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ABSTRACT

LEO SATELLITES: DYNAMIC MODELLING, SIMULATIONS AND SOME
NONLINEAR ATTITUDE CONTROL TECHNIQUES

KARATAS, Soner
Msc., Department of Electrical and Electronics Engineering

Supervisor  : Prof. Dr. Erol KOCAOGLAN

April 2006, 95 pages

In this thesis nonlinear control method techniques are investigated to control the
attitude of Low Earth Orbit satellites. Nonlinear control methods are compared with
linear control methods. Simulations are done using Matlab and Simulink software
and BILSAT-1 parameters are used in the simulations. Reaction wheels are used as

the actuator.

Keywords: Attitude Control, Satellite, LEO, BILSAT-1



Oz

ALCAK YORUNGE UYDULARI : DINAMIK MODELLEME,
SIMULASYONLAR VE KiMi DOGRUSAL OLMAYAN KONUM DENETIM
TEKNIKLERI]

KARATAS, Soner
Yiiksek Lisans, Elektrik-Elektronik Miihendisligi Boliimii
Tez Yoneticisi  : Prof. Dr. Erol KOCAOGLAN

Nisan 2006, 95 sayfa

Bu tezde diisiik yoriingeli bir uydunun davranis hareketini kontrol etmek amaciyla
dogrusal olmayan denetleclerin sistem iizerindeki etkisi incelenmistir. Bu baglamda
elde edilen dogrusal olmayan denetleclerin performanslari dogrusal denetlecler
kullanilarak elde eldilenlerle karsilastirilmistir. Benzetimler Matlab ve Simulink
yazilimlar1 ile yapilmis olup BILSAT-1 uydusunun parametreleri uygulanmistir.

Tetikleyici olarak tepki tekerleri kullanilmistir.

Anahtar Kelimeler: Davranis Denetimi, Uydu, Diisiik Yo6riinge Uydusu, BILSAT-1
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GLOSSARY
Space Terminology
e Apogee is the point at which a satellite in orbit around the Earth reaches its
farthest distance from the Earth.
e Attitude of a spacecraft is its orientation in a certain coordinate system.
¢ Center of Mass is a point in an isolated system that moves at a constant velocity
in accordance to Newton's laws of motion
¢ Eclipse is a transit of the Earth in front of the Sun, blocking all or a significant
part of the Sun's radiation.
¢ Ecliptic is the mean plane of the Earth's orbit around the Sun.
¢ Ellipse is a shape that looks like a squashed circle that is produced by cutting a
cone at an angle.
e Gravity is a property of matter which produces a mutual attraction between all the
bodies present.
e Latitude is the angular distance on the Earth measured north or south of the
equator along the meridian of a satellite location.
¢ Longitude is the angular distance measured along the Earth's equator from the
Greenwich meridian to the meridian of a satellite location.
¢ Orbit is the path that an astronomical body follows as it moves around another
astronomical body.
¢ Orbital rate is the mean angular velocity of the satellite rotation about the Earth.
¢ Roll, Pitch and Yaw are the angles describing satellite attitude. Roll is referred to
the rotation about the x-axis of a reference coordinate system, pitch to the y-axis, and
yaw to the z-axis.
¢ Perigee is the point at which a satellite in orbit around the Earth most closely
approaches the Earth.
¢ Vernal Equinox is the point where the ecliptic crosses the Earth equator going

from South to north.
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ABBREVIATIONS

ACS Attitude Control Subsystem
ADCS Attitude Determination Control System

BILTEN Information Technologies and Electronics Research Institute

CS Coordinate System

COBAN Imaging system developed and added as payload to BILSAT-1 by
BILTEN.

DEM Digital Elevation Map

ECI Earth Centered Inertial Frame

ECEF Earth Centered Earth Fixed Frame
GEZGIN Image Compression and Data Processing Card produced by BILTEN
GPS Global Positioning System

IAGA International Association of Geomagnetism and Aeronomy
IGRF International Geomagnetic Reference Field
LEO Low Earth Orbit

METU Middle East Technical University

NTNU Norwegian University of Science and Technology
OBC On-Board Computer

QFC Quaternion Feedback Controller

SMR Sliding Mode Regulator

SSDR Solid State Data Recorder

SSTL Surrey Satellite Technology Limited

TUBITAK The Scientific And Technological Research Council Of Turkey
UHF Ultra High Frequency

VHF Very High Frequency

rpm Revolutions Per Minute

W.I.t With Respect To

XV



CHAPTER 1

INTRODUCTION

In this chapter, information about satellites ADCS systems, literature survey on
attitude controller types and information about BILSAT-1 satellite are briefly
introduced. Properties of BILSAT-1 project are presented. Furthermore, the work

done in this Master thesis is introduced. Finally, the outline of the thesis is given.

1.1 Background

Attitude control is required for nearly all space missions. Mission objectives of
satellites may be severely disrupted without correct attitude control. The attitude
control consists of two areas called attitude stabilization and attitude maneuver
control. The first is the process of maintaining an existing orientation, while the latter
has to do with controlling the reorientation of the spacecraft from one attitude to

another.

This thesis describes the design, analysis and development of attitude control
systems for the Low Earth Orbit (LEO) satellites. The purpose of this thesis is to
apply nonlinear control methods to control the attitude maneuver of a Low Earth
Orbit (LEO) satellite using reaction wheels and compare their performance with
those of linear controller. The nonlinear mathematical model of a satellite is derived,

and BILSAT-1’s parameters are used in this model in realizing the simulations.

In recent years there has been an increasing interest in space-related activities in
Turkey. It is hoped that this thesis will contribute to increase the already existing

knowledge and interest in satellites.



1.2 Literature Survey

This section presents the recent literature on attitude dynamics and control of
satellites. Wertz, Hughes (1986) and Wie (1998) are standard references on
spacecraft dynamics. Concerning attitude control of spacecraft, Wie, Weiss and
Arapostathis (1989) show that a PD controller stabilizes a spacecraft. Hall (2000) has
studied spacecraft attitude control using several reaction wheels as actuators. The use
of Euler parameters or unit quaternions in attitude control problems is treated by
Fjellstad and Fossen (1994), but the results are applied to underwater vehicles.
Derman (1999) has developed PD controller and linear state feedback controller for
the TURKSAT-1B using thrusters. Based on the methods of Musser and Ebert, and
Wisniewski, magnetic control laws using both a proportional-derivative controller
and linear quadratic regulator have been developed by Makovec, (2001). Ytrehus
(2003) has investigated linear and non-linear control techniques on NSAT when
reaction wheels were chosen as actuator. Fauske (2003) has studied feedback
stabilization of the attitude. A time varying periodic controller has been proposed for
the angular velocity stabilization problem by Fauske. Topland (2004) has developed
linear and nonlinear controller methods of ESEO spacecraft using thrusters and
reaction wheels. Three of four nonlinear controllers rely on cancellation of system
nonlinearities, while the fourth is a sliding mode controller. Overby (2004) has
developed energy based controllers and linear quadratic controller methods of
NCUBE satellite using magnetic coils. The stability analysis of the nonlinear
controller was performed using energy considerations and Lyapunov methods by
Overby. Uslu (1997), Bak (1999), Ose (2004) and Svartveit (2003) have worked on

attitude determination of the satellites.

1.3 BILSAT-1

BILSAT-1 is the first Low Earth Orbit (LEO) satellite of Turkey. Project was
started in August 2001 within the framework of an agreement between Surrey
Satellite Technology Limited (SSTL) and The Scientific and Technological Research
Council of Turkey (TUBITAK-BILTEN). The BILSAT-1 microsatellite was
launched from Russia on September 27, 2003, into an orbit of 686km distance from
the surface of the Earth. The spacecraft is a highly optimized satellite with a mass

of 129 kg. BILSAT-1 has an average orbit period of about 97.7 minutes. This orbit



gives the Turkish ground station and the satellite a contact time of about 10 minutes

per pass, with an average of four passes per day.

BILSAT-1 project had many aims. They are design, manufacture and launch of
one Enhanced SSTL microsatellite platform, one engineering model for use in
Turkey and the training of engineers in all aspects of the spacecraft design.
Remote sensing is the main mission of the BILSAT-1. To prepare a Digital

Elevation Map (DEM) of Turkey is one of the aims of the project team. To realize

this mission objective, it is aimed to take as many pictures of Turkey as possible.

Figure-1.1: Project team of BILSAT-1 Figure-1.2: General view of BILSAT-1

Figure-1.3: BILSAT-1 was launched from Russia



The spacecraft consists of different units. Imager unit is the main payload and
is used for remote sensing. For this aim BILSAT-1 uses two imagers, Pan-chromatic
and Multispectral imagers. The multispectral imager is composed of four individual
cameras with a ground sampling distance of 26 m. The panchromatic camera has a
ground sampling distance of 12 m. Attitude Determination and Control Subsystem
(ADCS) unit includes sun sensors, rate sensors, magnetometers, GPS receiver and
star trackers for attitude determination, gravity gradient boom, torque rods and
reaction wheels for attitude control. UHF/VHF system and an S-band system
constitute the communication unit of BILSAT-1. On-Board Computers (OBC) unit
consists of three main components. They are one Intel 80186 based OBC (16 MB of
memory) and two Intel 80386 based OBC (32 MB of memory each). Two solid state
data recorders (SSDRs) are used for storing large amounts of data on board. Body-
mounted solar panels supply the needed power of BILSAT-1. To connect different
subsystems of the spacecraft CAN (Control Array Network) network is used.

S-band Reaction Wheels
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Figure-1.4: Block diagram of BILSAT-1 Figure-1.5: Block diagram of ADCS

The pictures taken from the satellite are used for study in miscellaneous areas
like disaster monitoring, monitoring the urban areas and vegetation. BILSAT-1 also
accommodates a store and forward type communications payload. As a part of the
know how training and transfer (KHTT) programme, a multi spectral camera
(COBAN) and a real time JPEG2000 image compression DSP (Digital Signal
Processing) card (GEZGIN) were developed by Turkish engineers to be

accommodated on the satellite.



Figure-1.6: Image of BILSAT-1 from Manyas Lake, Ulubat Lake Bandirma Turkey

Further information on BILSAT-1 can be found in references [1] and [2].

1.4 This Report

Attitude control (angular orientation) is needed so that the optical system covers
the programmed ground area at all times. However, the satellite tends to change its
orientation due to torque produced by the environment (drag of the residual
atmosphere on the solar array, solar radiation pressure, etc.) or by itself (due to
movement of mechanical parts, etc.). In this thesis some nonlinear controller
methods which are suitable for BILSAT-1 are studied. Applications of nonlinear
control methods are given and the results obtained are compared with linear method
which is presented in the Ceren Kaplan’s master thesis [20]. Finally conclusion of

the thesis is given and suggestions for future work are presented.

1.5 Contributions of this Thesis

® An extensive list of references on the subject of attitude determination and control
of satellites are compiled. This will serve as an excellent starting point for further
study.

® An other contribution of this thesis is the complete design, implementation and
test of an attitude control system for a low orbit satellite.

¢ Attitude dynamics of LEO satellites are investigated.

¢ Simulations codes are developed to simulate the maneuver performance of the

BILSAT-1 satellite using reaction wheels.



1.6 Outline of the Thesis

BILSAT-1 uses different sensors for attitude determination and actuators for
attitude control. In chapter 2 all these sensors and actuators are described. Also

comparison tables of these sensors and actuators are given.

Definitions and notations used in studying satellites are described in chapter 3.
The chapter also gives the mathematical background on which the mathematical

modelling of the following chapter is based.

Mathematical modelling of the satellite is given in chapter 4. Mathematical model
of both the dynamics of the satellite and its kinematics is derived here. Also
satellite’s environmental conditions and disturbing torques are mentioned in this

section.

In chapter 5 mathematical model of reaction wheels is derived. Information about

tetrahedral configuration is given and allocation problem is expressed in detail.

Chapter 6 covers nonlinear control methods which are used in the simulations.

Matlab and Simulink simulation results are given using BILSAT-1 parameters.

For future work, some suggestions and recommendations are presented in chapter

7 together with conclusions.

1.7 Tools

This thesis is written in Microsoft Word 2002. Also MathType Editor 5.2c is used
for mathematical equations. The controllers are designed and simulated in

Simulink6.0R 14 and Matlab7.0R 14.



CHAPTER 2

SENSORS and ACTUATORS of BILSAT-1

The attitude determination subsystem of BILSAT-1 is composed of four sun
sensors, four rate sensors, two magnetometers and two star cameras. Four reaction
wheels, three torque rods and a gravity gradient boom constitute the attitude
controller actuators. Figure-2.1 shows the block diagram of ADCS. In this chapter
all of these sensors and actuators are described in detail. Furthermore accuracy,

advantages and disadvantages of these sensors and actuators are given in the

comparison tables.
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Figure-2.1: Block diagram of ADCS



2.1 Sensors

There are basically two classes of sensors commonly used in attitude

determination of satellites [5].
= Reference Sensors
= JInertial Sensors

Reference sensors measure the direction of a known vector e.g. the Sun
pointing vector. The vector measurement is a function of spacecraft attitude,
making it attractive for attitude determination. Minimum two measurements are
required for complete attitude information. Sun sensors, magnetometers and star
cameras are the reference sensors of BILSAT-1.

Inertial sensors measure rotational and/or translational acceleration
relative to an inertial frame. The sensors are subject to drift and bias errors and
errors are not bounded. In order to provide an absolute attitude, regular updates
are performed, based on references such as the Sun, stars or the Earth. Rate

sensors of BILSAT-1 are known as inertial sensors.

2.1.1 Sun Sensor

Sun sensors are the most widely used sensor type; one or more varieties

have flown on nearly every satellite. There are three basic classes of sun sensors

[3].

* Analogue sensors have an output signal that is a continuous function of the
Sun angle.

* Sun presence sensors provide a constant output signal whenever the Sun is
in the fields of view.

» Digital sensors provide an encoded, discrete output which is a function of

the Sun angle.

2.1.2 Magnetometer

The magnetometer measures the strength and direction of the Earth’s magnetic
field with its three orthogonal sensor elements. Magnetic field is strong and well

modelled in orbits close to earth. Therefore magnetometers are mostly used in



the Low Earth Orbit (LEO) satellites. There are different models to compute the
Earth’s magnetic field. International Geomagnetic Reference Field (IGRF) created
by the JAGA (International Association of Geomagnetism and Aeronomy) is the
common and wide-spread model for this aim. Every fifth year it is revised by

IAGA. Magnetometers accuracy is affected by three factors [5].

* Disturbance fields due to spacecraft electronics
* Modelling errors in the reference field model

» External disturbances such as ionospheric currents

Producers release different types of magnetometers. However main principles and

missions are the same for all of these types. The different types are;

* Induction Coil Magnetometer
* Fluxgate Magnetometer
e Squid Magnetometer

* Magnetoresistive Gaussmeter

2.1.3 Star Camera

Star camera produces an image of the stars and this image is compared
with an on board catalogue of the starry sky to determine the attitude. The location
of two or more stars in the sensors field of view is enough to determine the
attitude of the satellite. It is the most accurate attitude sensor on the satellites,
with accuracies down to a few thousands of a degree. However it is heavy and

big for small satellites.

{

Figure-2.2: Processing unit of star camera Figure-2.3: Star camera head



2.1.4 Gyroscope

Gyroscope is an instrument which uses a rapidly spinning mass to sense and

respond to changes in the inertial orientation of its spin axis. There are three basic

classes of gyroscopes [3].

* Rate Gyros (RG) measure spacecraft angular rates and are frequently part of

a feedback system for either spin rate control or attitude stabilization.

* Rate Integrating Gyros (RIG) measure spacecraft angular displacement

directly.

* Control Moment Gyros (CMG) are used to generate attitude control torque.

Therefore they are not attitude sensors like RGs or RIGs.

Due to drift in the gyroscopes it is necessary to use attitude sensors to compensate

for this effect and to determine precise attitude.

2.1.5 Sensor Summary

As it is mentioned above, BILSAT-1 uses four types of attitude determination
sensors. Among these sensors, magnetometers have low accuracy properties.
Furthermore sun sensors are the most widely used sensor type because of its
cheapness and enough accuracy. Star cameras are the most accurate sensors.
Heaviness and expensiveness are the main disadvantages of star cameras for the
small satellites. Due to drift and bias errors gyroscopes need some other sensors.

In the table given below, accuracies, properties and constraints of sensors are

demonstrated [4].

Table-2.1: Comparison table of attitude determination sensors

Sensor Accuracy Properties Constraints
[degree]

Sun Sensor 01 Chfeap, simple, No mfeasurement

reliable in eclipse
Magnetometer 1 Chea}p ’ Low altitude only

continuous coverage

Star camera 0.001 Very accurate Expensive,

heavy complex
Gyroscope 0.01/hour High bandwidth Expensive,

drifts with time
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2.2 Actuators
2.2.1 Reaction Wheels

Reaction wheels use the rotational variant of Newton’s third law. If the
motion speeds up a wheel which is inside the satellite, the satellite speeds up just
as much in the opposite direction. Normally, three reaction wheels are used to
control a satellite, with the wheel axes aligned with the body principal axes.
Using redundant fourth wheel is also a common practice in some satellites.
Reaction wheels are the most accurate attitude control actuator for satellites. On

the other hand, large weight is main disadvantage of reaction wheels.

y i{ﬁ\‘ & &
ﬁ Ka/&/ |

Figure-2.4: Reaction Wheels in a Figure-2.5: Slewing about

tetrahedral configuration pitch axis

2.2.2 Magnetic Torquers

Magnetic torquers are used to generate magnetic dipole moment for attitude
control. They apply a torque on the satellite by producing a magnetic field which
interacts with the earth’s magnetic field. Magnetic torquers are generally a long

copper wire, winded up into a coil or a piece of metal with very high permeability.

11



Magnetic torquers produce a momentum which is given in [6] as;

T=BxM=BXiNuA,
where
« B : Earths magnetic field

e I :Current in the coil

N . Number of windings in the coil

H . Permeability

A : Area spanned by the coil.

2.2.3 Gravity Gradient Boom

Gravity gradient boom is deployed from the satellite when passive control is
needed. While a boom with a tip mass is deployed from the satellite, the innermost of
two masses is in a lower orbit and pull on the outermost [4]. Thus it is possible to
control the attitude of the satellite pointing nadir surface. Deployment and

construction are the difficulties of the boom.

S,

Figure-2.6: Stowed Boom Figure-2.7: Deployed Boom
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2.2.4 Actuator Summary

Three types of attitude control actuators are mentioned above. Among them,
reaction wheels are the most accurate actuators. But they have the disadvantages
because of their heaviness. Furthermore, magnetic torquer’s response is slow and
accuracy is better than gravity-gradient boom. On the other hand; gravity gradient
booms do not need any energy for attitude control (passive control). Deployment
and construction are the difficulties of the boom. In the table given below,

accuracies, properties and constraints of actuators are demonstrated [4].

Table-2.2: Comparison table of attitude control actuators

Accuracy

Actuator [degree]

Properties Constraints

Gravity gradient

boom 1-5 Passive, simple Cheap |Central body oriented

Magnetic torquers 1-2 Cheap Slow, lightweight, LEO only

Expensive, precise,

Reaction Wheels 0.001-1
faster slew

Weight
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CHAPTER 3

DEFINITIONS AND NOTATIONS

The orientation of the satellite and its mathematical model can be derived in
different frames. This chapter presents some definitions and notations used

throughout the thesis. The expressions used are based on [6], [7], [8] and [9].

3.1 Reference Frames

Several coordinate frames are described to determine and control the attitude
in three dimensional spaces. Rotation from one frame to another frame must be well

defined. Therefore concept of frame is described in detail in this section. Reference

frame is denoted by JF, , where the index a denotes which system is considered.

3.1.1 Earth-Centered Inertial (ECI) Frame

The Earth Centered Inertial (ECI) frame is a non-rotating reference frame in
which the laws of Newton apply. This frame is fixed in space and the origin of the

frame is located at the center of the earth. The x, -axis points towards vernal
equinox, 1', the y axis is 90° east in the equatorial plane, and the z, axis extends

through the North Pole. It can be seen in Figure 3-1. The frame is denoted by F;.

14



Vernal Equinox

Figure3-1: Earth-Centered Inertial (ECI) frame, F;

3.1.2 Earth-Centered Earth Fixed (ECEF) Frame
The Earth Centered Earth Fixed (ECEF) frames origin is also located at the

center of the earth. However the x, and y, axes rotate with the hemisphere relative
to the ECI frame. z, axis extends through the North Pole and the rotation is about
the z,axis. The x, axis points toward the intersection between the Greenwich
meridian and the Equator, which is at 0° longitude and 0° latitude. The y, axis

completes the right handed system. The ECEF frame is denoted F. and JF. rotates

relative to ; with a constant angular velocity @, =7.2921%107 rad /s due to the

daily rotation of the earth.

Rotation Axis
Z b

-]

Equater Equator
X Ye X, ¥
€ 1
0 Longitude Direction ':'_f
Greenwich Line Vernal Equinox
ECEF Frame ECI Frame

Figure3-2: ECEF and ECI frames, F. - F;
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3.1.3 Orbit Frame

The origin of orbit frame coincides with the center of mass of the satellite. The

z, axis is always nadir pointing (center of earth). The x, axis points in the direction

of motion tangentially to the orbit and also x, is perpendicular to z,. The y, axis

completes the right hand system, as shown in Figure 3-3. The Orbit frame is denoted

by Fo.

Figure3-3: Orbit frame, F,

3.1.4 Body Frame

The origin of body frame also coincides with the center of mass of the
satellite. This frame is fixed with the satellite body. The nadir side of the satellite is in

the z, axis direction; x, axis and y, axis coincide with the orbit frames axes when

the satellite has an attitude of 0° in roll, pitch and yaw. This frame is denoted F.

vlo

Earth

Figure3-4: Body frame
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3.2 Rotation Matrix

Rotation matrix is a description of the rotational relationship between
two reference frames. Rotation matrix (direction cosine matrix) has three

statements [8]:

* Rotates a vector within a reference frame.

* Transforms vectors represented in one reference frame to another.

¢ Describes the mutual orientation between two coordinate frames, where
the column vectors are cosines of the angles between the two frames.

The rotation matrix R from frame a to b is denoted R”. Rotation of a

vector from one frame to another frame can be given using R’ as;

Vto — Rto Vfrom (3 . 1)

from

Rotational matrices belongs to the set of matrices denoted by SO(3) [6],

which is defined as

SO(3)={RIRe R*, R'R=l,, and det R=l,, } (3.2)
Here R™ is the set of all 3x3 matrices with real elements, 1, is the 3x3
identity matrix.

The orientation of the satellite is described using a rotation matrix Rg , which

is denoted as
Rg =|c, € Cpy 3.3)

Each of the elements ¢, is named directional cosines and column vectors can

be arranged as;

i Cip Ci3
¢ =|cy c, =|c, c;=|Cy (3.4)
C3 C3 C33
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Moreover, rotation matrix R} is orthogonal and because of the orthogonality
¢,, ¢, and c¢; are orthonormal. Therefore below equations are valid for

column vectors.
X c,=c c, X ¢, =¢ X ¢ =c, (3.5)

The rotation matrix satisfies the following properties;
Ry =(R)H) =(R))". (3.6)

RyR} =1, (3.7)

3.3 Angular Velocity

Angular velocity, @], is defined as the rate at which a rotation matrix
changes. It is used to study the angular displacements that occur over time. Angular

velocities are dependent on the reference frames and @, indicates the angular

velocity of F, relative to Fy, in F,.

When the angular velocities are in the same reference frame, they can be added.

For example, the following relation is valid

B B B
Wy = Wy, + Wy, (3.8)

If angular velocities are in the different reference frames, rotation matrix is used for
addition. Equation 3.9 shows addition in the different reference frames.

oh = b, + R, (3.9)
To establish the angular velocity, its relationship with the rotation matrix and the

time derivative of the rotation matrix are considered the following. Equation 3.7

is differentiated yielding

R4R” +R4R% =0 (3.10)
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By defining a new matrix S as;
S=R’R® (3.11)

and inserting S matrix into equation 3.10, the expression turns into

S+8"=0 and S=-S5' (3.12)

Skew symmetric form of the vector @/, :[a)l , a)3]T 1s written as:

0 -0 o
S(wj)=| &, 0 -o], (3.13)
—w, @ 0

Thus equation 3.11 can be expressed using @,

S(@,;) =Rz (R)" (3.14)
Postmultiplying both sides of above equation by R} gives the relationship
between angular velocity and rotation matrix, and its derivative:

R} =S(@),)R (3.15)

3.4 Attitude Representation

There are many ways to represent the attitude of the satellite in a reference
frame. But frequently Euler angles and Unit Quaternions are used in many
applications. We will introduce both of them but we will use unit quaternions
representation in our simulations. Main reason of this is the singularity problem

of the Euler angles.

Euler angles are generally used in analytical studies. However unit
quaternions are widely used in simulations and data processing. In the table given
below, characteristics and applications of euler angles, unit quaternions can be

found [5].
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Table-3.1: Comparison table of attitude representation

Attitude Para o
. Characteristics
Representation  meter
- Minimal Set
- Clear Physical
interpretation

- Trigonometric functions in

Euler Angles 3 rotation matrix
- No simple composition rule

- Singular for certain
rotations
- Trigonometric functions in
kinematic relation
- Easy orthogonality of
rotation matrix

- Bilinear composition rule

- Not singular at any rotation

Unit
) 4 - Linear kinematic equations
Quaternions )
- No clear physical
interpretations

- One redundant parameter

- Simple kinematic relation

3.4.1 Euler Angles

Using roll (@), pitch ()

Applications

-Theoretical physics,
spinning spacecraft
and attitude
maneuvers.

- Used in analytical

studies.

- Widely used in
simulations and data
processing.

- Preferred attitude
representation for
attitude control

systems.

and yaw () angles the attitude can be

represented by three parameters. The angles ¢, € and ¥ represent the

rotations about the X, y and z axis respectively in a rotation from one frame to

another. These angles are called the Euler Angles.

¢
Q=

(2]
74

The rotation matrices are given as follows:

20
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10 0

0 cos¢ —sing

|0 sing cos¢

[ cos@ 0O sind
0 1 0

- sind 0 cosé@

[cosy —siny 0
siny cosy O

0 0 1

(3.17)

(3.18)

(3.19)

The rotation matrix R is described by a rotation ¥ (yaw) about the z axis,

then a rotation @ (pitch) about the y axis and finally a rotation ¢ (roll) about

the x axis (Figure3-5). The elements

c(.) and s(.) can be used as an

abbreviation for the trigonometric expressions cos(.) and sin(.), respectively. As

a result, the rotation matrix Rg becomes

0
Yb<—67

e

X

b

cycld
Ry =R (WR (DR (§)=|sych

—-sé

—sycP+cyslsg
cycP+sysfsg

clOs¢

Satellite

2p

Figure3-5: Euler Angles
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3.4.2 Unit Quaternions

Unit quaternions are the other way for the attitude representation. They were first
described by the Irish mathematician Sir William Rowan Hamilton in 1843 and
applied to mechanics in three-dimensional space. Usually unit quaternions are used

in computations to overcome the singularity problem.

Quaternions have 4 dimensions (each quaternion consists of 4 scalar numbers),
one real dimension and 3 imaginary dimensions. Each of these imaginary dimensions
has a unit value of the square root of -1, but they are different square roots of -1 all
mutually perpendicular to each other, known as i,j and k. So a quaternion can be

represented as follows:

a+ib+jc+kd (3.21)

While the complex numbers are obtained by adding the element i to the real

numbers which satisfies 7’ =-1, the quaternions are obtained by adding the

elements i, j and k to the real numbers which satisfy the following relations.

i’=j=k*>=-1 (3.22)
ixj=-(jxi)=k
jxk =-(kxj) =i (3.23)
kxi=-(ixk)=j

They have four parameters, one real part 77, and three imaginary parts &.

Unit quaternions are defined by

e [k.sin(¢/2) 7

n=cos—, £=|¢& |=|k, sin(@/2)| , g= gl
& | |k, sin(g/2) ;

3

(3.24)

and represent a rotation about a unit vector (k,,k ,k, ) through an angle ¢ . The

unit quaternions satisfy q'q =1 which also means that n* + ¢} +¢, +¢; =1 (3.25)
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Transformation from Euler angles to quaternion can be calculated as;

n cos(@/2) cos(6/2) cos(y/2) + sin(¢/2) sin(6/2) sin(y/2)

g sin(@/2) cos(6/2) cos(w/2) —sin(¢/2) cos(8/2) sin(y/2)
= . . . (3.26)
£, cos(@/2)sin(6/2) cos(y/2) + sin(@/2) cos(6/2) sin(y/2)

g, cos(@/2) cos(8/2)sin(y/2) —sin(¢/2) sin(6/2) cos(y/2)
Transformation from quaternion to Euler angles can be calculated as;
¢ =atan(2(q,q,+7q,).(7" -a; —q; +43))
6 =asin (-2(q,9, —779,)) (3.27)

W= atan(Z(qlqz +7ICI3)’(772+C112 —qg-qi))

The rotation matrix can be expressed in quaternions as:

R(q)= R, . =1y, +215(&)+ 25%(e)

(3.28)
Using equation 3.28, the rotation matrix R can be written as:
1- 2(822 + 83?) 2(‘91‘92 - 8377) 2(8183 + 8277)
Rg =| 26, +&n) 1- 2(812 + 8;) 2(e,8,— &)
2(8183 - 8277) 2(5283 + 8177) 1- 2(‘912 + ‘922) (3.29)

More frequently the rotation matrix in the opposite direction is used and according to

equation 3.6 and 3.29, Rg is obtained as;

1_2(‘922 +€32) 2eE,+&1m)  2€E—E1)
Ry =(R)) =| Aee,—&) 1-2el +&) 2ee,+en)

2(‘91‘93 + 8277) 2(‘92‘93 - 8177) 1 _2(812 + 822) (3 30)

Now, rotation matrix R can be expressed using column vectors as;

By =[el o <] (3.31)

T
where ¢! = [ci cp CE] are column vectors (directional cosines). c;,c; and c;

are the projections of the x_,y, and z, axes in the body frame.

1-2(g; +&;) 2(£,&, + &) 2&,&— &)
cl =| 2A¢¢6,-€1) cf =|1-2(&" +¢&) ol =| 2e,E,+€M)
2(e,8 + &) 2(e,6, - &) 1-2( +&,)

(3.32)
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3.5 The Inertia Matrix

The inertia matrix I, € R*® about O (arbitrary origin) is defined according to [16]

and [9]:
I -1 -1
X Xy Xz
I=-1 I -1 (3.33)
yx y Yz
-1 -1 1
| 2y z

In this equation I,I andI, are the moments of inertia about the

x,,y,andz,-axes and I =I , I =I, I =I are the products of inertia

yx? Xz zx? vz zy
defined as:

I=[(y+2)p,dV; 1, =1, =[xy p,dV (3.34)
14 %4

]}’ :J-(X2+Z2)pde’ IXZ :sz :J-szde (335)
%4 14

L= [ +y")p,dVs; I, =1, =[yzp,dV (3.36)
4 174

If the axes of the body frame coincide with the principal axes of inertia, the inertia

matrix reduces to:

I 0 O
X
I=10 I 0 (3.37)
Yy
0 0 I
<

BILSAT-1 inertia matrix parameters are Ixx=9,8194 kgm® ; Ixy=Iyx=0.071 kgm® ;
Ixz=1zx=0,2892 kgm2 ; Iyy=9,7030 kgm2 ; Iyz=Izy=0,1011 kgm2 ; 122z=9,7309 kgmz.
Diagonal terms of inertia matrix (Ixx, lyy, Izz) are larger than other components of 1.

Throughout this thesis we neglect the off diagonal terms.
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CHAPTER 4

MATHEMATICAL MODELLING

Mathematical model of dynamics and kinematics of satellite are derived in this
chapter. Also satellite’s environment is described in detail. The expressions are based

on [6], [18] and [19].
4.1 Satellite Model

4.1.1 Dynamics for Satellite Model

The satellite is modeled as a rigid body and its dynamic model is derived
using the Newton-Euler formulation. In this formulation angular momentum
changes related to applied torque. General mathematical dynamic model of the

satellite is obtained after some calculations.

Given the momentum p and the position vector r, the angular momentum 4 is
h=rxp 4.1)
Derivation of angular momentum can be done using Newton’s second law

together with vxv =0 and p=mv [4].

£h=£r><p+r><£p=v><mv+r><ma=r><F=T 4.2)
ot ot ot

where v 1is the velocity vector and 7 is the vector of all torques applied on the
satellite. The angular momentum can alternatively be defined by the moment of

inertia 7/, and the angular velocity @ of the satellite as;

h=1w (4.3)
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In equation 4.3, angular momentum was given in the 7; (ECI) frame. Dynamic

equation can be expressed in different frames. By using the rotation matrix, the

equations given below can be derived.

B’ =I"0f, (4.4)
Ryh" = Ry Iy, (4.5)
h' =R, o), (4.6)
h' =R I°R] o, (4.7)
I' =Ry I°R; (4.8)

After differentiating equation (4.6) and applying the time derivatives of the

rotation matrix, the following equation is obtained;
b =R.IPwf + RIIPaf = S(wl)RITPwf, + RLTP 6, 4.9)
In the Body frame (Fy), this is expressed by postmultiplying both sides of
above equation by R/
Rf]i[ =R/S(w, R Pwf, + RFR TP @), = R S(w, )Ry TP, + TP ), (4.10)
Merging the equation in 4.10 with 4.2 gives;
h? =S(RE NP, +1° 0, =1° (4.11)

Finally general mathematical dynamic model of the satellite is obtained as;

ap + oy xPay)=1" =) 7/ (4.12)
k

In the above equations;

I : is the moment of inertia,
@, : is the angular velocity of the body frame with respect to the inertial
frame in the body frame,

7] : are the torques acting on the satellite in body frame

The torques 7, are the sum of both internal torques and external torques on the

satellite. Usually internal effects like fuel sloshing and thermal deformations are not
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accounted when using a rigid body model. Therefore internal torques are not taken
into consideration. The external torques 7, can be separated into two groups as

disturbance torques and control torques. Disturbance torques are caused by
environmental effects such as gravity gradient torque, solar radiation, aerodynamic
drag and etc. Control torques are intentionally applied torques from control devices
such as reaction wheels, magnetic torquers and etc. Generally gravity gradient

torque, magnetic torque and reaction wheel torque are considered for the total torque.
T’ =1 41,47, (4.13)

T: : is the gravitational torque working on the satellite body.

T, : 1s the torque applied by the magnetic torquer.

77 : is the torque applied by the reaction wheel.

In our simulations we will consider mainly gravity gradient torque and reaction

wheel torque for the maneuver of satellite. 7° =7, +7,

Satellite dynamic equation in 4.12 can be alternatively expressed by using

the skew-symmetric operator.
ol +S(op) 1wy, =1° (4.14)

The angular velocity of the satellite @, relative to the inertial frame is
expressed in the body frame as the sum of two angular velocities,

B _ _B B _ B B 0
Wy, = Wy, + @, = Wy, + R @, (4.15)

where @), =[O -, O] " is the known angular velocity of the orbit frame relative
to the ECI frame, expressed in Orbit frame. Then,
a)X 2(8182 + 8377)
Wy =| 0, | =05 -0,c, with ¢, =|1-2(& +&) (4.16)
w, G

1s obtained.
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4.1.2 Kinematics For Satellite Model

The satellite's orientation can be described by the kinematics. The kinematic

is derived by integrating the angular velocity.

Figure4-1: Translational Motion

Translational motion of a particle of mass m is derived using Newton’s second

law.
mF=f (4.17)
p=mv=mr (4.18)
p=mv=mi=f 4.19)
=L (4.20)
m

Here r 1is the position vector of the particle relative to an inertial origin O, p 1is

the linear momentum of the particle and £ is the force acting on the particle.

r=p/m is known as the kinematic differential equation for the translational

motion and describes how position changes for a given velocity.

For the translational motion kinematic differential equation is simple to express

but for the rotational motion it is not so simple to express.

The differential equations, as given in reference [6], are;

7= —%gTa)gO (4.21)
!
€= E[mm +8(8)]| wy, (4.22)
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Hence, another way of representing Equations 4.21 and 4.22 becomes;

. n _l -’ B

4.2 Magnetic Torque

The magnetic torquers use natural torque caused by Earth’s magnetic field
interacting with a magnet. The magnetic torquer produces a magnetic dipole
moment when currents flow through its windings. This current is proportional to

the ampere-turns and the area enclosed by the torquer.

Magnetic torques together with a gravity gradient torque can be used to
obtain full three-axis stabilization. The main purpose of the actuators effect is to
place the satellite in its right attitude using the magnetic field.

In the following equations; modelling of the magnetic torquers is derived
[18].Magnetic torque on a coil element in the magnetic field is given by

dr, =1dsx B (4.24)
On the coil element, magnetic dipole moment can be defined as dm =ids and
from a coil with windings the total dipole moment can be found by integrating over

the entire coil area S as:

m=N j dm (4.25)

where NV is the number of windings. Finally torque on a magnetic coil can be

written as

7, =N|[idsxB =mxB (4.26)
S

which can be written relative to the body frame as
B’ m, — Bf m,
2 =m®xB’ =S(m®)B” =| B’m,- B’ m, 4.27)
Bf m, — B’ m,
In the above equation;

72 . is the torque which is generated by the magnetic torquer,

m

m” : is the magnetic dipole moment generated by the torquer,

B? =| B’ B’ B?|:isthe geomagnetic field vector.
X ¥y X
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The total torque generated on the satellite by the magnetic torquers is given by

the sum of all the partial torques from all the magnetic torquers.

NX].XAX mX
B _ . _
m®=|N,i A |=|m, (4.28)
NZI'ZAZ mZ

where N, is the number of windings in the torquer on the axis in the k direction,

1, is the torquer current and A, is the span area of the torquer, k=x,y,z.

Magnetic torquers were used during settling to orbit of BILSAT-1. In this thesis
we are interested in maneuver of BILSAT-1. Therefore, magnetic torque from

magnetic torquer is not taken into consideration in our simulations.

4.3 Reaction Wheel Torque

The main advantage of reaction wheels, compared with magnetic torquers, is the
independency of satellites location for the control of the satellite. Nevertheless,
weight and expenses are disadvantage of the reaction wheels. The reaction wheel

equation is expressed in [23] as;

B
= (dci’ j +wh xh —T0 (4.29)

where 77 is the torque produced by reaction wheels in the body frame,

h, = []1 h, A }T =/, @, is the angular momentum of the reaction wheels and

Io3 154 124

72 . is friction. The frictional torques 7. is neglected in our simulations.

According to energy conservation principle, a torque rotating the reaction wheels
produces a torque of the same magnitude but in different direction on the satellite. It
is expressed by

.o =-1d} (4.30)

T
Using @}, = [a)x o, wz} in equation 4.29, the equations of reaction wheel

torques are expressed as:

. t | | bu+h,0-h0,
r? =(d£;j +awp xh, =1, |=| b, +h,0,-h,0 (4.31)

[ h,+h,0 -h,0,
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4.4 Gravity Gradient Torque

Gravity gradient torque exists due to the variation in the gravitational field.
Gravitational force varies with the inverse square of the distance from the Earth.

Therefore, closer to the Earth, gravitational force is greater.

Body

/
\

Figure4-2: Gravity gradient parameters

The force working on a mass element in the satellite is given by the gravitational

law of Newton [11] as:

af = —,u%dm (432)

where u is the Earth's gravitational coefficient constant and equals to 4 =GM , G is
the universal gravitational constant and A is the mass of the Earth. R = ‘ﬁ‘ is the

distance from the center of the Earth to the mass element dm .

Numerical values of the constants mentioned above are:

M =5.9742*10* kg (4.33)
G =6.6720*10" Nm®/ kg* (4.34)
1 =3.986*10" Nm’/ kg (4.35)

The gravitational torque around the centre of mass of a rigid spacecraft is given by;

7, —jrxdf——ﬂjﬂdm (4.36)

B
where 7r = |F | is the distance from the center of mass in the satellite to the mass

element dm . Here, it can be seen from figure4-2 that R = RC +T
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Binomial series expansion of the expression R™ is given in reference [18] by

R® = R? {1 3R L (7’—2]} (4.37)
R R

Cc

Inserting the above equation into 4.36 gravitational torque turns into

FxR . 3(FR )}
T, =—U <11- < |dm (4.38)
TR { K
)5 e 3U, ) 5 r g
T, = (R_}j R, xirdm - ( ng jRC X}E TrdmR, (4.39)
SU | 5 N
7, = _(R_fj R x i FrdmR, (4.40)

The expression J-Ffdm is a part of the expression of the inertial torque of the
B

body, represented by

I=[(r*1-77)dm (4.41)
B
By defining
o, = ﬁc (4.42)

the gravitational torque for the satellite becomes

T, :%%XT% =3w}o,x10, (4.43)

According to [11], @, is the speed of the spacecraft in a circular orbit of radius
R . It can be said that @, represents the angular velocity of the orbit frame F,

about its y, axis. The gravity gradient written in the body frame is

u
) =3wcy x(Iey') ., @@= i (4.44)
where ¢; comes from the rotation matrix R’ and transforms the z, axis to the z,

axis. As given before, cf is:
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2(‘9183 _7782)
c; =| 2(&,& +1€,) (4.45)
1-2(el + &)

Another representation of the gravitational torque is;
(1,-1,)ency 2(1,-1,)(g,8+75,) (1-2(& + 7))

2 =3} | (I, -1,)epc | =307 | 2(1,-1,) (86, -ng,)(1-2(e +£)) | (4.46)
([y_[X)CBCZS 4([y—[X)(€1€3—7782)(82€3+77€1)

4.5 Disturbance Torques

Several disturbance torques affects satellites. The main effective disturbance
torques for satellites are described in this section. Further information can be found in

reference [11].

4.4.1 Solar Radiation

Solar radiation pressure produces a force on the satellite related to its
distance to the sun. Solar radiation has more effect at high altitudes. Therefore
solar radiation effect is ignored in our simulations for BILSAT-1. The surface area
of the satellite which faces the Sun is essential when determining the resulting

acceleration caused by solar radiation.

Equation 4.47 gives the force of solar pressure;

_SF _ 1353 W /m’

= =451x10°N / m’ 4.47
P =" T3510° m/s (47
SF : is the solar radiation constant SF =1353 W/ m’ (4.48)
c :is the speed of the light c =3x10° m/s (4.49)

The torque due to the solar radiation is given by:
Tso[arradiatiou = _pSR * CR * A@ * (Cpsr - Cg) (450)

where A, is the exposed area to the Sun, ¢, is the reflectivity, c,, is the

ST

estimated center of pressure and c, is the center of gravity.
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4.5.2 Aerodynamic Torque

At low altitude, satellites will be influenced by the air density. The effect is
dependent on the area and shape of the surface. This effect may reduce the velocity

of the satellite. The aerodynamic torque is given as:

mc

Taero = ‘F:zero(uv X(cpa _cg)) 4 ‘F;ero = %pVZCdA (4'51)
where:

o Atmospheric density (kg/ m®)
A, Area perpendicular to u, (m”)
u, Unit vector in velocity direction
C, Drag coefficient

V' Velocity of satellite (m/ s)

¢, Center of pressure

¢, Center of gravity

4.6 Reference Model

Reference model generates the smooth reference trajectory for the control system
to use. It operates on the reference signal so that a step in the reference will be
filtered into a smooth curve. Controller than tries to follow this smooth curve. A
second order or third order filter is appropriate for this aim. We simulated second
order and third order filters and we saw that third order filter responds better than

second order filter.

Reference vector is denoted by ¢, and desired vector is denoted by ¢, .Transfer

function from desired reference to filtered reference was chosen as:

9, (l)3 .
4, _ n ie{1,2,3.4 4.52
g, (s+,)(s"+2lw,+a’) { I (4.52)

The damping ratio is chosen as ¢ =1 for the critical damping output from reference
model. The undamped natural frequency @, is adjusted depending on the system
requirements. We gave different value to @, in our simulations. Then we saw that if
we increase the @, , settling time decreases. Nevertheless the system overshoots and

required torque increases. We prefer the long settling time and low torque rather than
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short settling time because of the energy consumption. In the satellite operations,
energy consumption is main determining factor while designing design sub

components of the satellites. In Table-4.1, the effect of @, to the system response is

tabulated for two different values of @, when the controller is Sliding Mode

Regulator (SMR).

Table-4.1: Effect of @, on system response
Parameter w,=0.022 (SMR) | w, =2 (SMR)
Settling Time 0.09 orbits 0.01 orbits
Max. Output Torque from Regulator 4e-4 Nm 0.6 Nm
Max. Output Torque from Reaction wheel | 3e-4 Nm 0.5 Nm
Response Overdamp Overshoot
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CHAPTER S

MODELLING of REACTION WHEELS

Mathematical model of reaction wheels is derived in this chapter. Information
about tetrahedral configuration is given and equations of tetrahedral configuration
are derived. Allocation problem and its solution are expressed in detail. Further
information can be found in the references [3], [16] and [19]. The derivations are

based on [19].

5.1 Control Allocation

Referance
Tt §
Regulator | MO | Control | U8 ] Satellite -
] Allocation
Feedback

Figure-5.1: General Control Design For Reaction Wheels

In our simulations for the BILSAT-1, dimension of the controller outputis n=3.
Nevertheless input of the actuator (reaction wheel) has the dimension r=4.
Therefore generalized force vector 7 is distributed to input vector. According to [16]

and [19] relation between force vector and input vector is given as:

t=T(a)Ku, (5.1)
!

where ue R" and ave R? are defined as

a=[a..a,| w=[u...u] (5.2)
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In equation 5.1, f is defined as force vector and f = Kue R", here K is diagonal
force coefficient matrix K€ R™, K =diag{K,,...K,}.
Allocation matrix 7' () is defined as T (a)e R™, t,e R" and T (@) =[t,,....t,].

Generalized force vector 7 is distributed to the input vector # by minimizing the

force f = Ku.Minimization problem is solved as shown by equations stated below,

using reference [16] and [19].

J =min{ f"Wf} (5.3)
T-Tf =0 (5.4)
F=wT (TW T 7 (5.5)
T =w'T" (TW'T")" (5.6)

For the case where W is a unity matrix
T =17 (177" (5.7)

Then, the actuator input vector is found as:

u=K'T)zr (5.8)

We used “alloc” command for the control allocation in the Matlab. “alloc” command
was formed by Fossen and Matlab GNC Toolbox was used in our simulation sfor

“alloc” command.

uzalloc(K,T,W,tau) (5.9)

5.2 Control Allocation for Satellite

For the satellite, allocation problem is between the euler angles n =3 (roll, pitch,
yaw) and actuators r =4 (reaction wheels). Allocation matrix 7" consists of four
column vectors. Each column vector represents the distribution of the reaction wheel
torques to each axis of rotation of the satellite. Allocation matrix for the satellite with

four reaction wheels is given as

T:[tl L L t4]: hy hy h, &, (5.10)

37



5.3 Configuration of Reaction Wheels

The reaction wheels of BILSAT-1 are arranged in a tetrahedral configuration.
Tetrahedral configuration is used for the robust control and continuity of the control
operation during failure in the any reaction wheel. The other advantage of tetrahedral
configuration comes from the geometry of the location of wheels. That’s, wheel
assembly is capable to deliver the satellite twice as much of the maximum torque that

a single wheel can supply.

Figure-5.2: Tetrahedral Configuration of Reaction Wheels

Allocation matrix for the tetrahedral configuration can be found using equation

5.10. Equations given below are valid for each axis in equation 5.10.

hoth, +r,+1,=0 (5.11)
Ty thytr, +r, =0 (5.12)
heth +h . +16,.=0 (5.13)
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These equations imply that in all axes total moment is zero. Each column vector is

the unity vector, i.e.

JE 4 ) +(n) =1 i=1234. (5.14)

Angle between all vectors is @ =2cos' (1/\/§ ) =109.47° . Thus the scalar product
between the two vectors is 7, :|ti|‘tj‘cos¢ where |ti| =‘tj‘ =1 and ¢ is the angle
between the vectors.

t,, the first column of T, is replaced along the z axis as t, = [0 0 —1]. From the
equation 5.13 r, . =r,_=r,_arefoundas r,, =r_=r,, =% . Then the preliminary

matrix becomes

(5.15)

For finding #,, r,, =0 is considered and equation 5.14 is solved for i =2

\/(0)2 +(n,) +Gj2 =1 (5.16)

1 2
n,=% 1—(—) (5.17)
3
2 NG
. =i§ 2 (5.18)
If r,, :—2\/5 is chosen as one of the possible solutions, application of equation

. 1 .
5.12resultsin r, =1, = 5\/5 . Thus the temporary tetrahedral matrix becomes

0 0 r3,x r4,x
2 1 1
T=0 -2 =2 =2 (5.19)
3 3 3
. 1 1
i 3 3 3]
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For finding ¢, and ¢, , equation 5.14 is solved for i =3,4

fer o (7 -

rx=i§\/g for i =3,4

Choosing h. =% 6 and 1, = _%\/E

Final tetrahedral allocation (distribution) matrix 7 is found as;

N —%JE

3

-1

1
3 3
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(5.21)

(5.22)

(5.23)
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CHAPTER 6

CONTROLLER DESIGN and SIMULATIONS

In this chapter quaternion feedback controller and sliding mode regulator for the
maneuver of a small satellite using reaction wheels are described. After that their
simulations in the matlab and simulink are given. Finally, the comments and

discussions on the obtained responses are given.
6.1 Quaternion Feedback Controller (PD)

In quaternion feedback, attitude is controlled by calculating the attitude deviation.
Suppose that the desired orientation of the body is given by a rotation matrix &, and

actual orientation is given by a rotation matrix R . In the case of rotation matrices, it

does not make sense to subtract R, from R as the result would not be a valid
rotation matrix for the attitude deviation. Deviation between the desired and the
actual orientation is described by the rotation matrix Re SO(3) defined by
R2R'R. R@G)2R"(q,)R(q)=R(q,)R(q) where g, is the desired quaternion,
q; is the complex conjugate of g,, g is actual quaternion and ¢ is the actual error
according to references [6] and [19]. Successive rotations in quaternion
representation are expressed as R(q:,)R(q) = R(q:, ®g), where ® is the quaternion

product operator. Then error in unit quaternions can be written as [6], [19]

. e +eje
q:qd%{m : },:[ N1+ € } 6.0
—€; Nylys —5(&,) N,€—TE; — €4 XE
The attitude error quaternion vector consists of the last three elements of g .
E=n,E—NE, —E;XE (6.2)
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and derivative of this error is calculated as;
E=1,e+1,E—TE, —Né, —€,XE—E,XE (6.3)
Nonlinear proportional and derivational (PD) controller is constituted using 6.2 and

6.3.

u=-K,E- K, (6.4)
where u is the torque vector X, is positive definite proportional gain constant and
K, is positive definite derivative gain constant. Notice that, although it is a PD

controller in terms of quaternion and its derivative, it is a nonlinear controller in

terms of Euler angles which are the actual variables that are controlled.

6.1.1 Stability Analysis
Stability analysis of the quaternion feedback controller is based on the
Lyapunov candidate function (LCF). The total energy of the satellite can be

chosen as the LCF. Energy equations and lyapunov analysis are given below.

6.1.2 Energy Considerations

The total energy of the satellite can be divided into kinetic and potential
energy. Kinetic energy of the satellite is a result of the rotation in the orbit
frame. On the other hand gravity gradient and gyro effects due to revolution

about the Earth are the main sources of the potential energy.

6.1.2.1 Kinetic Energy
The kinetic energy is given in body frame with respect to the orbit frame as
By = (@h) 10,
2 (6.5)
6.1.2.2 Potential Energy
Equation 6.6 represents the potential energy due to the gravity gradient and
equation 6.7 represents the potential energy due to revolution of the satellite about

the Earth.

3
. =5w§«c§ )'Ie; —1,) (6.6)
1
Egm =§a)j(lx —(cf)TIcf) (6.7)
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6.1.2.3 Total Energy

Total energy of the satellite is computed as the sum of kinetic and potential

energy.
E,=E,+E,+E,, (6.8)
Distinct form of equation 6.8 is:
1 3 1
E = (050) 1ogo + Sy ((e5) X5 = 1)+~ a0, (1, —(¢) Iey)
2 2 2 (6.9)
Using ¢’ =[05 el cf :|T and (/) Ic} =1.c},+1,c5,+1,c3, (6.10)

equation 6.9 turns into the following:

B = (@) Ny + 2011, 1,y + 1.(ch - 1) +
le(lzc?i +7 C221 +]X(0121 -1))
2 . (6.11)
In chapter 3 equation 3.5 states that R’ is orthogonal. This means that:
ci+ch+ci=1and ¢ +ch+cy =1 (6.12)
Using above identities in equation 6.11, one gets
1 3
E[Ot = E(wgo)TIa)go +ij((lx _[z)cfS + ([)/ _lz)c§3)+
la)j((lx —1,)e5+(1,—1,)e3)
2 (6.13)
as the total energy. The Lyapunov candidate function is chosen as
Vix)=E,, (6.14)
In this equation £, satisfies the properties given below:
V(0)=0 (6.15)
V(x)>0 Vx#0 (6.16)
From equation 6.13 it is clear that
T
Xz[a)go,cm,cm,cm,cnj (6.17)

andif x=0 then V7 (0)=0.
For ensuring that the energy function is positive definite V' (x)>0 Vx #0 , inertial
constraint required is / >/ >7, . In BILSAT-1 this constraint is not satisfied.

However, when we have investigated the energy function using Matlab, we have

seen that energy function was positive definite. Therefore we have used total energy
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function to show stability analysis of quaternion feedback controller.

The derivative of the Lyapunov function is given in [9] and [19] as
V=(w:) 7" (6.18)
Refreshing the fact that quaternion feedback controller was
u=-K,E- K, (6.19)
with uz being the torque applied to the system, V' becomes;
V =(wp,) 7} =(wp,) (—K &K ) (6.20)
Using equations 6.2 and 6.3 in equation 6.20, the new expression given below is
obtained.
V:(a)go)T(_Kp(ndg_ngd_gdxg) 6.21)
_Kd(ﬁdg"'ﬂdé_ﬁgd _ﬂéd _éd XE-&, xg))
Making use of kinematic equations of the satellite, derivative of the energy function
can be expressed as;
; . 1
V= (ng)T(_Kp(ndg_ngd —E,XE) - Kd(nd€+nd(§(nl +5(8)w5,)
1 ] (6.22)
_(_ESngo )E; —ME; —E,XE—E, X(E(ﬂl +5(8))05,)))
Using skew symmetric matrix expression for the cross products in equation 6.22, one
gets

7 B \T - 1 B
V= (ag0) (=K, (1,6 =116, = 5(£,)8) = K (17 + 71,5 071+ 5(£)) 00
(6.23)

L €O, S e e+ S(EN0e))

From equation 6.23 it is not easy to predict that V' <0. Some steps for further
simplification should be taken.
For the sake ofsimplicity, if reference is taken as zero, equation 6.20 changes into

V =(wp) (—K £ - K ,€) (6.24)
By adding a new term to Lyapunov function in equation 6.9 one gets

1 3
V = (@) T0f 5 @h((e ) Tel ~ 1)+

] (6.25)
ij(fx —(c)) Il )+ K (e"e+(1-7)°)

where K ,(¢"£+(1-n)?) is the new added term. By using the property &"&+7* =1
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this new term can be further simplified as:
T 2y _
K (e e+1-2n+n")=2K ,(1-7n) (6.26)
Derivative of this equation is;

—2K 7 (6.27)
From equation 4.21 7 expression is added, and this results in;

K &'y, (6.28)
After that, the derivative of the new Lyapunov function can be expressed as;

V =(w5,)" (7 + K ,€) (6.29)
Putting torque expression 7” for the zero reference results in;

V=(w5,) (—K - K,£+K ,€) (6.30)

V =(@5)" (-K,£) (6.31)
Now it is required to show that equation 6.31 is negative definite. Inserting equation

4.22 for the & term gives;

V = (@) (K, (Tl + SN (6.32)
Then, with zero reference, it is seen that the system will be stable provided that
(m,, +S(€)) term is positive definite. For positive definiteness of this 3x3 matrix,
the leading principal minors should be positive. ie. 7>0,7°+& >0and
n(n* + & + €2 +€2)>0. This shows that V' is negative definite provided that 7> 0.

4

In equation 3.24 77 was given as U:COSE , therefore @ must be in an interval

- < @< x for it to be positive. So, as a result, one can state that the method works

properly, provided the inertial constraints stated are satisfied. Once the stability is

guaranteed, one can choose proper K jand X, values for better system performance.

6.2 Sliding Mode Regulator

The sliding mode regulator idea is based on bringing the system states to a
manifold or surface where the states stay for all time. The sliding manifold is
designed such that once the system states are on the sliding manifold, states will
converge to the desired states. Sliding mode controller has the ability to deal with

parameter variations in the original nonlinear system (Robustness).
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Satellite dynamic model was given in equation 4.12 as
’wl, =— ot x(1°wl,)+1° (6.33)

By defining a new matrix M(g) as

M(q) =1y, +5(€) (6.34)
no & &

M(g)=| & n —-& (6.35)
=& & n

the kinematic equations in 4.23 can be rewritten as:

0= —%engo (6.36)
.1
£ =EM(q)a)§0 (6.37)

The task of the sliding mode controller is formulated as to bring the limit of the norm

of quaternion error to zero. &, (¢) =€,(¢)—&(t)
lim|e, (£)—&(£)| =0 (6.38)
where &,(¢) is the desired quaternion, £(¢) is the actual quaternion and &,(¢) is the

quaternion error. According to reference [22], a suitable sliding manifold o is
chosen such that it is reached in finite time and is maintained thereafter.

oe)=¢,+Ke, =0 (6.39)

where K 1is a diagonal positive matrix and

£, =€,-¢ (6.40)
Using equation 6.37 in 6.40 one gets
A |
€. =&~ M(9)@% (6.41)

Derivative of sliding manifold, as derived in reference [22], is given as:
6= [éd —%ﬁa)go +%M[‘15(a)§0 ) 1w}, —%Mrlrﬁ + Kée} (6.42)
Lyapunov candidate function is chosen as:

VZ%GT[M_16>0 and Vz%O'TIM_IO" (6.43)

where IM ' is a symmetric positive definite matrix. Then, I/ becomes

V= O'T[—%IM‘Ir']a)go +%5(w§0 VIwh, +IM'E,+ IM ' KE, —%rﬁ + JM-la] (6.44)
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Control law is chosen as 7=u,, + psign(c) where proper control torque u,, cancels
out all the terms in the derivative of V, and psign(o) guarantees that it is less than

zero at all times. After the substitution, the derivative of V being negative definite

shows the existence of a sliding mode controller that is asymptotically stable.i.e

u,, =—IM "y, +S(wp, ) Iwh, +2IM ¢, +2IM ' Ké,+2IM ' (6.45)

3
V =-0" psign(c)=-c" p) o, (p>0) (6.46)
i=1

U., is costly for implementation and the sign function causes chattering problem, To

overcome these difficulties discontinuous control law is implemented satisfying all

requirements for stability with the following discontinuous control law .

T, = uf‘“sat(g j 1=1,23 (6.47)

where @ is the sliding boundary layer (thickness) and

1

™ > ‘ujeq‘+ o . (p>0) (6.48)

max

u;™ was taken as maximum torque of reaction wheels and equation 6.47 was

realized as controller torque in our simulations. Saturation function is used to help

mediate the chattering problem that occurs with the sign function. Saturation

function (saz(.)) is given as

1 foro, >
sar("f): % for|o,|<|®| (6.49)
o) | @
-1 foro,<-®

The saturation function becomes the sign function when sliding boundary layer

approaches zero.

A A A
1 1] 1 ——
>0 - {I} ' > O / -
| D
/!
1 _‘I —'_;z _-I
The sign function The saturation function The hyperbolic tangent
function

Figure-6.1: Functions

47



6.3 Simulations

Based on the information and derivations done in previous chapters controllers
are designed and simulated using Matlab and Simulink software. General BILSAT-1

parameters which are used in the simulations are given in the table below.

Table-6.1: General BILSAT-1 parameters

Parameter Value

Weight 120 kg

Inertia Moment 1,=98194,1,=9.7030 ,1,=9.7309 kgm'
Orbit 686 km

Orbit Period 97.7 Min

6.3.1 Quaternion Feedback Controller (PD)

Quaternion feedback controller is investigated for the BILSAT-1 satellite.

Reaction wheels are considered as actuator for maneuver of the satellite.

Simulation parameters are as shown in table below.

Table-6.2: Simulation parameters of Quaternion Feedback Controller

Initial Angular Velocity: w’, :[o 0 0:| r

Initial Euler Angles: [¢ ] W]Z [() 0 ()]
Proportional Gain Parameter K: 0.5

Derivative Gain Parameter Kg: 2.5

Desired Euler Angles: [¢ P W]=[20 40 60]
Max Torque of Wheels: 1 Nm

Aerodynamic Torque: 3.4245e-7

K, and Ky values are chosen empirically (trial and error) regarding best tuning. It
is noticed that if K is decreased, the frequency of oscillations decreases. If Ky is
increased, the system damps faster. Simulations in this section are repeated for

several cases. In all cases aerodynamic torque is taken into consideration.
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In case 1, four reaction wheels are applied as the actuators and noise effect is not

considered.

Satellite Euler Angles

[degree]

0 002 004 006 005 01 012 014 018 0183 02

tirne [orbit]
w10 Satellite Angular Velocity (Body)

B T T T ! T T !

) S S oo e e e 3eeeeees p x
o A N I==ccs o,
% 2 """T'}"""'l """ *I\ """ e e E """" [ |
= . e e : 0,

% I N S T N N NN SR B

0 ooz o004 OO 008 01 012 014 06 018 02
time [orbit]

Figure-6.2: System response of QFC without noise

The system is overdamped with long rise time and settling time. Rise time is 0.04

orbits and settling time is 0.09 orbits. The angles reach their final value at 0.1 orbits.

w1t Cutput From Regulator
T
s L™ N4 b F 0 b e g
5] —]
: ! a
= E
5 | | | | i | | | |
o noz o004 0068 003 01 012 014 016 018 02
time [orbit]
w1t Output Fram Reaction Wheel
= _
=t
5] —]
=
=
=1 i
" | | | | i | i | I
o noz o004 0068 003 01 012 014 016 018 02
time [orbit]

Figure-6.3: Output from regulator and wheels without noise

The upper graph in Figure-6.3 shows the output torque of the controller before the
allocation process. The (3x1) output matrix is converted to the (4x1) reaction wheel
torque matrix by the allocation command and the lower graph in Figure-6.3 shows

this output matrix. The output of the reaction wheels reaches to zero after 0.11 orbits.
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In case 2, four reaction wheels are applied as the actuators and uniformly distributed

noise effect is considered.

Satellite Euler Angles

[degree]

0 002 004 005 003 0.9 012 014 0416 018 02
time [arhit]
10'3 Satellite Angular Welocity (Body)

[rad/s]

“o 002 004 005 003 01 012 014 016 018 02
time [arhit]

Figure-6.4: System response for QFC with noise

Noise does not affect the euler angle response and angular velocity too much. Using

reference model for the filtering is the main reason of this response.

Output From Regulator

torque|[Nm]

5 i i i I i i i i i
o 002 004 005 003 071 012 014 016 018 02
time [orhit]
w10 Output From Reaction YWheel

torque[Mm]

tirme [orbit]

Figure-6.5: Output from regulator and wheels with noise

Compared to case 1, noise affects the torque obtained from the controller output. The
affected output from regulator causes the torque coming from reaction wheels to
oscillate as it behaves as the input of the allocation process. Output of the reaction

wheel does not converge to zero completely but this does not affect the behavior of

the overall system.
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In case3, the second reaction wheel is disabled in order to show that system still

works in case of loss of one reaction wheel. Noise effect is not considered.

Satellite Euler Angles

BD 'I[ T T T T T i T T
e et — ¢ H
] — SN P U S SN S SN ol
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= 5 v
ey [ [ l
0.1 012 014 016 018 0.z
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= 2h-----i-- R e R it LR - - - -k ¥ H
[ -7 ' ~ ' '
= - i T, i : o]
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o 002 004 005 008 0.1 012 014 016 018 0.2
tirme [orbit]

Figure-6.6:
disabled

System response for the QFC without noise and reaction Wheel-2 was

Disabling the 2nd wheel doesn’t effect either settling time or rise time of the satellite

euler angles. This is mainly because of the tetrahedral configuration of the reaction

wheels.

w10 Cutput From Regulator
1 T T T T T T T T
e i . . T
— O&p------ o — N G I— L i 1
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= ot i : : | e T
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e .
-1 1 1 1 1 | | | 1 1
o 002 004 0068 003 0.1 012 014 016 013 0.2
tirne [orbit]
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i i i H T1
= —_— . H
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Figure-6.7:

Output from regulator and wheels without noise and reaction Wheel-2

was disabled

As can be seen from Figure-6.7 the second reaction wheel is inactive thus produces

no torque.
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In case 4, the second and fourth reaction wheels are disabled in order to investigate

the performance of the system in the case of a loss of two reaction wheels. Noise

effect is not considered.

Satellite Euler Angles

B0 : : ' : T : : : :
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Figure-6.8: System response for the QFC without noise and reaction wheels-2, 4

were disabled

As can be seen from the Figure-6.8, the disabling of the two wheels results in not
being able to obtain the desired angles. None of the angles reaches the desired
values. It can be concluded that tetrahedral configuration does not compensate for the

loss of 2 wheels, but at least the system does not become unstable.
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Figure-6.9: Output from regulator and wheels without noise and reaction wheels-2, 4

were disabled
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In case 5, Maneuvering of the small satellite in one direction (pitch axis) is

simulated. Desired pitch angle is taken as 30°. Noise effect is not considered.
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Figure-6.10: System response for the QFC without noise and desired euler angles are

[¢ 6 w]=[0 30 0]

Rise time is 0.04 orbits and settling time is 0.09 orbits. The pitch

final value at 0.1 orbits.
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Figure-6.11:
(¢ 6 w]=[0 30 0]
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6.3.2 Sliding Mode Regulator

Sliding mode regulator is investigated for the BILSAT-1 satellite. Reaction

wheels are considered as actuator for maneuver of the satellite.

Simulation parameters are taken as shown in table below.

Table-6.3: Simulation parameters of the Sliding Mode Regulator

Initial Angular Velocity: w?, :[O 0 0:| r

Initial Euler Angles: (¢ 6 w]=[0 0 O]
K: 0.2*1,,

(O 0.002

Desired Euler Angles: [¢ 6 w]=[20 40 60]
Max Torque of Wheels: 1 Nm

Aerodynamic Torque: 3.4245e-7

Sliding boundary layer (thickness) ® was chosen empirically. In case 7, effect of K
was investigated. In this case it was seen that if K is increased, oscillation is
constituted in the output. Simulations in this section are repeated for several cases as
done in previous section. In all cases aerodynamic torque is taken into consideration

without case 6.
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In case 1, four reaction wheels are applied as the actuators and noise effect is not

considered.

Satellite Euler Angles
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Figure-6.12: System response for the SMR without noise

The system responds faster than QFC. Rise time is 0.04 orbits and settling time is

0.07 orbits. The angles reach their final value at 0.08 orbits.
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Figure-6.13: Output from regulator and wheels without noise

The upper graph in Figure-6.13 shows the output torque of the controller before the
allocation process. The (3x1) output matrix is converted to the (4x1) reaction wheel
torque matrix by the allocation command and the lower graph in Figure-6.13 shows

this output matrix. The output of the reaction wheels reaches to zero after 0.08 orbits.
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In case 2, four reaction wheels are applied as the actuators, noise effect is considered.

Satellite Euler Angles
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Figure-6.14: System response for the sliding mode regulator with noise

Like QFC, noise does not affect the euler angle response and angular velocity too

much.
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Figure-6.15: Output from regulator and wheels with noise

Noise effects the torque obtained from the controller output. The affected output
from regulator causes the torque coming from reaction wheels to oscillate as it
behaves as the input of the allocation process. The output reaction wheel does not
converge to zero completely but this does not affect the behavior of the overall
system. SMR shows better performance than QFC as it can be seen from the

comparison of Figure-6.15 and Figure-6.5.
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In case 3, the second reaction wheel is disabled in order to show that system still

works in case of loss of one reaction wheel. Noise effect is not considered.

Satellite Euler Angles
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Figure-6.16: System response for the SMR without noise and reaction wheel-2 was

disabled

Disabling the 2nd wheel doesn’t effect either settling time or rise time of the satellite

euler angles. This is mainly because of the tetrahedral configuration of the reaction

wheels.
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Figure-6.17: Output from regulator and wheels without noise and reaction Wheel-2
was disabled
As can be seen from figure-6.17 the second reaction wheel is inactive thus produces

no torque.

57



In case 4, the second and fourth reaction wheels are disabled in order to investigate
the performance of the system in the case of a loss of two reaction wheels. Noise

effect is not considered.

Satellite Euler Angles
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Figure-6.18: System response for the sliding mode regulator without noise and

reaction wheel-2, 4 were disabled

As can be seen from the Figure-6.18, the disabling of the two wheels results in not
being to not to able to obtain the desired angles. None of the angles reaches the
desired values. It can be concluded that tetrahedral configuration does not
compensate for the loss of 2 wheels, but at least the system does not become

unstable.
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Figure-6.19: Output from regulator and wheels without noise and reaction Wheel-2,

4 were disabled
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In case 5, maneuvering of the small satellite in one direction (pitch axis) is simulated.

Desired pitch angle is taken as 30°. Noise effect is not considered.

Satellite Euler Angles
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Figure-6.20: System response for the sliding mode regulator without noise and

desired euler angles are [¢ (2] l//:|:[0 30 0:|

Rise time is 0.04 orbits and settling time is 0.07 orbits. The pitch angle reaches its

final value at 0.08 orbits.
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Figure-6.21: Output from regulator and wheels without noise desired euler angles are

(¢ 6 w]=[0 30 0]
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In case 6, four reaction wheels are applied as the actuators, noise effect and
aerodynamic torque are not considered. Effect of aerodynamic torque on controller

can be seen in this case.

Satellite Euler Angles

[degree]

o 002 004 005 OO 01 012 014 016 018 02
tirne [orbit]
w10 Satellite Angular Velocity (Body)

[radi=]
[gn]

K 1 1 | | | | | | |
0 ooz o004 OO 008 01 012 014 06 018 02
time [orbit]

Figure-6.22: System response of SMR without aerodynamic torque

It can be seen from Figure-6.22 that magnitude of aerodynamic torque is very small
(3.4245e-7) regarding to output torque from regulator (5.0e-4). Therefore
aerodynamic torque does not change the total torque substantially. Euler angles and
angular velocity results without aerodynamic torque almost identically with the case
1. Nonetheless aerodynamic torque is considered to simulate space conditions in all

case simulations except case 6.
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Figure-6.23: Output from regulator and wheels without aerodynamic torque
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In case 7, four reaction wheels are applied as the actuators, noise effect is not
considered. Effect of K value used for calculation of sliding manifold is investigated

in this case. K is taken as 2*1, , instead of 0.2*1,,.
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Figure-6.24: System response of SMR with K’ =2*1, ,

Increasing the value of K effects response of SMR in desired values. SMR does not
approach to desired value. Therefore in our simulations value of K was chosen as

0.2*1, , after giving different value to K.
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Figure-6.25: Output from regulator and wheels with X' =2*1, ,
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6.3.3 Actual Results Taken from BILSAT-1

We used the actual results taken from Tiibitak-Bilten for BILSAT-1 in pitch
direction to compare our results with actual response of BILSAT-1. Data taken from

Tiibitak-Bilten is obtained according to time and command given in table 6.4

Table-6.4: Time and command table for the BILSAT-1

20 March 2006 02:22:00 UTCPitch=+30 degree command

20 March 2006 02:37:00 UTC Pitch=0 degree command

20 March 2006 02:52:00 UTC Pitch=+30 degree command

20 March 2006 03:07:00 UTC Pitch=0 degree command

20 March 2006 04:02:00 UTC Pitch=-30 degree command

20 March 2006 04:17:00 UTC Pitch=0 degree command

20 March 2006 04:32:00 UTC Pitch=-30 degree command

20 March 2006 04:47:00 UTC Pitch=0 degree command

20 March 2006 05:37:00 UTC Pitch=-30 degree command

20 March 2006 05:52:00 UTC Pitch=0 degree command

20 March 2006 06:07:00 UTC Pitch=+30 degree command

20 March 2006 06:22:00 UTC Pitch=0 degree command

According to commands in table 6.4 obtained response of BILSAT-1 is given in
figure 6.26. In this figure horizontal axis denotes time and vertical axis denotes pitch
axis. Zoom is required to investigate behavior of BILSAT-1. 06:00:00 UTC -
06:25:00 UTC time segment is chosen and result is plotted in figure 6.27.

2032006 1906, -35 M7 BILZAT-1: ADCSE Log

30

hdon 200 Tue 21
ar 2006 Time

Figure-6.26: Actual pitch axis maneuver of BILSAT-1
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Pitch=+30° degree command is given at 06:07:00 UTC and BILSAT-1 reaches
desired value at 06:19:00 UTC. If we express the horizontal axis in orbit domain,
settling time is 0.124 orbits for BILSAT-1. It can be said that this result is very close

to our simulation results.

20.3.2006 06:17; -1,180 BILSAT-1: ADCS Leg

30

5:00 505 6:07 510 515 6:19] 520 525
flon 200 hdar 2006 Time

e 12 Minutes = 0.124 Orhits ———

Figure-6.27: Actual pitch axis maneuver of BILSAT-1 (Zoomed)
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CHAPTER 7

CONCLUSIONS and FUTURE WORK

In this chapter brief summary and conclusions on the results obtained in previous chapters
are given. Controllers used in this thesis are compared with those of reference [20].

Recommendations and suggestions are given for future work.

In this thesis, nonlinear attitude control techniques for Low Earth Orbit small satellites are
investigated. Sensors which are used for attitude determination and actuators which are used
for attitude control are briefly introduced. Nonlinear mathematical model of a satellite is

derived and BILSAT-1’s parameters are applied in the model used for simulations.

Firstly, literature on attitude dynamics and control of satellite are studied. Nonlinear
control techniques are chosen as the scope of this thesis. On the other hand linear control
techniques are studied in reference [20]. Quaternion Feedback Controller (PD) and Sliding
Mode Regulator are simulated for maneuver of satellite in our work. Reaction wheels are
considered as actuators in attitude maneuver mode. These controllers are also examined in [8],
[19] and [22]. Instead of Euler angle representation, unit quaternions are selected for attitude
representation. Thus singularity problem is prevented. Gravity gradient torque and
aerodynamic torque are taken into consideration in our simulations. Tetrahedral configuration
is used in locating the reaction wheels. So that in case one of the reaction wheels is disabled,
attitude control process continues without any problem. An other reason of using tetrahedral
configuration is that twice the value of the torque that can be obtained from one reaction
wheel can be obtained along any of the three directions. In stabilization analysis of
Quaternion Feedback Controller, total energy of the satellite is chosen as Lyapunov candidate
function. For the Sliding Mode Regulator, Lyapunov candidate function is chosen according

to the suggestions of references [19] and [22]. The simulation results for both the Quaternion
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Feedback Controller and Sliding Mode Regulator are given in Chapter 6.

In reference [20], linear controller is applied for the attitude maneuvering by the use of
reaction wheels as actuators. When we compare our results with those of reference [20], it can
be said that sliding mode results are similar with linear controller results. In both simulations
when the all reaction wheels are enabled, settling time is 0.07 orbits, rise time is 0.04 orbits
and euler angles reach their desired value nearly at about 0.08 orbits. In case that two reaction
wheels are disabled, linear controller response is better than sliding mode controller.
However, linear controller needs more torque than sliding mode regulator. When we compare
nonlinear Quaternion Feedback Controller (PD) with linear controller, Euler angles reach
their desired value at about 0.1 orbits in nonlinear QFC controller. This means that QFC
spends more time than other controllers to reach desired values. The controller parameters of
QFC can be changed to obtain shorter settling time. But this operation increases power
consumption of the satellite. Also we compared the simulation results taken from Tiibitak-
Bilten for BILSAT-1 in pitch direction with our results. BILSAT-1 reaches to the desired
value at about 0.124 orbits and it can be said that this result is very close to our simulation

results.

Table-7.1: Simulation result of controllers

Rise Time Settling Time Max Torque
QFC 0.04 orbits 0.09 orbits de-4
SMR 0.04 orbits 0.07 orbits 8e-4
LR 0.04 orbits 0.07 orbits 12e-4
BILSAT-1 0.06 orbits 0.12 orbits Not applicable*

* Not applicable as they use a different method in applying torques.

Uniformly distributed noise (10% noise of torque) was applied to actuator torque to
observe behaviour of controllers. QFC and SMR successfully tolerated noise. It was seen that
noise effected torques output from controller and reaction wheels. Nonetheless it didn’t affect
Euler angles and angular velocity too much. Magnitude of noise was increased and deviation
of Euler angles from desired angles was seen. As a conclusion, it can be said that QFC and

SMR are robust controller for the acceptable range of noise (10% noise of torque).

For future work, it is suggested to design nonlinear controller using magnetic torquer for
attitude stabilization of the satellite. Moreover, different allocation methods for reaction
wheel torques can be investigated. Inertia matrix is taken in diagonal form in our thesis. The

effect of using a nondiagonal inertia matrix on the system performance for different
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controllers used is also worth studying.
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APPENDIX A - SIMULINK DIAGRAMS
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Sliding Mode Controller
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Demuxed states for ¢ _d
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Gain : - =

q_d=[eta_d:epsilon_d1;epsilon_d2;epsilon_d3]

(_dot_d=[eta_dot_d:epsilon_dot_d1;epsilon_dot_d2;epsilon_dot_d3]
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Demuxed states for x

Demuxed states for x_dot

eta_dot

M >

-_.H Gain epsilan
epsilon_dot B

¥_dot
w_h_hi_dot vE.
we_ k1 hi
q=

Terminatar

x=[eta:epsilon_1:epsilon_2:epsilon_3;

x_dot=[eta_dot:epsilon_dot_1:epsilon_dot 2;epsilon_dot_3; W_b_bi_T;w_ b bl Zw_b_bi 3]

w_b_bi_dot 1:w_b_bi_dot 2:w_b_bi_dot_3]
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ORBIT TO EQDY -
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Sliding Manifold

Attitude Error

epsilan_e 2 MY (1)
1 i i - w1 ) epsilon_dot_e sigma_g
epsilon_d epsilon_e
0.2 ——m K
2 X ati
2 Constant ) m_.ﬁ.:d
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epsilon_dot_e eveld) Product
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epsilon_dot_d epsilon_dot_g Identity Matrix 1)
epsilon_e
(4 ——m Matrix
] Uiy
Product i
(5 ) Zain

we_b_oh

76



__n_n_._n_._n._ Torque -

T'.
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thickness

Product
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+  —mtanh
Divide

Trigonometric
Function

tau
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Satellite Monlinear Dynamic

t——————wduidt———m{ 1

D erivative -

e 115

MATLAB

(T Function

tau gsat_non_dyn.m

Inteqrator

tau_reactiomwheel

ToWworkspacel

N

tau from reaction wheel
0_B=Smtrx(3'w_022'B_B_O{.310 ' I'R_B _:,3);

wi_B_Bl_dot =i} {tau + g_B - Smtrx{wi_B_Bl)*{I'wi_B_BI}}
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Display Satellite Data
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Function
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Satellite Control Model
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reference input

y_dot_d
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Bl'r x epsilon

q_dot_d

demuxed states for q_deot_d

eta

w_b_ib |

demux states for =

q_d

epsilon_d

Ly

demuxed states for q_d

L

epsilon

epszilon_tilde
EE]

epsilon_d

eta_dot_d

(=

w_dot

epsilon_dot_d —

ata_dot L
x_dot

epsilon_dot

d states forx_dot . ;
Emux states for_ ok, Silon_tilde = eta_d

epsilon_dot_tilde = eta_dot_d epsilon + eta_d epsilon_dot - eta_dot ‘epsilon_d-eta‘epsilon_dot_d-
Smitrx{epsilon_dot_d) ‘epsilon - Smtrx{epsilon_d) ‘epsilon_dot;

Ly
L
|'.
|'.
L
L

I

epsilon_tilde

Cuaternion Feedback Comtroller (PDY)

eta

epsilon
eta_d
epsilon_d
eta_dot
epsilon_dot

eta_dot_d

epsilon_dot_d

epzilon_dot_tilde

Sum

epsilon_dot_tilde

epsilon - eta

tau = - Kp'epsilon_tilde -
Kd*epsilon_dot_tilde

WAATLAB
Lal

Function

cantrol allocation

w1

tau

tau_reactionwheel

L tau_regulatar

] } A To Workspace2
epsilon_d - Simtrx{epsilon_d) ‘epsilon;

To Watspace
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Epsilon_tilde

- *
E—
(2
epsilon Product!
(3 L] -
eta X
—* »- ()
B Froduct3 epsilon_tilde
epsilon_d -
sum
MATLAR _
Function M atrix
Smitrm hdultiphy
I
Froduct2

epsilon_tilde = eta_d*epsilon - eta*epsilon_d - Smtrx({epsilon_d)“epsilon;
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Epsilon_dot_tilde

(D

epsilon_dot_tilde

O q =
eta |
{2 Froductt
epsilan
(3} >
eta_d — - *
(4 3 Product?
epsilon_d
» M
eta_dot ™
Product3
(6 )
epsilon_dot
p = - }
t M t_d o
sl _foL Froducts
L8 MATLABR
— . -
epsilon_dot_d Function i atris
smitrem gy
P
MATLAR
— . Praductd
Function W atrise
smitrx.m1 . Multiply
Producta

Sum

epsilon_dot _tilde = eta_dot_d*epsilon + eta_d*epsilon_dot - eta_dot*epsilon_d-
-Smtrx({epsilon_dot_dj*epsilon - Smtrx{epsilon_d)*epsilon_dot;

eta*epsilon_dot d
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APPENDIX B - MATLAB SOURCE CODES

%euler2q.m
q%*********************************************************************
%File euler2q.m

90Function that transforms Euler angles to quaternion parameters

90 Written by Ceren KAPLAN and Soner KARATAS

%December 2005

Ol ™k 3t st stestesteste st st st st s s s s s e e e e e e e e e ke ke ke sheshesheshestestestestesteste st sfe sfesfestestestestesteste st steste st st st s s s s s st st sk sk sk sk kol ok

function q_0 = euler2q(e)

el=0.5%e(1,:);
e2=0.5%e(2,:);
e3=0.5*%e(3,:);

u(1)=sin(el);
u(2)=sin(e2);
u(3)=sin(e3);

u(4)=cos(el);

u(5)=cos(e2);

u(6)=cos(e3);
q0=(u(1)*u(2)*u(3))+(u(4)*u(5)*u(6));
ql=(-u2)*u(3)*u(4))+(u(l)*u(5)*u(6));
q2=(u(1)*u(5)*u(3))+u(2)*u(4)*u(6));
q3=(u(3)*u(4)*u(5))-(u(l)*u(2)*u(o6));
q_0=[q0;q1:92;931;

end

84



Ol ™k st st stestesteste st st st st sk s s s s s e e e e e e e e ke ke ke sheshesheshestestestesteste st ste st sfestestestestestesteste st steste st st st s s s s s s st sk sk sk sk kol ok

Yofigures. m

%A file to plot euler,w_b_bo,tau_regulator and tau_reactionwheel
90 Writteb by Ceren KAPLAN and Soner KARATAS

%December 2005

Opp e 3 3t sfesfesheshe e s sk sfesfesheshe s s sk st sfesheshe e s sk st sfe sheshe e s sk st sfe sheshe ke s sk stesfestesheske s sk stesfestesheske s sk st sfestesheskese sk stesfestesleskeosk sk ke

global euler time t_o
%Plotting the simulated trajectories
t=time/t_o;

figure(1);

plot(t,euler(:,1),'b-', t,euler(:,2),r--, t,euler(:,3),'g:");
grid;

legend("\phi',\theta',"\psi');

xlabel('time [orbit] ');

ylabel('[degree]");

Title('Satellite Euler Angles');

figure(2);

plot(t,w_b_bo(1,:),'b-', t,w_b_bo(2,:),r--', t,w_b_bo(3,:),'g:");
grid;

legend(\omega_x',"\omega_y',\omega_z');

xlabel('time [orbit] ');

ylabel('[rad/s]");

Title('Satellite Angular Velocity (Body)");

figure(3);

plot(t,tau_regulator(1,:),'b-", t,tau_regulator(2,:)...
,1--', t,tau_regulator(3,:),'g:");

grid;

legend('\tau_1","\tau_2',"\tau_3");

xlabel('time [orbit] ');

ylabel('torque[Nm]");

Title('Output From Regulator');

figure(4);

plot(t,tau_reactionwheel(:,1),'b-"...
,ttau_reactionwheel(:,2),'k--"...
,L,tau_reactionwheel(:,3),'r-."...
,t,tau_reactionwheel(:,4),'g:");

grid;

legend('T_1','T_2','T_3",'T_4");
xlabel('time [orbit] ');
ylabel('torque[Nm]");

Title('Output From Reaction Wheel');
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Ol kst st stestesteste st st st st sk s s s s s e e e e e e e e ke ke she ke shesheshestestestesteste st ste st sfestestestestestesteste st steste st st st s s s s s stttk sk sk sk sk kol ok

JoRquat.m

%A file to transform quaternion matrix to rotation matrix

90 Written modified by Ceren KAPLAN and Soner KARATAS
J%0December 2005

Ofp ¢ 3 st sfesfesheshe e s sk sfesfesheshe s s sk st sfesheshe e s sk st sfe sheshe ke s sk st sfe sheshe ke s sk st sfe stesheske s sk stesfestesheske s sk stesfestesheskese sk stesfestesleskeosk sk ke

function R = Rquat(q)
n=q(1,:);

el=q(2,);

e2=q(3,:);

e3=q(4,:);
d11=(n"2+e3/2-e2"2-e1"2);
d12=2*(el*e2+n*e3);
d13=2*(el*e3-n*e2);
d21=2*(el*e2-n*e3);
d22=(n"2-e3/2+e2"2-e1"2);
d23=2*(e2*e3+n*el);
d31=2*(el*e3+n*e2);
d32=2*(e2*e3-n*el);
d33=(n"2-e3/2-e2"2+el1"2);
R=[d11,d12,d13;d21,d22,d23;d31,d32,d33];
end
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Ol F st st stestesteste st st st st sk s s s s s e e e e e e e e ke ke ke sheshesheshestestesteste st ste st st stestestestestestesteste st steste st st st s s s s s st stttk sk sk skoskoskok

Josat_non_dyn.m

%A file to calculate the nonlinear satellite dynamic equations

90 Written by Geir Ytrehus , modified by Ceren KAPLAN and Soner KARATAS
9%0December 2005

Opp e 3 3t sfesfesheshe e s sk sfesfesheshe s s sk st sfesheshe e s sk st sfe sheshe e s sk st sfe sheshe ke s sk stesfestesheske s sk stesfestesheske s sk st sfestesheskese sk stesfestesleskeosk sk ke

function xdot = sat_non_dyn(input)
global Iw_oTD I_o Kl

% The state space variables
q = input(1:4);
w_b_bi = input(5:7);

% The system input from the controller after actuator allocation
u =input(8:11)

9% Normalizing the quaternions - necessary due to numerical inaccuracy
q=9/(q"*q);

eta=q(l);

epsilon = q(2:4);

9% Transforming from w_b_ib to w_b_ob for use in the dynamical model update
r_o_b = Rquat(q);

rbo=rob’

c2=r_b_o(:,2);

w_b_bo=w_b_bi+w_o *c2;

%w_b_bo=w_b_bi+w_o *c2;

% Reaction wheels in a tetrahedral
T=TD

9%T(1,:) = zeros(1,3); % Disabling wheel 1
%T(2,:) = zeros(1,3); % Disabling wheel 2
9%T(3,:) = zeros(1,3); % Disabling wheel 3
%T(4,:) = zeros(1,3); % Disabling wheel 4
9u(1) =0; %Disabling wheel 1

Jou(2) =0; %Disabling wheel 2

9u(3) =0; %Disabling wheel 3

Jou(4) =0; %Disabling wheel 4

% Maximum torque available is 0.01 [Nm]
% u_max = 0.01;

u_max = 1;

fori=1:4

if abs(u(i))>u_max

u(i)= sign(u(i))*u_max;

end;
end;
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tau = T"*K1*u;

9% Uniformly distributed noise

% The expression sign((2*rand(2)-1)) ensures that the noise is either

% area -1 or 1 of the actuator torque because rand(1) gives numbers in

% the area [0.0 1.0]. Multiplying with a percentage of the produced torque
% gives a realistic disturbance effect.

9op = 0.4; % 40% noise added to the actuator torque
Jonoise=p*(sign(2*rand(1)-1))*[tau(1); tau(2); tau(3)];

%tau = tau + r_b_o*(noise) ;

% Gravity gradient torque
g_B = Smtrx(3*w_o"2*r_b_o(:,3))*I*r_b_o(:,3);

9% Aerodynamic torque
t_aero = 3.4245e-7,

% The dynamical equations
eta_dot =-(1/2)*epsilon*w_b_bo;

epsilon_dot = (1/2)*(eta*eye(3) + Smtrx(epsilon))*w_b_bo;
w_b_bi_dot = inv()*(tau + g_B + t_aero - Smtrx(w_b_bi)*(I*w_b_bi));

xdot = [eta_dot; epsilon_dot; w_b_bi_dot;u];
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Ol F st st stestesteste st st st st sk s s s s s e e e e e e e e ke ke ke sheshesheshestestesteste st ste st st stestestestestestesteste st steste st st st s s s s s st stttk sk sk skoskoskok

9oSimulationsetup.m

%A file to setup the MATLAB/Simulink BILSAT-1 reaction wheel simulation
9For linear,nonlinear and sliding mode controllers.

90 Written by Geir Ytrehus , modified by Ceren KAPLAN and Soner KARATAS
90December 2005

Olp ™k st st stestesteste st st st st s s s s s s e e e e e e e e ke ke she ke shesheshestestestesteste st ste st sfestestestestestesteste st steste st st st s s s s s st otk sk sk sk skokok ok

clear all;
global [ w_o TDKI_oKI1W

Ofp e 3 3t sfesfesheshe e s st sfesfesheshe s s sk st sfesheshe e s sk st sfesheshe ke s sk st sfe sheshe ke s sk stesfeshesheske s sk st sfestesheske s sk stesfestesfeske s sk stesfestesleskeosk sk ke

%lInertia Matrix
q@*********************************************************************

Ixx =9.8194; Ixy = 0.0721; Ixz = 0.2893; Iyx = 0.0721; lyy = 9.7030;

Iyz =0.1011; Izx = 0.2892; 1zy = 0.1011; Izz = 9.7309; %BILSAT-1 inertia matrix
InertialMatrix=[Ixx 0 0; O Iyy 0; 0 0 Izz];

YoInertialMatrix=[Ixx Ixy Ixz; lyx lyy lyz; Izx Izy Izz];

I=InertialMatrix;

% Some useful definitions
kx = (lyy - Izz)/Ixx;
ky = (Ixx - Izz)/lyy;
kz = (Iyy - Ixx)/Izz;

% Tetrahedral distribution matrix
% All reaction wheels are taken as identical if desired
% they can be scaled by the motor gains

TD=[0 0 -1;

0 -sqrt(6*3*4)/9 sqrt(4)/6;
1/6*sqrt(6*4) sqrt(6*3*4)/18 sqrt(4)/6;
-1/6*sqrt(6*4) sqrt(6*3*4)/18 sqrt(4)/6 ]

%force matrix

kl=1;

k2=1;

k3 =1;

k4=1;

Kil= [k10 0 O
0 k20 0

0 0 k30

0 0 0 k4]
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Joweight matrix

wl =1;

w2 =1;

w3 =1;

w4 =1;

W=[wl000
Ow200
00w30
0 0 Ow4]

Olp ™k 3t st stestesteste st st st st s s s s s s e e e e e e e e ke ke ke sheshesheshesteshesteste st ste st st sfestesfestestestesteste st steste st st st s s s s s s ot sk sk sk sk kol ok

%Initial Values
t%*********************************************************************

m = 120; % [kg] Mass of Satellite

M =5.9742¢e24, % [kg] Mass of Earth

gamma = 6.6720e-11; % [] Gravity constant

my_g = gamma*M; % |kg] Earth gravity constant

re_e =6.378137¢6; % [m] Equatorial radius of Earth

rp_e = 6.356752¢6; % |[m] Polar radius of Earth

eccentricity = sqrt(1- (rp_e/re_e)2); % Eccentricity of the ellipsoid

h_s =600e3; % |m] Satellite orbit

r_total =re_e + h_s; % |[m] Distance from satellite to
9%Earth center

t_e =round (8.6164130e4); % [s] Integer length of sidereal day

w_e = 2%pi/(t_e); 9% [rad/s] Earth Angular Velocity

w_o = sqrt( my_g/( r_total"3)); % [rad/s] Satellite Angular Velocity

t_o = 2*pi/w_o; % [s] Satellite Orbit Period

v_o=h_s*w_o; % [m/s] Satellite Velocity

Ol ™k st st stesteste st st st st st s s s s s s e e e e e e e e ke ke ke sheshesheshesheshestestesteste st st stesfesfestestestesteste st steste st st st s s s s s st sl sk ko sk kol ok

%Reference Model Parameters
t%*********************************************************************

w_n =0.022;
zeta =1;

Ol kst st stestesteste st st st st s s s s s s e e e e e e e e ke ke ke sheshesheshestestestesteste st ste st sfesfesfestestestesteste st steste st st st s s s s s st stk sk skosk sk skok sk

% Initial attitude in Euler angles
t%*********************************************************************

deg_0 = (p1/180)* [0; 0; 0] ;

% Initial attitude in Euler parameters (quaternions)
g_0 = euler2q(deg_0);

Ol 3 3t st sfesheshe e s st sfesfesheshe s s sk st sfesheshe e s sk st sfesheshe ke s st st sfe sheshe ke s sk stesfestesheske s sk st sfestesheske s sk stesfestesheske sk sk stesfestesleskosk sk skt

% Transforming from w_B_BO to w_B_BI

Ol 3 st sfesfesheshe e s st sfesfesheshe s s sk sfesfesheshe e s sk st sfesheshe ke s sk st sfe sheshe ke s sk stesfe shesheske s sk stesfestesheske s sk stesfestesfeskeoske sk stesfestesleskeosk sk ke

90



r_o_b = Rquat(q_0);
rbo=rob
c2=r_b_o(:,2);
w_b_bo=[0;0;0];
w_b_bi=w_b_bo-w_o*c2;

% The initial state vector
x0 =1[q_0(1); _0(2); q_0(3); q_0(4); w_b_bi(1); w_b_bi(2); w_b_bi(3)];

Ol 3 st sfesfesheshe e s st sfesfesheshe s s sk st sfesheshe e s sk st sfesheshe ke s sk st sfesheshe ke s sk stesfe shesheske s sk st sfestesheske s sk stesfestesheske s sk stesfestesleskeosk sk ket

% The linearized system matrices
q@*********************************************************************

A= [010000;

4*kx*w_o0M2 0000 (1 -kx)*w_o;
000 100;

00 -3*ky*w_0"2 00 0O;
00000 1;

0-(1-kz)*w_o00 -kz*w_o"2 0
Is

B=[000

1/2*Ixx) 0 0;

00 0;

0 1/Q2*lyy) O;

0 00;

0 0 1/(2*Izz)

—
-

10000 0;
0 0;
0

[
10
001

ST oonN
ool
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JoSmtrx.m
q%*********************************************************************
%File Smtrx.m

9oFunction that takes skew symmetric matrix of input

90 Written by Ceren KAPLAN and Soner KARATAS

%December 2005

%1 denotes the input matrix
q%*********************************************************************

function S = Smtrx(i)
S =[0-1(3) i(2)

i(3) 0 -i(1)

-1(2) 1(1) 0
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%t_aero.m

%A file to calculate the aerodynamic torque

90 Written by Ceren KAPLAN and Soner KARATAS
9%0December 2005

Opp e 3 3t sfesfesheshe e s sk sfesfesheshe s s sk st sfesheshe e s sk st sfe sheshe e s sk st sfe sheshe ke s sk stesfestesheske s sk stesfestesheske s sk st sfestesheskese sk stesfestesleskeosk sk ke

function torque = t_aero

% torque = [(1/2)*rho*Cd* A*v*v]*rt;
% torque = F_aero*rt;
% F_aero=[(1/2)*rho*Cd*A*v*v]

MU=3.986¢e14; %MU [m”"3/s"2]:gravitational parameter for the central body
re_e = 6.378137e6; %re_e [m]:Equatorial radius of Earth
h_s = 686¢3; 9%h_s [m]:Satellite orbit
r=re_e+h_s; %r [m]:Distance from satellite to Earth center
a=r; 9a [m]:semimajor axis of the orbit
% when the orbit was taken circular

v =sqrt((2*MU/r) - MU/a));  %v [m/s]:the velocity of the spacecraft
%(velocity at perigee)

rho=2.89*10"-13; %rho [kg/m”3]: Atmospheric density
Cd=2; 9%Cd :the coefficient of drag on the spacecraft
A=0.42; %A [m”"2]:Projection area

F_aero = (1/2)*rho*Cd*A*v*v; %F_aero [N]:aerodynamic drag force

rt=0.05; Jort [m]:(c_pa-c_g)the moment arm for the drag force
9 (center of pressure -center of mass)

torque = F_aero*rt; % aerodynamic torque [N*m]
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APPENDIX C - TETRAHEDRAL CONFIGURATION ANGLE

Figure C.1 shows the general form of the tetrahedral configuration.

Figure C.1 : Tetrahedral Configuration.

Using the model given in equation C.1 tetrahedral configuration angle can be calculated.

By using cosine theorem, the relationship between a and b sides can be derived as,

a’>=b*+b*—2b*cos(120%) (C.1H
Then,

a =2b2(1+%):>b=i (C.2)

NG

Also,

2
h2+b2:a2:h2:a2—%:>h=a\g (C.3)

Figure C.2 shows the geometric relationship between the angle ¢ and the sides of the

tetrahedral configuration (a, b, h and x).

Figure C.2: Geometric Relationship between the Angle ¢ and sides.
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Following equations are derived according to Figure C.2,

= +(h-x)’ (C.4)
Then,
2 2
L (C.5)
2h

Equations C.2 and C.3 are applied to C.5, and x can be found as,

2 2
i+ 21 3
xzu:xza = (C.6)
2 8
2a,|—
3
Again using cosine law,
x> +x*—2x*cosp=a’ (C.7)

Equation C.6 to Equation C.7 are applied, and the angle ¢ is found as,

cosQ = —% = @=cos”' (—%) = ¢=109.47° (C.8)
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