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ABSTRACT 
 
 
 

DEVELOPMENT OF A LAMINAR NAVIER-STOKES SOLVER FOR 

INCOMPRESSIBLE FLOWS USING STRUCTURED GRIDS 

 

 

Akın, Ayhan 

M. S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M. Haluk Aksel 

 

 

April 2006, 126 Pages 

 

 

 

 

A method to solve the Navier-Stokes equations for incompressible viscous flows is 

proposed. This method is SIMPLE (Semi-Implicit Method for Pressure Linked 

Equations) algorithm to iteratively solve the two-dimensional laminar steady 

momentum equations and based upon finite volume method on staggered grids. 

Numerical tests are performed on several cases of the flow in the lid-driven cavity, 

as well as of the flow after a backward-facing step with SIMPLE and SIMPLER 

(SIMPLE Revised) methods. Finally, results are compared qualitatively and 
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quantitatively with numerical and experimental results available in the literature for 

different Reynolds numbers to validate the methods.  

 

 

Keywords: Navier-Stokes Equations, Incompressible Flows, SIMPLE Method, 

Finite Volume Method, Lid-driven Cavity, Backward-facing Step. 
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ÖZ 
 
 
 

YAPILANDIRILMIŞ AĞLAR KULLANILARAK SIKIŞTIRILAMAYAN 

AKIŞLAR İÇİN LAMİNAR NAVIER-STOKES ÇÖZÜCÜNÜN 

GELİŞTİRİLMESİ 

 

Akın, Ayhan 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. M. Haluk Aksel 

 

 

Nisan 2006, 126 Sayfa 

 

 

 

 

Sıkıştırılamayan viskoz akışkanların Navier –Stokes denklemlerini çözmek için bir 

yöntem önerilir. Bu yöntem iki boyutlu laminar değişmeyen momentum 

denklemlerini tekrarlayarak çözen SIMPLE (Semi-Implicit Method for Pressure 

Linked Equations) algoritmasıdır ve karşı karşıya gelmeyecek şekilde 

yapılandırılmış ağlar üzerindeki sonlu hacim yöntemine dayanır. Sayısal testler 

kapağın sürüklediği boşluğun içindeki akışlar gibi arkaya bakan basamağın 

sonrasındaki akışların farklı durumları  için SIMPLE ve SIMPLER (SIMPLE 

Revised) yöntemleri ile  yapılır. Sonunda, sonuçlar bu yöntemleri onaylamak için  



 vii

nitel ve nicel olarak farklı Reynolds sayılarında literatürde bulunan sayısal ve 

deneysel sonuçlarla karşılaştırılır. 

 

 

Anahtar Kelimeler: Navier-Stokes Denklemleri, Sıkıştırılamayan Akışlar, SIMPLE 

Yöntemi, Sonlu Hacimler Yöntemi, Kapağın Sürüklediği Boşluk, Arkaya Bakan 

Basamak.  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

1.1 General 

 

Over the last two or three decades; the need for the prediction of complex fluid 

flows arises in numerous engineering problems. Simulations of these flows can 

be overcome by mainly two ways. These are experimental calculation and 

theoretical formulation. Experimental investigations are preformed on both full-

scale and small-scale models. In most cases, full-scale tests are impossible and 

significantly expensive. In addition to this, experiments on small-scale models 

can not exactly match with the full-scale models and decrease the usefulness of 

tests. Therefore, unlike experimental calculation, theoretical formulation is used 

widely in the industry having interest in fluid flow engineering. In theoretical 

investigation; mathematical model of the physical problems is examined.  

Mathematical model involves sets of differential equations which are governing 

fluid flows. If these equations can be solved by any numerical method, many 

physical phenomena in practical engineering problems can be predicted by 

means of computer-based simulation.  

Most useful technique in a wide range of commercial areas is Computational 

Fluid Dynamics or CFD. CFD is the simulation of the fluid flows in engineering 

systems by using modeling and numerical methods. CFD codes are developed 

to solve the discretised governing equations according to reasonable numerical 

algorithms. Fluid flow problems can be tackled by these commercial CFD 

codes. The development of the CFD codes involves three stages. 
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First stage is the input of a flow problem. The physical problem to be modeled 

is selected. Then the geometry of the computational domain and fluid properties 

are defined in that domain. Grid is generated over the computational domain in 

order to sub-divide the domain into a number of non-overlapping sub-domains.  

Then numerical solution technique is applied to approximate the unknown flow 

variables in the discretised governing equations by means of mathematical 

applications. Finite volume method is one of the ways to approximate unknown 

fluid flow variables by special finite difference formulation. Finite volume 

method, which is the conservation of a general flow variable φ   within the finite 

control volume, is used in this thesis and explained in Chapter 3 in detail. After 

obtaining the set of equations, some iterative solution algorithm is needed since 

the obtained mathematical model is non-linear and complex.  

Finally, the last stage is the visualization of the obtained results. Output of the 

CFD code is displayed in order to evaluate the solved fluid flow. 

 

1.2 Convection and Diffusion Transport Mechanisms 

 

All fluid flow properties are transported by the effect of convection and 

diffusion. Therefore, mathematical modeling of the fluid flow deals with the 

general transport equation consisting these two transport terms. Most significant 

case is to successive modeling of the flow when both convection and diffusion 

affect the flow domain. Since the effects of the cross-wise convection-diffusion 

should be considered accurately in this case. 

 

1.3 Incompressible Navier-Stokes Equations 

 

The motion of the fluid particles can be described by Navier-Stokes equations. 

These are the continuity equation and the non-linear transport equations for 

conservation of momentum. For incompressible flows, Navier-Stokes equations 
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do not provide an independent equation for pressure and also, continuity 

equation can not be used directly for calculation of pressure field.  

 

1.4 Methods for Solving Incompressible Viscous Flow 

 

Solving compressible Navier-Stokes equations is not simple since the mass and 

momentum conservation equations are coupled with the energy equation with 

help of the equation of state. On the other hand, solving incompressible Navier-

Stokes equations is not also straightforward but rather difficult. Although the 

coupling of the energy equation to the mass and momentum equations does not 

exists anymore, the real complexity in solving incompressible flow equations 

comes out in the methodology of coupling the mass and momentum 

conservation equations and the calculation of the converged pressure field 

iteratively. If the correct pressure field is obtained, to calculate the velocity field 

is not difficult since pressure gradient is the term of the momentum equation 

and velocity field can be determined by the momentum equation for a given 

pressure field. There is not any equation for determining the correct pressure 

field directly. Since, the effect of the pressure field on the mass conservation is 

indirect that when the momentum equations are solved for the correct pressure 

field, resulting velocity field also satisfies the mass conservation. [3] 

There are two approaches for solving the incompressible Navier-Stokes 

equations. 

• Vorticity / stream function approach 

• Primitive variables formulation 

The methodology of the first approach is based on a stream function-vorticity 

formulation of the two-dimensional steady-state Navier-Stokes equations 

representing the incompressible fluid flows in two-dimensional domains [4]. 

Firstly the pressure terms are eliminated by cross-differentiating x-momentum 

and y-momentum equations. Then by using the definition of stream function 

and vorticity for steady and two-dimensional flows, the resulting combined 
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equation is transformed into a form, known as the vorticity-transport equation. 

Similarly, the continuity equation can also be expressed in terms of the stream 

function and the vorticity. The resulting two equations can then be solved for 

the two dependent variables which are the stream function and vorticity. Upon 

convergence of the iterative process, pressure can be obtained separately by 

solving a Poisson equation. Although this approach has a wide usage, it is 

limited to two-dimensional flow problems only. Also the use of vorticity 

boundary conditions, which is required, is difficult to handle. Because of these 

difficulties, the other approach; primitive variables formulation is used. Primitive 

variables mean velocity and pressure as the dependent variable. The 

components of velocity and the pressure are discretised on the staggered grids 

by using finite volume method in the present study. Other techniques, based on 

the primitive variables formulations for solving the incompressible Navier-

Stokes equations, are discussed in the next section.   

 

1.5 Review of Literature 

 

With vorticity / stream function approach, separated flows are studied and 

convergent solutions are obtained for any Reynolds number as discussed in 

detail by Burggraf [5]. Later various qualitative and quantitative comparisons 

have been made to determine effects of Reynolds number and grid size by 

Bozeman and Dalton [6]. 

Then Keller and Schreiber [7] achieved accurate solutions by using more 

efficient and reliable numerical techniques of higher-order accuracy. High-

Reynolds number solutions with multigrid method is discussed and results for 

high Reynolds numbers and mesh refinements are presented by Ghia and Shin 

[8]. 

The primitive variable formulation is another approach for solving the 

incompressible Navier-Stokes equations. In the primitive variable formulations, 

three components of velocity and pressure are chosen as dependent variables 
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and artificial compressibility is used. One of these methods based on the 

primitive variables is developed by Chorin [9]. When only the steady-state 

solution is sought, Chorin [9] introduced an effective way to overcome the 

difficulty inherent due to the constraint in the continuity equation by adding a 

time derivative of the pressure to the continuity equation [10]. This term is 

multiplied by an “artificial compressibility” coefficient. By this way, the velocity 

and pressure are coupled. At a given time level, the equation are advanced in 

pseudo-time by sub iterations until a converged velocity field is obtained at the 

next time level [3]. 

For the unsteady two-dimensional Navier-Stokes equations, Harlow and Welch 

[11] proposed a method employing the solution of the Poisson equation for the 

pressure so that the continuity equation is satisfied at each time step. Chorin 

[12] present a method that does not use the Poisson equation, by introducing an 

intermediate step in which the flow velocities are first obtained by solving 

momentum equations with pressure gradients being omitted. Then in order to 

obtain a divergence free velocity field, the velocities are corrected successively 

by the pressure gradients in the following time step until the continuity equation 

is satisfied [10].   

Patankar [2] was developed a method based on SIMPLE algorithm (Semi-

Implicit Method for Pressure Linked Equations) for laminar flow problems. In 

this algorithm the convection fluxes per unit mass F through cell faces are 

evaluated from guessed velocity components. Moreover, a guessed pressure 

field is used to solve the momentum equations. A pressure correction equation, 

deduced from the continuity equation, is solved to obtain a pressure correction 

field which is in turn used to update the velocity and pressure fields. To start the 

iterative process initial guesses for the velocity and pressure fields are used. As 

the algorithm proceeds, the aim must be progressively to improve these guessed 

fields. The process is iterated until convergence of the velocity and pressure 

fields [1]. Malalasekera and Versteeg [1] has been recently discussed the 

methodology of the SIMPLE algorithm and its variants for two-dimensional 
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control volumes. SIMPLE algorithm is based on finite volume discretisation on 

staggered grid of governing equations. 

 

1.6 Present Study 

 

The present work aims at formulating and evaluating the SIMPLE algorithm 

and its variants for obtaining accurate numerical solutions to incompressible 

Navier-Stoke flows by means of finite volume method. This is done by solving 

two dimensional incompressible Navier-Stokes equations and continuity 

equation iteratively as explained in the previous section. 

In this study, two-dimensional flow test problems are used to apply and evaluate 

the SIMPLE algorithm and its variants. These test cases are ‘Lid-Driven Cavity’ 

and ‘Flow over a Backward-Facing Step’. In both cases, flows are considered as 

steady and laminar. Therefore, results of the lid-driven cavity are obtained up to 

a Reynolds number of 10000. On the contrary, the highest Reynolds number, 

used for the flow over a backward-facing step, is 800. While reaching the 

accurate result, qualitative comparisons are done with the published results in 

the literature.  

Firstly differencing schemes, which are used to interpolate the property values in 

the discretised equations, are compared to determine which scheme is more 

accurate. Secondly, both uniform and clustered meshes with different sizes are 

used. Since grid size is a suitable compromise between desired accuracy and 

solution time cost. Grid independent solutions are obtained without the need to 

use an excessively fine grid. After achieving the better differencing scheme type 

and suitable grid size, both SIMPLE and SIMPLER (revised SIMPLE) are 

compared with Ghia’s [8] solutions.  

Since both ‘Lid-Driven Cavity’ and ‘Flow over a Backward-Facing Step’ test 

cases are examples of recirculating flows, vortices are occurred in the internal 

flow domains. Also; locations centers, sizes and strengths of the vortices are 

tabulated and compared with those presented in the literature. 
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The following chapters contribute the present study in detail. The governing 

equations for incompressible viscous flows are introduced in Chapter 2. Chapter 

3 presents the discretisation process by means of the finite volume method and 

the solution procedure for discretised equations which is the SIMPLE algorithm 

and its variants. Computed results by SIMPLE and SIMPLER methods using 

two test problems are presented and evaluated in Chapter 4. A comparison with 

published results will be used to demonstrate the capability and accuracy of the 

present formulations and algorithms. Finally, Chapter 5 consists of discussions 

and conclusions, and recommendations for development of the algorithm are 

suggested for future research. 
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CHAPTER 2 
 
 

GOVERNING EQUATIONS AND THEORETICAL FORMULATION  
 
 
 

2.1 Governing Equations 

 

Mathematical forms of the conservation laws of physics can be written in the 

conservative or divergence form for the 3-D unsteady flow of a compressible 

Newtonian fluid passing through infinitesimal control volume, 

(a) Continuity Equation 

0)( =+
∂
∂ Vdiv

t
ρρ               (2.1) 

(b) Momentum Equation 

The x-component of the momentum equation is obtained by setting the rate of 

change of x-momentum of the fluid particle equal to the total force in the x-

direction on the fluid element due to surface stress plus the rate of increase of x-

momentum due to sources and is given by: 

Mx
zxyxxx S
zyx

p
uVdiv

t
u

+
∂
∂

+
∂

∂
+

∂
+−∂

=+
∂

∂ τττ
ρρ )(

)()(       (2.2.a) 

The y-component of the momentum equation is given by;  

My
zyyyxy S
zy

p
x

vVdiv
t
v

+
∂

∂
+

∂

+−∂
+

∂

∂
=+

∂
∂ τττ

ρρ )(
)()(       (2.2.b) 

and the z-component of the momentum equation is; 

Mz
zzyzxz S

z
p

yx
wVdiv

t
w

+
∂
+−∂

+
∂

∂
+

∂
∂

=+
∂

∂ )()()( τττ
ρρ       (2.2.c) 
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where ρ  is the density, p is the pressure field, V  is the velocity vector, µ is the 

dynamic coefficient of viscosity, S is the source per unit volume per unit time 

and u, v, w are the components of velocity vector in x, y and z, directions. 

The normal stress is due to the pressure field and denoted by p. Moreover, the 

viscous stress, which is denoted by τ, and are proportional to the rates of 

angular deformation for Newtonian fluids. The viscous stress components in 

the momentum equations are: 

divV
x
u

xx λµτ +
∂
∂

= 2   divV
y
v

yy λµτ +
∂
∂

= 2   divV
z
w

zz λµτ +
∂
∂

= 2                 (2.3.a) 

)(
x
v

y
u

zxxz ∂
∂

+
∂
∂

== µττ    )(
x
v

y
u

yxxy ∂
∂

+
∂
∂

== µττ    )(
x
v

y
u

zyyz ∂
∂

+
∂
∂

== µττ     (2.3.b) 

where λ  is the second coefficient of viscosity, µ is the dynamic coefficient of 

viscosity,  and its effect is small in practice, for gases it can be taken as -2/3µ . 

(c) Internal Energy Equation: 

iSTkdivVpdiviVdiv
t
i

+Φ+∇+−=+
∂

∂ )()()()( ρρ                (2.4) 

where ( )Tii ,ρ=  is the specific internal energy, T is the temperatureΦ  is the 

dissipation factor  and q is the heat flux vector. 

Since the vector momentum equation states the rate of change of momentum of 

a fluid particle, it can be written as three scalar momentum equations for x, y 

and z, directions. Although there are five equations, namely continuity, three 

components of the momentum and energy equations, there are six unknowns in 

these five equations. These are three velocity components, density, pressure and 

temperature. One more equation is needed and this equation is equation of state 

which relates pressure to the density and temperature. 

( )Tpp ,ρ=                    (2.5) 

With the addition of the equation state to the continuity, momentum and energy 

equations that are Equations (2.1), (2.2) and (2.4) which are also called as 

Navier-Stokes equations for a Newtonian fluid, modeling the fluid flow can be 

carried out for all types of flows. 
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For incompressible flows, it is assumed that there are no density variations and 

the density can be treated as constant. The rate of change of density in the 

continuity equation drops. Because of constant density, the energy equation is 

decoupled from the continuity and momentum equations and the equation of 

state is no longer needed. The fluid flow can now be modeled by using 

continuity and momentum equations. In this case, four partial differential 

equations can be solved for the four unknowns which are the three velocity 

components and pressure. Afterwards if the problem involves any heat transfer, 

energy equation is solved after correct flow field is obtained. 

 

2.2 Conservation Equations in Cartesian Coordinates 

 

The governing equations of steady incompressible flows in two-dimensional 

Cartesian coordinates are written as follows: 

(i) Continuity Equation: 

When the flow is steady, the time rate of change of the density, which is the first 

term in the left hand side of the equation (2.1), drops. The net flow of mass out 

of the flow element across its boundaries, which described by the second term 

in the left hand side, is so called convective term is expressed for two 

dimensional Cartesian coordinates. Then the continuity equation (2.1) becomes: 

   ( ) ( ) 0=
∂
∂

+
∂
∂ v

y
u

x
ρρ                   (2.6) 

(ii) Momentum Equations: 

The first term on the left hand side of the equation (2.2) is the rate of change of 

velocity which drops when the flow is steady. When the body forces are also 

neglected, equation (2.2) becomes: 

( ) τρ •• ∇+−∇=∇ puV              (2.7) 

After substituting Equation (2.3) into Equation (2.7), the momentum equation 

in the x-direction becomes: 
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( ) ( ) ⎥
⎦
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∂
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∂
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∂
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∂
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∂
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∂
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Pvu
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µλµρρ 2    (2.8) 

The re-arranging the viscous terms in the above equation may be rearranged in 

the following way to yield: 
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xx

v
yx

u
x

y
u

yx
u

xx
v

y
u

y
V

x
u

x

−∇∇=∇
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where uS  is defined as source term due to the smaller contribution of the 

viscous stress terms in the momentum equation. 

Finally substituting Equation (2.9) into Equation (2.8), momentum equation in 

the x-directions is obtained as follows. Similarly the momentum equation in the 

y-direction can be obtained as. 

(ii) Momentum Equation in the x-direction: 

( ) ( ) uS
x
p

y
u

yx
u

x
vu

y
uu

x
+

∂
∂

−⎟⎟
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∂ µµρρ        (2.10) 

(iii) Momentum Equation in the y-direction: 

( ) ( ) vS
y
p

y
v

yx
v

x
vv

y
uv

x
+

∂
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−⎟⎟
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⎞
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⎝

⎛
∂
∂

∂
∂

+⎟
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∂
∂

∂
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=
∂
∂

+
∂
∂ µµρρ        (2.11) 

 

2.3 Convection and Diffusion Problems 

 

The general transport equation governs the physical behavior of a fluid flow and 

also satisfies the generalized conservation principle. If the dependent variable is 

denoted byφ , the general differential transport equation is given by: 

( ) ( ) ( ) φφφρρφ SV
t

+∇Γ∇=∇+
∂
∂

••          (2.12) 

where Γ is the diffusion coefficient and φS  is the source term. The first and 

second term on the lfeft hand side of the general transport equation represent 

the unsteady and convection terms, respectively, while the first and second 
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terms on the right hand side represent the diffusion and source terms, 

respectively. The dependent variable φ  can represent the several different 

quantities, such as the velocity component, enthalpy [2]. It is obvious that flow 

properties are transported by means of convection and diffusion. For this 

reason, numerical modeling of fluid flow deals with the modeling of the two 

transport terms in the governing conservation equations. An important physical 

fact in the convection transport is that the flow property is convected in the 

strongest sense in the direction of the convecting velocity. In other words, the 

role of the convecting velocity is to sweep the influence of that property 

downstream in its direction. A larger convecting velocity means that the 

upstream information has a greater influence on the distribution of the flow 

property at a point along the direction of that convecting velocity. This physical 

fact should be appropriately taken into account in the modeling of the 

convection term. Meanwhile, the effect of diffusion is to disperse the influence 

of the flow variable in all directions [3]. 

According to above explanations, high convection and low diffusion indicate 

that the flow variable is distributed more in the stream wise direction with less 

variation of flow variable in the crosswise directions. On the other hand, with 

low convection and high diffusion, the transport of the flow variable is less 

characterized by dominant directions but it is more diffused [3]. 

Most important case occurs when the convection and the diffusion are both 

high. In this case, the distribution of the dependent variable is significant in the 

perpendicular directions normal to the streamlines of the flow, which is so 

called recirculating flows. Therefore to model such a flow accurately, the effects 

of the crosswise convection and diffusion terms should be taken into 

consideration in a domain discretised by a structured mesh.    

When the general transport equation (2.13) is written for two-dimensional flow 

in Cartesian coordinates, it takes the following form:  

( ) ( ) ( ) φ
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yyxx

v
y

u
xt

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

Γ
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

Γ
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

      (2.13) 



 

13

 
 
 
 

CHAPTER 3 
 
 

NUMERICAL ANALYSIS 
 
 

 

3.1 Finite Volume Method 

 

In the finite volume method, governing equations are integrated over each of 

the finite control volumes (smaller and non-overlapping subdomains) in the 

flow domain and obtained integrated transport equations are discretised by 

using finite difference type formulas. The resulting set of algebraic equations, 

are solved by using an iterative method. Thomas algorithm or the tri-diagonal 

matrix algorithm (TDMA), which is actually a direct method for the solution of 

one-dimensional problems, but it can be applied iteratively to solve multi-

dimensional problems and is widely used in commercial CFD programs. 

 
Figure 3.1 Two-dimensional control volumes in the x-y plane 
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Figure 3.1 shows a typical two-dimensional finite control volume over which the 

governing equations can be integrated. 

 

 

3.2 Steady One-dimensional Convection and Diffusion 

 

For steady one-dimensional convection and diffusion flow field without any 

sources, Equation (2.13) becomes: 

 
Figure 3.2 One-dimensional convection-diffusion profile [3] 

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

Γ
∂
∂

=
∂
∂

xx
u

x
φφρ              (3.1) 

The flow should also satisfy the continuity equation: 

( ) 0=
∂
∂ u
x
ρ                (3.2) 

The one-dimensional control volume surrounding the general node P is shown 

in Figure 3.3. The nodes on the west and east sides of the node P are indicated 

by W and E, respectively. While the right and left faces of the control volume 

are indicated by w and e respectively.  
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Figure 3.3 One-dimensional control volumes 

The integration of transport equation (3.1) and continuity equation (3.2) over 

the control volume, shown on Figure 3.3, gives: 

( ) ∫∫
∆∆

⎟
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⎞

⎜
⎝
⎛

∂
∂

Γ
∂
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=
∂
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VV

dV
xx

u
x

φφρ             (3.3) 

( ) 0=
∂
∂

∫
∆V

u
x
ρ                (3.4) 

Then integration yields: 

( ) ( )
we

we x
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x
AuAuA ⎟
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∂
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Γ−⎟
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⎞

⎜
⎝
⎛

∂
∂

Γ=−
φφφρφρ                                (3.5) 

( ) ( ) 0=− we uAuA ρρ               (3.6) 

Here A is the cross-sectional area of the control volume face, ∆V is the control 

volume and Γ  is the interface diffusion coefficient.   

Introducing two new variables uF ρ=  and xD δΓ=  to represent the 

convective mass flux per unit area and the diffusion conductance at the cell 

faces, respectively and assuming that AAA we == . 

Peclet number, a non-dimensional measure of the relative strength of 

convection and diffusion, is defined as; DFPe = . 

The cell face values of the variables F and D can be written as: 

( )ww uF ρ=  and  ( )ee uF ρ=           (3.7a) 

w

w
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Then the integrated forms of convection-diffusion equation (3.5) and the 

continuity equation (3.6) can be written, respectively as: 

)()( WPwPEewwee DDFF φφφφφφ −−−=−            (3.8) 

 0=− we FF                (3.9) 

To calculate the properties eφ  and wφ  at the faces, interpolation schemes are 

needed. 

 

3.2.1 Central Differencing Scheme 

 

Central differencing scheme is first natural approach. By using a piecewise linear 

profile of the dependent variable involving two neighboring points, the 

dependent variable and its derivative at cell faces in Figure 3.3  are approximated  

to compute the cell faces values for convective terms. This scheme is natural 

outcome of a Taylor-series formulation [2]. This scheme gives second-order 

accuracy. Then the cell face values of propertyφ  are: 

2)( EPe φφφ +=  and 2)( PWw φφφ +=         (3.10) 

Substituting these values into Equation (3.8), assembling and introducing the 

coefficients of Wφ  and Eφ as Wa  and Ea , the discretised form of one-dimensional 

steady convection-diffusion becomes: 

EEWWPP aaa φφφ +=             (3.11) 

where  

2
w

wW
F

Da += ,
2

e
eE

FDa −=  and )( weEWP FFaaa −++=       (3.12) 

This formulation gives fairly accurate solutions for a class of low Reynolds 

number problems under specific conditions [3]. If east cell Peclet number ePe  is 

greater than 2, the east coefficient will be negative [1]. This violates the 

Scarborough criterion (the positive coefficient rule) and cause physically 

impossible results or unstable numerical iterations. 
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For this reason, all early attempts to solve convection-dominated problems by 

the central-difference scheme were limited to low Reynolds number flows. 

Peclet number can be kept below two with small grid spacing. Because of these 

stability problems, this approach is not suitable for different flow calculations. 

 

3.2.2 Upwind Differencing Scheme 

 

Although central differencing scheme have second-order accuracy, for highly 

convective flows, that is for high Peclet number flows, unstable solutions are 

obtained. The basic reason for this behavior is that both upstream and 

downstream values have the same linear influence on the interface values in 

central differencing scheme whereas for high Peclet number flows, the upstream 

values have much stronger influence than the downstream values. For this 

reason, in upwind differencing scheme the value of φ  at an interface is equal to 

the value of φ  at the upstream grid point. 

In Figures 3.4a and 3.4b, the nodes for the calculation of cell faces values are 

shown when the flow is positive and negative directions, respectively. 

 
 Figure 3.4 Control Volume when flow is in  

(a) positive and (b) in negative direction [17] 

 

When the flow is in the positive direction, the cell face values are given as:  

Pe φφ =  Ww φφ =  if we FF ,  > 0                  (3.13) 
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and when the flow is in the negative direction. 

Ee φφ =  Pw φφ =  if we FF , < 0        (3.14) 

If the equations (3.14) and (3.14) are introduced separately into Equation (3.8), 

then 

EEWWPP aaa φφφ +=             (3.15) 

 After assembling the obtained two equations and introducing the coefficients 

of Wφ  and Eφ as Wa  and Ea , for the discretised form of the equation becomes: 

)( weEWP FFaaa −++=            (3.16) 

)0,max( wwW FDa +=  and ),0max( eeE FDa −+=          (3.17) 

Equation (3.17) takes care of both flow directions. The upwind scheme is only 

first-order accurate and is diffusive; therefore the introduced error is equivalent 

to the first-order Taylor-series truncation error. 

From Equations (3.16) and (3.17), it is obvious that the coefficients are always 

positive. Therefore, all solutions are physically realistic, stable and no spurious 

wiggles occur in the solution. 

A major drawback of this scheme is that it produces erroneous results when 

flow is not aligned with the grid lines and when Peclet number is less than or 

equal to 5.  For flow calculations, first order upwind differencing scheme is not 

suitable and accurate. For this reason, a second-order upwind scheme and its 

variants are proposed which use more nodes in the flow direction to evaluate 

convective term more precisely. Researchers have concluded that for the 

evaluated test problems such as laminar lid-driven cavity, a second-order upwind 

scheme have been shown to give less numerical diffusion and, thus, a better 

accuracy than its first-order predecessor [3].  Also many researchers’ give 

numerically accurate results with second-order upwind scheme for the two-

dimensional lid-driven cavity for a wide range of Reynolds number. 

 

 

 



 

19

3.2.3 Exponential Differencing Scheme 

 

Exponential differencing scheme is based on the analytic solution of one-

dimensional steady convection-diffusion equation (3.1). Γ and uρ  are assumed 

as constant. If a domain 0≤x≤L is used, boundary conditions at x=0 and L are: 

 At x=0 0φφ =                (3.18a) 

At x=L Lφφ =               (3.18b) 

The analytical solution is: 

( )
1)exp(

1/.exp

0

0

−
−

=
−
−

Pe
LxPe

L φφ
φφ                 (3.19) 

where Γ= uLPe ρ  is the Peclet number. 

By replacing 0φ  and Lφ  by Pφ  and Eφ , respectively, the exact solution (3.19) can 

be used to represent φ  between points P and E. Substituting the exact solution 

equation (3.19) into the equation (3.11) leads to the following equation: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
+=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

Γ−
1)exp( e

EP
P

e
e P

u
x

u φφφρφφρ          (3.20) 

The standard form above equation is:  

EEWWPP aaa φφφ +=             (3.21) 

where 

)( weEWP FFaaa −++=          (3.22a) 

( )
1)exp(

exp
−

=
ww

www
W DF

DFF
a              (3.22b) 

1)exp( −
=

ee

e
E DF

F
a             (3.22c) 

Due to analytic solution is applied; this scheme gives exact solutions for steady 

one-dimensional problems for any range of Peclet number and for any grid 

points. Although this scheme is quite accurate, it is not widely used. This 

scheme is not only computationally expensive but also is not exact for two- or 
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three-dimensional situations. Instead of exponential scheme, the hybrid and 

power-law scheme are used in practice. 

 

3.2.4 Hybrid Differencing Scheme 

 

The hybrid differencing scheme is the combination of central and upwind 

differencing schemes. For small values of Peclet number Pe <2, the central 

differencing scheme, which has second-order accuracy, is used. For large Peclet 

number Pe >2, upwind scheme is employed for the convection term and the 

diffusion is set as zero. Since the hybrid scheme is dependent on the Peclet 

number, the local Peclet number is evaluated at the face of each control volume 

to calculate the net flux through each face. 

 The general form of discretised equation is:  

EEWWPP aaa φφφ +=             (3.23) 

where  

)( weEWP FFaaa −++=          (3.24a) 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ += 0,

2
,max w

wwW
F

DFa           (3.24b) 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−= 0,

2
,max e

eeE
F

DFa           (3.24c) 

The scheme is fully conservative and since the coefficients are always positive it 

is conditionally bounded. The scheme produces physically realistic solutions and 

highly stable compared to higher order schemes [1]. 

The hybrid scheme can be applied to two- or three-dimensional problems, 

whereas the only disadvantage is that it possesses only first-order accuracy. 
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3.2.5 Power-Law Differencing Scheme 

 

Patankar [2] proposed a power-law differencing scheme having a better accuracy 

compared to the hybrid scheme. Patankar [2] indicated that the power-law 

scheme is identical with hybrid scheme for Pe >10. In this scheme, diffusion is 

set to zero when Peclet number is larger than 10. When the Peclet number is 

between 0 and 10, flux is calculated by using a polynomial. 

The general form of equation is:  

EEWWPP aaa φφφ +=             (3.25) 

where  

)( weEWP FFaaa −++=           (3.26a) 

( )[ ] [ ]0,max1.01,0max 5
wwwW FPeDa −+−=       (3.26b) 

( )[ ] [ ]0,max1.01,0max 5
eeeE FPeDa −+−=         (3.26c) 

The power-law differencing scheme is more accurate for one-dimensional 

problems since it attempts to represent the exact solution more closely [1]. 

 

3.2.6 Higher-Order Differencing Schemes 

 

In terms of Taylor series truncation error, the accuracy of hybrid and upwind 

schemes for cell Peclet numbers larger than 6, is first-order. Therefore these 

schemes do not give accurate results for flows in which the effects of transients, 

multi-dimensionality, or sources are important [13]. Higher order schemes can 

be used to get more accurate results because higher-order schemes include more 

neighbor points and this reduces the discretisation errors. Formulations that do 

not take into account the flow direction are unstable and, therefore, more 

accurate higher schemes, which preserve up-winding for stability and sensitivity 

to the flow direction, are needed [1]. 
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Before considering the higher order schemes, the values of property Pφ  for a 

range of Peclet number by various schemes are shown in Figure 3.5 with 

assumptions of 1=Eφ , 0=Wφ , the distances are equal exδ and wxδ  . 

 
Figure 3.5 Prediction of Pφ  for a range of Peclet number by various schemes [3] 

 

All schemes expect central-difference scheme gives what may be termed a 

physically realistic solution. 

 

3.2.7 Quadratic Upwind Differencing Scheme (QUICK) 

 

Leonard [14] proposed a three-point upstream-weighted quadratic interpolation 

for cell face values, called the QUICK (Quadratic Upstream Interpolation for 

Convective Kinematics) scheme. This scheme is widely used and highly 

successful to solve the convection-diffusion problems. 
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Figure 3.6 QUICK scheme parabolic profile for eφ  

The formulation of the QUICK scheme is shown in Figure 3.6 at an interface.  

The dependent variable at an interface is approximated by constructing the 

appropriate parabola using two adjacent neighboring nodes and one more node 

in the upstream direction [3]. 

When eu  is positive, the interface variable can be expressed as: 

  ( ) ( )EPWPEe φφφφφφ +−−+= 2
8
1

2
1                                 (3.27) 

It is obvious that approximation is the linear interpolation between two 

neighboring points and corrected by a term proportional to the upstream 

curvature [3]. On uniform grid, this practice gives the same expression as central 

differencing scheme for diffusion [1]. However, Leonard [14] shows that its 

accuracy is greater than the central differencing scheme. 

The QUICK scheme for one-dimensional convection-diffusion can be 

expressed in compact form as follows: 

  EEEEWWWWEEWWPP aaaaa φφφφφ +++=          (3.28) 

where the central coefficient is 

)( weEEWWEWP FFaaaaa −++++=          (3.29) 

and the neighboring coefficients are 

Ue 
 

∆xe 
 

ØW 
 

ØP 
 

ØE 
 

Øe 
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wweewwwW FFFDa )1(
8
3

8
1

8
6 ααα −+++=        (3.30a) 

wwWW Fa α
8
1

−=            (3.30b) 

wWeeeeeE FFFDa )1(
8
6)1(

8
6

8
3 ααα −−−−−=       (3.30c) 

eeEE Fa )1(
8
1 α−=                      (3.30d) 

with 

1=wα  For  0〉wF  and 1=eα  for  0〉eF       (3.31a) 

0=wα for  0〈wF  and 0=eα  for  0〈eF         (3.31b) 

Although higher order upwind-weighted methods are potentially quite stable, 

the QUICK scheme presented above can be unstable due to the appearance of 

negative main coefficients. Several researchers described an alternative approach 

in a way that negative coefficients are placed into the source term to prevent 

main coefficients from being negative. Hayase et al. [15] is one of the 

researchers who developed thiş approach by re-arranging the QUICK scheme 

and obtain more stable and the best convergence property. Systematic studies 

on the performance of the various QUICK schemes applied to the two-

dimensional lid-driven cavity problem by Hayase et al. [15]. He clearly shows 

that the converged solutions of the various of QUICK schemes are identical to 

each other whereas number of iterations required to obtain converged solution 

differs. Although they are all derived from Leonard’s [14] formulation, their 

respective stability characteristics show different behaviors. By the approach of 

Hayase et al [15], the coefficients are always kept positive so the requirements 

for boundedness, conservativeness and transportiveness are satisfied. [1] 

Despite the QUICK scheme is more accurate than the other second-order 

schemes, undershoots and overshoots may occur near sharp transitions. 

Another difficulty is due to the application of the boundary conditions. For the 

cells near the boundaries, the scheme needs a value outside the flow domain, 
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such as, cells adjacent to the wall. Because of the difficulties mentioned above, 

some modifications are done on the QUICK scheme and new schemes are 

introduced to eliminate the overshoots. Some of these modified schemes are 

ULTRA-QUICK, ULTRA-SHARP and QUICKEST. 

  

3.3 Discretisation of General Transport Equation 

 

The differential form of the general transport equation for two-dimensional 

flows is expressed by Equation (2.13).  If the convection and diffusion terms in 

the same coordinate direction is combined as the total flux then,  

x
uJ x ∂

∂
Γ−=

φφρ              (3.32a) 

y
vJ y ∂

∂
Γ−=

φφρ              (3.32b) 

where xJ  and yJ  are the total fluxes in the x and y directions. 

Substituting Equations (3.32a) and (3.32b) into Equation (2.13), the 

corresponding conservation form of the general transport equation for two-

dimensional flows can be written as: 

   S
y
J

x
J yx =

∂

∂
+

∂
∂               (3.33) 

 
Figure 3.7 Two-dimensional control volumes 
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The integration of the general transport equation (3.33) over the control volume 

(Figure 3.7) for the grid point P results in the integral balance of general 

transport equation: 

( ) yxSSJJJJ PPusnwe ∆∆+=−+− φ                (3.34) 

eJ , wJ   nJ  and sJ  are integrated total fluxes both in the x-direction interface e 

and w and in the y-direction interface n and s over the control volume faces and 

given as: 

yJdyJJ e

n

s
exe ∆== ∫ .   yJdyJJ w

n

s
wxw ∆== ∫ ,             (3.35) 

xJdxJJ n

e

w
nyn ∆== ∫ .   xJdxJJ s

e

w
sys ∆== ∫ .            (3.36) 

 

3.3.1 Discretisation of Continuity Equation 

 

The steady two –dimensional continuity equation in differential form can be 

written as:  

   ( ) ( ) 0=
∂
∂

+
∂
∂ v

y
u

x
ρρ                     (3.37) 

Substituting convective mass flux uFx ρ= and vFy ρ=  into equation (3.37), it 

becomes: 

0=
∂

∂
+

∂
∂

y
F

x
F yx                   (3.38) 

Similarly integrating equation (3.37) over the control volume in Figure 3.7, the 

integral balance of continuity equation is obtained: 

0=−+− snwe FFFF                (3.39) 

where eF , wF   nF  and sF  are the mass flow rates through the faces of the control 

volume and assuming yAA we ∆==  and xAA sn ∆==  then mass flow rates can 

be written as: 
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( ) yuF ee ∆= ρ   ( ) yuF ww ∆= ρ                  (3.40a) 

( ) xuF nn ∆= ρ   ( ) xuF ss ∆= ρ           (3.40b) 

 

3.3.2 Discretisation of Momentum Equations in x and y Directions 

 

To obtain discretised momentum equations, each velocity component u and v 

are replaced by the dependent variable φ in the general transport equation (2.13) 

respectively. After replacing φ  with v for steady two-dimensional laminar flows, 

the conservation form of the x-momentum equation results as: 

uS
x
p

y
uvu

yx
uuu

x
+

∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

Γ−
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

Γ−
∂
∂ ρρ          (3.41) 

where 

x
uuuJ xx ∂
∂

Γ−= ρ              (3.42a) 

y
uvuJ yx ∂
∂

Γ−= ρ              (3.42b) 

If the total flux in x-momentum direction is shown with xxJ  and two-directional 

total flux with yxJ , then Equation (3.41) becomes: 

u
yxxx S

x
P

y
J

x
J

+
∂
∂

−=
∂

∂
+

∂
∂                      (3.43) 

Integration of Equation (3.33) over the two dimensional control volume in 

Figure 3.7 would give the integral balance of x-momentum equation: 

yxuSSppJJJJ ppcwesnwe ∆∆++−=−+− )()(                  (3.44) 

eJ , wJ   nJ  and sJ  are integrated total fluxes over the control volume faces and 

can be written as: 

yJdyJJ e

n

s
exxe ∆== ∫ .   yJdyJJ w

n

s
wxxw ∆== ∫ ,             (3.45) 

xJdxJJ n

e

w
nyxn ∆== ∫ .   xJdxJJ s

e

w
syxs ∆== ∫ .            (3.46) 
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ypdypp e

n

s
exe ∆== ∫ .   ypdypp w

n

s
wxw ∆== ∫ ,             (3.47) 

Since mass must be conserved, multiplying integral balance of the continuity 

equation (3.39) by Pu and subtracting from equation (3.44) yields: 

yxuSSpp
uFJuFJuFJuFJ

ppcwe

PssPnnPwwPee

∆∆++−
=−−−+−−−

)()(
)()()()(

           (3.48) 

The assumption of uniformity over a control-volume face enables to employ 

one-dimensional practices for two-dimensional situation [2]. By this way the 

followings are obtained: 

( )EPEPee uuauFJ −=−                             (3.49a) 

( )PWWPww uuauFJ −=−                             (3.49b) 

( )NPNPnn uuauFJ −=−                             (3.49c) 

( )PSSPss uuauFJ −=−                   (3.49d) 

Then substituting Equations (3.49.a-d) into Equation (3.48) and rearranging the 

terms results in the final two-dimensional discretisation equation: 

∑ +=++++= unbnbuSSNNWWEEPp buabuauauauaua           (3.50) 

The coefficients Ea , Wa , Na  and Sa  represent the convection - diffusion 

influence at the four neighbor cell faces in terms of the mass flux F and 

diffusion conductance D and can be written as: 

( ) )0,max( eeeE FPeADa −+=                  (3.51a) 

( ) )0,max( wwwW FPeADa +=                   (3.51b) 

( ) )0,max( nnnN FPeADa −+=                  (3.51c) 

( ) )0,max( sssS FPeADa +=                  (3.51d) 

yxSppb cweu ∆∆+−= )(                     (3.51e) 

yxSaaaaa pSNWEp ∆∆−+++=                   (3.51f) 
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The mass fluxes are expressed Equations (3.40a) and (3.40b) also conductances 

in the above equations are defined by: 

( )e

e
e x

y
D

δ
∆Γ

=   ( )w

w
w x

y
D

δ
∆Γ

=                 (3.52a) 

( )n

n
n x

x
D

δ
∆Γ

=   ( )s

s
s x

x
D

δ
∆Γ

=          (3.52b) 

and the Peclet numbers are: 

e

e
e D

FPe =  
w

w
w D

FPe =  
n

n
n D

FPe =  
s

s
s D

FPe =        (3.53) 

The final unknown is the function ( )PeA  which can be chosen according to the 

desired scheme. If power-law scheme is chosen, then the function ( )PeA  

becomes: 

( ) ( )( )51.01,0max PePeA −=                (3.54) 

Patankar [2] stated that there are ‘four basic rules’ which the final discretisation 

equation should satisfy to get physically realistic solution and convergence. The 

final discretisation equation (3.50) obeys these ‘four basic rules’ by producing a 

diagonally dominant system of equations. The convection factors in the 

discretised continuity equation are assumed same as those in the discretised x-

momentum equation to satisfy two of the ‘four basic rules’. In this section 3.3.2, 

the x-momentum equation is discretised in the same manner the y-momentum 

equation can be also discretised.   
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3.4 Staggered Grid Arrangement 

 

The discretised form of the x-direction momentum consists of the pressure 

gradient 
x
p
∂
∂

−  which is integrated over the control volume and expressed 

as )( we pp − . This is the pressure field which is net pressure force exerted on the 

control volume.  Two-dimensional uniform grid arrangement is used and highly 

irregular ‘checker-board’ pressure field is assumed and illustrated in Figure 3.8. 

  

Figure 3.8 Checker-board Pressure Field 

By using a piecewise linear profile for interface pressure gradient within the two 

grid points can be calculated. However, although the pressure field exhibits 

spatial oscillations, it is evaluated that all the discretised gradients are zero for all 

the nodal points.  Therefore, highly non-uniform pressure field is considered as 

uniform pressure field and momentum equations remain unaffected by using 

zero pressure force. The similar difficulty, which is discussed by Patankar [2] is 

occurred in the discretisation of the continuity equation such as wavy velocity 

fields can satisfy the continuity equation whereas these velocity fields are not at 

all realistic. 

The difficulty mentioned above can be overcome by using staggered grid 

arrangement, which is first used by Harlow and Welch [11], employing different 

grids for each dependent variable. In the staggered grid, the velocity 

P=100 at 

P=50 at 
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components are evaluated at the faces of the control volume on the other hand 

scalar variables such as pressure, density, temperature etc., defined at the 

ordinary nodal points.  In Figure 3.9, the staggered grid arrangement for two-

dimensional flows is illustrated. The scalar variables, such as pressure, are stored 

at the nodes shown with (•). The u-velocities are defined by horizontal arrows; 

similarly v-velocities are calculated at vertical arrows.  

With staggered grid arrangement, if the pressure gradient is calculated for the 

‘checker-board’ pressure field, nodal pressure values produce non-zero pressure 

field. Therefore, by the staggered grid arrangement, the unrealistic results and 

oscillations are avoided. The other advantage of this staggered grid is that 

reasonable velocity fields occur to satisfy the continuity equation and, thus, 

prevent wavy velocity fields to satisfy the continuity equation. A further 

advantage is that it generates velocities exactly at the locations where they are 

required for the computation of the scalar transport convection-diffusion 

equations. Therefore, no interpolation is needed to calculate velocities at the 

scalar cell faces. [1]   

 

 

I,J 

I,J+1 

I,J-1 

I-1,J I+1,J 
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Figure 3.9 Staggered Grid Arrangements 

 

By the staggered grid, all discretisation equations have its own control volume; 

therefore each equation is discretised on its own staggered control volume 

arrangement which is also shown in Figure 3.9.  

The discretised momentum equations become: 

∑ +−+= − JiJiJIJInbnbJiJi bAppuaua ,,,,1,, )(             (3.55) 

∑ +−+= − jIjIJIJInbnbjIjI bAppvava ,,,1,,, )(             (3.56) 

To define grid nodes and cell faces, a subscript system is needed. Scalar nodes 

are shown with two capital letters such as point (I,J) in Figure 3.9. The u-

velocities are identified at east and west cell faces of a scalar control volume so 

they are defined by a grid line and a cell boundary and indicated successively by 

a lowercase letter and a capital letter, such as (i,J). However v-velocities are 

indicated successively by a capital letter and a lowercase letter, such as (I,j).  

I+1,J I,J I-1,J 

Ui-1,J 
 

Ui+1,J 
 

Ui,J 
 

I,J 

I,J-1 

I,J+1 

VI,j-1 
 

VI,j+1 
 

VI,j 
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The coefficients nba , Jia ,  and jIa ,  can be calculated with any differencing 

scheme. Also the convective flux per unit mass F and the diffusive conductance 

D at control volume cell faces are calculated according to new notation. The 

equations according to staggered grid arrangement have been discussed in detail 

by Malalasekera and Versteeg [1]. 

 

3.5 SIMPLE Algorithm 

 

As mentioned before, SIMPLE is one of the approaches for solving 

incompressible flows iteratively. The method, which is explained by using the 

two-dimensional laminar flow equations in Cartesian coordinates, is described in 

Patankar and Spalding [2]. The procedure is to guess and to correct the pressure 

field in the flow domain. In the following sections, the SIMPLE method and its 

variants are briefly explained.  

  

3.5.1 Momentum Equations 

 

The procedure of the SIMPLE method starts by guessing the pressure field 

which is represented by *p . The momentum equations (3.55) and (3.56) are 

solved for the guessed pressure field. Then the momentum equations become:  

 

∑ +−+= − JiJiJIJInbnbJiJi bAppuaua ,,
*
,

*
,1

**
,, )(             (3.57) 

∑ +−+= − jIjIJIJInbnbjIjI bAppvava ,,
*
,

*
1,

**
,, )(             (3.58) 

The above discretised momentum equations are used to obtain the velocity field 

with *u and *v  being the velocity components. Until the correct pressure field is 

applied, the calculated velocity components do not satisfy the continuity 

equation. 
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3.5.2 Correction Equations 

 

In order to satisfy the continuity equation, converged velocity fields are needed, 

therefore the guessed pressure field should be improved. The correct pressure 

field is evaluated by the following equation where the guessed pressure field is 

corrected by the pressure correction p′ . 

ppp ′+= *                     (3.59a) 

Similarly, the corrected velocities u  and v  are obtained by adding velocity 

corrections u′ and v′ to imperfect velocity fields *u and *v , respectively. 

uuu ′+= *                    (3.59b) 

vvv ′+= *                    (3.59c) 

The corrected velocity fields u  and v  are obtained when the correct pressure 

field p  is applied to momentum equations. The discretised equations (3.55) and 

(3.56) are used to obtain the correct velocity field from the correct pressure 

field.  

Subtracting Equations (3.57) and (3.58) from Equations (3.55) and (3.56), 

respectively and using the correction equations (3.59a), (3.59b) and (3.59c) 

results in:  

∑ ′−′+′=′ − JiJIJInbnbJiJi Appuaua ,,,1,, )(              (3.60) 

∑ ′−′+′=′ − jIJIJInbnbjIjI Appvava ,,1,,, )(                        (3.61) 

Then dropping the terms ∑ ′nbnbua  and∑ ′nbnbva , the velocity correction 

equations become: 

)( ,,1,, JIJIJiJi ppdu ′−′=′ −                      (3.62) 

)( ,1,,, JIJIjIjI ppdv ′−′=′ −                          (3.63) 

where 
Ji

Ji
Ji a

Ad
,

,
, =  and 

jI

jI
jI a

Ad
,

,
, =  
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Then substituting the above equations into the velocity correction equations 

(3.59b) and (3.59c) give the final form of velocity-correction formulas: 

)( ,,1,
*
,, JIJIJiJiJi ppduu ′−′+= −                   (3.64a) 

)( ,1,,
*
,, JIJIjIjIjI ppdvv ′−′+= −             (3.64b) 

)( ,1,,1
*

,1,1 JIJIJiJiJi ppduu ++++ ′−′+=             (3.64c) 

)( 1,,1,
*

1,1, ++++ ′−′+= JIJIjIjIjI ppdvv             (3.64d) 

At this point, the equations, which are used to obtain the correct velocity 

components, are derived from momentum equations but as mentioned before 

velocity field should satisfy the continuity equation. 

 

3.5.3 Pressure Correction Equation 

 

Substituting the corrected velocities given by Equations (3.64a), (3.64b), (3.64c) 

and (3.64d) into the discretised form of the continuity equation (3.39) and doing 

some re-arrangements yields the pressure correction equation which is derived 

from the continuity equation as:  

JIJIJIJIJIJIJIJIJIJIJI bpapapapapa ,1,1,1,1,1,1,,1,1,, ′+′+′+′+′=′ −−++−−++   (3.65) 

where  

1,1,,1,1, −+−+ +++= JIJIJIJIJI aaaaa             (3.66) 

and the coefficients are given by: 

JiJI dAa ,1,1 )( ++ = ρ                  (3.67a) 

JiJI dAa ,,1 )(ρ=−                             (3.67b) 

1,1, )( ++ = jIJI dAa ρ                      (3.67c) 

jIJI dAa ,1, )(ρ=−                   (3.67d) 

( ) ( ) ( ) ( ) 1,
*

,
*

,1
*

,
*

, ++ −+−=′ jIjIJiJiJI AvAvAuAub ρρρρ        (3.67e) 
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The mass source term JIb ,′  in the pressure correction equation (3.65) comes out 

from the starred velocity field, therefore if the mass source term is zero, it 

means that the continuity equation is satisfied and no need to correct the 

pressure. In addition to this, a mass source term represents how well the mass 

conservation is satisfied at each iteration so this quantity is often used as the 

indicator for convergence of the numerical solution [3]. 

The terms ∑ ′nbnbua  and ∑ ′nbnbva  are omitted while obtaining the velocity 

correction equations. This omission does not affect the final solution because of 

the pressure correction and velocity corrections will all be zero in a converged 

solution [1]. The omitted terms include the influence of the pressure correction 

on velocity; pressure corrections at nearby locations can change the neighboring 

velocities and thus cause a velocity correction at the point under consideration 

[2].  Because of omitting this influence, this method is considered as semi-

implicit. 

The pressure correction equation can likely diverge if under-relaxation is not 

used. The under-relaxation can be applied not only to the pressure correction 

equation (3.59a) but also velocity components can be improved by under-

relaxation. But the main important thing is to apply optimum relaxation factor 

to accelerate the convergence and essential relaxation factor is flow dependent. 

 

3.5.4 Solution Procedure 

 

The discretised equations governing the flow field are non-linear. In the 

SIMPLE method, these non-linear equations are coupled by an iterative scheme. 

The non-linearity comes out from the coefficients and the source terms in the 

discretised equations because these are functions of the dependent variables 

whereas this can be handled by solving these terms independently and 

sequentially. This means that these terms are calculated from previous iteration 
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values of the variables. By this way, these non-linear discretised equations are 

converted into the linear algebraic equations.  

In addition to this, considering all control volumes in the flow domain leads to a 

tri-diagonal system of simultaneous algebraic equations. This system of 

equations for one dependent variable at a given time step are solved by iterative 

or indirect methods. For the two dimensional flows, Successive Line Over-

Relaxation (SLOR) method is used to solve linear algebraic system of equations.  

SLOR method sweeps the two-dimensional flow computational domain line by 

line, in both directions. Then, Thomas algorithm or the Tri-Diagonal Matrix 

Algorithm (TDMA), which is widely used, is applied iteratively to each line 

sweep [3]. This line-by-line calculation procedure is repeated several times until 

a converged solution is obtained.   

 

3.5.5 SIMPLE Algorithm Summary 

 

The sequence of operation of the SIMPLE algorithm for steady two-

dimensional laminar flows is shown in Figure 3.10 and is summarized as 

follows: 

1. Guess the initial flow field (starred pressure and velocity components). 

2. Solve the momentum equations (3.57) and (3.58) in order to obtain starred 

velocities. 

3. Solve the pressure correction equation (3.65). 

4. Correct the pressure by Equation (3.59a). 

5. Calculate the velocities from their starred values by using correction 

equations (3.59b) and (3.59c). 

6. Solve the other discretisation equation for other variablesφ ’s. If the variable 

does not affect flow field, it is better to calculate it after obtaining the 

converged solution. 

7. Using the pressure field obtained in the previous step as an initial guess, 

repeat steps 2-6 until a converged solution is obtained.  
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Figure 3.10 The SIMPLE Algorithm 

 
    
 

START Initial Guess 
 
 

 Solve discretised momentum equations 
 

∑ +−+= − JiJiJIJInbnbJiJi bAppuaua ,,,
*

,1
**

,
*

, )(

∑ +−+= − JIJIJIJInbnbJIJI bAppvava ,,,
*

1,
**

,
*

, )(

( ) ( ) ( ) ( )nnnn vup **** ,,, φ

Solve discretised momentum equations 
 

JIJIJIJIJIJIJIJIJIJIJI bpapapapapa ,1,1,1,1,,1,1,1,1,, ′+′′+′′+′′+′′=′′ ++−−++−−

**,vu

p′

Correct pressure and velocities 
 

)( ,,1,,
*

, JIJIJiJiJi ppduu ′−′+= −

JIJIJI ppp ,,
*

, ′+=

)( ,1,,,
*

, JIJIjIjIjI ppdvv ′−′+= −

*,,, φvup

Solve all other discretised transport equations 

JIJIJIJIJIJIJIJIJIJIJI baaaaa ,1,1,1,1,,1,1,1,1,, φφφφφφ ++++= ++−−++−−

p′

Convergence 

YES

STOP 
 
 

NO

SET 
 

φφ ==
==

*,*
*,*

vv
uupp



 

39

3.6 Variants of SIMPLE Algorithm 

 

The need for improving the convergence rate, increasing computational 

efficiency and accelerating the coupling process between velocity and pressure 

arises a number of modifications on the coupling process of the SIMPLE 

algorithm which is described by Patankar and Spalding [2]. Also several different 

algorithms have been proposed and developed by various researchers. The 

variants of SIMPLE algorithm, discussed in this section, are SIMPLER, 

SIMPLEC and SIMPLEV algorithms.  

 

3.6.1 The SIMPLER Algorithm 

 

To improve the convergence rate of the SIMPLE algorithm, revised SIMPLE is 

introduced by Patankar and Spalding [2]. Since omitting terms ∑ ′nbnbua  and 

∑ ′nbnbva  removes neighbor velocity corrections from the velocity-correction 

equation, only pressure correction contributes the velocity correction equation. 

In this case, it is reasonable to suppose that the pressure-correction equation 

does a fairly good job of correcting the velocities, but a rather poor job of 

correcting the pressure.  

In the SIMPLER algorithm, the discretised continuity equation (3.39) is used to 

derive a discretised equation for pressure, instead of a pressure correction 

equation as in the SIMPLE method [1].  

In the SIMPLER method, the discretised momentum equations are obtained by 

rearranging Equations (3.55) and (3.56) as follows: 

( )JIJI
Ji

Ji

Ji

Jinbnb
Ji pp

a
A

a
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u ,,1
,

,

,

,
, −+

+
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∑

             (3.68) 

( )JIJI
jI

jI

jI

jInbnb
jI pp

a
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a
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,

,

,

,
, −+

+
= −
∑

                       (3.69) 
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First terms in right hand side of above equation are defined as pseudo-velocities 

û  and v̂ : 

  
Ji

Jinbnb
Ji a

bua
u

,

,
,ˆ ∑ +
=                           (3.70) 

jI

jInbnb
jI a

bva
v

,

,
,ˆ ∑ +
=                           (3.71) 

Substituting these into Equations (3.57) and (3.58) yields:  

( )JIJIJiJiJi ppduu ,,1,,, ˆ −+= −              (3.72a) 

( )JIJIjIjIjI ppdvv ,1,,,, ˆ −+= −                   (3.72b) 

where 
Ji

Ji
Ji a

Ad
,

,
, =  and 

jI

jI
jI a

Ad
,

,
, =  

Then substituting the corrected velocities Jiu ,  and jIv ,  in Equations (3.72a), 

(3.72b) and similarly Jiu ,1+  and 1, +jIv  into the discretised form of the continuity 

equation (3.39) and doing some rearrangements results in the pressure equation 

which is derived from the continuity equation as. 

JIJIJIJIJIJIJIJIJIJIJI bpapapapapa ,1,1,1,,1,1,,1,1,, ++++= −−++−−++          (3.73) 

where  

1,1,,1,1, −+−+ +++= JIJIJIJIJI aaaaa             (3.74) 

and the coefficients are given by: 

JiJI dAa ,1,1 )( ++ = ρ                  (3.75a) 

JiJI dAa ,,1 )(ρ=−                   (3.75b) 

1,1, )( ++ = jIJI dAa ρ                      (3.75c) 

jIJI dAa ,1, )(ρ=−                   (3.75d) 

( ) ( ) ( ) ( ) 1,,,1,, ˆˆˆˆ ++ −+−= jIjIJiJiJI AvAvAuAub ρρρρ            (3.75e) 

Equation (3.73) is same as Equation (3.65) in the SIMPLE method whereas the 

difference is the mass source term is calculated by using pseudo-velocities in the 
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SIMPLER method. Although the pressure equation and pressure correction 

equation are identical, there is one major difference: No approximations have 

been introduced in the derivation of pressure equation. [2]. Thus correct velocity 

fields leads to correct pseudo-velocities which results in correct pressure field at 

once [2]. 

The sequence of operations of the SIMPLER method can be summarized as 

follows: 

1. Guess the initial velocity field. 

2. Calculate pseudo-velocities by using Equations (3.70) and (3.71) from the 

values of neighbor velocities. 

3. Solve pressure equation (3.73) to obtain the pressure field.  

4. Using this pressure field as the starred pressure fields solve the momentum 

equations (3.57) and (3.58). 

5. Solve the pressure correction equation (3.65). 

6. Calculate the velocities from their starred values by using correction 

equations (3.59b) and (3.59c)and 1, +jIv  c) but do not correct the pressure. 

7. Solve the other discretisation equations for other φ  variables. If the variable 

does not affect flow field, it is better to calculate it after obtaining the 

converged solution. 

8. Using the pressure field obtained in the previous step as an initial guess, 

repeat steps 2-7 until a converged solution is obtained.  

 

 

3.6.2 The SIMPLEC Algorithm 

 

The SIMPLEC is the SIMPLE-Consistent algorithm of Van Doormal and 

Raithby (1984), as explained by Malalasekera and Versteeg [1]. Its only 

difference from the SIMPLE algorithm is the velocity correction equation. The 

SIMPLE algorithm omits the neighbor velocity correction terms whereas 
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SIMPLEC algorithm omits less significant ones than those omitted in the 

SIMPLE algorithm. 

In the SIMPLE algorithm the x-momentum equation (3.60) can be written as:  

∑∑ ′−′+′−′=′⎟
⎟
⎠

⎞
⎜
⎜
⎝
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− −
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Ji
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a
A

ppuua
a

u
a

a

,

,
,,1,

,
,

,

)()(11        (3.76) 

The SIMPLE algorithm neglects the terms ∑ ′nbnbua  whereas the SIMPLEC 

algorithm omits the terms ( )∑ ′−′ Jinbnb
Ji

uua
a ,

,

1
. The SIMPLEC algorithm 

assumes nbJinb uuu ′〈〈′−′ ,  therefore, the SIMPLEC algorithm becomes more 

accurate than the SIMPLE algorithm by neglecting the terms 

( )∑ ′−′ Jinbnb
Ji

uua
a ,

,

1
. 

Then u- and v-velocity correction equations of SIMPLEC algorithm are given 

by: 

)( ,,1,, JIJIJiJi ppdu ′−′=′ −                      (3.77) 

)( ,,1,, JIJIjIjI ppdv ′−′=′ −                 (3.78) 

where  

∑−
=

nbJi

Ji
Ji aa

A
d

,

,
,  and ∑−

=
nbjI

jI
jI aa

A
d

,

,
,             (3.79) 

The operation sequence of the SIMPLEC algorithm is identical to SIMPLE 

algorithm except that the d-terms are evaluated by using Equation (3.79). 

 

3.6.3 The SIMPLEV Algorithm 

 

The SIMPLEV (SIMPLE-Vincent) algorithm is an improved version of the 

SIMPLE algorithm where the under-relaxation and temporal terms are removed 

from pressure correction equation of the SIMPLE algorithm [16]. Anjorin and 

Barton [16] studied the SIMPLEV method and compared it with SIMPLE 
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method. Not only the number of iterations performed to obtain converged 

solutions is compared, but also how quickly the converged solution is obtained 

for different under-relaxation factors and for different grid sizes are discussed. 

Results have shown that the higher efficiency of the SIMPLEV algorithm 

strongly depends on the under-relaxation factor. Solution of pressure correction 

equation is the fastest in the SIMPLEV for all cases except for grid systems with 

a large number of nodes, reducing the efficiency of SIMPLEV. All calculations 

in the SIMPLEV algorithm converged more rapidly [16]. 

 

3.7 Implementation of Boundary Condition for Pressure 

 

The pressure field obtained by solving the pressure correction equation does not 

give absolute pressures [2]. If all the normal velocities are given or known at the 

boundaries, knowing the pressure at these boundaries does not affect the 

interior pressures. Because of the SIMPLE algorithm, which is an iterative 

procedure for incompressible flows where equation of state can not be used, 

converged solution does not result in unique absolute pressure field. The 

absolute pressure field of the converged solution is only dependent on the initial 

guessed pressure in the flow domain. A channel flow problem in Figure 3.11 is a 

simple example. 

At the inlet, velocity profile is given. Then it is assumed that inlet velocity profile 

is fully developed for the chosen Reynolds number and channel length is 

sufficient for the outlet velocity to be fully developed. Because of the 

conservation of mass, inlet mass flow rate is equal to the exit mass flow and the 

flow at the outlet boundary is calculated without requiring the pressure field at 

the outlet when the converged solution is obtained. 
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Figure 3.11 Two-dimensional channel flow with given inlet velocity profile 

 

By this way, without inlet and outlet pressure fields, the velocity field at the 

outlet is calculated. Boundary pressure can be computed by extrapolation using 

the interior pressure values [3]. For this reason, a pressure value at a certain 

boundary can not be specified and leads initial guess to determine the ‘level’ of 

the resulting pressure field during the iterative procedure [3]. 
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CHAPTER 4 
 
 

NUMERICAL RESULTS AND TESTING OF THE ALGORITHMS 
 
 
 

4.1 Benchmark Solutions 

 

In the previous chapter, not only the SIMPLE method and its variants for solving 

Navier-Stokes equations but also different discretisation schemes, are explained and 

derived to govern incompressible fluid flows.  

In this chapter, the numerical methods described in the previous chapter are tested 

and benchmarked by applying them to solve two classic benchmark test problems. 

These are ‘Lid-Driven Cavity’ and ‘Flow over a Backward-Facing Step’. Both are 

internal flows and are tested for the case of two dimensional steady laminar 

incompressible flows. The SIMPLE method and its variants are validated and 

compared for different numerical techniques at different Reynolds numbers by 

using appropriate grid size and reasonable discretisation schemes. ‘Lid-Driven 

Cavity’ problem, which is tested and compared by various researchers, is the model 

of recirculating flow in a square cavity which is driven by the motion of the upper 

lid.  

The second case is the flow over a backward-facing step which is a long channel 

flow where a fully developed inflow expands suddenly due to the changes in the 

geometry. Therefore, laminar separation and recirculation occur in the flow 

domain. 
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4.2 Two-Dimensional Lid Driven Cavity 

 

The first test case for evaluating the numerical methods is the two-dimensional lid-

driven cavity, which is one of the simplest and excellent test cases because of its 

geometry and boundary conditions and the existence of the several relatively large 

recirculating regions. 

 

4.2.1 Definition of Problem Characteristics 

 

The two-dimensional lid-driven cavity is shown in Figure 4.1. The fluid motion in 

the square cavity is driven by the uniform translation of the upper lid. 

 
Figure 4.1 Two-dimensional lid-driven cavity 

The moving upper lid creates adverse pressure gradient and influences the fluid in 

the cavity. Then the boundary layer separates from the solid walls and forms 

recirculating vortices. With the assumption of laminar flow in the cavity, a non-

dimensional parameter, to describe the flow in the cavity, known as Reynolds 

number is defined as: 

ν
LUlid=Re                   (4.1) 

L 

L 

Moving upper lid 

Ulid 
 



 

47

where ν is the kinematic viscosity, L is the width of the square cavity and lidU  is the 

velocity of the upper sliding lid. 

The steady two-dimensional lid-driven cavity has been studied and results are 

compared for a range of Reynolds numbers. 

The staggered grid arrangement is used on the square flow domain. The schemes 

used in the discretisation equations require the values at the boundaries or outside 

the boundaries. For this reason, the boundary conditions have to be implemented. 

As the pressure boundary condition, the pressure gradient normal to the solid 

boundaries is set to zero in the pressure correction equation. 

0=
∂
∂

n
p                   (4.2) 

where n  is normal to the wall. 

As the velocity boundary condition for velocities, no slip boundary condition is 

applied to stationary walls to set the velocity values to zero. This condition can 

directly be applied if there is a velocity grid point on the solid boundary. Due to the 

staggered grid arrangement, sometimes velocity grid points are not located on the 

solid boundaries. If there are no velocity grid points on the solid boundary, then the 

velocity values are obtained by a simple linear interpolation from the neighboring 

grid points. 

Then the boundary conditions for u-velocity in the lid-driven cavity used in the 

SIMPLE method becomes: 

0),(),1( == jnxuju  0)2,()1,( =+ iuiu   

lidUnyiunyiu 2)1,(),( =−+               (4.3) 

Similarly boundary conditions for v-velocity are: 

0),2(),1( =+ jvjv  0),()1,( == nyiviv   

0),1(),( =−+ jnxvjnxv                     (4.4) 
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4.2.2 Historical Background of the Lid-Driven Cavity 

 

Steady separated flows are discussed over last decades in the case of the need for 

the simulation of complex fluid flows arises in engineering problems. Lid-Driven 

cavity is a SIMPLE physical problem for which numerical solutions of the Navier-

Stokes equations describing the fluid motion can be obtained. As mentioned 

before, incompressible flows can be solved either by employing primitive variables 

or by vorticity-stream function formulation. 

Burggraf [5] obtained both analytical solution and accurate numerical results for the 

structured steady separated flows for the Reynolds numbers ranging from 0 to 400 

by using modified relaxation method. Then Bozeman and Dalton [6] made a 

numerical study for viscous flow in a cavity by using four different finite-difference 

schemes to solve governing equations to determine the effects of the grid sizes for 

Reynolds numbers 100 and 1000. Also numerical results for different aspect ratios 

(cavity height to width ratio) are present in this study. Bozeman and Dalton [6] 

found out that the nature of the vortex formed in the cavity depends on both the 

aspect ratio and Reynolds number. This study showed that for low Reynolds 

numbers vortex is located about three-quarters of the cavity height from the 

bottom and at mid-width.  Most of the vortex strength is concentrated in the upper 

vortex (primary vortex) and with much smaller strength of two small counter 

rotating vortices (secondary vortices) located at each bottom corners [6]. As the 

Reynolds number increases, primary vortex moves to the center of the cavity and 

vortex becomes stationary with further increases in Reynolds number. Burggraf [5] 

mentioned that the secondary vortices were viscosity-dominated in contrast with 

the relatively non-viscous primary eddy. The secondary vortices occupy very small 

portion of the cavity and for this reason, the grid size should be increased to 

observe these vortices. However, the increase in the grid size increases the number 

of numerical iterations. For the numerical stability, the grid size must be decreased 

as the Reynolds number increases. This is one of the main problems in the 

numerical studies. Therefore, to observe the secondary vortices without increasing 
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insufficiently the number of numerical iterations, most accurate grid size must be 

applied at higher Reynolds numbers. At Reynolds numbers as high as 10000, 

solutions are presented by Ghia and Shin [8] with uniform mesh refinement by 

using multigrid method. In this case, flow becomes highly unsteady, so uncertainties 

and inconsistencies in numerical solutions occur which cause turbulence. Keller and 

Schreiber [7] also achieved accurate numerical results over a range of Reynolds 

numbers. The researches that are mentioned above, have all used vorticity – stream 

function approach to solve the flow in the lid-driven cavity problem. However, in 

this study, primitive variable approach is considered by using the SIMPLE method. 

Thompson and Ferziger [19] used primitive variable approach and power-law 

scheme with an adaptive multigrid technique for the solution of incompressible 

Navier-Stokes equations. Solutions are obtained and tabulated for lid-driven cavity 

with Reynolds numbers up to 5000. Also in the study of Bruneau and Jouron [20], 

the steady Navier-Stokes equations are solved by primitive variables in the two-

dimensional lid-driven cavity by means of a multigrid method. Results are obtained 

for Reynolds numbers as high as 15000 and it was stated that during the steady 

solution, the stability is lost for Reynolds numbers higher than 5000. Gjesdal and 

Lossius [21] performed numerical tests with the SIMPLE method and its variants 

for varying combinations of under-relaxation factors. 

The solution technique using the SIMPLE method and its variants are applied to 

solve incompressible Navier-Stokes equations in this study. The results are 

discussed and compared with the ones obtained from above mentioned researches 

to illustrate how accurate the methods are for the first test case problem ‘lid-driven 

cavity’ at different Reynolds number.  

In addition to this, the precise results, which are obtained by using different 

schemes and different grid arrangements, will also be shown to evaluate which 

scheme and mesh arrangement give better results. 
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4.2.3 Numerical Results over Various Reynolds Numbers 

 

The steady two-dimensional lid driven cavity flow have been investigated for a 

range of Reynolds numbers, such as Re=100, 400, 1000, 5000 and 10000. Constant 

property laminar flow is assumed. For the initial guess, zero velocity and pressure 

field are applied. Uniformly spaced staggered grids are used unless otherwise noted. 

For the SIMPLER method, while solving the discretised momentum equations, 

each calculation is continued until the residual for the x-momentum and y-

momentum equations becomes smaller than 10-13. In addition to this, the maximum 

value of the residual for the pressure correction equation is defined as 10-11.  At the 

correction step of the velocities, code is terminated when the error on u and v 

velocities become less than 10 -6 or when 20000 iterations were exceed if otherwise 

is mentioned. Erroru and errorv is defined as the summation of the absolute 

difference between u and u* at the each node divided with summation of the 

absolute value of u at each node. 

Finally to compare the results with the ones in the literature, the appearance of the 

primary, secondary and the tertiary vortices, location of their centers and velocity 

profiles for u and v along the vertical and horizontal centerlines are presented.    

 

4.2.3.1 Results for Re=100 

 

In Figures 4.2 and 4.3, the u-velocity profiles along the vertical centerline and the v-

velocity along the horizontal centerline are shown. The SIMPLER method and 

129x129 uniformly spaced staggered grid arrangements is used for all three 

solutions which are carried out by upwind, hybrid and power law schemes. All three 

solutions are in agreement with the results of Ghia [8]. Also, the solution with the 

upwind scheme is acceptable at the extrema points of the u- and v- velocities when 

the Reynolds number is low.  
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Figure 4.2 Vertical centerline u-velocity profiles for Re=100 with different schemes 
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Figure 4.3 Horizontal centerline v-velocity profiles for Re=100 with different schemes 
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Figure 4.4 Vertical centerline u-velocity profiles for Re=100 with different algorithms 
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Figure 4.5 Horizontal centerline v-velocity profiles for Re=100 with different algorithms 
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It is seen from the Figures 4.2 and 4.3 that it is possible to obtain similar results 

with the first and second order differencing schemes. At such low Reynolds 

number flows, viscosity dominates the flow. Since at low Reynolds number flows, 

the influence of the flow transport in a coordinate direction is usually too small to 

significantly affect the transport profile in the other coordinate directions [3].    

Figures 4.4 and 4.5 gives the solutions with both SIMPLE and SIMPLER method 

compared to the results of Ghia [8]. For the SIMPLE method, same results are 

obtained by using larger grid size than SIMPLER method such as 161x161. 

Moreover, it is obvious that using power law or hybrid schemes in both with 

SIMPLE and SIMPLER methods also converge to the same results. Table 4.2 

shows comparison present results with published ones by presenting the centers of 

the primary and secondary vortices. Secondary vortices at bottom right and left are 

obtained for the grid size 161x161 with SIMPLE and SIMPLER method by using 

power law and hybrid schemes, whereas when the grid size is decreased to 129x129, 

only primary vortex is observed. 

 
Table 4.1 Extrema of velocity profiles along centerlines  

for the lid-driven square cavity at Re=100 

  Grid Extrema of velocity profiless along the centerlines 

Re=100 Size 

    

      

Ghia, Ghia and Shin [8] 129x129 -0,2109 0,4531 0,1753 0,2344 -0,2453 0,8047 

Bruneau and Jouron [20] 141x141 -0,2106 0,4531 0,1786 0,2344 -0,2521 0,8125 

SIMPLE   Power law 161x161 -0,2113 0,4591 0,1784 0,2390 -0,2518 0,8113 

SIMPLE  Hybrid 161x161 -0,2115 0,4591 0,1784 0,2390 -0,2519 0,8113 

SIMPLER  Hybrid 129x129 -0,2060 0,4724 0,1650 0,2363 -0,2388 0,8189 

SIMPLER  Hybrid 161x161 -0,2127 0,4591 0,1794 0,2390 -0,2536 0,8110 
 

 

 

 
 

minu miny maxv maxx minv minx
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Table 4.2 Center locations of the vortices  

for the lid-driven square cavity at Re=100 

  Grid Primary vortex 
Secondary 

vortex  
Secondary 

vortex  
Re=100 Size   Bottom right Bottom left 

    Location (x,y) Location (x,y) Location (x,y) 

Ghia, Ghia and Shin [8] 129x129 (0.6172,0.7344) (0.9454,0.0625) (0.0313,0.0391)

Schreiber and Keller [7] 141x141 (0.6167,0.7417) (0.9417,0.0500) (0.0333,0.0250)

Bruneau and Jouron [20] 256x256 (0.6172,0.7344) (0.9453,0.0625) (0.0313,0.0391)

Vanka  [28] 64x64 (0.6188,0.7375) (0.9375,0.0563) (0.0375,0.0313)

Gupta and Kalita [4] 41x41 (0.6125,0.7375) (0.9375,0.0625) (0.0375,0.0375)

Hou et. All [30] - (0.6196,0.7373) (0.9451,0.0627) (0.0392,0.0353)

SIMPLE   Power law 161x161 (0.6151,0.7382) (0.9423,0.0616) (0.0345,0.0345)

SIMPLE  Hybrid 161x161 (0.6155,0.7382) (0.9415,0.0623) (0.0345,0.0343)

SIMPLER  Hybrid 129x129 (0.6143,0.7363) - - 

SIMPLER  Hybrid 161x161 (0.6165,0.7363) (0.9434,0.0625) (0.0325,0.0376)

 

Moreover, the extrema velocity values and their locations are presented in Table 

4.1.  As mentioned above, when grid size is 129x129, extrema velocity values are 

slightly different from the published results, whereas for a grid size of 161x161 the 

results for both method and schemes are in agreement with reference results in the 

literature. 

For both SIMPLE and SIMPLER methods, first a secondary vortex in the bottom 

right corner appears when Re≈100. Primary vortex for grid sizes of 129x129 and 

161x161 are identical to reference results in both methods by using power law and 

hybrid schemes.  

Figures 4.6 and 4.7 show the streamlines for Re=100 obtained by SIMPLE method 

on a 161x161 uniformly spaced staggered grid arrangement with power law 

differencing scheme. 
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Figure 4.6 The streamlines for Re=100 by using the SIMPLE algorithm on a 161x161 mesh  

with the power law differencing scheme 
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Figure 4.7 The streamlines at bottom right and left corners for Re=100 by using the  

SIMPLE algorithm on a 161x61 mesh with the power law differencing scheme 

 

Finally for Re=100, the results of SIMPLER method on the clustered mesh of  

129x129 is compared with the results of same method on a 129x129 uniform mesh. 

In Figures 4.8 and 4.9, it is seen that the results of both grid arrangements are 

identical to not only each other but also to the results of Ghia [8]. The advantage of 

using a clustered mesh is illustrated in Table 4.3. The number of successive iteration 

to reach the converged solution with clustered mesh arrangement is less than the 
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number of iterations required for a uniform mesh.  Moreover, if the number of 

iterations to get a converged solution with both SIMPLE and SIMPLER methods 

are compared, in the SIMPLE method, at least 20000 successive iterations are 

required till the residual becomes 10-3  whereas for SIMPLER method residual is 

10-6 as indicated in Table 4.3.  
 

Table 4.3 Number of iterations with SIMPLER algorithm on uniform and clustered meshes  

using hybrid and power law schemes for Re=100 

  Grid Number 
Re=100 Size of 

    Iterations 

SIMPLER   Power law 129x129 9710 

SIMPLER  Hybrid  129x129 8851 

SIMPLER   Power law Clustered 129x129 6436 

SIMPLER  Hybrid Clustered 129x129 6657 
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Figure 4.8 Vertical centerline u-velocity profiles for Re=100 by using clustered mesh 



 

57

x

v

0 0.25 0.5 0.75 1

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Ghia 129x129
SIMPLER 129x129 Hybrid Scheme
SIMPLER 129x129 Power Law Scheme
SIMPLER Clustered 129x129 Hybrid Scheme
SIMPLER Clustered 129x129 Power Law Scheme

Frame 001 ⏐ 27 Mar 2006 ⏐ | | | | | | | | |Frame 001 ⏐ 27 Mar 2006 ⏐ | | | | | | | | |

 
Figure 4.9 Horizontal centerline v-velocity profiles for Re=100 by using clustered mesh 

In general, the results for Re=100 with SIMPLE and SIMPLER method by using 

different schemes and meshes exhibit an excellent match with the results in the 

literature.  

 

4.2.3.2 Results for Re=400 

 

After increasing the Reynolds number from 100 to 400, the comparison of the 

horizontal velocities on the vertical centerline and the vertical velocities on the 

horizontal centerline with different differencing schemes are presented in Figures 

4.10 and 4.11 and comparison of the results with different methods are illustrated 

in the Figures 4.12 and 4.13.  

The first order accurate upwind scheme leads to adequately acceptable convergent 

results as shown in Figure 4.10 and 4.11. However these results are not as close to 

Ghia’s [8] results as the results obtained when the Reynolds number is 100.  
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Figure 4.10 Vertical centerline u-velocity profiles for Re=400 with different schemes 
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Figure 4.11 Horizontal centerline v-velocity profiles for Re=400 with different schemes 
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Figure 4.12 Vertical centerline u-velocity profiles for Re=400 with different algorithms 
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Figure 4.13 Horizontal centerline v-velocity profiles for Re=400 with different algorithms 
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While the results of Ghia [8] was obtained using a 257x257 grid, the same results 

are achieved by SIMPLER method with a 161x161 uniform grid using both power 

law and hybrid schemes. 

If the SIMPLE and SIMPLER methods are compared, using Figures 4.12 and 4.13, 

it clear that the SIMPLER method is more close to the Ghia [8] results although 

results of the SIMPLE method is not significantly different. On the other hand, if 

the locations of the vortices, which are tabulated in Table 4.4, are considered, the 

location of the primary and secondary bottom right vortices are close to each other 

with both SIMPLE and SIMPLER methods using power law or hybrid schemes, 

whereas only SIMPLE method could indicate the secondary bottom left vortex. 

Also the results for the location of centers are in good agreement with the 

published results, as observed from Table 4.4. 
 

Table 4.4 Location of the centers of the vortices  

for the lid-driven square cavity at Re=400 

  Grid Primary vortex 
Secondary 

vortex  
Secondary 

vortex  
Re=400 Size   Bottom right Bottom left 

    Location (x,y) Location (x,y) Location (x,y) 

Ghia, Ghia and Shin [8] 257x257 (0.5547,06055) (0.8906,0.1250) (0.0508,0.0469)

Schreiber and Keller [7] 141x141 (0.5571,06071) (0.8857,0.1143) (0.0500,0.0429)

Vanka  [28] 64x64 (0.5563,0.6000) (0.8875,0.1188) (0.0500,0.0500)

Gupta and Kalita [4] 81x81 (0.5500,06125) (0.8875,0.1250) (0.0500,0.0500)

Hou et. All [30]   (0.5608,06078) (0.8902,0.1255) (0.0549,0.0510)

SIMPLE  Power law 161x161 (0.5590,0.6100) (0.8863,0.1239) (0.0487,0.0451)

SIMPLE  Hybrid 161x161 (0.5582,0.6100) (0.8854,0.1240) (0.0489,0.0453)

SIMPLER  Power law 161x161 (0.5551,0.6058) (0.8867,0.1226) - 

SIMPLER  Hybrid 161x161 (0.5543,0.6051) (0.8845,0.1221)   

  Grid Tertiary vortex Tertiary vortex    

Re=400 Size Bottom right Bottom left   

    Location (x,y) Location (x,y)   
Ghia, Ghia and Shin [8] 257x257 (0.9922,0.0078) (0.0039,0.0039)   
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Ghia [8] found out tertiary bottom left and right vortices at a Reynolds number 

400. However these vortices are not obtained by the other researchers. 

From Figures 4.12 and 4.13, it is clear that SIMPLE method is not in agreement to 

Ghia [8] at the extrema points and the difference is illustrated in Table 4.5. Also the 

extrema velocity values along the centerlines, which are calculated with the 

SIMPLE and SIMPLER methods and are given in the mentioned references, are 

shown in Table 4.5. 

 
Table 4.5 Extrema of velocity profiles along centerlines  

for the lid-driven square cavity at Re=400 

  Grid Extrema of velocity profiles along the certerlines 

Re=400 Size 

    

      

Ghia, Ghia and Shin [8] 257x257 -0,3273 0,2813 0,3020 0,2266 -0,4499 0,8594 

Soh [10] - -0,312 0,288 - - - - 

SIMPLE  Power law 161x161 -0,3009 0,2830 0,2780 0,2201 -0,4234 0,8616 

SIMPLE  Hybrid 161x161 -0,3040 0,2830 0,2803 0,2201 -0,4358 0,8616 

SIMPLER  Power law 161x161 -0,3217 0,2830 0,2987 0,2264 -0,4482 0,8616 

SIMPLER  Hybrid 161x161 -0,3264 0,2830 0,3025 0,2264 -0,4522 0,8616 
 

In Figure 4.14, the streamlines obtained by SIMPLE method using power law 

differencing scheme on a 161x161 grid are presented. The primary vortex as well as 

the secondary vortices in the bottom corners of the cavity are observed. The 

secondary vortices dominate more space than these at a Reynolds number of 100 

and these secondary vortices are shown in Figure 4.15. The streamlines of the other 

there calculations shown in the Figures 4.12 and 4.13 are in agreement with the 

streamlines shown in Figures 4.14 and 4.15. Since the location of the center of 

primary and secondary vortices are close to each other and it can be seen from 

Table 3.4 and 3.5, the size and shape of those vortices are also relevant to each 

other.  

minu miny maxv maxx minv minx
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Figure 4.14 The streamlines for Re=400 by using the SIMPLE algorithm on a 161x161 mesh  

with the power law differencing scheme 
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Figure 4.15 The streamlines at bottom right and left corners for Re=400 by using the SIMPLE 

algorithm on a 161x61 mesh with the power law differencing scheme 

 

Figures 4.16 and 4.17 show results of velocity profiles along the centerlines by 

SIMPLER method using 129x129 and 161x161 uniform and clustered meshes with 

the power law differencing scheme. 161x161 uniform mesh grid size gives slightly 

better results than 129x129 uniform meshes. The power law solution becomes grid 

independent when the grid size is around 161x161. 



 

63

y

u

0 0.25 0.5 0.75 1
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ghia 257x257

SIMPLER 129x129 Power Law Scheme

SIMPLER 161x161 Power Law Scheme

SIMPLER Clustered 129x129 Power Law Scheme

SIMPLER Clustered 161x161 Power Law Scheme

Frame 001 ⏐ 27 Mar 2006 ⏐ | | | | | | | | | |Frame 001 ⏐ 27 Mar 2006 ⏐ | | | | | | | | | |

 
Figure 4.16 Vertical centerline u-velocity profiles for Re=400 by using clustered mesh 
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Figure 4.17 Horizontal centerline v-velocity profiles for Re=400 by using clustered mesh 
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If the results of clustered and uniform meshes are compared, it is observed that 

both of mesh types converge to the same solution with the same grid sizes. 

However, the number of the iterations to reach a converged solution is 

considerably different. To get a converged solution by using clustered mesh 

requires significantly less iterations than that of uniform mesh as indicated in Table 

4.6. Also, the same results are obtained by using both 161x161 and 129x129 

clustered meshes, whereas 161x161 clustered mesh converges by making less 

iteration than the 129x129 clustered mesh. For this reason, it is effective to use 

clustered mesh in the regions with high flow gradients, such as; boundary layers, 

corners where the secondary or tertiary vortices are located. 
 

Table 4.6 Number of Iterations with SIMPLER algorithm on uniform and clustered meshes using 

hybrid and power law schemes for Re=400 

  Grid Number 
Re=400 Size of 

    Iterations 

SIMPLER   Power law 129x129 5381 

SIMPLER   Power law 161x161 6871 

SIMPLER   Hybrid 161x161 6496 

SIMPLER   Power law Clustered 129x129 2491 

SIMPLER   Power law Clustered 161x161 1073 
 

 

4.2.3.3 Results for Re=1000 

 

Re=1000 is an another test case, due to the presence of significant cross transport 

through-out the domain of the flow[3]. The centerline velocity profiles computed 

by different differencing schemes are shown in Figures 4.18 and 4.19. Both 

solutions with power law and hybrid schemes have perfect match with Ghia’s [8] 

solutions whereas results for upwind scheme slightly deviates. Moreover, if the 

results obtained with the upwind scheme at the Reynolds number of 100, 400, 1000 

are considered, it is obvious that the results of upwind scheme deviates far from the 
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Ghia’s [8] solution as the Reynolds number increases. Since the flow in the cavity 

becomes more diffusive as the Reynolds number increases. Therefore, first order 

upwind scheme is not suitable to calculate convection term more precisely. It is 

obvious from Figures 4.18 and 4.19 that power law and hybrid schemes are more 

diffusive than the upwind scheme but hybrid scheme gives slightly better results 

than the power law and this can also be seen in Tables 4.7 and 4.8. 

After reaching the conclusion that the hybrid scheme gives more precise results, the 

results of velocity profiles along the centerline calculated by SIMPLER method 

using hybrid scheme with different grid sizes are compared in Figures 4.20 and 

4.21. Although 129x129 and 161x161 uniform grids converged to the Ghia’s [8] 

solutions, 161x161 fine grid gives better results. The solution becomes grid 

independent when the grid size is 161x161. However the results, obtained by using 

uniform medium grid sizes such as 61x61, are not close to reference one in the 

literature.  

The velocity profiles along the centerline with SIMPLE and SIMPLER method by 

using hybrid scheme with two different grid sizes are compared in the Figures 4.22 

and 4.23. The results of the velocity profiles with SIMPLE Method are not close to 

Ghia’s [8] solution  when the grid size is 161x161, but as mentioned above 

SIMPLER method on grid size 161x161 is in excellent agreement with the Ghia’s 

[8] results. As the grid size increases from 161x161 to 257x257, SIMPLE method 

gives better accuracy. The number of iterations required to obtain a converged 

solution in the SIMPLE method is larger than the one required for SIMPLER 

method. This is not only time consuming but also creates more computational load. 
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Figure 4.18 Vertical centerline u-velocity profiles for Re=1000 with different schemes 
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Figure 4.19 Horizontal centerline v-velocity profiles for Re=1000 with different schemes 
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Figure 4.20 Vertical centerline u-velocity profiles for Re=1000 with different grid sizes 
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Figure 4.21 Horizontal centerline v-velocity profiles for Re=1000 with grid sizes 
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Figure 4.22 Vertical centerline u-velocity profiles for Re=1000 with different algorithms 
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Figure 4.23 Horizontal centerline v-velocity profiles for Re=1000 with different algorithms 
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The extrema points of the velocity profiles, shown in Figures 4.18 through 4.23, are 

tabulated in the Table 4.7. The extrema values for different methods, different 

schemes and different grid sizes can be compared with the results of Ghia [8], 

Bruneau and Jouron [20], Vanka [24] and Soh [10]. 

It is obvious from Table 4.7 that the result of SIMPLER method by using hybrid 

scheme on 161x161 grid size gives the best result. 

 
Table 4.7 Extrema of velocity profiles along centerlines 

for the lid-driven square cavity at Re=1000 

 Grid Extrema of velocity profiles along the certerlines 

Re=1000 Size 

  

      

Ghia, Ghia and Shin [8] 257x257 -0,3829 0,1719 0,3709 0,1563 -0,5155 0,9063 

Bruneau and Jouron [20] - -0,3764 0,1602 0,3665 0,1523 -0,5208 0,9102 

Vanka  [28] - -0,3798 0,168 0.3669 0,1563 0,5186 0,9102 

Soh [10] - -0,372 0,185 - - - - 

SIMPLE  Hybrid 161x161 -0,3133 0,1698 0,2996 0,1509 -0,4535 0,8994 

SIMPLE  Hybrid 257x257 -0,3504 0,1765 0,3375 0,1569 -0,4858 0,9020 

SIMPLER  Power law 161x161 -0,3631 0,1761 0,3526 0,1635 -0,5053 0,9057 

SIMPLER  Hybrid 129x129 -0,3716 0,1732 0,3621 0,1575 -0,5086 0,9055 

SIMPLER  Hybrid 161x161 -0,3798 0,1761 0,3693 0,1572 -0,5161 0,9120 
 

 

Table 4.8 indicates the location of primary and secondary vortices. Although the 

velocity profiles calculated by SIMPLE method does not perfectly match with 

Ghia’s [8] results, the location of centers of primary and secondary bottom right 

vortices obtained by SIMPLE method is in agreement with Ghia’s [8] results and 

other references. The SIMPLE method is not effective in observing the location of 

secondary bottom right vortex. The center of the secondary bottom right vortex, 

which is obtained by the SIMPLE method, is more close to bottom right corner 

than the SIMPLER method. Therefore, the strength of the secondary bottom right 

vortex observed with SIMPLE method is smaller than the SIMPLER method. On 

minu miny maxv maxx minv minx
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the other hand, the location centers of the vortices, which are obtained by the 

SIMPLER, are identical to the results in the literature whether differencing scheme 

is power law or hybrid. If the results in the literature are considered, only Ghia [8] 

observed a tertiary vortex at the bottom right, whereas only Bruneau and Jouron 

[20] could obtain secondary top left and tertiary bottom left vortex by using 

256x256 mesh. The spaces in the cavity occupied by the vortices evaluated by 

SIMPLER method are same as the ones in the literature. 

 
Table 4.8 Location of the centers of the vortices for the lid-driven square cavity at Re=1000 

 Grid Primary vortex 
Secondary 

vortex 
Secondary 

vortex 
Re=1000 Size  Bottom right Bottom left 

  Location (x,y) Location (x,y) Location (x,y) 

Ghia, Ghia and Shin [8] 129x129 (0.5313,0.5625) (0.8594,0.1094) (0.0859,0.0781)

Schreiber and Keller [7] 141x141 (0.5286,0.5643) (0.8643,0.1071) (0.0857,0.0714)

Bruneau and Jouron [20] 256x256 (0.5313,0.5586) (0.8711,0.1094) (0.0859,0.0820)

Vanka  [28] 256x256 (0.5313,0.5664) (0.8672,0.1133) (0.0820,0.0781)

Vanka  [28] 64x64 (0.5438,0.5625) (0.8625,0.1063) (0.0750,0.0831)

Gupta and Kalita [4] 81x81 (0.5250,0.5625) (0.8625,0.1125) (0.0875,0.0750)

Hou et. All [30]  (0.5333,0.5647) (0.8667,0.1137) (0.0902,0.0784)

SIMPLE  Power law 161x161 (0.5358,0.5703) (0.8686,0.1150) (0.0786,0.0704)

SIMPLE  Hybrid 161x161 (0.5347,0.5711) (0.8677,0.1157) (0.0780,0.0700)

SIMPLE  Hybrid 257x257 (0.5326,0.5677) (0.8661,0.1135) (0.0808,0.0742)

SIMPLER  Power law 161x161 (0.5333,0.5631) (0.8661,0.1119) (0.0818,0.0783)

SIMPLER  Hybrid 129x129 (0.5321,0.5660) (0.8655,0.1131) (0.0827,0.0768)

SIMPLER  Hybrid 161x161 (0.5313,0.5683) (0.8641,0.1124) (0.0841,0.0775)

 Grid 
Secondary 

vortex Tertiary vortex Tertiary vortex 

Re=1000 Size Top Left Bottom right Bottom left 

  Location (x,y) Location (x,y) Location (x,y) 
Ghia, Ghia and Shin [8] 129x129 - (0.9922,0.0078) - 
Bruneau and Jouron [20] 256x256 (0.0039,1.0000) - (0.0039,0.0039)
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In conclusion, the most accurate result with the SIMPLER algorithm is obtained 

for 161x161 uniform grid by using the hybrid differencing scheme. With SIMPLE 

method, the most accurate solution is obtained when the uniform grid size is 

257x257 by using the hybrid differencing scheme. The streamlines obtained for 

these two results are illustrated in Figures 4.24 and 4.26. Also the Figures 4.25 and 

4.27 show the right and left bottom corners more closely to compare how much 

space is occupied by the secondary vortices in the left and right bottom of the 

cavity. 
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Figure 4.24 The streamlines for Re=1000 on a 161x161 mesh by using the SIMPLER  

algorithm with the hybrid differencing scheme 
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Figure 4.25 The streamlines at bottom right and left corners for Re=1000 on a 161x161 mesh  

by using the SIMPLER algorithm with the hybrid differencing scheme 
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Figure 4.26 The streamlines for Re=1000 on a 257x257 mesh by using the SIMPLE  

algorithm with the hybrid differencing scheme 
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Figure 4.27 The streamlines at bottom right and left corners for Re=1000 on a 257x257 mesh  

by using SIMPLE algorithm with the hybrid differencing scheme 

 

When the space occupied by the left and right bottom vortices are checked from 

Figures 4.25 and 4.26, it is obvious that the space occupied in the solution by the 

SIMPLE method on 257x257 grid with hybrid scheme is larger than the one for the 

SIMPLER method. So the strength of the bottom left and right vortices of the 

SIMPLE method using the hybrid scheme with 257x257 grid size is higher. 

Velocity profiles along centerlines with SIMPLER method using power law scheme 

both with clustered and uniform mesh are shown in Figures 4.28 and 4.29. It can be 
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observed from Figures 4.28.and 4.29; the results both with clustered and uniform 

mesh by the SIMPLER algorithm using the power law scheme on a 161x161 grid 

are identical to each other. The result obtained by the SIMPLER algorithm on a 

129x129 clustered mesh with the same scheme is also close to the other two results. 

However when the number of iterations is considered, it is seen from Table 4.9 that 

using clustered mesh does not reduce computational effort at Re=1000. Results on 

clustered mesh at Re=100 and 400 take less number of iterations than using 

uniform mesh and it is less time consuming. However when the Reynolds number 

increased to 1000, using clustered mesh can not change the number of iterations 

required to reach the converged solution, as can be observed from Table 4.9. When 

the Reynolds number is 100 or 400, the strength of the bottom left and right 

vortices are smaller and the space occupied by these vortices are less than the 

corresponding ones at Re=1000. For this reason; there is no need to use clustered 

mesh near the boundaries or near the corners to obtain the vortices at the bottom 

right and left corners.  

 
Table 4.9 Number of iterations with SIMPLER algorithm on uniform and clustered meshes  

using hybrid and power law schemes for Re=1000 

 Grid # 
Re=1000 Size of 

  Iterations 

SIMPLER   Hybrid 129x129 304 

SIMPLER   Hybrid 161x161 418 

SIMPLER   Power law 161x161 400 

SIMPLER   Power law Clustered 129x129 316 

SIMPLER   Power law Clustered 161x161 506 
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Figure 4.28 Vertical centerline u-velocity profiles for Re=1000  by using clustered mesh 
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Figure 4.29 Horizontal centerline v-velocity profiles for Re=1000 by using clustered mesh 
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The strength of these vortices at Re=1000 is high enough to observe it by using a 

uniform mesh. Calculations are carried out on both 129x129 and 161x161 meshes 

and both with clustered and uniform mesh by SIMPLER method. For both mesh 

sizes, the number of iterations required on uniform meshes is slightly less than the 

number of iterations required on clustered mesh. 

 

4.2.3.5 Convergence Data and CPU Times 

 

The converged solutions are obtained on a PC with double Xeon 2.4 hyper 

threading processor and 1GB RAM. The converged solution to a residual value of 

10-5 with SIMPLER method by using hybrid differencing scheme for Re=100 is 

obtained in about 18 minutes, for Re=400 in about 28 minutes and for Re=1000 in 

about 37 minutes of computation time. In Table 4.9, the convergence data and CPU 

times for different Reynolds number on different grid arrangements with different 

grid sizes by using Hybrid differencing scheme are presented. 

A five order drop in magnitude of velocity residuals is sufficient to achieve 

converged solution [3]. As expected, the convergence to a lower residual value 

requires larger number of iterations.  

It is obvious from the Table 4.9 that the converged solution for larger Reynolds 

numbers is achieved by larger number of iterations. 

When clustered meshes are used to converge to a residual larger than 10-5 on same 

grid size with same algorithm, not only the convergence rates, but also number of 

iterations, are noticeably increased. However when the order of residual is decreased 

to 10-6 or 10-7, using clustered meshes reduce the computational effort and take less 

number of iterations as presented in Tables 4.3 and 4.6.  

For a given Reynolds and grid size, the SIMPLE algorithm requires more CPU time 

than the SIMPLER algorithm to converge to the same residual. Although the each 

iteration step of SIMPLER algorithm has more computational load than the 

SIMPLE algorithm, each iteration step SIMPLER algorithm converges more 

accurate result than the SIMPLE algorithm’s each iteration step. Therefore, 
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SIMPLER algorithm converges to accurate result than SIMPLE algorithm. The fact 

that SIMPLE algorithm requires extra effort to iterate on the velocity correction step 

than the SIMPLER algorithm. 

Although the SIMPLE algorithm makes at least 200000 iterations in about 300 

minutes for Re=100, at least 200000 iterations in about 400 minutes for Re=400 and 

at least 200000 iterations in about 700 minutes for Re=1000, it can not reach to the 

residual value of 10-3. 

 
Table 4.9 Convergence data and CPU Times for the lid-driven cavity problem up to Re=1000 

  Reynolds Grid Residual CPU Time Iteration 
Algorithm and Scheme Number Size   (min)   

Types       ≈   
SIMPLE  Hybrid  100 161x161 1,E-03 302 ≈200000 
SIMPLER  Hybrid  100 129x129 1,E-03 18 29 
SIMPLE  Hybrid Clustered 100 161x161 1,E-03 271 ≈200000 
SIMPLER  Hybrid Clustered 100 129x129 1,E-03 19 37 
SIMPLER  Hybrid  100 129x129 1,E-05 43 346 

SIMPLER  Hybrid Clustered 100 129x129 1,E-05 44 1440 

SIMPLE  Hybrid  400 161x161 1,E-03 422 ≈200000 
SIMPLER  Hybrid  400 161x161 1,E-03 28 40 
SIMPLE Hybrid Clustered 400 161x161 1,E-03 355 200000 
SIMPLER  Hybrid Clustered 400 161x161 1,E-03 71 35 
SIMPLER  Hybrid  400 161x161 1,E-05 134 281 

SIMPLER  Hybrid Clustered 400 161x161 1,E-05 209 322 

SIMPLE  Hybrid  1000 257x257 1,E-03 755 ≈200000 
SIMPLER  Hybrid  1000 129x129 1,E-03 34 53 
SIMPLER  Hybrid  1000 129x129 1,E-05 54 234 
SIMPLER  Hybrid Clustered 1000 129x129 1,E-05 59 246 
SIMPLER  Hybrid  1000 161x161 1,E-03 37 53 
SIMPLE  Hybrid Clustered 1000 257x257 1,E-03 617 ≈200000 
SIMPLER  Hybrid Clustered 1000 161x161 1,E-03 81 57 
SIMPLER  Hybrid  1000 161x161 1,E-05 83 234 
SIMPLER  Hybrid Clustered 1000 161x161 1,E-05 186 327 
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4.2.3.5 Results for Re=5000 

 

A rather difficult test case is obtained as the Reynolds number is increased to 5000. 

The velocity profiles along the vertical and horizontal centerlines of the square 

cavity, which are obtained by using SIMPLE algorithm, are shown in Figures 4.30 

and 4.31. Moreover the results of the velocity profiles with the SIMPLER algorithm 

are illustrated in Figures 4.32 and 4.33. These results, which are shown in Figures 

from 4.30 to 4.33, are obtained by using both SIMPLE and SIMPLER algorithms 

on three different grid sizes by using hybrid and power law differencing schemes. 

The results by using hybrid and power law differencing schemes are nearly identical 

to each other when the same grid size is used on either SIMPLE or SIMPLER 

algorithm. However for all calculations, the hybrid scheme gives slightly better 

results.  

Results of velocity profiles with the SIMPLE algorithm on a 161x161 uniform grid 

deviates from Ghia’s [8] results. As the grid size is increased to 257x257, the 

accuracy of the SIMPLE method becomes more acceptable but they are still 

significantly different from Ghia’s [8] results. Also, results on a 299x299 uniform 

grid are slightly better than the results on a 257x257 mesh.  

The change between the results for 299x299 and 257x257 uniform meshes is not so 

significant. The solution with SIMPLE algorithm becomes grid independent when 

the grid size is nearly 300x300. 

Unlike the SIMPLE algorithm, the results of the velocity profiles with the 

SIMPLER algorithm on a 161x161 uniform grid using both power law and hybrid 

schemes are close to the results on 257x257 and 291x291 uniform meshes. The 

closest result to Ghia’s [8] solution is obtained by the SIMPLER algorithm by using 

hybrid scheme when the grid size is 257x257. 

When the SIMPLE and SIMPLER algorithms on a uniform grid size of 257x257 

are compared, it is obvious that the SIMPLER method is more close to the Ghia 

[8] results as observed from Figures 3.34 and 3.35. In addition to this, the results of 

SIMPLE algorithm are significantly different from Ghia’s [8] solution. 
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Figure 4.30 Vertical centerline u-velocity profiles for Re=5000 using the SIMPLE algorithm 
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Figure 4.31 Horizontal centerline v-velocity profiles for Re=5000 using the SIMPLE algorithm 
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Figure 4.32 Vertical centerline u-velocity profiles for Re=5000 by using the SIMPLER algorithm 
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Figure 4.33 Horizontal centerline v-velocity profiles for Re=5000 by using the SIMPLER algorithm 



 

80

y

u

0 0.25 0.5 0.75 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ghia 257x257

SIMPLER 257x257 Hybrid Scheme

SIMPLER 257x257 Power Law Scheme

SIMPLE 257x257 Hybrid Scheme

SIMPLE 257x257 Power Law Scheme

Frame 001 ⏐ 30 Mar 2006 ⏐ | | | |Frame 001 ⏐ 30 Mar 2006 ⏐ | | | |

 
Figure 4.34 Vertical centerline u-velocity profiles for Re=5000 both by using the SIMPLE and  

SIMPLER algorithms on a 257x257 grid size 
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Figure 4.35 Horizontal centerline v-velocity profiles for Re=5000 both by using the SIMPLE and  

SIMPLER algorithms on a 257x257 grid size 
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Table 4.11 Extrema of velocity profiles along centerlines  

for the lid-driven square cavity at Re=5000 

  Grid Extrema of velocity profiles along the certerlines 

Re=5000 Size 

    

      

Ghia, Ghia and Shin [8] 257x257 -0,4364 0,0703 0,4365 0,0781 -0,5541 0,9531 

Bruneau and Jouron [20] - -0,4359 0,0664 0,4259 0,0762 -0,5675 0,9590 

Soh [10] 161x161 -0,4150 0,0810 - - - - 

SIMPLE  Power Law 257x257 -0,3020 0,0706 0,2750 0,0824 -0,4277 0,9529 

SIMPLE  Power Law 299x299 -0,3190 0,0707 0,2931 0,0808 -0,4460 0,9529 

SIMPLE  Hybrid 257x257 -0,3217 0,0667 0,2772 0,0824 -0,4262 0,9529 

SIMPLE  Hybrid 299x299 -0,3020 0,0673 0,2964 0,0774 -0,4448 0,9529 

SIMPLER  Power Law 201x201 -0,3521 0,0804 0,3370 0,0955 -0,5004 0,9548 

SIMPLER  Power Law 257x257 -0,3717 0,0784 0,3597 0,0902 -0,5190 0,9569 

SIMPLER  Power Law 291x291 -0,3524 0,0804 0,3376 0,0955 -0,5008 0,9548 

SIMPLER  Hybrid 201x201 -0,3555 0,0804 0,3440 0,0905 -0,5048 0,9548 

SIMPLER  Hybrid 257x257 -0,3778 0,0784 0,3697 0,0902 -0,5247 0,9569 

SIMPLER  Hybrid 291x291 -0,3560 0,0804 0,3449 0,0905 -0,5054 0,9548 
 

 

A good convergence to the steady laminar solution with the SIMPLE method is 

observed for Re=100 and 400 on a uniform 161x161 grid and for Re=1000 on a 

257x257 uniform grid. However, when the Reynolds number is increased to 5000, 

the solutions with the SIMPLE algorithm are in a rather poor agreement with 

Ghia’s [8] result. Not only the difference between the SIMPLE and SIMPLER 

algorithms is shown in Figures 4.30, 4.31, 4.34 and 4.35, but also the difference at 

the extrema points of the velocity profiles passing through the geometric center of 

the square cavity is shown in Table 4.11. It is clear that local maxima and minima 

values of the velocity profiles with the SIMPLE method deviate from Ghia’s [8] 

results.   

minu miny maxv maxx minv minx
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When solutions of the SIMPLER algorithm for Re=100 on a uniform 129x129 grid, 

for Re=400 and 1000 on a uniform 161x161 grid, and for Re=5000 on a uniform 

257x257 grid is examined, it can be mentioned that these steady laminar converged 

results exhibit perfect match with Ghia’s [8] results. Although the grid size of 

257x257 is very fine for a Reynolds number of 5000, a stable converged solution is 

obtained by SIMPLER method. 

The location of the centers of the primary and secondary bottom right and left 

vortices are presented in Table 4.12. These results are obtained with the SIMPLE 

and SIMPLER algorithms using hybrid and power law schemes on different grid 

sizes. The data available in the literature is also presented in this table. The solutions 

with SIMPLER algorithm exhibit a good match with the results in the literature, 

whereas the results of SIMPLE algorithm are not close to the results in the 

literature. 

Up to a Reynolds number of 5000, only primary, secondary bottom right and 

secondary bottom left vortices are observed. However, at a Reynolds number of 

5000, tertiary vortex at bottom right and secondary vortex at top left are firstly 

visible. The locations of centers of these vortices, which are indicated in Table 

4.12(b), are identical to the results in the literature. When Tables 4.12a and Table 

4.12b are compared, the location centers of the primary, secondary bottom right 

and secondary bottom left vortices are quite good agreement with the results in the 

literature than the location of centers of the secondary top left and tertiary bottom 

right and left vortices. 

Although a tertiary vortex at bottom left is obtained by Ghia [8], Bruneau and 

Jouron [20], Gupta and Kalita [4] and Barragy and Carey [31], this vortex can not be 

observed by SIMPLE and SIMPLER algortihms in our calculation, and by Hou et. 

All [30]. 
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Table 4.12 Center locations of the vortices for the lid-driven square cavity at Re=5000 

(a) Primary, Secondary bottom right and left vortices 

  Grid Primary vortex Secondary vortex  Secondary vortex 
Re=5000 Size   Bottom right Bottom left 

    Location (x,y) Location (x,y) Location (x,y) 

Ghia, Ghia and Shin [8] 257x257 (0.5117,0.5352) (0.8086,0.0742) (0.0703,0.1367) 

Schreiber and Keller [7] * 161x161 (0.5188,0.5375) (0.8188,0.0750) (0.0857,0.0714) 

Bruneau and Jouron [20] 256x256 (0.5156,0.5313) (0.8301,0.0703) (0.0664,0.1484) 

Vanka  [28] 64x64 (0.5125,0.5313) (0.8500,0.0813) (0.0625,0.1563) 

Gupta and Kalita [4] 161x161 (0.5125,0.5375) (0.8000,0.0750) (0.0750,0.1313) 

Hou et. All [30] - (0.5176,0.5373) (0.8078,0.0745) (0.0784,0.1313) 

Barragy and Carey [31] - (0.5113,0.5283) (0.8041,0.0725) (0.0725,0.1370) 

SIMPLE  Power Law 257x257 (0.5227,0.5352) (0.8416,0.0740) (0.0768,0.1358)

SIMPLE  Power Law 299x299 (0.5217,0.5338) (0.8387,0.0736) (0.0743,0.1359)

SIMPLE  Hybrid 257x257 (0.5218,0.5348) (0.8322,0.0730) (0.0779,0.1334)

SIMPLE  Hybrid 299x299 (0.5207,0.5332) (0.8297,0.0732) (0.0773,0.1329)

SIMPLER  Power Law 201x201 (0.5221,0.5340) (0.8398,0.0726) (0.0713,0.1471) 

SIMPLER  Power Law 257x257 (0.5202,0.5341) (0.8261,0.0702) (0.712,0.1462) 

SIMPLER  Power Law 291x291 (0.5221,0.5342) (0.8396,0.0726) (0.0714,0.1471) 

SIMPLER  Hybrid 201x201 (0.5207,0.5346) (0.8238,0.0694) (0.0696,0.1521) 

SIMPLER  Hybrid 257x257 (0.5191,0.5335) (0.8105,0.0653) (0.0690,0.1521) 

SIMPLER  Hybrid 291x291 (0.5206,0.5346) (0.8236,0.0694) (0.0696,0.1521) 
* The results are obtained at Re=4000     
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Table 4.12 Center locations of the vortices for the lid-driven square cavity at Re=5000 

(b) Secondary top left, Tertiary bottom right and left vortices 

  Grid Secondary vortex Tertiary vortex  Tertiary vortex 

Re=5000 Size Top Left Bottom right Bottom left 
    Location (x,y) Location (x,y) Location (x,y) 
Ghia, Ghia and Shin [8] 257x257 (0.0625,0.9102) (0.9805,0.0195) (0.0117,0.0078) 

Bruneau and Jouron [20] 256x256 (0.0625,0.9102) (0.9668,0.0293) (0.0117,0.0098) 

Gupta and Kalita [4] 161x161 (0.0688,0.9125) (0.9750,0.0188) (0.0063,0.0063) 

Hou et. All [30] - (0.0667,0.9059) - - 

Barragy and Carey [31] - (0.0635,0.9092) (0.9786,0.0188) (0.0079,0.0079) 

SIMPLE  Power Law 257x257 (0.0437,0.9000) (0.9834,0.0136) - 

SIMPLE  Power Law 299x299 (0.0463,0.9029) (0.9805,0.0120) - 

SIMPLE  Hybrid 257x257 (0.0438,0.9004) (0.9846,0.0137) - 

SIMPLE  Hybrid 299x299 (0.0473,0.9034) (0.9835,0.0123) - 

SIMPLER  Power Law 201x201 (0.0565,0.9087) (0.9723,0.0238) - 

SIMPLER  Power Law 257x257 (0.0592,0.9122) (0.9657,0.0289) - 

SIMPLER  Power Law 291x291 (0.0567,0.9087) (0.9723,0.0239) - 

SIMPLER  Hybrid 201x201 (0.0578,0.9106) (0.9636,0.0333) - 

SIMPLER  Hybrid 257x257 (0.0601,0.9125) (0.9636,0.0333) - 

SIMPLER  Hybrid 291x291 (0.0579,0.9106) (0.9623,0.0327) - 
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Figure 4.36 The streamlines for Re=5000 on a 257x257 mesh by using the SIMPLER algorithm  

with the hybrid differencing scheme 
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Figure 4.37 The streamlines for Re=5000 on a 257x257 mesh by using the SIMPLER algorithm  

with the hybrid differencing scheme 

(a) at bottom right corner 
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Figure 4.37 The streamlines for Re=5000 on 257x257 mesh by using the SIMPLER algorithm  

with the hybrid differencing scheme 

(b) at bottom left corner 
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Figure 4.37 The streamlines for Re=5000 on 257x257 mesh by using the SIMPLER algorithm  

with the hybrid differencing scheme 

(c) at top left corner 
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Figure 4.38 The streamlines for Re=5000 on a 257x257 mesh by using the SIMPLE algorithm 

with the hybrid differencing scheme 
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Figure 4.39 The streamlines for Re=5000 on 257x257 mesh by using the SIMPLE algorithm 

with the hybrid differencing scheme 

(a) at bottom right corner 
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Figure 4.39 The streamlines for Re=5000 on 257x257 mesh by using the SIMPLE algorithm 

with the hybrid differencing scheme 

(b) at bottom left corner 
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Figure 4.39 The streamlines for Re=5000 on 257x257 mesh by using the SIMPLE algorithm 

with the hybrid differencing scheme 

(c) at top left corner 

 

The solution with the SIMPLER algorithm using the hybrid scheme on a uniform 

257x257 grid size is the most closest solution to the results available in the literature 

for Re=5000. The streamlines of this solution is illustrated in Figure 4.36 and the 
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vortex at top left, vortex at bottom left and two vortices at bottom right are shown 

in Figures 4.37a, 4.37b and 4.37c, respectively. Figures 4.38, 4.39a, 4.39b and 4.39c 

shows the streamline plots obtained by the SIMPLE method using the hybrid 

scheme on a uniform 257x257 grid size. When the  results for SIMPLE and 

SIMPLER algorithms by using same scheme on same gird size are compared in 

Figures 4.36 and 4.38, it can be observed that the strength of vortices calculated by 

the SIMPLER algorithm is higher and the space occupied by secondary and tertiary 

vortices are larger. Also tertiary bottom right   vortex with the SIMPLER algorithm 

is quite visible. However, the same vortex obtained by the SIMPLE algorithm is 

just brought into view. 

In addition to these, the calculations are carried on different clustered meshes both 

with SIMPLE and SIMPLER algorithm by using power law and hybrid schemes. 

These results, are compared with the results obtained by uniform meshes of the 

same sizes, are shown in Figures 4.40 and 4.41 according to their velocity profiles 

along the centerlines of the cavity. Moreover number of iterations with respect to 

velocity residuals, which are required to obtain converged solutions on uniform and 

clustered meshes by using the same methods, schemes and grid sizes, are presented 

and compared in Table 4.12. 

Although the grid is clustered near the boundaries that leads to clustered mesh 

generation at bottom left corner, tertiary vortex at bottom left is also not visible.  

The other vortices are visible and locations of their centers are the same as the 

results on uniform meshes for the methods and schemes. 

In addition to this, it is clear from Table 4.12 that for the SIMPLER algorithm, to 

reach the same residual for a 257x257clustered mesh takes quite less iterations than 

for a 257x257 uniform mesh. Also, the velocity residuals, which are obtained by 

257x257 clustered meshes using power law and hybrid schemes after 20000 

iterations, are slightly less than the velocity residuals obtained by 257x257 uniform 

meshes in the case of SIMPLE method. Unlike for the Reynolds numbers of 100 

and 400, replacing a uniform mesh with a clustered mesh does not make significant 

change in number of iterations and computational time. 
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Figure 4.40 Vertical centerline u-velocity profiles for Re=5000 with the SIMPLE and  

SIMPLER algorithm by using clustered and uniform meshes 
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Figure 4.41 Horizontal centerline v-velocity profiles for Re=5000 with the SIMPLE and  

SIMPLER algorithm by using clustered and uniform meshes 
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Table 4.12 Number of Iterations with SIMPLER algorithm on uniform and clustered meshes  

using hybrid and power law schemes for Re=5000 

  Grid Number Error 
Re=5000 Size of u and v 

    Iterations less than 

SIMPLER   Hybrid 257x257 470 1x10-5 

SIMPLER   Hybrid Clustered 257x257 438 1x10-5 

SIMPLER   Power Law 257x257 494 1x10-5 

SIMPLER   Power Law Clustered 257x257 426 1x10-5 

SIMPLE   Hybrid 299x299 20000 0,694x10-2 

SIMPLE   Hybrid Clustered 299x299 20000 0,665x10-2 

SIMPLE   Power Law 299x299 20000 0,643x10-2 

SIMPLE  Power Law Clustered 299x299 20000 0,623x10-2 
 

 

4.2.3.6 Results for Re=10000 

 

When the Reynolds number is increased to 10000, the flow inside a lid-driven 

square cavity becomes a more difficult test case to investigate. Since more complex 

flow interactions, which can be highly unsteady, are guessed. In addition to this, 

numerical uncertainties and inconsistencies start to take place on which many 

researchers have been agreed. It is explained by Huser [18] that the Reynolds 

number is directly proportional to the driving shear force in the lid-driven cavity 

influencing the dynamics of recirculating flows. As the Reynolds number increases, 

high gradients in the shear stress distribution near the solid boundaries increase the 

effects of viscosity which lead to increase the local curvature of the mean velocity 

profile [18]. Small eddies are developed at the two lower corners and also at the 

upper left corner. This development makes the laminar mean velocity of the 

primary vortex unstable and interaction of these eddying motions with the mean 

shear causes turbulence [3]. Reynolds number 10000 is limiting Reynolds number at 

which turbulence starts. The translation to turbulence is the result of the 

development of these small eddies. However, in early researches, Bye [32] found 
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out that the transition Reynolds number is between 400 and 600.  Also Kumagai 

[33] estimates the transition at lower Reynolds number than Bye’s [32].  

Ghia [8] obtained a converged steady-state solution at a Reynolds number of 10000 

by using the QUICK scheme on a 82x82 grid. Most recent study by Huser [18] is 

also able to get steady-state results for Re=10000. Hayase [15] mentioned that the 

flow inside the lid-driven cavity also converges to a steady-state solution at 

Re=10000. Although Wirogo’s [3] result with a 322x322 multigrid solution using the 

power law scheme is not good agreement with Ghia’s [8] fine grid solution, steady-

state converged solution with Flux Corrected method using QUICK scheme is 

obtained on 82x82 grid at Re=10000. 

The centerline velocity profiles with SIMPLE and SIMPLER algorithm on fine 

grids are shown in Figures 4.42 and 4.43. Although hybrid scheme is used in all 

calculations presented in these figures, power law scheme results are identical to the 

results which are obtained by using hybrid scheme. It is clear that the both power 

law and hybrid scheme solutions are so far from the Ghia’s [8] solutions, since both 

schemes are too diffusive to calculate high convection recirculating flow properly at 

high Reynolds number 10000. Therefore stability of the numerical scheme becomes 

more important at these high Reynolds numbers. 

Solution of SIMPLER method on a uniform 257x257 grid and solutions of 

SIMPLE method both with uniform and clustered 299x299 meshes are incorrect 

when they are compared with the Ghia’s [8] results but converged solutions. Since 

the formation of corner vortices causes transition, the flow becomes highly 

unsteady and it can not be properly evaluated by using steady-state numerical 

calculations. 

Ghia’s [8] results at Re=5000 and 1000 are given in Figures 4.42 and 4.43. Both 

results are close to each other that the change in centerline velocity profiles is not 

so significant above a Reynolds number of 5000. 
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Figure 4.42 Vertical centerline u-velocity profiles for Re=10000 
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Figure 4.43 Horizontal centerline v-velocity profiles for Re=10000 
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Although with respect to centerline velocity profiles converged results of 

SIMPLER method are far from the results in the literature, results are closer when 

the centerline locations of the vortices are considered. The center locations of 

primary and secondary bottom right and left vortices are shown in Table 4.14a. 

While center locations of secondary vortices at top left and tertiary vortices at 

bottom right and left are presented in Table 4.14b. 

While the tertiary vortex at bottom left is not visible at Re=5000, it can be obtained 

when the Reynolds number increased to 10000. In addition to this, tertiary vortex at 

bottom left becomes quite visible. 

The streamlines obtained by SIMPLER method using hybrid scheme on a 257x257 

uniform gird are presented in Figure 4.44. The top left, bottom right and left 

corners are illustrated in Figure 4.45a, 4.45b and 4.45c to visualize how much space 

is dominated by secondary and tertiary vortices at these corners more precisely.  

Since it is mentioned previously that the results of power law and hybrid scheme 

are nearly identical, obtained streamlines and the strength of the vortices with both 

schemes are close to each other. 
 

Table 4.14 Center locations of the vortices  

for the lid-driven square cavity at Re=10000 

(a) Primary, Secondary bottom right and left vortices 

  Grid Primary vortex 
Secondary 

vortex  
Secondary 

vortex  
Re=10000 Size   Bottom right Bottom left 

    Location (x,y) Location (x,y) Location (x,y) 

Ghia, Ghia and Shin [8] 257x257 (0.5117,0.5333) (0.7656,0.0586) (0.0586,0.1641)

Schreiber and Keller [7] 180x180 (0.5140,0.5307) (0.7656,0.0615) - 

Bruneau and Jouron [20] 256x256 (0.5156,0.5234) (0.8945,0.0820) (0.0781,0.1133)

Gupta and Kalita [4] 161x161 (0.5125,0.5313) (0.7813,0.0625) (0.0623,0.1564)

Barragy and Carey [31]  - (0.5113,0.5302) (0.7747,0.0588) (0.0588,0.1623)

SIMPLER  Hybrid 257x257 (0.5194,0.5297) (0.8360,0.0738) (0.0561,0.1771)

SIMPLER  Power Law 257x257 (0.5207,0.5286) (0.8680,0.0788) (0.0622,0.1625)
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Figure 4.44 The streamlines for Re=10000 on a 257x257 mesh by using the SIMPLER  

algorithm with the hybrid differencing scheme 
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Figure 4.45 The streamlines for Re=10000 on a 257x257 mesh by using the SIMPLER  

algorithm with the hybrid differencing scheme 

(a) at bottom right corner 
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Figure 4.45 The streamlines for Re=10000 on a 257x257 mesh by using SIMPLER  

algorithm with the hybrid differencing scheme 

(b) at bottom left corner 
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Figure 4.45 The streamlines for Re=10000 on a 257x257 mesh SIMPLER  

algorithm with the hybrid differencing scheme 

(c) at top left corner 
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Table 4.14 Center locations of the vortices for the lid-driven square cavity at Re=10000 

 (b) Secondary top left, Tertiary bottom right and left vortices 

  Grid 
Secondary 

vortex  Tertiary vortex  Tertiary vortex 
Re=10000 Size Top Left Bottom right Bottom left 

    Location (x,y) Location (x,y) Location (x,y) 

Ghia, Ghia and Shin [8] 257x257 (0.0703,0.9141) (0.9336,0.0625) (0.0156,0.0195)

Bruneau and Jouron [20] 256x256 (0.0664,0.9141) - - 

Gupta and Kalita [4] 161x161 (0.0688,0.9188) (0.9563,0.0375) (0.0125,0.0187)

Barragy and Carey [31]  - (0.0702,0.9108) (0.9351,0.0675) (0.0173,0.0201)

SIMPLER  Hybrid 257x257 (0.0632,0.9174) (0.9491,0.0753) (0.0392,0.0447)

SIMPLER  Power Law 257x257 (0.0628,0.9161) (0.9679,0.0365) (0.0334,0.0374)
 

 

4.3 Flows over a Backward-Facing Step 

 

The flow over a two-dimensional backward-facing step is second classical well 

studied test case problem for evaluating the numerical methods for the simulation 

of viscous incompressible recirculating flows.    

 

4.3.1 Definition of the Problem Characteristics 

 

A fully developed flow through the channel having a sudden expansion leads the 

laminar separation. The channel is long enough in order to have a fully developed 

outflow. The sudden expansion results in one or more regions of recirculations 

depending on the Reynolds number of the inflow. Figure 4.46 shows the geometry 

of the flow over a backward-facing step.  

The expansion ratio is defined by: 

hH
H
−

=η                   (4.5) 

where h is the step height, H is the channel height and Lx  is length of the channel. 
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Figure 4.46 Geometry of the flow over a backward-facing step in a channel 

 

The possible recirculating regions are shown in Figure 4.48 whose sizes and 

locations are indicated by the variable x’s. 

  The Reynolds number is this test case is evaluated by: 

ν
HUavg=Re                   (4.6) 

where avgU  is the average inlet velocity. 

At the inlet boundary, a parabolic u-velocity profile is prescribed and v-velocity is 

taken as is zero. 

2)(
))((6

hH
HyyHU

u avg

−

−−
=   Hyhx ≤≤= ,0          (4.7) 

The wall boundary conditions are treated as the lid-driven cavity problem by 

imposing no-slip boundary conditions on the walls of the channel. If the grid points 

are not present on the boundaries, the velocities on the boundaries are calculated by 

simple interpolation and the boundary conditions for velocity become: 

),1(),( jnxujnxu −=  0)2,()1,( =+ iuiu   

0)1,(),( =−+ nyiunyiu                     (4.8) 
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0),2(),1( =+ jvjv  0),()1,( == nyiviv   

0),1(),( =−+ jnxvjnxv                    (4.9) 

 

The length Lx of the channel is taken large enough to make fully developed outflow 

such as hxL 30≥  and  avgU  can be taken as max3
2 UU avg = .  

 

4.3.2 Historical Background of the Backward-Facing Step 

 

Over the last two or three decades; many researchers have proposed and developed 

investigations on the backward-facing step geometry. Armaly et al. [23] reported 

experimental and theoretical investigations of backward-facing step flow. Figure 

4.47 shows the results obtained by laser-doppler measurements of the velocity 

distribution. Armaly et al. [23] summarized the locations of the three recirculation 

regions for Reynolds numbers in the range of 70≤Re≤8000, covering the laminar, 

transitional and turbulent flows. 

Armaly [23] reported that the flow is laminar when Re<1200, transitional when 

1200<Re<6600 and turbulent when Re>6600 and separated flow regions also exist 

approximately at Reynolds numbers higher than 400. The beginning of the 

recirculation region at the upper wall is upstream from the reattachment point of 

the primary recirculating flow region and its end is downstream from it [23]. In the 

study of Armaly [23] the computational and analytical approaches are identical to 

each other up to about Re=500 and Re=600 and expansion ratio is taken as 1.94. 

On the other hand, expansion ratio is taken as 2.0 in the most of the researches as 

well as in present study.  Raithby, Strong and Hackman [24] reported numerical 

results with both cartesian and curvilinear meshes by using finite volume method. 

On the other hand, Gartling [25] used finite element method to investigate with 

mesh refinement. The SIMPLE method flow over a backward-facing step is studied 

by Barton [26] using five difference schemes. He compared the accuracy of the 

differencing schemes and tabulated the lower and upper reattachment lengths for 
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different Reynolds numbers. In addition to this, Barton [27] studied the entrance 

effect of the laminar flow by changing the length of the inlet channel and expansion 

ratio in another paper. Barton [27] concluded that the low expansion numbers 

always experience a greater entrance effect after some distance upstream and 

downstream of sudden expansion. However, high expansion ratio has high entrance 

effect near the sudden expansion region. Moreover also using long inlet channel for 

low Reynolds numbers decrease the experimental errors significantly [27]. The 

accurate results are obtained with the SIMPLER algorithm and compared with 

SIMPLEV method which is an improved version of SIMPLE according to their 

convergence rates by Anjorin and Barton [16]. 

In this present study results are compared with the results mentioned in the above 

researches to show the accuracy of the method. 

 

 
Figure 4.47 The experimental results show the locations of the  

detachment and reattachment of the flow at the center of the  

test section for different Reynolds numbers 
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4.3.3 Numerical Results for Flow over Backward-Facing Step 

 

In following sections, the results obtained in this present study are compared with 

the results of mentioned researchers in previous section to evaluate the accuracy of 

the code. While making comparison of the reattachment lengths of the recirculation 

regions, various x’s, are used to illustrate these lengths as shown in the Figure 4.48. 

 
Figure 4.48 Two-Dimensional Backward-Facing Step 

The accuracy and stability of the SIMPLER algorithm are investigated and 

compared for Reynolds numbers of 300, 400, 600 and 800. These Reynolds number 

are selected to restrict the flow to the laminar range until the start of turbulence. 

 

4.3.3.1 Results for Re=300 

 

First, a low Reynolds number of 300, is considered. Results with the SIMPLER 

algorithm and results of Barton [26] using the SIMPLE methodology are presented 
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and compared in Table 4.15. Results of Barton [26] and present study are obtained 

by using different schemes on various grid sizes. It is clear from Table 4.15 that the 

lower reattachment length is dependent on the grid arrangement. 

The hybrid scheme converges for all grid types. However, results of the hybrid 

scheme are not in good arrangement with higher order schemes when coarse grids 

are used. Very fine grids should be used to get accurate results with the hybrid 

scheme as well as the power law scheme. Barton [26] stated that the hybrid scheme 

is dominated by numerical diffusion so that in calculating larger lower reattachment 

length are obtained for coarser grids. However, results obtained by SIMPLER 

algorithm using hybrid scheme are shorter than the results of Barton [26]. 

Moreover, central differencing scheme diverged for coarse grids in the results of 

Barton [26]. However this scheme converged and gave better results when Barton 

[26] used finer grids, such as a 120x50 grid. Converged solution is obtained with the 

SIMPLER algorithm by using central differencing scheme only when the grid size is 

402x62 and the length of channel is 45h. However, this is the worst result that is 

obtianed. 

Results with upwind differencing scheme converge for all grid sizes. However, all 

reattachment lengths are under-predicted when they are compared with the results 

obtained by using the power law and hybrid schemes.  

The reattachment length, calculated by SIMPLER method with upwind, power law 

and hybrid differencing schemes, are smaller than the corresponding results of 

Barton [26]. On the other hand, when the length of the channel increased from 45h 

to 60h without altering the grid sizes and scheme types, it is obvious that the lower 

reattachment lengths increase with increasing of the channel length. Moreover, 

when the number of grid points are increased from 62 to 91 in the y-directions 

while keeping the channel length constant, lower reattachment lengths also increase 

but slightly. It can be concluded that the reattachment length decreases in size with 

grid refinement for low Reynolds numbers. 
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The upper eddy is not visible for Re=300. Moreover, Figures 4.49 and 4.50 show 

the streamline plots for Re=300 with SIMPLER method using hybrid scheme on a 

62x402 mesh when xL=45h.  
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Figure 4.49 Streamlines between x=0 and x=18 for Re=300 with SIMPLER algorithm 

 using hybrid scheme on a 402x62 mesh when xL=45h  

 

Table 4.15 Lower reattachment length x1 for Re=300 

  Grid           

Re=300 Size Upwind
Power 

law Hybrid Central QUICK
              

Barton [26] 15x8 - - 4,00 No Convergence 3,87 

Barton [26] 30x16 - - 3,73 No Convergence 3,68 

Barton [26] 40x20 - - 3,63 No Convergence 3,65 

Barton [26] 80x40 - - 3,49 No Convergence 3,58 

Barton [26] 120x50 - - 3,50 3,56 3,58 

Barton [26] 160x80 - - 3,51 3,53 3,57 

Barton [26] 200x100 - - 3,53 3,57 3,58 

Barton [26] 250x128 - - 3,54 No Convergence - 

SIMPLER(xL=45) 402x62 3.00 3.14  3.17 2.99    

SIMPLER(xL=45) 332x77 3.07 3.19 3.21 No Convergence  

SIMPLER(xL=45) 281x91 3.14 - 3.29 No Convergence  

SIMPLER(xL=60) 402x62 3.04 3.22 3.22 No Convergence  

SIMPLER(xL=60) 332x77 3.17 3.30 3.23 No Convergence  

SIMPLER(xL=60) 281x91      

 



 

104

x

y

0 1 2 3 40

0.5

1

Frame 001 ⏐ 04 Apr 2006 ⏐Frame 001 ⏐ 04 Apr 2006 ⏐

 
Figure 4.50 Streamlines between x=0 and x=4 for Re=300 with SIMPLER algorithm using hybrid 

scheme on a 402x62 mesh when xL=45h  

 

4.3.3.2 Results for Re=400 

 

Another test case is for a Reynolds number of 400. The secondary eddy or upper 

recirculation region is weak but visible on the upper side of the flow. Wirogo [3] 

observed that the exponentional based schemes predict the separation length 

accurately for low Reynolds numbers (Re≤400), but detonates quickly at higher 

Reynolds numbers. Table 4.15 presents not only the published results, but also 

results obtained by SIMPLER algorithm using different schemes on different grid 

sizes. 

When Reynolds number is 400 or above, unfortunately a converged solution can 

not be obtained by using central differencing scheme on a 402x62 grid, on a 332x72 

gird or on a 281x91 grid when 45h or 60h is used as the length of the channel. 

Moreover, it is obvious from Table 4.15 that lower reattachment lengths and upper 

detachment lengths obtained by SIMPLER algorithm using upwind, hybrid and 

power law differencing schemes are smaller than the ones presented in the 

literature. On the other hand, unlike results obtained by using the upwind scheme, 

the upper reattachment lengths obtained by using power law and hybrid schemes 

agrees with the results in the literature. It can be concluded that upwind schemes 

underestimates the lower reattachment length when compared with upper 

detachment length and upper reattachment length than the power law and hybrid 

schemes.  

Furthermore, when the length of channel is increased from 45h to 60h with the 

same grid sizes, all schemes tends to give more acceptable separation lengths.  
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Results on a 332x77 grid are better than the results on a 402x62 grid for all 

schemes. Increasing the number of grid points in the y-direction increases accuracy 

of SIMPLER algorithm and makes it possible to decrease the number of grids in 

the streamwise x-direction from 402 to 332. Using 77 grid points in the y-direction 

is sufficient to predict lower and upper recirculation regions. 

Figures 4.51 and 4.52 contain the streamline for Re=400 with SIMPLER method 

using hybrid scheme on a 62x402 mesh when xL=60h. 

 

 
Table 4.16 Separation lengths and locations for Re=400 

  Grid         
Re=400 Size 

    

    

Marinova, Christov and Marinov [29] 256x64 4,3223 3,9732 5,2018 1,2286 

Thompson and Ferziger [19]  512x128 4.3500 - - - 

Wirogo [3] with FCM 102x22 4,4850 4,5607 4,8752 0,3146 

Wirogo [3] with FCM 102x42 4,4741 4,4764 5,3053 0,8289 

Wirogo [3] with FCM 102x82 4,4697 4,5301 5,3562 0,8261 

Wirogo [3] with Power law 102x22 3,9263 3,4299 4,4740 1,0441 

SIMPLER Hybrid (xL=45) 402x62 3.3868 2.6092 5.5089 2.8997 

SIMPLER Power Law (xL=45) 402x62 3.3650 2.6143 5.4031 2.7939 

SIMPLER Upwind (xL=45) 402x62 3.4642 2.7923 4.5262 1.7339 

SIMPLER Hybrid (xL=60) 402x62 3.6022 3.0280 5.2005 2.1725 

SIMPLER Power Law (xL=60) 402x62 3.7267 3.1093 5.4120 2.3027 

SIMPLER Upwind (xL=60) 402x62     

SIMPLER Hybrid (xL=45) 332x77 3.3653 2.6264 5.1248 2.4984 

SIMPLER Power Law (xL=45) 332x77 3.5127 2.8642 5.2106 2.3464 

SIMPLER Upwind (xL=45) 332x77 3.5028 2.9300 4.7350 1.8050 

SIMPLER Hybrid (xL=60) 332x77     

SIMPLER Power Law (xL=60) 332x77     

SIMPLER Upwind (xL=60) 332x77 3.7881 - - - 
 

4x1x 5x 45 xx −
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Figure 4.51 Streamlines between x=0 and x=18 for Re=400 with SIMPLER algorithm using hybrid 

scheme on a 402x62 mesh when xL=60h  
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Figure 4.52 Streamlines between x=0 and x=6 for Re=400 with SIMPLER algorithm using hybrid 

scheme on a 402x62 mesh when xL=60h  

 

4.3.3.3 Results for Re=600 

 

Another test case is for a Reynolds number of 600. The reattachment and 

separation lengths, which are estimated by SIMPLER algorithm, are presented in 

Table 4.17 and compared with the results in the literature. As the Reynolds number 

is increased to 600, estimation of upper recirculation region becomes more sensitive 

since it interacts with the lower reattachment length. Therefore calculation of 

correct 4x  is the most difficult issue.  

It is obvious from Table 4.17 that all schemes yield the worst result for the lower 

reattachment lengths compared with the low Reynolds number case results, as 

shown in Tables 4.15 and 4.16.   

Moreover, convergence can not be obtained with central differencing when 281x91 

and 332x77 grids are used. On the other hand, when coarser grids are used, the 

results of Barton [26] with the central differencing scheme diverged. 
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Barton [26] and Wirogo [3] mentioned that hybrid scheme fails to give reliable 

results for even the finest grids at higher Reynolds numbers. Also this fact is 

confirmed in present study by using upwind, hybrid and power schemes. The 

results of upwind, hybrid and power law schemes are nearly match with the results 

in literature. However the results of upwind, hybrid and power law schemes 

underpredict separation lengths and locations when compared to the results in the 

literature that are obtained.  

Unlike the test case for Re=400, it is observed that placing 62 grid points in the y-

direction is not sufficient to obtain converged solutions by using hybrid and power 

law schemes.  Therefore, at least 77 points in the y-direction are needed to obtain 

converged results. Results of separation lengths are more accurate and increased 

with grid refinement. 

Figures 4.53 and 4.54 shows the streamline plots for Re=600 with SIMPLER 

algorithm using hybrid scheme on a 281x91 mesh when xL=45h. The upper 

recirculating region is more visible at Re=600. 
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Figure 4.53 Streamlines between x=0 and x=19 for Re=600 with SIMPLER algorithm using hybrid 

scheme on a 281x91 mesh when xL=45h  
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Figure 4.54 Streamlines between x=0 and x=7 for Re=600 with SIMPLER algorithm using hybrid 

scheme on a 281x91 mesh when xL=45h  
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Table 4.17 Separation lengths and locations for Re=600 

  Grid         
Re=600 Size 

    

    

Marinova, Christov and Marinov [29] 64x256 5,3703 4,3304 8,1119 3,7815 

Wirogo [3] with FCM 102x22 5,7923 4,7644 8,1417 3,3773 

Wirogo [3] with FCM 102x42 5,7932 4,9018 8,6215 3,7197 

Wirogo [3] with FCM 102x82 5,7953 4,9761 8,7265 3,7504 

Wirogo [3] with Power law 102x22 4,0659 3,1097 6,2099 3,1002 

Barton [26] with Hybrid  15x8 7,1400 - - - 

Barton [26] with Hybrid  120x50 4,7900 3,7500 7,2950 3,5450 

Barton [26] with Hybrid  200x100 5,0500 4,0150 7,6950 3,6800 

Barton [26] with Central 15x8 - - - - 

Barton [26] with Central 120x50 - - - - 

Barton [26] with Central 200x100 5,3600 4,3600 8,0750 3,7150 

Barton [26] with QUICK 15x8 4,2300 2,0950 5,6050 3,5100 

Barton [26] with QUICK 120x50 5,3300 4,2950 8,0850 3,7900 

Barton [26] with QUICK 200x100 5,3350 4,3150 8,1050 3,7900 

SIMPLER Hybrid (xL=45) 281x91  4.3759 3.5266 7.1775 3.6509 

SIMPLER Power Law (xL=45) 281x91  4.1636 3.5057 6.7281 3.2224 

SIMPLER Upwind (xL=45) 281x91     

SIMPLER Hybrid (xL=60) 332x77     

SIMPLER Power Law (xL=60) 332x77     

SIMPLER Upwind (xL=60) 332x77 3.4306 2.8658 5.0768 2.2110 

SIMPLER Hybrid (xL=60) 281x91 3.3936 3.3709 6.3898 3.0189 

SIMPLER Power Law (xL=60) 281x91     

SIMPLER Upwind (xL=60) 281x91  4.1900 3.5379 6.0530 2.5151 

SIMPLER Upwind (xL=60) 402x62 4.3509 2.4239 7.0000 4.5761 
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4.3.3.4 Results for Re=800 

 

Final test case is for a Reynolds number of 800. The SIMPLE methodology can 

only successfully produces steady-state solutions up to Re=800 as mentioned by 

Barton [27] and by other researchers. Although flow becomes unsteady and 

unstable at Re=800, many researchers attempt to obtain stable results for the steady 

viscous incompressible two-dimensional flow over a backward-facing step at this 

Reynolds number. Gartling [25] obtained accurate results with steady numerical 

calculations.  

It is observed from steady runs that after a one or two drops in magnitude, the 

residuals start to fluctuate during steady calculations at this Reynolds number and 

these oscillations leads to development of several vortices in the channel. For this 

reason, it is observed that the physical problem is no longer steady. Therefore the 

inlet Reynolds number can not be increased above Re=800 in present study and 

obtaining converged solution using steady computations by applying SIMPLER 

algorithm  is challenged.  

Results of reattachment and separation positions, which are presented in the 

literature, are shown in Table 4.18 and compared with the results of the present 

study.  

At Re=800, main channel length becomes seriously important and it should be long 

enough to achieve accurate results. 

Even though the grids are finer, for high Reynolds number runs, obtained 

separation lengths have fairly large difference with results presented in the 

literature. Separation lengths are underpredicted by using hybrid and power law 

schemes. Moreover, results are diverged when upwind and central difference 

schemes are used in the present study. 
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Table 4.18 Separation lengths and locations for Re=800 

  Grid         
Re=800 Size 

    

    

Marinova, Christov and Marinov [29] - 6,0909 4,8214 10,4719 5,6505 

Wirogo [3] with FCM 102x22 6,6638 5,2651 10,5099 5,2448 

Wirogo [3] with FCM 102x42 6,8324 5,5781 11,5049 5,9268 

Wirogo [3] with FCM 102x82 6,8746 5,7095 11,7568 6,0473 

Wirogo [3] with Power law 102x22 3,6787 2,6534 6,1692 3,5158 

Gartling [25] with mesh A 6x120 5,81 4,79 10,48 5,69 

Gartling [25] with mesh B 10x200 6,07 4,83 10,47 5,64 

Gartling [25] with mesh C,D,E * 6,09-6,10 4,85 10,48 5,63 

Barton [27] with no entrance - 6,015 4,82 10,48 5,66 

Barton [27] with inlet channel - 5,755 4,57 10,33 5,76 

Anjorin and Barton [16] with SIMPLE 60x60 6,4860 1,6592 7,1850 5,53 

Anjorin and Barton [16] with SIMPLEV 60x60 6,4915 2,4796 7,1850 4,71 

Barton [26] with Hybrid - uniform 200x100 5,410 4,225 9,455 5,230 

Barton [26] with Hybrid - refined 200x100 5,495 4,275 9,775 5,500 

Barton [26] with QUICK - 6,100 4,820 11,005 6,185 

SIMPLE           

SIMPLE           

SIMPLE Hybrid           

SIMPLER Hybrid (xL=45) 332x77 2.1824 0.7637 5.4888 4.7251 

*mesh C=400x20, mesh D=600x30, mesh E=800x40.         
 

4x1x 5x 45 xx −



 
111

 
 
 
 

CHAPTER 5 
 
 

CONCLUSIONS 
 
 
 

5.1 Summary 

 

In the previous chapter, first the problem of two-dimensional lid-driven square 

cavity, which is widely used to validate the code for the steady –state forms of 

the incompressible laminar Navier-Stokes equations, is considered. The flow 

over a backward-facing step is studied as the second benchmark case. The 

presented results of the two test cases in previous chapter are summarized in the 

following section. 

 

5.1.1 Flow Characteristics of the Test Problem 1 

 

Lid driven cavity, which is the first test case problem, is solved for Reynolds 

number ranging from 100 to 10000. First, the graphs of horizontal and vertical 

velocity along the centerlines are illustrated. Then the vortex center locations are 

presented and compared with reference results quantitatively. The strength of 

primary, secondary and tertiary vortices are shown by representing streamlines 

in the Figures. Finally solutions on clustered meshes are compared with the 

results on uniform grids and number of iterations is tabulated. 

Results obtained by using power law and hybrid schemes give better results than 

the upwind differencing scheme for both SIMPLE and SIMPLER algorithms, 

which can be seen from the results at Reynolds numbers of 100,400 and 1000 
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since the power law and hybrid differencing schemes possess second order 

accuracy, whereas upwind differencing scheme have first order accuracy 

When the centerline velocity profiles are examined, results obtained by the 

SIMPLER algorithm using a 129x129 grid for Re=100, a 161x161 grid for 

Re=400 and 100, 257x257 grid for Re=5000 are perfectly match with Ghia’s [8] 

results. However SIMPLER solution for the centerline velocity profiles at 

Re=10000 deviates from Ghia’s [8] solution. In the case of SIMPLE algorithm, 

solutions using a 161x161 grid for Re=100 and 257x257 grid for Re=400 and 

1000 are in good agreement with Ghia’s [8] solution. However, for larger values 

of the Reynolds numbers ranging from 5000 to 10000, results of SIMPLE 

algorithm gives incorrect but converged solutions.  

It is concluded that our steady-state solutions with both methods deviates 

considerable from the reference solutions for the centerline velocity profiles at 

Re=10000. This Reynolds number is the limiting Reynolds number at which 

translation from laminar to turbulence occurs because of the formation of the 

vortices at the corners of the square cavity. Although unsteady calculations of 

Wirogo [3] can lead to satisfactory converged results, steady-state numerical 

calculations will result in very slow convergence and the magnitude of residual 

drops only a few orders [3].  The simulation of the transient behavior of flow 

using steady calculations causes oscillations in residuals. Since the problem 

becomes unsteady, the unsteady solutions are able to handle the transient nature 

of the flow. For Re≥5000 the loss stability for the steady solution is observed. 

For Reynolds number 1000, the flow is not actually unsteady, whereas flow is 

transient at the initial formation period of the primary vortex. Then after the 

development of primary vortex steady-state solution can be achieved for 

Re=1000. 

The unsteady flow inside the lid-driven cavity starts for large Reynolds numbers 

of 5000 and 1000. For large Reynolds numbers, the grid Peclet number in the 

main flow direction is generally much larger than unity. Moreover exponential 

based schemes (i.e. Power Law, hybrid) are more convective and neglects 
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diffusion for transient problems. For this reason, the Power Law and Hybrid 

schemes are not usually used for unsteady flow calculation [3]. 

The nature of the vortices formed in the cavity depends on the Reynolds 

number. The location of the centers of the primary, secondary and tertiary 

vortices in a square cavity are tabulated in the previous chapter for Re=100, 400, 

1000, 5000 and 10000. Most of the strength is concentrated on the primary 

vortex in the middle of the cavity. It is shown in Figure 5.1 that as the Reynolds 

number increases from 100 to 5000, the primary vortex moves downstream and 

toward the geometric center of the cavity considerably. However, with further 

increases in the Reynolds number from 5000 to 10000, the center location of 

the primary vortex becomes virtually invariant. The center of location of the 

primary vortex calculated by SIMPLER and SIMPLE algorithms exhibit perfect 

match with the reference results at Re=100, 400 and 1000. However, only the 

location of the center of the primary vortex calculated by SIMPLER algorithm 

at Re=5000 is in good agreement with reference data. On the other hand, at a 

Reynolds number of 10000, both methods deviate considerably from the 

reference results. 

The formation, position and strength of small counter rotating vortices having a 

smaller strength at the top left, bottom right and left corner of the cavity also 

depend on the Reynolds number. Burgess [5] noted that unlike primary vortex 

which occurs by the development of inviscid core of the flow, the secondary 

and tertiary vortices are viscosity-dominated. The vortices in the bottom right 

and left corners appear for Re≈100, whereas the vortex at the bottom right is 

less intensive than the vortex at the bottom left.  The locations of center of the 

secondary vortex in the bottom right corner at Re=100, 400, 1000, 5000 and 

10000 are shown in Figure 5.2. The center of locations of the secondary vortex 

at bottom left corner is presented in Figure 5.3. The strengths of secondary 

vortices at the bottom right and left increase by increasing Reynolds number. As 

Reynolds number is increased, the center of the secondary vortex at bottom 
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right corner moves towards left. In contrast, center of the secondary vortex at 

bottom left goes up with an increase in the Reynolds number. 

If the secondary vortex at top left corner and tertiary vortices are considered, 

they are not visible for Reynolds numbers of 100, 400 and 1000.  When the 

Reynolds number increased to 5000, except the tertiary vortex at bottom left, 

the secondary vortex at top left corner and the tertiary vortex at bottom right 

become quite visible and gain a significant size for Re≥7500. Tertiary vortex at 

the bottom right is observed at Re=10000. 

The data provided for location of the center of the secondary and tertiary 

vortices are provided for 100≤Re≤ 10000. The results in the literature are 

compared with the results of presented study. It is clear from the Tables 

presenting the location of the center of the secondary and tertiary vortices that 

the results of SIMPLER algorithm are in good arrangement with reference 

results up to a Reynolds number 10000. However, the results of SIMPLE 

method start to deviate from reference results when Re≥5000. 

Clustering mesh near the solid boundaries does not alter the converged results 

but decreases the number of numerical iterations since the secondary vortices at 

left and right bottom corners are small in size at Reynolds numbers of 100 and 

400.  However, when Reynolds number is increased to 1000, clustered meshes 

does not affect the number of iterations.  Therefore, instead of using uniform 

meshes, using clustered meshes for Reynolds numbers up to 1000 is effective in 

decreasing the computational load. Moreover, to obtain converged solutions for 

larger Reynolds number requires larger number of iterations as expected. 

The computational time for each iteration in the SIMPLER algorithm is larger 

than the SIMPLE algorithm, since it is expected that one step of the SIMPLER 

algorithm requires more calculations than the one step of SIMPLE algorithm. 
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5.1.2 Flow Characteristics of the Test Problem 2 

 

The second test problem, used in the previous chapter, is the flow over a 

backward facing step. The study focused on the numerical solution of the steady 

laminar flow over a backward-facing step.  

The lower reattachment, upper detachment and upper reattachment lengths are 

tabulated for Reynolds numbers of 300, 400, 600 and 800 and compared with 

the results in the literature. In the figures not only streamlines of converged 

solutions are plotted, but also upper and lower eddies are illustrated. 

Results of SIMPLER algorithm by using central differencing scheme only 

converge at Reynolds number 300 for finer grids. Upwind scheme converges for 

Re≤600 but fails to give accurate results.  Separation lengths obtained by using 

upwind schemes is worse than the results obtained by using the hybrid and 

power law differencing schemes.  Hybrid and power law differencing schemes 
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are closer to the results in the literature for low Reynolds numbers. However, as 

the Reynolds number is increased, results of these schemes fail to give accurate 

results. Results of the all schemes underpredict the reattachment and separation 

lengths.  

More accurate results are obtained not only when the length of the channel is 

increased from 45h to 60h but also, the number of grid points in the y-direction 

is increased until a grid-independent solution is obtained. 

Figure 5.4 presents the variation of lower reattachment length with Reynolds 

number. Although the results of Barton [26] with QUICK scheme and 

Marinova, Christov and Marinov [29] are in good arrangement, Wirogo [3] over-

predicted the lower reattachment length. In the present study and the result of 

Barton [26] with Hybrid scheme under-predict the lower reattachment length. 

Lower reattachment length increases with the increasing Reynolds number. 

Furthermore, when the Reynolds number is increased, the presented results for 

lower reattachment lengths in Figure 5.4 deviates from each other.  

In addition to this, the variation of the upper detachment length and 

reattachment length of upper eddy with the Reynolds number is illustrated in 

Figures 5.5 and 5.6, respectively. Like the results of lower reattachment length, 

results of Barton [26] with QUICK scheme and Marinova, Christov and 

Marinov [29] for the variation of the upper detachment and reattachment 

lengths are perfectly matched with each other. On the other hand, results of 

Barton [26] and the present study, both using hybrid scheme, underestimate the 

upper detachment and upper reattachment lengths. However Wirogo [3] over-

predicts these lengths by using FCM method on a 102x42 grid. The slope of the 

variation of upper reattachment lengths in the presented results is almost 

constant.  
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Figure 5.4 Variation in lower reattachment lengths with Reynolds number 
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Figure 5.5 Variation in upper detachment lengths with Reynolds number 
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Figure 5.6 Variation in upper reattachment lengths with Reynolds number 

 

The upper eddy is visible when Re≥400 and slows down the growth of the 

lower reattachment length when Re≥600. The slope of the variation of the lower 

reattachment length with the Reynolds number is smaller when Re≥600. 

For the backward-facing flows, the reattachment length increases until the start 

of transition. The transition and unsteady flow can be defined by the 

observation of more than one eddy behind the step. This is the result of 

decreasing diffusive length scale with increasing Reynolds number [18]. On the 

other hand, diffusion is more at low Reynolds number that small eddies are 

rapidly dissipated by the action of viscosity [18]. 
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5.2 Conclusion 

 

In this thesis, a FORTRAN code is prepared and used for solving steady 

incompressible laminar Navier-Stokes equations. The SIMPLE and SIMPLER 

algorithms, which are based on the primitive variable approach, are used in this 

study. The two-dimensional flow in a lid-driven cavity and the two-dimensional 

backward-facing step are chosen to validate the accuracy of the algorithms. For 

low Reynolds numbers, flow is laminar in both test cases. However, these 

problems can be highly transient and unsteady for high Reynolds numbers.  

SIMPLER algorithm is more accurate than SIMPLE algorithm for estimating 

not only steady flows but also unsteady flows especially in the recirculating 

regions of lid-driven cavity problem.  SIMPLE algorithm is not effective when 

the translation is perceived.  

Hybrid and power law differencing schemes give better results than the upwind 

and central differencing schemes in general. The SIMPLE and SIMPLER 

algorithms by using upwind scheme tend to fail when Re≥5000 in the lid-driven 

cavity problem. The SIMPLER algorithm by using the central-differencing 

scheme diverges in backward-facing step problem when Re≥400. The 

SIMPLER method by using hybrid and power law differencing schemes are 

sufficient to obtain accurate results for lid-driven cavity problem for Reynolds 

numbers ranging from 100 to 10000. Although the SIMPLER method by using 

hybrid and power law differencing schemes also give acceptable results for low 

Reynolds numbers in the backward-facing step problem when finer grids are 

used, these schemes fail to give accurate results even for the finest grids. 

Therefore, higher order differencing schemes, such as QUICK scheme, should 

be used in SIMPLER method for high Reynolds numbers in the backward-

facing step problem. Using highly accurate schemes may increase the 

computational time but can increase the accuracy of the results at high Reynolds 

numbers. It is state in many researches that higher order schemes are more 

efficient in the solution of transient flow problems. 
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It is observed that the finer grids are used to obtain accurate results in the 

backward-facing problem. On the other hand, grid independent solutions are 

obtained for lid-driven cavity according to Reynolds number and algorithm. The 

SIMPLER algorithm is grid independent on smaller size meshes than the 

SIMPLE algorithm. For example, the solution with SIMPLER algorithm 

becomes grid independent at Re=1000 when the grid size is nearly 161x161. 

However, with SIMPLE method, solution becomes grid independent on a 

257x257 grid at the same Reynolds number. Also grid clustering reduces the 

computational effort up to a Reynolds number of 1000 in the lid-driven cavity 

problem. 

In addition to this, unlike the lid-driven cavity problem in which grids are 

clustered in all coordinate directions since recirculation occurs at the corners, 

refining grid size in y-direction is sufficient for the backward-facing problem 

since u-velocity profiles is most sensitive to ∆y variations. Furthermore, applying 

local grid stretching to the inlet region of the backward-facing problem reduces 

the computational cost and save CPU time. Although the rate of convergence 

depends on the nature of the test problem, physical properties of the flow and 

differencing schemes, all differencing schemes seem to converge reference 

results as the mesh is refined. 

One or two order of decrease of the residuals in  the SIMPLE algorithm is 

faster than the SIMPLER algorithm for low Reynolds number since the 

methodology of correction of velocities in both algorithms are different. 

However, efficiency of the SIMPLE algorithm reduces not only for high 

Reynolds numbers but also when dropping the residuals order more than two is 

desired. 

For high Reynolds numbers and for larger grid systems, the efficiency of the 

SIMPLER and SIMPLE algorithms reduces considerably. Also the choice of 

under-relaxation factors alters the number of iterations to achieve a converged 

solution for both algorithms.   
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5.3 Recommendations for the Results 

 

Finally, the recommendations can be discussed to improve the present study. 

Higher order schemes can be applied to not only to the SIMPLE algorithm but 

also to its variants. 

Outlet boundary conditions can be treated more accurately in order to increase 

the efficiency of the solution in the backward-facing step. 

Local grid clustering can used in backward-facing step problem to reduce 

computational load while increasing the efficiency of algorithms. 

Calculations in the present study are obtained for Reynolds numbers up to 

translation from the laminar to turbulent flow. Therefore, turbulence model can 

added to predict the turbulent flow. Also steady solutions are captured in this 

study. By altering the equations to unsteady forms, unsteady flow solver can be 

used to solve this two benchmark test problems. 

Finally, performance of the SIMPLE algorithms and its variants on lid-driven 

cavity flow problem and on backward-facing step problem by using an 

unstructured grid can be considered to evaluate the ability of algorithms. 

 

 

 

 
 



 

123

 

 

REFERENCES 

 

 

[1] Malalasekera W., and Versteeg H. K., “An Introduction to Computational 

Fluid Dynamics The Finite Volume Method”, Pearson Education Limited, Harlow, 

England, 1995. 

 

[2] Patankar S. V., “Numerical Heat Transfer and Fluid Flow”, Hemisphere 

Publishing Corporation, New York, 1980. 

 

[3] Wirogo S., “Flux Corrected Method An Accurate Approach to Fluid Flow 

Modeling”, Ph.D. Thesis, Department of Aerospace Engineering, Iowa State 

University, 1997. 

 

[4] Gupta M.M. and Kalita C.J., “A New Paradigm for Solving Navier-Stokes 

Equations: Streamfunciton-Velocity Formulation”, Journal of Computational 

Physics, 207, 52-68, January 2005. 

 

[5] Burggraf R.O., “Analytical and Numerical Studies of the Structure of Steady 

Seperated Flows ”, Journal of Fluid Mechanics, 24, Part 1, 113-151, 1966. 

 

[6] Bozeman D.J., “Numerical Study of Viscous Flow in Cavity”, Journal of 

Computational Physics, 12, 348-363, 1979. 

 

[7] Schreiber R. and Keller H.B., “Driven Cavity Flows by Efficient Numerical 

Techniques”, Journal of Computational Physics, 49, 310-333, 1983. 

 

 

 



 

124

[8] Ghia U., Ghia K.N. and Shin C.T., “High Re Solutions for Incompressible 

Flow Using the Navier-Stokes Equations and a Multigrid Method”, Journal of 

Computational Physics, 48, 387-411, 1982. 

 

[9] Chorin A.J.,“A Numerical Method for Solving Incompressible Viscous 

Flow Problems”, Journal of Computational Physics, 2, 12-26, 1967. 

 

[10] Soh W.Y.,“Time-Marching Solution of Incompressible Navier-Stokes 

Equations for Internal Flow”, Journal of Computational Physics, 70, 232-252, 1987. 

 

[11] Harlow F.H. and Welch J.E., “Numerical Calculation of Time-Dependent 

Viscous Incompressible Flow with Free Surface”, Physics of Fluid, 18, 2182-2184, 

1965. 

 

[12] Chorin A.J., Mathematical Computation, 22, 727, 1968. 

 

[13] Leonard B.P. and Mokhtari S., “Beyond first-order Upwinding: The Ultra 

Sharp Alternative for Non-oscillatory Steady-State simulation of Convection”, 

International Journal for Numerical Methods in Engineering, 90, 729, 1990. 

 

[14] Leonard B.P., “A Stable and Accurate Convective Modeling Procedure 

Based On Quadratic Upstream Interpolation”, Computer Methods in Applied 

Mechanics and Engineering, 19, 59-98, 1979. 

 

[15] Hayase T., Humphrey J.A.C. and Greif R., “A Consistently formulated 

QUICK Scheme for Fast and Stable Convergence Using Finite Volume Iterative 

Calculation Procedures”, Journal of Computational Physics, 98, 108-118, 1992. 

 

[16] Anjorin A.O.V. and Barton I.E., ”Removal of Temporal and Under-

Relaxation Terms from the Pressure-Correction Equation of the SIMPLE 

Algorithm”, International Journal of Fluid Dynamics, 5, 59-75, 2001. 



 

125

[17] Lund University of Technology home page url: “http://www.vok.lth.se/”, 

last access date: March 2006. 

 

[18] Huser A. and Biringen S., ”Calculation of the Two-dimensional Shear-

Driven cavity Flows at High Reynolds number”, International Journal of Numerical 

Methods in Fluids, 14, 1087-1109, 1992. 

 

[19] Thompson C.M and Ferziger J.H., “An Adaptive Multigrid Technique for 

the Incompressible Navier-Stokes Equations”, Journal of Computational Physics, 

82, 94-121, 1989. 

 

[20] Bruneau C.H. and Jouron C., “An Efficient Scheme for Solving Steady 

Incompressible Navier-Stokes Equations”, Journal of Computational Physics, 89, 

389-413, 1990. 

 

[21] Gjestal T. and Lossius M.E.H., “Comparison of Pressure Correction 

Smoothers for Multigrid solutions of Imcompressible Flow”, Christian Michelsen 

Researh AS, June 17, 1990. 

 

[22] Kim J. and Moin P., “Application of A Fractional-Step Method to 

Incompressible Navier-Stokes Equations”, Journal of Computational Physics, 59, 

308-323, 1985. 

 

[23] Armaly Gjestal T. and Lossius M.E.H., “Comparison of Pressure Correction 

Smoothers for Multigrid solutions of Imcompressible Flow”, Christian Michelsen 

Researh AS, June 17, 1990. 

 

[24] Hackman l.P., Raithby G.D. and Strong A.B.,“Numerical Predictions of 

Flows Over Backward-Facing Steps”, International Journal for Numerical Methods 

in Fluids, 4, 711-724, 1984. 

 



 

126

[25] Gartling D.K.,“A Test Problem for Outflow Boundary Conditions – Flow 

Over A Backward-Facing Step”, International Journal for Numerical Methods in 

Fluids, 11, 953-967, 1990. 

 

[26] Barton I.E., ”A Numerical Study of Flow Over A Confined Backward-

Facing Step”, International Journal for Numerical Methods in Fluids, 21, 653-665, 

1995. 

 

[27] Barton I.E., ”The Entrance Effect of Laminar Flow Over A Confined 

Backward-Facing Step Geometry”, International Journal for Numerical Methods in 

Fluids, 25, 633-644, 1997. 

 

[28] Vanka S.P., “Block-Implicit Multigrid Solution of Navier-Stokes Equations 

In Primitive Variavles”, Journal of Computational Physics, 65, 138-158, 1986. 

 

[29] Marinova R.S., Christov C.I. and Marinov T.T., “A Fully Solver for 

Incompressible Navier-Stokes Equations Using Operator Splitting ”. 

 

[30] Hou S., Zou Q., Chen G., Doolen G. and Cogley A., “Simulation of Cavity 

Flows by The Lattice Boltzmann Method”, Journal of Computational Physics, 118, 

329-347, 1995. 

 

[31] Barragy E. and Carey G.F., “Streamfunction-Vorticity Driven Cavity 

Solution Using p Finite Elements”, Computational Fluids, 26, 453-468, 1997. 

 

[32] Bye J.A.T.,”Numerical Solutions of The Steady-State Vorticity Equation in 

Rectangular Basins”, Journal of Fluid Dynamics, 26, 577-598, 1966. 

 

[33] Kumagai M., “A Numerical Study of Wind-Driven Circulation in 

Rectangular Cavities”, Journal of Computational Physics, 47, 130-145, 1982. 


