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ABSTRACT 
 

LEO SATELLITES: DYNAMIC MODELLING, SIMULATIONS AND SOME 

NONLINEAR ATTITUDE CONTROL TECHNIQUES 

 

 

 

KARATAŞ, Soner 

Msc., Department of Electrical and Electronics Engineering 

Supervisor      : Prof. Dr. Erol KOCAOĞLAN 

 

April 2006, 95 pages 

 

 

 

In this thesis nonlinear control method techniques are investigated to control the 

attitude of Low Earth Orbit satellites. Nonlinear control methods are compared with 

linear control methods. Simulations are done using Matlab and Simulink software 

and BILSAT-1 parameters are used in the simulations. Reaction wheels are used as 

the actuator. 
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ÖZ 
 

 

ALÇAK YÖRÜNGE UYDULARI : DİNAMİK MODELLEME, 

SİMÜLASYONLAR VE KİMİ DOĞRUSAL OLMAYAN KONUM DENETİM 

TEKNİKLERİ 

 

 

 

KARATAŞ, Soner 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi      : Prof. Dr. Erol KOCAOĞLAN 

 

Nisan 2006, 95 sayfa 

 

 

 

Bu tezde düşük yörüngeli bir uydunun davranış hareketini kontrol etmek amacıyla 

doğrusal olmayan denetleçlerin sistem üzerindeki etkisi incelenmiştir. Bu bağlamda 

elde edilen doğrusal olmayan denetleçlerin performansları doğrusal denetleçler 

kullanılarak elde eldilenlerle karşılaştırılmıştır. Benzetimler Matlab ve Simulink 

yazılımları ile yapılmış olup BILSAT-1 uydusunun parametreleri uygulanmıştır. 

Tetikleyici olarak tepki tekerleri kullanılmıştır. 

 

Anahtar Kelimeler: Davranış Denetimi, Uydu, Düşük Yörünge Uydusu, BILSAT-1  
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GLOSSARY 

Space Terminology 

• Apogee is the point at which a satellite in orbit around the Earth reaches its 

farthest distance from the Earth. 

• Attitude of a spacecraft is its orientation in a certain coordinate system. 

• Center of Mass is a point in an isolated system that moves at a constant velocity 

in accordance to Newton's laws of motion  

• Eclipse is a transit of the Earth in front of the Sun, blocking all or a significant 

part of the Sun's radiation. 

• Ecliptic is the mean plane of the Earth's orbit around the Sun. 

• Ellipse is a shape that looks like a squashed circle that is produced by cutting a 

cone at an angle. 

• Gravity is a property of matter which produces a mutual attraction between all the 

bodies present. 

• Latitude is the angular distance on the Earth measured north or south of the 

equator along the meridian of a satellite location. 

• Longitude is the angular distance measured along the Earth's equator from the 

Greenwich meridian to the meridian of a satellite location. 

• Orbit is the path that an astronomical body follows as it moves around another 

astronomical body. 

• Orbital rate is the mean angular velocity of the satellite rotation about the Earth. 

• Roll, Pitch and Yaw are the angles describing satellite attitude. Roll is referred to 

the rotation about the x-axis of a reference coordinate system, pitch to the y-axis, and 

yaw to the z-axis. 

• Perigee is the point at which a satellite in orbit around the Earth most closely 

approaches the Earth. 

• Vernal Equinox is the point where the ecliptic crosses the Earth equator going 

from South to north. 
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ABBREVIATIONS 
 

ACS Attitude Control Subsystem 

ADCS Attitude Determination Control System 

BILTEN Information Technologies and Electronics Research Institute 

CS Coordinate System 

COBAN Imaging system developed and added as payload to BILSAT-1 by 

BILTEN.   

DEM Digital Elevation Map 

ECI Earth Centered Inertial Frame 

ECEF Earth Centered Earth Fixed Frame 

GEZGIN Image Compression and Data Processing Card produced by BILTEN 

GPS Global Positioning System 

IAGA International Association of Geomagnetism and Aeronomy 

IGRF International Geomagnetic Reference Field 

LEO Low Earth Orbit 

METU Middle East Technical University 

NTNU Norwegian University of Science and Technology 

OBC On-Board Computer 

QFC Quaternion Feedback Controller 

SMR Sliding Mode Regulator 

SSDR Solid State Data Recorder 

SSTL Surrey Satellite Technology Limited 

TUBITAK The Scientific And Technological Research Council Of Turkey 

UHF Ultra High Frequency 

VHF Very High Frequency 

rpm Revolutions Per Minute 

w.r.t With Respect To
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CHAPTER 1 

INTRODUCTION 

 
 

In this chapter, information about satellites ADCS systems, literature survey on 

attitude controller types and information about BILSAT-1 satellite are briefly 

introduced. Properties of BILSAT-1 project are presented. Furthermore, the work 

done in this Master thesis is introduced. Finally, the outline of the thesis is given. 

1.1 Background 

Attitude control is required for nearly all space missions. Mission objectives of 

satellites may be severely disrupted without correct attitude control. The attitude 

control consists of two areas called attitude stabilization and attitude maneuver 

control. The first is the process of maintaining an existing orientation, while the latter 

has to do with controlling the reorientation of the spacecraft from one attitude to 

another. 

 

This thesis describes the design, analysis and development of attitude control 

systems for the Low Earth Orbit (LEO) satellites. The purpose of this thesis is to 

apply nonlinear control methods to control the attitude maneuver of a Low Earth 

Orbit (LEO) satellite using reaction wheels and compare their performance with 

those of linear controller. The nonlinear mathematical model of a satellite is derived, 

and BILSAT-1’s parameters are used in this model in realizing the simulations. 

 

In recent years there has been an increasing interest in space-related activities in 

Turkey. It is hoped that this thesis will contribute to increase the already existing 

knowledge and interest in satellites. 
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1.2 Literature Survey 

This section presents the recent literature on attitude dynamics and control of 

satellites. Wertz, Hughes (1986) and Wie (1998) are standard references on 

spacecraft dynamics. Concerning attitude control of spacecraft, Wie, Weiss and 

Arapostathis (1989) show that a PD controller stabilizes a spacecraft. Hall (2000) has 

studied spacecraft attitude control using several reaction wheels as actuators. The use 

of Euler parameters or unit quaternions in attitude control problems is treated by 

Fjellstad and Fossen (1994), but the results are applied to underwater vehicles. 

Derman (1999) has developed PD controller and linear state feedback controller for 

the TURKSAT-1B using thrusters. Based on the methods of Musser and Ebert, and 

Wisniewski, magnetic control laws using both a proportional-derivative controller 

and linear quadratic regulator have been developed by Makovec, (2001). Ytrehus 

(2003) has investigated linear and non-linear control techniques on NSAT when 

reaction wheels were chosen as actuator. Fauske (2003) has studied feedback 

stabilization of the attitude. A time varying periodic controller has been proposed for 

the angular velocity stabilization problem by Fauske. Topland (2004) has developed 

linear and nonlinear controller methods of ESEO spacecraft using thrusters and 

reaction wheels. Three of four nonlinear controllers rely on cancellation of system 

nonlinearities, while the fourth is a sliding mode controller. Overby (2004) has 

developed energy based controllers and linear quadratic controller methods of 

NCUBE satellite using magnetic coils. The stability analysis of the nonlinear 

controller was performed using energy considerations and Lyapunov methods by 

Overby. Uslu (1997), Bak (1999), Ose (2004) and Svartveit (2003) have worked on 

attitude determination of the satellites. 

 

1.3 BILSAT-1 

BILSAT-1 is the first Low Earth Orbit (LEO) satellite of Turkey. Project was 

started in August 2001 within the framework of an agreement between Surrey 

Satellite Technology Limited (SSTL) and The Scientific and Technological Research 

Council of Turkey (TUBITAK-BILTEN). The BILSAT-1 microsatellite was 

launched from Russia on September 27, 2003, into an orbit of 686km distance from 

the surface of the Earth. The spacecraft is a highly optimized satellite with a mass 

of 129 kg. BILSAT-1 has an average orbit period of about 97.7 minutes. This orbit 
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gives the Turkish ground station and the satellite a contact time of about 10 minutes 

per pass, with an average of four passes per day.   

BILSAT-1 project had many aims. They are design, manufacture and launch of 

one Enhanced SSTL microsatellite platform, one engineering model for use in 

Turkey and the training of engineers in all aspects of the spacecraft design. 

Remote sensing is the main mission of the BILSAT-1. To prepare a Digital 

Elevation Map (DEM) of Turkey is one of the aims of the project team. To realize 

this mission objective, it is aimed to take as many pictures of Turkey as possible.  

 

 

 

 

 

 

Figure-1.1: Project team of BILSAT-1  Figure-1.2: General view of BILSAT-1 

 

 

 

 

 

 

 

Figure-1.3: BILSAT-1 was launched from Russia 
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The spacecraft consists of different units. Imager unit is the main payload and 

is used for remote sensing. For this aim BILSAT-1 uses two imagers, Pan-chromatic 

and Multispectral imagers. The multispectral imager is composed of four individual 

cameras with a ground sampling distance of 26 m. The panchromatic camera has a 

ground sampling distance of 12 m. Attitude Determination and Control Subsystem 

(ADCS) unit includes sun sensors, rate sensors, magnetometers, GPS receiver and 

star trackers for attitude determination, gravity gradient boom, torque rods and 

reaction wheels for attitude control. UHF/VHF system and an S-band system 

constitute the communication unit of BILSAT-1. On-Board Computers (OBC) unit 

consists of three main components. They are one Intel 80186 based OBC (16 MB of 

memory) and two Intel 80386 based OBC (32 MB of memory each). Two solid state 

data recorders (SSDRs) are used for storing large amounts of data on board. Body-

mounted solar panels supply the needed power of BILSAT-1. To connect different 

subsystems of the spacecraft CAN (Control Array Network) network is used. 

 

 

 

               

       

 

 

 

   

Figure-1.4: Block diagram of BILSAT-1     Figure-1.5: Block diagram of ADCS 

The pictures taken from the satellite are used for study in miscellaneous areas 

like disaster monitoring, monitoring the urban areas and vegetation. BILSAT-1 also 

accommodates a store and forward type communications payload. As a part of the 

know how training and transfer (KHTT) programme, a multi spectral camera 

(COBAN) and a real time JPEG2000 image compression DSP (Digital Signal 

Processing) card (GEZGIN) were developed by Turkish engineers to be 

accommodated on the satellite. 

 
 



 5 

 

 

 

 

 

 

 

Figure-1.6: Image of BILSAT-1 from Manyas Lake, Ulubat Lake Bandirma Turkey 
 

Further information on BILSAT-1 can be found in references [1] and [2]. 

1.4  This Report 

Attitude control (angular orientation) is needed so that the optical system covers 

the programmed ground area at all times. However, the satellite tends to change its 

orientation due to torque produced by the environment (drag of the residual 

atmosphere on the solar array, solar radiation pressure, etc.) or by itself (due to 

movement of mechanical parts, etc.). In this thesis some nonlinear controller 

methods which are suitable for BILSAT-1 are studied. Applications of nonlinear 

control methods are given and the results obtained are compared with linear method 

which is presented in the Ceren Kaplan’s master thesis [20]. Finally conclusion of 

the thesis is given and suggestions for future work are presented.  

1.5 Contributions of this Thesis 

• An extensive list of references on the subject of attitude determination and control 

of satellites are compiled. This will serve as an excellent starting point for further 

study. 

• An other contribution of this thesis is the complete design, implementation and 

test of an attitude control system for a low orbit satellite. 

• Attitude dynamics of LEO satellites are investigated. 

• Simulations codes are developed to simulate the maneuver performance of the 

BILSAT-1 satellite using reaction wheels. 
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1.6  Outline of the Thesis 

BILSAT-1 uses different sensors for attitude determination and actuators for 

attitude control. In chapter 2 all these sensors and actuators are described. Also 

comparison tables of these sensors and actuators are given. 

Definitions and notations used in studying satellites are described in chapter 3. 

The chapter also gives the mathematical background on which the mathematical 

modelling of the following chapter is based.  

Mathematical modelling of the satellite is given in chapter 4. Mathematical model 

of both the dynamics of the satellite and its kinematics is derived here. Also 

satellite’s environmental conditions and disturbing torques are mentioned in this 

section.  

In chapter 5 mathematical model of reaction wheels is derived. Information about 

tetrahedral configuration is given and allocation problem is expressed in detail. 

Chapter 6 covers nonlinear control methods which are used in the simulations. 

Matlab and Simulink simulation results are given using BILSAT-1 parameters.  

For future work, some suggestions and recommendations are presented in chapter 

7 together with conclusions.  

1.7  Tools 

This thesis is written in Microsoft Word 2002. Also MathType Editor 5.2c is used 

for mathematical equations. The controllers are designed and simulated in 

Simulink6.0R14 and Matlab7.0R14. 
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CHAPTER 2 

SENSORS and ACTUATORS of BILSAT-1 

 
The attitude determination subsystem of BILSAT-1 is composed of four sun 

sensors, four rate sensors, two magnetometers and two star cameras. Four reaction 

wheels, three torque rods and a gravity gradient boom constitute the attitude 

controller actuators. Figure-2.1 shows the block diagram of ADCS. In this chapter 

all of these sensors and actuators are described in detail. Furthermore accuracy, 

advantages and disadvantages of these sensors and actuators are given in the 

comparison tables.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure-2.1: Block diagram of ADCS 
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2.1 Sensors 

There are basically two classes of sensors commonly used in attitude 

determination of satellites [5]. 

� Reference Sensors 

� Inertial Sensors 

Reference sensors measure the direction of a known vector e.g. the Sun 

pointing vector. The vector measurement is a function of spacecraft attitude, 

making it attractive for attitude determination. Minimum two measurements are 

required for complete attitude information. Sun sensors, magnetometers and star 

cameras are the reference sensors of BILSAT-1. 

Inertial sensors measure rotational and/or translational acceleration 

relative to an inertial frame. The sensors are subject to drift and bias errors and 

errors are not bounded. In order to provide an absolute attitude, regular updates 

are performed, based on references such as the Sun, stars or the Earth. Rate 

sensors of BILSAT-1 are known as inertial sensors. 

2.1.1  Sun Sensor 

Sun sensors are the most widely used sensor type; one or more varieties 

have flown on nearly every satellite. There are three basic classes of sun sensors 

[3]. 

• Analogue sensors have an output signal that is a continuous function of the 

Sun angle. 

• Sun presence sensors provide a constant output signal whenever the Sun is 

in the fields of view. 

•  Digital sensors provide an encoded, discrete output which is a function of 

the Sun angle. 

2.1.2  Magnetometer 

The magnetometer measures the strength and direction of the Earth’s magnetic 

field with its three orthogonal sensor elements.  Magnetic field is strong and well 

modelled in orbits close to earth. Therefore magnetometers are mostly used in 
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the Low Earth Orbit (LEO) satellites. There are different models to compute the 

Earth’s magnetic field. International Geomagnetic Reference Field (IGRF) created 

by the IAGA (International Association of Geomagnetism and Aeronomy) is the 

common and wide-spread model for this aim. Every fifth year it is revised by 

IAGA.  Magnetometers accuracy is affected by three factors [5]. 

• Disturbance fields due to spacecraft electronics 

• Modelling errors in the reference field model 

•  External disturbances such as ionospheric currents 

Producers release different types of magnetometers. However main principles and 

missions are the same for all of these types. The different types are; 

• Induction Coil Magnetometer 

• Fluxgate Magnetometer 

•  Squid Magnetometer 

• Magnetoresistive Gaussmeter 

2.1.3  Star Camera 

Star camera produces an image of the stars and this image is compared 

with an on board catalogue of the starry sky to determine the attitude. The location 

of two or more stars in the sensors field of view is enough to determine the 

attitude of the satellite. It is the most accurate attitude sensor on the satellites, 

with accuracies down to a few thousands of a degree. However it is heavy and 

big for small satellites.  

 

 

 

 

 

       

Figure-2.2: Processing unit of star camera           Figure-2.3: Star camera head 
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2.1.4 Gyroscope 

Gyroscope is an instrument which uses a rapidly spinning mass to sense and 

respond to changes in the inertial orientation of its spin axis. There are three basic 

classes of gyroscopes [3].  

• Rate Gyros (RG) measure spacecraft angular rates and are frequently part of 

a feedback system for either spin rate control or attitude stabilization.  

• Rate Integrating Gyros (RIG) measure spacecraft angular displacement 

directly. 

• Control Moment Gyros (CMG) are used to generate attitude control torque. 

Therefore they are not attitude sensors like RGs or RIGs.  

Due to drift in the gyroscopes it is necessary to use attitude sensors to compensate 

for this effect and to determine precise attitude. 

2.1.5  Sensor Summary 

As it is mentioned above, BILSAT-1 uses four types of attitude determination 

sensors. Among these sensors, magnetometers have low accuracy properties. 

Furthermore sun sensors are the most widely used sensor type because of its 

cheapness and enough accuracy. Star cameras are the most accurate sensors. 

Heaviness and expensiveness are the main disadvantages of star cameras for the 

small satellites. Due to drift and bias errors gyroscopes need some other sensors. 

In the table given below, accuracies, properties and constraints of sensors are 

demonstrated [4]. 

 

Table-2.1: Comparison table of attitude determination sensors 

Sensor Accuracy 
[degree] 

 

Properties Constraints 

Sun Sensor 0.1 
Cheap, simple, 
reliable 

No measurement 
in eclipse 

Magnetometer 1 
Cheap,  
continuous coverage 

Low altitude only 

Star camera 0.001 Very accurate 
Expensive,  
heavy complex 

Gyroscope 0.01/hour High bandwidth 
Expensive,  
drifts with time 
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2.2  Actuators 

2.2.1 Reaction Wheels 

Reaction wheels use the rotational variant of Newton’s third law. If the 

motion speeds up a wheel which is inside the satellite, the satellite speeds up just 

as much in the opposite direction. Normally, three reaction wheels are used to 

control a satellite, with the wheel axes aligned with the body principal axes. 

Using redundant fourth wheel is also a common practice in some satellites. 

Reaction wheels are the most accurate attitude control actuator for satellites. On 

the other hand, large weight is main disadvantage of reaction wheels.   

 

 

 

 

 

 

 

Figure-2.4: Reaction Wheels in a  Figure-2.5: Slewing about 

                   tetrahedral configuration                   pitch axis 

  

2.2.2 Magnetic Torquers 
 

Magnetic torquers are used to generate magnetic dipole moment for attitude 

control. They apply a torque on the satellite by producing a magnetic field which 

interacts with the earth’s magnetic field. Magnetic torquers are generally a long 

copper wire, winded up into a coil or a piece of metal with very high permeability.  

 

 

 

 

 



 12 

 

Magnetic torquers produce a momentum which is given in [6] as; 

,µ= × × i N AT B M = B  

where 

• B  : Earths magnetic field 

• i   : Current in the coil 

•  N  : Number of windings in the coil 

• µ  : Permeability 

• A  : Area spanned by the coil.  

 
2.2.3  Gravity Gradient Boom 

Gravity gradient boom is deployed from the satellite when passive control is 

needed. While a boom with a tip mass is deployed from the satellite, the innermost of 

two masses is in a lower orbit and pull on the outermost [4]. Thus it is possible to 

control the attitude of the satellite pointing nadir surface. Deployment and 

construction are the difficulties of the boom.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Figure-2.6: Stowed Boom  Figure-2.7: Deployed Boom 
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2.2.4 Actuator Summary 

Three types of attitude control actuators are mentioned above. Among them, 

reaction wheels are the most accurate actuators. But they have the disadvantages 

because of their heaviness. Furthermore, magnetic torquer’s response is slow and 

accuracy is better than gravity-gradient boom. On the other hand; gravity gradient 

booms do not need any energy for attitude control (passive control). Deployment 

and construction are the difficulties of the boom. In the table given below, 

accuracies, properties and constraints of actuators are demonstrated [4].  

 

Table-2.2: Comparison table of attitude control actuators 

Actuator 
Accuracy 
[degree] 

Properties Constraints 

Gravity gradient 
boom 

1-5 Passive, simple Cheap Central body oriented 

Magnetic torquers 1-2 Cheap Slow, lightweight, LEO only 

Reaction Wheels 0.001-1 
Expensive, precise, 
faster slew 

Weight 
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CHAPTER 3 

 

DEFINITIONS AND NOTATIONS 

 

 

The orientation of the satellite and its mathematical model can be derived in 

different frames. This chapter presents some definitions and notations used 

throughout the thesis. The expressions used are based on [6], [7], [8] and [9]. 

 

3.1 Reference Frames 

Several coordinate frames are described to determine and control the attitude 

in three dimensional spaces. Rotation from one frame to another frame must be well 

defined. Therefore concept of frame is described in detail in this section. Reference 

frame is denoted by Fa , where the index a denotes which system is considered. 

3.1.1 Earth-Centered Inertial (ECI) Frame 

The Earth Centered Inertial (ECI) frame is a non-rotating reference frame in 

which the laws of Newton apply. This frame is fixed in space and the origin of the 

frame is located at the center of the earth. The 
i

x -axis points towards vernal 

equinox, ϒ , the 
i

y axis is o90  east in the equatorial plane, and the 
i

z  axis extends 

through the North Pole. It can be seen in Figure 3-1. The frame is denoted by Fi. 

 

 

 

 

 



 15 

 

 

 

 

 

 
 
 
 
 

Figure3-1: Earth-Centered Inertial (ECI) frame,  Fi   

3.1.2 Earth-Centered Earth Fixed (ECEF) Frame 

The Earth Centered Earth Fixed (ECEF) frames origin is also located at the 

center of the earth. However the  
e

x  and 
e

y  axes rotate with the hemisphere relative 

to the ECI frame. 
e

z  axis extends through the North Pole and the rotation is about 

the 
e

z axis. The 
e

x  axis points toward the intersection between the Greenwich 

meridian and the Equator, which is at 0o longitude and 0o latitude.  The 
e

y  axis 

completes the right handed system. The ECEF frame is denoted Fe   and Fe  rotates 

relative to Fi  with a constant angular velocity 57.2921*10 /ω −=
e

rad s  due to the 

daily rotation of the earth. 

 

 

 

 

 

 

 

Figure3-2: ECEF and ECI frames,  Fe - Fi 
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3.1.3 Orbit Frame 

The origin of orbit frame coincides with the center of mass of the satellite. The 

oz  axis is always nadir pointing (center of earth). The ox  axis points in the direction 

of motion tangentially to the orbit and also ox  is perpendicular to oz . The oy  axis 

completes the right hand system, as shown in Figure 3-3. The Orbit frame is denoted 

by Fo. 

 

 

  

 

 

Figure3-3: Orbit frame,  Fo 

3.1.4 Body Frame 

The origin of body frame also coincides with the center of mass of the 

satellite. This frame is fixed with the satellite body. The nadir side of the satellite is in 

the bz  axis direction; bx  axis and by  axis coincide with the orbit frames axes when 

the satellite has an attitude of  0o  in roll, pitch and yaw. This frame is denoted Fb. 

 

 

 

 

 

 

 

 

 

Figure3-4: Body frame 
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3.2 Rotation Matrix 

Rotation matrix is a description of the rotational relationship between 

two reference frames. Rotation matrix (direction cosine matrix) has three 

statements [8]: 

• Rotates a vector within a reference frame. 

• Transforms vectors represented in one reference frame to another. 

• Describes the mutual orientation between two coordinate frames, where 

the column vectors are cosines of the angles between the two frames. 

The rotation matrix R from frame a to b is denoted b

a
R . Rotation of a 

vector from one frame to another frame can be given using b

a
R  as; 

 to to from

from=v R v  (3.1) 

Rotational matrices belongs to the set of matrices denoted by SO(3) [6], 

which is defined as 

 3 3
3 3 3 3(3) {R | R , R R=1     det  R=1  }×

× ×= ∈ T
SO R and  (3.2) 

Here 3 3×
R  is the set of all 3 3×  matrices with real elements, 3 31 ×  is the 3 3×  

identity matrix.  

The orientation of the satellite is described using a rotation matrix B

O
R  , which 

is denoted as 

 
11 12 13

21 22 23

31 32 33

 
 =  
  

B

O

c c c

R c c c

c c c

 (3.3) 

Each of the elements 
ij

c  is named directional cosines and column vectors can 

be arranged as; 

 
11

1 21

31

c

c c

c

 
 =  
  

 
12

2 22

32

c

c c

c

 
 =  
  

 
13

3 23

33

c

c c

c

 
 =  
  

 (3.4) 
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Moreover, rotation matrix B

O
R  is orthogonal and because of the orthogonality 

1c , 2c  and 3c  are orthonormal. Therefore below equations are valid for 

column vectors. 

 1 2 3c c c× =  2 3 1c c c× =  3 1 2× =c c c  (3.5) 

The rotation matrix satisfies the following properties; 

 1( ) ( ) .−= =A B B T

B A A
R R R    (3.6) 

 3 3R R 1 ×=A B

B A
   (3.7) 

 

3.3  Angular Velocity 

Angular velocity, ω A

AB
  is defined as the rate at which a rotation matrix 

changes. It is used to study the angular displacements that occur over time. Angular 

velocities are dependent on the reference frames and ω A

AB
 indicates the angular 

velocity of  Fa relative to Fb in Fa.  

When the angular velocities are in the same reference frame, they can be added. 

For example, the following relation is valid 

 ω ω ω= +B B B

BI BO OI
 (3.8) 

If angular velocities are in the different reference frames, rotation matrix is used for 

addition. Equation 3.9 shows addition in the different reference frames. 

 ω ω ω= +B B B O

BI BO O OI
R  (3.9) 

To establish the angular velocity, its relationship with the rotation matrix and the 

time derivative of the rotation matrix are considered the following. Equation 3.7 

is differentiated yielding  

 R R R R 0+ =� �A B A B

B A B A
   (3.10) 
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By defining a new matrix S as;  

 R R= � A B

B A
S    (3.11) 

and inserting S  matrix into equation 3.10, the expression turns into 

 0+ =TS S     and   = − TS S  (3.12) 

Skew symmetric form of the vector ω ω ω ω=   1 2 3

TA
AB   is written as:  

 

ω ω

ω ω ω

ω ω

− 
 

= − 
 − 

3 2

3 1

2 1

0

( ) 0 ,

0

A
ABSSSS            (3.13) 

Thus equation 3.11 can be expressed using  ω A

AB
 

 ( ) R (R )ω = �A A A T

AB B B
S    (3.14) 

Postmultiplying both sides of above equation by R A

B
 gives the relationship 

between angular velocity and rotation matrix, and its derivative:   

 R ( )Rω=� A A A

B AB B
S    (3.15) 

3.4 Attitude Representation 

There are many ways to represent the attitude of the satellite in a reference 

frame. But frequently Euler angles and Unit Quaternions are used in many 

applications. We will introduce both of them but we will use unit quaternions 

representation in our simulations. Main reason of this is the singularity problem 

of the Euler angles.         

Euler angles are generally used in analytical studies. However unit 

quaternions are widely used in simulations and data processing. In the table given 

below, characteristics and applications of euler angles, unit quaternions can be 

found [5]. 
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Table-3.1: Comparison table of attitude representation 

Attitude 

Representation 

Para 

meter 
Characteristics Applications 

Euler Angles 3 

- Minimal Set 

- Clear Physical 

interpretation 

- Trigonometric functions in 

rotation matrix 

- No simple composition rule 

- Singular for certain 

rotations 

- Trigonometric functions in 

kinematic relation 

-Theoretical physics, 

spinning spacecraft 

and attitude 

maneuvers.  

- Used in analytical 

studies. 

Unit 

Quaternions 
4 

- Easy orthogonality of 

rotation matrix 

- Bilinear composition rule 

- Not singular at any rotation 

- Linear kinematic equations 

- No clear physical 

interpretations 

- One redundant parameter 

- Simple kinematic relation 

- Widely used in 

simulations and data 

processing. 

- Preferred attitude 

representation for 

attitude control 

systems. 

  

3.4.1  Euler Angles 

Using roll ( )φ , pitch ( )θ   and yaw ( )ψ  angles the attitude can be 

represented by three parameters. The angles φ , θ  and ψ  represent the 

rotations about the x, y and z axis respectively in a rotation from one frame to 

another. These angles are called the Euler Angles. 

 

φ

θ

ψ

 
 Θ =  
  

 (3.16) 

The rotation matrices are given as follows: 
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 ,

1 0 0

0 cos sin

0 sin cos
φ φ φ

φ φ

 
 = − 
  

xR  (3.17) 

 ,

cos 0 sin

0 1 0

sin 0 cos
θ

θ θ

θ θ

 
 =  
 − 

yR  (3.18) 

 ,

cos sin 0

sin cos 0

0 0 1
ψ

ψ ψ

ψ ψ

− 
 =  
  

zR  (3.19) 

The rotation matrix O

B
R  is described by a rotation ψ  (yaw) about the z axis, 

then a rotation θ  (pitch) about the y axis and finally a rotation φ  (roll) about 

the x axis (Figure3-5). The elements (.)c  and (.)s  can be used as an 

abbreviation for the trigonometric expressions cos(.)  and sin(.) , respectively. As 

a result, the rotation matrix O

B
R  becomes 

c c s c c s s s s c c s

( ) ( ) ( ) s c c c s s s c s s c s

s c s c c

ψ θ ψ φ ψ θ φ ψ φ ψ φ θ

ψ θ φ ψ θ ψ φ ψ θ φ ψ φ ψ φ θ

θ θ φ θ φ

− + + 
 = = + − + 
 − 

O

B z y xR R R R (3.20) 

 

 

 

 

 

 

 

 

Figure3-5: Euler Angles 
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3.4.2 Unit Quaternions 

Unit quaternions are the other way for the attitude representation. They were first 

described by the Irish mathematician Sir William Rowan Hamilton in 1843 and 

applied to mechanics in three-dimensional space. Usually unit quaternions are used 

in computations to overcome the singularity problem.  

Quaternions have 4 dimensions (each quaternion consists of 4 scalar numbers), 

one real dimension and 3 imaginary dimensions. Each of these imaginary dimensions 

has a unit value of the square root of -1, but they are different square roots of -1 all 

mutually perpendicular to each other, known as i,j and k. So a quaternion can be 

represented as follows: 

 a + i b + j c + k d (3.21) 

While the complex numbers are obtained by adding the element i to the real 

numbers which satisfies = −2 1i ,  the quaternions are obtained by adding the 

elements i, j and k to the real numbers which satisfy the following relations. 

 2 2 2i = j = k = -1  (3.22) 

 

× ×

× ×

× ×

i j = -(j i) = k

j k = -(k j) = i

k i = -(i k) = j

 (3.23) 

They have four parameters, one real part η , and three imaginary parts ε . 

Unit quaternions are defined by 

 

( )
( )
( )

η
ε ϕ

εϕ
η ε ε ϕ

ε
ε ϕ

ε

 
    
    = = =    
       

 

1 x
1

2 y
2

3 z
3

k sin 2

cos , = k sin 2 ,
2

k sin 2

q

  (3.24) 

and represent a rotation about a unit vector ( )x y zk ,k ,k  through an angle ϕ  . The 

unit quaternions satisfy 1=Tq q  which also means that 2 2 2 2

1 2 3η + ε + ε + ε =1  (3.25) 
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Transformation from Euler angles to quaternion can be calculated as; 

 1

2

3

cos( 2) cos( 2)cos( 2) sin( 2)sin( 2)sin( 2)

sin( 2)cos( 2)cos( 2) sin( 2)cos( 2)sin( 2)

cos( 2)sin( 2)cos( 2) sin( 2)cos( 2)sin( 2)

cos( 2)cos( 2)sin( 2) sin( 2)sin( 2) cos( 2)

η φ θ ψ φ θ ψ

ε φ θ ψ φ θ ψ

ε φ θ ψ φ θ ψ

ε φ θ ψ φ θ ψ

+   
   −  =
   +
  

−  






 (3.26) 

Transformation from quaternion to Euler angles can be calculated as; 

 

( ) ( )( )
( )( )

( ) ( )( )

2 2 2 2
2 3 1 1 2 3

1 3 2

2 2 2 2
1 2 3 1 2 3

atan 2 q q q , q q q

asin -2 q q q

atan 2 q q q , +q q -q

φ η η

θ η

ψ η η

= + − − +

= −

= + −

 (3.27) 

 

The rotation matrix can be expressed in quaternions as: 

 
1η ε η ε ε×= = + + 2

, 3 3( ) 2 ( ) 2 ( )O
BR q R S S

 (3.28) 

Using equation 3.28, the rotation matrix O
BR   can be written as: 

 

ε ε ε ε ε η ε ε ε η

ε ε ε η ε ε ε ε ε η

ε ε ε η ε ε ε η ε ε

 − + − +
 

= + − + − 
 − + − + 

2 2
2 3 1 2 3 1 3 2

2 2
1 2 3 1 3 2 3 1

2 2
1 3 2 2 3 1 1 2

1 2( ) 2( ) 2( )

2( ) 1 2( ) 2( )

2( ) 2( ) 1 2( )

O
BR

 (3.29) 

More frequently the rotation matrix in the opposite direction is used and according to 

equation 3.6 and 3.29,  O
BR  is obtained as; 

 

ε ε ε ε ε η ε ε ε η

ε ε ε η ε ε ε ε ε η

ε ε ε η ε ε ε η ε ε

 − + + −
 

= = − − + + 
 + − − + 

2 2
2 3 1 2 3 1 3 2

2 2
1 2 3 1 3 2 3 1

2 2
1 3 2 2 3 1 1 2

1 2( ) 2( ) 2( )

( ) 2( ) 1 2( ) 2( )

2( ) 2( ) 1 2( )

B O T
O BR R

 (3.30) 

Now, rotation matrix O
BR  can be expressed using column vectors as; 

 
 =  1 2 3

B B B B
OR c c c

 (3.31) 

where   
T

B B B B
i ix iy izc = c c c   are column vectors (directional cosines). ,B B

1 2c c  and B

3c  

are the projections of the ,x yo o  and zo  axes in the body frame.  

 

ε ε

ε ε ε η

ε ε ε η

 − +
 

= − 
 + 

2 2
2 3

1 1 2 3

1 3 2

1 2( )

2( )

2( )

Bc

 

ε ε ε η

ε ε

ε ε ε η

+ 
 

= − + 
 − 

1 2 3

2 2
2 1 3

2 3 1

2( )

1 2( )

2( )

Bc

 

ε ε ε η

ε ε ε η

ε ε

− 
 

= + 
 − + 

1 3 2

3 2 3 1

2 2
1 2

2( )

2( )

1 2( )

Bc

 (3.32) 
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3.5 The Inertia Matrix 

The inertia matrix ×∈�3 3
oI   about O (arbitrary origin) is defined according to [16] 

and [9]:  

 
oI

 − − 
 

= − − 
 
− − 
 

I I I
x xy xz

I I I
yx y yz

I I I
zx zy z

   (3.33) 

In this equation ,  and I I Ix y z  are the moments of inertia about the 

- axes,  and zb b bx y  and = = =, ,I I I I I Ixy yx xz zx yz zy  are the products of inertia 

defined as: 

 ρ= +∫
2 2( )x m

V

I y z dV ; ρ= = ∫I Ixy yx m

V

xy dV  (3.34) 

 ρ= +∫
2 2( )y m

V

I x z dV ; ρ= = ∫I Ixz zx m

V

xz dV  (3.35) 

 ρ= +∫
2 2I ( ) ;z m

V

x y dV ; ρ= = ∫I Iyz zy m

V

yz dV  (3.36) 

If the axes of the body frame coincide with the principal axes of inertia, the inertia 

matrix reduces to: 

 

0 0

0 0

0 0

 
 
 =
 
 
  

I
x

I
y

I
z

I    (3.37)  

BILSAT-1 inertia matrix parameters are  Ixx=9,8194 kgm2 ; Ixy=Iyx=0.071 kgm2 ; 

Ixz=Izx=0,2892 kgm2 ; Iyy=9,7030 kgm2 ; Iyz=Izy= 0,1011 kgm2 ; Izz=9,7309 kgm2. 

Diagonal terms of inertia matrix (Ixx, Iyy, Izz) are larger than other components of I. 

Throughout this thesis we neglect the off diagonal terms.  
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CHAPTER 4 

 

MATHEMATICAL MODELLING 

 

Mathematical model of dynamics and kinematics of satellite are derived in this 

chapter. Also satellite’s environment is described in detail. The expressions are based 

on [6], [18] and [19]. 

 

4.1 Satellite Model 

4.1.1 Dynamics for Satellite Model 

The satellite is modeled as a rigid body and its dynamic model is derived 

using the Newton-Euler formulation. In this formulation angular momentum 

changes related to applied torque. General mathematical dynamic model of the 

satellite is obtained after some calculations. 

Given the momentum p  and the position vector r , the angular momentum h  is 

 = ×h r p  (4.1) 

Derivation of angular momentum can be done using Newton’s second law 

together with  × =0v v  and  =p mv  [4].  

 
δ δ δ

τ
δ δ δ

= × + × = × + × = × =h r p r p v mv r ma r F
t t t

 (4.2) 

where v  is the velocity vector and τ  is the vector of all torques applied on the 

satellite. The angular momentum can alternatively be defined by the moment of 

inertia I , and the angular velocity ω  of the satellite as; 

 ω=h I  (4.3) 
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In equation 4.3, angular momentum was given in the Fi   (ECI) frame. Dynamic 

equation can be expressed in different frames. By using the rotation matrix, the 

equations given below can be derived. 

  ω=B B B
BIh I  (4.4) 

  ω=I B I B B
B B BIR h R I  (4.5) 

  ω=I I B B
B BIh R I  (4.6) 

  ω=I I B B I
B I BIh R I R  (4.7) 

  =I I B B
B II R I R  (4.8) 

After differentiating equation (4.6) and applying the time derivatives of the 

rotation matrix, the following equation is obtained; 

  ω ω ω ω ω= + = +� � � �( )I I B B I B B B I B B I B B
B BI B BI BI B BI B BIh R I R I S R I R I  (4.9) 

In the Body frame (Fb), this is expressed by postmultiplying both sides of 

above equation by B
IR   

 ω ω ω ω ω ω= + = +� � �( ) ( )B I B B I B B B I B B B B I B B B B
I I BI B BI I B BI I BI B BI BIR h R S R I R R I R S R I I  (4.10) 

Merging the equation in 4.10 with 4.2 gives; 

 ω ω ω τ= + =� �( )B B I B B B B B
I BI BI BIh S R I II II II I  (4.11) 

Finally general mathematical dynamic model of the satellite is obtained as;  

 ω ω ω τ τ+ × = =∑� ( )B B B B B B B
BI BI BI k

k

I II II II I  (4.12) 

In the above equations; 

I  : is the moment of inertia,  

ωB
BI  : is the angular velocity of the body frame with respect to the inertial 

frame in the body frame, 

τ B
k  : are the torques acting on the satellite in body frame  

 

The torques τ B
k  are the sum of both internal torques and external torques on the 

satellite. Usually internal effects like fuel sloshing and thermal deformations are not 
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accounted when using a rigid body model. Therefore internal torques are not taken 

into consideration. The external torques τe  can be separated into two groups as 

disturbance torques and control torques. Disturbance torques are caused by 

environmental effects such as gravity gradient torque, solar radiation, aerodynamic 

drag and etc. Control torques are intentionally applied torques from control devices 

such as reaction wheels, magnetic torquers and etc. Generally gravity gradient 

torque, magnetic torque and reaction wheel torque are considered for the total torque.    

 τ τ τ τ= + +B B B B
g m r  (4.13) 

τ B
g  : is the gravitational torque working on the satellite body.  

τ B
m  : is the torque applied by the magnetic torquer.  

τ B
r  : is the torque applied by the reaction wheel.  

 

In our simulations we will consider mainly gravity gradient torque and reaction 

wheel torque for the maneuver of satellite. τ τ τ= +B B B
g r  

Satellite dynamic equation in 4.12 can be alternatively expressed by using 

the skew-symmetric operator.  

 ω ω ω τ+ =� )B B B B B B
BI BI BII S( II S( II S( II S( I  (4.14) 

The angular velocity of the satellite ωB
BI  relative to the inertial frame is 

expressed in the body frame as the sum of two angular velocities,  

 ω ω ω ω ω= + = +B B B B B O

BI BO OI BO O OI
R  (4.15) 

where ω ω= −  0 0O T
OI o  is the known angular velocity of the orbit frame relative 

to the ECI frame, expressed in Orbit frame. Then, 

 

ω

ω ω ω ω

ω

 
 

= = − 
  

2

x

B B
BI y BO o

z

c   with 

ε ε ε η

ε ε

ε ε ε η

+ 
 

= − + 
 − 

1 2 3

2 2
2 1 3

2 3 1

2( )

1 2( )

2( )

c  (4.16) 

is obtained. 
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4.1.2 Kinematics For Satellite Model 

The satellite's orientation can be described by the kinematics. The kinematic 

is derived by integrating the angular velocity.  

 

 

 

 

 

 

Figure4-1: Translational Motion 

 

Translational motion of a particle of mass m is derived using Newton’s second 

law. 

 =��mr f  (4.17) 

 = = �p mv mr  (4.18) 

 = = =� ���p mv mr f  (4.19) 

 =�
p

r
m

 (4.20) 

Here r  is the position vector of the particle relative to an inertial origin O, p  is 

the linear momentum of the particle and f  is the force acting on the particle.  

=� /r p m  is known as the kinematic differential equation for the translational 

motion and describes how position changes for a given velocity. 

For the translational motion  kinematic differential equation is simple to express 

but for the rotational motion it is not so simple to express.  

The differential equations, as given in reference [6], are;  

 η ε ω= −�
1

2

T B
BO  (4.21) 

 [ ]1ε η ε ω×= +�
3 3

1
( )

2

B
BOS  (4.22) 
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Hence, another way of representing Equations 4.21 and 4.22 becomes; 

 
η ε

ω
ε η ε×

 − 
= =    +   

�
�

�
3 3

1

1 ( )2

T
B
BOq

S
 (4.23) 

4.2 Magnetic Torque 

The magnetic torquers use natural torque caused by Earth’s magnetic field 

interacting with a magnet. The magnetic torquer produces a magnetic dipole 

moment when currents flow through its windings. This current is proportional to 

the ampere-turns and the area enclosed by the torquer.  

Magnetic torques together with a gravity gradient torque can be used to 

obtain full three-axis stabilization. The main purpose of the actuators effect is to 

place the satellite in its right attitude using the magnetic field.  

In the following equations; modelling of the magnetic torquers is derived 

[18].Magnetic torque on a coil element in the magnetic field is given by 

 d idτ = ×m s B  (4.24) 

On the coil element, magnetic dipole moment can be defined as dm id≅ s   and 

from a coil with windings the total dipole moment can be found by integrating over 

the entire coil area S  as: 

 m dm≅ ∫
S

N  (4.25) 

where N  is the number of windings. Finally torque on a magnetic coil can be 

written as 

 τ = × = ×∫
S

N B Bm ids m  (4.26)  

which can be written relative to the body frame as  

 B m Bτ

 −
 

= × = = − 
 − 

m ( )

B B
z y y z

B B B B B B B
m x z z x

B B
y z x y

B m B m

B m B m

B m B m

S  (4.27) 

In the above equation; 

τ B
m  : is the torque which is generated by the magnetic torquer, 

Bm  : is the magnetic dipole moment generated by the torquer, 

 =  
B B B B

x y xB B B B  : is the geomagnetic field vector. 
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The total torque generated on the satellite by the magnetic torquers is given by 

the sum of all the partial torques from all the magnetic torquers. 

 m

   
   

= =   
      

x x x x

B
y y y y

z z z z

N i A m

N i A m

N i A m

   (4.28) 

where kN  is the number of windings in the torquer on the axis in the k direction, 

ki  is the torquer current and kA  is the span area of the torquer, = , ,k x y z .  
 

Magnetic torquers were used during settling to orbit of BILSAT-1. In this thesis 

we are interested in maneuver of BILSAT-1. Therefore, magnetic torque from 

magnetic torquer is not taken into consideration in our simulations. 

 
4.3 Reaction Wheel Torque 
 

The main advantage of reaction wheels, compared with magnetic torquers, is the 

independency of satellites location for the control of the satellite. Nevertheless, 

weight and expenses are disadvantage of the reaction wheels. The reaction wheel 

equation is expressed in [23] as; 

 
d

dt
τ ω τ 

= + × − 
 

B
B B Br
r BI r friction

h
h  (4.29) 

where τ B
r  is the torque produced by reaction wheels in the body frame,  

ω = = 
T

r rx ry rz r rh h h h I  is the angular momentum of the reaction wheels and 

τ B
friction  is friction. The frictional torques τ B

friction  is neglected in our simulations. 

According to energy conservation principle, a torque rotating the reaction wheels 

produces a torque of the same magnitude but in different direction on the satellite. It 

is expressed by 

 ω ω= −� � B
r r BII I  (4.30) 

Using ω ω ω ω =  
TB

BI x y z  in equation 4.29, the equations of reaction wheel 

torques are expressed as: 

 
d

dt

ω ωτ

τ ω τ ω ω

τ ω ω

 + − 
   

= + × = = + −         + −    

�

�

�

rx rz y ry zrxB
B Br
r BI r ry ry rx z rz x

rz rz ry x rx y

h h h
h

h h h h

h h h

 (4.31) 
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4.4 Gravity Gradient Torque  

Gravity gradient torque exists due to the variation in the gravitational field. 

Gravitational force varies with the inverse square of the distance from the Earth. 

Therefore, closer to the Earth, gravitational force is greater. 

 

 

 

 

 

 

Figure4-2: Gravity gradient parameters 

The force working on a mass element in the satellite is given by the gravitational 

law of Newton [11] as:  

 
3

R
df dm

R
µ= −

�

 (4.32) 

where µ  is the Earth's gravitational coefficient constant and equals to µ =GM  , G  is 

the universal gravitational constant and  M  is the mass of the Earth.  =
�

R R  is the 

distance from the center of the Earth to the mass element  dm . 

Numerical values of the constants mentioned above are: 

 = 245.9742 *10M kg  (4.33) 

 −= 11 2 26.6720 *10 /G Nm kg  (4.34) 

 µ = 14 23.986 *10 /Nm kg  (4.35) 

The gravitational torque around the centre of mass of a rigid spacecraft is given by; 

 
3g

B B

r
r df dmτ µ

×
= × = −∫ ∫

�
� R

R
 (4.36) 

where  r r=
�

 is the distance from the center of mass in the satellite to the mass 

element dm . Here, it can be seen from figure4-2 that 
� � �

cR = R + r  
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Binomial series expansion of the expression -3R  is given  in reference [18] by 

 

23( . )
1

r r
O

  
− +  

  

��
-3 -3

c 2 2
c c

R = R
R R

cR
 (4.37) 

Inserting the above equation into 4.36 gravitational torque turns into 

 τ µ
 ×

= − − 
 

∫
� �� �

3( )
1g

B

r r
dmg

c c
3 2
c c

R R

R R
 (4.38) 

 
µ µ

τ
   

= × − ×   
   

∫ ∫
� � �� ��3g g

B B

rdm rrdmg c c c3 5
c c

R R R
R R

 (4.39) 

 
3

B

rrdm
µ

τ
 

= − × 
 

∫
� ���

g c c3
c

R R
R

 (4.40) 

  

The expression 
B

rrdm∫
��

 is a part of the expression of the inertial torque of the 

body, represented by  

 ( )21r rr dm≅ −∫
��

B

I  (4.41) 

By defining  

 Oσ =

�
c

c

R

R
 (4.42) 

the gravitational torque for the satellite becomes  

 
µ

τ σ σ ω σ σ= × = ×2

3

3
I 3 Ig O O O O O

cR
 (4.43) 

According to [11], ωo  is the speed of the spacecraft in a circular orbit of radius 

oR .  It can be said that ωo  represents the angular velocity of the orbit frame Fo  

about its yo axis. The gravity gradient written in the body frame is   

 I
µ

τ ω ω= × =2 2
3 3 3

3 ( ) ,B B B
g o o

c

c c
R

   (4.44) 

where 3
Bc  comes from the rotation matrix B

OR  and transforms the zb axis to the zo 

axis. As given before, 3
Bc  is: 
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ε ε ηε

ε ε ηε

ε ε
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 
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 − + 
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3 2 3 1

2 2
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2( )

1 2( )

c  (4.45) 

  Another representation of the gravitational torque is; 

 

( )
( )

( )

( )( ) ( )( )
( )( ) ( )( )

( )( )( )

ε ε ηε ε ε

τ ω ω ε ε ηε ε ε

ε ε ηε ε ε ηε

 − + − + −   
  = − = − − − +
  
 −  − − +   

2 2
2 3 1 1 2

23 33

2 2 2 2
33 13 1 3 2 1 2

13 23 1 3 2 2 3 1

2 1 2

3 3 2 1 2

4

z y
z y

B
g o x z o x z

y x y x

I II I c c

I I c c I I

I I c c I I

 (4.46) 

4.5 Disturbance Torques 

Several disturbance torques affects satellites. The main effective disturbance 

torques for satellites are described in this section. Further information can be found in 

reference [11].  

4.4.1 Solar Radiation 

 Solar radiation pressure produces a force on the satellite related to its 

distance to the sun. Solar radiation has more effect at high altitudes. Therefore 

solar radiation effect is ignored in our simulations for BILSAT-1. The surface area 

of the satellite which faces the Sun is essential when determining the resulting 

acceleration caused by solar radiation. 

Equation 4.47 gives the force of solar pressure; 

 −= = = ×
×

2
6 2

8

1353 /
4.51 10 /

3 10 /
SR

SF W m
p N m

c m s
   (4.47) 

SF  : is the solar radiation constant  = 21353 /SF W m  (4.48) 

c   : is the speed of the light 83 10 /c m s= ×  (4.49) 

The torque due to the solar radiation is given by:  

 τ = − −�* * * ( )solarradiation SR R psr gp c A c c  (4.50) 

where �A  is the exposed area to the Sun, Rc  is the reflectivity, psrc  is the 

estimated center of pressure and  gc  is the center of gravity. 
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4.5.2 Aerodynamic Torque 

At low altitude, satellites will be influenced by the air density. The effect is 

dependent on the area and shape of the surface. This effect may reduce the velocity 

of the satellite. The aerodynamic torque is given as: 

 τ ρ= × − =c c 21
( ( )) ,

2
aero aero v pa g aero d incF F V C Auuuu    (4.51) 

where:  

ρ     Atmospheric density 3( / )kg m  

incA Area perpendicular to uv 
2( )m  

vuuuu   Unit vector in velocity direction 

dC   Drag coefficient 

V    Velocity of satellite ( / )m s  

pac  Center of pressure 

gc   Center of gravity 

 

4.6 Reference Model 

Reference model generates the smooth reference trajectory for the control system 

to use. It operates on the reference signal so that a step in the reference will be 

filtered into a smooth curve. Controller than tries to follow this smooth curve. A 

second order or third order filter is appropriate for this aim. We simulated second 

order and third order filters and we saw that third order filter responds better than 

second order filter. 

 Reference vector is denoted by rq  and desired vector is denoted by dq .Transfer 

function from desired reference to filtered reference was chosen as: 

 
( )( )

{ }
ω

ω ζω ω
= ∈

+ + +

3

2 2
, 1,2,3,4

2
i

i

d n

r n n n

q
i

q s s
 (4.52)   

The damping ratio is chosen as 1ζ =  for the critical damping output from reference 

model. The undamped natural frequency nω  is adjusted depending on the system 

requirements. We gave different value to nω  in our simulations. Then we saw that if 

we increase the nω , settling time decreases. Nevertheless the system overshoots and 

required torque increases. We prefer the long settling time and low torque rather than 
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short settling time because of the energy consumption. In the satellite operations, 

energy consumption is main determining factor while designing design sub 

components of the satellites. In Table-4.1, the effect of nω  to the system response is 

tabulated for two different values of nω when the controller is Sliding Mode 

Regulator (SMR).  

Table-4.1: Effect of nω on system response 

Parameter ω = 0.022n (SMR) ω = 2n (SMR) 

Settling Time 0.09 orbits 0.01 orbits 

Max. Output Torque from Regulator 4e-4 Nm 0.6 Nm 

Max. Output Torque from Reaction wheel 3e-4 Nm 0.5 Nm 

Response Overdamp Overshoot 
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CHAPTER 5 

 

MODELLING of REACTION WHEELS 

 

Mathematical model of reaction wheels is derived in this chapter. Information 

about tetrahedral configuration is given and equations of tetrahedral configuration 

are derived. Allocation problem and its solution are expressed in detail. Further 

information can be found in the references [3], [16] and [19]. The derivations are 

based on [19].  

 

5.1 Control Allocation 

 

 

 

 

 

 

Figure-5.1: General Control Design For Reaction Wheels 

In our simulations for the BILSAT-1, dimension of the controller output is  3=n . 

Nevertheless input of the actuator (reaction wheel) has the dimension 4=r . 

Therefore generalized force vector τ  is distributed to input vector. According to [16] 

and [19] relation between force vector and input vector is given as: 

 �( ) ,τ α=
f

T Ku  (5.1) 

where ∈�r
u  and α ∈� p  are defined as  

 [ ]1 1,..., ,...,α α α = = 
T T

p r
u u u       (5.2) 
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In equation 5.1, f  is defined as force vector and = ∈�rf Ku , here K  is diagonal 

force coefficient matrix ×∈�r rK , { }1,...,= rK diag K K .  

Allocation matrix ( )αT  is defined as ( )α ×∈�n r
T , ∈�n

i
t  and ( ) [ ]1,...,α = rT t t .  

Generalized force vector τ  is distributed to the input vector u  by minimizing the 

force =f Ku . Minimization problem is solved as shown by equations stated below, 

using reference [16] and [19]. 

 { }min= TJ f Wf  (5.3) 

 0τ − =Tf  (5.4) 

 ( )
†

11 1T T

T

f W T TW T

ω

τ
−− −=

��������	
 (5.5) 

 ( )
1† 1 1

ω

−
− −= T TT W T TW T  (5.6) 

For the case where W  is a unity matrix 

 ( )
1†

ω

−

= T TT T TT  (5.7) 

Then, the actuator input vector is found as:  

 1 †
ωτ−=u K T  (5.8) 

We used “alloc” command for the control allocation in the Matlab. “alloc” command 

was formed by Fossen and Matlab GNC Toolbox was used in our simulation sfor 

“alloc” command. 

  ( ), , ,=u alloc K T W tau  (5.9) 

5.2 Control Allocation for Satellite 

For the satellite, allocation problem is between the euler angles 3=n  (roll, pitch, 

yaw) and actuators 4=r  (reaction wheels). Allocation matrix T  consists of four 

column vectors. Each column vector represents the distribution of the reaction wheel 

torques to each axis of rotation of the satellite. Allocation matrix for the satellite with 

four reaction wheels is given as 

 [ ]
1, 2, 3, 4,

1 2 3 4 1, 2, 3, 4,

1, 2, 3, 4,

 
 

= =  
  

x x x x

y y y y

z z z z

r r r r

T t t t t r r r r

r r r r

 (5.10) 
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5.3 Configuration of Reaction Wheels 

The reaction wheels of BILSAT-1 are arranged in a tetrahedral configuration. 

Tetrahedral configuration is used for the robust control and continuity of the control 

operation during failure in the any reaction wheel. The other advantage of tetrahedral 

configuration comes from the geometry of the location of wheels. That’s, wheel 

assembly is capable to deliver the satellite twice as much of the maximum torque that 

a single wheel can supply.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure-5.2: Tetrahedral Configuration of Reaction Wheels 

 

Allocation matrix for the tetrahedral configuration can be found using equation 

5.10. Equations given below are valid for each axis in equation 5.10. 

 1, 2, 3, 4, 0+ + + =
x x x x

r r r r  (5.11)  

 1, 2, 3, 4, 0+ + + =
y y y y

r r r r  (5.12) 

 1, 2, 3, 4, 0+ + + =
z z z z

r r r r  (5.13) 
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These equations imply that in all axes total moment is zero. Each column vector is 

the unity vector, i.e. 

 ( ) ( ) ( )
22 2

, , , 1, 1, 2,3,4.+ + = =
i x i y i z

r r r i  (5.14) 

Angle between all vectors is ( )1 o2cos 1/ 3 109.47ϕ −= = . Thus the scalar product 

between the two vectors is cosϕ=
i j i j

t t t t  where 1= =
i j

t t  and ϕ  is the angle 

between the vectors. 

1t , the first column of T , is replaced along the z axis as [ ]1 0 0 1= −t . From the 

equation 5.13  2, 3, 4,= =
z z z

r r r  are found as 2, 3, 4,

1

3
= = =

z z z
r r r  . Then the preliminary 

matrix becomes 

 
2, 3, 4,

2, 3, 4,

0

0

1 1 1
1

3 3 3

 
 
 

=  
 
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 

x x x

y y y

r r r

T r r r  (5.15) 

 

For finding 2t , 2, 0=
x

r   is considered and equation 5.14 is solved for 2=i  

 ( ) ( )
2

22

2,

1
0 1

3

 
+ + = 

 
y

r  (5.16) 

 
2

2,

1
1

3

 
= ± −  

 
y

r  (5.17) 

 2,

2
2

3
= ±

y
r  (5.18) 

If 2,

2
2

3
= −

y
r  is chosen as one of the possible solutions, application of equation 

5.12 results in 3, 4,

1
2

3
= =

y y
r r . Thus the temporary tetrahedral matrix becomes 

 

3, 4,0 0

2 1 1
0 2 2 2

3 3 3
1 1 1

1
3 3 3

 
 
 
 = −
 
 
 −
 

x x
r r

T  (5.19) 
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For finding 3t  and 4t , equation 5.14 is solved for 3,4=i  

 ( )
2 2

2

,

1 1
2 1

3 3

   
+ + =   
   

i x
r  (5.20) 

 
2 2

,

1 1
1 2

3 3

   
= ± − −   

   
i x

r  (5.21) 

 ,

1
6

3
= ±

i x
r    for 3,4=i  (5.22) 

Choosing 3,

1
6

3
=

x
r   and 4,

1
6

3
= −

x
r  (5.23) 

Final tetrahedral allocation (distribution) matrix T  is found as; 

 

1 1
0 0 6 6

3 3
2 1 1

0 2 2 2
3 3 3
1 1 1

1
3 3 3

 
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 
 = −
 
 
 −
  

T  (5.24) 
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CHAPTER 6 

 

CONTROLLER DESIGN and SIMULATIONS 

 

In this chapter quaternion feedback controller and sliding mode regulator for the 

maneuver of a small satellite using reaction wheels are described. After that their 

simulations in the matlab and simulink are given. Finally, the comments and 

discussions on the obtained responses are given. 

6.1  Quaternion Feedback Controller (PD) 

In quaternion feedback, attitude is controlled by calculating the attitude deviation. 

Suppose that the desired orientation of the body is given by a rotation matrix dR  and 

actual orientation is given by a rotation matrix R . In the case of rotation matrices, it 

does not make sense to subtract dR  from R  as the result would not be a valid 

rotation matrix for the attitude deviation. Deviation between the desired and the 

actual orientation is described by the rotation matrix ∈
 (3)R SO  defined by 


 � T
dR R R . =
 � *( ) ( ) ( ) ( ) ( )T

d dR q R q R q R q R q   where dq  is the desired quaternion,  

*
dq  is the complex conjugate of dq , q  is actual quaternion and 
q  is the actual error 

according to references [6] and [19]. Successive rotations in quaternion 

representation are expressed as = ⊗* *( ) ( ) ( )d dR q R q R q q , where ⊗  is the quaternion 

product operator. Then error in unit quaternions can be written as [6], [19] 

 
η ε η η ε ε

ε η ε η ε ηε ε ε×

   +
= ⊗ = =   

− − − − ×   



3 3

*

1 ( )

T T
d d d d

d

d d d d d d

q q q q
S

 (6.1) 

 

The attitude error quaternion vector consists of the last three elements of 
q .  

 ε η ε ηε ε ε= − − ×

d d d  (6.2) 
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and derivative of this error is calculated as; 

 ε η ε η ε ηε ηε ε ε ε ε= + − − − × − ×�
 � � � � � �
d d d d d d  (6.3) 

Nonlinear proportional and derivational (PD) controller is constituted using 6.2 and 

6.3. 

 ε ε= − − �
 

p du K K  (6.4) 

where u  is the torque vector pK  is positive definite proportional gain constant and 

dK  is positive definite derivative gain constant. Notice that, although it is a PD 

controller in terms of quaternion and its derivative, it is a nonlinear controller in 

terms of Euler angles which are the actual variables that are controlled.  

6.1.1  Stability Analysis 

Stability analysis of the quaternion feedback controller is based on the 

Lyapunov candidate function (LCF). The total energy of the satellite can be 

chosen as the LCF. Energy equations and lyapunov analysis are given below.  

6.1.2 Energy Considerations 

The total energy of the satellite can be divided into kinetic and potential 

energy.  Kinetic energy of the satellite is a result of the rotation in the orbit 

frame. On the other hand gravity gradient and gyro effects due to revolution 

about the Earth are the main sources of the potential energy. 

6.1.2.1 Kinetic Energy 

The kinetic energy is given in body frame with respect to the orbit frame as 

 
ω ω=

1
( )

2

B T B
kin BO BOE I

 (6.5) 

6.1.2.2 Potential Energy 

Equation 6.6 represents the potential energy due to the gravity gradient and 

equation 6.7 represents the potential energy due to revolution of the satellite about 

the Earth.  

 ω= −2
3 3

3
(( ) )

2

B T B
gg o zE Ic Ic    (6.6) 

 ω= −2
1 1

1
( ( ) )

2

B T B
gyro o xE I c Ic    (6.7) 
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6.1.2.3 Total Energy 

Total energy of the satellite is computed as the sum of kinetic and potential 

energy. 

 tot kin gg gyroE E E E= + +    (6.8) 

Distinct form of equation 6.8 is: 

 
ω ω ω ω= + − + −2 2

3 3 1 1

1 3 1
( ) (( ) ) ( ( ) )

2 2 2

B T B B T B B T B
tot BO BO o z o xE I II c Ic c Ic

 (6.9) 

Using   =  1 2 3

TB B B B
i i i ic c c c  and = + +2 2 2

1 2 3( )B T B
i i x i y i z ic Ic I c I c I c  (6.10) 

equation 6.9 turns into the following: 

 

ω ω ω

ω

= + + + − +

+ + −

2 2 2 2
13 23 33

2 2 2 2
31 21 11

1 3
( ) ( ( 1))

2 2
1

( ( 1))
2

B T B
tot BO BO o x y z

o z y x

E I c I c I c

I c I c I c

I

  (6.11) 

In chapter 3 equation 3.5 states that B
OR  is orthogonal. This means that: 

+ + =2 2 2
11 21 31 1c c c  and + + =2 2 2

13 23 33 1c c c  (6.12)   

Using above identities in equation 6.11, one gets 

 

2 2 2
13 23

2 2 2
21 31

1 3
( ) (( ) ( ) )

2 2
1

(( ) ( ) )
2

B T B
tot BO BO o x z y z

o x y x z

E I I I I

I I I I

ω ω ω

ω

= + − + − +

− + −

I c c

c c
 (6.13) 

as the total energy. The Lyapunov candidate function is chosen as  

 ( ) totV x E=  (6.14) 

In this equation totE  satisfies the properties given below: 

 (0) 0V =  (6.15) 

 ( ) 0 0V x x> ∀ ≠  (6.16) 

From equation 6.13 it is clear that 

 21 31 13 23, , , ,
TB

BOx c c c cω =    (6.17) 

and if  0x =   then  ( )0 0V = . 

For ensuring that the energy function is positive definite ( ) 0 0V x x> ∀ ≠  , inertial 

constraint required is x y zI I I> > . In BILSAT-1 this constraint is not satisfied. 

However, when we have investigated the energy function using Matlab, we have 

seen that energy function was positive definite. Therefore we have used total energy 
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function to show stability analysis of quaternion feedback controller.  

The derivative of the Lyapunov function is given in [9] and [19] as 

 ω τ=� ( )B T B
BOV  (6.18) 

Refreshing the fact that quaternion feedback controller was 

 ε ε= − − �
 

p du K K  (6.19) 

with u  being the torque applied to the system, �V  becomes;  

 ω τ ω ε ε= = − − �� 
 
( ) ( ) ( )B T B B T
BO r BO p dV K K  (6.20) 

Using equations 6.2 and 6.3 in equation 6.20, the new expression given below is 

obtained. 

 
ω η ε ηε ε ε

η ε η ε ηε ηε ε ε ε ε

= − − − ×

− + − − − × − ×

�

� � � � � �

( ) ( ( )

( ))

B T
BO p d d d

d d d d d d d

V K

K
 (6.21) 

Making use of kinematic equations of the satellite, derivative of the energy function 

can be expressed as; 

 
ω η ε ηε ε ε η ε η η ε ω

ε ω ε ηε ε ε ε η ε ω

= − − − × − + +

− − − − × − × +

� �

� �

1
( ) ( ( ) ( ( ( 1 ( )) )

2
1 1

( ) ( ( 1 ( )) )))
2 2

B T B
BO p d d d d d d BO

T B B
BO d d d d BO

V K K S

S

 (6.22) 

Using skew symmetric matrix expression for the cross products in equation 6.22, one 

gets 

 
ω η ε ηε ε ε η ε η η ε ω

ε ω ε ηε ε ε ε η ε ω

= − − − − + +

− − − − − +

� �

� �

1
( ) ( ( ( ) ) ( ( ( 1 ( )) )

2
1 1

( ) ( ) ( )( ( 1 ( )) )))
2 2

B T B
BO p d d d d d d BO

T B B
BO d d d d BO

V K S K S

S S S

 (6.23) 

From equation 6.23 it is not easy to predict that <� 0V . Some steps for further 

simplification should be taken. 

 For the sake ofsimplicity, if reference is taken as zero, equation 6.20 changes into 

 ω ε ε= − −� �( ) ( )B T
BO p dV K K  (6.24) 

By adding a new term to Lyapunov function in equation 6.9 one gets 

 
ω ω ω

ω ε ε η

= + − +

− + + −

2
3 3

2 2
1 1

1 3
( ) (( ) )

2 2
1

( ( ) ) ( (1 ) )
2

B T B B T B
BO BO o z

B T B T
o x p

V I c Ic I

I c Ic K

 (6.25) 

where ε ε η+ − 2( (1 ) )T
pK  is the new added term. By using the property ε ε η+ =2 1T  
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this new term can be further simplified as: 

 ε ε η η η+ − + = −2( 1 2 ) 2 (1 )T
p pK K  (6.26) 

Derivative of this equation is; 

 η− �2 pK  (6.27) 

From equation 4.21  η�  expression is added, and this results in; 

 ε ωT B
p BOK  (6.28) 

After that, the derivative of the new Lyapunov function can be expressed as; 

 ω τ ε= +� ( ) ( )B T B
BO r pV K  (6.29) 

Putting torque expression τ B
r  for the zero reference results in; 

 ω ε ε ε= − − +� �( ) ( )B T
BO p d pV K K K  (6.30) 

 ω ε= −� �( ) ( )B T
BO dV K  (6.31) 

Now it is required to show that equation 6.31 is negative definite. Inserting equation 

4.22 for the ε�  term gives; 

 ω η ε ω×= − +�
3 3

1
( ) ( ( ( 1 ( )))

2

B T B
BO d BOV K S  (6.32) 

Then, with zero reference, it is seen that the system will be stable provided that 

η ε× +3 3( 1 ( ))S  term is positive definite. For positive definiteness of this ×3 3  matrix, 

the leading principal minors should be positive. i.e. η η ε> + >2 2
30 , 0 and 

η η ε ε ε+ + + >2 2 2 2
1 2 3( ) 0 . This shows that �V  is negative definite provided that η > 0 . 

In equation 3.24 η  was given as 
ϕ

η = cos
2

, therefore ϕ  must be in an interval 

π ϕ π− < <  for it to be positive. So, as a result, one can state that the method works 

properly, provided the inertial constraints stated are satisfied. Once the stability is 

guaranteed, one can choose proper pK and dK values for better system performance. 

6.2 Sliding Mode Regulator 

The sliding mode regulator idea is based on bringing the system states to a 

manifold or surface where the states stay for all time. The sliding manifold is 

designed such that once the system states are on the sliding manifold, states will 

converge to the desired states. Sliding mode controller has the ability to deal with 

parameter variations in the original nonlinear system (Robustness).  
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Satellite dynamic model was given in equation 4.12 as 

 ω ω ω τ= − × +� ( )B B B B B B
BO BO BOI II II II I  (6.33) 

By defining a new matrix ( )M q  as  

 η ε×= +3 3( ) 1 ( )M q S  (6.34) 

 

η ε ε

ε η ε

ε ε η

− 
 

= − 
 − 

3 2

3 1

2 1

( )M q  (6.35) 

the kinematic equations in 4.23 can be rewritten as: 

 η ε ω= −�
1

2

T B
BO  (6.36) 

 ε ω=�
1

( )
2

B
BOM q  (6.37) 

The task of the sliding mode controller is formulated as to bring the limit of the norm 

of quaternion error to zero. ε ε ε= −( ) ( ) ( )e dt t t  

 ε ε
→∞

− =lim ( ) ( ) 0d
t

t t  (6.38) 

where ε ( )d t  is the desired quaternion, ε ( )t  is the actual quaternion and ε ( )e t  is the 

quaternion error. According to reference [22], a suitable sliding manifold σ   is 

chosen such that it is reached in finite time and is maintained thereafter.  

 σ ε ε ε= + =�( ) 0e eK  (6.39) 

where K  is a diagonal positive matrix and 

  ε ε ε= −� � �
e d  (6.40) 

Using equation 6.37 in 6.40 one gets 

 ε ε ω= −� �
1

( )
2

B
e d BOM q  (6.41)  

Derivative of sliding manifold, as derived in reference [22], is given as: 

 ( )σ ε ηω ω ω τ ε− − 
= − + − +  
�� � �� 1 11 1 1

2 2 2

B B B B
d BO BO BO eMI S I MI K  (6.42) 

Lyapunov candidate function is chosen as: 

 σ σ−= >11
0

2
TV IM  and σ σ−=� �11

2
TV IM  (6.43) 

where  −1IM  is a symmetric positive definite matrix. Then, �V  becomes 

 ( )σ ηω ω ω ε ε τ σ− − − −= − + + + − +� �� �� �1 1 1 11 1 1

2 2 2
[ ]T B B B B

BO BO BO d eV IM S I IM IM K IM (6.44)  
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Control law is chosen as τ ρ σ= + ( )equ sign   where proper control torque equ  cancels 

out all the terms in the derivative of V, and ρ σ( )sign  guarantees that it is less than 

zero at all times. After the substitution, the derivative of V being negative definite 

shows the existence of a sliding mode controller that is asymptotically stable.i.e  

 ( )ηω ω ω ε ε σ− − − −= − + + + + �� �� �1 1 1 12 2 2B B B
eq BO BO BO d eu IM S I IM IM K IM  (6.45) 

 σ ρ σ σ ρ σ
=

= − = − ∑�
3

1

( )T T
i

i

V sign                    ( ρ > 0 ) (6.46) 

eqU  is costly for implementation and the sign function causes chattering problem, To 

overcome these difficulties discontinuous control law is implemented satisfying all 

requirements for stability with the following discontinuous control law . 

 
σ

τ  
= = 

Φ 
max 1,2,3i

i iu sat i  (6.47) 

where Φ  is the sliding boundary layer (thickness) and 

 ρ≥ +max

eqi iu u      ,      ρ >( 0)  (6.48) 

max
iu  was taken as maximum torque of reaction wheels and equation 6.47 was 

realized as controller torque in our simulations. Saturation function is used to help 

mediate the chattering problem that occurs with the sign function. Saturation 

function ( )( ).sat  is given as 

 

σ

σ σ
σ

σ

> Φ
 

= ≤ Φ 
Φ Φ  

− < −Φ

1

1

i

i i
i

i

for

sat for

for

 (6.49) 

The saturation function becomes the sign function when sliding boundary layer 

approaches zero.   

 

 

 

 

 
 
 
 
 

 

The sign function The saturation  function The hyperbolic tangent   
function 

Figure-6.1: Functions 
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6.3  Simulations 

Based on the information and derivations done in previous chapters controllers 

are designed and simulated using Matlab and Simulink software. General BILSAT-1 

parameters which are used in the simulations are given in the table below. 

Table-6.1: General BILSAT-1 parameters 
Parameter Value 
Weight 120  kg 
Inertia Moment = = = 29.8194 , 9.7030 , 9.7309x y zI I I kgm

 
Orbit 686 km 
Orbit Period 97.7 Min 
 
6.3.1  Quaternion Feedback Controller (PD) 

Quaternion feedback controller is investigated for the BILSAT-1 satellite. 

Reaction wheels are considered as actuator for maneuver of the satellite. 

Simulation parameters are as shown in table below.  

 

Table-6.2: Simulation parameters of Quaternion Feedback Controller  

Initial Angular Velocity: ω =   0 0 0B T
BO  

Initial Euler Angles: φ θ ψ =      0 0 0  

Proportional Gain Parameter Kp: 0.5  

Derivative Gain Parameter Kd: 2.5  

Desired Euler Angles: φ θ ψ =      20 40 60  

Max Torque of Wheels: 1 Nm 

Aerodynamic Torque: 3.4245e-7 

 

Kp and Kd values are chosen empirically (trial and error) regarding best tuning. It 

is noticed that if Kp is decreased, the frequency of oscillations decreases.  If  Kd  is 

increased, the system damps faster. Simulations in this section are repeated for 

several cases. In all cases aerodynamic torque is taken into consideration.
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In case 1, four reaction wheels are applied as the actuators and noise effect is not 

considered.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure-6.2: System response of QFC without noise 

 
The system is overdamped with long rise time and settling time. Rise time is 0.04 

orbits and settling time is 0.09 orbits. The angles reach their final value at 0.1 orbits.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-6.3: Output from regulator and wheels without noise 

The upper graph in Figure-6.3 shows the output torque of the controller before the 

allocation process.  The (3x1) output matrix is converted to the (4x1) reaction wheel 

torque matrix by the allocation command and the lower graph in Figure-6.3 shows 

this output matrix. The output of the reaction wheels reaches to zero after 0.11 orbits.  

 

 

 



 50 

In case 2, four reaction wheels are applied as the actuators and uniformly distributed 

noise effect is considered. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-6.4: System response for QFC with noise 

 

Noise does not affect the euler angle response and angular velocity too much. Using 

reference model for the filtering is the main reason of this response.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-6.5: Output from regulator and wheels with noise 

 

Compared to case 1, noise affects the torque obtained from the controller output. The 

affected output from regulator causes the torque coming from reaction wheels to 

oscillate as it behaves as the input of the allocation process. Output of the reaction 

wheel does not converge to zero completely but this does not affect the behavior of 

the overall system. 
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In case3, the second reaction wheel is disabled in order to show that system still 

works in case of loss of one reaction wheel. Noise effect is not considered.  

 

 

 

 

 

 

 

 

 

 

 

Figure-6.6: System response for the QFC without noise and reaction Wheel-2 was 

disabled 

 

 Disabling the 2nd wheel doesn’t effect either settling time or rise time of the satellite 

euler angles. This is mainly because of the tetrahedral configuration of the reaction 

wheels. 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure-6.7: Output from regulator and wheels without noise and reaction Wheel-2 

was disabled 

As can be seen from Figure-6.7 the second reaction wheel is inactive thus produces 

no torque. 
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In case 4, the second and fourth reaction wheels are disabled in order to investigate 

the performance of the system in the case of a loss of two reaction wheels. Noise 

effect is not considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-6.8: System response for the QFC without noise and reaction wheels-2, 4 

were disabled 

 

As can be seen from the Figure-6.8, the disabling of the two wheels results in not 

being able to obtain the desired angles. None of the angles reaches the desired 

values. It can be concluded that tetrahedral configuration does not compensate for the 

loss of 2 wheels, but at least the system does not become unstable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-6.9: Output from regulator and wheels without noise and reaction wheels-2, 4 

were disabled 
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In case 5, Maneuvering of the small satellite in one direction (pitch axis) is 

simulated. Desired pitch angle is taken as 30o. Noise effect is not considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-6.10: System response for the QFC without noise and desired euler angles are 

φ θ ψ =      0 30 0  

Rise time is 0.04 orbits and settling time is 0.09 orbits. The pitch angle reaches its 

final value at 0.1 orbits.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-6.11: Output from regulator and wheels without noise desired euler angles are 

φ θ ψ =      0 30 0  
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6.3.2  Sliding Mode Regulator 

Sliding mode regulator is investigated for the BILSAT-1 satellite. Reaction 

wheels are considered as actuator for maneuver of the satellite. 

 

Simulation parameters are taken as shown in table below.  

 

Table-6.3: Simulation parameters of the Sliding Mode Regulator 

Initial Angular Velocity: ω =   0 0 0B T
BO  

Initial Euler Angles: φ θ ψ =      0 0 0  

K: ×3 30.2 *1  

:Φ  0.002  

Desired Euler Angles: φ θ ψ =      20 40 60  

Max Torque of Wheels: 1 Nm 

Aerodynamic Torque: 3.4245e-7 

 

 

Sliding boundary layer (thickness) Φ  was chosen empirically.  In case 7, effect of K 

was investigated. In this case it was seen that if K is increased, oscillation is 

constituted in the output. Simulations in this section are repeated for several cases as 

done in previous section. In all cases aerodynamic torque is taken into consideration 

without case 6. 



 55 

In case 1, four reaction wheels are applied as the actuators and noise effect is not 

considered.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-6.12: System response for the SMR without noise 

 
The system responds faster than QFC. Rise time is 0.04 orbits and settling time is 

0.07 orbits. The angles reach their final value at 0.08 orbits.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-6.13: Output from regulator and wheels without noise 

The upper graph in Figure-6.13 shows the output torque of the controller before the 

allocation process.  The (3x1) output matrix is converted to the (4x1) reaction wheel 

torque matrix by the allocation command and the lower graph in Figure-6.13 shows 

this output matrix. The output of the reaction wheels reaches to zero after 0.08 orbits.  
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In case 2, four reaction wheels are applied as the actuators, noise effect is considered. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-6.14: System response for the sliding mode regulator with noise 

 

Like QFC, noise does not affect the euler angle response and angular velocity too 

much. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-6.15: Output from regulator and wheels with noise 

 

Noise effects the torque obtained from the controller output. The affected output 

from regulator causes the torque coming from reaction wheels to oscillate as it 

behaves as the input of the allocation process. The output reaction wheel does not 

converge to zero completely but this does not affect the behavior of the overall 

system. SMR shows better performance than QFC as it can be seen from the 

comparison of Figure-6.15 and Figure-6.5. 
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In case 3, the second reaction wheel is disabled in order to show that system still 

works in case of loss of one reaction wheel. Noise effect is not considered. 

 

 

 

 

 

 

 

 

 

 

 

Figure-6.16: System response for the SMR without noise and reaction wheel-2 was 

disabled 
 

 Disabling the 2nd wheel doesn’t effect either settling time or rise time of the satellite 

euler angles. This is mainly because of the tetrahedral configuration of the reaction 

wheels. 

 

 

  

 

 

 

 

 

 

 

Figure-6.17: Output from regulator and wheels without noise and reaction Wheel-2 

was disabled 

 

As can be seen from figure-6.17 the second reaction wheel is inactive thus produces 

no torque.  
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In case 4, the second and fourth reaction wheels are disabled in order to investigate 

the performance of the system in the case of a loss of two reaction wheels. Noise 

effect is not considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-6.18: System response for the sliding mode regulator without noise and 

reaction wheel-2, 4 were disabled 

As can be seen from the Figure-6.18, the disabling of the two wheels results in not 

being to not to able to obtain the desired angles. None of the angles reaches the 

desired values. It can be concluded that tetrahedral configuration does not 

compensate for the loss of 2 wheels, but at least the system does not become 

unstable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-6.19: Output from regulator and wheels without noise and reaction Wheel-2, 

4 were disabled 
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In case 5, maneuvering of the small satellite in one direction (pitch axis) is simulated. 

Desired pitch angle is taken as 30o. Noise effect is not considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure-6.20: System response for the sliding mode regulator without noise and 

desired euler angles are φ θ ψ =      0 30 0  

 

Rise time is 0.04 orbits and settling time is 0.07 orbits. The pitch angle reaches its 

final value at 0.08 orbits.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-6.21: Output from regulator and wheels without noise desired euler angles are 

φ θ ψ =      0 30 0  
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In case 6, four reaction wheels are applied as the actuators, noise effect and 

aerodynamic torque are not considered. Effect of aerodynamic torque on controller 

can be seen in this case.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure-6.22: System response of SMR without aerodynamic torque 

 
It can be seen from Figure-6.22 that magnitude of aerodynamic torque is very small 

(3.4245e-7) regarding to output torque from regulator (5.0e-4). Therefore 

aerodynamic torque does not  change the total torque substantially. Euler angles and 

angular velocity results without aerodynamic torque almost identically with the case 

1. Nonetheless aerodynamic torque is considered to simulate space conditions in all 

case simulations except case 6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-6.23: Output from regulator and wheels without aerodynamic torque 
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In case 7, four reaction wheels are applied as the actuators, noise effect is not 

considered. Effect of K value used for calculation of sliding manifold is investigated 

in this case. K is taken as ×3 32 *1   instead of  ×3 30.2 *1 . 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure-6.24: System response of SMR with ×= 3 32 *1K  

 
Increasing the value of K  effects response of SMR in desired values. SMR does not 

approach to desired value. Therefore in our simulations value of K was chosen as  

×3 30.2 *1  after giving different value to K.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure-6.25: Output from regulator and wheels with ×= 3 32 *1K  
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6.3.3  Actual Results Taken from BILSAT-1 

We used the actual results taken from Tübitak-Bilten for BILSAT-1 in pitch 

direction to compare our results with actual response of  BILSAT-1. Data taken from 

Tübitak-Bilten is obtained according to time and command given in table 6.4 

 

Table-6.4: Time and command table for the BILSAT-1 

  20 March 2006 02:22:00 UTC Pitch=+30 degree command 
20 March 2006 02:37:00 UTC Pitch=0 degree command 

20 March 2006 02:52:00 UTC Pitch=+30 degree command 
20 March 2006 03:07:00 UTC Pitch=0 degree command 

20 March 2006 04:02:00 UTC Pitch=-30 degree command 
20 March 2006 04:17:00 UTC Pitch=0 degree command 

20 March 2006 04:32:00 UTC Pitch=-30 degree command 
20 March 2006 04:47:00 UTC Pitch=0 degree command 

20 March 2006 05:37:00 UTC Pitch=-30 degree command 
20 March 2006 05:52:00 UTC Pitch=0 degree command 

20 March 2006 06:07:00 UTC Pitch=+30 degree command 
20 March 2006 06:22:00 UTC Pitch=0 degree command 

 

According to commands in table 6.4 obtained response of BILSAT-1 is given in 

figure 6.26. In this figure horizontal axis denotes time and vertical axis denotes pitch 

axis. Zoom is required to investigate behavior of BILSAT-1. 06:00:00 UTC - 

06:25:00 UTC time segment is chosen and result is plotted in figure 6.27.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-6.26: Actual pitch axis maneuver of BILSAT-1 
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Pitch=+30o degree command is given at 06:07:00 UTC and BILSAT-1 reaches 

desired value at 06:19:00 UTC. If we express the horizontal axis in orbit domain, 

settling time is 0.124 orbits for BILSAT-1. It can be said that this result is very close 

to our simulation results.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-6.27: Actual pitch axis maneuver of BILSAT-1 (Zoomed)  
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CHAPTER 7 

 

CONCLUSIONS and FUTURE WORK 

 

In this chapter brief summary and conclusions on the results obtained in previous chapters 

are given. Controllers used in this thesis are compared with those of reference [20]. 

Recommendations and suggestions are given for future work.     

In this thesis, nonlinear attitude control techniques for Low Earth Orbit small satellites are 

investigated. Sensors which are used for attitude determination and actuators which are used 

for attitude control are briefly introduced. Nonlinear mathematical model of a satellite is 

derived and BILSAT-1’s parameters are applied in the model used for simulations. 

Firstly, literature on attitude dynamics and control of satellite are studied.  Nonlinear 

control techniques are chosen as the scope of this thesis. On the other hand linear control 

techniques are studied in reference [20]. Quaternion Feedback Controller (PD) and Sliding 

Mode Regulator are simulated for maneuver of satellite in our work. Reaction wheels are 

considered as actuators in attitude maneuver mode. These controllers are also examined in [8], 

[19] and [22]. Instead of Euler angle representation, unit quaternions are selected for attitude 

representation. Thus singularity problem is prevented. Gravity gradient torque and 

aerodynamic torque are taken into consideration in our simulations. Tetrahedral configuration 

is used in locating the reaction wheels. So that in case one of the reaction wheels is disabled, 

attitude control process continues without any problem. An other reason of using tetrahedral 

configuration is that twice the value of the torque that can be obtained from one reaction 

wheel can be obtained along any of the three directions. In stabilization analysis of 

Quaternion Feedback Controller, total energy of the satellite is chosen as Lyapunov candidate 

function. For the Sliding Mode Regulator, Lyapunov candidate function is chosen according 

to the suggestions of references [19] and [22]. The simulation results for both the Quaternion 
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Feedback Controller and Sliding Mode Regulator are given in Chapter 6. 

  In reference [20], linear controller is applied for the attitude maneuvering by the use of 

reaction wheels as actuators. When we compare our results with those of reference [20], it can 

be said that sliding mode results are similar with linear controller results. In both simulations 

when the all reaction wheels are enabled, settling time is 0.07 orbits,  rise time is 0.04 orbits 

and  euler angles reach their desired value nearly at about 0.08 orbits. In case that two reaction 

wheels are disabled, linear controller response is better than sliding mode controller. 

However, linear controller needs more torque than sliding mode regulator. When we compare 

nonlinear Quaternion Feedback Controller (PD) with linear controller, Euler angles reach 

their desired value at about 0.1 orbits in nonlinear QFC controller. This means that QFC 

spends more time than other controllers to reach desired values. The controller parameters of 

QFC can be changed to obtain shorter settling time. But this operation increases power 

consumption of the satellite. Also we compared the simulation results taken from Tübitak-

Bilten for BILSAT-1 in pitch direction with our results. BILSAT-1 reaches to the desired 

value at about 0.124 orbits and it can be said that this result is very close to our simulation 

results. 

Table-7.1: Simulation result of controllers 

 Rise Time Settling Time Max Torque 
QFC 0.04 orbits 0.09 orbits 4e-4 
SMR 0.04 orbits 0.07 orbits 8e-4 
LR 0.04 orbits 0.07 orbits 12e-4 
BILSAT-1 0.06 orbits 0.12 orbits Not applicable* 

* Not applicable as they use a different method in applying torques. 

Uniformly distributed noise (10% noise of torque) was applied to actuator torque to 

observe behaviour of controllers. QFC and SMR successfully tolerated noise. It was seen that 

noise effected torques output from controller and reaction wheels. Nonetheless it didn’t affect 

Euler angles and angular velocity too much. Magnitude of noise was increased and deviation 

of Euler angles from desired angles was seen. As a conclusion, it can be said that QFC and 

SMR are robust controller for the acceptable range of noise (10% noise of torque). 

 

For future work, it is suggested to design nonlinear controller using magnetic torquer for 

attitude stabilization of the satellite. Moreover, different allocation methods for reaction 

wheel torques can be investigated. Inertia matrix is taken in diagonal form in our thesis.  The 

effect of using a nondiagonal inertia matrix on the system performance for different 
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controllers used is also worth studying. 
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APPENDIX A – SIMULINK DIAGRAMS 
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APPENDIX B – MATLAB  SOURCE CODES 
 

%euler2q.m 
%********************************************************************* 
%File euler2q.m 
%Function that transforms Euler angles to quaternion parameters 
%Written by Ceren KAPLAN and Soner KARATAS 
%December 2005 
%********************************************************************* 
function   q_0  =   euler2q(e) 
 
e1=0.5*e(1,:); 
e2=0.5*e(2,:); 
e3=0.5*e(3,:); 
 
u(1)=sin(e1); 
u(2)=sin(e2); 
u(3)=sin(e3); 
 
u(4)=cos(e1); 
u(5)=cos(e2); 
u(6)=cos(e3); 
 
q0=(u(1)*u(2)*u(3))+(u(4)*u(5)*u(6)); 
q1=(-u(2)*u(3)*u(4))+(u(1)*u(5)*u(6)); 
q2=(u(1)*u(5)*u(3))+(u(2)*u(4)*u(6)); 
q3=(u(3)*u(4)*u(5))-(u(1)*u(2)*u(6)); 
 
q_0=[q0;q1;q2;q3]; 
 
end 
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%********************************************************************* 
%figures. m 
%A file to plot euler,w_b_bo,tau_regulator and tau_reactionwheel 
%Writteb by Ceren KAPLAN and Soner KARATAS 
%December 2005 
%********************************************************************* 
 
global euler time t_o 
%Plotting the simulated trajectories   
t=time/t_o; 
 
figure(1); 
plot(t,euler(:,1),'b-', t,euler(:,2),'r--', t,euler(:,3),'g:'); 
grid; 
legend('\phi','\theta','\psi'); 
xlabel('time [orbit] '); 
ylabel('[degree]'); 
Title('Satellite Euler Angles'); 
 
figure(2); 
plot(t,w_b_bo(1,:),'b-', t,w_b_bo(2,:),'r--', t,w_b_bo(3,:),'g:'); 
grid; 
legend('\omega_x','\omega_y','\omega_z'); 
xlabel('time [orbit] '); 
ylabel('[rad/s]'); 
Title('Satellite Angular Velocity (Body)'); 
 
figure(3); 
plot(t,tau_regulator(1,:),'b-', t,tau_regulator(2,:)... 
    ,'r--', t,tau_regulator(3,:),'g:'); 
grid; 
legend('\tau_1','\tau_2','\tau_3'); 
xlabel('time [orbit] '); 
ylabel('torque[Nm]');  
Title('Output From Regulator');  
 
figure(4); 
plot(t,tau_reactionwheel(:,1),'b-'... 
    ,t,tau_reactionwheel(:,2),'k--'... 
    ,t,tau_reactionwheel(:,3),'r-.'... 
    ,t,tau_reactionwheel(:,4),'g:'); 
 
grid; 
legend('T_1','T_2','T_3','T_4'); 
xlabel('time [orbit] '); 
ylabel('torque[Nm]'); 
Title('Output From Reaction Wheel'); 
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%********************************************************************* 
%Rquat.m 
%A file to transform quaternion matrix to rotation matrix  
%Written modified by Ceren KAPLAN and Soner KARATAS 
%December 2005 
%********************************************************************* 
function   R  =   Rquat(q) 
n=q(1,:); 
e1=q(2,:); 
e2=q(3,:); 
e3=q(4,:); 
d11=(n^2+e3^2-e2^2-e1^2); 
d12=2*(e1*e2+n*e3); 
d13=2*(e1*e3-n*e2); 
d21=2*(e1*e2-n*e3); 
d22=(n^2-e3^2+e2^2-e1^2); 
d23=2*(e2*e3+n*e1); 
d31=2*(e1*e3+n*e2); 
d32=2*(e2*e3-n*e1); 
d33=(n^2-e3^2-e2^2+e1^2); 
R=[d11,d12,d13;d21,d22,d23;d31,d32,d33]; 
end 
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%********************************************************************* 
%sat_non_dyn.m 
%A file to calculate the nonlinear satellite dynamic equations 
%Written by Geir Ytrehus , modified by Ceren KAPLAN and Soner KARATAS 
%December 2005 
%********************************************************************* 
 
function xdot = sat_non_dyn(input) 
global  I w_o TD I_o K1 
 
% The state space variables  
q = input(1:4);  
w_b_bi = input(5:7); 
 
% The system input from the controller after actuator allocation  
u = input(8:11) 
 
% Normalizing the quaternions - necessary due to numerical inaccuracy  
q = q/(q'*q);  
eta = q(1) ;  
epsilon = q(2:4); 
 
% Transforming from w_b_ib to w_b_ob for use in the dynamical model update 
r_o_b = Rquat(q); 
r_b_o = r_o_b'; 
c2 = r_b_o(: ,2); 
w_b_bo = w_b_bi+w_o *c2; 
%w_b_bo = w_b_bi+w_o *c2;  
 
% Reaction wheels in a tetrahedral 
T = TD 
%T(1,:) = zeros(1,3); % Disabling wheel 1 
%T(2,:) = zeros(1,3); % Disabling wheel 2 
%T(3,:) = zeros(1,3); % Disabling wheel 3 
%T(4,:) = zeros(1,3); % Disabling wheel 4 
%u(1) = 0; %Disabling wheel 1 
%u(2) = 0; %Disabling wheel 2 
%u(3) = 0; %Disabling wheel 3 
%u(4) = 0; %Disabling wheel 4 
 
% Maximum torque available is 0.01 [Nm]  
% u_max = 0.01;  
u_max = 1; 
for i = 1:4 
if abs(u(i))>u_max 
 u(i)= sign(u(i))*u_max; 
  
end;  
end;  
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tau = T'*K1*u; 
 
% Uniformly distributed noise 
% The expression sign((2*rand(2)-1)) ensures that the noise is either 
% area -1 or 1 of the actuator torque because rand(1) gives numbers in 
% the area [0.0 1.0]. Multiplying with a percentage of the produced torque 
% gives a realistic disturbance effect. 
%p = 0.4; % 40% noise added to the actuator torque 
%noise=p*(sign(2*rand(1)-1))*[tau(1); tau(2); tau(3)]; 
%tau = tau + r_b_o*(noise) ; 
 
% Gravity gradient torque 
g_B = Smtrx(3*w_o^2*r_b_o(:,3))*I*r_b_o(:,3); 
 
% Aerodynamic torque 
t_aero = 3.4245e-7; 
 
% The dynamical equations  
eta_dot    = -(1/2)*epsilon'*w_b_bo; 
epsilon_dot = (1/2)*(eta*eye(3) + Smtrx(epsilon))*w_b_bo;  
w_b_bi_dot = inv(I)*(tau + g_B + t_aero - Smtrx(w_b_bi)*(I*w_b_bi)); 
 
  
xdot = [eta_dot; epsilon_dot; w_b_bi_dot;u]; 
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%********************************************************************* 
%Simulationsetup.m 
%A file to setup the MATLAB/Simulink BILSAT-1 reaction wheel simulation 
%For linear,nonlinear and sliding mode controllers. 
%Written by Geir Ytrehus , modified by Ceren KAPLAN and Soner KARATAS 
%December 2005 
%********************************************************************* 
 
clear all; 
global I w_o TD K I_o K1 W 
 
%********************************************************************* 
%Inertia Matrix 
%********************************************************************* 
 
 
Ixx = 9.8194; Ixy = 0.0721; Ixz = 0.2893; Iyx = 0.0721; Iyy = 9.7030;  
Iyz = 0.1011; Izx = 0.2892; Izy = 0.1011; Izz = 9.7309; %BILSAT-1 inertia matrix  
InertialMatrix=[Ixx 0 0; 0 Iyy 0; 0 0 Izz];   
%InertialMatrix=[Ixx Ixy Ixz; Iyx Iyy Iyz; Izx Izy Izz]; 
I=InertialMatrix; 
 
 
% Some useful definitions  
kx = (Iyy - Izz)/Ixx;  
ky = (Ixx - Izz)/Iyy;  
kz = (Iyy - Ixx)/Izz; 
 
% Tetrahedral distribution matrix 
% All reaction wheels are taken as identical if desired  
% they can be scaled by the motor gains  
 
TD = [0 0 -1; 
0 -sqrt(6*3*4)/9  sqrt(4)/6; 
1/6*sqrt(6*4)  sqrt(6*3*4)/18 sqrt(4)/6; 
-1/6*sqrt(6*4)  sqrt(6*3*4)/18 sqrt(4)/6 ] 
 
 
%force matrix  
k1 = 1;  
k2 = 1;  
k3 = 1;  
k4 = 1; 
K1 =   [k1 0    0 0 
0    k2 0 0 
0    0    k3 0 
0    0    0 k4]  
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%weight matrix  
w1 = 1;  
w2 = 1;  
w3 = 1;  
w4 = 1; 
W = [w1 0 0 0 
    0 w2 0 0  
    0 0 w3 0  
    0     0     0 w4] 
  
%********************************************************************* 
%Initial Values 
%********************************************************************* 
 
m = 120;                                 %   [kg]   Mass of Satellite 
M = 5.9742e24;                          %   [kg]   Mass of Earth 
gamma = 6.6720e-11;                     %   []   Gravity constant 
my_g = gamma*M;                         %   [kg]   Earth gravity constant 
re_e = 6.378137e6;                      %  [m]   Equatorial radius of Earth 
rp_e = 6.356752e6;                      %   [m]   Polar radius of Earth  
eccentricity = sqrt(1- (rp_e/re_e)^2);  % Eccentricity of the ellipsoid 
h_s = 600e3;                            %   [m]   Satellite orbit    
r_total = re_e + h_s;                   %   [m]   Distance from satellite to  
                                        %Earth center 
t_e = round (8.6164130e4);              %   [s]   Integer length of  sidereal day 
w_e = 2*pi/(t_e);                       %   [rad/s]   Earth Angular Velocity 
w_o = sqrt( my_g/( r_total^3));         %   [rad/s]   Satellite Angular Velocity 
t_o = 2*pi/w_o;                         %   [s]   Satellite Orbit Period  
v_o = h_s*w_o;                          % [m/s] Satellite Velocity 
 
%********************************************************************* 
%Reference Model Parameters 
%********************************************************************* 
 
 
w_n = 0.022;  
zeta =1; 
 
%********************************************************************* 
% Initial attitude in Euler angles 
%********************************************************************* 
 
deg_0 = (pi/180)* [0; 0; 0] ; 
 
% Initial attitude in Euler parameters (quaternions) 
q_0 = euler2q(deg_0); 
 
%********************************************************************* 
% Transforming from w_B_BO to w_B_BI 
%********************************************************************* 
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r_o_b = Rquat(q_0); 
r_b_o = r_o_b'; 
c2 = r_b_o(:,2); 
w_b_bo = [0; 0; 0] ; 
w_b_bi = w_b_bo - w_o*c2; 
 
% The initial state vector 
x0 = [q_0(1); q_0(2); q_0(3); q_0(4); w_b_bi(1); w_b_bi(2); w_b_bi(3)]; 
 
%********************************************************************* 
% The linearized system matrices  
%********************************************************************* 
 
A =   [0  1 0 0 0 0; 
-4*kx*w_o^2 0 0 0 0   (1 - kx)*w_o; 
0 0 0  1 0 0; 
0 0 -3*ky*w_o^2 0 0 0; 
0 0 0 0 0  1; 
0 -(1 - kz)*w_o 0 0 -kz*w_o^2 0 
]; 
B =   [0  0  0 
1/(2*Ixx)   0  0; 
0  0  0; 
0  1/(2*Iyy)   0; 
0  0 0; 
0  0  1/(2*Izz) 
]; 
C =   [1 0  0  0  0  0;  
0  0  1 0  0  0; 
0  0  0  0  1 0 
]; 
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%Smtrx.m 
%********************************************************************* 
%File Smtrx.m 
%Function that takes skew symmetric matrix of input 
%Written by Ceren KAPLAN and Soner KARATAS 
%December 2005 
%i denotes the input matrix 
%********************************************************************* 
 
function S = Smtrx(i) 
S =[0 -i(3) i(2) 
    i(3) 0 -i(1) 
    -i(2) i(1) 0]; 
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%********************************************************************* 
%t_aero.m 
%A file to calculate the aerodynamic torque 
%Written by Ceren KAPLAN and Soner KARATAS 
%December 2005 
%********************************************************************* 
 
function torque = t_aero 
 
% torque = [(1/2)*rho*Cd*A*v*v]*rt; 
% torque = F_aero*rt;    
% F_aero=[(1/2)*rho*Cd*A*v*v] 
 
MU=3.986e14;         %MU   [m^3/s^2]:gravitational parameter for the central body  
re_e = 6.378137e6;  %re_e [m]:Equatorial radius of Earth 
h_s = 686e3;        %h_s  [m]:Satellite orbit 
r=re_e+h_s;         %r    [m]:Distance from satellite to Earth center 
a=r;                 %a    [m]:semimajor axis of the orbit  
                    %when the orbit was taken circular 
 
v = sqrt((2*MU/r) - (MU/a));    %v  [m/s]:the velocity of the spacecraft  
                               %(velocity at perigee) 
 
rho=2.89*10^-13;                %rho [kg/m^3]:Atmospheric density 
Cd=2;                           %Cd :the coefficient of drag on the spacecraft 
A=0.42;                         %A   [m^2]:Projection area 
 
F_aero = (1/2)*rho*Cd*A*v*v;  %F_aero   [N]:aerodynamic drag force   
 
rt=0.05;         %rt [m]:(c_pa-c_g)the moment arm for the drag force  
                %(center of pressure -center of mass) 
 
torque = F_aero*rt;  % aerodynamic torque [N*m] 
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APPENDIX C – TETRAHEDRAL CONFIGURATION ANGLE 
 

 

Figure C.1 shows the general form of the tetrahedral configuration.  

 
  
 
 
 
 
                                        
 

 
Figure C.1 : Tetrahedral Configuration. 

 

Using the model given in equation C.1 tetrahedral configuration angle can be calculated. 

By using cosine theorem, the relationship between a and b sides can be derived as, 
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Figure C.2 shows the geometric relationship between the angle ϕ  and the sides of the 

tetrahedral configuration (a, b, h and x). 
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Figure C.2: Geometric Relationship between the Angle ϕ and sides. 
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Following equations are derived according to Figure C.2, 
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Equations C.2 and C.3 are applied to C.5, and x can be found as, 
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Again using cosine law, 
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Equation C.6 to Equation C.7 are applied, and the angle ϕ  is found as, 
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