ∈ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧M

j

M

ji
i Dz

L
jj

iL

L dzHzpHp
1 1

)|()(     (4.11) 

where  

 p(Hj):   Probability that the hypothesis Hj (path Hj) is true, 

  p(zL|Hj):   Conditional probability of the observation sequence zL (z(1), 

      z(2),…,z(L)) given that hypothesis Hj is true.  

 In order to find the optimal decision rule, we vary the decision regions D1, D2, 

…, DM so that the risk R is minimized. The optimum decision rule is: 

 Choose Hi if )()()()( j
L

ji
L

i HzpHpHzpHp >  for all j≠i, (4.12) 
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4.7 Optimum Decision Rule  

For the motion model (4.8) and the observation model (4.10) the a priori 

probability of hypothesis Hi can be rewritten as: 

∏
=

=
L

k

i
kiHp

0

)( π        (4.13) 

Since the disturbance noise vector w(k) is assumed to be independent of w(j) and 

x(0) for all j≠k, where πk
i is as defined in the section 4.5.  

 Since the observation noise v(k) is independent from sample to sample, we 

can write  

 ∏
=

=
L

k

i
qi

L kxkzprobHzp
1

)}()({)(      (4.14) 

 Please note that k starts from 1, not 0 since for k=0, no decision is made. The 

only thing done is quantize x(0) and approximate it with nx0 possible values.  

Since z(k) is a Gaussian distributed random variable, )()( kxkz i
q  is also a 

Gaussian distributed random variable with mean )0),(,( kxkg i
q  and variance σ2

v(k). 

So, ))()(( kxkzp i
q  can be computed according to the formula given in equation 

(4.15). 

       [ ] 2/12/ )det()2()}()({ −= i
ni

q Rkxkzprob π  (4.15) 

               Η [ ] [ ]⎟
⎠
⎞

⎜
⎝
⎛ −−− − )0),(,()()0),(,()(

2
1exp 1 kxkgkzRkxkgkz i

qi

Ti
q  

Substituting equation (4.13) and (4.14) into the optimum decision rule of equation 

(4.14), we obtain the following: 

Choose Hi if 
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∏∏
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L
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q
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k

j
L

k

i
q

i
k

i kxkzprobkxkzprob
1

0
1

0 ))(|)(())(|)(( ππππ  (4.16) 

 for all j≠i. 

Obviously, using summation will be more useful than the multiplication. 

Since the natural logarithm function is monotonically increasing, taking the natural 

logarithm of both sides of the inequality will not affect the validity of the inequality. 

After we take the natural logarithm of both sides, we get the following: 

 Choose Hi if  

{ }>++∑
=

L

k

i
q

i
k

i kxkzprob
1

0 ))(|)((ln()ln()ln( ππ  (4.17) 

  { }∑
=

++
L

k

j
q

j
k

j kxkzprob
1

0 ))(|)((ln()ln()ln( ππ  

 for all j≠i. 

 

 

4.8 Optimum Decoding-Based Smoothing Algorithm 

Optimum Decoding-Based Smoothing Algorithm (ODSA) is based on 

following logic: 

 Since the target motion is represented by a Trellis Diagram, using optimum 

decision rule, path that has maximum probability will be found. The operation will 

be done by Viterbi [3,4] algorithm. This method finds the most probable path along 

the Trellis Diagram from time 0 to time L by comparing the metric values. Let us 

present some definitions that will be used throughout the chapter.  

Definition 4.6: An initial node is a quantization level at time zero. The metric, 

denoted by MN(xqi(0)), is defined by 

MN(xqi(0))=ln[prob{xq(0)=xqi(0)}]         (4.18) 

Therefore, MN(xqi(0))=ln(π0
m). 
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Definition 4.7 The metric, denoted by MNT[xqj(k-1)→ xqj(k)] of the branch, 

which connects the quantization level (node) xqj(k-1) to node xqj(k).  

M[xqj(k-1)→ xqj(k)]= ln[prob{xq(k)=xqi(k) | xq(k-1)=xqj(k-1) }]  (4.19) 

This metric is called transition metric of node xqj(k-1) to node xqj(k). 

Definition 4.8 The metric denoted by MNO[xqi(k)] is called the output metric 

that comes by the difference between output value and the estimated output value. 

That is, 

MNO[xqi(k)]=ln[p{z(k)|xqi(k)}]     (4.20) 

Definition 4.9. The metric of a path from time 0 to time i is the summation of 

the metric of the initial node from time, which the path starts, and the metrics of the 

branches of which the path consists.  

Please note that, the metric of a node xq(k) has three components which are  

1. The metric comes from previous node. MN(xq(k-1)) 

2. The metric comes from the transition from xq(k-1) to xq(k) which is 

transition metric. 

3. The metric comes from the difference between output value and estimated 

value of z(k), which is output metric.  

To find the metric of a node, all three components of the metrics should be 

added up.  

Definition 4.10. The error probability of a path, say Hm, through a Trellis 

Diagram with M possible paths H1, H2, … , HM is the probability of deciding that a 

path which is different from HM is the one most probably followed by the target 

when the target actually followed the path HM. This error probability is denoted by 

MEP  (H1, H2, … , HM).  Hence, 

MEP (H1, H2, … , HM)  Prob{zL∈D |HM}= L

Dz
M

L dzHzp
M

L
∫
∈

)|(    (4.21) 
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where D M is the complement of the decision region DM for the path HM. And 

p(zL|HM) is the probability density function of the observation sequence zL when the 

target actually followed the path HM. Therefore, from equation (4.11), the overall 

error probability for the detection of the path most likely followed by the target can 

be expressed in terms of the path error probabilities as follows: 

PE=∑
=

M

m
mEm HHHPHp

m
1

21 ),...,,()(      (4.22) 

After presenting the definitions, we can begin the implementation steps of the 

ODSA algorithm: 

Step 0.(Initialization step) First of all, reduce the motion model to a finite 

state model and obtain the Trellis Diagram for the target motion from time 0 to time 

L. At time 0, obtain the approximated initial random vector x0 by using the algorithm 

explained in section 4.2. Also, using equation (2.18) assign each node to its metric 

value.  

Step 1. At time 1, using the initial node’s metric, transition probability and the 

observation z(1), evaluate the metrics of the new nodes. Take a fixed number of the 

nodes that have larger metric to limit the number of states since otherwise the 

number of the states might be blown up and make the algorithm useless.  

Step k. For each node at time k, using the previous node’s metric, transition 

probability and observation at time k, z(k), evaluate the metrics of the (k+1)th nodes. 

Take a fixed number of the nodes that have larger metric to limit the number of the 

states since otherwise the number of the states would be blown up and make the 

algorithm useless. 

Step Final. After k reaches to L, choose the node that has maximum metric 

value. Then, by going backward to the parent nodes of the chosen node, the chain of 

the most probable states will be gotten.  
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4.9 An Example of ODSA Algorithm 

To understand the ODSA algorithm better it will be very useful to apply the 

algorithm on a model for few steps. Let us apply the ODSA to Lotka-Volterra Model 

for L=2. 

Initial step. First of all, we decide the program parameters nx0, ny0, nw1, nw2, 

nbr and ndr which are the quantization levels of the random vectors x0, y0, w1, w2, br 

and dr. Let we have nx0=5, ny0=5, nw1=3, nw2=3, nbr=5 and ndr=5. Then, at time 0, 

we have nx0Ηny0=5x5=25 nodes and the initial metrics to all nodes which are the 

logarithm of the corresponding probabilities. 

Moreover, we have to decide the other system parameters such as meanX0, 

meanY0, varx0, vary0, varw1, varw2, meanbr, meandr, varbr, vardr, 2
1vσ , 2

2vσ ,GS(gate 

size) and MaxState(maximum number of states). Let us clearly define these 

parameters and assign them their values: 

• meanX0: The mean of the initial state X0, which is the mean of the initial 

value of the Rabbits in the ecosystem. Let it be 20, i.e. meanX0=20. 

• meanY0: The mean of the initial state Y0, which is the mean of the initial value 

of the Foxes in the ecosystem. Let it be 25, i.e. meanY0=25. 

• varX0: The variance of the number of existing Rabbits initially in the 

ecosystem. Let it be 9, i.e., varX0=9. 

• varY0: The variance of the number of existing Foxes initially in the 

ecosystem. Let it be 4, i.e., varY0=4. 

• varw1: The variance of the disturbance noise to the system. That is the effects 

on the number of Rabbits other than foxes, which cannot be explained by the model, 

such as eaten rabbits by some animals other than Foxes or etc.  Let it be 4, i.e., 

varw1=4. 

• varw2: The variance of the disturbance noise to the system. That is the effects 

on the number of Foxes other than rabbits, which cannot be explained by the model, 

such as foxes nourished by some animals other than Rabbits. Let it be 4, i.e., 

varw2=4. 
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• meanbr: Average of the usual birth rate of the Rabbits. .  Let it be 0.7, i.e., 

meanbr=0.7. 

• meandr: Average of the usual death rate of the Foxes. Let it be 0.5, i.e., 

meandr=0.5. 

• varbr: Variance of the birth rate of the Rabbits. Let it be 0.1, i.e., varbr=0.1. 

• vardr: Variance of the dearth rate of the Foxes. Let it be 0.1, i.e., vardr=0.1. 

• 2
1vσ : Variance of the observation noise of the number of the Rabbits. Let it 

be 1, i.e., 2
1vσ =1. 

• 2
2vσ : Variance of the observation noise of the number of the Foxes. Let it be 

4, i.e., 2
2vσ =4. 

• GS: The gate size of the quantizer function. Let it be 0.01, i.e., GS=0.01. 

• MaxState: The maximum number of the states allowed that could be taken 

into account while passing to next time. Let it be 100, i.e., MaxState=100. 

At this moment, we can evaluate and write down the initial nodes. In the 

evaluation of x0 and y0, we will use the following equations: 

[ ]{ }00 var)0()0( xxmeanXQx qiq ×+=     (4.23) 

[ ]{ }00 var)0()0( yymeanYQy qiq ×+=     (4.24) 

Let us define (XY)k,l as the lth node at time k.  

(XY)0,1= Quantize {(meanX0+1st value of nX0 approximation points)×square root 

of variance of X0} 

For example  

(XY)0,1= Q{20+ (-1.3767) ×√9}=Q{20- 4.1301}=Q{15.8699}=15.87 

The other nodes can be evaluated using (4.23) and (4.24).  

Let us form the nodes of the initial state of the Trellis Diagram: 
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• (XY)0,1=(15.87 , 22.25 ) ; MN((XY)1,0)=ln(0.169)+ln(0.169)=-3.5605 

• (XY)0,2=(15.87 , 23.82 ) ; MN((XY)2,0)=ln(0.169)+ln(0.216)=-3.3095 

• (XY)0,3=(15.87 , 25.00 ) ; MN((XY)3,0)=ln(0.169)+ln(0.230)=-3.2521 

• (XY)0,4=(15.87 , 26.18) ; MN((XY)4,0)=ln(0.169)+ln(0.216)=-3.3095 

• (XY)0,5=(15.87 , 27.75) ; MN((XY)5,0)= ln(0.169)+ln(0.169)=-3.5605 

• (XY)0,6=(18.22 , 22.25) ; MN((XY)6,0)=ln(0.216)+ln(0.169)=-3.3095 

• … 

• (XY)0,13=(20.00 , 25.00) ; MN((XY)13,0)=ln(0.230)+ln(0.230)=-2.9437 

• … 

• (XY)0,25=(24.13 , 27.75) ; MN((XY)25,0)= ln(0.169)+ln(0.169)=-3.5605 

Once we prepared the initial nodes (XY)0 and corresponding metrics, we can pass to 

step 1.  

Step 1. (XY)1 is determined by 4 unknown variables, namely, w1, w2, br and dr. It is 

obvious that also (XY)0 determines (XY)1.  

Let us start evaluating the nodes of the (XY)1 from (XY)0,1. Since there are 4 

variables that determines (XY)1, and according to the assumptions made in the 

previous step, that is, nw1=3, nw2=3, nbr=5 and ndr=5, we can have 3×3×5×5=225 

different values while coming from (XY)1,0. The values depend on the variables nw1, 

nw2, nbr and ndr.  

After we assign all possible values to whole (XY)1 pairs, we are ready to 

metric evaluation. As stated in the section 4.8, metrics have 3 components: 

1. Metric coming from the previous node, MN((XY)0,1) =-3.5605 

2. Metric due to the transition, which is the sum of the natural logarithms of 

prob(w1=w1,1), prob(w2=w2,1), prob(br=br1) and prob(dr=dr1). That is, ln(0.315)+ 

ln(0.315)+ ln(0.169)+ ln(0.169)= -5.8721  

3. The metric comes from the observation. Natural logarithm of 

the ))()(( 1,1XYkzprob . Since observation equation is 
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and the observation noises v1 and v2 are independent from each other, 

))()(( 1,1XYkzprob =      (4.26) 

))()1()1(())()1()1(( 1,121,11 XYvyprobXYvxprob +×+  

   Then,  

   ))()1()1(( 1,11 XYvxprob + =N(x1,1, 2
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 (4.27) 

 

 where x(1) is the observation of x at time 1, x1,1 is approximated value of x at 

time 1 and at node 1 and 2
1vσ =1, also 

   ))()1()1(( 1,12 XYvyprob + =N(y1,1, 2
2vσ ) 
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 (4.28) 

where y(1) is the observation of x at time 1, y1,1 is approximated value of y at 

time 1 and at node 1and 2
2vσ =4 

 Consequently, metric due to observation is  

MNO((XY)1,1)=ln{ ))()(( 1,1XYkzprob }=   (4.29) 

 ln{ ))()1()1(( 1,11 XYvxprob + } +ln{ ))()1()1(( 1,12 XYvyprob + } 
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Let x(1)=19.29 and y(1)=26.41, then 

ln{ ))()(( 1,1XYkzprob }= -7.7720+(-5.3799)= -13.1519  (4.30) 

Now, to find the metric of (XY)1,1, we will add up the tree metrics above. 

Then,  

MN((XY)1,1)= MN((XY)0,1)previous+ MN((XY)1,0→(XY)1,1)transition+MNO((XY)1,1) 

(4.31) 

          = -3.5605+(-5.8721)+(-13.1519)  

          = -22.5845 

The same operation should be done for (XY)1,2, (XY)1,3, … , (XY)1,225 by 

changing the value of the variables at each turn. Then, we have 225 (XY)1 pairs that 

are coming from (XY)1,0. At this point, (XY) pairs should be quantized with the proper 

gate size. Note that after quantization, some (XY) pairs may be equal. When (XY) 

pairs are equal, the probabilities of the variables that give same (XY) pair should be 

added and then total probability is taken in the calculation of the transition metric. 

After this operation, sometimes the number of “children nodes” of (XY)0,1 may 

decrease from 225. Please note that, if the gate size is large, it causes more reduction 

in the number of nodes on behalf of increase in the error. On the other hand, if the 

gate size is too small fewer nodes will fall into same gate, which causes increase in 

computation time. Obviously, in this case the error will decrease. Therefore, 

compensation between gate size GS and Error should be done.  

The operation done to node (XY)0,1 should be done for all nodes at time 0. 

That is, (XY)0,2, (XY)0,3, … , (XY)0,25. Each will produce 225 (or less) nodes. In case of 

being same (XY)1 pair coming from different parent nodes, the one having larger 

metric will be chosen and other having smaller metric will be thrown out.  

Totally, we will have at most 225x25=5625 different nodes for (XY)1. At the 

next time, say (XY)2, the number of the nodes will reach to 5625x225= 1265625 

which is an enormous number. However, as mentioned in the section 4.8, the number 
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of states will be limited. Since for this example we assumed that the maximum 

number of states is MaxState=100, the number of states will not exceed 100. 

Obviously we will choose the states 100 states which have the largest metric. 

Therefore, at the end of step 1, we will have at most 100 different nodes and their 

associated metric values.  

Step 2.The same operation should be done as step 1, the only difference is the 

number of initial states. At step1, we had 25 initial nodes, however, in this step, we 

have 100 different initial nodes. The whole operation is same with step 1.  

After the operations are done, we will have again at most 100, the number of 

maximum allowed states, and the associated metric values.  

Step Final. Since k=2 is reached, note that L=2 for this example, we should 

check the metric values of (XY)2 node. Then, the node that has largest metric value is 

our most probable state at time 2. For k=1, we should go to the parent of the node 

chosen as most probable node at time 2. For k=0, again we should go to the parent of 

the node chosen at time 1. Then, the most probable state chain is  

{(XY)0,i, (XY)1,j, (XY)2,l} where 

(XY)2,l is the node that has largest metric value. 

(XY)1,j is the parent of the (XY)2,l node. 

(XY)0,i is the parent of the (XY)1,j node.  

 

 

4.10 Complexity Analysis of ODSA 

 The runtime of the program written for ODSA is determined by the 

maximum number or states, MaxState, the time L, numbers of quantization levels 

nX0, nY0, nw1, nw2, nbr, ndr and the gate size GS.  
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 If the number of states were not limited, the program will be useless for the 

Stochastic Discrete Lotka Volterra Model, since the runtime will blow up. Each time 

step the possible maximum time consumption for will be nX0 nY0(nw1nw2nbrndr)k at 

time k. Let the maximum time consumption at each state be ts, then the time 

consumption at each time step k will be tsnX0 nY0(nw1nw2nbrndr)k. Then the total runtime 

will be equal to: 

Runtime = (tsnX0 nY0+ tsnX0 nY0nw1nw2nbrndr+ tsnX0 nY0(nw1nw2nbrndr)2 + 

tsnX0nY0(nw1nw2nbrndr)3 +…+ tsnX0 nY0(nw1nw2nbrndr)L)=
1)(

1)(

21

1
21

00 −
−+

drbrww

L
drbrww

YXs nnnn
nnnnnnt  

          (4.32) 

where 

 ts : Maximum time consumption at each state 

 nX0 : The number of quantization level of state X(0) 

 nY0 : The number of quantization level of state Y(0) 

 nw1 : The number of quantization level of disturbance noise w1(k) 

 nw2 : The number of quantization level of disturbance noise w2(k) 

 nbr : The number of quantization level of birth rate br(k) 

 ndr : The number of quantization level of death rate dr(k) 

 Since (nw1nw2nbrndr)L+1 >>1, (nw1nw2nbrndr)L+1-1≈ (nw1nw2nbrndr)L+1. Therefore,  

 Runtime ≈  1
21

21

00 )(
1)(

+

−
L

drbrww
drbrww

YXs nnnn
nnnn

nnt   (4.33) 

 The program run time increases exponentially as time L increases. So, in case 

of unlimited number of states, the program complexity will be O((nw1nw2nbrndr)L).  
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If the number of states is limited by some value at each time k, the program 

runtime for the worst case will be: 

Runtime = ts nML    (4.34) 

where 

 ts : Maximum time consumption at each state 

 nM : The maximum number of states allowed. 

 From 4.31 we can say that program run time increases linearly as time L 

increases. Therefore, if the maximum number of states is limited, the program 

complexity will be O(L).  

 On the other hand, the gate size effects the program run time since due to 

quantization, some of the states will fall into same gate and these states will be 

discarded. Therefore, larger gate size will decrease the program run time.  

4.1.10 Program Runtime Simulation 

In this section, the changes in the program runtime will be studied via the 

simulation plot. If the maximum number of states is limited, the Figure 6 shows the 

one step runtime versus iterations where one step runtime is the amount of time 

passes in one time-step, that is from time k to time k+1. The model parameters are 

chosen as same values in the simulation Chapter 2, and the algorithm parameters are 

as follows: 

• Maximum number of states (MaxState) : 25 

• Quantization number of Initial State X0 (nX0) : 5 

• Quantization number of Initial State Y0 (nY0) : 5 

• Quantization number of the disturbance noise w1 (nw1) : 3 

• Quantization number of the disturbance noise w2 (nw2) :3  

• Quantization number of the birth rate (nbr) : 5 

• Quantization number of the death rate (ndr) : 5 
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The program runtime is plotted for various Gate Size (GS) values.   

 

 

Figure 6 Plot of One Step Runtime vs. Iteration Number 

 

 

 It is clear in the plot that when the gate size, GS, increases, the program 

runtime decreases since some of the nodes fall down into the same gates and the 

those states are discarded. Consequently, this yields decrease in the runtime.  
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CHAPTER 5 

 
 

PARTICLE FILTER 

 
 
 

5.1 Particle Filters 

 Particle filtering is a sequential Monte Carlo methodology where the basic 

idea is the recursive computation of relevant probability distributions using the 

concepts of importance sampling and approximation of probability distributions with 

discrete random measures. The earliest applications of sequential Monte Carlo 

methods were in the area of growing polymers [29], [30], and later they expanded to 

other fields including physics and engineering. Sequential Monte Carlo methods 

found limited use in the past, except for the last decade, primarily due to their very 

high computational complexity and the lack of adequate computing resources of the 

time. The fast advances of computers in the last several years and the outstanding 

potential of particle filters have made them recently a very active area of research. 

Their potential for parallel implementation represents additional impetus for their 

development. The current interest in particle filtering for signal processing 

applications was brought on by Gordon, Salmond and Smith [31].  

Let the system equation be in form: 

),( 11 −−= kkk wxfx       (5.1) 

where,  xwx nnnf ℜ→ℜ×ℜ: is a possibly nonlinear function of xk and wk. The state 

variable xn
kx ℜ∈  and the noise wn

kw ℜ∈  is independent and identically distributed 

(i.i.d) process noise sequence. nx and nw are the dimensions of the state and the 
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process noise vectors, respectively. The aim is to recursively estimate xk using the 

measurements:  

),( kkk vxhz =       (5.2) 

where,  zvx nnnh ℜ→ℜ×ℜ: is possibly nonlinear function of xk and vk. The state 

variable xn
kx ℜ∈  and the noise vn

kv ℜ∈  is (i.i.d) measurement noise sequence. nx 

and nv are the dimensions of the state and the measurement noise vectors, 

respectively. In particular, particle filter seeks filtered estimates of xk based on the set 

of all available measurements  { }kizz i ,,2,1,k:1 K==  , up to time k. 

 

 

5.1.1 Sequential Importance Sampling (SIS) Algorithm  

 The Sequential Importance Sampling (SIS) [31] algorithm is a Monte Carlo 

(MC) method that forms the basis for most sequential MC filters developed in the 

past decades. The key idea of the SIS algorithm is to represent the required posterior 

density function by a set of random samples with associated weights and to compute 

estimates based on these samples and weights.  

 Let the probability density function (pdf) of the xk approximated with the 

weighted samples where 1
i

=∑ i
ks . Then the pdf at k can be approximated as: 

.)()|(
1

:0:0:11:0 ∑
=

−≈
sN

i

i
kk

i
kk xxszxp δ     (5.3) 

where Ns is the number of sample points approximating the pdf. The weights are 

chosen using importance sampling. That is,  

)|(
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k
i

k

k
i

k
k zxq

zxps ∝      (5.4) 

where, q(.) is importance density.  
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The algorithm of the SIS is following: 

• FOR i=1:Ns 

o  Draw ),|(~ 1
i

k
i
kkk zxxqx −  

o Assign the particle a weight, i
ks , according to  

),|(
)|()|(

:11

11
1

k
i
k

i
k

i
k

i
k

i
ki

k
i
k zxxq

xxpxzpss
−

−
−∝  (5.5) 

• END FOR 

On the SIS algorithm, degeneracy problem can occur in some modes. To 

overcome this problem, Resampling can be made. Therefore Sampling Importance 

Resampling Filter SIR [31] is developed.  

 

 

5.1.2 Sampling Importance Resampling (SIR) Algorithm 

 SIS algorithm sometimes suffers from degeneracy problem which is after few 

iterations, all but one particle will have negligible weight. The variance of the 

importance weights can only increase over time; therefore, it is impossible to avoid 

the degeneracy phenomenon. As degeneracy problem occurs, large computational 

effort is devoted to updating particles whose contribution to approximation of pdf is 

almost zero.  

 To overcome degeneracy problem, resampling will be used. The basic idea of 

resampling is to eliminate particles that have small weight and concentrate on the 

particles that have large weights. The resampling step involves generating a new set 

{ } sN
i

i
kx 1
*

=  by resampling (with replacement) Ns times from an approximate discrete 

representation of )|( :1k
i
k zxp  given by 
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so that, i
k

i
k

i
k sxx == )Pr( * . The resulting sample is in fact an i.i.d. sample from the 

discrete density (5.6); therefore, weights are now reset to S1/N=i
ks  

 The algorithm of Resampling is as follows: 

• Initialize the constant c0=0 

• FOR i=1:Ns  

o ci= ci-1+ i
ks  

• End FOR 

• Draw a starting point ⎥⎦
⎤

⎢⎣
⎡∈

sNu 1,01 , uniformly distributed. 

• FOR j=1:Ns 

o i=1 

o 
s

j N
juu 1

1
−

+=  

o WHILE uj>ci 

 i=i+1 

o END WHILE 

o Assign j
k

j
k xx =* , 

s

j
k Ns 1* =  

• END FOR 

 

Then the SIR algorithm becomes; 

),( 11 −−= kkk wxfx      (5.7) 

),( kkk vxhz =       (5.8) 

• Generate Ns values from pdf of x0 

• Generate Ns values from pdf of vk 
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When this SIR algorithm is applied to Stochastic Discrete Lotka Volterra Model 

in section 2.2.1,  

For Ns=25, the resultant filtering output becomes: 
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Figure 7 The Real Value of Population of Prey, X, and Its Estimate 

 

 

The Error is : 
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Figure 8. The Error of Population of Prey, X 

 

The system model is: 

X[k+1]=X[k]+brR[k]-a1X[k]Y[k]+w1[k]  (5.9) 

Y[k+1]=Y[k] –drY[k]-a2Y[k]X[k]+w2[k]  (5.10) 

 The system parameters are chosen as:Ns=100; 

L=1000; 

a1=0.007; 

a2=0.006; 

meanBR=0.7; 

meanDR=0.5; 

meanX0= 20; 
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meanY0= 25; 

varBR=0.1; 

varDR=0.1; 

varw1=4; 

varw2=4; 

varv1= 1; 

varv2= 4; 

varX0= 1; 

varY0= 1; 

The resultant RMS mean of the error for this sample run is: 

RMS Error Mean = 4,585 

RMS Error Variance = 10,8227 

Run Time= 4.136 secs 

where RMS error is defined as: 

RMS Error  
N

zz
N

j
jj∑

=

−
1

2)(
 ,  where N is number of turns and jz is estimated 

value of zj.  

 

 The error performance of the algorithms will be given in detail in the 

CHAPTER 7.  
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CHAPTER 6 

 

 

SIMULATION RESULTS FOR THE ODSA  

 

 

 

Simulations of ODSA applied to the Stochastic Discrete Lotka-Volterra 

Model are done by using MATLAB®. In order to simulate the Discrete Lotka-

Volterra Model, state and observation vectors should be generated. The noises of the 

model are generated at MATLAB® using randn(.) function of MATLAB® to 

generate Gaussian distributed random vectors.  

The Stochastic Discrete Lotka-Volterra Model is given in the following: 

X[k+1]=X[k]+brX[k]-a1X[k]Y[k]+w1[k]    (6.1) 

Y[k+1]=Y[k] –drY[k]-a2Y[k]X[k]+w2[k]    (6.2) 

 The observation equation is, 

⎥
⎦
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1

kv
kv

kY
kX

kZ       (6.3) 

At the whole simulations done in Chapter 6, unless otherwise stated, the 

model parameters are chosen as in the following: 

• Mean of initial state X0 (meanX0) :  20 
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• Mean of initial state Y0 (menaY0) :  25 

• Variance of initial state X0 (varX0) : 4 

• Variance of initial state Y0 (varY0) : 9 

• Mean of birth rate of X (meanbr) : 0.7 

• Mean of death rate of X (meandr) : 0.5 

• Variance birth rate of X (varbr) : 0.1 

• Variance death rate of X (vardr) :0.1 

• The interaction parameter between X and Y (a1) : 0.007 

• The interaction parameter between Y and X (a2) : 0.006 

• Variance of disturbance noise w1 (varw1) : 4 

• Variance of disturbance noise w2 (varw2) : 4 

• Variance of observation noise v1 (varv1) : 1 

• Variance of observation noise v2 (varv2) : 4 

Moreover, unless otherwise stated, the algorithm parameters are the following: 

• Maximum number of states (MaxState) : 25 

• Gate Size (GS) : 0.01 

• Quantization number of Initial State X0 (nX0) : 5 

• Quantization number of Initial State Y0 (nY0) : 5 

• Quantization number of the disturbance noise w1 (nw1) : 3 

• Quantization number of the disturbance noise w2 (nw2) :3  

• Quantization number of the birth rate (nbr) : 5 

• Quantization number of the death rate (ndr) : 5 

Simulations are done according to the algorithm given in sections 4.8 and 4.9. 

At each execution, the state and the observation vectors have been changed.  

First of all, 100 run Monte Carlo simulations are done to see the error 

performance and the course of error is plotted. Secondly, the effects of the model 

parameters are investigated via simulations and the results are plotted. Finally, the 

effects of ODSA parameters are investigated via simulations and the results are 

plotted. 
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6.1 The Error Performance of the Algorithm 

 

 In this section, the plots of the simulation results are given. For each 

parameter, the RMS (Root-Mean-Square) errors of the state values X and Y are 

plotted. After the plots, the mean of the RMS error, variance of the RMS error are 

given in a table. Moreover, RMS error is defined as:  

RMS Error  
N
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N

j
jj∑

=

−
1

2)(
 ,  where N is number of turns and jz is estimated 

value of zj.  

 In  addition, mean and variance of RMS error is defined below: 
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where 
kRMSE  is RMS Error at kth run.  
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Figure 9. Plot of RMS Error of X in 100 turns 
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Figure 10. The Plot of RMS Error of Y in 100 Turns 

 

 

 Some numerical data of the graphics above are the following: 

Table 3.The numerical data of the RMS error plot of ODSA 

Mean RMS Error of X 0.5734 

Mean RMS Error of Y 0.3002 

Variance of RMS Error of X 0.5234 

Variance of RMS Error of Y 0.1251 
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6.2 The Effects of Model Parameters 

 

 The algorithm output depends on both model and algorithm parameters. The 

model parameters are due to the model itself. These parameters are usually the 

variances of random terms in the model equation (6.1 and 6.2), namely, initial state 

variance, disturbance noise variance, death-birth rate variances and the observation 

noise variance.  

 

 

6.2.1 The Effect of Variance of Initial States X0 and Y0    (varX0 & varY0) 

 

 

 

Figure 11 The Plot of RMS Error of X vs. L, for Various Initial State Variances 
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Figure 12. The Plot of RMS Error of Y vs. L, for Various Initial State Variances 
 

 

 

 Some numerical data of the graphics above are the given in the following 

table: 

Table 4.The numerical data of the RMS error for various initial state variances 

 VarX0= 0.1 
VarY0= 0.1 

VarX0= 1 
VarY0= 1 

VarX0= 10 
VarY0= 10 

Mean RMS Error of X 0.5767 0.5802 0.5975 

Mean RMS Error of Y 0.2968 0.3017 0.3074 

Variance of RMS Error of X 0.5158 0.5182 0.5198 

Variance of RMS Error of Y 0.1232 0.1248 0.1295 
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6.2.2 The Effect of Variances of Disturbance Noises w1 and w2 (varw1 & 

varw2) 

 

 
Figure 13. The Plot of RMS Error of Y vs. L, for various Disturbance Noise 
Variances 
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Figure 14. The Plot of RMS Error of X vs. L, for various Disturbance Noise 
Variances 

 

 

 Some numerical data of the graphics above are the given in the following 

table: 

Table 5.The numerical data of the RMS error for various disturbance noise 
variances 

 varw1= 0.1 
varw2= 0.1 

varw1= 1 
varw2= 1 

varw1= 10 
varw2= 10 

Mean RMS Error of X 0.7718 1.1895 4.4490 
Mean RMS Error of Y 0.4658 0.5244 2.2649 
Variance of RMS Error of X 0.0617 0.1531 142.36 
Variance of RMS Error of Y 0.0082 0.0136 10.5760 
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6.2.3 The Effect of Variances of Birth Rate and Death Rate (varbr & vardr) 

 

 

 

Figure 15 The Plot of RMS Error of X vs. L, for Various Birth and Death Rate 
Variances 
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Figure 16 The Plot of RMS Error of Y vs. L, for Various Birth and Death Rate 
Variances 

 

 

 Some numerical data of the graphics above are the given in the following 

table: 

Table 6.The numerical data of the RMS error for death and birth rate variances 

 varbr= 0.01 
vardr= 0.01 

varbr= 0.1 
vardr= 0.1 

varbr= 1 
vardr= 1 

Mean RMS Error of X 0.8591 1.0107 1.6626 

Mean RMS Error of Y 0.4311 0.5378 0.6309 

Variance of RMS Error of X 0.0388 0.0389 2.1911 

Variance of RMS Error of Y 0.0081 0.0097 0.0897 
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6.2.4 The Effect of Observation Noise Variances ( 2
1vσ  & 2

2vσ ) 

 

 

Figure 17 The Plot of RMS Error of Y vs. L, for Various Observation Noise 
Variances 
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Figure 18 The Plot of RMS Error of Y vs. L, for Various Observation Noise 
Variances 

 

 

 Some numerical data of the graphics above are the given in the following 

table: 

Table 7.The numerical data of the RMS error for various observation noise 
variances 

 varv1= 0.1 
varv2= 0.1 

varv1= 1 
varv2= 1 

varv1= 10 
varv2= 10 

Mean RMS Error of X 0.7488 0.9078 3.1334 

Mean RMS Error of Y 0.2281 0.2751 1.0223 

Variance of RMS Error of X 0.0607 0.0687 23.0983 

Variance of RMS Error of Y 0.6220 1.1324 1.6241 
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6.3 The Effects of Algorithm Parameters 

 

6.3.1 The Effect of Maximum Number of States (MaxState) 

 

 

 

Figure 19 The Plot of RMS Error of X vs. L, for The Effect Maximum Number of 
States 
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Figure 20 The Plot of RMS Error of Y vs. L, for The Effect Maximum Number of 
States 

 

 

 Some numerical data of the graphics above are the given in the following 

table: 

Table 8.The numerical data of the RMS error for various maximum number of states 

 MaxState=5 MaxState=25 MaxState=200 

Mean RMS Error of X 1.2209 0.96147 0.59829 

Mean RMS Error of Y 0.56783 0.48194 0.11175 

Variance of RMS Error of X 4.1873 0.22863 0.45924 

Variance of RMS Error of Y 0.36472 0.061338 0.011297 
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6.3.2 The Effect of Gate Size (GS) 

 

Figure 21 The Plot of RMS Error of X vs. L, for The Effect of Gate Size 
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Figure 22 The Plot of RMS Error of X vs. L, for The Effect of Gate Size 

 

 

 Some numerical data of the graphics above are the given in the following 

table: 

Table 9.The numerical data of the RMS error for various gate sizes 

 GateSize= 0.05 GateSize= 0.5 GateSize= 5 

Mean RMS Error of X 0.57638 0.64751 27.542 

Mean RMS Error of Y 0.30093 0.3242 8.1364 

Variance of RMS Error of X 0.49875 0.47615 6902.6 

Variance of RMS Error of Y 0.11394 0.096012 584.08 
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6.3.3 The Effect of the Quantization Number of the Initial States (nX0 and 

nY0) 

 

Figure 23. The Plot of RMS Error of X vs. L, for number of Quantization Level Initial 
States X0 and Y0 
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Figure 24 The Plot of RMS Error of Y vs. L, for number of Quantization Level Initial 
States X0 and Y0 
 

 

 

 Some numerical data of the graphics above are the given in the following 

table: 

Table 10.The numerical data of the RMS error for various quantization number of 
the initial states 

 nX0= 2 
nY0= 2 

nX0= 5 
nY0= 5 

nX0= 15  
nY0= 15 

Mean RMS Error of X 0.57843 0.57337 0.58835 

Mean RMS Error of Y 0.30218 0.3002 0.29871 

Variance of RMS Error of X 0.48990 0.5234 0.53181 

Variance of RMS Error of Y 0.12412 0.12509 0.12167 
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6.3.4 The Effect of the Quantization Number of the Disturbance Noises 

(nw1 and nw2) 

 

Figure 25 The Plot of RMS Error of X vs. L, for Number of Quantization Level of 
Disturbance Noises w1 and w2 
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Figure 26 The Plot of RMS Error of Y vs. L, for Number of Quantization Level of 
Disturbance Noises w1 and w2 
 

 

 

 Some numerical data of the graphics above are the given in the following 

table: 

Table 11.The numerical data of the RMS error for various quantization number of 
the disturbance noise 

 nw1= 2 
nw2= 2 

nw1= 5 
nw2= 5 

nw1= 15 
nw2= 15 

Mean RMS Error of X 1.4375 0.62056 0.41171 

Mean RMS Error of Y 0.69046 0.24363 0.23521 

Variance of RMS Error of X 1.1863 0.29344 0.26515 

Variance of RMS Error of Y 0.24057 0.073297 0.097041 
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6.3.5 The Effect of the Quantization Number of the Death Rate and Birth 

Rate (nbr and ndr) 

 

Figure 27 The Plot of RMS Error of X vs. L, for Number of Quantization Level of 
Birth and Death Rates 
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Figure 28 The Plot of RMS Error of Y vs. L, for Number of Quantization Level of 
Birth and Death Rates 
 

 

 

 Some numerical data of the graphics above are the given in the following 

table: 

 

Table 12.The numerical data of the RMS error for various quantization number of 
the birth and death rates 

 nbr= 2 
ndr= 2 

nbr= 5 
ndr= 5 

nbr= 15  
ndr= 15 

Mean RMS Error of X 1.0244 0.69216 0.43035 

Mean RMS Error of Y 0.64057 0.41093 0.23504 

Variance of RMS Error of X 1.5092 0.5234 0.35239 

Variance of RMS Error of Y 0.18524 0.12509 0.11773 
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6.4 Comments on Simulation Results 

 

 

 As it can be seen from the simulation results the variance of the RMS error is 

smaller than both the disturbance and observation noise variances.  

 For the effects of the model parameters, first of all, it can be seen from the 

Figure 11 and Figure 12 that the error does not change with respect to the initial state 

variance; therefore, we can say that the system is not sensitive to initial states. 

 Secondly, it can be seen from the figures 13 and 14 that, both the error mean 

and variance changes significantly by the change in disturbance noise variance which 

is expected. If the system is not disturbed much, the resultant error performance 

would be better. 

 Thirdly, when the birth and death rate variance increase, the error variance 

increases, on the other hand, when the birth and date rate variance decrease, the error 

variance also decreases. 

 Fourthly, it can be seen from the figures 17 and 18 that when the observation 

noise variances 2
1vσ  and 2

2vσ  decrease, this improves the estimation performance 

both in the mean of the RMS error and the variance of the RMS error. The theoretical 

expectations satisfied via the simulation results.  

 The effect of ODSA parameters on the estimation performance is as follows. 

While observing the effects of the ODSA parameters, one would encounter a 

compromise between the error performance and the time consumption. In section 6.3 

five ODSA parameters are investigated via simulations, namely maximum number of 

states (MaxState), gate size (GS), number of quantization levels for initial states 
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(nX0 and nY0), number of quantization levels for disturbance noise (nw1 and nw2) 

and  number of quantization levels for birth and death rates (nbr and ndr).  

 First of all, as it can be seen from the figures 19, 20 and the Table 8, when 

MaxState increases, both RMS error variance and mean decreases. Note that the 

error decrease between MaxState=5 and MaxState=25 is more than the one between 

MaxState=25 and MaxState=200. This is because after a certain point, increase in the 

number of states does not affect the error performance significantly; however, 

increase in the number of states yields very high increase in the computation time. 

That is, one sample run takes about 2 minutes when MaxState=25 however it reaches 

45 minutes for MaxState=200. Therefore, maximum number of states can be adjusted 

according to the allowed error mean and variance.  

 Secondly, Figure 21 and Figure 22 show the RMS error performance of the 

algorithm for various gate sizes. The error performance decreases with the increase 

in the gate size however, the enhancement in the performance is not too large. On the 

other hand, if gate size (GS) is further increased, the probability of estimate 

diverging increases. For instance, when the GS is larger than 3, e.g., 5, the algorithm 

diverges for the parameters chosen in pages 45-46 of Chapter 6. Besides, increase in 

the GS yields decrease in the computation time, which is expected. 

 Thirdly, the increase in the number of quantization level for initial states X0 

and Y0 do not affect the performance of the algorithm, since number of quantization 

points for initial state X0, nX0, and of quantization points for initial state Y0, nY0, do 

not affect the estimation performance for large values of L. Since in Stochastic 

Discrete Lotka Volterra Model, L is in the order of thousands, resultant error 

performances do not change with the number of quantization levels for initial states 

X0 and Y0.  

 Fourthly, as it is seen in the Figure 25 and Figure 26, the increase in the 

number of quantization levels for disturbance noises w1 and w2 produces better 

performance in the RMS error mean and variance.  

 Finally, the number of quantization levels for birth and death rate affects the 

error performance as seen in the figures 27, 28 and the Table 12. 
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 Briefly, ODSA parameters affect the error performance of the algorithm. The 

ODSA parameters are usually related with the “resolution” of the algorithm. 

Therefore, increase in the resolution yields increase in the performance in worth of 

the computation time. Hence there is a compromise between the error and the 

computation time.  

 To sum up, the theoretical facts are verified via the simulation results. 
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CHAPTER 7 

 

 

COMPARISON of ODSA with PARTICLE FILTER 

 

 

7.1 Simulation Results for Particle Filter 

 

 Simulations of Particle Filter applied to Discrete Lotka-Volterra 

Model are done by using MATLAB®. In order to simulate the Discrete Lotka-

Volterra Model, state and observation vectors should be generated. The noises of the 

model are generated at MATLAB® using randn (.) function of MATLAB® to 

generate Gaussian distributed random vectors. Starting point u1 is drawn by using 

rand (.) function of MATLAB® to generate uniform distributed random number. 

The state space expression of the model is given in the following: 

X[k+1]=X[k]+brX[k]-a1X[k]Y[k]+w1[k]    (6.1) 

Y[k+1]=Y[k] –drY[k]-a2Y[k]X[k]+w2[k]    (6.2) 

 The observation equation is, 

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=
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][
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kv
kv

kY
kX

kZ       (6.3) 

Unless otherwise stated, the model parameters are chosen as in the following: 

a1=0.007; 
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a2=0.006; 

meanBR=0.7; 

meanDR=0.5; 

meanX0= 20; 

meanY0= 25; 

varBR=0.1; 

varDR=0.1; 

varw1=4; 

varw2=4; 

varv1= 1; 

varv2= 4; 

varX0= 1; 

varY0= 1; 

 The simulations were performed by the SIR Particle Filter with 500 runs and 

ODSA with 100 runs throughout this section. In next section, the performance of SIR 

Particle Filter is shown for various number of particles, Ns. 
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7.1.1 Simulation of Particle Filter with Ns=2 

 

Figure 29. The Plot of RMS Error of Prey, X, for Ns=2 using Particle Filter 
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Figure 30 The Plot of RMS Error of Predator, Y for Ns=2 using Particle Filter 

 

Mean of the RMS Error of Prey for Ns=2 is Mean_RMS=26.7345 

Variance of the RMS Error of Prey for Ns=2 is Var_RMS=111.6645 

Mean of the RMS Error of Predator for Ns=2 is Mean_RMS=20.779 

Variance of the RMS Error of Predator for Ns=2 is Var_RMS=53.6546  

 

 

7.1.2 Simulation of Particle Filter with Ns=5 
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Figure 31. The Plot of RMS Error of Prey, X, for Ns=5 using Particle Filter 

 

 



77 

 

Figure 32. The Plot of RMS Error of Predator, Y for Ns=5 using Particle Filter 

 

 

Mean of the RMS Error of Prey for Ns=5 is Mean_RMS=5.4072 

Variance of the RMS Error of Prey for Ns=5 is Var_RMS=6.2831 

Mean of the RMS Error of Predator for Ns=5 is Mean_RMS=5.5128 

Variance of the RMS Error of Predator for Ns=5 is Var_RMS=2.3893 
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7.1.3 Simulation of Particle Filter with Ns=25 

 

 

 

Figure 33. The Plot of RMS Error of Prey, X, for Ns=25 using Particle Filter 
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Figure 34. Plot of RMS Error of Predator, Y for Ns=25 using Particle Filter 

 

 

Mean of the RMS Error of Prey for Ns=25 is Mean_RMS=4.1538 

Variance of the RMS Error of Prey for Ns=25 is Var_RMS=0.98947 

Mean of the RMS Error of Predator for Ns=25 is Mean_RMS=3.5199 

Variance of the RMS Error of Predator for Ns=25 is Var_RMS=0.42396 

 

 

 

 

 



80 

7.1.4 Simulation of Particle Filter with Ns=100 

 

 

 

Figure 35. The Plot of RMS Error of Prey, X, for Ns=100 using Particle Filter 
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Figure 36. Plot of RMS Error of Predator, Y for Ns=100 using Particle Filter 

 

 

Mean of the RMS Error of Prey for Ns=100 is Mean_RMS=4.072 

Variance of the RMS Error of Prey for Ns=100 is Var_RMS=1.0435 

Mean of the RMS Error of Predator for Ns=100 is Mean_RMS=3.3129 

Variance of the RMS Error of Predator for Ns=100 is Var_RMS=0.45157 
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7.1.5 Simulation of Particle Filter with Ns=500 

 

 

 

Figure 37. The Plot of RMS Error of Prey, X, for Ns=500 using Particle Filter 
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Figure 38. Plot of RMS Error of Predator, Y for Ns=500 using Particle Filter 

 

 

 

Mean of the RMS Error of Prey for Ns=500 is Mean_RMS=4.0353 

Variance of the RMS Error of Prey for Ns=500 is Var_RMS=1.0569 

Mean of the RMS Error of Predator for Ns=500 is Mean_RMS=3.2591 

Variance of the RMS Error of Predator for Ns=500 is Var_RMS=0.45044 

 

 

 To clarify the simulation results, it will be better to see in a single table. In 

Table 13, RMS Error between the real values of the states and the estimates are listed 

for varying Ns values.  
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Table 13.Particle Filter Simulation Results, RMS Errors between the real values and 
the state varibles X and Y 

Ns RMS Error Type Error Value  Ns RMS Error Type Error Value 
2  Mean_RMS of X 26,7345  2  Mean_RMS of Y 20,779 
5  Mean_RMS of X 5,4072  5  Mean_RMS of Y 5,5128 
25  Mean_RMS of X 4,1538  25  Mean_RMS of Y 3,5199 
100  Mean_RMS of X 4,072  100  Mean_RMS of Y 3,3129 
500  Mean_RMS of X 4,0353  500  Mean_RMS of Y 3,2591 
       
2  Var_RMS of X 111,6645  2  Var_RMS of Y 53,6546 
5  Var_RMS of X 6,2831  5  Var_RMS of Y 2,3893 
25  Var_RMS of X 1,08947  25  Var_RMS of Y 0,45396 
100  Var_RMS of X 1,0435  100  Var_RMS of Y 0,45157 
500  Var_RMS of X 1,0569  500  Var_RMS of Y 0,45044 

 

 

 

 It can be seen from the Table 13 that, as Ns increases, the mean and the 

variance of the error decreases which is expected. On the other hand, the decrease 

between Ns=2 and Ns=5 is very large with respect to the others. As Ns gets larger, the 

amount of decrease diminishes. Therefore, optimum number of particles that should 

be used in Stochastic Discrete Lotka Volterra Model is Ns=25. Although for larger 

values of Ns, the error decreases, the computation time increases gradually. Since the 

error enhancement between Ns=25 and Ns=500 is not more than 1%, to avoid large 

computation time, Ns=25 will be best choice of Number of Particles.  
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7.2 Comparison of ODSA with Particle Filters 

7.2.1 Comparison for MaxState=25 and Ns=25 

 In Figure 39, RMS errors of Prey, X, is seen both using ODSA and Particle 

Filter (PF) algorithm. It can be clearly seen from the figure that the ODSA algorithm 

gives better error performance with respect to the PF algorithm.  In Figure 40, RMS 

error of Prey, Y, is seen. Again error performance of ODSA is better than the error 

performance of PF Algorithm.  

 

 

 

Figure 39 RMS Error of Prey, X, Using ODSA with MaxState=25 and Particle Filter 
for Ns=25 
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Figure 40. RMS Error of Predator, Y, Using ODSA with MaxState=25 and Particle 
Filter for Ns=25 

 

 

 To see the error difference clearly, to make a closer view to the Figure 39, the 

iteration numbers between 250 and 265 is chosen. Than the resultant plot is as 

follows: 
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Figure 41. The RMS Error of Prey Using ODSA with MaxState=25 and Particle 
Filter for Ns=25 Closer View for iteration number [250-265] 

 

 

The closer view to the Figure40 is I the following: 
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Figure 42. The RMS Error of Predator Using ODSA with MaxState=25 and Particle 
Filter for Ns=25 Closer View for iteration number [250-265] 

 

 

 The following table summarizes the comparison between ODSA and Particle 

Filter Algorithm for error and time performance. 

 

Table 14.The Comparison between ODSA and PArticle Filter Algorithm for Error 
and Time Performance 

Ns=25 ODSA Particle Filter 

Mean of RMS Error of X 0.8591 4.1538 

Variance of RMS Error of X 0.0389 0.98947 

Mean of RMS Error of Y 1.3640 3.5199 

Variance of RMS Error of Y 0.0815 0.42396 

Total Program Runtime  74.8535 secs 0.9832 secs 

Runtime of single step 0.0749 secs 0.0009832 secs 
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7.2.2 Comparison for MaxState=5 and Ns=5 

 

 

 

Figure 43. The RMS Error of Prey Using ODSA with MaxState=5 and Particle Filter 
for Ns=5 
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Figure 44. The RMS Error of Predator Using ODSA with MaxState=5 and Particle 
Filter for Ns=5 

 

 

 

 From the figures 43 and 44, it is seen that if MaxState and Ns are chosen 5 

for ODSA and PF, respectively; again the error performance of ODSA is better than 

the PF algorithm. On the other hand, regarding the computation time, PF is faster 

than ODSA.  

 The following table summarizes the comparison between ODSA and Particle 

Filter Algorithm for error and time performance.  
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Table 15.Performance Comparison between ODSA and Particle Filter Algorithm 

MaxState =5 and Ns=5 ODSA Particle Filter 

Mean of RMS Error of X 1.9432 5.4072 

Variance of RMS Error of X 0.0234 6.2831 

Mean of RMS Error of Y 2.03212 5.5128 

Variance of RMS Error of Y 0.04645 2.3893 

Total Program Runtime  14.18 secs 0.3318 secs 

Runtime of single step 0.0142 secs 0.00033183 secs 
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CHAPTER 8 

 

 

CONCLUSIONS 

 

 

In this thesis, ODSA[1] and Particle Filter [32] algorithms are compared. The 

methodologies of both algorithms explained and some simulations are performed to 

see the performance of these estimation algorithms. The effects of the model 

parameters and algorithm parameters are investigated via simulations. 

ODSA is based on Viterbi algorithm, a trellis diagram is obtained by reducing 

the population size of two species to a finite state model. Finite state model is 

obtained by using quantized state vector.  The state vector is estimated using the 

observation model by finding the most probable path along the trellis diagram. 

The performance of the ODSA depends on both model and algorithm 

parameters. Firstly, regarding the model parameters, noise variances negatively 

affect the performance; that is, larger noise variance gives worse error performance. 

Secondly, regarding the algorithm parameters, increase in quantization numbers of 

noise vectors and maximum number of states enhances the performance in worth of 

runtime performance. Briefly, using ODSA the error performance can be adjusted by 

tuning the algorithm parameters.  

Particle Filter is sequential Monte Carlo methods that represent the required 

posterior density function by a set of random samples with associated weights and to 

compute the estimates based on these samples and weights. SIR Algorithm is 

presented to increase the performance of Particle Filter algorithm. SIR uses 

resampling to take ‘better’ samples while approximating the pdf.  
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 The performances of the both algorithms are investigated via simulations. 

The investigation is done mainly on error and runtime performances. The simulation 

results showed that, ODSA is better on error performance on the contrary Particle 

Filter algorithm is better on runtime performance.  

At the end, since there are very powerful computers developed, the computation 

time will not be a problem. Moreover while parallel processing considered, the 

computation time can be decreased further.  
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APPENDIX A 

 
 

+APPROXIMATION OF A CONTINUOUS RANDOM 

VARIABLE WITH A DISCRETE RANDOM VARIABLE UP TO 

50 POSSIBLE VALUES 

 

 

 

Possible values of the discrete random variable approximating the Gaussian random 

variable with zero mean and unity variance (y values) [5]: 

N y value 
1 0 
2 -0.675 0.675          
3 -1.0052 0 1.0052         
4 -1.2177 -0.3546 0.3546 1.2177        
5 -1.3767 -0.592 0 0.592 1.3767       
6 -1.4992 -0.7678 -0.2419 0.2419 0.7678 1.4992      
7 -1.6027 -0.9077 -0.4242 0 0.4242 0.9077 1.6027     
8 -1.6897 -1.0226 -0.5694 -0.1839 0.1839 0.5694 1.0226 1.6897    
9 -1.7644 -1.1198 -0.6896 -0.3315 0 0.3315 0.6896 1.1198 1.7644   
10 -1.8178 -1.1985 -0.7888 -0.4527 -0.1479 0.1479 0.4527 0.7888 1.1985 1.8178  
11 -1.8799 -1.2737 -0.8779 -0.5575 -0.2716 0 0.2716 0.5575 0.8779 1.2737
 1.8799 
12 -1.9282 -1.3373 -0.9545 -0.6476 -0.377 -0.1239 0.1239 0.377 0.6476 0.9545
 1.3373 1.9282          
13 -1.9714 -1.3942 -1.0226 -0.727 -0.4688 -0.2301 0 0.2301 0.4688 0.727
 1.0226 1.3942 1.9714         
14 -2.0218 -1.4507 -1.0868 -0.7997 -0.5511 -0.3235 -0.1067 0.1067 0.3235 0.5511
 0.7997 1.0868 1.4507 2.0218        
15 -2.0449 -1.4918 -1.1387 -0.8611 -0.622 -0.4047 -0.1996 0 0.1996 0.4047
 0.622 0.8611 1.1387 1.4918 2.0449       
16 -2.0966 -1.5435 -1.1948 -0.9227 -0.6899 -0.4798 -0.2831 -0.0936 0.0936 0.2831
 0.4798 0.6899 0.9227 1.1948 1.5435 2.0966      
17 -2.1372 -1.5879 -1.2443 -0.9777 -0.7509 -0.5474 -0.3581 -0.1771 0 0.1771
 0.3581 0.5474 0.7509 0.9777 1.2443 1.5879 2.1372     
18 -2.1569 -1.6206 -1.2846 -1.0245 -0.804 -0.607 -0.4247 -0.2515 -0.0833 0.0833
 0.2515 0.4247 0.607 0.804 1.0245 1.2846 1.6206 2.1569    
19 -2.196 -1.6609 -1.3285 -1.0725 -0.8564 -0.6642 -0.4872 -0.3199 -0.1585 0
 0.1585 0.3199 0.4872 0.6642 0.8564 1.0725 1.3285 1.6609 2.196   
20 -2.2125 -1.6894 -1.3636 -1.113 -0.902 -0.7149 -0.5432 -0.3816 -0.2265 -0.0751
 0.0751 0.2265 0.3816 0.5432 0.7149 0.902 1.113 1.3636 1.6894 2.2125  
21 -2.2538 -1.7277 -1.4036 -1.1557 -0.9479 -0.7644 -0.5967 -0.4396 -0.2895 -0.1437  

0 0.1437 0.2895 0.4396 0.5967 0.7644 0.9479 1.1557 1.4036 1.7277
 2.2538  
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22 -2.2838 -1.7598 -1.4388 -1.1941 -0.9896 -0.8096 -0.6457 -0.4927 -0.3471 -0.2064  
-0.0685 0.0685 0.2064 0.3471 0.4927 0.6457 0.8096 0.9896 1.1941 1.4388

 1.7598 2.2838 
23 -2.2808 -1.7756 -1.4627 -1.2237 -1.024 -0.8484 -0.6888 -0.5402 -0.3992 -0.2634  

-0.1309 0 0.1309 0.2634 0.3992 0.5402 0.6888 0.8484 1.024 1.2237
 1.4627 1.7756 2.2808         
24 -2.2909 -1.7968 -1.4894 -1.2545 -1.0584 -0.8863 -0.7302 -0.5852 -0.4481 -0.3165  

-0.1885 -0.0626 0.0626 0.1885 0.3165 0.4481 0.5852 0.7302 0.8863 1.0584
 1.2545 1.4894 1.7968 2.2909        
25 -2.3389 -1.8343 -1.5255 -1.2912 -1.0965 -0.9262 -0.7722 -0.6296 -0.4952 -0.3667  

-0.2423 -0.1205 0 0.1205 0.2423 0.3667 0.4952 0.6296 0.7722 0.9262
 1.0965 1.2912 1.5255 1.8343 2.3389       
26 -2.3622 -1.8601 -1.5539 -1.3221 -1.1299 -0.9622 -0.8109 -0.6711 -0.5396 -0.4141  

-0.2929 -0.1746 -0.058 0.058 0.1746 0.2929 0.4141 0.5396 0.6711 0.8109
 0.9622 1.1299 1.3221 1.5539 1.8601 2.3622      
27 -2.3997 -1.8914 -1.585 -1.3542 -1.1635 -0.9976 -0.8483 -0.7107 -0.5816 -0.4587  

-0.3403 -0.2251 -0.112 0 0.112 0.2251 0.3403 0.4587 0.5816 0.7107
 0.8483 0.9976 1.1635 1.3542 1.585 1.8914 2.3997     
28 -2.3823 -1.8963 -1.5983 -1.3728 -1.1862 -1.0238 -0.8777 -0.7432 -0.6172 -0.4975  

-0.3825 -0.2709 -0.1616 -0.0537 0.0537 0.1616 0.2709 0.3825 0.4975 0.6172
 0.7432 0.8777 1.0238 1.1862 1.3728 1.5983 1.8963 2.3823    
29 -2.3899 -1.9123 -1.6183 -1.3957 -1.2116 -1.0515 -0.9077 -0.7756 -0.6521 -0.535  

-0.4227 -0.314 -0.2079 -0.1035 0 0.1035 0.2079 0.314 0.4227 0.535
 0.6521 0.7756 0.9077 1.0515 1.2116 1.3957 1.6183 1.9123 2.3899   
30 -2.3969 -1.928 -1.6382 -1.4187 -1.2372 -1.0795 -0.938 -0.8081 -0.6868 -0.572  

-0.4621 -0.3559 -0.2524 -0.1507 -0.0501 0.0501 0.1507 0.2524 0.3559 0.4621
 0.572 0.6868 0.8081 0.938 1.0795 1.2372 1.4187 1.6382 1.928 2.3969  
31 -2.4309 -1.9555 -1.6649 -1.4458 -1.2652 -1.1087 -0.9686 -0.8403 -0.7208 -0.6079  

-0.5 -0.3959 -0.2946 -0.1953 -0.0973 0 0.0973 0.1953 0.2946 0.3959  
0.5 0.6079 0.7208 0.8403 0.9686 1.1087 1.2652 1.4458 1.6649 1.9555

 2.4309   
32 -2.4455 -1.9739 -1.6857 -1.4686 -1.2898 -1.135 -0.9966 -0.87 -0.7522 -0.6411  

-0.5351 -0.433 -0.3339 -0.237 -0.1416 -0.0471 0.0471 0.1416 0.237 0.3339
 0.433 0.5351 0.6411 0.7522 0.87 0.9966 1.135 1.2898 1.4686 1.6857
 1.9739 2.4455  
33 -2.4934 -2.0071 -1.7156 -1.4976 -1.3188 -1.1644 -1.0266 -0.9008 -0.784 -0.6741  

-0.5695 -0.469 -0.3717 -0.2768 -0.1836 -0.0915 0 0.0915 0.1836 0.2768
 0.3717 0.469 0.5695 0.6741 0.784 0.9008 1.0266 1.1644 1.3188 1.4976
 1.7156 2.0071 2.4934 
34 -2.5056 -2.0233 -1.7342 -1.5182 -1.3412 -1.1885 -1.0524 -0.9283 -0.8132 -0.705  

-0.6021 -0.5033 -0.4077 -0.3146 -0.2234 -0.1335 -0.0444 0.0444 0.1335 0.2234
 0.3146 0.4077 0.5033 0.6021 0.705 0.8132 0.9283 1.0524 1.1885 1.3412
 1.5182 1.7342 2.0233 2.5056        
35 -2.4801 -2.0215 -1.7407 -1.5295 -1.356 -1.2062 -1.0726 -0.9507 -0.8376 -0.705  

-0.6303 -0.5335 -0.44 -0.3491 -0.2602 -0.1727 -0.0861 0 0.0861 0.1727
 0.2602 0.3491 0.44 0.5335 0.6303 0.7313 0.8376 0.9507 1.0726 1.2062
 1.356 1.5295 1.7407 2.0215 2.4801       
36 -2.5117 -2.0453 -1.763 -1.5516 -1.3784 -1.2292 -1.0964 -0.9755 -0.8636 -0.705  

-0.659 -0.5637 -0.4718 -0.3826 -0.2955 -0.21 -0.1256 -0.0418 0.0418 0.1256 0.21
 0.2955 0.3826 0.4718 0.5637 0.659 0.7586 0.8636 0.9755 1.0964 1.2292
 1.3784 1.5516 1.763 2.0453 2.5117      
37 -2.4969 -2.0475 -1.7715 -1.5639 -1.3935 -1.2466 -1.1158 -0.9967 -0.8865 -0.705  

-0.6853 -0.5917 -0.5015 -0.414 -0.3287 -0.2451 -0.1627 -0.0811 0 0.0811
 0.1627 0.2451 0.3287 0.414 0.5015 0.5917 0.6853 0.7832 0.8865 0.9967
 1.1158 1.2466 1.3935 1.5639 1.7715 2.0475 2.4969     
38 -2.5497 -2.0816 -1.8007 -1.5912 -1.42 -1.2728 -1.1421 -1.0234 -0.9137 -0.705  

-0.7138 -0.621 -0.5318 -0.4455 -0.3615 -0.2793 -0.1985 -0.1187 -0.0395 0.0395
 0.1187 0.1985 0.2793 0.3615 0.4455 0.5318 0.621 0.7138 0.811 0.9137
 1.0234 1.1421 1.2728 1.42 1.5912 1.8007 2.0816 2.5497    
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39 -2.5824 -2.1058 -1.8233 -1.6136 -1.4427 -1.2961 -1.1661 -1.0481 -0.9392 -0.705  
-0.7412 -0.6495 -0.5614 -0.4762 -0.3934 -0.3125 -0.2331 -0.1548 -0.0772 0

 0.0772 0.1548 0.2331 0.3125 0.3934 0.4762 0.5614 0.6495 0.7412 0.8374
 0.9392 1.0481 1.1661 1.2961 1.4427 1.6136 1.8233 2.1058 2.5824   
40 -2.534 -2.0914 -1.8202 -1.6167 -1.45 -1.3066 -1.1793 -1.0637 -0.957 -0.705  

-0.7628 -0.6728 -0.5864 -0.5029 -0.4218 -0.3426 -0.2649 -0.1884 -0.1127 -0.0375
 0.0375 0.1127 0.1884 0.2649 0.3426 0.4218 0.5029 0.5864 0.6728 0.7628
 0.8572 0.957 1.0637 1.1793 1.3066 1.45 1.6167 1.8202 2.0914 2.534  
41 -2.5632 -2.1134 -1.8407 -1.6369 -1.4704 -1.3274 -1.2006 -1.0856 -0.9795 -0.705  

-0.7869 -0.6979 -0.6126 -0.5303 -0.4504 -0.3725 -0.2962 -0.2211 -0.1469 -0.0733  
0 0.0733 0.1469 0.2211 0.2962 0.3725 0.4504 0.5303 0.6126 0.6979

 0.7869 0.8804 0.9795 1.0856 1.2006 1.3274 1.4704 1.6369 1.8407 2.1134
 2.5632 
42 -2.6205 -2.1483 -1.8696 -1.6634 -1.4959 -1.3526 -1.2259 -1.1112 -1.0056 -0.705  
-0.8142 -0.7258 -0.6411 -0.5595 -0.4804 -0.4033 -0.3278 -0.2536 -0.1804 -0.1079  
-0.0359 0.0359 0.1079 0.1804 0.2536 0.3278 0.4033 0.4804 0.5595 0.6411 0.7258
 0.8142 0.9071 1.0056 1.1112 1.2259 1.3526 1.4959 1.6634 1.8696 2.1483
 2.6205 
43 -2.654 -2.1715 -1.8907 -1.684 -1.5165 -1.3734 -1.247 -1.1327 -1.0276 -0.705  
-0.8375 -0.7499 -0.6661 -0.5854 -0.5072 -0.4311 -0.3567 -0.2837 -0.2118 -0.1407  
-0.0702 0 0.0702 0.1407 0.2118 0.2837 0.3567 0.4311 0.5072 0.5854 
0.6661 0.7499 0.8375 0.9297 1.0276 1.1327 1.247 1.3734 1.5165 1.684 
1.8907 2.1715 2.654 
44 -2.5842 -2.1461 -1.8793 -1.6799 -1.5171 -1.3774 -1.2537 -1.1417 -1.0386 -0.705  
-0.852 -0.766 -0.6837 -0.6045 -0.5279 -0.4535 -0.3809 -0.3097 -0.2396 -0.1704  
-0.1019 -0.0339 0.0339 0.1019 0.1704 0.2396 0.3097 0.3809 0.4535 0.5279 0.6045
 0.6837 0.766 0.852 0.9425 1.0386 1.1417 1.2537 1.3774 1.5171 1.6799
 1.8793 2.1461 2.5842 
45 -2.591 -2.1561 -1.8909 -1.6927 -1.531 -1.3924 -1.2697 -1.1586 -1.0564 -0.705  

-0.8716 -0.7866 -0.7054 -0.6273 -0.5518 -0.4785 -0.407 -0.337 -0.2682 -0.2003  
-0.1331 -0.0664 0 0.0664 0.1331 0.2003 0.2682 0.337 0.407 0.4785

 0.5518 0.6273 0.7054 0.7866 0.8716 0.9612 1.0564 1.1586 1.2697 1.3924
 1.531 1.6927 1.8909 2.1561 2.591      
46 -2.5938 -2.1646 -1.9019 -1.7054 -1.5451 -1.4077 -1.2861 -1.1761 -1.075 -0.705  

-0.8924 -0.8084 -0.7281 -0.6509 -0.5763 -0.5039 -0.4333 -0.3642 -0.2964 -0.2296  
-0.1635 -0.0979 -0.0326 0.0326 0.0979 0.1635 0.2296 0.2964 0.3642 0.4333

 0.5039 0.5763 0.6509 0.7281 0.8084 0.8924 0.9809 1.075 1.1761 1.2861
 1.4077 1.5451 1.7054 1.9019 2.1646 2.5938     
47 -2.632 -2.1915 -1.926 -1.7285 -1.5678 -1.4303 -1.3088 -1.199 -1.0981 -0.705  

-0.9159 -0.8322 -0.7523 -0.6755 -0.6013 -0.5293 -0.4592 -0.3907 -0.3235 -0.2574  
-0.1922 -0.1277 -0.0637 0 0.0637 0.1277 0.1922 0.2574 0.3235 0.3907

 0.4592 0.5293 0.6013 0.6755 0.7523 0.8322 0.9159 1.0042 1.0981 1.199
 1.3088 1.4303 1.5678 1.7285 1.926 2.1915 2.632    
48 -2.643 -2.2031 -1.9384 -1.7417 -1.5818 -1.4451 -1.3244 -1.2154 -1.1153 -0.705  

-0.9347 -0.8518 -0.7727 -0.6968 -0.6236 -0.5526 -0.4835 -0.416 -0.3498 -0.2847  
-0.2205 -0.157 -0.094 -0.0313 0.0313 0.094 0.157 0.2205 0.2847 0.3498

 0.416 0.4835 0.5526 0.6236 0.6968 0.7727 0.8518 0.9347 1.0222 1.1153
 1.2154 1.3244 1.4451 1.5818 1.7417 1.9384 2.2031 2.643   
49 -2.6541 -2.2145 -1.9505 -1.7545 -1.5953 -1.4593 -1.3393 -1.231 -1.1316 -0.705  

-0.9524 -0.8702 -0.7918 -0.7166 -0.6441 -0.5739 -0.5057 -0.4392 -0.3741 -0.3101  
-0.247 -0.1846 -0.1227 -0.0612 0 0.0612 0.1227 0.1846 0.247 0.3101

 0.3741 0.4392 0.5057 0.5739 0.6441 0.7166 0.7918 0.8702 0.9524 1.0392
 1.1316 1.231 1.3393 1.4593 1.5953 1.7545 1.9505 2.2145 2.6541  
50 -2.6676 -2.2268 -1.9629 -1.7673 -1.6086 -1.4731 -1.3536 -1.2458 -1.1469 -0.705  

-0.9688 -0.8873 -0.8097 -0.7354 -0.6638 -0.5945 -0.5272 -0.4616 -0.3974 -0.3343  
-0.2721 -0.2107 -0.15 -0.0898 -0.0299 0.0299 0.0898 0.15 0.2107 0.2721

 0.3343 0.3974 0.4616 0.5272 0.5945 0.6638 0.7354 0.8097 0.8873 0.9688
 1.055 1.1469 1.2458 1.3536 1.4731 1.6086 1.7673 1.9629 2.2268 2.6676 
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Probabilities of the corresponding y values (p values):1 
 
N  p value 
1 1 
2 0.5003 0.5003                   
3 0.3148 0.3704 0.3148                 
4 0.2225 0.2771 0.2771 0.2225               
5 0.1686 0.2167 0.2295 0.2167 0.1686             
6 0.1337 0.1751 0.1911 0.1911 0.1751 0.1337           
7 0.1095 0.1455 0.1619 0.1667 0.1619 0.1455 0.1095         
8 0.0919 0.1235 0.1391 0.1459 0.1459 0.1391 0.1235 0.0919       
9 0.0786 0.1065 0.1211 0.1287 0.131 0.1287 0.1211 0.1065 0.0786     
10 0.0686 0.0931 0.1065 0.1141 0.1176 0.1176 0.1141 0.1065 0.0931 0.0686   
11 0.0603 0.0824 0.0949 0.1023 0.1064 0.1077 0.1064 0.1023 0.0949 0.0824
 0.0603  
12 0.0537 0.0736 0.0851 0.0923 0.0966 0.0986 0.0986 0.0966 0.0923 0.0851
 0.0736 0.0537                   
13 0.0483 0.0663 0.0769 0.0838 0.0882 0.0906 0.0914 0.0906 0.0882 0.0838
 0.0769 0.0663 0.0483                 
14 0.0435 0.0602 0.0701 0.0767 0.081 0.0837 0.085 0.085 0.0837 0.081
 0.0767 0.0701 0.0602 0.0435               
15 0.0399 0.055 0.0641 0.0703 0.0745 0.0773 0.0788 0.0794 0.0788 0.0773
 0.0745 0.0703 0.0641 0.055 0.0399             
16 0.0363 0.0504 0.059 0.065 0.0691 0.072 0.0738 0.0746 0.0746 0.0738
 0.072 0.0691 0.065 0.059 0.0504 0.0363           
17 0.0333 0.0465 0.0546 0.0602 0.0643 0.0671 0.069 0.0701 0.0704 0.0701
 0.069 0.0671 0.0643 0.0602 0.0546 0.0465 0.0333         
18 0.031 0.0431 0.0507 0.056 0.0598 0.0626 0.0646 0.0658 0.0664 0.0664
 0.0658 0.0646 0.0626 0.0598 0.056 0.0507 0.0431 0.031       
19 0.0286 0.0401 0.0472 0.0523 0.056 0.0588 0.0608 0.0621 0.0629 0.0631
 0.0629 0.0621 0.0608 0.0588 0.056 0.0523 0.0472 0.0401 0.0286     
20 0.0268 0.0374 0.0441 0.0489 0.0525 0.0552 0.0572 0.0586 0.0595 0.0599
 0.0599 0.0595 0.0586 0.0572 0.0552 0.0525 0.0489 0.0441 0.0374 0.0268   
21 0.0248 0.035 0.0414 0.046 0.0494 0.052 0.054 0.0555 0.0565 0.057
 0.0572 0.057 0.0565 0.0555 0.054 0.052 0.0494 0.046 0.0414 0.035
 0.0248   
22 0.0232 0.0328 0.0389 0.0433 0.0466 0.0492 0.0511 0.0526 0.0537 0.0543
 0.0546 0.0546 0.0543 0.0537 0.0526 0.0511 0.0492 0.0466 0.0433 0.0389
 0.0328 0.0232  
 
23 0.0222 0.031 0.0367 0.0408 0.044 0.0464 0.0483 0.0498 0.0509 0.0516
 0.052 0.0521 0.052 0.0516 0.0509 0.0498 0.0483 0.0464 0.044 0.0408
 0.0367 0.031 0.0222                 
 
24 0.0211 0.0293 0.0347 0.0386 0.0416 0.044 0.0458 0.0473 0.0484 0.0492
 0.0497 0.0499 0.0499 0.0497 0.0492 0.0484 0.0473 0.0458 0.044 0.0416
 0.0386 0.0347 0.0293 0.0211               
 
25 0.0196 0.0277 0.0329 0.0366 0.0396 0.0419 0.0438 0.0452 0.0463 0.0471
 0.0476 0.0479 0.048 0.0479 0.0476 0.0471 0.0463 0.0452 0.0438 0.0419
 0.0396 0.0366 0.0329 0.0277 0.0196             
26 0.0185 0.0262 0.0311 0.0348 0.0376 0.0398 0.0416 0.0431 0.0442 0.0451
 0.0457 0.0461 0.0463 0.0463 0.0461 0.0457 0.0451 0.0442 0.0431 0.0416
 0.0398 0.0376 0.0348 0.0311 0.0262 0.0185           

                                                 
1 The maximum error of the sum of the p values is less than 0.001. 
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27 0.0174 0.0248 0.0296 0.0331 0.0358 0.038 0.0398 0.0412 0.0424 0.0433
 0.0439 0.0444 0.0446 0.0446 0.0446 0.0444 0.0439 0.0433 0.0424 0.0412
 0.0398 0.038 0.0358 0.0331 0.0296 0.0248 0.0174         
28 0.0169 0.0238 0.0283 0.0316 0.0342 0.0362 0.0379 0.0393 0.0404 0.0413
 0.042 0.0424 0.0427 0.0428 0.0428 0.0427 0.0424 0.042 0.0413 0.0404
 0.0393 0.0379 0.0362 0.0342 0.0316 0.0283 0.0238 0.0169      
     
29 0.0162 0.0227 0.027 0.0302 0.0327 0.0347 0.0363 0.0376 0.0387 0.0396
 0.0403 0.0407 0.041 0.0412 0.0412 0.0412 0.041 0.0407 0.0403 0.0396
 0.0387 0.0376 0.0363 0.0347 0.0327 0.0302 0.027 0.0227 0.0162     
30 0.0156 0.0217 0.0258 0.0288 0.0312 0.0331 0.0347 0.0361 0.0371 0.038
 0.0387 0.0392 0.0396 0.0399 0.04 0.04 0.0399 0.0396 0.0392 0.0387
 0.038 0.0371 0.0361 0.0347 0.0331 0.0312 0.0288 0.0258 0.0217 0.0156   
31 0.0147 0.0207 0.0247 0.0276 0.0299 0.0318 0.0334 0.0346 0.0357 0.0366
 0.0373 0.0378 0.0383 0.0386 0.0388 0.0388 0.0388 0.0386 0.0383 0.0378
 0.0373 0.0366 0.0357 0.0346 0.0334 0.0318 0.0299 0.0276 0.0247 0.0207
 0.0147     
32 0.0141 0.0198 0.0236 0.0265 0.0287 0.0305 0.032 0.0333 0.0343 0.0352
 0.0359 0.0365 0.0369 0.0373 0.0375 0.0376 0.0376 0.0375 0.0373 0.0369
 0.0365 0.0359 0.0352 0.0343 0.0333 0.032 0.0305 0.0287 0.0265 0.0236
 0.0198 0.0141   
33 0.0132 0.0189 0.0226 0.0254 0.0276 0.0294 0.0309 0.0322 0.0332 0.034
 0.0347 0.0353 0.0357 0.0361 0.0363 0.0365 0.0365 0.0365 0.0363 0.0361
 0.0357 0.0353 0.0347 0.034 0.0332 0.0322 0.0309 0.0294 0.0276 0.0254
 0.0226 0.0189 0.0132  
34 0.0127 0.0181 0.0217 0.0244 0.0265 0.0283 0.0297 0.0309 0.0319 0.0328
 0.0335 0.0341 0.0346 0.035 0.0352 0.0354 0.0354 0.0354 0.0354 0.0352
 0.035 0.0346 0.0341 0.0335 0.0328 0.0319 0.0309 0.0297 0.0283 0.0265
 0.0244 0.0217 0.0181 0.0127               
35 0.0125 0.0176 0.0209 0.0235 0.0255 0.0272 0.0286 0.0297 0.0308 0.0316
 0.0323 0.0329 0.0334 0.0337 0.034 0.0342 0.0343 0.0343 0.0343 0.0342
 0.034 0.0337 0.0334 0.0329 0.0323 0.0316 0.0308 0.0297 0.0286 0.0272
 0.0255 0.0235 0.0209 0.0176 0.0125             
36 0.0119 0.0169 0.0202 0.0227 0.0247 0.0263 0.0276 0.0288 0.0297 0.0306
 0.0312 0.0318 0.0323 0.0327 0.0329 0.0331 0.0333 0.0333 0.0333 0.0333
 0.0331 0.0329 0.0327 0.0323 0.0318 0.0312 0.0306 0.0297 0.0288 0.0276
 0.0263 0.0247 0.0227 0.0202 0.0169 0.0119           
37 0.0117 0.0164 0.0195 0.0219 0.0238 0.0253 0.0266 0.0278 0.0287 0.0295
 0.0302 0.0307 0.0312 0.0316 0.0319 0.0321 0.0323 0.0323 0.0323 0.0323
 0.0323 0.0321 0.0319 0.0316 0.0312 0.0307 0.0302 0.0295 0.0287 0.0278
 0.0266 0.0253 0.0238 0.0219 0.0195 0.0164 0.0117         
38 0.011 0.0156 0.0187 0.0211 0.023 0.0245 0.0258 0.0269 0.0279 0.0286
 0.0293 0.0299 0.0304 0.0307 0.031 0.0313 0.0314 0.0315 0.0315 0.0315
 0.0315 0.0314 0.0313 0.031 0.0307 0.0304 0.0299 0.0293 0.0286 0.0279
 0.0269 0.0258 0.0245 0.023 0.0211 0.0187 0.0156 0.011       
39 0.0104 0.015 0.018 0.0203 0.0222 0.0237 0.025 0.0261 0.027 0.0278
 0.0284 0.029 0.0295 0.0299 0.0302 0.0304 0.0306 0.0307 0.0308 0.0308
 0.0308 0.0307 0.0306 0.0304 0.0302 0.0299 0.0295 0.029 0.0284 0.0278
 0.027 0.0261 0.025 0.0237 0.0222 0.0203 0.018 0.015 0.0104     
40 0.0105 0.0147 0.0175 0.0197 0.0214 0.0229 0.0241 0.0251 0.026 0.0268
 0.0275 0.028 0.0285 0.0289 0.0292 0.0295 0.0297 0.0298 0.0299 0.0299
 0.0299 0.0299 0.0298 0.0297 0.0295 0.0292 0.0289 0.0285 0.028 0.0275
 0.0268 0.026 0.0251 0.0241 0.0229 0.0214 0.0197 0.0175 0.0147 0.0105   
41 0.01 0.0142 0.0169 0.0191 0.0208 0.0222 0.0234 0.0244 0.0253 0.026
 0.0267 0.0272 0.0277 0.0281 0.0284 0.0287 0.0289 0.029 0.0291 0.0292
 0.0292 0.0292 0.0291 0.029 0.0289 0.0287 0.0284 0.0281 0.0277 0.0272
 0.0267 0.026 0.0253 0.0244 0.0234 0.0222 0.0208 0.0191 0.0169 0.0142 0.01
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42 0.0094 0.0135 0.0163 0.0184 0.0201 0.0214 0.0226 0.0236 0.0245 0.0253
 0.0259 0.0265 0.027 0.0274 0.0277 0.028 0.0283 0.0284 0.0286 0.0286
 0.0286 0.0286 0.0286 0.0286 0.0284 0.0283 0.028 0.0277 0.0274 0.027
 0.0265 0.0259 0.0253 0.0245 0.0236 0.0226 0.0214 0.0201 0.0184 0.0163
 0.0135 0.0094     
43 0.0089 0.013 0.0157 0.0178 0.0194 0.0208 0.022 0.023 0.0238 0.0246
 0.0252 0.0258 0.0262 0.0267 0.0271 0.0273 0.0276 0.0277 0.0279 0.028
 0.028 0.028 0.028 0.028 0.0279 0.0277 0.0276 0.0273 0.0271 0.0267
 0.0262 0.0258 0.0252 0.0246 0.0238 0.023 0.022 0.0208 0.0194 0.0178
 0.0157 0.013 0.0089   
44 0.0092 0.0129 0.0154 0.0174 0.0189 0.0202 0.0213 0.0223 0.0231 0.0238
 0.0244 0.025 0.0255 0.0259 0.0262 0.0264 0.0267 0.0269 0.027 0.0271
 0.0271 0.027 0.027 0.0271 0.0271 0.027 0.0269 0.0267 0.0264 0.0262
 0.0259 0.0255 0.025 0.0244 0.0238 0.0231 0.0223 0.0213 0.0202 0.0189
 0.0174 0.0154 0.0129 0.0092  
45 0.0089 0.0126 0.015 0.0169 0.0184 0.0196 0.0207 0.0217 0.0225 0.0232
 0.0238 0.0243 0.0247 0.0252 0.0255 0.0257 0.026 0.0261 0.0263 0.0264
 0.0265 0.0265 0.0265 0.0265 0.0265 0.0264 0.0263 0.0261 0.026 0.0257
 0.0255 0.0252 0.0247 0.0243 0.0238 0.0232 0.0225 0.0217 0.0207 0.0196
 0.0184 0.0169 0.015 0.0126 0.0089           
46 0.0087 0.0122 0.0146 0.0164 0.0178 0.0191 0.0201 0.021 0.0218 0.0225
 0.0231 0.0236 0.0241 0.0245 0.0248 0.0251 0.0254 0.0255 0.0257 0.0258
 0.0259 0.026 0.026 0.026 0.026 0.0259 0.0258 0.0257 0.0255 0.0254
 0.0251 0.0248 0.0245 0.0241 0.0236 0.0231 0.0225 0.0218 0.021 0.0201
 0.0191 0.0178 0.0164 0.0146 0.0122 0.0087         
47 0.0082 0.0117 0.014 0.0158 0.0172 0.0185 0.0195 0.0204 0.0212 0.0219
 0.0225 0.023 0.0235 0.024 0.0243 0.0246 0.0249 0.0251 0.0252 0.0253
 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0253 0.0252 0.0251
 0.0249 0.0246 0.0243 0.024 0.0235 0.023 0.0225 0.0219 0.0212 0.0204
 0.0195 0.0185 0.0172 0.0158 0.014 0.0117 0.0082       
48 0.008 0.0114 0.0136 0.0154 0.0168 0.018 0.019 0.0199 0.0206 0.0213
 0.0219 0.0224 0.0229 0.0233 0.0237 0.024 0.0242 0.0245 0.0246 0.0248
 0.0249 0.0249 0.025 0.025 0.025 0.025 0.0249 0.0249 0.0248 0.0246
 0.0245 0.0242 0.024 0.0237 0.0233 0.0229 0.0224 0.0219 0.0213 0.0206
 0.0199 0.019 0.018 0.0168 0.0154 0.0136 0.0114 0.008     
49 0.0078 0.0111 0.0133 0.015 0.0163 0.0175 0.0185 0.0194 0.0201 0.0208
 0.0214 0.0219 0.0224 0.0228 0.0231 0.0234 0.0236 0.0238 0.024 0.0242
 0.0243 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0243 0.0242
 0.024 0.0238 0.0236 0.0234 0.0231 0.0228 0.0224 0.0219 0.0214 0.0208
 0.0201 0.0194 0.0185 0.0175 0.0163 0.015 0.0133 0.0111 0.0078   
50 0.0076 0.0108 0.0129 0.0146 0.0159 0.0171 0.0181 0.0189 0.0197 0.0203
 0.0209 0.0214 0.0218 0.0222 0.0225 0.0228 0.0231 0.0232 0.0235 0.0236
 0.0238 0.0238 0.0238 0.0238 0.0239 0.0239 0.0238 0.0238 0.0238 0.0238
 0.0236 0.0235 0.0232 0.0231 0.0228 0.0225 0.0222 0.0218 0.0214 0.0209
 0.0203 0.0197 0.0189 0.0181 0.0171 0.0159 0.0146 0.0129 0.0108 0.0076 


