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ABSTRACT 

Vision Based Obstacle Detection and Avoidance  

Using Low Level Image Features 

 

 

SENLET, Turgay 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Uğur HALICI 

 

April 2006, 112 pages 

 

This study proposes a new method for obstacle detection and avoidance using 

low-level MPEG-7 visual descriptors. The method includes training a neural 

network with a subset of MPEG-7 visual descriptors extracted from outdoor 

scenes. The trained neural network is then used to estimate the obstacle 

presence in real outdoor videos and to perform obstacle avoidance. In our 

proposed method, obstacle avoidance solely depends on the estimated obstacle 

presence data. 

In this study, backpropagation algorithm on multi-layer perceptron neural network 

is utilized as a feature learning method. MPEG-7 visual descriptors are used to 

describe basic features of the given scene image and by further processing these 

features, input data for the neural network is obtained. 

The learning/training phase is carried out on specially constructed synthetic video 

sequence with known obstacles. Validation and tests of the algorithms are 

performed on actual outdoor videos. Tests on indoor videos are also performed to 

evaluate the performance of the proposed algorithms in indoor scenes. 



 v 

Throughout the study, OdBot 2 robot platform, which has been developed by the 

author, is used as reference platform. 

For final testing of the obstacle detection and avoidance algorithms, simulation 

environment is used. 

From the simulation results and tests performed on video sequences, it can be 

concluded that the proposed obstacle detection and avoidance methods are 

robust against visual changes in the environment that are common to most of the 

outdoor videos. Findings concerning the used methods are presented and 

discussed as an outcome of this study. 

 

 

Keywords: Vision Based Obstacle Detection, Obstacle Avoidance, MPEG-7, 

Multi Layer Perceptron, OdBot 2 
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ÖZ 

 

Alt Seviye İmge Özelliklerini Kullanarak  

Görüntü Tabanlı Engel Saptama ve Engel Sakınma 

 

 

SENLET, Turgay 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Uğur HALICI 

 

Nisan 2006, 112 sayfa 

 

Bu çalışma, engel agılama ve engel sakınma konularında, alt seviye MPEG-7 

görsel tanımlayıcılarını kullanan yeni bir yöntem önermektedir. Yöntem, dış 

mekan videolarından çıkartılmış alt seviye görsel MPEG-7 tanımlayıcılarının bir alt 

kümesinin yapay sinir ağına öğretilmesini içermektedir. Öğrenmesini tamamlamış 

yapay sinir ağı, gerçek dış mekan videolarında engel varlığını hesaplamak için 

kulanılmaktadır. Önerilen yöntemde engel sakınma sadece engel varlığı bilgisine 

dayanmaktadır. 

Bu çalışmada, özellik öğrenme aracı olarak çok katmalı perseptron yapay sinir ağı 

üzerinde geri iletim öğrenme algoritması kullanılmıştır. Yapay sinir ağına girdi 

oluşturacak veriler, verilen sahneden çıkarılan MPEG-7 görsel tanımlayıcılarının 

daha ileri işlenmesi ile elde edililir.  
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Öğretme/talim aşaması, içerisinde bilinen nesnelerin olduğu özel olarak 

oluşturulmuş sentetik video üzerinde gerçekleştirilmiştir. Doğrulama ve sınama 

aşamaları gerçek dış mekan videoları üzerinde gerçekleştirilmiştir. Ayrıca önerilen 

yöntemin iç mekanlardaki başarımını ölçmek amacıyla iç mekan videoları 

üzerinde de sınamalar gerçekleştirilmiştir. 

Bu çalışma genelinde referans sistem olarak yazar tarafından geliştirilmiş olan 

OdBot 2 hareketli robot platfromu kullanılmıştır. 

Engel saptama ve engel sakınma algoritmalarının nihai sınamaları için benzetim 

ortamı kullanılmıştır. Benzetim ve video işleme sonuçlarına dayanarak, önerilen 

yöntemlerin, dış mekan videolarının çoğunluğunda rastlanan ortamın görsel 

özelliklerinin değişmelerine karşı gürbüz olduğu çıkarımına varılmıştır.  

Bu çalışmanın çıktısı olarak, önerilen yöntem ve algoritmalarla ilgili elde edilen 

sonuçlar sunulmakta ve değerlendirilmektedir. 

 

 

Anahtar Kelimeler: Görsel Engel Sakınma, MPEG-7, Çok Katmalı Perseptron, 

OdBot 2 
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CHAPTER 1  

 

INTRODUCTION 

 

 

1. Problem Definition 

The problem we intend to solve can be defined as “to implement a fast and robust 

obstacle detection algorithm for single camera that works for different kinds of 

obstacles”. To achieve this goal, we chose to “produce a compact representation 

of images, which alone suffices to perform obstacle avoidance”. This compact 

representation of the images is referred to as “obstacle presence value” or simply 

“obstacle presence” throughout this work. The obstacle presence value gives a 

measure on the confidence for the existence of an obstacle at the center of a 

given image at any given time instant.  

After extracting obstacle presence data, effectiveness of using it in obstacle 

avoidance should be tested. The problem of obstacle avoidance for a mobile 

robot can simply be defined as “keeping away from known or unknown objects in 

the vicinity of the robot while moving towards a desired position”. Obstacle 

avoidance can be achieved by either detecting or recognizing the obstacles.  

The leading work on obstacle avoidance has been carried out in Carnegie-Mellon 

University [1, 2] using ultra-sonic sensor data. This approach employs ultra-sonic 

sensor based obstacle detection method for performing the obstacle avoidance. 

With the use of obstacle closeness information obtained from the sensors and by 

utilizing basic logic rules, the obstacle avoidance is performed. Afterwards, many 

researchers have studied in the area and much progress has been achieved on 

obstacle avoidance algorithms since then. The main motive in this study is to 

achieve a simple vision-based obstacle detection method to perform obstacle 

avoidance as it is done with ultra-sonic sensors. 

Although it was impracticable three decades ago, with the aid of rapidly 

developing computer systems, the vision-based obstacle avoidance problem for 
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mobile ground vehicles has been a thoroughly studied area during the recent 

years [3-5, 9]. Many researches have been conducted on the subject; including 

studies on stereo vision, landmark localization, feature tracking and object 

recognition based methods.  

In this study, we propose a new vision-based obstacle detection and avoidance 

method, which involves learning of low-level visual features from scene images. 

Image features were selected as a subset of the visual descriptors defined in 

MPEG-7 Multimedia Content Description Interface (Detailed description can be 

found in [6, 7, 16]). 

2. Scope of Thesis 

Trying to find solutions to the stated problems that are applicable to any given 

environment is a highly sophisticated task. Rather, the approach should be finding 

solutions to basic, common and testable environments and then generalizing the 

result to other environments whenever possible. 

In mobile robot navigation topic, majority of the previous researchers like  

[1-5, 8-9, 11-13, 15] have chosen to work with indoor environments. However, in 

the recent years several researchers like [10, 14] have conducted remarkable 

works on the outdoor environments. 

In this study, we have selected outdoor environment as our target environment. 

There are two reasons for this decision; first, navigation in an outdoor 

environment represents a more general problem, second, outdoor images can be 

modeled more easily than the indoor images. Furthermore, another advantage of 

outdoor environment is the opportunity to use GPS modules for robot localization. 

The reference robot platform has advanced GPS navigation capabilities including 

path following and closed loop GPS traveling. In the work of [4], the researchers 

have proposed an indoor GPS system (iGPS) specific to their defined problem, 

which unfortunately cannot be considered as a general solution to indoor robot 

localization and navigation problem. 

In order to perform simple obstacle avoidance, we have defined our obstacles to 

be stationary large obstacles.  

It is assumed that the selected outdoor environment does not have a significant 

slope. 
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3. System Overview 

The system block diagram and system data flow are shown in Figure 1. 
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Figure 1 – System Block Diagram for Training 
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Figure 2 – System Block Diagram for Obstacle Avoidance 
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4. Methodology  

In this work, we have chosen to perform supervised learning on known data and 

to validate the decision-making quality of the final system on simulation 

environment and real outdoor videos. 

Supervised learning is done on a synthetic video sequence where obstacle 

presence is known. This video sequence, along with its desired obstacle presence 

data is referred as the training set. 

After the learning stage, best trained neural network is selected by looking at the 

performances of each trained network. For this purpose, a validation set where 

the obstacle position is known has been used. Further test for obstacle detection 

are performed on the test set. 

Tests of obstacle avoidance are conducted on the simulation environment. In the 

simulation environment, the obstacles, mobile robot dynamics, robot localization 

and obstacle avoidance systems are simulated. Since the main purpose of the 

simulation environment is to test performance of the proposed obstacle detection 

and avoidance methods a reference obstacle avoidance system for obstacle 

avoidance is built inside the simulation environment. This system depends on the 

simulation environment data and not the seen image. The objective of the 

obstacle avoidance simulation is replicating the best-case results of the real 

obstacle avoidance system using the simulation environment data (like obstacle 

positions, robot heading and robot position).  

In addition, inside the simulation environment, a second module has been put to 

construct a photo-realistic image of the scene that the robot ‘sees’ at that 

moment. This photo-realistic image is used as an input to the real obstacle 

presence calculation. Simulation and actual results for obstacle avoidance are 

compared for a given scenario where one obstacle is present. 

The results of the tests are given in the next chapter. Evaluations and 

comparisons of the test results are done on the conclusion chapter, which is the 

last chapter of the thesis. 
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5. Organization 

This thesis consists of eleven chapters; and references are presented at the end 

of the thesis. 

In the first chapter, introduction and problem definition are given and scope of the 

thesis is defined. A brief overview of the system, the followed methodology and 

system block diagram are also given in this chapter. 

The second chapter builds up the necessary technical background for the work 

conducted. In the chapter, background in obstacle avoidance topic is built up by 

stating several exceptional and leading methods that have been used by other 

researchers. Moreover, in this chapter, MPEG-7 standard and MPEG-7 visual 

descriptors are summarized and a basic knowledge of multi-layer perceptron 

neural networks is presented. 

In the third chapter, capabilities and technical specification of the OdBot 2 robot 

platform is presented.  

Fourth chapter describes the simulation environment used in the real-time 

obstacle avoidance tests and states its capabilities. 

Chapter five gives the details on feature selection process. In this chapter, 

required properties of the features are presented and the feature selection criteria 

are given. 

In chapter six, the processing methods applied to the selected features are given. 

Here, the possible processing methods are discussed and the selection bases for 

the processing methods are given. 

The seventh chapter explains the procedure followed in constructing the training, 

validation and test video sets. The chapter also gives the essential characteristics 

of each set. 

In chapter eight, neural network training procedures along with the processes 

used in determining the neural network parameters are given. 

Obstacle avoidance problem and used obstacle avoidance algorithm are 

discussed in chapter nine. In this chapter, obstacle avoidance results for the 
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proposed method are given and these results are compared with the expected 

theoretical results. 

Chapter ten gives the detailed results corresponding to each video sequence in 

the training, validation and test sets. Chapter ten also briefly discusses these 

results and extract several deductions from them. In addition, this chapter 

presents, test results for individual and various combinations of features. 

In the last chapter, results of the experiments are interpreted as a whole and they 

are discussed in detail. Furthermore, future work and conclusion for the whole 

study are presented in this chapter. 

The references to the cited previous work can be found in the references part. 
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CHAPTER 2  

 

THEORETICAL BACKGROUND 

 

 

1. Obstacle Avoidance 

The obstacle avoidance problem for a mobile robot can be defined as “moving a 

robot among obstacles without colliding them”.  

As one of the leading work in the field, Hans Moravec from Carnegie-Mellon 

University [1], made use of multiple wide-angle sonar range measurements to 

map the surroundings of an autonomous mobile robot. Where a sonar range 

reading provides information concerning empty and occupied volumes in a cone 

in front of the sensor. Range measurements from multiple points of view are 

systematically integrated to build the map of the surrounding. 

In his later article, “Experiments and thoughts on visual navigation”, Moravec [3] 

describes a second-generation system that “drives” a camera equipped mobile 

robot through obstacle courses. In this work, a system for navigation and vision of 

a robot rover, using only stereo vision, locates obstacles, plans a path around 

them, and tracks the motion of the robot as it moves. 

In “Learning visual feature detectors for obstacle avoidance using genetic 

programming”, [17] the researchers explain the use of genetic programming 

techniques to learn visual feature detection algorithms for mobile robot navigation 

and obstacle avoidance tasks. Also in this work, a similar approach used by 

Martin has been cited. Martin has used genetic programming to learn algorithms 

that extracted the height of the lowest non-floor pixel in a given image. The 

positions of these lowest non-floor pixels were then used as input to a simple 

mobile robot navigation algorithm. 

In “A new approach to vision-based unsupervised learning of unexplored indoor 

environment for autonomous land vehicle navigation”, Chen and Tsai [8] have 
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proposed a new vision-based indoor algorithm to build a top-view map of the 

environment, avoid the obstacles and do the path planning. To facilitate feature 

collection, two laser markers are mounted on the vehicle, which project laser light 

on the corridor walls to form easily detectable line, and corner features. 

In their work “Applications of moving windows technique to autonomous vehicle 

navigation”, Choi and Lee [9] propose a vision-based obstacle detection method 

to perform lane detection and corridor driving for mobile robots. 

“A vision based system for goal-directed obstacle avoidance” [18] explains the 

details of the vision-based real-time obstacle avoidance and path planning system 

designed for Sony four-legged league. With the help of this system, in RoboCup, 

German team reached double the speed of the closest team and did not make 

any collision with obstacles. Their algorithm depends on modeling the obstacle 

and the ground pixels and to obtain a map of obstacle proximity probability to run 

the navigation tasks. 

A. Rizzi et al. presents a visual homing algorithm for autonomous robots inspired 

by the behavioral of bees [11]. In their approach, no attempts are made to 

recognize the objects or to extract 3D models from the scene; instead, 

parameters of an affine motion model are estimated. 

2. MPEG-7 Standard 

In this section, a brief overview of the MPEG-7 standard and MPEG-7 visual 

descriptors is given. The MPEG-7 overview material has been put together from 

the technical information in [6, 7, 16] and the MPEG-7 visual descriptors part has 

been composed from [7]. 

2.1. General Description 

MPEG-7 is an ISO/IEC standard developed by MPEG (Moving Picture Experts 
Group). It is formally named “Multimedia Content Description Interface” and is a 
standard for describing the multimedia content data. 

MPEG-7 is not aimed at any one application in particular; rather, the elements that 
MPEG-7 standardizes support as broad a range of applications as possible. It focuses 
on representing information about the content, not the content itself. Both human 
users and automatic systems that process audiovisual information are within the 
scope of MPEG-7.  
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MPEG-7 offers a comprehensive set of audiovisual Description Tools to create 
descriptions, which will form the basis for applications enabling the needed effective 
and efficient access (search, filtering and browsing) to multimedia content. [6] 

2.2. Objectives of MPEG-7 

MPEG-7 aims to standardize: 

• A core set of Descriptors (Ds) that can be used to describe the various 
features of multimedia content;  

• Pre-defined structures of Descriptors and their relationships, called 
Description Schemes (DSs);  

• A language to define Description Schemes and Descriptors, called the 
Description Definition Language (DDL);  

• Coded representations of descriptions to enable efficient storage and fast 
access.  

MPEG-7 descriptions (a set of instantiated Description Schemes) will need to be 
linked to the content itself to allow fast and efficient searching for material of a user’s 
interest. The descriptions may be physically located with the associated AV material, 
in the same data stream, on the same storage system, or the descriptions could be 
stored remotely. Hence mechanisms that can link the AV material to their MPEG-7 
descriptions (and vice versa), regardless of where the content and its descriptions are 
located, are required. [16] 

2.3. Scope and Applications 

MPEG-7 is intended to describe audiovisual information regardless of storage, coding, 
display, transmission, medium, or technology. It will address a wide variety of media 
types including: still pictures, graphics, 3D models, audio, speech, video, and 
combinations of these (e.g., multimedia presentations). Examples of MPEG-7 data are 
an MPEG-4 stream, a video tape, a CD containing music, sound or speech, a picture 
printed on paper, or an interactive multimedia installation on the web. 

MPEG-7 will address both retrieval from digital archives (pull applications) as well as 
filtering of streamed audiovisual broadcasts on the Internet (push applications). It will 
operate in both real-time and non real-time environments. A “real-time environment” in 
this context means that the description is generated at the same time as the content is 
being captured (e.g., smart cameras and scanners). 

There are many applications and application domains, which will potentially benefit 
from the MPEG-7 standard. Examples of applications include: 

• Digital libraries (image catalogue, speech archive);  

• Broadcast media selection (radio channel, TV channel);  

• Multimedia editing (personalized electronic news service, media authoring).  

The potential applications cover a wide range of domains, which include: 
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• Education;  

• Journalism (e.g., searching speeches of a certain politician using his name, 
his voice or his face);  

• Cultural services (museums, art galleries);  

• Film, Video and Radio archives;  

• Entertainment (e.g., video-on-demand, searching a game, karaoke);  

• Investigation services (surveillance, human characteristics recognition, and 
forensics);  

• Geographical information systems;  

• Remote sensing (cartography, ecology, natural resources management);  

• Telemedicine and bio-medical applications. [16] 

2.4. MPEG-7 Descriptors 

A descriptor defines the syntax and the semantics of one representation of a particular 
feature of audiovisual content. A feature is a distinctive characteristic of the data, 
which is of significance to a user [16]. The MPEG-7 descriptors are designed for 
describing the following types of information: low-level audiovisual features such as 
color, texture, motion and audio energy; high-level features of semantic object, events 
and abstract concepts; content management processes; information about the storage 
media and so forth. It is expected that most descriptors corresponding to low-level 
features will be extracted automatically, whereas human intervention will be required 
for producing the high-level descriptors. [6] 

2.4.1. Overview of Visual Descriptors 

The main objective of the MPEG-7 visual standard is to provide standardized 
descriptions of streamed or stored images or video-standardized header bits (visual 
low-level descriptors) that help users or applications to identify, categorize of filter 
images or video. These low-level descriptors can be used to compare, filter or browse 
images or video purely based on non-textural visual descriptions of the content – or in 
combination with common text-based queries. They will be used differently for 
different user domains and different application environments.  

Selected application examples include digital libraries, broadcast media selection and 
multimedia editing. [7] 

2.4.2. Color Descriptors 

Color is one of the most widely used visual features in image and video retrieval. 
Color features are relatively robust to viewing angle, translation and rotation of the 
regions of interest. The currently standard six color descriptors represent different 
aspects of the color feature, including color distribution, spatial layout of color and 
spatial structure of color. [7] 
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2.4.3. Texture Descriptors  

Texture refers to the visual patterns that have properties of homogeneity or not, that 
result from the presence of multiple colors or intensities in the image, It is a property 
of virtually any surface, including clouds, trees, bricks, hair and fabric. It contains 
important structural information of surfaces and their relationship to the surrounding 
environment. Describing textures in images by appropriate MPEG- 7 texture 
descriptors provides powerful means for similarity matching and retrieval, for both 
homogenous and non-homogenous textures. [7] 

2.4.4. Shape Descriptors 

In many image database applications, the shape of image objects provides a powerful 
visual clue for similarity matching. MPEG-7 provides region and contour descriptors 
suitable for a variety of applications. Typical examples of such applications include 
queries on binary images with written characters, trademarks, pre-segmented object 
contours and 2-D and 3-D virtual object boundaries. MPEG-7 also defines a 3-D 
shape descriptor that is useful for invariant (to geometric transformations) recognition 
of object shapes. ([7]) 

2.4.5. Motion Descriptors 

All MPEG-7 descriptors described above for color, texture and shape of objects can 
be readily employed to index images in video sequences. Description of motion 
features in video sequences can provide even more powerful clues regarding its 
content. MPEG-7 has developed descriptors that capture essential motion 
characteristics into concise and effective descriptions. The most dominant 
characteristics are provided by camera motion and object motion descriptors.  

3. Neural Networks 

3.1. Perceptron 

A perceptron is the basic element of the multi-layer perceptron neural networks; it 

is the smallest unit, which has a decision capability on its own. The neuron seen 

in Figure 3 has a bias b, which is summed with the weighted inputs to form the net 

input n. This sum, n, is the argument of the transfer function f. 

 

Figure 3 – Perceptron with Multiple Inputs 



 12 

 

3.2. Multi Layer Perceptron 

A multi-layer perceptron network can have several layers. Each layer has a 

weight matrix W, a bias vector b, and an output vector a. To distinguish between 

the weight matrices, output vectors, etc., for each of these layers, the number of 

the layer as a superscript to the variable of interest is appended. You can see the 

use of this layer notation in the three-layer network shown in Figure 4, and in the 

equations at the bottom of the figure.  

 

Figure 4 – Three-layer perceptron network 

The network shown above has R1 inputs, S1 neurons in the first layer, S2 neurons 

in the second layer, etc. It is common for different layers to have different 

numbers of neurons. A constant input 1 is fed to the biases for each neuron.  

Note that the outputs of each intermediate layer are the inputs to the following 

layer. Thus, layer 2 can be analyzed as a one-layer network with S1 inputs, S2 

neurons, and an S2xS1 weight matrix W2. The input to layer 2 is a1; the output is 

a2. Now that we have identified all the vectors and matrices of layer 2, we can 

treat it as a single-layer network on its own. This approach can be taken with any 

layer of the network.  

The layers of a multilayer network play different roles. A layer that produces the 

network output is called an output layer. All other layers are called hidden layers. 
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The three-layer network shown earlier has one output layer (layer 3) and two 

hidden layers (layer 1 and layer 2).  

The same three-layer network discussed previously also can be drawn using 

simpler abbreviated vector notation seen in Figure 5. [19] 

 

Figure 5 – Three-layer perceptron network, Vector Notation 



 14 

CHAPTER 3  

 

ODBOT 2 MODULAR ROBOT PLATFORM 

 

 

This chapter focuses on the OdBot 2 Modular Robot Platform and its features. In 

this study, OdBot 2 has been used as the reference platform. In necessary 

geometric calculations and in algorithm design process, this platforms parameters 

are used. OdBot 2 platform has also been used in gathering the video sequences 

in the test set. This chapter describes main features of OdBot 2, its capabilities 

and its physical properties. 

1. Configuration 

OdBot 2 is a mobile robot platform with onboard processing capability. 

Specifically, the system has a 933 MHz Pentium-Class Via Ezra CPU, 512 MB 

main memory, 2.1 GB removable storage and Windows XP SP2 installed.  

The system has four separate analog video inputs for storage, processing and 

transmission. System has two color cameras. First camera is an optical-zoom 

near-infrared sensitive camera, which is installed on a rotating platform. The 

second camera is a small wide-angle camera. The system has a GPS module for 

finding its location. The OdBot 2 system provides special night-shot functionality 

by means of near-infrared illumination and imaging. In addition to these, the 

system has several environmental sensors. 

OdBot 2 is an upgrade project for the OdBot 1 system with similar processing 

capabilities. With the OdBot 2, the system achieved better off-road performance, 

better environmental isolation of the electrical systems. Also in this new version, 

the system obtained simultaneous multiple camera viewing capability whereas in 

the previous version only switching of the cameras were possible. System had 

major and minor improvements in terms of mechanical issues; the most important 

ones are better ground clearance, water proof/splash proof capability and 
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maximum speed and torque improvements. In addition to these improvements, 

there have been several advances in the software part of the project. 

 

Figure 6 – OdBot 2 Mobile Robot Platform 

2. Remote Control 

With all of its features, the OdBot 2 system can be remotely controlled from a PC 

via wireless Ethernet interface. The system also provides remote control 

capability from mobile phones via Bluetooth from a limited distance.  
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Figure 7 – OdBot 2 Remote Control Interface 

In the remote operation, the first camera (front camera/target camera) can be 

used for observation of distant targets. The rotating platform and tracker software 

enables real-time visual tracking of moving targets. The front camera can also be 

used for detecting, tracking and following human beings in the scene using the 

on-board face detection module.  

The second camera (top camera/navigation camera) is a fixed small camera with 

wide field of view and facing the front of the vehicle. Remote operator uses this 

camera for the navigation of the vehicle while searching or tracking targets with 

the front camera.  

An omni-directional camera can be used to replace or accompany the top camera 

to enhance the situational-awareness of the remote operator.  

The outputs of the cameras are coded using H263 video coding and they can be 

viewed separately or simultaneously using web clients on the operator side or on 

any client on the same network with OdBot 2.  

In the remote control interface of the OdBot 2 (see Figure 7) user is able to control 

the speed and steering of the vehicle. Target camera zoom, target camera 
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rotation and target tracking, target following and face tracking initialization can be 

done through the interface. The remote control interface also provides the 

heading, position and traversal information for the vehicle. The program errors on 

the robot side (through the remote exception mechanism), communication buffer 

status and onboard sensor status are the additional information that can be 

reached from the remote control interface.  

Using the real-time GPS data, OdBot 2 sends the traversed route to the remote 

operator periodically. The user can set an array of waypoints for the robot to 

travel. 

Next section gives the physical dimensions of the robot where the top camera is 

not shown to provide a simpler configuration. 
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3. Physical Dimensions 

In Figure 8 and Figure 9, the physical dimensions of OdBot 2 are given.  

 

Figure 8 – Dimensions of OdBot 2 Robot Platform, Side View 

 

Figure 9 – Dimensions of OdBot 2 Robot Platform, Top View 
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4. Other Properties 

Table 1 – OdBot 2 Properties Table 

Maximum Speed 2 m/s (7.2 Km/h) 

Maximum Uphill Slope 15° Continuous, 35° instantaneous 

Largest Drive-Over 
Obstruction 

5 cm 

Weight 8.5 Kg 

Maximum Load Capacity 1.5 Kg 

Communication Range 150 Meters (w/o directed antenna) 

Maximum Battery Life 
(Computer) 

3-4 Hours (Depending on the processing) 

Maximum Battery Life (Motor) 4 Hours 

Mission Range 20 Km (10 Km for rendezvous, 10 Km for 
return) 

Mission Time 3 Hours (1.5 h for rendezvous, 1.5 h for 
return) 

Voltage Range (+12V) 10.0V-13.5V 

Voltage Range (+6V) 5.3V-12.0V 

Standby Temperature  -20C° +55C° 

Working Temperature -20C° +50C° 
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CHAPTER 4  

 

ODBOT 2 SIMULATOR ENVIRONMENT 

 

 

In this work, the OdBot 2 robot platform has not been used to perform real-time 

obstacle avoidance. In order to test the obstacle avoidance performance of our 

proposed method, we have built a simulator environment that simulates the 

OdBot 2 and its physical properties. 

1. Capabilities 

The simulation environment is a tool to simulate the navigation of the robot in a 

model environment with or without obstacles. The tool provides real-time visual 

information on robot position and robot sensor data (Figure 10). It, as well, 

simulates the global positioning system and odometry information of the robot for 

estimating its current position. 

The simulation tool is capable of using the same modules that are used to build 

up the robot control software and the remote control interface software. This 

feature brings an opportunity of testing real and simulation versions of the 

different modules jointly in a single interface. With this option, real control system 

module, real navigation module and real vehicle-model modules are used 

together with simulation obstacle-avoidance module and simulation global-

positioning-system module to test the navigation in an obstacled environment.  
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Figure 10 – Simulation Environment Interface 

Simulation environment interface provides the opportunity to put the obstacles in 

the field and to define new target points on-the-go, when an obstacle avoidance 

session is running. 

2. Models 

2.1. Vehicle Model 

The simulation environment simulates the robot’s movement using the precise 

geometric and mathematical model of the reference robot system. This model is 

referred to as the vehicle model. The most crucial point in simulating the OdBot 2 

platform is to simulate the steering equation. When certain steering and moving 

commands arrive, given the current position of the robot, the next position is 

calculated using this steering equation. This equation is the characteristic of the 

chosen system. In order to use the simulator for other mobile robot systems, their 

characteristic steering (or moving) equations should be supplied to the simulator. 

With supplying necessary equations, simulator can be used to simulate 

differential-wheel or legged robots.  

2.2. Background Model 

In the simulation environment, when constructing the photo-realistic scene image, 

we have used a real photograph of obstacle free scenery. To achieve symmetry in 
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the background image, image-processing techniques are employed on the photo 

and the final background image is obtained (see Figure 11). 

 

Figure 11 – Simulation Background Image 

2.3. Obstacle Model 

When constructing the photo-realistic scene image, whenever an obstacle gets in 

the view of the robot, a correctly scaled and positioned version of a real obstacle 

photo is placed on top of the background image. By correctly scaling and 

positioning this obstacle photo, a perspective effect can be obtained and the final 

picture resembles a real photo of a 3-dimensional environment. Used obstacle 

image is shown in Figure 12. 

 

Figure 12 – Used Obstacle Image 

Although the images in Figure 11 and Figure 12 are used as background and 

obstacle images; the simulation tool allows the use of any correctly sized obstacle 

and background image. By changing the background and obstacle images, 

obstacle detection and avoidance performances of the proposed method can be 

tested for various cases. 
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CHAPTER 5  

 

FEATURE SELECTION 

 

 

This chapter describes the procedures followed in choosing the image features 

that are used in this study. These features will be used for neural network training 

and obstacle detection. In this work, we have to determine suitable features and 

process them appropriately to acquire the required learning feature vector.  

1. Required Properties for Features 

As stated in the Problem Definition section, our attempt is to implement a fast and 

robust obstacle detection algorithm that works for different kinds of obstacles. The 

properties that the features should exhibit can be simplified considering the scope 

of this work. We give the list of required properties below.  

It should be noted that some of the properties could not be numerically evaluated 

but they can be intuitively compared for different features. 

• Simplicity 

The concept that the feature is describing should be relatively simple. Complex 

features are more likely to be unstable and situation specific.  

• Generality 

The feature should be describing a generic property of the image or video and it 

should be working similarly for different images and different environments. It is 

apparent that features describing specific properties of the image or video may fail 

to express the properties successfully in some situations. 

• Describing Low Level Properties of the Scene 

The feature should not focus on high-level image properties that depend on other 

low-level properties; instead, it should describe a low-level property or direct 
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combination of several low-level properties. An example to the high-level 

properties can be given as the object related properties. 

• Easy Implementation 

Since this work is intended to be utilized in a real-time robot system, it should 

meet the real-time requirements in terms of processing time. In order to fit in to 

this constraint, implementation of the feature calculation functions should be as 

fast and simple as possible. The calculation of the feature vectors may become 

one of the most time consuming part of the whole obstacle avoidance process. 

• Providing a Small Amount of Data 

Since with the proposed method, it is intended to output single value of obstacle 

presence and in order to construct obstacle presence information, linear and non-

linear combinations of the selected feature outputs shall be used, it is better to 

have each feature supplying small amount of data for describing the image.  

• Robustness Against Rotation 

In real outdoor scenarios, the camera can shake as the robot moves along a path 

on rough terrain. This may cause translation and rotation between consequent 

images. The selected features should be resilient to small rotations. We can 

define small rotations as rotations between -10° and +10°. It is preferable that the 

feature gives close results for images, which are the slightly rotated versions of a 

reference image. 

• Robustness Against Translation 

In order to compensate the probable translations, selected features should be 

robust against translations. If we translate an image in either X or Y directions or 

in both, for a small amount, its features should not change significantly. Here, we 

can define small translation amount as 1/16th of the image in both directions. For a 

320x240 pixel sized image, this corresponds to ±20 pixels for X direction and ±15 

pixels for Y direction. 

For a candidate feature, we may not be able to test translation robustness; but by 

inspecting its implementation detail, we may have an idea. For example, if a 

feature is calculated for individual pixels, it is likely to get affected from translation. 
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On the other hand, if the feature is calculated for large pixel blocks, it is more 

likely to be robust against translational motion. 

• Robustness Against Scaling 

Features should give similar outputs for slightly scaled version of the same image. 

This will ensure continuity in image features when the robot is approaching to an 

obstacle. If this requirement is not met, for very similar frames, the feature value 

may show large changes. 

• Robustness Against Lighting Variations 

An important property that should exist in a selected feature is its robustness 

against the lighting variations. If the lighting conditions for a scene changes, the 

feature outputs should not change dramatically.  

Today, most of the high-quality video cameras have an auto-iris option, which 

adjusts the brightness of the image automatically depending on the scene lighting. 

This option causes the image brightness to change in large extents in a very short 

time. If the selected feature depends highly on the brightness info, consequent 

images will be treated as dissimilar images in the comparison. In order to, avoid 

this situation; the selected feature should not get much affected from the 

brightness changes in the image. If a feature depends on frequency or edge info, 

it is more likely to be resilient to lighting changes. On the contrary, if the feature 

makes use of brightness levels of individual pixels (like thresholding) or the 

brightness of the whole image then it is more probable that the feature will be 

affected from lighting changes. 

2. MPEG-7 Features 

After defining the required properties for image features, we have to find image 

and video features that satisfy these required properties. MPEG-7 Multimedia 

Content Description Interface standard developed by MPEG (Moving Picture 

Experts Group) for describing the multimedia content data is a strong candidate 

for supplying these features to us. 

MPEG-7 standard attempts to describe the multimedia content data with its every 

aspect. Detailed description of MPEG-7 has been given in Chapter 2.  
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MPEG-7 has been built to extract the most useful data in a multimedia content 

and its features have been selected accordingly by the MPEG-7 workgroup. For 

representing, storing and querying the information that is present in a video frame, 

or the video itself, MPEG-7 is probably the most suitable standard that suggests 

appropriate features, techniques and processes. 

The MPEG-7 low-level features aim to capture generic characteristics of the 

multimedia content and because of their constructions; they provide results that 

are not affected much from environment changes. Moreover, MPEG-7 standard 

defines the appropriate comparison methods for each feature defined in the 

standard. In addition to that, Moving Picture Experts Group provides a reference 

software that implements extraction and retrieval methods for most of the low-

level features. This software is called the Experimental Model (XM) software.  

Other advantages of MPEG-7 may rise from the fact that it will be used widely in 

the near future. When MPEG-7 is used effectively worldwide in the near future, 

surely more advances concerning MPEG-7 topic will appear. Hardware aided 

MPEG-7 feature extraction may reduce the time consumed in feature calculation. 

Moreover, hardware aided MPEG-7 retrieval may encapsulate extraction and 

retrieval processes in easy-to-use devices. In the future, it can be expected that 

smart video cameras with real-time MPEG-7 feature extraction will show up on 

the market. 

MPEG-7 standard has been chosen instead of a custom feature set, in order to 

obtain the image features that are used in this study, considering the above-

mentioned advantages. 

3. Low-Level Features 

In this thesis, among the wide range of descriptors that MPEG-7 provides, the 

low-level features applicable to video sequences were used.  

The goal of this work is to construct a system with an object detection ability that 

will work in various operational environments. It cannot be expected that the high-

level complex features, containing object and/or shape information or requiring 

three-dimensional models, work in all kinds of environments. It is likely that they 

cannot work in the absence of sufficient data and end up with poor detection 

performance. Our aim in this work is to construct a system that can generalize the 
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indications of obstacle presence in a video sequence. The means of performing 

object detection and obstacle avoidance is to estimate the presence of arbitrary 

obstacles in a given video sequence. To achieve this goal successfully, the 

chosen features should focus on the indications of the obstacle presence, instead 

of the properties of obstacle itself. In principal, the signs of obstacle presence can 

be detected by observing the difference between the content description of the 

obstacle and the content description of the environment. 

Another key point is to ensure that the elements of the selected feature set should 

focus on the complementary properties of the content to improve robustness and 

to avoid data duplications.  

Features of three main classes used to capture most of the information present in 

the image are texture, color and edge.  

Texture captures the overall apparent texture in the image using mostly 

frequency-domain analysis techniques. Generally, a simple object will have a 

uniform texture, which may be used to differentiate the object from the 

background. 

Whereas, color features supply information about the colors that are used in the 

image and give an idea about how they are distributed in the image. Edge 

features provide information on the visual discontinuities in the image. These 

discontinuities correspond to physical object boundaries and shadow boundaries 

most of the times. 

In MPEG-7, there exist two more descriptor categories, which are shape and 

motion. Shape descriptors provide information on the shapes of the existing 

objects in the scene. Some shape descriptors require prior information on the 

existence of the objects and on the object locations. Motion features, on the other 

hand, supply information on the movement of the camera and the movements of 

the objects in the scene. Some motion features require camera parameters and 

object location information for every frame. Since motion and shape features 

would highly categorize the objects and divert from the low-level detection 

parameters essential for successful obstacle detection in various environments, 

they were not used in this study. 
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4. Selection of MPEG-7 Features 

For the selection of appropriate MPEG-7 features that are going to be used in this 

work, we listed the possible useful descriptor groups. We also listed promising 

features in these groups and their positive and negative aspects. According to 

these aspects, we chose one feature from each group to use in this study. 

4.1. Color Descriptors 

4.1.1.  Dominant Color Descriptor 

As Introduction to MPEG-7 [7] states, the dominant color descriptor provides a 

compact description of the representative colors in an image or image region. The 

dominant color descriptor has the ability to express the image as the few main 

colors of that image. It also extracts the amount of each dominant color in the 

image. The extracted dominant colors are resilient to small perturbations, which 

makes the DCD robust against additive or multiplicative noise components. In 

DCD, only the dominant colors are coded whereas in a histogram-based 

descriptor, all significant and insignificant color components are extracted and 

coded. 

In Introduction to MPEG-7, one of the advantages of DCD is stated as: 

“Unlike the traditional histogram-based descriptors, the representative 

colors are computed from each image, thus allowing the color 

representation to be accurate and compact. 

…the number of bin in a histogram descriptor may be of the order of few 

hundred. It is a well-known fact that nearest-neighbor search for similarity 

retrieval in such high-dimensional spaces is quite expensive and is often 

referred to as dimensionality curse in database literature.” 

4.1.2. Scalable Color Descriptor 

Scalable Color Descriptor (SCD) is the multi resolution representation of the 

standard color histogram. More specifically, it is defined as “…Haar transform-

based encoding scheme applied across values of a color histogram in the HSV 

color space” in the Introduction to MPEG-7[7]. 
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4.1.3. Group-of-Frame or Group-of-Picture Descriptor 

The Group-of-Frame or Group-of-Picture Descriptor (GoP or GoF) is used for the 

joint representation of color-based features for multiple images or multiple frames 

in a video segment. [7] 

4.1.4. Color Structure Descriptor 

The Color Structure Descriptor (CSD) represents an image by both the color 

distribution of the image and the local spatial structure of the color. [7] 

4.1.5. Color Layout Descriptor 

Color Layout Descriptor (CLD) is a compact resolution-invariant representation of 

color in the image. It is designed to efficiently represent spatial distribution of the 

colors. [7] 

4.1.6. Selection of Suitable Color Descriptor 

By looking at the listed color descriptors, we can eliminate some of them from the 

beginning. The GoF or GoP descriptor has little relation to our purpose and can 

be eliminated. Both CSD and CLD can be eliminated since they give the spatial 

distribution of the colors in the image. If an object recognition task were to be 

performed, spatial distribution of the colors would provide useful information to us 

but for our purpose, the distribution of colors in the image can be considered as a 

high-level property.  

After elimination of these three descriptors, there remain DCD and SCD. Both of 

the descriptors provide low-level information on colors used in an image. In SCD 

to have a compact representation, the resolution of the used histogram should be 

decreased whereas in DCD a compact representation with full resolution colors is 

default. In addition, when comparison routines are considered, even with its high 

color resolution, DCD still provides a robust comparison for images with similar 

colors, while SCD comparison is weak to color small changes in high-resolution 

histograms. The robustness against color changes for SCD increases as the 

number of histogram bins are decreased; but this time, representation accuracy of 

the color also decreases. Keeping in mind that SCD would probably give an 

acceptable result, because of the stated reasons, DCD is selected as the color 
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descriptor in this study. Evaluation of the whole method using SCD in the place of 

DCD is left as a future work. 

 

4.2. Texture Descriptors 

Texture descriptors provide useful information that can be used to identify related 

regions in an image or for comparing the similarity between two separate images. 

Human eye benefits from the texture information to identify the objects in the 

scene since uniform textures are observed along the objects most of the times. 

Texture descriptors are beneficial for the following points: 

• Continuity in a region 

• Lighting invariance due to its dependence on frequency information 

• Color invariance due to its dependence on frequency information 

In general, in the real world images, mostly each simple object exhibits a uniform 

texture all over its seen surface. Since texture is calculated from frequency-

domain information; by construction, it is robust against variations in lighting. 

In MPEG-7 standard, three texture descriptors are listed: 

• Texture Browsing Descriptor (TBD) 

• Edge Histogram Descriptor (EHD) 

• Homogeneous Texture Descriptor (HTD) 

Texture browsing descriptor provides a less-quantitative description of texture 

than the homogeneous texture descriptor does. Although both provide information 

on the texture, HTD gives a more scientific modeling of the texture. On the other 

hand, TBD supplies perceptual characterization that is more descriptive to 

humans. 

4.2.1. Selection of Suitable Texture Descriptor 

Although HTD and TBD are suitable for or work and the information supplied by 

HTD and TBD overlap, we chose to use HTD. The reason that TBD is put away is 
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that TBD extraction implementation is not supplied in Experimental Model 

software version 6.1.  

Since EHD is describing the edges in the image, it will be discussed in the edge 

descriptors part and it is not considered as a texture descriptor candidate. 

4.3. Edge Descriptors 

In MPEG-7, only EHD can be categorized as an edge descriptor. Considering the 

needs of this study, EHD proves itself to supply useful information.  

Edge histogram information shows the amount of edges in defined image regions. 

The image is divided into 16 equal regions to calculate edge histograms. The 

edge histogram also contains the direction information of edges in each region. 

EHD is indeed a powerful means of image retrieval and can relate images 

successfully just by using the edge information. 
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CHAPTER 6  

 

FEATURE PROCESSING 

 

 

In this chapter, we are describing the feature processing methods that are going 

to be used in this study. Feature processing is the phase where MPEG-7 features 

are processed to form a more functional and compact representation. At the end 

of the feature processing, we obtain five elements to represent each frame, which 

is considerably smaller than the original 288 elements (total size of the 

unprocessed features) that we get from the processed MPEG-7 features. 

1. Dividing the Image 

In this study, we need to detect the obstacles that in front of the robot. In order to 

distinguish obstacles that exist in front, at the right hand side or at the left side of 

the robot, we decided to divide the image into certain regions. Since it is required 

to distinguish left, right and center obstacles, at least the central, left and right 

parts of the image should be separated from each other.  

Commonly outdoor images are composed of three basic parts; ground, sky and 

near obstacles. Most of the ground pixels appear in the lower part of the image 

and some of them may be present in the center. On the other hand, sky pixels 

can be observed in upper and center parts of the image. If the intention is to 

observe the changes in ground and sky pixels, lower and upper parts should be 

considered as separate regions of the image. 

When observed it may be seen that, without the presence of a nearby obstacle, 

ground and sky parts exhibit similar texture, color and edge properties among 

themselves. Changes in corresponding regions of the image are mostly due to 

obstacle presence. 

In order to examine the image in more depth, we preferred to divide the image to 

five regions and process them separately. These five regions are center, left, 
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right, top and bottom. In case we may also require the properties belonging to the 

whole image, we count it as a sixth region. 

Another point to mention is that in more complex outdoor images a fourth part can 

be introduced: far terrain and far objects. Far terrain and far objects are observed 

near to the center of the image, right above or below the horizon, which may bring 

complicated elements to the constructed model. In this work, to preserve 

simplicity, we disregarded the distant objects and chose not to involve them in our 

outdoor image model.  

For simplicity in calculations, we constructed the image regions to have the same 

number of pixels. Distributions of the image regions are shown Figure 13. Top 

region is the ¼ part starting from the top of the image. Bottom region is the last ¼ 

vertical part of the image. Left and right regions are respectively the leftmost and 

rightmost ¼ parts of the image. The center region is located at the center of the 

image and has half width and half height of the image. By this construction, all 

regions have area equal to ¼th of the whole image. It should be noted that there 

are overlapping parts for the neighboring regions except for the center region.  

An alternative region distribution can be one without overlapping. Figure 14 shows 

two possible alternatives, in the first one, where overlapping is avoided but the 

areas of regions are different; in the second one, where top and bottom regions 

have different shapes. This alternative may better model the sky and perspective 

effect seen in ground pixels but region areas are different from each other. 

     

Figure 13 – Used Region Diving Scheme 

  

Figure 14 – Alternative Region Dividing Schemes 
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2. Basic Feature Processing Methods 

After having decided how to divide the image into regions, now we have to select 

the processing methods that are going to be used on these regions. Using the 

determined MPEG-7 feature values for each region, we should define the possible 

processing methods to operate on these features. Three basic feature-processing 

methods proposed to be used in this study are listed below: 

• Comparison of two regions in the current image ,in terms of a feature. This 

shows how two regions are related to each other in terms of the selected 

feature.  

• Comparison of a region in the current image and in a reference image. 

This shows how the contents of the region in current image have been 

changed when compared to the reference image. Here selection of the 

reference image is an important task. We decided to select an image that 

represents the obstacle-free outdoor-model as the reference image. To 

achieve this successfully, we assume that at the obstacle-avoidance 

sessions start with an obstacle-free frame that sufficiently represents the 

structure of other frames in the session and select this first frame as our 

reference frame. If the obstacle-avoidance session is lengthy or the 

changes of the traveled environment are frequent, a better approach may 

be to update the reference from time to time with frames that are believed 

to be obstacle-free. Since we assume that the environment do not change 

during an obstacle-avoidance session significantly, we decide to omit the 

updating of the reference frame for the time being and leave it as a future-

work. 

• Calculating the size of a feature for a region in the current image. This 

shows how strong that feature can be observed in the given region. 

Nonetheless, this method is not applicable to some features in the feature 

list. 



 35 

 

3. Selecting the Suitable Feature Processing Set 

In order to perform successful neural network training, it is essential to select the 

elements of learning vector wisely. If unrelated elements are used, the learning 

performance may degrade significantly or in some cases, the network may even 

fail to learn properly. While forming our set, we have to choose the data, which is 

logically related to the presence of an obstacle, in order to avoid the usage of the 

unrelated data. At this point, we should also decide whether to extract the 

obstacle presence data for left, right and center parts of the image together or just 

for center. We listed below some of the possible feature sets that are constructed 

by combining the selected features, image regions and probable processing 

methods. 

3.1. All Combinations 

We can collect all possible processed features for every region to form a learning 

vector without looking at the logical relation to obstacle presence. Number of all 

possible processed features for each feature is listed in Table 2. All possible 

combinations make 104 feature vector elements.  

In the first line of Table 2; for color and texture features, comparing each one of 

the six regions with other five regions make 30 combinations. Because of the 

different region areas, comparison of whole image with other regions for edge 

feature does not give a meaningful result. When each of the remaining five 

regions are compared with other four regions this produces 20 combinations for 

edge features.  

For the second line of Table 2, each one of the six regions are compared with 

their corresponding reference frame regions, which makes six combinations for 

each feature. 

The third line of Table 2 is the sum (or size) of the feature element, which is only 

applicable to the edge feature. For each region, the sum of the edge histogram 

bins can be calculated. 
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Table 2 – Number of Possible Feature Processing Methods for Selected Descriptors 

 Color Texture Edge 

Compare a region with other 

regions 
30 30 20 

Compare a region with same 

region of reference frame 
6 6 6 

Length of the feature element for 

a region 
- - 6 

 

3.2. Relevant Elements for Right, Left and Center 

Obstacle Presence Information 

While constructing the feature vector, we can bring all logically relevant elements 

for right, left and center obstacle presence together. In order to form this vector, 

we have to relate processed region features to obstacle presence in left, right or 

center image.  

For obstacle presence in center image, we should deal mainly with the center 

image. Table 3 gives the list of elements that are directly related to center 

obstacle presence. 
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Table 3 – Processing Elements Related to Center Obstacle Presence 

 Color Texture Edge 

CenterWhole - - 

CenterLeft CenterLeft CenterLeft 

CenterRight CenterRight CenterRight 

CenterTop CenterTop CenterTop 

Compare a region 
with other regions 

CenterBottom CenterBottom CenterBottom 

Compare a region 
with same region 
of reference frame 

CenterCenter CenterCenter CenterCenter 

Length of the 
feature element for 
a region 

- - 
Amount of 
Edges in Center 
Region 

 

Comparing center region with other regions including whole image gives us a 

notion about how center image is different from the rest of the image. At this point, 

we should have the information about how different center image is ought to be 

for an obstacled image and non-obstacled image.  

Comparing the center region with the center region of a reference image gives us 

the information about how the center region has altered from the given reference 

image center. 

Finally, the sum of edge feature in the center region gives us how edgely the 

center region is. The higher number we obtain, the more edges the region 

contains.  

For left and right obstacle presence, we have to compare left and right regions 

with other regions. Table 4 lists the possible logical processing combinations for 

left and right regions. In Table 4, the common elements with Table 3 are shown in 

bold. 
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Table 4 – Processing Elements Related to Center Obstacle Presence 

 Color Texture Edge 

LeftRight LeftRight LeftRight 

LeftCenter LeftCenter LeftCenter Compare a region 
with other regions 

RightCenter RightCenter RightCenter 

LeftLeft LeftLeft LeftLeft Compare a region 
with same region of 
reference frame  RightRight RightRight RightRight 

Amount of Edges 
in Left Region Length of the 

feature element for a 
region 

- - 
Amount of Edges 
in Right Region 

 

Comparing left region with right region shows whether one of them is different 

from the other. Considering our obstacle assumptions, it is guaranteed that there 

will be no close obstacles that can be observed in both left and right regions. 

From the comparison if it comes out that left and right regions are similar, then it 

can be concluded that both regions are obstacle-free. On the contrary, if the 

regions are dissimilar, then it can be concluded that one of them may contain a 

near obstacle.  

Like the case for center region; comparing with the reference image, we can 

understand if the left and right regions have changed with respect to the reference 

frame. 

Again, the sum of the edge features in the regions gives us how edgely those 

regions are, as we have obtained for center region. 

3.3. Separate Learning Vectors for Left, Right and Center 
Obstacle Presence 

For the further improvement of the neural network training performance, we 

should separate uncorrelated data in the learning vector. This means that we 
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should not feed a feature that is related to left obstacle presence to the neural 

network deciding on center obstacle presence. If we construct a neural network 

that outputs the left, right and center obstacle values, we should feed it with all the 

elements presented in both Table 3 and Table 4. In this case, the neural network 

may relate some elements of Table 4 (left or right related) to center obstacle-

presence output, in the training phase and that would be an undesired result for 

us. To overcome this problem, we can completely separate the neural network 

that decide on left, right and center obstacle presence values. This solution 

should significantly improve the network training performance. Although the 

performance improvement obtained by the separation of the neural networks can 

be investigated in detail, we omit this investigation in order to but in order to stay 

within the scope of this work. Nevertheless, we encourage it to be performed in a 

future study. 

4. Reducing the Number of Features for Center Obstacle 

Presence 

In order to reduce the number of elements in our learning vector, we should make 

more deductions from the chosen assumptions on the environment and the 

obstacles. One by one, the elements of Table 3 should be studied and only the 

ones that are highly associated with center obstacle presence should be placed 

into the learning vector.  

4.1. CenterLeft, CenterRight Comparisons 

For each feature, the comparisons of left and right regions with center region give 

us the similarity between these regions. Considering that the obstacles may 

appear on two neighboring regions at the same time, it can be concluded that this 

comparison gives us little information about the obstacle presence for center 

image. The comparison of the left and center regions may give high similarity in 

two cases: when the obstacle is observed in both left and center regions or there 

are no obstacles in both regions (That is also valid for the comparison of the right 

and center regions). This phenomenon may lead to some complications. 

Therefore the uncertain results of the similarity information about the left and 

center or right and center regions should be treated with great suspicion and 

attention in order not to make misinterpretations. 
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4.2. CenterTop, CenterBottom Comparisons 

For each feature, the comparisons of top with center region will give little 

information about the obstacle presence in center image. The reason is that most 

of the times top image will be showing the sky and center image will be showing 

half sky and half ground for obstacle-free regions. When there is no close 

obstacle, top and center images will probably be dissimilar. Likely, when there is a 

close obstacle in the center image, regions will be dissimilar. This may cause the 

network to fail to categorize obstacle presence according to similarity. A very 

similar case occurs in the bottom and center region comparisons and these 

comparisons should not be used without the combination of other information. 

After elimination of the stated feature elements, the ones that remained are listed 

in Table 5. There is one exception that must be noted. The comparison of the 

whole image and the center image by HTD does not exist in the list of selected 

elements. This is due to an implementation detail of the HTD in Experimental 

Model and will be explained in the next section. 

Table 5 – Selected Processing Elements for Center Obstacle Presence 

Color (DCD) Texture (HTD) Edge (EHD) 

Comparison of center 
image with the center of 
reference image 

Comparison of center 
image with the center of 
reference image 

Comparison of center 
image with the center of 
reference image 

Comparison of center 
image with whole image 

 Amount of Edges in 
Center Region 

 

4.3. Special Case for HTD Implementation 

Through the experiments with MPEG-7 Experimental Software, we have found 

out two restrictions for the calculation of Homogeneous Texture Descriptor. One 

of them is documented and as far as we know, the other is not.  

• In the MPEG-7 Experimental Software, HTD can only be calculated for images 

that are larger than 128x128 pixels.  
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• In the MPEG-7 Experimental Software, HTD calculations are conducted only 

on the upper-left 128x128 pixel part of the images. 

These limitations were observed when the left and top regions of the image 

receive the exactly the same HTD values. That occurs where their overlapping 

parts were larger than 128x128 pixels. Although the left and top images were 

different, their HDT values were exactly same because these values were 

calculated on a fraction of the images, which reside in the overlapping part.  

Knowing these two facts about HTD, we can eliminate one more learning vector 

element, which is the comparison of center region with the whole image in terms 

of HTD. Since HTD is only calculated on a 128x128 pixels patch, HTD for the 

whole image will not be represent the texture of the whole image well enough. 



 42 

CHAPTER 7  

 

DATA SET CONSTRUCTION 

 

 

In this chapter, we are going to describe the data sets that have been prepared 

for the evaluation of this study, give the principals behind selecting or constructing 

appropriate video sequences in these data sets describe how other related data 

are extracted from these video sequences and present some sample frames from 

the video sequences. 

In common practice, for a proper neural network training and performance 

evaluation, we need at least three data sets. A training set, a validation set and a 

test are essential for evaluating the neural network performance. In some cases, 

validation set may be omitted; but this may result in inferior performance 

evaluations. 

Each set consists of at least one video sequence, related input vectors and 

related desired output vectors. Here, input vectors are the processed feature 

vectors and desired outputs are pre-calculated obstacle presence values. It 

should be noted that desired outputs are also named as target values. The 

process used in obtaining the desired outputs depends on the data set and they 

are explained in each set. 

1. Training Set 

Training set is the set on which neural network training is performed. Giving the 

input vectors and desired output vectors, a batch-training for the constructed 

artificial neural network is performed.  

In order to have all features in the feature vector trained properly, we must make 

sure that the training set exhibits all possible variations in the feature vector; in 

other words, this set should excite all the elements of the feature vector 

significantly.  
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To guarantee this specified requirement, the training set is selected to be a 

synthetic video sequence that presents considerable alterations in all feature 

vector elements.  

Another key point in the training video sequence is to make it fit to a predefined 

environment model, which is close to real outdoor images. In the following part, 

the idea behind this model is explained. The essential geometric calculations for 

the construction of the synthetic images are also given. 

1.1. Outdoor Obstacle-Environment Model 

In order to build a synthetic video sequence with images resembling real outdoor 

images, we should model the outdoor images and the possible obstacles. In this 

model, we need to build an appropriate background consisting of ground and sky 

and to calculate the locations and sizes of the obstacles in the images depending 

on their locations and distances to the camera. 

If we model the camera perspective well enough, by using the known dimensions 

of the robot and by selecting a representative obstacle with known dimensions, 

we can construct a precise image that represents an outdoor scene with its 

obstacles. 

We start the modeling process by defining our environment. To know the 

environment better, it is necessary to examine the real video sequences taken by 

the robot.  

 

Figure 15 – Sample Outdoor Image 1 
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Figure 16 – Sample Outdoor Image 2 

 

Figure 17 – Sample Outdoor Image 3 

From Figure 15, Figure 16 and Figure 17 it can be observed that in all outdoor 

video sequences, background consists of two main elements: sky and ground. 

These two regions should exist in all constructed images and the intersection line 

of these two regions -the horizon- should be placed properly to construct a 

realistic image. Sky is composed of a single color and it is almost smooth in terms 

of texture. On the other hand, ground exhibits a very specific texture with small 

texture elements. Ground also has a single dominant color and some noise on to 

this main color. 

Figure 18 defines the model construction as a geometric modeling problem; it also 

gives the necessary distances. Using the given distances in Figure 19, we deduce 
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Equation 1 and Equation 2 for location calculation of obstacles in the image and 

vertical position calculation of the horizon. 

 

Figure 18 – Robot-Obstacle Geometric Model 

Figure 18 shows the case when the camera of the robot is situated 20 cm above 

the ground and parallel to it.  With the given configuration, field of view angle, the 

distance where ground first appears on the image will be 70 cm. 

Figure 19 shows additional measurements that are necessary for calculations. 

 

Figure 19 – Robot-Obstacle Geometric Model with Extra Measurements 
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If the obstacle is located at a distance d, by triangle similarity, the lower starting 

pixel of the obstacle, n, can be calculated with the following formula: 

 
Equation 1 

Obstacle Start Pixel Calculation 

 

 

Equation 2 

Start Pixel for Distant Objects 

 

 

As d goes to infinity, the expression in Equation 1 converges to 120 pixels. From 

Equation 2, we conclude that distant points in real world should be located 

towards the center of our image. If we treat the horizon line to be at a very distant 

location, then it should also be located at the center of the image, at 120 pixels in 

the y-axis. 

If we decide to have more sky pixels than ground pixels in our image, we can 

adjust the camera to look a little higher, rather than having it parallel to the 

ground.  

1.2. Constructing the Training Video Sequence 

For the training set, we should build a video sequence with remarkable alterations 

in edge, color and texture features. We should have an obstacle that has color, 

edge and texture properties distinguishable from the background.  

In order to satisfy the requirements of the training set, the training video sequence 

is constructed as a synthetic video. In the constructed video sequence, we used 

three diverse colors for ground, sky and obstacle used inflated edges for region 

changeovers and hatched the obstacle with a grid of black lines (4x4 pixels) to 

make sure that the obstacle has a noticeable texture element and enough edges. 

For the construction of the video sequence, we started from a very small (8x8 

pixels) obstacle, expanded it in every frame stepwise (one pixels each frame) until 
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the obstacle fills center region (half of the image width) of the image. In the 

Desired Obstacle Presence Output part, we are explaining the construction of 

obstacle presence data related to this video sequence.  

1.3. Special Case for DCD Implementation 

Through the experiments with MPEG-7 Experimental Software, we have found 

out a restriction for the calculation of Dominant Color Descriptor. As far as we 

know, this restriction is not documented. When the given image is composed of 

pure color regions, DCD fails to extract dominant colors of the image. If the 

synthetic images we constructed are noise free and the regions contain only one 

color in every pixel, than the DCD calculation gives errors. To overcome this 

problem, in the construction of the images we introduced a noise component over 

the colors of images in the image construction phase. Adding a noise component 

will also help us to model the real images better, since CCD and CMOS cameras 

introduce a considerably large sensor noise into the taken images.  

When injecting noise to images, we have considered two noise types: additive 

and multiplicative noise. We first added values between ±10 to the pixel values of 

the image that were originally between 0 and 255 starting with the perfect images. 

After that, we altered the pixel values of the resulting image with a variation 

between ±5%. 

In Figure 20 the starting image without the obstacle hatching; in Figure 21 the 

version of the image with the additive noise component injection; in Figure 22 

both additive and multiplicative noises; in Figure 23 the noise added version of the 

image with obstacle hatching are presented. It should be noted that obstacle 

hatching is performed before the injection of noise components. 
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Figure 20 – Starting Image, w/o Obstacle Hatching 

 

Figure 21 – Additive Noise Injected Image 

 

Figure 22 – Multiplicative and Additive Noise Injected Image 
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Figure 23 – Multiplicative and Additive Noise Injected Image, with Obstacle 

Hatching 

 

1.4. Desired Obstacle Presence Output 

When we are modeling obstacle presence, we started with determining the 

minimum distance that a standard obstacle can have to the camera. For 

simplicity, we chose the minimum distance to be the distance where the standard 

60 cm obstacle fills the half of the image horizontally.  

 

Figure 24 – Minimum Distance Permitted for an Obstacle 
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Figure 25 – Image Corresponding to Minimum Distance Permitted Obstacle 

As seen in Figure 24, for the given 44° camera field of view, a 60 cm obstacle will 

fill the half of the image when it is located 1.5 meters away from the camera. After 

this, the size of the obstacles in the image can be found by inverse proportion with 

1.5 meters. We set obstacle presence value to 1.0 for the case when the obstacle 

fills half of the image. For obstacles that are farther away from the camera, we 

use inverse proportion. For obstacles nearer than 1.5 meters, we set the value to 

1.0. Equation 3 formulates the obstacle presence value. Selecting the image to be 

320x240 pixels, Equation 4 relates the observed obstacle width to obstacle 

presence value. In later chapters, this relation will be used for distance prediction 

of the observed obstacles. 

Equation 3 

Obstacle Presence Value Calculation 

 

 

 

 

Figure 26 is to illustrating the decrease in the observed obstacle sizes with 

increasing distance. In Figure 26, sizes of an obstacle at 3 meters and an 

d ≥ 1.5m ⇒ 
d

p
5.1

=  

d < 1.5m ⇒ 1=p  

w < 160 pixels ⇒ 
160

w
p =  

w ≥ 160 pixels ⇒ 1=p  
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obstacle at 6 meters are shown. Obstacle at 3 meters will have an obstacle 

presence value of 0.5 whereas obstacle at 6 meters, value will have the value 

decreased to 0.25. 

Figure 27 shows the obstacle presence value for training set, where x-axis 

represents the video frame numbers. 

 

Figure 26 – Images Corresponding to Obstacles at 3 m and 6 m Distances 
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Figure 27 – Desired Obstacle Presence Data, Training Set 
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2. Validation Set 

Validation set is used for selecting the best-trained network among all the trained 

networks. After training all networks covering all parameter variations, we select 

the one, which has the best response to training set and validation set 

simultaneously.  

Validation set should exhibit as much variations in the feature vector as it can. It 

should consist of a non-synthetic video sequence. Since this set will be used as 

the primary evaluation criteria for the neural network learning performance, we 

should use the best non-synthetic video set available for validation purpose. 

2.1. Desired Obstacle Presence Output 

For calculating the obstacle presence values, we used the concept used in the 

training set; the maximum obstacle presence value (1.0) corresponds to the case 

when obstacle width fills center half of the image. We find the obstacle presence 

for farther obstacles by dividing the observed obstacle width to half width of the 

image. 

To find the obstacle width for each frame in the validation video sequence, we 

applied thresholding methods. First, we have extracted the obstacle pixels by 

applying appropriate thresholds. Figure 28 shows the extracted obstacle image 

for a frame in the validation set, where Figure 29 shows the original frame. Figure 

30 shows the obstacle width measurement for this particular frame. In the figure, 

the measured width of the obstacle is 100 pixels. Using Equation 4, we find the 

obstacle presence as 0.625 for this case. 

The same thresholding method is used for obstacle presence calculation of test 

sets; however, thresholding parameters may vary from set to set. For finding 

suitable thresholds, adhoc methods are employed. Since the details of these 

methods are not the main concern of this work, they will not be presented here.  

Figure 31 shows the desired obstacle presence values, where x-axis corresponds 

to the frame numbers in the video and y-axis corresponds to the obstacle 

presence value for each frame. 
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Figure 28 – Validation Set Sample Frame Extracted Obstacle Pixels 

 

Figure 29 – Validation Set Sample Frame  

 

Figure 30 – Validation Set Sample Frame Obstacle Width 
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Figure 31 – Desired Obstacle Presence, Validation Set 

 

2.2. Selecting the Network with Best Response 

In order to determine the network giving the best response, we compare the 

responses of the networks with the desired outputs. 

For comparison, we use mean square error criteria (MSE) for training set and a 

combination of MSE and trend similarity for the validation set. Since similarity 

does not always mean small MSE, we also used the slope similarity between the 

network outputs and desired output. 

In the first step, networks with low MSE values for training set are selected. In the 

second step, networks with acceptably low MSE values for validation set are 

selected. In the last step, the network that has the most similar slope to the 

desired output has been selected as the best-response-network. 
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Figure 32 – Desired Obstacle Presence Data and Actual Data for Selected Neural 

Network 

Response of the selected network to the validation set is presented in Figure 32, 

comparing the actual result to the desired result. 

Results of the training and selection of neural networks will be presented in the 

Neural Network Training Chapter in detail.  

3. Test Set 

The test set will used for the performance evaluation of our whole work. This set 

should consist of all desired real scenarios at are intended to be tested. Since 

elements of this set are not involved in the learning and network selection 

processes, the results from this set can be used to derive conclusions about the 

overall work and the performance of the used methods. 

This set consists of several outdoor video sequences and their corresponding 

obstacle presence data to use in result comparison. In addition to the outdoor 

sequences, we tried a few indoor sequences to see whether the method is also 

applicable to complex indoor scenes or not. 
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3.1. Desired Obstacle Presence Output 

Desired obstacle presence values corresponding to the video sequences are 

calculated according to the thresholding method explained in the validation set. 

The ratio of obstacle width in pixels to half width of the image is used as the 

desired obstacle presence value. 

3.2. Test Results 

To evaluate the performance of our proposed method and the selected 

parameters, we used MSE based comparison between desired outputs and 

neural network outputs for the video sequences in the test set. Test results are 

presented in the Results chapter. 
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CHAPTER 8  

 

NEURAL NETWORK TRAINING 

 

 

This chapter consists of the details of artificial neural network training processes 

carried out in this study. 

Although there are many application areas, neural networks are mostly used for 

data classification and non-linear function estimation purposes. In this study, we 

have preferred to use neural networks to estimate the input-output relationship 

that is hidden in our data sets. We want to approximate the relationship between 

our feature vector (five-element vector) and center obstacle-presence value 

(single element). 

1. Determining Neural Network Parameters 

In this study, we chose the multi-layer perceptron as our artificial neural network 

class due to its capability of learning non-linear functions. After selecting the 

neural network class, we needed to determine several parameter values particular 

to our study to ensure better network learning. These parameters include the 

number of layers in the network, the number of neurons at each layer, layer 

transfer functions, network training algorithm and initial states for each layer. 

Selection criteria and selection methods for these parameters are explained 

below. 

1.1. Neural Network Structure 

Multi-layer perceptron networks consist of several layers of perceptrons. A proper 

multi-layer perceptron network should contain one input layer, one or more hidden 

layers and one output layer. The common application for this type of networks is 

to use two hidden layers to use the network as general non-linear function 

estimator. For this reason, we chose to use two hidden layers in our multi-layer 

perceptron. 
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1.2. Network Initial State 

The state of a multi-layer perceptron network can be defined as the values of its 

connection weights and biases. 

In the training process, as the network “learns”, networks internal state is 

incrementally updated for each input-output vector pair. Due to this type of 

learning process, the performance of the learning highly depends on the selected 

initial state for the network. If the initial state is poorly chosen, a reasonable 

learning result may not be achieved. For multi-layer perceptron networks, 

common application is to initialize the weight with small random numbers.  

In the learning process, we initialized all neural network weight and biases with 

evenly distributed random numbers between -0.05 and +0.05. 

1.3. Training Algorithm 

We have used the gradient descent algorithm with MSE based training-

performance-evaluation criteria. This algorithm is a simple and relatively fast 

algorithm, which uses the descending direction of the error as its state for the next 

stated training vector. This algorithm is chosen because it is simple and consists 

of a little number of parameter when compared to more complex training 

algorithms. However, there may be some disadvantages of the gradient descent 

algorithm; it can get stuck into local minima points more easily when compared to 

other algorithms. To avoid this disadvantage, we increase training iterations (16 

iterations) and select the best-trained network among the iterations. 

1.4. Layer Transfer Functions 

The multi-layer perceptrons’ ability to estimate non-linear functions come from its 

layer transfer functions. Although there are many transfer functions present, three 

of them are the most commonly used ones: linear, tanh and sigmoid. 

Linear transfer function is used to produce an unlimited output where tanh 

produces an output that is restricted between -1 and +1 and sigmoid produces an 

output between 0 and +1. 
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The obstacle presence value is modeled to reside in [0 1] interval, where 0 

corresponds to no obstacle and 1 corresponds to an obstacle that fills the center 

part of the image. To have an output between 0 and 1, we chose sigmoid function 

as the networks layer transfer function for all layers. 

1.5. Neuron Count 

The learning capacity of an artificial neural network depends on the number of 

neurons present in the network. As stated in the Matlab Reference [19], “…it is 

difficult to know beforehand how large a network should be for a specific 

application.”. For this, we should determine the optimum number of neurons for 

our application. 

1.6. The Process for Determining Optimum Number of 

Neurons 

A method of determining the optimum number of neurons to be used in a neural 

network for a specific application is to evaluate and compare the learning 

performance of the network for each number of neuron. 

Since the learning performance of multi-layer perceptrons depend highly on the 

initial state, when evaluating the performance of the network for particular number 

for neurons, we should alter the initial states to look for different results and pick 

the best result as representative. In the process we followed, we have tried 

training each network for 16 times with different random initial states and took the 

one with best results.  

We have tested altering the number of neurons in the hidden layers starting from 

three neurons up to six neurons. We altered the number of neurons in both 

hidden layers of the multi-layer perceptron at the same time. The common 

practice in selecting the number of neurons is to start with a number that is in the 

order of to the number elements in the input vector, which is five in our case. To 

achieve a better generalization capability, number of neurons should not be very 

large on the other hand, to achieve successful learning; number of neuron should 

be large enough to represent the input-output relation of the given data. 

Considering these points, we chose to iterate number of neuron between three 

and six. 
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Even with 16 iterations, for three neurons, we were not able achieve a proper 

learning process (see Figure 33). Comparing the results, (see Figure 34, Figure 

35 and Figure 36) considering both MSE and slope similarities, the network with 

four neurons in both two hidden layers is the best response network among the 

trained ones.  
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Figure 33 – Best Response of Network with Three Neurons at Each Hidden Layer 

 

Figure 34 – Best Response of Network with Four Neurons at Each Hidden Layer 
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Figure 35 – Best Response of Network with Five Neurons at Each Hidden Layer 
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Figure 36 – Best Response of Network with Six Neurons at Each Hidden Layer 

Responses of the given networks to the training set are given in Figure 37 (three 

neurons), Figure 38 (four neurons), Figure 39 (five neurons) and Figure 40 (six 

neurons). Response of three neuron network to the learning data also shows that 

a proper learning have not been archived for this network. If the other networks 

are compared by looking at their responses to the learning data, it can be seen 

that all responses are acceptably close to the desired response.  
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Figure 37 – Response of Network with Three Neurons at Each Hidden Layer 

to the Learning Data 
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Figure 38 – Response of Network with Four Neurons at Each Hidden Layer to 

the Learning Data 
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Figure 39 – Response of Network with Five Neurons at Each Hidden Layer to 

the Learning Data 
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Figure 40 – Response of Network with Six Neurons at Each Hidden Layer to 

the Learning Data 



 64 

CHAPTER 9  

 

OBSTACLE AVOIDANCE 

 

 

As the final step to this study, we used the outputs of the trained neural network to 

perform obstacle avoidance. In order to define the extents of our obstacle 

avoidance algorithm; first, we have to state our problem clearly and correctly. 

1. Definition of Obstacle Avoidance Problem 

The main purpose in obstacle avoidance problem is to avoid the obstacles on the 

way while moving towards a target position. There are some simplifications 

particular to this work for the obstacle avoidance problem. 

1.1. Distant Obstacles 

In order to simplify the problem, we assume that obstacles in the way of the 

vehicle are not closely located. After passing one obstacle, there is still some 

distance to the next obstacle on the way. Therefore, it is sufficient if the algorithm 

can avoid only one obstacle at a given time. 

1.2. Obstacles are Avoided Eventually 

 We assume that an obstacle in the way of the robot is avoided before it is too 

close to the camera. This assumption allows us to be sure that no frame will 

contain an obstacle that fills the whole camera sight. We can define a more strict 

condition: observed obstacles should not fill more than half width of the image. 

1.3. Unlimited World 

There are no limits for the defined world when following the given path and the 

vehicle will not reach any obstructions except the given obstacles. 
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1.4. Similar Environment 

One obstacle avoidance test-session is short enough to exhibit video frames that 

have similar visual features. The lighting conditions and environment structure will 

not change significantly within an obstacle avoidance session. 

Regarding the given assumptions, we can design a simple obstacle avoidance 

algorithm to test the trained neural network. After ensuring successful obstacle 

avoidance with this construction, getting rid of the simplifications one by one can 

be set as future work. 

2. Obstacle Avoidance Algorithm 

The simplest obstacle avoidance algorithm that can be used in our case is the 

one that escapes from an obstacle if it is evident that there is a near obstacle. 

Escaping from an obstacle can be steering the robot to right or left as long as 

obstacle presence is high. Without any particular reason, we chose the robot to 

steer to right when it encounters an obstacle on its way.  

To determine whether the robot is near to an obstacle, we apply a threshold to the 

obstacle presence data. If the current value of obstacle presence is higher than 

the given threshold, it is considered as a near obstacle and obstacle avoidance is 

performed. 

The threshold for near obstacles is taken as 0.55, which corresponds to 2.75 

meters distance for a 60 cm obstacle. This value is chosen on purpose to perform 

obstacle avoidance when obstacle is closer than 3 meters. We chose 3 meters to 

be the closest safe distance to an obstacle. If the closest safe distance is kept too 

small, then the robot may hit the obstacle if an unexpected situation occurs. If the 

closest safe distance is kept too large, then the robot will be very distant to the 

obstacle and may not effectively determine whether the obstacle is present or not.  
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3. Obstacle Avoidance Scenario 

In the OdBot 2 Simulator Environment, we have performed some “test runs” to 

evaluate overall performance of the proposed obstacle avoidance method 

including the proposed feature processing and learning processes. Below, in 

Table 6 the parameters of this particular simulation are given. 

Table 6 – Elements of Obstacle Avoidance Scenario 

 X Position Y Position Size 

Robot 0.00 meters 0.00 meters - 

Obstacle 5.00 meters 2.15 meters 0.60 meters 

Target Point 7.90 meters 1.68 meters - 

Simulation Step Size 0.10 meters 

 

4. Obstacle Avoidance Results 

4.1. Desired Obstacle Avoidance Result 

In order to test the correctness of the results of the obstacle avoidance method, 

we first should provide the expected route for our selected obstacle avoidance 

scenario. Using the known obstacle locations, we have performed an obstacle 

avoidance session in order to build the expected obstacle avoidance route for our 

selected scenario. Figure 41 shows the route that should be traveled by the robot 

in the ideal case. Here, dark disk represents an obstacle with 60 cm diameter; the 

hatched white rings represent the predicted obstacle locations. Target point is 

marked with a black cross. 
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Figure 41 – Ideal Obstacle Avoidance Results 

 

Figure 42 – Obstacle Presence Data, Ideal Case 

 

Figure 43 – Obstacle Avoidance Turning Point, Ideal Case 
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Figure 44 – Scene Image for Obstacle Avoidance Turning Point, Ideal Case 

Figure 42 shows the calculated obstacle presence data for the given simulator 

run. It can easily be observed that while approaching to an obstacle, the obstacle 

presence data increases monotonically up to the obstacle avoidance. In this ideal 

case, the obstacle presence data follows a 1/t like graph.  

4.2. Actual Obstacle Avoidance Result 

After calculating the desired route for the given scenario, we can test the same 

set-up with our proposed algorithms. Below, the necessary steps to perform this 

test are given. 

 

• Build reference frame 

• Extract MPEG-7 features for reference frame 

• For each frame, until the target point is reached 

o Build frame image from obstacle and robot locations 

o Extract MPEG-7 features for the frame 

o Process MPEG-7 features to obtain feature vector 

o Feed the neural network with the calculated feature vector and obtain 

estimated obstacle presence data 
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o Perform obstacle avoidance steps if necessary 

o Perform navigation steps if necessary 

• Stop when target is reached 

 

Figure 45 shows the results for the case where actual algorithms are employed. 

Figure 46 shows the obstacle presence value calculated by using the actual 

algorithms.  

The reason that there are two peaks in the obstacle presence in Figure 46 is that 

the robot sees a part of the obstacle after trying to avoid it for the first time. After 

the first turn the robot makes, the obstacle presence drops to a value that is below 

the threshold. After moving some more, the obstacle presence value exceeds the 

desired threshold and avoidance is performed again. However, in the simulation 

case, this phenomenon is not observed since the obstacle presence is calculated 

from the center of the obstacle and it does not depend on how much of the 

obstacle is seen. In simulation, if the center of the obstacle is in the center part of 

the image, then regardless of the size of the obstacle that resides in the center 

part, the obstacle presence data is calculated using solely the obstacle distance 

information. Knowing this detail, we can evaluate the simulation output in more 

closely. Robot approaches the obstacle with a constant speed, after some time, 

obstacle presence value exceeds the given threshold. Robot makes a turn to the 

right and moves a step. Although obstacle now is in the left of the image, its 

center still stays in the center region and simulator calculates a greater value than 

before since the obstacle is nearer. Since the value still exceeds the given 

threshold, the robot turns to right and takes another step. After these two 

consecutive turns, the obstacle is out of the sight of the robot and the robot 

continues it way to reach the target point. Here, the actual obstacle presence data 

is more realistic than the simulation data and simulator should be updated to give 

a similar output for this case. 

In the actual run, the incorrectly predicted obstacle is due to this second peak in 

the estimated obstacle presence data. The other prediction can be taken as a 

nearly correct prediction with its 30cm prediction error.  
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Figure 45 – Actual Obstacle Avoidance Results 

 

Figure 46 – Obstacle Presence Data, Actual Case 

 

Figure 47 – Obstacle Avoidance Turning Point, Actual Case  

 

Figure 48 – Scene Image for Obstacle Avoidance Turning Point, Actual Case 
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5. Comparison of Desired and Actual Results 

If the obstacle does not exhibit enough information for all the elements in the 

feature vector, then the calculated obstacle presence data can be lower than the 

corresponding theoretical value. This fact caused the obstacle avoidance to be 

started with a little lag and it caused the observed obstacle prediction error in the 

actual run. Measured distances for the comparison of test results are given in 

Figure 50. It can be observed that the discrepancy between desired and actual 

obstacle avoidance distances is 30cm. 

 

Figure 49 – Comparison of Desired and Actual Obstacle Avoidance Results 
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Figure 50 – Measured Comparison of Desired and Actual Obstacle Avoidance 

Results 

From the tested obstacle avoidance scenario, we can conclude that the set of 

proposed algorithms gave satisfactory results and they can be used for mobile 

robot obstacle avoidance and navigation for outdoor environments. However, the 

stated limitations and assumptions should be kept in mind. 
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CHAPTER 10  

 

EXPERIMENTAL RESULTS 

 

 

In this chapter, we are presenting feature extraction, learning and test results 

corresponding to each video sequence in training, validation and test sets.  

1. Results for Training Set 

1.1. Video ‘C’ – Textured Synthetic Training Video 

This video sequence is the specially constructed synthetic video with a constantly 

growing green square at the center (see Figure 51). It is used for neural network 

training and first tests of the neural networks.  

In Figure 52 and Figure 53, feature vectors corresponding to video C are 

presented. Since this is a synthetic video, vector elements expose a smooth 

behavior.  

For this video, output of the neural network is very close to the desired output 

(see Figure 54); this is because the network with the best response to this video 

has been selected for use.  

   

Figure 51 – Start, Middle and Last Frames for Training Video ‘C’ 
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Figure 52 – Feature Vector Training Video ‘C’ 
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Figure 53 – Smoothed Feature Vector Training Video ‘C’ 
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Figure 54 – Obstacle Presence Data Training Video ‘C’ 
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2. Results for Validation Set 

2.1. Video ‘K’ – ‘Blue Bucket’ Validation Video 

This video sequence consists of a cylindrical blue bucket in front of a white table. 

As the camera zoom is smoothly increased, the bucket fills the camera view 

gradually (see Figure 55). Although being an indoor video, it presents the 

necessary outdoor video elements like sky, ground and horizon line, where 

ground is chosen as an untextured region for this case. 

Due to smooth enlargement of the obstacle and the purity of the color in the 

scene, feature vector changes very smoothly with time (see Figure 56 and Figure 

57).  

Since response of the network to this video sequence is the main criteria for 

network selection, it is not unexpected to observe result very close to the desired 

(Figure 58). 

   

Figure 55 – Start, Middle and Last Frames for Validation Video ‘K’ 
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Figure 56 – Feature Vector Validation Video ‘K’ 
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Figure 57 – Smoothed Feature Vector Validation Video ‘K’ 

 

  

Figure 58 – Obstacle Presence Data Validation Video ‘K’ 

 

0 10 20 30 40 50 60 0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

Network Output 
Desired Output 

Obstacle Presence Data - Validation Set 



 78 

 

3. Results for Outputs for Test Set 

3.1. Video ‘D’ – Textured Synthetic Video 

This video sequence is created to test the trained neural network by providing 

data very close but not the same as the training set (Video C). It consists of the 

same constantly growing square as the training set but the background colors are 

different and since the noise in the images are added by hand, each frame has a 

different noise contribution than the corresponding frame in the training set (see 

Figure 59). By performing test on this video, we ensure that the neural network 

has just not memorized the training set but deduced generalizations from it.  

The feature vector for this video is very close to one in training set (see Figure 60 

and Figure 61 for Video D; see Figure 52 and Figure 53 for training video). This 

proves the robustness of the features to differences in the background and their 

robustness against white noise in the images.  

Results corresponding to this video sequence are presented in Figure 62, from 

this data, we can conclude that the selected network gives an output very close to 

the desired output for this test video.  

   

Figure 59 – Start, Middle and Last Frames for Test Video ‘D’ 
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Figure 60 – Feature Vector Test Video ‘D’ 
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Figure 61 – Smoothed Feature Vector Test Video ‘D’ 



 80 

  

Figure 62 – Obstacle Presence Data Test Video ‘D’ 
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3.2. Video ‘E’ – Untextured Synthetic Video 

This test video is constructed to test the effects of edge information in the images. 

It consists of the same background as video D and it has a constantly growing 

solid green square at the center (see Figure 63). 

If observed closely (see Figure 64 and Figure 65) and compared to video D (see 

Figure 60 and Figure 61), it can be realized that without the object hatching, 

texture and edge features drop considerably while color features stay intact. This 

is an expected result, without presence of hatching, there is no texture information 

in the center image except the given noise pattern and for the edge information, 

only source are the objects boundaries. 

In Figure 66, the results corresponding to this test video are given. Although the 

estimated obstacle presence does not match the desired one, there is still an 

estimation, which catches the growing trend of the obstacle in the video 

sequence. This result can be considered as “detecting the obstacle but with some 

error in the obstacle size“. When the system is used for obstacle avoidance, this 

will cause the robot to avoid the obstacle from a distance that is much smaller 

than the desired avoidance distance, but eventually the obstacle will be avoided. 

   

Figure 63 – Start, Middle and Last Frames for Test Video ‘E’ 
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Figure 64 – Feature Vector Test Video ‘E’ 

0 20 40 60 80 100 120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Smoothed Feature Vector - Video E

EHD Center - Center

EHD Center Sum

DCD Center - Whole

DCD Center - Center

HTD Center - Center

 

Figure 65 – Smoothed Feature Vector Test Video ‘E’ 
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Figure 66 – Obstacle Presence Data Test Video ‘E’ 
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Figure 67 – Obstacle Presence Data Test Video ‘E’, Linear Fit to Desired Output 
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Figure 68 – Obstacle Presence Data Test Video ‘E’, Linear Fit to Actual Output 
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3.3. Video ‘F’ – ‘Striped Folder in Front of the Wall’ Video 

This video consists of a real indoor video with necessary outdoor video elements 

like sky, ground and horizon. In this video, the region corresponding to ground is 

chosen as a highly-textured carpet. In the video, the lighting changes significantly 

as the camera moves toward the striped white obstacle.  

Since this is an uncontrolled real video, the corresponding feature vector looks 

very disordered (see Figure 70 and Figure 71).  

Because of the stripes in the obstacle, the results corresponding to this video is a 

linearly scaled version of the desired output (see Figure 72). When the system is 

used for obstacle avoidance, in cases like this, the robot will make an avoidance 

decision earlier than it has to do. Nevertheless, including the desired drop at the 

end of the video, the results are very close to the desired results when the scaling 

factor is omitted and it can be considered as a successful result. 

   

Figure 69 – Start, Middle and Last Frames for Test Video ‘F’ 
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Figure 70 – Feature Vector Test Video ‘F’ 
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Figure 71 – Smoothed Feature Vector Test Video ‘F’ 
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Figure 72 – Obstacle Presence Data Test Video ‘F’ 
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3.4.  Video ‘G’ – ‘Black Trashcan in Front of the Wall with 
Carpet’ Video 

This video consists of a real sequence where the camera slowly approaches a 

black rectangular trashcan with making three abrupt stops that shakes the camera 

every time (see Figure 73). This video exhibits the expected main elements of an 

outdoor video: the sky, a textured ground and a distinguishable horizon line. 

When the feature vector is inspected (Figure 74 and Figure 75), an abrupt peak in 

the texture element can be observed; this is due to the motion blur in the camera, 

which prevents the scene textures to be observed for a while.  

From Figure 76, it can be seen that the results corresponding to this video are 

very close to the desired results, the obstacle presence estimation gets affected 

from the shaking of the camera and this can be observed as small peaks in the 

output.  

   

Figure 73 – Start, Middle and Last Frames for Test Video ‘G’ 
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Figure 74 – Feature Vector Test Video ‘G’ 
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Figure 75 – Smoothed Feature Vector Test Video ‘G’ 
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Figure 76 – Obstacle Presence Data Test Video ‘G’ 
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3.5. Video ‘L’ – ‘Green Notebook in Front of the Wall’ 
Video 

This test video is taken with a CMOS web camera. When compared to the CCD 

camera used in the other video sequences, the CMOS camera has a very poor 

lighting performance and produces a significant noise component in the images. 

The video consists of the required outdoor elements like sky, ground and horizon. 

The obstacle in this video is a green notebook that also reflects some part of the 

scene. The camera slowly approaches the notebook without any shaking present 

(see Figure 77). 

Since the motion of the camera is well-controlled and the colors are close to pure 

colors, the feature vector is smooth along the time axes (see Figure 78 and Figure 

79). The smooth increase in the texture element for this video is interesting and it 

should be noted. 

In Figure 80, it can be seen that obstacle presence estimation is not accurate up 

to a distance; but it catches the desired value after a particular distance. The 

obstacle is not considered as an obstacle until it reaches a specific size in the 

scene (≈ 30% width of the whole image). For this test, the results can be 

considered as successful. 

   

Figure 77 – Start, Middle and Last Frames for Test Video ‘L’ 
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Figure 78 – Feature Vector Test Video ‘L’ 
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Figure 79 – Smoothed Feature Vector Test Video ‘L’ 
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Figure 80 – Obstacle Presence Data Test Video ‘L’ 
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3.6. Video ‘N’ – ‘Computer Box in Room’ Complex Indoor 
Video 

This indoor video is selected to test the indoor obstacle detection performance of 

the selected neural network and selected features. The video consists of rather 

complex scenes when compared to other videos and it does not exhibit the all 

required outdoor video elements (see Figure 81). The video starts with the 

camera looking at a scene composed of two armchairs and curtains with a 

hardwood ground, and then the camera turns about 25° to the right, after turning a 

little to the left, the camera moves towards the white box just ahead of it. 

The feature vector graph corresponding to this video is not very complex except 

the color component (see Figure 82 and Figure 83) and the texture component 

changes significantly several times throughout the video. 

The results for this video shows that obstacle detection works even in complex 

indoor scenes like this one. When the camera is at a distant location, the 

estimated obstacle presence is low and when camera moves towards the box, 

obstacle presence increases gradually (see Figure 84). 

 

   

Figure 81 – Start, Middle and Last Frames for Test Video ‘N’ 
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Figure 82 – Feature Vector Test Video ‘N’ 
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Figure 83 – Smoothed Feature Vector Test Video ‘N’ 
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Figure 84 – Obstacle Presence Data Test Video ‘N’ 

 

3.6.1. Results for Individual Descriptors 

In this part, we have fed the trained neural network with individual descriptor 

vectors. We have tested the response of the network to edge, color and texture 

information separately while giving the missing vector elements as zeros. From 

this, we will examine the contributions of each descriptor to the final output.  

If we look at Figure 85 more closely, we can observe that when only edge 

information is present, the output is still close to the desired output; but neither 

color nor texture information solely can provide enough data to perform healthy 

obstacle presence estimation (see Figure 86 and Figure 87). 
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Figure 85 – Obstacle Presence Calculated from Edge Information Only Video N 
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Figure 86 – Obstacle Presence Calculated from Color Information Only Video N 
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Figure 87 – Obstacle Presence Calculated from Texture Information Only Video N 

 

3.6.2. Results for Combination of Descriptors 

This part presents the test results where trained neural network is fed with the 

combinations of individual descriptors in the original feature vector. The aim here 

is to observe the effects of single-missing descriptor to decide on the contribution 

of that descriptor to the end result. When testing the combinations of two 

descriptors at each time, the missing descriptor is replaced with zeros in the 

feature vector. Using this approach, we have tested the response of the network 

to ‘edge and color’, ‘edge and texture’ and ‘color and texture’ descriptors. 

At the end, we present a comparison of outputs that correspond to ‘edge’, ‘edge 

and color’ and ‘edge, color and texture’ (see Figure 91 for comparison). 

We can conclude that if edge information is missing, color and texture are not 

enough to provide the required information for correct obstacle presence 

estimation from Figure 90.  
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In Figure 89, the combination of edge and texture are providing rough obstacle 

presence estimation that is close to the result that is associated with only edge 

information. So, when the color information missing, the result deviates from the 

desired result significantly.  

Figure 88 shows that the results from combined edge and color descriptors are 

very near to the actual output for whole feature vector. A comparison of neural 

network responses to ‘edge’, ‘edge and color’ and ‘edge and color and texture’ 

are given in Figure 91. From this comparison, we see that texture information in 

fact has little effect on the output and the combination of edge and color 

descriptors build the output. Texture descriptor has no major positive or negative 

effect on the output although the test video is an indoor video with highly-textured 

regions.  
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Figure 88 – Obstacle Presence Calculated from Edge and Color Information Video N 
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Figure 89 – Obstacle Presence Calculated from Edge and Texture Info. Video N 
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Figure 90 – Obstacle Presence Calculated from Color and Texture Info. Video N 
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Figure 91 – Comparison of ‘Edge’, ‘Edge & Color’ and ‘Edge & Color & Texture’ 
Video N 
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3.7. Video ‘U’ – ‘Approaching the Blue Barrel - 1’ 

Complex Outdoor Video 

This video is the first one of the two real outdoor test videos. It starts with a distant 

blue barrel in the scenes. After some time, camera starts moving towards the 

barrel with making some small stops until reaching the barrel (see Figure 92). In 

the video, there are camera rotations, camera up-down movements and camera 

shaking motions.  

When the feature vector graph in Figure 93 and Figure 94 are observed, it can be 

seen that after the barrel fills the half center width of the image, all features 

decrease and become stable. Since this is a real outdoor video, the features are 

more complex than other videos. 

The results of this video sequence are presented in Figure 95. In these results, 

we see that obstacle presence is estimated well except the large peak near the 

frame 500. This peak is probably due to the frame drops in the video at that 

region; when frame drops occur; last frame is recoded until a new frame arrives. 

After frame 1250, the estimated obstacle presence begins to drop and stabilizes 

around 0.7. This drop is due to the violation of one of the assumptions about the 

video; even after the barrel reaches the minimum distance and fills the center half, 

camera continues to approach the obstacle. Once the barrel fills the whole 

camera view, the obstacle stay at a lower value. In a real obstacle avoidance 

scenario, this case will not be encountered since once the presence value 

reaches the given threshold, robot will try to avoid the obstacle and will not further 

approach it. Nevertheless, the avoidance threshold should be chosen carefully to 

ensure that even if the robot fails to avoid the obstacle in the increasing part of the 

graph; the estimated presence value is above the threshold in the regions where 

the obstacle fills the whole camera view. 

   

Figure 92 – Start, Middle and Last Frames for Test Video ‘U’ 
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Figure 93 – Feature Vector Test Video ‘U’ 
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Figure 94 – Smoothed Feature Vector Test Video ‘U’ 
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Figure 95 – Obstacle Presence Data Test Video ‘U’ 
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3.8. Video ‘V’ – ‘Approaching the Blue Barrel - 2’ 
Complex Outdoor Video 

This video is the second real outdoor test video in the test set. The video starts 

with a scene where a blue barrel and a distant pickup can be observed (see 

Figure 96). After some time, the camera begins to move slowly towards the barrel 

until it reaches a close proximity of the barrel. 

The feature vector graph corresponding to this video is given in Figure 97 and 

Figure 98. Just like the video V, feature vector data corresponding to this video is 

more complex than other videos in the test set.  

Excellent results have been achieved for this video sequence. As seen in Figure 

99, the estimated obstacle presence is very close to the desired values even in 

the lower parts of the graph. Considering the video contains shaking, up-down 

motions and rotations of the camera; this result can alone verify that the obstacle 

detection works for outdoor videos, which are closer to this video in simplicity.  

   

Figure 96 – Start, Middle and Last Frames for Test Video ‘V’ 
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Figure 97 – Feature Vector Test Video ‘V’ 
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Figure 98 – Smoothed Feature Vector Test Video ‘V’ 
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Figure 99 – Obstacle Presence Data Test Video ‘V’ 
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3.8.1. Results for Individual Descriptors 

In this part of the work, we have tested feeding the trained neural network with 

individual descriptor vectors. We have tested the response of the network to 

edge, color and texture information separately while giving the missing vector 

elements as zeros. With this study, we shall be able to make conclusion on the 

contributions of each descriptor to the final output.  

From Figure 100, it can be observed that only edge information can provide 

significant information on the obstacle presence for this particular video; yet it 

happens to be insufficient to get an accurate result.  

Looking at Figure 101 and Figure 102, at first glance, it can be concluded that 

color or texture descriptors by themselves are not sufficient to provide information 

on obstacle presence. 
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Figure 100 – Obstacle Presence Calculated from Edge Information Only Video V 



 105 

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Obstacle Presence - Color Information Only - Video V

Network Output

Desired Output

 

Figure 101 – Obstacle Presence Calculated from Color Information Only Video V 
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Figure 102 – Obstacle Presence Calculated from Texture Information Only Video V 
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3.8.2. Results for Combination of Descriptors 

In this part of the work, we have tested feeding the trained neural network with 

combinations of individual descriptor vectors. We have tested the response of the 

network to ‘edge and color’, ‘edge and texture’ and ‘color and texture’, while giving 

the missing vector element as zeros. With this study, we shall be able to make 

conclusion on the contributions of each descriptor to the final output by looking at 

the effect of the missing descriptor. At the end of this part, in Figure 106, we 

present a comparison of outputs that correspond to ‘edge’, ‘edge and color’ and 

‘edge, color and texture’.  

From Figure 103, we can conclude that if the information supplied by the edge 

descriptor is missing then the neural network output will not be close to the 

desired obstacle presence data.  

When Figure 104 and Figure 105 are examined and compared to the results from 

the edge descriptor individually (see Figure 100), it can be concluded that the 

contribution of texture information is not vital whereas the contribution of color 

information helps to get a closer result to the desired obstacle presence data.  

Figure 106, shows the effects of adding color and texture information to edge 

information.  From this figure, it can be observed that solely edge information 

provides rough obstacle presence estimation where this estimation gets closer to 

the real presence when it is combined with the color information. In addition, from 

the figure, it can be observed that, adding texture information has no major effect 

to the obstacle presence estimation; but it has no adverse effect either. 
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Figure 103 – Obstacle Presence Calculated from Color and Texture Information 
Video V 
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Figure 104 – Obstacle Presence Calculated from Edge and Color Information Video V 
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Figure 105 – Obstacle Presence Calculated from Edge and Texture Information  
Video V 
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Figure 106 – Comparison of ‘Edge’, ‘Edge & Color’ and ‘Edge & Color & Texture’ 
Video V 
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CHAPTER 11  

 

DISCUSSION AND CONCLUSION 

 

 

Several conclusions have been driven throughout this work, based on the 

conducted tests and their results. These conclusions are listed below: 

1. When the scene does not exhibit enough information on the feature vector 

elements, the obstacle presence value obtained could be lower than the 

expected value. That may affect obstacle avoidance and may cause a 

certain delay in avoidance, which is undesirable. 

2. When the test videos are inspected, it can be seen that the processed 

homogeneous texture descriptor does not make a significant contribution 

to the final obstacle presence value. This may be resulting from two 

reasons: either selected feature processing method does not represent the 

texture information effectively or the neural network has not been trained 

sufficiently for this element.  

3. Dominant Color Descriptor implementation in MPEG-7 Experimental 

Model Software does not work for pure colored images. 

4. Homogeneous Texture Descriptor implementation in MPEG-7 

Experimental Model Software calculates texture attributes for the upper-

left 128x128 pixel region of a given image. 
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We have conducted this study in order to build a general yet robust algorithm for 

vision-based mobile robot obstacle detection. Accordingly, we have trained a 

neural network with the edge, color and texture information of the scene. After 

training, we have observed that the texture information does not provide 

considerable information to the system.  

With the trained neural network, we have been able to detect obstacles in several 

indoor and outdoor videos with an acceptable correctness. With the obstacle 

detection results, we have performed obstacle avoidance in the simulation 

environment and conducted several successful obstacle avoidance tests. 

Besides the above stated conclusions, two important results have been obtained 

on this study: 

1. Proposed obstacle detection method produces satisfactory obstacle 

presence values for the indoor and outdoor video sequences. 

2. Based on the performed simulation runs, the proposed obstacle detection 

method can be utilized in various simple obstacle avoidance tasks. 

Despite the accepted assumptions and known limitations, we hope that this study 

will enlighten the future studies related to vision-based obstacle detection and 

avoidance topics. 

The major future work for this study is to implement the algorithm on the OdBot 2 

platform and perform real-time obstacle avoidance in outdoor environments. 

Robot should direct to desired waypoints using the on-board GPS module. With 

this configuration, the robot should be able to traverse all given waypoints without 

having any collisions with the obstacle on its way. When the system works, we 

hope it shall be used in other outdoor obstacle detection tasks. 

Other future works can be listed as: 

1. Performance evaluation of the algorithm using Scalable Color Descriptor 

(SCD) in place of the Dominant Color Descriptor (DCD). 

2. To eliminate the limitations and assumption made on the obstacle and 

environment where possible and to test the performance of the algorithm. 
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