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ABSTRACT

CRACKED SEMI-INFINITE CYLINDER AND
FINITE CYLINDER PROBLEMS

Kaman, Mete Onur
Ph.D., Department of Engineering Sciences

Supervisor: Prof. Dr. M. Rusen Gegit

May 2006, 208 pages

This work considers a cracked semi-infinite cylinder and a finite cylinder. Material
of the cylinder is linearly elastic and isotropic. One end of the cylinder is bonded
to a fixed support while the other end is subject to axial tension. Solution for this
problem can be obtained from the solution for an infinite cylinder having a penny-
shaped rigid inclusion at z = 0 and two penny-shaped cracks at z = + L. General
expressions for this problem are obtained by solving Navier equations using
Fourier and Hankel transforms. When the radius of the inclusion approaches the
radius of the cylinder, the end at z =0 becomes fixed and when the radius of the
cracks approaches the radius of the cylinder, the ends at z = + L become cut and
subject to uniformly distributed tensile load. Formulation of the problem is
reduced to a system of three singular integral equations. By using Gauss-Lobatto
and Gauss-Jacobi integration formulas, these three singular integral equations are

converted to a system of linear algebraic equations which is solved numerically.

Keywords: Axisymmetric, Finite cylinder, Penny-shaped crack, Rigid inclusion,

Stress intensity factor.
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CATLAK iCEREN YARI SONSUZ SiLiNDiR VE
SONLU SiLiNDiR PROBLEMLERI

Kaman, Mete Onur
Doktora, Miihendislik Bilimleri Boliimiui

Tez Yoneticisi: Prof. Dr. M. Rusen Gegit

Mayis 2006, 208 sayfa

Bu calisma, catlak igeren yart sonsuz silindir ve sonlu uzunlukta silindir
problemlerini incelemektedir. Silindir malzemesi lineer elastik ve izotroptur.
Silindirin bir ucu sabit mesnetlenmis olup diger ucu eksenel cekme yiikii
etkisindedir. Problemin ¢oziimii, z = 0 diizleminde disk seklinde bir rijit enklozyon
ve z = *= L diizlemlerinde disk seklinde catlaklar bulunan sonsuz silindir
probleminin ¢oziimiinden elde edilmektedir. Bu problemin genel ifadeleri, Navier
denklemlerinin Fourier ve Hankel doniigsiimleri kullanilarak c¢oziilmesinden elde
edilmektedir. Enklozyon yaricapi silindir yaricapina ulastiginda silindirin z = 0
diizlemindeki ucu sabitlenmis olur. Catlak yaricap: silindir yarigapina ulastiginda
ise silindir z = + L diizlemlerinde kopar ve burada olusan uglar diizgiin yayil
cekme yiikii etkisinde kalir. Problemin formiilasyonu {ii¢ tekil integral denkleme
doniistiiriiliir. Bu ¢ tekil integral denklem Gauss-Lobatto ve Gauss-Jacobi
integrasyon formiilleri kullanilarak bir lineer cebrik denklem takimina gevrilir ve

sayisal olarak ¢oziiliir.

Anahtar Kelimeler: Eksenel simetri, Sonlu uzunlukta silindir, Disk seklinde catlak,

Rijit enklozyon, Gerilme siddeti katsayisi.
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CHAPTER 1

INTRODUCTION

Many machine elements used in various engineering fields have discontinuities in
the form of holes, notches, cracks or inclusions which are very important factors
influencing stress distributions in the structures. Stresses around these
discontinuities may reach very large values in a small region and this phenomenon
is called stress concentration. Furthermore, stresses become infinite at the corners
of elements or edges of cracks and inclusions. In such cases, stress concentration
can not be defined as a strength parameter and it is necessary to consider the stress
distributions from fracture mechanics point of view. Fracture toughness, which is a
widely accepted fracture parameter, can be easily calculated in terms of the stress
intensity factors. Mechanical systems can be designed by using the fracture

mechanics parameters.

Stress intensity factor depends on both the geometric properties and the loading
conditions of the body. These loading conditions are defined as of three types:
Mode I loading, where the principal load is applied normal to the crack plane,
tends to open the crack. Mode II corresponds to in plane shear loading and tends to
slide one crack face with respect to the other. Mode III refers to out of plane shear

loading.

Cylinders, like screws, shafts, etc., are the most widely used machine elements
with axisymmetric geometries which have particular importance in fracture
mechanics due to possible singularities. For cracked semi-infinite or infinite
cylinder configurations subjected to external forces, it is possible to derive closed
form expressions for stresses in the body, assuming isotropic linear elastic material

behavior. If a polar coordinate system with the origin at the crack tip is defined, it



is known that the stress field in any linear elastic cracked body is proportional to

1/NFr . As r—0, the stresses approach infinity. Thus, the stress near the crack tip
varies with singularity, regardless of the configuration of the cracked body. In
general, these types of problems are examined by using numerical and analytical
methods based on partial differential equations. For linear elastic materials,
individual components of stress, strain and displacement are additive
(superposition). In many instances of analytical solutions, the principle of
superposition allows stress intensity solutions for complex configurations to be

built from simple cases for which the solutions are well established.

In this context, although infinite and semi-infinite cylinder problems with no crack
have been already studied in literature, cracked infinite cylinder having rigid
penny-shaped inclusion, cracked semi-infinite and finite cylinder problems have

not been solved by the method used in this study.
1.1 Literature Review

Collins (1962) considered some axially symmetric stress distributions in an infinite
elastic solid and in a thick plate containing penny-shaped cracks. It was shown
that, by use of a representation for the displacement in an infinite elastic solid
containing a single crack, representations for the displacements in an infinite solid
containing two or more cracks and in a thick plate containing a single crack can be
constructed and used to reduce the problems of determining the stresses in these
solids to the solutions of Fredholm integral equations of the second kind. Various
stress distributions investigated include those due to the opening of a crack in an
infinite solid by a point force acting at an interior point of the solid and the
opening of cracks in an infinite solid and a thick plate under the action of constant

pressure over the cracks.

Sneddon and Welch (1963) made an analysis of the distribution of the stress in a

long circular cylinder of elastic material when it is deformed by the application of



pressure to the inner surfaces of a penny-shaped crack situated symmetrically at
the center of the cylinder. It was assumed that the cylinder surface is free from
stress. The equations of the classical theory of elasticity were solved in terms of an
unknown function which was then shown to be the solution of a Fredholm integral
equation of the second kind previously derived by Collins (1962). The solutions of
this equation for constant pressure and various crack radii, obtained using
computer, have been discussed and quantities of physical interest have been
calculated. Calculations have been repeated for the case of a variable pressure

following a parabolic law and these results are also reported.

Two axially symmetric mixed boundary value problems in elastic dissimilar
layered medium have been considered by Arin and Erdogan (1971). It has been
assumed that an elastic layer is bonded to two semi-infinite half spaces along its
plane surfaces, and contains a penny-shaped crack parallel to the interfaces. In the
first problem the two half spaces have been assumed to have the same elastic
properties and the crack is located in the mid-plane of the layer. In the second
problem, they considered the case of three different materials and arbitrary crack
location in the layer. The numerical examples were given for a constant pressure
on the crack surface. Stress intensity factors were evaluated and were plotted as
functions of the layer thickness-to-crack radius ratio or the relative distance of the

crack from one interface.

Benthem and Minderhoud (1972) solved the problem of the solid cylinder
compressed axially between rough rigid stamps. Then, Gupta (1974) considered a
semi-infinite cylinder problem with fixed short end. Normal loads far away from
the fixed end have been prescribed. An exact formulation of the problem in terms
of a singular integral equation has been provided by using an integral transform
technique. Stress along the rigid end and stress intensity factors have been

computed numerically and presented graphically.



Using transform methods, axisymmetric end-problem for a semi-infinite elastic
circular cylinder has been reduced to a system of singular integral equations by
Agarwal (1978). The kernels of the integral equations were found to contain
Cauchy as well as generalized Cauchy-type singularities. The dominant part of the
equations was separated and analyzed to determine the index of the singularity for
differing boundary conditions at the end. An approximate method was used to
obtain a system of simultaneous algebraic equations from the system of singular
integral equations. As an application, axisymmetric solution for joined dissimilar

elastic semi-infinite cylinders under uniform tension has been solved.

Erdol and Erdogan (1978) studied an elastostatic axisymmetric problem for a long
thick-walled cylinder containing a ring-shaped internal or edge crack. Using
transform technique the problem has been formulated in terms of an integral
equation which has a simple Cauchy kernel for the internal crack and a generalized

Cauchy kernel for the edge crack as the dominant part.

Nied and Erdogan (1983) analyzed the elasticity problem for a long hollow
cylinder containing an axisymmetric circumferential crack subjected to general
nonaxisymmetric external loads. The problem has been formulated in terms of a
system of singular integral equations with the Fourier coefficients of the derivative
of the crack surface displacement as density functions. Stress intensity factors and
the crack opening displacement have been calculated for a cylinder under uniform

tension, bending by end couples and self-equilibrating residual stresses.

Isida et al. (1985) made an analysis of an infinite solid containing two parallel
elliptical cracks located in staggered positions. The analysis has been based on the
body force method, in which symmetric and axisymmetric type body forces are
distributed over the crack surfaces and their densities have been determined from
the boundary conditions. Numerical calculations have been performed for a wide
range of parameters, and the effects of the shapes and the relative locations of the

cracks on the stress intensity factors have been examined.



Gecit and Turgut (1988) considered the elastostatic plane problem of a finite strip.
One end of the strip is perfectly bonded to a rigid support while the other is under
the action of a uniform tensile load. Solution for the finite strip has been obtained
by considering an infinite strip containing a transverse rigid inclusion at the middle
and two symmetrically located transverse cracks. In the limiting case when the
rigid inclusion and the cracks approach the sides of the infinite strip, the region
between one crack and the rigid inclusion becomes equivalent to the finite strip.
Formulation of the problem has been reduced to a system of three singular integral
equations using Fourier transforms. Numerical results for stresses and stress

intensity factors have been given in graphical form.

The method used by Collins (1963), Fu and Keer (1969) to solve co-planar penny-
shaped cracks has been generalized to investigate interaction of arbitrarily located
penny-shaped cracks by Graham and Lan (1994a). Solution of Kassir and Sih
(1975) for the problem of an isolated crack in an infinite solid has been applied
together with the superposition principle to reduce the problem to a system of
Fredholm integral equations of the second kind. These integral equations have then
been solved iteratively when the cracks are far apart. Some asymptotic solutions
for the stress intensity factors have been presented and comparisons have been
made whenever possible. Numerical solutions reveal some interesting phenomena.
Then, Graham and Lan (1994b) examined the interaction of arbitrarily located
penny-shaped cracks in a semi-infinite elastic solid, with the aid of the formulation
of Muki (1961) for general three-dimensional asymmetric problems and the

superposition principle.

Xiao et al. (1996) investigated the stress intensity factors of two penny-shaped
cracks with different sizes in a three-dimensional elastic solid under uniaxial
tension. The two parallel cracks are symmetrically located in the isotropic solid. A
closed-form analytical elastic solution for the stress intensity factors on the
boundaries of the cracks has been obtained when the center distance between the

two cracks is much larger than the crack sizes. A numerical method has been



employed to extract the solution for the case of small center distance. It has been
found that, due to the interaction between the two cracks, Mode I and II stress
intensity factors exist at the same time even if the applied stress is pure tension.
Numerical examples have been given for different configurations and it has been
clearly shown that the stress intensity factors are strongly determined by the

distance between the centers of the two cracks.

Leung and Su (1998) extended the two-level finite element method (2LFEM) for
the accurate analysis of axisymmetric cracks, where both the crack geometry and
applied loads were symmetrical about the axis of rotation. The complete
eigenfunction expansion series for axisymmetric cracks developed by them have
been employed as the global interpolation function such that the stress intensity
factors are primary unknowns. The coupled coefficients in the series have been

solved iteratively.

Chen (2000) evaluated stress intensity factors in a cylinder with a circumferential
crack. An indirect method, the computing compliance method, has been developed
to study the problem. The finite difference method has been used to solve the
boundary value problem. Numerical examples have been given which demonstrate

the effect of cylinder length on the stress intensity factor.

Selvadurai (2000) examined the axisymmetric problem pertaining to a penny-
shaped crack which is located at the bonded plane of two similar elastic half space
regions which exhibit axial variations in the linear elastic shear modulus. The
equations of elasticity governing this type of non-homogeneity have been solved
by employing a Hankel transform technique. The resulting mixed boundary value
problem associated with the penny-shaped crack has been reduced to a Fredholm
integral equation of the second kind which has been solved in numerical fashion to

generate the crack opening mode stress intensity factor at the tip.



Lee (2001) made an analysis of the stress distribution in a long circular cylinder of
elastic material containing a penny-shaped crack when it is deformed by the
application of a uniform shearing stress. The crack with its center on the axis of
the cylinder lies on a plane perpendicular to that axis, and the cylinder surface is
stress-free. By making a suitable representation of the stress function, the problem
has been reduced to the solution of a pair of Fredholm integral equations of second
kind. These have been solved numerically, and the percentage increase in the
stress intensity factor due to the effect of the finite radius of the cylinder has been
presented in graphical form for various proximity ratios. Then, Lee (2002) made
an analysis of the stress distribution in a long circular cylinder of isotropic elastic
material with a circumferential edge crack when it is deformed by the application
of a uniform shearing stress. Using same procedure given in Lee (2001), the stress

intensity factor for varying circumferential edge crack size has been tabulated.

Meshii and Watanabe (2001) presented the development of a practical method, by
using prepared tabulated data, to calculate the Mode I stress intensity factor for an
inner surface circumferential crack in a finite length cylinder. The crack surfaces
are subjected to an axisymmetric stress with an arbitrary biquadratic radial
distribution. The method was derived by applying the authors’ weight function for
the crack. This work is based on the thin shell theory. Their method is valid over a
wide range of mean radius to wall thickness ratio and for relatively short cracks.
The difference between the stress intensity factor obtained by their method for the

geometry and that from finite element analysis is within 5%.

Selvadurai (2002) examined the axial tensile loading of a rigid circular disc which
is bonded to the surface of a half-space weakened by a penny-shaped crack. The
integral equations governing the problem have been solved numerically to
establish the influence of the extent of cracking on the axial stiffness of the bonded

disc and on the stress intensity factors at the crack tip.



Tsang et al. (2003) investigated the stress intensity factors of multiple penny-
shaped cracks in an elastic solid cylinder under axial tensile loading. The cracks
are located symmetrically and parallel to one another in the isotropic cylinder. The
fractal-like finite element method has been employed to study the interaction of
multiple cracks and to demonstrate the efficiency of the FFEM for multiple crack

problems.

An eigenfunction expansion method has been presented to obtain three-
dimensional asymptotic stress fields in the vicinity of the front of a penny-shaped
discontinuity, e.g., crack, anticrack (infinitely rigid lamella), etc., subjected to the
far-field torsion (Mode III), extension/bending (Mode I) and sliding shear/twisting
(Mode II) loadings by Chaudhuri (2003). Five different discontinuity-surface
boundary conditions have been considered: penny-shaped crack, penny-shaped
anticrack or perfectly bonded thin rigid inclusion, penny-shaped thin transversely
rigid inclusion, penny-shaped thin rigid inclusion in part perfectly bonded, the
remainder with frictionless slip and penny-shaped thin rigid inclusion alongside
penny-shaped crack. The computed stress singularity for a penny-shaped anticrack
is the same as that of the corresponding crack. The main difference is, however,
that all the stress components at the circular tip of an anticrack depend on

Poisson’s ratio under Mode I and II.

Vrbik et al. (2004) examined the problem of symmetric indentation of a penny-
shaped crack by a smoothly embedded rigid circular disc inclusion in a thick layer.
Expressions for the resultant pressure applied to the inclusion and for the stress
intensity factor at the boundary of the penny-shaped crack have been obtained. The
numerical form of the expressions for the resultant stress fields and the tractions
along the inclusion have been also derived. Numerical results for the resultant
pressure and stress intensity factor, resultant stress fields and the resultant tractions

along the inclusion have been obtained and displayed graphically.



1.2 A Short Introduction and Method of Solution of the Problem

This study considers the axisymmetric elasticity problem for a semi-infinite
cylinder with a crack and a finite cylinder of radius A and length L. One end of
the semi-infinite and finite cylinders is perfectly bonded to a rigid support at z=0.
The other end of the semi-infinite cylinder at z=co and the finite cylinder at z=L

is under the action of a tensile axial load of uniform intensity p,. The material of

the cylinder is assumed to be linearly elastic and isotropic and surface of the
cylinder is free of stresses. Solution for these semi-infinite and finite cylinder
problems is obtained by considering an infinite cylinder containing two concentric
penny-shaped cracks of radius a at z=*L planes and a concentric penny-shaped
inclusion of radius bat z=0 plane which is subjected to uniformly distributed

axial tensile loads of intensity p, at infinity.

In the limiting case, when the rigid inclusion approaches the surface of infinite
cylinder, i.e., when b — A, the cylinder is fixed at z=0. One half of infinite
cylinder becomes identical with the semi-infinite cylinder which contains a penny-
shaped crack at z =L plane with the short end being bonded to a rigid support at
z=0. When the crack approaches the surface of the cracked semi-infinite
cylinder, i.e., when @ — A, the region between one crack and the rigid support

becomes equivalent to a finite cylinder of length L.

Formulation for the infinite cylinder problem is obtained by means of
superposition of the following two problems: (I) Uniform solution: an infinite
cylinder subjected to uniform tension at z=zeco, (II) Perturbation problem; an
infinite cylinder containing two concentric penny-shaped cracks of radius a at
z==L planes and a concentric penny-shaped rigid inclusion of radius b at z=0
plane with no load at infinity. General expressions for the perturbation problem
(II) are obtained by adding the expressions for (II-i) an axisymmetric infinite

elastic medium having two concentric penny-shaped cracks of radius a at z=%L



planes, (II-ii) an axisymmetric infinite elastic medium containing a penny-shaped
rigid inclusion of radius b at z =0 plane, (II-iii) an axisymmetric infinite elastic
medium with no cracks or inclusion. Addition of several solutions is necessary for
having sufficient number of unknowns in the general expressions so that all of the

boundary conditions of the problem can be satisfied.

In this study axisymmetric problems are investigated for three main geometries:
infinite cylinder, semi-infinite cylinder and finite cylinder problems. General
solutions for these problems are obtained by using Hankel and Fourier transforms
on Navier equations. Then, the boundary conditions at the surface of the infinite
cylinder are satisfied. By using the boundary conditions on the cracks and the rigid
inclusion, formulation of the infinite problem is reduced to a system of three
singular integral equations. In the limiting case when the rigid inclusion
approaches the surface of the cylinder (i.e., when b — A), cracked semi-infinite
cylinder problem is obtained. When additionally the cracks approach the surface of
the cylinder (i.e., when a — A), finite cylinder problem is obtained. By using
Gauss-Lobatto and Gauss-Jacobi integration formulas, these singular integral
equations are converted to a system of linear algebraic equations which is solved
numerically. Mode I and Mode II stress intensity factors at the edges of cracks and
inclusion and, normal and shearing stresses along the rigid support are calculated

and are given in Table 1 and Figs. 6.1-6.85.
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CHAPTER 11

INFINITE CYLINDER PROBLEM

2.1. General Equations

An axisymmetric, linearly elastic, isotropic and infinite cylinder of radius A,
containing two concentric penny-shaped cracks of radius a symmetrically located
at z==*L planes and a concentric penny-shaped rigid inclusion of radius » with
negligible thickness at the symmetry plane z =0 is considered. Both ends of this

infinite cylinder are subjected to axial tensile loads of uniform intensity p, at

infinity (Fig. 2.1).

Figure 2.1 Geometry and loading of the infinite cylinder.
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For the linearly elastic, isotropic and axisymmetric elasticity problems, Navier

equations can be written as, Gegit (1986),

’u 1du u 9’u o*w
T | YCAL L S P | L, Sl
(% )(ar2 r or r2) (i )8z2 0rdz
o’u 1du 2’w 1 dw 2w
2 - -1 - 1 =0, 2.1a,b
(8r8z+raz)+(K )(8r2+r8r)+(K+ )az2 G

where # and w are displacements in r- and z-directions in cylindrical coordinate
system, Kk =3—4v and Vv is the Poisson’s ratio. Necessary stress-displacement

relations can be listed as follows,

r

o[ Ju u ow.|
= D—+G-xK)(—+—)|,
lo K—1_(K+)ar+( K)(r+az)_

-

il ow ou u.|
== D—+ (3= 1) (—+—
o, K‘—l_(K+ )aZ +( /c)(ar + r)_

du ow
= a2y, 2.2a-
T, ,u(aZ + 8r) (2.2a-c)

where ¢ and 7 denote normal and shearing stresses, £ is the shear modulus.

2.2 Formulation of the Problem

Solution for the infinite cylinder having a rigid penny-shaped inclusion and two
penny-shaped cracks and loaded at infinity is obtained by superposition of the
following two problems: (I) an infinite cylinder subjected to uniformly distributed

axial tension of intensity p, at infinity with no cracks or inclusion, (II) an infinite

12



cylinder with an inclusion and two cracks for which the loading is the negative of
the stresses at the location of the cracks and displacements at the location of the

inclusion calculated from the solution of problem (I) (Fig. 2.2).

L
1

I\
A
v
\

|

b e

(D Uniform solution  (II) Perturbation problem Superposition

Figure 2.2 Superposition scheme of the infinite cylinder problem.

2.2.1 Perturbation Problem

General expressions of the displacements and stress components for the
perturbation problem with no loads at infinity can be obtained by adding the
general expressions of (II-i) an infinite cylinder containing two penny-shaped
cracks of radius a symmetrically located at z=xL planes, (II-ii) an infinite

cylinder having a penny-shaped rigid inclusion of radius & at the symmetry plane

13



z =0 and (II-iii) an infinite cylinder without cracks and inclusion under the action
of arbitrary axisymmetric loading (Fig. 2.3). This is necessary in order for the
expressions to contain sufficient number of unknowns so that all of the boundary

conditions can be satisfied.

/\i@
il ZT—i + _T__,Z' g ,—»A = —ZT——F'
M !
ez

(II-1) (II-ii) (II-1ii) In
Hankel transform Hankel transform Fourier transform Perturbation
in r-direction in r-direction in z-direction problem

Figure 2.3 Addition of several solutions for the perturbation problem.

General expressions for the infinite cylinder (0 < r < A) problems may adequately
be obtained from infinite medium (0 < r <o) solutions with appropriate boundary
conditions imposed at r = A. Due to symmetry about z = 0 plane, it is sufficient to

solve the problem in the upper half space z =0 only.
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2.2.1.1 Infinite Medium Having Two Cracks

Two penny-shaped cracks of radius a are located symmetrically at distances of L
from z=0 ©plane. Considering an infinitt medium with Region i-1

(0Lr<oo,—L<z<L), Region i-2 (0<r<oo,L<z<o) and Region i-3
(0<r<oo,—o0<z<-L), using integral transforms, H, Hankel transform,

Sneddon (1972), of Eq. (2.1b) and H, transform of Eq. (2.1a), in r- direction (Fig.
2.4) and

Region i-2

(0<r<oo)

7 ) (-L<z<L)
Region i-1 T_r’

Region i-3 (mo<z=-L)

Figure 2.4 Formulation of the cracked infinite medium problem.

combining the resulting equations, one obtains,

2
au 2] +&U=0 (2.3)
dz

d'v
—DE2
dz* g
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where ¢ is the Hankel transform variable, U(&,z)is H, Hankel transform of

u(r,z) and W(&,z)is H, Hankel transform of w(r,z) in r-direction,

oo

U(,2) = [u(r,)r),(&dr,

0

W(&,2) = [wir,2)rdy(&r)dr . (2.4a.b)
0

Solution of Eq. (2.3) for the Region i-2 (0 <r <o, L < 7<) (Fig. 2.4) is
U_,(&2)=(c+ czz)e’éz +(c; + c4z)e§Z , (2.5)

where ¢, ¢,,c; and ¢, are arbitrary unknown constants. By back substitution in

the transformed ordinary differential equations, one may obtain

W_,(&,z2)= |:Cl +(z+ ?)cz}e—fz - |:C3 +(z— ?)(,‘4:|€§z . (2.6)

In order to have finite displacements at infinity (z = o), ¢, and ¢, must be zero.

Therefore,

U, 0=(c+ sz)e_éz )

W,_,(§,2)= |:C1 +(z+ ?)C2i|e_§z . (2.7a,b)

Taking the inverse transforms of Egs. (2.7), displacement components are found to

be
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u_,(r,z)= I(Cl + sz)e—§z§ Jl(fr)d‘f >

w_,(r,2) = T [cl +(z+ ?)62}3_5 T, (ErdE (2.8a,b)

where J, and J, are the Bessel functions of the first kind of order zero and one,

respectively. Substituting Eqgs. (2.8) in Eqgs. (2.2), one obtains the following

expressions for the stress components in the Region i-2 (0 <r < oo, L < 7 < 00),

o, (r,2)= ﬂj—2(c1 +sz)e_§z %‘Il (fr)déj
i-2 0

+ [ &G, + e,0) + (K =3)c, e € T (&€,
0. () =uf 28 + 0~ (k+ e Je g T (G,

7. (no)=p [ 28 + 00 - (=D, e “2E 1, (&r)dé (2.9a-c)

Applying a similar procedure for the Region i-1 (0<r<eo,—L<z<L), the

displacement and stress expressions are obtained in the form,

41 (r2) = [ es +eg)e ™ + (e e JE T, (e

Wy (r,2) = T{cs + (? + z)cb}—f - [CS + (g - z)cﬁ}eﬁ}é: Jy(&)dE,  (2.10a,b)
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o, (r,2)= yT{[z(:(cs +e52) + (K =3)cgJe
+ [2§(C5 —Ce2) + (K= 3)C6]e§z}§-]o(§")d‘§

- 2,uj [(c5 + cﬁz)e’fZ +(c5 — cﬁz)efz]g J,(&rydé&,

0. (r.2)=pf{F 280, + ) - (e + e Je
i-1 0

+=2&(e, - e,2) - (c+ e |7 JE T, (EdE

7, (rn2)=u[{[- 28 + ¢ 2) - (k= DeyJe
i-1 0

+[2&(e, — e,2) + (k= )e, |7 JE T, (& dE . (2.11ac)
General expressions given in Egs. (2.8) and (2.9) for Region i-2

(0Lr<oo,L<z<o0) and Egs. (2.10)0 and (2.11) for Region i-1

(0 £ 7 <oo,— L <z< L) must satisfy the following conditions at z =L plane,

0. (nL)=0, (rL), (0< r < oo)
T;il(r,L_) = T;iz(r,U) , (0< r<oo)
u,(r, L) =u_,(r,L), (a<r<o)
w(r,L)=w,_,(r,L"). (a<r<o) (2.12a-d)
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Note here that Egs. (2.12a,b) are stress type continuity conditions while Egs.

(2.12c,d) are displacement type. In order to have the same type of continuity

conditions, say stress type, Egs. (2.12c,d) may be replaced by
0 N ) _

Zwa I~ ()] = £ (1), (0<r <)
or or

li[m,._z(r,U)]— li[ml._l(r,L_)]: g(r), (0<r <o) (2.13a,b)
ro ror

where f(r) and g(r)are unknown functions such that f(r)=0 and g(r)=0
when (a <r<woo). Now substituting Egs. (2.8), (2.9), (2.10) and (2.11) in Egs.

(2.12a,b) and (2.13), one obtains the following expressions for the unknown

constants,

__HHPOU-x+2LE) + G+ k- 2LE)]

! 2Kk +1)E

N EHF(E) =1+ k+2LE) + G(E)(1+ K+ 2LE)]
2x+1)E ’

o o FO-6@)] EHFO+6E)]
? (k+1) (k+1) ’

_ e F@1+ k=218 + GE)-1 -k +2LE)]

G Ak +1)E
_HEFG+6E) (2.142-d)
6 (k+1) ’ ‘
where
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F(&) = [ £, (&nar,

G(&)= Tg(r)rfo(é:r)dr : (2.15a,b)

Hence, the displacements and the stresses are expressed in terms of F (&) and
G(&) for Regioni-1 (0<r<oo,—L<z<L) and Regioni-2 (0<r <oo,L< 7<)

shown in Fig. 2.4,

1 [ —S(L+z
u_(r,z)= 3+ ! {—la-x+2LE+22E)F(E)+ A+ k—2LE =22E)G(E)]e s+

+[(=14 k= 2LE+228)F (&) — (14 k= 2LE +226)G(E)|ef 2 1 (EndE

w_(r,z) = —1 ]i{[(l + K+ 2LE+22E)F(E)+ (1— k= 2LE - 22E)G(E)]e 2
2Kk+1)7

— [+ K+ 2LE = 22E)F(E) = (—1+ K+ 2LE = 22E)G(E)]e 2 11, (EndE

i-1 (K+ 1)
+HA=LE+ 2EF(E) + (=2 + LE = 26G(E)]ef T ) 1, (&) dE

o, (rz)= 2_ﬂT{— [(~14+ LE+ 26 F(E) — (-2 + LE + 2E)G(E)|e# -

L T{[(l — K+ 2LE+22E)F(E) + (14 K= 2LE = 226)G(E)|e 5
(k+1Dy

—[(~1+x=2LE+ 228 F(&) — 1+ k= 2LE +228)G(E)]e” }—J‘(&) dé,
r

o, (r,2)= 2_/‘]'{[(1 +LE+ 2EF(E) = (L+2)EG(E)]e
i-1 (k+Ds

—l1=LE+ 2O F(E) + (L= ) EGE)]E YT (EdE,
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7, (r2)= 2—ﬂj{[(L +2)EF(E) = (-1+ LE+ 2E)G(E)]e s+
i1 (k+1D)s

+[- L+ DEFE) + (14 LE - 2HGE)|F YT (ENdE,  (2.16a-¢)

—§(L+2)

-1
T2k +1)
+[(1= k= 2LE+228)F(E) — (1+ K+ 2LE = 228)G(D)]ef )}, (& dE

W, (r,2) = j{ [+ &+ 2LE+22E)F(E) = (14 K+ 2LE +22E)G(E) e

2(x+1)3
+[(1+ K= 2LE+22EF(E) + (—1+ k= 2LE +22E)G(E)]|e 2}, (EndE ,

O'_ (r, Z)——(—I{[( 1+ LE+ z2EF(E) + (2 - LE — zE)G(E) e ¢+

+[(-1-LE+2E)F (&)~ 2+ LE - 2G|V Y T (Erdé

(H D) I{[(l K+2LE+228)F (&) +(1+ k—2LE = 22E)G(E)]e ¥4

(1= k= 2LE+ 228 F(E) — (14 K+ 2LE-225G@) P g
;

o. (r.2)= 2_/‘_"{[(1 + LE+ 2EF(E) = (L+ 2)EG(E)]e s+
i2 (k+1) 0

1= LE+ 2O F (&)~ (L- D EGE)E T JE T, (Er)dE,

7. (r2)= 2 j {lL+2)EF(E)+(1-LE-2EG(E)]e ™+
i-2 (k+1D)+

+[-(L=2)EF(E) -+ LE- Z§)G(§)]85(L—z)}§ J,(EdE (2.17a-¢)
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2.2.1.2 Infinite Medium Having an Inclusion

Now consider an infinite medium having a penny-shaped rigid inclusion of radius

b located at the symmetry plane (z=0). Considering an infinite medium with
Region ii-1 (0<r <o0,0< 7<) and Region ii-2 (0 <7 <oo,—o0 < 7<0), using
integral transforms, H, Hankel transform of Eq. (2.1b) and H, transform of Eq.

(2.1a) in r-direction (Fig. 2.5), solution of Eq. (2.3) for the Region ii-1
(0L r<o0,0< 7<) is obtained in the form

Un‘—1(§, 2)=(c + Cl()Z)e_fz +(co, + ClZZ)efz > (2.18)

where ¢,, ¢,,c,, and ¢, are arbitrary unknown constants. Similarly, one may

write
— K -z k sz
W, (§,2) =] ¢ +(Z+E)C10 e~y +(Z_E)C12 e . (2.19)

In order to have finite displacements at infinity (z — o), ¢;;, and ¢, must be

zero. Taking the inverse transforms of Egs. (2.18) and (2.19), displacement

components are found to be

u;(r,z2)= J.(C9 + cloz)e_gz §J1(§r)dé: ’
0

oo

w,_(r,z) = I {cg +(z+ ?)cm}_§Z EJ,(ErdE. (2.20a,b)

0
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Region ii-1

Region ii-2 : (-0 < z<0)
(0 r<)

Figure 2.5 Infinite medium having an inclusion.

Substituting Eqgs. (2.20) in Egs. (2.2), one obtains the following expressions for the

stress components in the Region ii-1 (0 < r < ,0 < 7 < 00) (Fig. 2.5):

oo

o, (n2)= ‘u.‘. [_ 2(ey + Cl()z)]e—fzé: d (:gr) &
0

ii—1

+,u]: [24::(09 +¢02) + (K= 3)C10]e_§zé:-]o(§r)d§ >

0. (r.2)=p [2£(c; + ) = (K + Dy le ¢ Ty (Erdg,
ii—1 0

7. (r,z2)= IUT [_ 2§(C9 +¢02) — (K- 1)C10]€_§z§Z Jl(fr)d‘§~ (2.21a-c)

ii—1
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Expressions for the lower semi infinite space (0 <7 <oo,—oc0 <z <0) are obtained

similarly in the form,

oo

Uy, (r,z2)= J.(CIS + 0162)6525.]1(&)515 )
0

W (r,2) = ]2 [_ ¢s—(z— ?)Cm}e‘fzg Jo(End¢, (2.22a,b)

o, (r,2)= :uj [2§(C15 +¢2) — (K= 3)C16]e§zé: Jo (&rydé

ii-2

T J
- 2/1_[ (e5+ Clsz)eézf%&) ¢,

i

o, (rz)= ,u_[ [- 28(cs +ce2) + (K + 1)c16]e§Z§ J,(&rydé&,

T, (r,2)= ,u_[ [2§(C15 +¢162) — (K_l)c16]e§z‘§-]1(§")d‘§- (2.23a-c)

ii-2

The expressions in Egs. (2.20), (2.21) and (2.22), (2.23) are matched on the z =0

plane by means of the following continuity conditions,

w;  (r,07)=u, ,(r,07), (0<r <)

Wii—l(r,0+) =w,_,(r,07), (0<r<)

O-z (r’0+) = O-g (r’O*) ’ (0 <r< 00)
i1 ii-2
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7, (rn00) -7, (r07)=h(r), (0<r <o) (2.24a-d)

ii—1 ii-2

where h(r) is the jump in the shearing stress 7, through the rigid inclusion and it
is such that h(r) =0 when b <r <. The unknown constants can be expressed in

terms of H (&) as,

¢ =c, __KHE)
2(k + Dué

Cip = Cig = Lﬁ) > (2.25a,b)
2Ax+Du

where

H(&) = [h(r)rd,(&rydr . (2.26)

Since the infinite medium having an inclusion is symmetric about z =0 plane, the
axisymmetric problem is considered in the upper half space Region ii-1

(0<r<eo,0< z<00) (Fig. 2.5). The displacements and the stresses for this region

may be written as,

— 1 T _ -£z
4 (D= j [(~x+ 2O H(&)]e 470, (&rd¢,

_ 1 ° -¢&z
Wi (D= j [zEH(E)]e ™ 0,(Enaé,
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o, z,)——I[(rc H et 1 g

[[3+x-2:0H@ ¢ 1 Ende,

2(K+ D3
1 _m -6z
0, D= ey | (1K= 2O @86,
b (D)= 2 EET(Erde (2.27a-¢)

2.2.1.3 Infinite Medium under the Action of Arbitrary Axisymmetric Loading

In this section, the infinite medium problem without crack and inclusion is
considered. For the solution of this problem, taking the Fourier cosine transform,
Sneddon (1951), of the first Navier equation, (2.1a), and the Fourier cosine
transform of the second Navier equation, (2.1b), in z- direction and combining the

resulting equations, one obtains,

4
x4dU 23dU

au 4 2
2x* —<+(x"+2x -3)U, =0
— ~( 30 <+ ( W,
(2.28)
where U, is the Fourier cosine transform of u(r,z),
U, (r,a) = [u(r, z)cos(az)dz, (2.29)
0

x=ar, a being Fourier transform variable. By taking into consideration that Eq.

(2.28) is in the form
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AU, =0, (2.30)

where A is a 4™ order linear ordinary differential operator with variable

coefficients in x, McLachlan (1934), Eq. (2.30) may be written as

AAU)+A(AU,) =0, (2.31)

where A ,A,,A;and A, are second order linear ordinary differential operators

with variable coefficients in x:

2
A, :xzd—2—3xi—x2+3,
dx dx
2
A, —xzd—2+xi—x2—l,
dx dx
2
A, zxzd—2+xi—x2—4 ,
dx dx
d* d 1
Ay =x—f5——+——x. (2.32a-d)

Solution of Eq. (2.31) is

1 1
U.(r,a)= ) ¢, 1, (or) + 5‘718[(1(0”’) +c ol (or) + c,,orK  (ar) , (2.33)
where /,K,,I and K, are the modified Bessel functions of the first and second
kinds of order zero and one, respectively, and c;,c,c,and c,, are arbitrary

constants. Because of symmetry about z-axis, ¢,y and c,, must be zero (Fig. 2.6).
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Region iii-1

Region iii-2 ; (-0 < z<0)
(0 r<oo)

Figure 2.6 Infinite axisymmetric medium with no crack or inclusion.

By similar consideration,

W.(r,a) = %cnlo(ar) — e+ D1 (ar) + arl, ()] (2.34)
is obtained where W (r,) is the Fourier sine transform of w(r,z),

W (r,a)= Iw(r, z)sin(az)dz . (2.35)
Taking the inverse transform of Eqs. (2.33) and (2.34), the displacement

components are found to be
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oo

2 1
U forier (15 2) = ;'[ {— Ec”ll (ar)+ cwarlo(ar)} cos(az)da ,
0

oo

W prier (1 2) = % j {% il (ar) = c,[(x+ DI, (ar) + Otrll(ar)]} sin(az)dz . (2.36a,b)

0

Substituting Egs. (2.36) in Eqgs. (2.2), one obtains the following expressions for

the stress components

O-r (I", Z) = z_ﬂT{cl7|:M - aIO(m):|
V2 r

fourier

T ¢k = Dt (ar) + 201, ()| Jeos(a)dax

o, (rz)= %UT{C”“IO (ar)- 619[(K‘+ 5)ad,(ar)+ 2a2rll(ar)]}cos(az)da ,

fourier 0

fourier

T (ro)= %T{cnml (ar) — e[+ Dad, (ar) + 21y (ar) | sin(ez)dex .
0

(2.37a-c)

Now the general expressions for the infinite medium containing two penny-shaped
cracks, a penny-shaped inclusion and subjected to arbitrary axisymmetric loads

(not at infinity) may be obtained when the individual expressions are added

together:

uperturbation - ucracks + uinclusion + ufourier ’

w perturbation — Wcmcks

+w,

inclusion

tw Sfourier °
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o

r perturbation — O-rcracks + Grinclusion + Grfourier 2

2z perturbation Gzcracks + GZ inclusion + szourier ’

T (2.38a-¢)

rz perturbation Trzcracks + Trzinclusion + Trz Sfourier *

These expressions may give those for the perturbation problem for an infinite
cylinder with stress-free surface if they are forced to satisfy the homogeneous

boundary conditions

A,z2)=0, (0<z< )

Gr perturbation (

A, 2)=0. (0<z<x) (2.39a,b)

1z perturbation (

Egs. (2.39) with (2.16), (2.17), (2.27), (2.37) and (2.38) give

¢, al,(2A) — ¢, |(k + Dl (0A) + 2A a1, (ad) |

_cos(al) 7 -8’
T (k+D) 3| (@2 +EY)

:|‘]l(§A)F(§)d§

 sinat) { 8°¢ }Jl(&\)G(é:)df

(k+1) | (@ + &)

1 j[- el + -3¢
2u(k+1) J.{ (@ + &) }Jl (GAH($)dS,

0

cﬂ[@—alom)}*%[(zc—l)odo(w@+2Aazll<w4>]

_cos(al) {26+ va’ + (-3 &) 8a¢”
- (k+1) 0{ (@’ + &%) A (@ + &) Jo(fA)}F(é:)df
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sin(al) [ 2ef(c+ Da? + (k=3)E 1, () 8aE
" (x+1) 0{ (o +§2)2 A + (o +§2)2 Jo(":A)}G(‘f)d":

1 }" {— 28]k + e + (k- 1)E] J,(E4)

2u(x+1)9 (@ +&%)’ A
f [(K‘+5)0! +2(K'+1)§ ]JO(@)}H(f)dé: (2.40a,b)
(@ +&%)

following routine manipulations. Solution of Egs. (2.40) give

[1 (QA)(k = 1)+ 2AI, (cA)a|E, + [1 (0A) + 1, (aA)k + 2Al, (0A) |E,
v —2A°1 (0o’ + 17 (cA)(1+ K+ 2A%%) ’

o=t { 1) + Al(@)alE + Al @t)alE, } , 2.41a5)
o | =241, (cA)a” + 1,7 (cA)(1+k+2Aa")

in which, by the aid of integral formulas given in Appendix A one may show that,

: c(os(O{L)Jf(t)t 4a2[tK (aA)1,(at)— AK (@A), (m)]}

+ S(m(aL)I ()rthar’ [AK ()1 (ar) — K, (@)1, (o) Jdi

2/1( j hO)H2a? [tk (eA)I,(ar) - AK ()] (ar)]

—a(k+ DK, (cA)I,(at) Jdt »

- COS(“L)J'f(t)t{——K (0A)1,(on) + 4aK ,(0A) I, (att)
(x+1)

2k +1)
A

—4a’tK (@A) (o) +{ + 4052A}K1 (aA)I, (m)}dt
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sm(aL) I (z)r{—— K, (0A)I (o) + 40K (aA) ], (ar)

—4a2rK0(aA)11(m)+{2(’( Dy ZA}K (), (o) - 2E ”)} ¢
A A'a

m j ht )’{TK (@A), () + 207K , (aA) ], (ar)

_ [2(’;* D, 20{2A}K1 (A1 (o) = [atie + 1)+ 2a]K () (ax )}df

(2.42a,b)

Then, the general expressions for the perturbation problem of an infinite cylinder

with two cracks, an inclusion and a stress-free lateral surface become

_ 1 0 lm _ _ _ —&(L+2) _ _
ucy,‘m(r,z)——(K+1)£f(t)t<2'([[( 1+ x—-2LE-2z8)e +(-1+x-2L¢

+228)e 9] 1) (EdE + %Tdi{— 2rad,(or)|=2tad (o)

+1,(ta)(d, + d1d3)] + Il(ra){— 2tal (ta)(1+x+d,+dd,)

+1,ta)[(1+ K)d, +2d,+d\d,(1+ k) | } }eos(al) cos(az)der)dt

—j g(t)t<%]:[(—l —K+2LE+22E)e ) —(1+ k—-2LE
0 0

+228)e 0| 1,(E) T, (Erdé + %I— A;do {2rai,(ra{Ac]-2ail, (1)

+d,(ta)] —~I,(Aa)(1+ k) + Aad,d,I,(tar) } + I, (ra){I,(Ae)(1
+2K+ )+ 1, (ta)2Ata’ (1+ k) + 2Aadd (Aa)(1 + k) — Aa(1 + K)d, 1, (tx)
+2Ata’d 1 (ta) +d,d2Ata’ 1 (t)

— Aad 1,(to)[2+ (1+ x)d, |} }sin(aL) cos(az)d ax)dt
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1 b 1% .
" LT L ratan|- 210l (1a) + (@)1 + K+ d, +d )]
27[ 0 d()

+1 (ra){ztalo ta)(l+x+d,+dd;) -1, (ta)[l +x(2+x+2d,)+3d,

+2d,d,(1+ ©)] }Heos(az)da)dt ,

w

cyl

=

—;a lm I _ —$(L+2)
'W'(r’Z)_(’f+1)}[f(t)t<2’([[( 1-x-2L,-2z8)e +(1+x+2LE

~228)e 0G0, 42 [ -erad (el 2ed 1)

00

+1,(ta)(d, +dd,)|+ I,(ra){2tal (ta)(~1 - k +d, + d,d,)

+1(ta)[(1+ x)d, —2d,+dd,(1+ k) |} }eos(al)sin(az)d o) dt

1
+
(k+

jg(t)t l]o[(—l FK+2LE+27E)e ) — (14 K+ 2LE
1 29

_E(Lx 257 1
=229 1,1, + [ {aalerad 1 a)l (ra)

+1,(ra)2(1+ K)I,(A@) + (1 + K)d I, (ta) + 2tod, 1, (te)]}
+2rdd, (ra)l-2Ate’1 (ta) — I,(Aa)(1+ k) + Aad d. 1, (tcx) |
+1,ra0f 240+ Ot L (1) + Aad I, (ta)[- 2+ (1 + K)d, ]

— L(Aa)(1+ k) +2Ata’d,d,], (re0) }Jsin(aL)sin(az)da)dr

+

Lo e Ui el
P !h(t)t<2'([ze E11(E01y(Endg - ! do{l"(m)[( 1+ &

—4A’a) (1) + 2tad | (10)(—1 — kK + d, + d,d,) |+ 2ral (ra)[- 2tal (1)

+1,ta) 1+ k+d, +d,d,)]Jsin(a)da)dt ,
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O-r
cyl.per.

_ ,u T R —¢(L+z
(r,2) —mlf(t)t<2'([[(l—L§—z§)e S L (1-LE
#2850 |0,y (EdE + [[1- K+ 2LE+ 228 4 (- k

+2LE-2zE)e 0], (&)@d@f - %T%{Zralo(ra){talo(ta)@

0 1A
+d,+dd,) —1,¢ta)ld, +d,(1+d)|}+I,(ra){-2tal,(ta)d, +d,

+didy) + 1oy d, +2d, +d,dy(d, ~ r*a’) | eos(aL) cos(az)der)dr

lu T T —6(L+z
+ T !g(t)t<2£[(—2+ LE+2E)e M 4 (<24 LE

28T (@00, EdE + [0+ 0 -2LE - 22860

J,(

+(l+x-2L,+ 2z§)e‘5“‘z>]]0(§;) &) dé
r

47 1
- | o {21, (Aa)(-1- k) +2d,d,1,(ta) - 2ted, I (ta)]
+ral,(ra)21,(Ac)(1+ k) —2d,1,(ta) + 2tad, I, (ta)] }
+2ral, (ra)|2Ate ] (ta) - Aad I, (ta)(1+ d,) I (Aa)(1 + ) +
+ Ata’d d,1 ()| + 1 (ra)|-2Ata?d, 1, (ter) + Aad, 1, (ta)(2

+dd,) - 1,(Aa)d,(1+ k) + 2At052dld31l (ta)]}cos(az)sin(aL)da>dt

+

1§ T J (&)
w0 £h<r>r<£<zc e (G dg

- %f B+ K —228)e SE T (&) (Er)dé + lTi{rodo<r00{2wdo<w’><2
) Ty rd

AL
+d, +dd,) - I,(ta)|dd, -Ae?) +d,(3+ ) + d,d, 3+ ©)] }
+1,(ro){-2tal (ta)(dd, +d, +d,) +1,(ta)|d, +d,(1+ k) +2d,(d, - r’a*)

12| + 1+ A2+ Pad) + waly (2 + 24%° + 20| [Heos(an)da)ar
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_ M7 T e

eyt per. 5 2) kD lf (t)t<2 ! [(1 +LE+zE)e (-1-L&

+28)e D) g (@ (EdE + % j dﬁ{rod1 (or)[=2tad  (ar)
00

+1(ar)(d, +ddy)]| + 1,(ra){tal,(ta) (4 +d,d, +d,) + 1,(ta)2d,

+d,(-1+ 2d3)] Heos(al) cos(O{z)dO{)dt

'u T [ —G(L+z —6(L-z
+<K+1>£g(t)t<2£[_(“2)e (L= e | (@ (Endé

4 §TL{A afrad,1,(ta)1,(ra) + 1, (re)|l,(Aa)(1 + &) + 2d,1, (1)

+tod, 1, (ta)]} +ral, (ra)[— 2At0{211 ta)-1,(Aa)1+k)
+ Aad d,1,(ta)|+ 1,(ra)|- 4Ata’l, (ta) + Acd I, (te)(2d,

~1)=2(1+ K, (Aa) + Ata’dd. 1, (1)) Jeos(az) sin(al)de)dt

1 5 h<r>r<1 [l k=2280)e 58,0 (Gr)dé

+

(k+ 29

_1 [ dﬁ{zrall(m)[— 2tad,(ar) +1,(an)(1+ x +d, +d,d,)]
T v Qo

+1,(ra)2tal (ta)(~4+d, +dd,) + 1, (toz)[Z(d1 —4A’a*)+d,(3-K)

+d,(1- & +d, - 2A%0?) | Heos(ax)da)dr

:La T -§(L+z) _ _ ~E(L-z7) | £2
L | f<f>t<2£ 2+ e = (L= e Je @ (&

+ %Tdﬁ{ll (ar)|-d I, (o) + tad y(ta)(d,+ d,dy) |+ rad (reo)|- 2tad (1)
00

+1,(ta)(d,+d,d,)] Jeos(aL) sin(az)d a)dt

+

H a T _ _ —&(L+z) _
7 { g(t)t<2£[(l LE—zE)e +(-1+LE
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B Zf)e_f(L_Z)]‘f‘]O(fl)Jl (&dé + E.[ AOC{Z

0 0

{rl,raf{Aa]-2ail, (ta)

+d,1,(ta)|-1,(Aa)1+ k) + Aad,d1,(ta)}+ Al (ra)[I,(Aa)(1+ k)

+tad,],(ta) —d, I (ta) +tadd,I (te)] }sin(az)sin(al) )dt

+

1 ¢ 1% -
c+1) !h(t)t<52[(l+ kK—2z&8)e =T (&) (EndE

+ ljﬁ{_ 2rad, (ar)[- 2tad (ot )+ 1, (o)1 + Kk +d, + d1d3)]

+1,(ra){-2ted, (t)(d,d, + d,) + I,(t)|(1 + K)d,

+2d, +d,d,(1+ ©)]} }sin(az)dar)dt , (2.43a-¢)
where
d, =241, (Aa) - (1+ k+2A%a*)1,* (Aw),
d =1+x+2A",
d, =2Aa’1,(A)K,(A),
d,=1(Ao)K,(Aa),
d,=1+x+2ra", (2.44a-¢)

and integrals of Bessel functions are given in terms of the complete elliptic

integrals K and E in Appendix B.
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2.2.2 Uniform Solution

Consider an infinite cylinder of radius A subjected to uniformly distributed axial

tension of intensity p, at infinity. In this special case, one may expect that u is

independent of z and w is independent of r:

u(r,z)=u(r),

w(r,z) =w(z). (2.45a,b)

For this uniform axial loading, Egs. (2.1) are uncoupled and become

=0. (2.46a,b)

These equations must be solved subjected to the following conditions

u(0)=0,

w(0)=0,

0,(A,2)=0,

7.(A,2)=0,

0.(r,») = p, (2.47a-e)
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for which one can easily obtain the solution in the form

uunifarm(r) = —mr ,
2u(k=17)
2
Wunifgrm(Z) = —& z,
u(x=17)
Gr (7’, Z) = 0 s
uniform

O-z (r’Z):p()’

uniform

t.  (r.2)=0.
uniform

2.2.3 Superposition

(2.48a-¢)

General expressions for the infinite cylinder which contains two penny-shaped

cracks at z =1L, a penny-shaped inclusion at z =0 and subjected to axial tension

of uniform intensity p, at z=xZc are obtained by the superposition of the

uniform solution and the general expressions for the perturbation problem:

u= ucylAperA + uunifarm 4
w= chl.pen + Wuniform ’
o =

’ +o.
cyl. per. " uniform

z 2 cyl.per. Zuniform’
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Z cyl. per.

Z yniform
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CHAPTER III

INTEGRAL EQUATIONS

3.1. Derivation of Integral Equations

The expressions for the stresses and the displacements, Eqs. (2.43) or (2.49),
contain three unknown functions, f(¢), g(¢) and h(z), which are the crack surface

displacement derivatives in z- and r-directions and the jump in the shearing stress
through the rigid inclusion, respectively. Since crack surfaces are free of stress and
the rigid inclusion is perfectly bonded to the cylinder, the stress and the

displacement expressions, Egs. (2.49), must satisfy the following conditions

o, (r,L)=0, 0<r<a)

7,.(r,L)=0, (0<r<a) (3.1a,b)
on the crack and

u(r,0)=0, 0<r<b) (3.1¢)

on the rigid inclusion. Egs. (3.1a,b) are stress type boundary conditions while Eq.

(3.1c¢) is displacement type which is satisfied if instead

%%[ru(r,O)] =0 (0<r<b) (3.2)

is satisfied. Now, Egs. (3.1a,b) and (3.2) are all stress type conditions. Substituting
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Egs. (2.49d,e) in Eqgs. (3.1a,b) and Eq. (2.49a) in Eq. (3.2) gives the following

singular integral equations

%{f(t)[zm(r,t) +IN, (r,0) +18,(r, 0]+ g ON,, (1) + S, (r,0) ]t Jdt

b
+Ljh(t)[N13(r,t) +8,(r, ) Jrdt = — (k+1)
U, >

%ji{f(t)[Nz](r,t) +8,(r,0)]t+ g(t)[Zm*(r,z) +IN,, (r,t) + zSS(r,r)]}dz

0

b
L j h(O[N s (r,1) + S (r,0)]tdt =0,
ur sy

%TUUﬂNJn0+Sﬂnd+gvmﬂxn0+%0wﬂhﬁ

b
+ L_[h(t)[— km(r,t)+1Ny(r,0)]dt =
ury,

where
2 2
1" —r t r t
K-)+—E(-), t<r
tr rot r
m(r,t)zt2 3
- r
E(-), t>r
t
t t
—E(—), t<r
' (r.f) = r ror
=2 r 2= r
SEG)-—S-KE). 1>y
r t r t

41

(k=3)(k +1)
(k=T

(3.3a-¢)

(3.4)

(3.5)



Noting that f () and h(¢) are odd, g(¢) is even, integrals in Egs. (3.3) may be

converted to integrals from —a to a and from —b to b and Egs. (3.3) may be

written in the form

1 ¢ 2
py j { f(r)L_—r +2M,(r,0) +[f|N,, (r.0) + |I|Sl(r,t)}

+ ([N, (r.0)+ 8, (r.0) ] Jar

(kK +1)

1 b
Ey jh R[N, (r,0)+ S, (r, )l dr = - Po» (~a<r<a)

1 a
- j o, .o +s,0.0l
+ g(l){& +2M | (r,) +[f| N, (r,1) +[t] S5 (r, t)}}dt

1 b
t jb h() [Ny (r,0) + S (r,0)]dldr = 0, (~a<r<a)

% [FOIN, .0+ 850+ 2 OIN () + Sy .0 Yt

b
P [ h(t){—L— KM, (r,t) +i] N33(r,t)}dt
2urw ”, t—r

_(k=3)(x+1) _ _
_—(I(—7),u Do> (-b<r<b) (3.6a-c)
where
my(r,t)—1
M =1 _
1(r7t) l’—r ’
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m,(r,t)—1

Mz(l’,t):
t—r
and
t t
_E(_)7
rn={"
mr=y , 2 2
t rl. t—r r
— E(—) ————K (),
r r t
vl Jtl = |t
—E(—)+———K(—,
tr ler] r
mz(l‘,l):
r
E(—).

</

>

Il </

>

’

(3.7a,b)

(3.8a,b)

in which Kand F are the complete elliptic integrals of the first and the second

kinds, respectively. S,(r,t) (i=1-8) containing complete elliptic integrals are

defined in Appendix C. The kernels N, (r,f) (i, j=1-3)in Egs. (3.3) are in the

form of improper integrals,

N, (rt) = [ Ky (rt.0dar,
0

(i,j=1-3)

(3.9)

where the integrands K (r,t,&) (i, j=1-3) are given in Appendix D. The three

singular integral equations, Eqgs. (3.6), must be solved in such a way that the

single-valuedness conditions for the crack

f f(Odt =0,
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[gyrdr=o0, (3.10a,b)
and the equilibrium equation for the rigid inclusion

b

jh(z)rdz:O, (3.11)
-b

are also satisfied. In Egs. (3.6), the simple Cauchy kernel, Muskhelishvili (1953),

1/(t —r) becomes unbounded when ¢=r. In addition to this, there may be

unbounded parts in the kernels N, (r,t) (i,j=1-3). Therefore, the improper
integrals giving N (r,t) (i, j =1-3) must be examined closely and those terms in
K,(r,t,a) (i,j=1-3) giving rise to probable singular terms in N, (r,1)
(i, j =1-3) must be separately treated. Unbounded terms may be due to behavior

of Kl.j(r,t,a) (i,j=1-3) around @ =0 and & —> o=.

Asymptotic analysis around a =0 gives

E%Kij(r,t,a)zo (i=1-3,j=2;i=2,j=13) (3.12)
except

lim K, (r. o = 2+ =]
a0 A" (k=T)

>

t(k=3)
A2

limK,,(r,t,00) = —
a—0

’
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t(k=3)
A2

’

lim K, (r,1,00) = —
a—0

. 8t
yir(l)KB(r,t,a) :_F’ (3.13a-d)

which do not contribute to unbounded terms when integrated. When

K, (r,t,@) (i, j =1-3) are examined as & — oo, with the notation

K.

ijoo

(r.t,)=1lim K (r,1,), (i,j=1-3) (3.14)

it is observed that only K,(r,t,&) (i=1-3) contain such terms which may be

written in the form

2 —a(2A—t-r)

K, (r.t,0) = S0 (@De [4=A+r(A-ne? +@8A-2r —6na—4],
Jir

.2 —a(2A—t-1)

K, (rt,a) =S (@L)¢ [4A- rA-na? +2t-r)al
Jir
sin®(aL)e " 21+ K)(A — r)V At
+ ) s
ir A
—a(2A—t-r)

K, (rt.a)= T{(—A +r)(A-Da

+[(A—t)+§(r+t—2A)}a—i(lc—l)2}. (3.15a-c)

- (r,t,a) (i=1-3), the probable singular parts of the kernels

lloo

Integrating K

N.(r.t) (i=1-3),
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N, (r.0)= j K, (r.ta)de (i=1-3) (3.16)

iico

may be calculated to be

1 9 I I
Nl“(r’t)_ﬁ{[ 2Aa-ry _+6(A_r)_r_ }{(z+r—2A)+(t—r+2A)}

+{—2(A+r) i—6(A+r)——l}{ ! + ! }}
or (t—r—2A) (t+r+2A)

_ B 282 N 1 1
N”“(r’t)_\/ﬁ{[ AT re r) or }[(l+r—2A)+(1—r+2A)}

[ 2(A+71)° a—2—6(A+r)—— }{ ! + ! }}
(t—-r—2A) (t+r+2A)

1 -3+ 1 1
ﬁ{m_” PR )_+ 4 }[(r+r—2A)+(I—r+2A)}

+{—(A+r)za—2—3(A+r)i+_3+K2}[ L, 1 }}
or or 4 (t—r—-24A) (t+r+2A)

(3.17a-¢)

Ny, (r,t)=

Bounded parts of kernels N, (r,t) (i =1-3) are then calculated from

fico

Nii,,(r,t)zf[K,,(rza) K, (rt,0))de, (i=1-3) (3.18)

in which the subscript b denotes the bounded parts and
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N.(r.)=N, (r.0)+N, (r.1), (i=1-3). (3.19)

tlb iis

Note that N, (r,t) (i =1-3) are singularif r,r — A.

3.2 Characteristic Equations

The unknown functions f(¢), g(t) and h(z) are expected to have integrable
singularities at the respective edges of cracks and the inclusion. The singular

behavior of these unknown functions can be determined by writing

fi=—i (t”)ﬂ , (0<Re(f)<D)
sy=—50 (0<Re(B)<1)
(@’ —1*)’’
h(t) = (h_#t)z)y , (O<Re(p)<1) (3.20a-c)

where f (1), g (t) and h'(t) are Holder-continuous functions, Muskhelishvili
(1953), in the respective intervals (—a,a) and (—=b,b). f and y are unknown

constants which can be calculated by examining the integral equations, Egs.

(3.6a,b) near the ends r =Fa and Eq. (3.6¢) near the endsr =Fb .

Equations (3.6), together with Egs. (3.20) may be written in the form

17 (af‘ (,t))/f {L+|¢|Nm(r t)}dt B/(r), (~a<r<a)
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17 g*(t)
7@ -

f K (1) {_ K
b= -

+ |t|N33S(r,t)} dt=B,(r), (-b<r<b)

{— + |t|N22S(r l)}dl B,(r), (—ra<r<a)

(3.21a-c)

where all other and bounded terms are collected in B;(r) (i =1—3). The integrals

on the left-hand-sides of Eqgs. (3.21) near r =Fa and r =%b may be calculated

with the help of the complex function technique given in Muskhelishvili (1953):

1 j f @ _f Carcomp) _ [@eoap) Lo
(@ -1 (- r) QaY’a+r’ Qa)fa-r? 7
1t g _g (ma)cot(zf) g (a)cot(nf)
P s I @-%t-r Qala+r)’ Qaa-r)’ TG0,
1 K (1) _ I (=b)cot(zy) I’ (b)cot(zy) ]
7z_£(b2 Ty b @by oy 0 (3-22a-¢)
17 £ _ (4
T _IA(A2 —-Hli-A-r] QAP A-r)sin(zB) +ED,

1 f f @
7 (A=) t-2A+1)]

f @

_ f(A)
=T 2A A+ sinap) T
f(-A) LE(),

Z_IA(A2 — = (2A+1)]

T QA (A—r) sin(zB)
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1 f /@ Jie f(=A)
7 (A=) lt-(24-n]" QAP (A+r) sin(zB)

+ Fy(r),

L7 g e g'(A)
7 (A=)t -2A-1)] (2A)* (A—r)’ sin(zp)

+G2(7’) s

1 f g (1) e g'(4)
7 (A= l-A+r] QA (A+r)sin(zp)

+G,(r),

%_E(Az - tz)”i*it )(—2A P NG (f; ?;;}f)sin(ﬁﬁ) TG,

%LAZ - fz)"’éft*(—t )(—2A " " aay (j Ziﬁ)sin<ﬂﬁ> Fom.

%_]:(A2 - tz)il[*t(i)(ZA -] di =~ (2A)7(Ahi(:;)y Sin(z7) +H,(r),

%_]Z(Az - tz)f[z(i)(ZA +1)] dr=- (2A)7(Ah_:(3)y sin(zy) +Hy(r),

%LAZ - NIE;(—t e <2A>7<Z*—(_r?7)smw> HILO:

%LN - tzV}[l;(—t )(—2A 1T (2A)7(Z*-E;;‘7)Sin(7f7’) o, (23D

where F/(r), G,(r) and H,(r) (i=1-5) are all bounded everywhere except at

the end points *a, £b and £ A.
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Now substituting Eq. (3.22a) in Eq. (3.21a) or Eq. (3.22b) in Eq. (3.21b),
multiplying the resulting equation by (a—r)”, and then considering the limiting
case r—a, for an internal crack (a< A), one can obtain the following

characteristic equation for :

cot(zf) =0, (a<A). (3.24)

The acceptable numerical value for S is then 1/2. This is the very well known

result for an embedded crack tip in a homogeneous medium, Cook and Erdogan
(1972), Gupta (1973), Delale and Erdogan (1982), Nied and Erdogan (1983), Gegit
(1987), Turgut and Gegit (1988).

Similarly, substituting Eq. (3.22c) in Eq. (3.21c), multiplying the resulting
equation by (b—r)”, and then considering the limiting case r — b, for an internal

rigid inclusion (b < A), one can obtain the following characteristic equation for y:

cot(zy) =0, (b<A). (3.25)

Here, y is also equal to 1/2 which is in agreement with previous results, Gupta

(1974), Artem and Gegit (2002), Yetmez and Gegit (2005).

When the cracks spread out and the cylinder is completely broken along the cracks

(a=A), in addition to Eq. (3.22a), Eq. (3.23a-d) must also be substituted in Eq.

(3.21a). Then, multiplying the resulting equation by (A —r)”?, and considering the

limiting case r — A, one can obtain the following characteristic equation for £ :

cos(mf)=2B(f-2)+1, (a=A) (3.20)
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for which the acceptable value for S is zero. This shows that the stresses at the

apex of a 90° wedge with free sides are bounded. This result is in agreement with

previous observations, Williams (1952), Gegit (1984), Geg¢it and Turgut (1988).

When the inclusion spreads out and the midplane (z=0)of the cylinder is
completely fixed (b=A), in addition to Eq. (3.22c), Egs. (3.23i-1) are also
substituted in Eq. (3.21¢). Then, the resulting equation is multiplied by (A—r)”"

and the limiting case r — A is considered. This procedure gives the following

characteristic equation for ¥ at the edge of a through rigid inclusion (b= A):

2kcos(my) = K2 +1—4(y—1)>. (b=A) (3.27)

This equation is in agreement with previous results for the stress singularity at the

apex of a 90” wedge with one side being fixed and the other being free, Williams

(1952), Gupta (1975), Gegit and Turgut (1988).
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CHAPTER IV

SOLUTION OF INTEGRAL EQUATIONS

In this chapter, procedures used for the solution of singular integral equations, Egs.
(3.6), subject to conditions Egs. (3.10) and (3.11) are given for infinite cylinder,

semi-infinite cylinder and finite cylinder problems separately.

First of all, the integral equations will be expressed in terms of non-dimensional

quantities. Defining non-dimensional variables ¢ and ¥ on the crack by

t=ag, (ma<t<a,-1<¢<])

r=ay, (ma<r<a,~-1l<y <] (4.1a,b)

and 77 and £ on the inclusion by

t=bnm, (-b<t<b,-1<n<])

r=be, (-b<r<b—l<e<l) (4.2a,b)

system of singular integral equations, Egs. (3.6), Egs. (3.10) and Eq. (3.11), takes

the following form

K I{f(agz)){ 2 +2aM,(ay,a@) + a2|¢|Nu(a V,a)+ a2|¢|Sl(a l//,a¢)]
K7”, -y

+ 2@P)[N,, (ay,ad) + S, (ay,ap)|a*|@| }do
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bl (k4
K

1 1
=— [N @y.bm + Syay.bm)—"dn Py (C1<y <)
-1

- [{r@plN, ay.ap)+ 5 (ay.ap)a’|g
KT?
+ g(a¢)[ﬁ+ 2aM (ay,ap)+a’|p|N, (ay,ad) +a’|¢|Ss(a l//,a(/j)}}cw

——jh(bﬂ)[N23(awa7)+S (ay,bm)] ||d77 0, (—l<y <)

~ L [{f @p)N, be.ag) + S, (be.ap)]
K72,

+g(a@)[N,, (be,ag) + Sy (be,ap)| }a’ |¢|do

2|f7|

+— j h(bn)| —— = ——+bM,(bgb) = — Ny (bebn) |d

_ 2(k=3)(x+1)

(7-x)K (-1<e<1) (4.3a<c)

[Fagypdp=0,
[gtaprpdp=o0,

1
[r@mnan=o. (4.4a-c)

Imposing the singular behavior of the unknown functions along with the lines of

Egs. (3.20),
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F(9)
1-¢"""

flag)=

G(9)
1-¢>)""

glap)=

__H® .
h(b1) = A=y (4.5a-c)

in which f(¢), E(¢) and ﬁ(ﬂ) are Holder-continuous functions in (-1,1), Egs.

(4.3) and (4.4) may be rewritten in the form

HOFe [ 1 _ B
zf{<1—¢2>ﬁ[¢—:/f+M2(‘/”¢)+|¢|N“<W’¢>+I¢ISI<1//,¢)}

-1

G@) [+ y
+ (1_¢2)ﬁ [le(l//7¢)+52(l//’¢)]|¢|}d¢

KD Ciew<n
K

+ [ D[N + S0 ]nlan -

a-7%)"

%:‘.{(llj(;))ﬁ [Nzl(!//’ o)+ 54(!//’ ¢)] |¢|

G(9) _ _ B
+ +Mi(y,0)+|ON2(y,0)+ 0S5 (W, d
(1_¢2)ﬁ{¢_w W9 +[dN 2 (v.9) +|¢) (w¢)}} ¢
1t HO) o - ) .
+ﬂ_fl(l_772)7 [Nza(w,ﬂ)+Se(l//J7)]|77|d77_0, (~1<y <1)

1H FO) [ < Go) [ _
EJ{(1—¢2)ﬂ [N31(€,¢)+S7(€,¢)]+ =) [N32(8,¢)+Ss(8,¢)]}|¢|d¢

-1
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+%j H(n) [;+M2(8,77)+|77|N33(8,77)

A-n)|n-¢

2k =3)(x+1)
- (7T-x)x

and

Mi(y,p)=aM,(ay,ap),
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i=12)

(-l<ex))

(4.6a-c)

(4.7a-c)



M2 (e.0)=bM,(be.bn),

Ni(y.9)=a’N(ay,a)/2, (i, j=12)
NaW,7)=—b>N,(ay,bn)/ K, (i=1,2)
Nsj(e,9)=a’N,,(be,ad)/2, (j=1,2)

N(&.1)=—b*Ny,(be.bn)/ K,

S (W, 0)=d’S. (av,ap)/2, (i=1,2,4,5)
Si(y,m)==b’S,(ay,bn)/ K, (i=3.6)
S:(£,0)=a’S. (be,ap)!2, (i=7,8) (4.8a-1)

4.1 Infinite Cylinder Problem

4.1.1 Infinite Cylinder Having Two Cracks and an Inclusion

For general solution, it is assumed that there are concentric penny-shaped cracks of
radius @ at z==*L and a concentric penny-shaped rigid inclusion of radius b at
z=0 in the infinite cylinder of radius A. Both ends of this infinite cylinder are
subjected to axial tensile loads of uniform intensity p, at infinity (Fig. 2.1). In this
case, the powers of singularity S and y are determined from Egs. (3.24) and

(3.25):
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B=1/2,

y=1/2. (4.9a,b)

In this case, the integrals in Eqgs. (4.6) and (4.7) may be calculated by the use of the
Gauss-Lobatto integration formula, Krenk (1978), Artem and Gegit (2002). Then,
Egs. (4.6) and (4.7) become

=

' Cz{F(¢x)|:¢ _IW +M2(Wj’¢i)+|¢i|N11(Wj’¢i)+|¢i|§1(l//j’¢i)

FGWINaW,.0)+5:w,.0)]9]

+7(ni)[ﬁl3(l//j’ﬂi) +§3(Wj’77i)]|77i|}= (K—;l) >

n

S ARG N w,.0)+5:v,0)])

i=1

+ My, 9)+|BIN 2w, 0) +]0)]Ss (v, 6)

i J

+ E(Q ){

FHM)[Naw 00+ 3ol =0, (j=losn=1)

n

S c{F @) Nate, 0)+5:(e,.0))0] + G [Nate,.0)+ Sie,.0)]0]

i=1

¢ J

+7(77i){ +M2(€j,77,.)+|77i|ﬁ33(€j,77,.)}}

_ 2(k=3)(x+1)

(7-x)Kx (j=1.., n—1) (4.10a-c)

> CF9)9,=0.
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3 C,G(6)4, =0,
i=1

Z"‘,Ciﬁ(ﬂi =0,

i=l1

where the roots ¢, 77, and ¥, €, are given by

@ =1, =cos{(in__l)1” } (i=1....n)
2j-1
Y, =¢€; zcos{(ﬂjn—_i;z}, (j=1...n-1)

C, are the weighting constants of the Lobatto polynomials

n = 1 > Ci = 1 °
2(n—1) (n—1)

1

(4.11a-c)

(4.12a,b)

(4.13)

Equations (4.10) and (4.11) constitute a system of 3nx3n linear algebraic

equations. Note that the unknown functions 7(¢), ﬁ(n) are even, and E(@ is

odd. In addition, the roots and weighting constants of the Lobatto polynomials are

symmetric. Therefore, the (3n —3)x3n system of algebraic equations, Egs. (4.10),

may be reduced to the following (3n/2)x (3n/2) system

w2 [ _ _
S cfFolmw, .00+ oNuw,.0)+05.,.0)]

i=1

+E(@)[le(w,-,¢,-)+§z(w,-,¢,-)]¢,- +7(77,-)[N13(%J7,-)+§a(vf,-,f7,-)]f7,-}

_(k+1)
2k

58

(j=1,..,n/2)



nl/2 — _ —
SclFoNaw,.0+5w.0l0

i=1
+ G .0)+ 0 N2(w,.0)+055(w,.0)]

+?(ni)[ﬁza(§j,77,-)+§6(§jaﬂi)]ﬂi}=0’

n/2

i=1

+?(77i)[m4(8j,77,-)+77,-N33(8j,77i)]}_ (7-K)K

where
? [
———E()
v 20’ -y v,
m(\y,,0,) = 5
4 Yiv_ 1 Vi
———E—)-— K(")
2Wj(¢t'2 _l//jz) ¢z 2'/’;‘ ¢z
1 U 8/‘ 771'
— Ky T pdi
2¢, (6‘].)+2(77i2—8j2) (gj
m4(8j’77i)=

77i 8/‘
— 1 E()
27 -¢) M,

_(k=3)(x+1)

(j=1,...,n/2)

S c{F @) Nate, 0)+ 51600l + Go)N (e .01+ Ss(e .00,

g <y,

o>y,

ni<€j

771'>gj

L....n/2)

(4.14a-c)

(4.15a-b)

Note here that Egs. (4.11a,c) are automatically satisfied since ?(@ and ?(77) are

even functions. The system of equations, Eqs.(4.14), contains 3n/2 equations for

3n/2unknowns, F(¢), G(¢)and H() (i=1...,n/2). However, if n is chosen

to be an even integer, it can be shown that Eq. (4.14b ) corresponding to ¥,,, =0

is satisfied automatically since

7,(0,1)=0.
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The missing equation, Eq. (4.14b) for j=n/2, is complemented by Eq. (4.11b)

which can be converted to

n/2

ZC,.(DE(Q.) -0. 4.17)

It must be noted here that calculation of the coefficients for j=n/2 which
corresponds to =0 in Eqgs. (4.14a,c) requires special attention. For this purpose,

the kernels N, (r,r) (i,j=1-3) must be calculated separately for r =0. Let

K,.ot,0) =1lim K, (0,1, ),

N, (0= j K, (.a)da,
0

N 0.0=N, O+ [[K,0r0-K alda, ((=13j=1-3) @18ac)
0

where K.,

(t,r) and Nijso(t) (i=1,3;j=1-3) are given in Appendix E and F,

respectively.
Then, noting also that

T
E(O)_E’ (4.19)

Eqgs. (4.14a,c) for j=n/2 may be replaced by
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"ZC,{?(Q){%+¢N11(o,¢)+¢§1(0,¢)} + G Nn0,0)+5:0,0)]0

+ ﬁ(ﬂi)[ﬁw(()’m) + §3(O777i)] ﬂi}: % >

n/2

S c{F@)N10.6)+5:0.0)lp + G [N (0.0 + 550.0)]0

i=l1

(7T-K)x

1

+ 7(77,-){% 4 ﬂiﬁ33(0,77,v)}} _ (K= AD (4.20a.b)

Infinite integrals for kernels, N,.j(r,t) (i, j =1-3), are calculated numerically by

using the Laguerre integration formula, Abramowitz and Stegun (1965) .
4.1.2 Infinite Cylinder Having an Inclusion

Consider an infinite circular cylinder of radius A containing a penny-shaped
concentric rigid inclusion of radius » at z =0. The cylinder is under the action of
axial tensile loads of uniform intensity pp at z =*oo (Fig. 4.1). If there is no crack
in the cylinder, the unknown functions f(¢) and g(¢) defined on the cracks must
be dismissed. Then, the integral equations, Egs. (4.14a,b), resulting from the
conditions on the cracks, Egs. (3.1a,b), will be unnecessary. Remaining integral

equation, Eq. (4.14c), will reduce to

B = — -3)x+1) .

S cHMm e, )+ Ve, )= E2EXD Gy a2
i=1 (7T-Kx)x

which must be complemented by

n/2 J— _ —
ZC,»H(ﬂi){lH],»Nss(OJL)}=w (4.22)
i=l 27, (7T-1)K
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as the (n/2)th equation of the system written separately due to difficulty in

calculating the kernels at r =0.

Figure 4.1 Geometry of an infinite cylinder with a penny-shaped inclusion.

4.1.3 Infinite Cylinder Having Two Cracks

Now consider an infinite circular cylinder of radius A containing two penny-
shaped concentric cracks of radius a symmetrically located at z==%L planes.
Both ends of this cracked infinite cylinder are subjected to axial tensile loads of

uniform intensity p, (Fig. 4.2). In this case, the unknown function A(t) defined on

the rigid inclusion must be dismissed.
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Figure 4.2 Geometry of an infinite cylinder with two penny-shaped cracks.

The integral equation, Eq. (4.14c), resulting from the condition on the rigid
inclusion, Eq. (3.1c), must also be eliminated. In this case, Eqgs. (4.14a,b) will

reduce to

nl/2

S CAF@lnw, h+oNiw, 0 +05w,.0)

+E(¢z)[ﬁﬂ(w}’¢z) +§2(Wj’¢i)]¢i}: %7 (] = 1,,7’1/2—1)

nl/2

Zc,.{?(m[ﬁzl(w,,@)+§4(w,,¢,»)]¢,»

i=1

+E(¢>,.)[m3(y/j,¢,.) +dN2W,.0) +¢i§5(;yj,¢,.)]}: 0, (j=L..,n/2)  (4.23ab)
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with

" Ci{?(¢i)|:£+¢iﬁll(0’¢i)+¢i§1(0’¢i):|

i=1

being the complementing equation written separately due to delicate nature of the

kernels at r=0.

4.2 Semi-Infinite Cylinder Problem

When the rigid inclusion at z =0 spreads out and its radius » approaches A, the
radius of the cylinder, the cylinder is fixed completely at z=0. In this case, one
half of the infinite cylinder, for example, the upper half, may be regarded as a

semi-infinite cylinder with the short end being bonded to a rigid support at z=0.
4.2.1 Semi-Infinite Cylinder Having a Crack

Consider the cracked semi-infinite cylinder problem shown in Fig. 4.3. The semi-
infinite cylinder containing a concentric penny-shaped crack of radius a at z=L
is fixed at z =0 and tensioned at z =co by a uniformly distributed axial load of

intensity p, . In this case, Eq. (3.20c) must be replaced by

H (1)

MOmwey

(O<Re(y)<1) (4.25)

such that ¥ is to be calculated from the characteristic equation, Eq. (3.27).
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Figure 4.3 Semi-infinite cylinder having a penny-shaped crack.

Similarly, Egs. (4.2) defining non-dimensional variables 77, &£ on the rigid

inclusion must be replaced by
t=An, (FA<t< A -1<n<])

r=AE€. (FA<t<A —-l<ex])) (4.26a,b)

The integrals containing ?(7}) in Eq. (4.6) and (4.7) must be calculated by the use

of the Gauss-Jacobi integration formula, Erdogan et al. (1973), Gupta (1974),
Gecit (1986), Yetmez and Gegit (2005), so that Egs. (4.14) are replaced by

n/2 — — —
S ciF@lmw,.0)+aNuw .00+ 05w .0)]

pan
+E(¢i)[N12(‘//j’¢i) +§2(l//j’¢i)]¢i}

142 = 1= - K+1 .
+;ZWH(7],-)[N13(1//J»,77[)+S3(';”j,77,')]77i = ( 2k ), (] =1,...,n/2)
i=1
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n/2 — . _

S ciF@Naw,.0)+ 5.0,

i=1

Y G ,.0)+ 6 N2y .0)+655w,.0)]}

1 /2 —
S WH@Naw, )+ Sew,mln =0, (=1ns2)
i=1

ScfFelvae, 0+ 5,0l G@lVae, 0+ 50l

n/2 —

+— ! ZW H(?],)[m4(5,,77,) +77'N33(8/’77')]

i=1

_ (k=3)(x+1)

T— 0K (j=1iun/2) (4.27a-¢)
where
F(p)=-
G(9)
Hp = pioh(A ma=n", (4.28a-c)

and C;, ¢, ¥, (i, j=1,...,n/2) are Lobatto weights and integration points, which
are still given by Eqgs. (4.12) and (4.13). However, W,, 77, and ¢, (i, j =1,...,n/2),

are the weights and the roots of the Jacobi polynomials:
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P77 ") =0, (iyesn)

P 1(177’177)(8]-):0’ (Jseoesn—1)

n—

_ 2-y+)[Cm—y+D]?  (m-2y+D727% . )
W, = iDL Ta—27+1) BB, ) (iyeresnt) (4.29a-c)

n+l

Note again that calculation of kernels of Eqs. (4.27a,c) for j=n/2 corresponding

to r=0 requires special attention. Therefore, these equations are written

separately in the form

" c,{7«4)[%+¢,Nu<o,¢,»>+¢,»§1<o,¢,»>}+E<¢>[ﬁlz<o,¢z>+§z<o,¢z>]¢z}

i=1 i

1 nl/2 — - _ +1
+;ZVV1H(771)[N13(0,771) + S3(0,771)] n = %’
i=1

n/2

S c{F@)[N1(0.0)+5:0.0)]+ G [N (0.6) + S: 0.0 Jo

i=1

i=1 (7T-1©)K

n/2 J— _ —

+lZWl.H(77,.){l+77iN33(O,77,.)} _(x=)&+D (4.30a,b)
4 21,

4.2.2 Semi-Infinite Cylinder without Crack

Consider the semi-infinite cylinder problem shown in Fig. 4.4. The short end at

z=01s fixed and the far end at z = oo is tensioned by an axial load of uniform

intensity p,. Solution of this problem has been given by Gupta (1974).
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Figure 4.4 Semi infinite cylinder problem.

In this case, the unknown functions f(#) and g(¢) related to the crack and Egs.

(4.27a,b) and (4.30a) must be eliminated. Then, Egs. (4.27c) and (4.30b) reduce to

1n/2 J— J—

;ZWH(Ui)[m4(8j’77i)"‘77,-N33(8,-,77i)]

i=1

=% (G=l..n/2—1) 4.31)
and

LT Foan _ (x=3)(k+1)
E;W,H(ni){zm+77,.N33(0,77,.)}— o (4.32)

4.3 Finite Cylinder Problem

When the crack in the semi-infinite cylinder problem given in Section 4.2.1

approaches the edge of the cylinder (a — A), the cylinder is broken at z=1L
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completely. The portion between z=0and z= L turns out to be a finite cylinder
with the end at z=0 being fixed and the other end at z =L being subjected to

axial tension of uniform intensity p, (Fig. 4.5).

11t

A

|
i
|
| A

— >

|
i
!
<
\ r

Figure 4.5 Finite cylinder bonded to a rigid support.

In this case, =0 as given by Eq. (3.26). This means that the unknown functions
f(r) and g(r) are bounded at r =+A. The boundary condition, Eq. (3.1a) must

be replaced by
o, (r,L)=p,. (0<r<a) (4.33)

Then, Egs. (4.27) can be put into the following form

nl/2

SWAF@mw,.0)+ 081w 0)+65:w,.0)]

i=1

+G@)New,.0)+ 52,00, + Ha) [Ny, + Ssw ) m, |

=0, (j=lunl2—=1)
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n/2

ZW/;{?(Q)[NM(V/J-,Q) + 54('//]-’4’7,-)]44

i=1
+ G .0)+ 0 N2(w,.0)+055(w,.0)]

+?(7]i)[ﬁz3(l//j,77i)+§6(l//j,77i)]77i}= 0, (j=1,.,n/2-1)

n/2

SWAF@)Nu(e,.0)+ 56,000+ G0 [N te,.0) + Ss(e,.0)]o

+?(77i)[m4(8j’77i) +77iﬁ33(8j’77i):|}

_ (K—3)(K+l)ﬂ_
(7T-x)K

(j=1,..,n/2-1) (4.34a-c)
where V=€, (j=1..,n/2-1) and ¢.=n,, W, (i =1,...,n/2) are the roots and the

weighting constants of Jacobi polynomials which are given by Eqgs.(4.29).

In writing Egs. (4.34), following notation is used:

F @) =—’f“ FAR1-¢)

Po

0, =—’f“ g(Ad)1- ),

Po

Hp) =—h(An)d-7°), (4.350-0)

Po

for convenience. ¥ is calculated from Eq. (3.27). It can be shown that Egs.

(4.34a,b) corresponding to j=n/2 (or r=0) are satisfied automatically. Eq.
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(4.34c) must be written separately for j=n/2 due to difficulty in calculating the

kernels for » =0 in the form

n/2

SwiF@IN10.0)+5:0.0)]8 +G@)[N20.0) +550.0) ]

i=l1

+ 7(77,»)[1 + niﬁsg(o,ni)}} _(K=)x+D (4.36)
27, (7T-Kx)x

1

Now the system in Egs. (4.34) and (4.36) contain 3n/2 -2 equations for 3n/2

unknowns. Remember that f(r)and g(r) are bounded at r=1A. But Egs.

(4.35a,b) give infinite values for f(A) and g(A)unless ?(@ and E(@ are zero

at £1. In order to make the functions f(r)and g(r) bounded at the end points

r=xA, ?(@ and E(¢) must be zero at +1:
F(*1)=0,
G(*1)=0. (4.37a,b)

Note that ¢, =7, (i=1,...,n/2) will never be equal to 1. Therefore, ?(1) and

E(l) must be expressed in terms of ?((/)i) , E((/)i) (i=1,...,n/2) first. Following

the procedure described by Gegit (1986), one may write

n/2

F()=2> WT(L,¢)F(@),
i=1

n/2

G()=2Y WT(1,8)G(4), (4.38a,b)

i=1
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where

I,¢)= lehi PR, (i=1,...,n)

m=0 "4y,

2127 [Cm-y+D]?

"= , (m=1,..,n—1) (4.39a,b)
Qm—=2y+1) mT(m-2y+1)

I' being the Gamma function. Hence, Egs. (4.38) can be written in the form

n/2

Y WITL$)F($)=0,

n/2

ZW,.T(LQ)E(Q) -0. (4.40a,b)

Now the system of equations, Eqs. (4.34), (4.36), and (4.40), is complete; 3n/2

equations for 3n/2 unknowns, ?(Q.) , E((DI.) , ﬁ(?]i), (i=1,..,n/2).
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CHAPTER V

STRESSES AND STRESS INTENSITY FACTORS

5.1 Normal Stress at the Rigid Support

For the semi-infinite and finite cylinder problems, significant stresses may develop
at the rigid support. The expression for the normal stress o,(r,0) may be written

from Egs. (2.43d), (2.48d), (2.49d) by the procedure used in deriving the singular

integral equations, Eqgs. (3.6), in the following form

o.(r, )—(—— [ O+ 7R (0]

+ D[N, (r,0)+7 R, (r,0)] Yt ar

1
2(1c+1) T

j ()[(’( E=D L o= M ) 4[| Ny ()] de

+ Dy (FA<r<A 6.1

for the semi-infinite cylinder where

R(r,)="= 2L { [2E(r) - K(ry)]-2 —2L E(lg)},
1 r )
Rz<r,t>=—i{‘(ﬁ ) by g+ EDE D B
m ) r
+M[2E(rz) K(rz)]} (5.2a,b)
nrn
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in which
n=At+r) + 17,
n=0-r’+0",

= 2\/; . (5.3a-¢)

Integrands of the kernels
Ny (0 =Ky (rtada, (j=1-3) (5.4)
0

their dominant parts as @ —oo, K, (r.1,), (j=1-3) and the singular terms
N,; (r,f), (j=1-3) are given in Appendix G. Equation (5.1) may be expressed

in terms of non-dimensional quantities and the integrals in Eq. (5.1) may be

calculated by using Gauss-Jacobi and Gauss-Lobatto integration formulas and

O-Z(Agj,()) B o ou2 _ . _
Po _(/c+1);Cf{F(Q)[N‘“(%@)+R1(8j,¢%)]

+E(¢i)[ﬁ42(8j,¢i)+§2(8j’¢i)]}¢i

1 18 = _
+ (K+1) ;;‘/ViH(ni)[(K‘_l)mzt(gj’ni)+77,-N43(€j,77i)]
+1, (j=1.on/2=1) (5.5)

may be written. Again, due to difficulty in calculation of the kernels for j=n/2

(or r =0), the expression for r =0 is written separately in the form
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nl2
o, (0,0) K Z c

‘ {F@)[Na0.0)-Ri0,9)]

+E(¢i)[ﬁ4z(0,¢,») +§2(0’¢i)]}¢i

N 1 a2 —( )[(K‘ 1)+ Nx(Oﬂ)}+l (5.6)
(k+1) 3 27,

1

where N41(0, 9, N (0, @) and Nais (0,77) are given in Appendix H. For the finite
cylinder, all integrals in Eq. (5.1) must be calculated by the Gauss-Jacobi

integration formula.

5.2 Stress Intensity Factors

From the viewpoint of fracture, particularly important are the stress intensity
factors. Stresses become infinitely large at the edges of the crack and the inclusion.
In this case, stress state around those edges can be expressed in terms of the power
of stress singularity and the stress intensity factors.

5.2.1 Stress Intensity Factors at the Edge of the Crack

The normal (Mode I) and the shear (Mode II) components of the stress intensity

factors, k,, and k,,, at the edge of the crack may be defined as

k,, =lim[2(r—a)|"*o.(r,L),
k,, =lim[2(r —a)]'"*z_(r,L). (5.7a,b)

From Egs. (2.43d), (2.48d) and (2.49d) one may write
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o= (D i i), (a<r<a)
n(k+1) 7 r—r

where the bounded part o, (r,L) is given by

o, (r.L)= 24 j FOM, (1) + [N, (ro) +]1[S, (r0) it

T(xk+1)
Considering
[f*(l)/\/a—t] R
— —a
£y = o Jt+a
Jaa— || oa+i] e t
—a

Ji-a

(5.8)

(5.9)

(5.10)

the singular part of normal stress given in Eq.(5.8) can be calculated by the

method given in Muskhelishvili (1953). Then, Eq.(5.8) can be written in the

following form:

* 72 *
o.(r.L)= ST U D ) e 1 C R +o,(rL) (5.11)
(1+x)

‘/% \Nr+a sin(g) Nr—a sin(g)

where f”(r) contains bounded terms.

Substitution of Eq. (5.11) in Eq. (5.7a) gives

*

P oo 2 [
T (k+ 1) Aa
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Comparing Eqgs. (4.5a) and (5.10) one can relate f (a¢) and f(¢):

[ (ag)=aF(9). (5.13)

Now substituting (5.13) in (5.12), the stress intensity factor can be obtained in the

form

K, =——H_Ja Fay. (5.14)
(x+1)

Using Eq.(4.8a), one can further write

K EE

k= FQ 5.15
y (Hl)poﬁ (1) (5.15)

and finally

kg =—2— = F() (5.16)
YT pa (k+D)

for the normalized Mode I stress intensity factor at the edge of the internal crack.

One can similarly write

K‘ =

koo = x+D G(1) (5.17)

for the normalized Mode II stress intensity factor at the edge of the internal crack.
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5.2.2 Stress Intensity Factor at the Edge of the Internal Inclusion

Mode II stress intensity factor k,, at the edge of inclusion for infinite cylinder may

be defined as

ky, = liIIhl[Z(b -n]"*z_(r,0). (5.18)

Using the boundary condition given in Eq. (2.23d), shearing stress at » =0 can be

defined in terms of the unknown function A(7) in the form

_hr)_ K

7 (r,0 =
h,(r ) 2 2(b2 _r2)l/2

(5.19)

with the help of Eq. (3.20c). By a similar procedure as the one used in Section
5.2.1, Mode II stress intensity factor at the edge of the internal rigid inclusion can

be calculated as

Jb —

kyy == H (1) (5.20)

and the normalized stress intensity factor

kZb

kop = —2b— (5.21)
Po\/z

can be written as

k2 = HT(D . (5.22)
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5.2.3 Stress Intensity Factors at the Edge of the Rigid Support
When the penny-shaped rigid inclusion approaches the surface of the cylinder, the

cylinder becomes fixed at z =0. The stresses along the edge of the rigid support

are infinity and can be characterized by the stress intensity factors

k,, = 1111A1ﬁ(A —r)o.(r,0),
k= 1lim N2(A-r)7 (r0). (5.23a,b)

One may write
o,(r0)=0,(0)+0,(0), (5.24)

where subscripts s and b denote the singular and the bounded parts of o (r,0).

Considering Eq. (5.1), singular part of the stress can be expressed in the form

1 1~
o, (r0)= pyp jA h(t){(/c— D+ |t|N43s(r,r)}dt : (5.25)

The integral containing the simple Cauchy kernel, 1/(t —r), can be evaluated by

the aid of Egs. (3.20c) and (3.22c):

A

LA g, B (=A)cot(my) _ K (Aycot(my)
T t—r QRAT(A+r)Y QRAY(A-r)

B (r) (5.26)

-A

in which hl**(r) contains bounded terms. On the other hand, from Eq. (G.8) one

can write

79



N (7’1‘)—L 2(A—r)2i-l—(l(‘%—ﬂ(A—r)i
Bt _\/t_r or? or

2
+5+3K‘}|: Lo }+|:2(A+r)23_2
2 (t+r—-2A) (t—r+2A) or

0 5+3k 1 1
SEDAr S S }{(z—r—zA)+(z+r+2A)}}' 21

Egs. (3.23i) and (5.27) give then

2y(y+D)—(x+T)y+ ;(5 + 3K)}h*(A)

L
;_J;h(t)|l‘|N435 (r,t)dr =— (2A)" (A —r)" sin(ry)

2¥(y+1)— (K + 7)7+;(5 +3%) | (-A)
4L i

(2A)(A=r)sin(zy)

2¥(y+1)—(k+ 7)7+;(5 +3%) | (A)

(2A4)" (A+ 1) sin(7y)

2y(y+1)—(x+ 7)7/+;(5 +3K) | (—A)

. QA (A+r) sin(zy) +h, (r), (5.28)

where h;*(r) contains bounded terms. Now substituting Egs. (5.26) and (5.28) in
Eq. (5.25), then substituting the resulting expression for o, (r,0) in Eq. (5.24) or

Eq. (5.23) one can write the Mode I stress intensity factor in the form

1A

V2 < B (A)

= 20c+1) \ (2A) sin(zp) {(1 — ©)[cos(zy) + 1]+ 201+ (¥ 1) = 4(y —1) }> .

(5.29)
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The normalized Mode I stress intensity factor kia at the edge of the rigid support

can be written as

7 klA ?(1) )
A= = 1- 1]+2 D(y—-1)—-4(y—-1
A7~ 27 (e ysin(ay) {1= ©cos(y) + 1]+ 20+ D(y-1) - 4(y -1)*}

(5.30)

Note that in deriving Eq. (5.30), Egs. (4.5¢) and (4.8c) are used. By a similar

procedure, normalized Mode 1II stress intensity factor k2a at the edge of the rigid

support can be obtained in the form

kaa = = (5.31)

where ¥ is obtained from Eq.(3.20).
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CHAPTER VI

RESULTS AND CONCLUSIONS

6.1 Numerical Results

The system of linear algebraic equations for the particular problems defined in
Chapter 4 is solved and the values of unknown functions ?(Q.) , E(Q.) and ﬁ(ﬂi)

(i=1,..,n/2) are calculated at discrete collocation points. Then, stress

distributions, stress intensity factors at the edges of the crack and the inclusion for
infinite cylinder and at the edge of rigid support as b — A for semi-infinite and

finite cylinders are calculated numerically.

All cylinder problems in the scope of this thesis are described by the geometrical
parameters A ; radius of the cylinder, a; radius of the cracks, b; radius of the
rigid inclusion, L ; distance from the inclusion to the cracks. The material of the

cylinder is described by g ; modulus of rigidity and v; Poisson’s ratio. The
loading is described by p,; uniform intensity of the axial tension. However, for

the sake of generalization of the numerical results, dimensionless geometrical
parameters a/A, b/ A, L/A normalized by the radius of the cylinder are used.
Since the normalized stress distributions and normalized stress intensity factors are
used, particular numerical values are not selected for ¢ and p, in the analysis.

Poisson’s ratio vis used to describe the material. Some of the calculated results

are shown in Table 6.1 and in Figs. 6.1-6.85.
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6.1.1 Infinite Cylinder Problem
6.1.1.1 Rigid Inclusion in an Infinite Cylinder

Consider the problem shown in Fig. 4.1. In this case, the system of equations, Egs.
(4.21) and (4.22) must be solved for ?(77) . Figures 6.1 and 6.2 show the

normalized Mode II stress intensity factor ko at the edge of the rigid inclusion

defined by Eq. (5.22). As can be seen from these figures, ka is negative and it

increases with increasing v, but decreases with increasing b/ A ratio. Note that

ki is zero when v=0. For this situation, there is no Poisson’s effect.
Consequently, the constraint due to the rigid inclusion disappears and the shearing

stresses induced by the inclusion vanish.
6.1.1.2 Two Parallel Cracks in an Infinite Cylinder

Consider the problem shown in Fig. 4.2. In this case, the system given by Eqgs.
(4.23) and (4.24) must be solved for 7(@ and E(@ . Figures 6.3 and 6.4 show the

normalized Mode I and Mode II stress intensity factors ki and k». at the edges of
two parallel penny-shaped cracks in an infinite solid defined by Egs. (5.16) and
(5.17). These figures are produced for the purpose of comparison with the results
given by Isida et al. (1985). Numerical results are obtained by solving the

following system

nl/2

Zci{7<<z>,.>[m4<w,.,¢,»>+¢z§1<wj,¢z>]+5<¢z>¢z§z<w,.,¢,->}

_(k+1)

, i=1,...n/2-1
o (J )

"ZCI{?WD&%W%E(QM +G(9)95:0,9)}= KD

i=1 2K
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nl/2

S clFews.v,.0) +cwolmw,.0)+05w,.0)l

i=1

=0, (j=1,...,n/2) (6.1)

which is obtained from Egs. (4.23) and (4.24). Kia increases, k2o decreases with
increasing L/a ratio and remain unchanged after L/a = 4. Results seem to be in

very good agreement with those given by Isida et al. (1985). Figure 6.5 shows the

normalized Mode I stress intensity factor ki. at the edge of a single transverse
penny-shaped crack in an infinite cylinder together with the results given in
Benthem and Koiter (1973), Leung and Su (1998), Tsang et al. (2003) for
comparison. Numerical results for this case are obtained from solution of the
system in Eqs. (4.23) and (4.24) by selecting L/A — oo, so that the interaction

between the two cracks is eliminated. Results seem to agree with the previous

ones, the best agreement being with Benthem and Koiter (1973). ki increases

with increasing crack radius.

Figures 6.6-6.11 show ki. at the edges of two parallel penny-shaped cracks in an

infinite cylinder. %m 1s almost insensitive to V. In most of the cases, ki
increases with increasing a/A and/or L/A ratios. As L/A — oo, the infinite
cylinder problem with two penny-shaped cracks becomes similar to that of an

infinite cylinder with a central crack at z =0 plane.

Figures 6.12-6.17 show k2 at the edges of two parallel penny-shaped cracks in an
infinite cylinder. In Figs. 6.12 and 6.13, variation of k2o is shown for v=0.3.
From these figures one may conclude that, koo increases with increasing crack

radius. k2. decreases as the cracks go away from each other.

Figures 6.14 and 6.15 show variations of ks. with v for a=0.5A and 2L = A,

respectively. These figures show that kaa is almost insensitive to changes in v
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except for very large crack radii. As can be seen from Figs. 6.16 and 6.17 also, k2.

is sensitive to changes in geometry, i.e., 2L/ A and/or a/ A ratios.

In Table 1, dimensionless ratio of Mode I stress intensity factor ;1,1 for double

parallel cracks to kio for single crack for various crack distances and crack radii
are compared with finite element method (FEM) results of Tsang et al. (2003) for
v =0.33. It can be observed that there is a very good agreement between the
results of analytical solution obtained in the present study and the solution

obtained by Tsang et al. (2003) using finite element method (FEM).

In most fracture analyses, approaches based on energy considerations are used
with some variations, Gegit (1988). A crack is claimed to propagate if the rate of
release of the stored energy per unit growth of the crack exceeds the rate of change
of the surface energy required by the new surfaces. The energy release rate for the

crack may be calculated in the form, Erdogan and Sih (1963), Gegit (1988),

ou
2 ) (6.2)

where U is the strain energy. Figure 6.18 shows the dimensionless energy release

rate

V_VZ M oU

Zaip, da 3
0

for one crack when v = 0.3. Note that w is larger for larger L/ A ratios, i.e., when

interaction between the two cracks is less. w increases significantly with

increasing a/A ratio.

85



If the material of the cylinder is brittle, crack propagation may be expected to take
place, as suggested by Erdogan and Sih (1963), in a direction perpendicular to the

maximum cleavage stress, which is defined by
ky, [1-3cos(8)]-k,, sin(6)=0,
3k,, sin(@)—k,, cos(8)<O0. (6.4a,b)

Figure 6.19 shows the variation of the probable cleavage angle € at the edge of

the penny-shaped crack at z=L plane when v =0.3. As can be seen in this figure,

the two cracks propagate away from each other, a tendency that is more

pronounced when the cracks are closer to each other.
6.1.1.3 Two Parallel Cracks and a Rigid Inclusion in an Infinite Cylinder

Consider the problem shown in Fig. 2.1. In this case, the system given by Eqgs.
(4.14), (4.17), and (4.20) must be solved for ?((ﬁ), E((ﬁ) and ﬁ(n). Variation of

normalized Mode I stress intensity factor kia at the edges of penny-shaped cracks
is shown in Figs. 6.20-6.26. Figures 6.20 and 6.21 show variation of kia with

a/A. In both figures b=0.5A. It seems that ki, assumes its minimum value
around a=0.5A. This effect is most pronounced for larger values of v and
smaller values of L/A. Relatively high stresses around the edge of the rigid
inclusion are responsible for this behavior. It is obvious that the interaction
between the rigid inclusion and the cracks is greater when the cracks are closer to

the inclusion. The effect of the inclusion is greater for larger v. Besides the

interaction, ki, increases as the crack radius increases.

Figures 6.22 and 6.23 show variations of ki« with L/A when a/A=0.5 and

v=0.3. ki, increases with increasing L/A ratio until L=0.8A. After L=2A,
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the effects of v and b/ A disappear and ki becomes equal to that in the case of a

single crack in an infinite cylinder.

Figures 6.24 and 6.25 show variations of ki. with b/ A when a=0.5A. As can be
seen in Fig. 6.24, k1. does not change considerably with b/ A for a constant crack

radius and constant Poisson’s ratio, v =0.3. Maximum values of ki, are realized

at b=0.8A for a=L=0.5A (Fig. 6.25).

Figure 6.26 shows variation of ki with v when a=L=0.5A. For practical

values of v, ki, increases as v and/or b/A increase(s) for this combination of

crack radius and crack distance.

Figures 6.27-6.33 show variation of normalized Mode II stress intensity factor k2
at the edges of the cracks. In Figs. 6.27 and 6.28, variation of ko with a/A when

b=0.5A is given. kaa is negative and its magnitude increases as the crack radius

a and/or crack distance L increase(s) for b=0.5A and v =0.3. As can be seen
in Fig. 6.28, koo starts with positive values and increases with increasing crack

radius for v >0.1 when b=L=0.5A. With further increase in crack radius, k2

decreases, becomes negative and increases in negative direction. It may also be

noted that, the effect of v on ka. is negligible for a/A> ~ 0.6.

Figure 6.29 and 6.30 show the effect of v and b/ A, respectively, on the variation
of k2. with L/A when a=0.5A.In Fig. 6.29, b=0.5A and in Fig. 6.30, v=0.3.

In general k2o decreases in magnitude and tends to zero as L/A increases. For

L/A>?2, interaction becomes negligible and cracks behave similar to a single

symmetric crack in an infinite cylinder so that kaa is expected to be zero.

In Figs. 6.31 and 6.32, variation of k2o with b/A is shown for a constant crack

radius a =0.5A for several values of L/A and v, respectively. In Fig. 6.31,
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v =0.3 and one can say that the magnitude of k2. increases for small values of

L/A as well as for b/A> ~ 0.4 in general. In Fig. 6.32, L=0.5A and kza is
always negative. Relatively small variation for smaller values of v and

considerable variation for larger values of v are observed. Figure 6.33 shows

variation of k2, with v when a=b=0.5A for several values of L/A ratio. No
remarkable variations are observed for fixed geometrical parameters a/A, b/A

and L/A.

Figures 6.34 and 6.35 show the dimensionless strain energy release rate w and the

probable cleavage angle @, respectively, for the crack at z=L plane when v=0.3
and b=0.5A. As can be seen in Fig. 6.35, cracks try to escape from the high stress

domain around the edge of the rigid inclusion at z=0 plane.

The normalized Mode II stress intensity factor kx at the edge of the rigid
inclusion is shown in Figs. 6.36-6.40. Figure 6.36 shows variation of ks with
L/A when a=b=0.5A. Note in this figure that ko is always negative, its
magnitude is larger for larger v values. It decreases first with increasing L/A
ratio, passes through a minimum around L/A =0.75 for v =0.1, L/A=0.45 for
v =0.5, and then increases with further increase in L/A. Finally, it remains

constant for L/A> ~2 as if there is no crack (see Figs. 6.1 and 6.2). In Fig. 6.37,

variation of k» with a/A is shown when b=L=0.5A. It is observed that ks
changes sign from negative to positive as a/ A increases. For very small values of

al A, numerical values given in Fig. 6.2 for b =0.5A are recovered.

Figures 6.38 and 6.39 show variation of k» with b/A when a=0.5A. In Fig.
6.38, results are shown for v =0.3, while L=0.5A in Fig. 6.39. As can be seen in

these figures, ko, increases as b/A increases until 5=0.75A and then starts

decreasing with further increase in b/A for relatively small values of L/A,

L/A< ~ 1. For greater values of L/A, k2 decreases monotonically as b/A
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increases. In Fig. 6.40, variation of k2, with v is shown when b=L=0.5A for
various a/A ratios. ki, increases in negative direction as Vv increases and/or

al A decreases. kap is positive for a/ A > 0.8.
6.1.2 Semi-Infinite Cylinder Problem

When the rigid inclusion spreads out and b — A, it turns out to be a rigid support
fixing the infinite cylinder throughout its midplane at z=0. The portion
corresponding to z >0 becomes a semi-infinite cylinder bonded to a rigid support

at its short end (z=0).

6.1.2.1 Semi-Infinite Cylinder

Consider the problem shown in Fig. 4.4. In this case, Egs. (4.31) and (4.32) must

be solved for 7(77). Figures 6.41 and 6.42 show the normal stress o (r,0)
distribution at the rigid support for ¥ =0.25 and 0.5, respectively. In Fig. 6.41;
results given by Benthem and Minderhoud (1972) and Gupta (1974), in Fig. 6.42;
results given by Gupta (1974) and Agarwal (1978) are also plotted for comparison.
In Fig. 6.41, perfect agreement with Benthem and Minderhoud (1972) is observed
for v =0.25. Results given by Gupta (1974) differ a little from those of the
present study and Benthem and Minderhoud (1972) at points close to the edge
(r/A—>1). In Fig. 6.42, perfect agreement with Agarwal (1978) is observed for
v =0.5. Results given by Gupta (1974) differ considerably from those of the
present study and Agarwal (1978)as r/A —1.

Figures 6.43 and 6.44 show the shearing stress 7, (r,0) distribution at the rigid

support for v =0.25 and 0.5, respectively. One can make observations similar to
Figs. 6.41 and 6.42: Perfect agreement with Benthem and Minderhoud (1972) and
Agarwal (1978), whereas Gupta (1974) differs by some amount from all. Note in

Figs. 6.41-6.44 that o, and 7, tend to infinity as r — A. Therefore, the stress

89



state at the edge of the rigid support is described by the stress intensity factors

defined in Egs. (5.23).

Figures 6.45 and 6.46 show the normalized Mode I and Mode 1I stress intensity
factors kia and kaa, respectively, at the edge of the rigid support defined by Egs.

(5.30) and (5.31). ks decreases with increasing v . In Fig. 6.46, results taken from

Gupta (1974) are also shown for comparison. For relatively large values of v there

is ~10% difference. Normalized Mode II stress intensity factor kaa is negative and

its magnitude increases with increasing v .
6.1.2.2 Semi-Infinite Cylinder with a Transverse Penny-Shaped Crack

Consider the problem shown in Fig. 4.3. In this case, Eqs. (4.27) and (4.30) must
be solved for ?((,/5), E((,/)) and ?(77). Figures 6.47-6.52 show the normal stress
0,(r,0) and the shearing stress 7, (r,0) distributions at the rigid support for
various combinations of v, L/A and a/A. When the crack is close to the rigid
support, the stress distributions are very complicated and the axial stress o,(r,0)
assumes very small values around the center. This variation is also valid for
relatively large crack radii. As L/A increases, stress distributions become
smoother. When L/A — oo, the effect of the crack disappears and the results for a
semi-infinite cylinder without crack (Figs. 6.42 and 6.44) are recovered. Figures
6.49 and 6.52 show the normalized axial and shear stresses, o (r,0) and 7, (r,0),
along the rigid support when a =0.5A4 and L= A. These stresses tend to +co and
—oo, respectively as r/A—1. Stress distributions become smoother as

v decreases.

Figures 6.53-6.58 show the normalized Mode I and Mode II stress intensity
factors, kia and kaa, at the edge of the rigid support. As can be realized from

these figures, both kia and k»x decrease with increasing L/A except for
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relatively small values of L/A <~0.25; kia decreases whereas k4 increases with
increasing v. Note that, Figs. 6.53 and 6.56 have the same characteristic
distribution since v =0.3 is fixed. From Egs. (5.30) and (5.31), it can be noticed
that the ratio

ks _ (k+ Dsin(y) 6.5)

kin {(K‘— Dlcos(zy) + 1]+ 2(x + D(y—1) - 4(y - 1)2}

has a constant value for a fixed value of v . Variation of ki and k2 is relatively
small for small cracks when v =0.3. There is extensive variation for large cracks

if the crack is close to the rigid support (Figs. 6.53 and 6.56). Figures 6.54 and
6.57 show variations of k4 and k2 with a/A when L=A. It seems that the
crack is sufficiently far from the rigid support and the interaction is little and ki,
k24 do not vary much with a/A. When the crack radius a is close to zero, it may

be said that there is no crack in semi-infinite cylinder. Values of kia and kax with

no crack (Figs. 6.45 and 6.46) are reproduced here for a =0.

Figures 6.55 and 6.58 show variations of kia and k»s with L/A when a=0.5A

for several values of v. kia and k»a first increase with increasing L/A,
experience maximum values around L = 0.25A, then decrease and reach stationary

values after L =2A . These stationary values are again those values with no crack.

Figures 6.59-6.63 show variation of normalized Mode I stress intensity factor kia

at the edge of the crack in a semi-infinite cylinder. In Figs. 6.59 and 6.60, variation
of ki, with a/A is shown when L=A and v=0.3, respectively. ki. increases
significantly for a/A >0.9. Figure 6.61 shows variation of ki. with L/A when

a=0.5A. Similar to the behavior in Fig. 6.22, kio first increases with increasing

L/ A, experiences a maximum around L = A, then decreases and finally becomes
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stationary with further increase in L/A (L/A> ~2A). In Figs. 6.62 and 6.63,

variation of ki, with v is given when L=A and a=0.5A, respectively. As

expected, no significant variation with v is observed.

Figures 6.64-6.67 show variation of normalized Mode II stress intensity factor k2a

at the edge of the cracks in a semi-infinite cylinder. In Figs. 6.64 and 6.65,
variation of k2. with a/A is shown when L=A and v=0.3, respectively. As

can be seen in Fig. 6.65, k2 increases with increasing a/A and tends to infinity

as a/A —1. This effect is more pronounced as the crack gets closer to the rigid
support. Figure 6.66 shows variation of k2 with L/A when a=0.5A. It may be

noted that k. decreases with increasing L/A and tends to zero for L/ A >~2.

Figures 6.68 and 6.69 show the dimensionless strain energy release rate w and the
probable cleavage angle @, respectively, for the crack at z=L plane when
v=0.3. As can be seen in Fig. 6.69, crack tends to propagate away from the high

stress domain around the edge of the rigid support at z=0 plane.

6.1.3 Finite Cylinder Problem

When the crack in the semi-infinite cylinder problem spreads out and a — A, the
cylinder is completely broken at z=L and the portion of the cylinder between
z=0 and z =L planes becomes a finite cylinder whose one end at z =0 is fixed
and the other end at z=L is subject to uniformly distributed axial tension of

intensity p,. For this problem, Eqgs. (4.34), (4.36) and (4.40) must be solved for
F(9), G(9). H(p).
Figures 6.70-6.85 show calculated results of the finite cylinder problem for various

aspect ratios, L/ A, and material properties represented by v . Figures 6.70-6.75

show the normalized axial stress o_(r,0)/ p, along the rigid support for various
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aspect ratios, L/A and Poisson’s ratio v. When v =0, the effect of the rigid

support vanishes. Therefore, axial stress o, (r,0)/ p, distribution becomes uniform

(Fig. 6.73). In Figs. 6.70, 6.71 and 6.72, v =0.1, 0.3 and 0.5, respectively. In
Figs. 6.73, 6.74 and 6.75, L=0.25A, 0.5A and A, respectively. Figures 6.76-

6.81 show the normalized shearing stress 7, (r,0)/ p, along the rigid support for

various aspect ratios, L/A, and v. Larger shearing stresses develop along the
rigid support for larger values of v and/or larger values of L/A in general.
0,(r,0) and 7,_(r,0) tend to £ as r/A —1. Therefore, the stress state around

the rigid support can be represented by the stress intensity factors.

Figures 6.82-6.85 show the normalized Mode I and Mode II stress intensity factors
kia and k. around the rigid support. In Figs. 6.82 and 6.83, variations of kia
with L/A and v are shown. ki increases as L/A increases and then becomes

stationary for L>~1.5A for fixed values of V. As may be seen in Fig. 6.83, ki

decreases with increasing v for a fixed aspect ratio L/ A .

Figures 6.84 and 6.85 show variations of k2a with L/A and v, respectively.

Having smaller numerical values, k24 exhibits similar variation with L/A as kia
for fixed values of v. However, it increases with increasing v for a fixed aspect

ratio L/ A.

6.2 Conclusions

This work is on the analysis of a cracked semi-infinite cylinder and a finite
cylinder with free lateral surface. One end of the cylinder is bonded to a fixed
support while the other end is subject to axial tension. The material of the cylinder

is assumed to be linearly elastic and isotropic.

The solution of the finite cylinder problem of length L is obtained from the

solution for a semi-infinite cylinder of radius A which contains a concentric
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penny-shaped crack of radius a located at z = L. When the crack approaches the
surface of the cylinder, the problem for the region between the rigid support and
the crack becomes identical with the finite cylinder problem. Furthermore, the
solution for this semi-infinite cylinder is obtained by considering the axisymmetric
infinite cylinder problem. The infinite cylinder of radius A contains two
concentric penny-shaped cracks of radius @ at z==%L planes and a concentric
penny-shaped rigid inclusion of radius b at z=0 plane. In the limiting case when
the rigid penny-shaped inclusion approaches the surface of the infinite cylinder
when b — A, the infinite cylinder problem turns out to be the semi-infinite

cylinder problem having a penny-shaped crack at z = L plane.

The formulation of the infinite cylinder problem is obtained by the superposition
of solutions for the following two subproblems: (I) Uniform problem; an infinite
cylinder subjected to arbitrary symmetric loads with no cracks or inclusion, (II)
Perturbation problem; an infinite cylinder containing two concentric penny-shaped
cracks of radius a at z==ZL planes and a concentric penny-shaped rigid

inclusion of radius b at z =0 plane with no load at infinity.

General solution for the perturbation problem is obtained by adding the
expressions for three sub-problems: (II-i) An axisymmetric infinite elastic medium
containing two concentric penny-shaped cracks of radius a at z =zxLplanes, (II-
ii) An axisymmetric infinite elastic medium containing a concentric penny-shaped
rigid inclusion of radius b at z =0 plane, (II-iii) An axisymmetric infinite elastic

medium with no cracks or inclusion.

General expressions for the displacement and stress components for perturbation
problem are obtained by solving Navier equations using Fourier and Hankel
transform techniques. First, the boundary conditions at the surface of the infinite
cylinder are satisfied. Then, by using the mixed boundary conditions on the cracks
and the rigid inclusion, formulation of the problem is reduced to a system of three
singular integral equations in terms of displacement derivatives on the cracks and

shearing stress jump on the rigid inclusion. By using Gauss-Lobatto and Gauss-
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Jacobi integration formulas, these three singular integral equations are converted to

a system of linear algebraic equations which is solved numerically.

The normalized stress intensity factors ki. and ks, at the edge of the internal

crack, ki and k2 at the edge of an internal rigid inclusion, kia and kaa at the

edge of rigid support, the normalized axial stress o,(r,0)/ p, and shearing stress

7,.(r,0)/ p, at the rigid support are presented in graphical form in Figs. 6.1-6.85.

From the formulation and the presented figures, following conclusions may be

deduced:

1.
2.

3.

Singularity at the edge of an internal crack is 1/2.
Singularity at the edge of an internal rigid inclusion is also 1/2.
Stresses at the corner of a 90° wedge with free-free sides are bounded.

Stresses at the corner of a 90° wedge with fixed-free sides are unbounded

and the singularity power ¥ is given by

2kccos(zy) = K> +1—4(y—1) (3.27)

Mode II stress intensity factor ka»at the edge of an internal rigid inclusion

in an infinite cylinder is negative and it increases with increasing Vv .

Mode I and Mode II stress intensity factors ki and ko, at the edges of two
parallel penny-shaped cracks in an infinite cylinder are insensitive to Vv
(except when a — A) but they increase as a/A increases and/or L/A
decreases.

Stress distributions at the rigid support for the semi-infinite cylinder
problem match very well with the results of Benthem and Minderhoud
(1972) and Agarwal (1978). Results of Gupta (1974) differ (at the worst by
~10%) from Benthem and Minderhoud (1972), Agarwal (1978) and the

present study.
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8.

There is considerable interaction between the crack and the rigid inclusion
when V is large and the crack is close to the support in the semi-infinite
cylinder problem.

Mode 1II stress intensity factor kaa is considerably small compared to

Mode I stress intensity factor kia around the rigid support in semi-infinite

and finite cylinder problems.

6.3 Suggestions for Further Studies

Cylindrical geometry is used frequently in many machine elements such as shafts,

bolts, screws and rivets. Results and techniques used in this work can be applied in

many engineering problems by considering various applications:

1.

5.

Two penny-shaped cracks may be replaced by edge cracks so that the
problem of external notch in a semi-infinite cylinder is obtained.

Axial tension load may be replaced by torsion.

Thermal loads can be added to semi-infinite and finite cylinder problems.
By using four penny-shaped cracks, problem can be turned out to be finite
cylinder problem containing transverse crack.

The material of the cylinder may be assumed to be composite.

The author is willing to study these problems in near future.
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L6

Table 6.1 Dimensionless SIF ratios —=

la single crack

k la double cracks

when a cylinder is subjected to axial uniform loading forv =0.33.

a
. A
; 0.3 0.6 0.9
TsarllngﬁOOS) Present study TsaI}:gE(l\%IOO?)) Present study Tsari:gE(1\24003) Present study
0.1 0.800 0.795 0.760 0.758 0.800 0.794
0.2 0.870 0.872 0.820 0.816 0.890 0.888
0.3 0.930 0.926 0.870 0.864 0.940 0.939
0.4 0.960 0.958 0.910 0.907 0.970 0.966
0.5 0.980 0.977 0.940 0.942 0.980 0.982
0.6 0.990 0.988 0.970 0.968 0.990 0.991
0.7 0.990 0.994 0.980 0.984 1.000 0.996
0.8 1.000 0.997 0.990 0.993 1.000 0.999
0.9 1.000 0.999 1.000 0.998 1.000 1.000
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Figure 6.25 Normalized Mode I stress intensity factor ki when a=L=0.5A.
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Figure 6.27 Normalized Mode II stress intensity factor k>« when b=05A, v =03.
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Figure 6.28 Normalized Mode II stress intensity factor k2 when b=L=0.5A.
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Figure 6.29 Normalized Mode II stress intensity factor k>« when a=b=05A.
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891

1.10
ttttts
1.05 - —
|
— / A
1.00 . . + Ll T 7
\’\—0\‘ i
|
[]——D—D—\D\ |
o (r0) 095 - \”\n\ ZT
\i r
Po \ -
T
T —k—
0.90 \'\l\ %\ ——0.125
/Kb —5—0.25
0.85 & A A A —*—0.35
—2—0.5
—L/A—> x©
0.80

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.71 Normal stress o, (r,0) along the rigid support when v =0.3.



691

o,(r,0)
Po

1.20

1.15

1.10

1.05

1.00

\
—
—
—_
—_—
—
3

A !
!
!
I A
L
.
4
O . ,/ /‘// y T g
A A *"’/‘74—/ ——0.25
Pt —k *
/D/El/u —5=05
il o I —a— 1
—L/A—
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

r
A

Figure 6.72 Normal stress o (r,0) along the rigid support when v =0.5.
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Figure 6.74 Normal stress o, (r,0) along the rigid support when L =0.5A.
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Figure 6.75 Normal stress o, (r,0) along the rigid support when L= A.
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APPENDIX A

Integral formulas used in deriving the expressions in Egs. (2.42a,b) are,

Gradshteyn and Ryzhik (1994):
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APPENDIX B

Integrals of products of Bessel functions of the first kind, exponential functions
and power functions used in deriving the expressions in Eqs. (2.43), Gradshteyn

and Ryzhik (1994):
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where K and F are the complete elliptic integrals of the first and the second kinds

and
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APPENDIX C

The expressions for S,(r,t) (i =1-8) appearing in Eqs.(3.3) are as follows
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APPENDIX D

The expressions for the integrands K, (r.z,@) (i, j =1-3) appearing in Eq. (3.9)

are as follows
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APPENDIX E

The expressions for K., (t,) = lim K; O,t,a), (i=1,3; j=1-3) appearing in Eq.

(4.18) are defined as follows:
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APPENDIX F

The expressions for N; (1) (i=1,3;j=1-3) appearing in Eq. (4.18) are in the

form
7 5
N (5o ) 15ACA+D 1+C°S(§~‘3) , 3(204-161) HC"S(QSS)
1150 \/2_l 2S17/2 S57/4 8s15/2 S55/4
(129 +2K) cos(i s5)
4 3/2 l+ 3/4 ’ (F'l)
S Ss
. .5
7 | 15A-A+1) PG S) 3124 - 6r) S0 5)
leso(t):\/Z_t ) s17/2s57/4 + 3 s15/2s55/4
sin(i S3) sin(E Sg)
+(5—2K')W +(1+K') ZW s (F2)
7 5
N (5= E_| 15AGA=D) €065 38A+24K+8n G %)
1350 \/2_l 2 S17/2S47/4 4 S15/2s45/4
3
cos(—s,)
L N (F.3)

3/2 3/4
8 s s,

200



7 5
7 | 154A-1) G5 38A+2AK+6r—2a0) O %)

N31;o(l):\/z 5 IIERE + 4 PRERE
1 5 LSy
3
15 cos(gsz)
g | (F.4)
57 7S,
.7 .5
7 [ 15A4-0) G5 344+ 24K+ 61— 257) SPGS2)
N32;o(t)=\/z 3 PIERREE + 4 PRIERETE
1 4 1 4
sin(i 5,) sin(; Sg)
—(Z—ZK)W _(1+K)\/;W s (F.5)
s 7s, A’s,
7 [30A(=A+1) 3BA-24x-3t+x) Kk(11—4K)
Ny, (1) = + + , (F.6)
3350 \/Z 8S17/2 4S15/2 16S13/2
where
s, =2A-t,

L
s, = Arc tan(s—) ,
1

s, = Arc tan(2s—L) ,
1

S4=1+(S£)2’
1
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2L)2
Ss =1+ (S—l
5
Sg = Arctan(A
L)2
s, :1+(A

2L)
sg = Arc tan( 1

= (F.7a-1)
2L)2 )
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APPENDIX G

The expressions for K, (r,t,&) (j =1-3) appearing in Eq.(5.4) are as follows

K, (rta) = Z—a{rall(ar)[— 2tad ,(tax) + I, (o )(hy + hhy)] + I, (ra){tad (1) (—4

0

+h, + hh) +1,(ta)[2h, + k(=14 2h)]}}cos(aL) , (G.1)

‘; {Ac{rom1,ta)],(ra) + I,(ra)[l + k + 21,1, (ta) +tah, 1, (ta)] }

0

K,(r.t,o)=

+rod (re) |- 241221 (te) - (1+ 01, (Ae) + Aai 1, (te)]
+1,(ra)|- 4Ata1 (ta) + Aath, I,(ta)(-1+2h,)

—2(1+ O, (Aa) + Ata*h I (t) | Jsin(ad) (G.2)

K, (rta)= —dﬁ{Zrall(ar)[— 2tal | (ta)+ 1, (ot)(1+ K+ h, + hlhg)]

0

+1,(ra){2ted, (ta)(—4 + h, + hhy)

+11(za)[2(1+ K —2A%%) + (3 - K)(h,+ hiy)]}, (G.3)
where
h=1+Kx+2A%",
h, =2A% 1 (Aa)K (Aa),

h=I(Aa)K (Aa). (G.4a-d)
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The expressions for K, . (r,t,&)=lim K4j(r,t,a) , (j=1-23)are in the form

4 joo

—a(2A-t-r)
K, (rt,a)=2 “Lf/l_r ls-A+rA-na? +BA-2r—6a-4],  (G.5)
. —a(2A—t-r)
K, (rta) =" “Lf/; [4-A+r(A-Da? +(4A+2r 61 +2]
sinaLe " [ 2(1+ xk)(A— r)WAt
+ e , (G.6)
tr
—a(2A-t-r) 5 3K,_1
K, (rtoa)= _T 2-A+r)(A-tHa” + [3(A -1+ k(—A+ r)]a + A(G.7)

The singular parts of kernels, N4js(r,t)=J.K4jm(r,t,0{)d0{ (j=1-3) are
0

calculated to be

Ny L BEA+D(A-DCA - D32 + (24 +7 +1?]
s r, = 3
' Nir [L2 +(—2A+r+t)2]*

L BA=2r=6NQA=L-r=0QA+L=r=1) _ 42A+r+n
[+ 24+r+0?] 2+ 24+ r+1)]

(G.8)
SL—A+ M A—DI2 Z3(24 47112
N42S(r,t):% - ( )X )[ ( : r )]
tr [L2+(—2A+r+;)2]
+2L(4A+2r—6l)(2A—r_t)+ L
[L2+(—2A+r+1)2]2 [L2+(—2A+r+t)2]

2L+ K)(A—r)JAt } G9)

A2 +(A-r)]

204



| [ 4cA+n@Aa-n BA-n+x=A+n] 3k }
N“*‘“(r’l):__{_ (2A+r+1) | (2A+rto) 2A2A+71+1)

Jir

(G.10)
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APPENDIX H

The expressions for the kernels in Eq. (5.6) are in the form

7 5
i cos( 5 Zs) 3(-20+162,0) COS(E %)

N, (0,0) = 15(1- z,0) +
m 2 Z47/2Z67/4 4 Z45/2Z65/4

3
19 cos(E Zs)

4 Zé
. 5
Nz (0 @) = 12271- {1501 - 2.0) sm(gzs) 3(=12+ 62,0) sm(Ezs)
42,(0,0) = _ B
m 2 PR 4 R
.3 3
7 sin(— zs) sin(=z,)
— (G4 20) 5 + 20+ Ko — 2 (H.2)
2 s Zg Az,
2
— 37 | 60(1-z 3(-8+2x+8 15x
N (0,7) =3 ( 7/2377)+ ( 4 zn) w1 .
\/22377 82 4z 8z,
where
L
Zl__,
A
a
ZZZZy
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2_Z21,
2, =

l),
- (

Z tan

= Arc

5

Sy,
—1+(Z4
Zg =

ctan(z,),
= Ar
Z7 -
2
1+z°,
Zg =

-i)
4a
(H.
2=z .

39 =
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