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ABSTRACT

PARAMETER OPTIMIZATION OF CHEMICALLY ACTIVATED MORTARS
CONTAINING HIGH VOLUMES OF POZZOLAN BY STATISTICAL
DESIGN AND ANALYSIS OF EXPERIMENTS

Aldemir, Basak
M.S., Department of Industrial Engineering
Supervisor: Prof. Dr. Omer Saatgioglu
Co-Supervisor: Assoc. Prof. Dr. Lutfullah Turanh

January 2006, 167 pages

This thesis illustrates parameter optimization of early and late compressive
strengths of chemically activated mortars containing high volumes of
pozzolan by statistical design and analysis of experiments. Four dominant
parameters in chemical activation of natural pozzolans are chosen for the
research, which are natural pozzolan replacement, amount of pozzolan
passing 45 um sieve, activator dosage and activator type. Response surface
methodology has been employed in statistical design and analysis of
experiments. Based on various second-order response surface designs;
experimental data has been collected, best regression models have been
chosen and optimized. In addition to the optimization of early and late
strength responses separately, simultaneous optimization of compressive
strength with several other responses such as cost, and standard deviation
estimate has also been performed. Research highlight is the uniqueness of
the statistical optimization approach to chemical activation of natural

pozzolans.

Keywords: Response surface methodology, chemical activation of natural
pozzolan, parameter optimization, dual response surface optimization,
multiresponse optimization, qualitative factors in response surface

methodology
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~ YUKSEK HACIMDE PUZOLAN ICEREN KIMYASAL OLARAK
AKTIFLESTIRILMIS HARCLARIN ISTATISTIKSEL DENEY TASARIMI VE
GOZUMLEME YONTEMLERIYLE PARAMETRE OPTIMIZASYONU

Aldemir, Basak
Yiksek Lisans, Endustri Mihendisligi
Tez Ydneticisi: Prof. Dr. Omer Saatcioglu
Ortak Tez Ydneticisi: Assoc. Prof. Dr. Lutfullah Turanh

Ocak 2006, 167 sayfa

Bu tez calismasi ylksek hacimde puzolan iceren kimyasal olarak
aktiflestirilmis harglarin erken ve gec basing dayanimlarinin istatistiksel
deney tasarimi ve ¢bzimlenmesi ydéntemleriyle parametre optimizasyonunu
anlatmaktadir. Dodal puzolanlarin kimyasal olarak aktiflestiriimesinde baskin
parametreler olan cimento ile agirlikca yer dedistiren puzolan miktari, 45 uym
eledinden gecgen puzolan miktari, aktivatér dozaji ve aktivator tipi arastirma
parametreleri  olarak  secilmistir.  Istatistiksel deney tasarimi ve
cbzimlenmesinde cevap ylizeyi metodolojisi kullanilmistir. ikinci-dereceden
gesitli cevap ylzeyi tasarimlar esas alinarak deney verisi toplanmis, en iyi
regresyon modelleri segilmis ve optimize edilmistir. Erken ve geg basing
dayanimlan hem tek baslarina hem de fiyat ve standart sapma gibi bazi
baska cevaplarla da beraber ayni anda optimize edilmistir. Arastirmanin ilgi
ceken oOzelligi uyguladigi istatistiksel optimizasyon yaklasiminin bu o6zel

problem igin tek olmasidir.

Anahtar kelimeler: Cevap Ylizeyi Metodolojisi, Dogal Puzolanlarin Kimyasal
Olarak Aktiflestiriimesi, Yontem Parametre Optimizasyonu, Dual Cevap
Ylzeyi Optimizasyonu, Cokcevapl Optimizasyon, Cevap Ylzeyi

Metodolojisinde Nitel Degiskenler
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CHAPTER 1

INTRODUCTION

The aim of this study is to use statistical design and analysis techniques for
maximizing early and late compressive strengths of chemically activated
mortars containing high volumes of natural pozzolan. Response surface
methodology is used in experimental design and analysis in this research.
Experimentation and analysis are based on a face-centered central
composite design formed by three quantitative factors repeated for each
level of the qualitative factor. Alternative economical designs specific to
response surface designs including qualitative factors are also used in
regression analysis and optimization of early and late compressive strengths
of mortars. Six replicates for each experimental run were performed to
reduce the effect of noise factors on mean compressive strength
measurements. Best regression model for each response and each set of
observations are chosen by regression analysis. Individual responses early
and late compressive strengths are optimized alone and together with
several other response variables of research interest. As an alternative to
Taguchi’s robust parameter optimization dual response surface optimization
has been used. Standard deviation estimate has been modeled and joint
optimization of both standard deviation estimate and mean compressive

strength has been done.

Concrete which is the most widely used construction material throughout the
world leads to an enormous cement production. Cement production however
is harmful on environment due to its significant contribution to man-made
carbon dioxide production. Reducing cement production for sustainable
development has been an important issue from construction materials
perspective. Replacing Portland cement with high volumes of natural

pozzolans has been reported as a good alternative.



Pozzolan is a siliceous or alumino-siliceous material that, in finely divided
form and in the presence of moisture, chemically reacts at ordinary room
temperatures with calcium hydroxide released by the hydration of Portland
cement to form compounds possessing cementitious properties (Canadian
Standards Association, 2000). Pozzolanic materials when used in concrete
improve durability which is the ability of concrete to resist weathering action,
chemical attack and abrasion. Pozzolanic materials bring in also other
technical advantages such as low heat of hydration and high ultimate
strength. Major disadvantages of concrete systems with pozzolans are high
initial setting time and low early strength development. Early strength is a
critic measure in concrete industry since it determines the speed of
construction. Therefore, low early strength development is an obstacle in

promoting pozzolan usage as Portland cement replacement.

In order to overcome low early strength development in pozzolanic
materials, methods have been proposed in literature. Among them, chemical

activation of pozzolans is popular since it is both effective and feasible.

Works on chemical activation of reactivity of natural pozzolans have mainly
utilized one factor at a time approach as habitual in concrete literature. No
study investigating the parameter effects together with interaction effects of

parameters on pozzolanic reactivity has been seen.

Natural pozzolan replacement, amount of pozzolan passing 45 um sieve,
activator dosage and activator type have been selected as the most
important parameters that affect compressive strength of mortars containing
high volumes of pozzolan. As second-order parameter effects are research
interests, a second-order response surface design is wused for
experimentation. Because activator type is a qualitative variable and
applications in response surface methodology with qualitative factors is not
common; alternative design approaches have been compared according to
regression results. Best regression models for both early and high
compressive strengths are fit and optimized. Due to multiobjective nature of
the problem simultaneous optimization of several variables for different sets

of responses have been done. Dual response surface optimization of mean



compressive strength and standard deviation estimate has been included as

an attempt for robust optimization.

The study shows that design space where the data collected and shaped by
design of experiments has significant effect on the regression models and
hence optimum response value. Maximization of early and late compressive
strength led to the same parameter level conditions as optimum settings.
When several responses are considered for optimization optimal settings
changed in cases and optimal setting alternatives are found instead of a
unique solution. Having the system of responses defined preferences of the

decision maker guides optimization.



CHAPTER 2

BACKGROUND INFORMATION

2.1. Pozzolanic Activity

2.1.1. Pozzolan in Concrete

Concrete is a versatile construction material, and probably, the most widely
used one throughout the world because of its low cost, availability of raw
materials, strength, and durability. It is estimated that more than one ton of
concrete is produced every year for each person on the planet (Neuwald,
2005). This figure leads to an annual cement production of 1.6 billion metric
tons and making cement produces nearly equal amount of carbon dioxide
(CO,). Globally, the cement industry produces about 5% of man-made CO,:
half of this number is from the chemical process of clinker production and
40% from burning fuel. The remaining 10% is split between electricity use
and transportation (CSI Progress Report, 2005). It is obvious that
minimization of Portland cement clinker production would greatly help to
reduce the CO, emission produced by the cement industry. One wise solution
is to promote the usage of pozzolanic materials in concrete production. The
research has proven that it is possible to replace Portland cement up to 70%
by using certain pozzolanic materials such as fly ash. Use of pozzolanic
materials in concrete is not only environmentally wise but also technically

beneficial since it provides more durable product.

2.1.2. What is Pozzolan?

Pozzolan is defined as a siliceous or alumino-siliceous material that, in finely
divided form and in the presence of moisture, chemically reacts at ordinary

room temperatures with calcium hydroxide released by the hydration of



Portland cement to form compounds possessing cementitious properties
(Canadian Standards Association, 2000).

The word “pozzolan” was actually derived from a large deposit of Mt.
Vesuvius volcanic ash located near the town of Pozzuoli, Italy. Pozzolanic
materials can be used either as an addition to the cement in the
manufacturing process or as a replacement for a portion of the cement in the

concrete production.

The pozzolans can be grouped into two categories - industrial by-products
such as fly ash, silica fume and raw or processed natural materials such as

volcanic ash, diatomaceous earth, rice husk ash, meta-kaolin, calcined shale.

2.1.3. Natural Pozzolan

In a review, natural pozzolans are classified into four categories on the basis
of their principal lime-reactive constituents: unaltered volcanic glass;
volcanic tuff; calcined clay or shale; and, raw or calcined opaline silica. Most
natural pozzolan deposits contain more than one lime reactive constituent,
and that their composition and properties vary widely. Volcanic glasses such
as rhyolitic pumicites, pumice and obsidian; derive their lime-reactivity
mainly from their very high composition of unaltered aluminosilicate glass.
Volcanic tuffs, such as zeolitic minerals, consist of volcanic glass altered
under hydrothermic conditions, and derive their lime-reactivity from a base
exchange reaction between calcium (lime) and alkalis in the tuff. Natural
clays or shales containing substantial proportions of kaolinite-type or
montmorillonite-type clay minerals, or combinations thereof, require
calcination at temperatures in the range of 540°C to 980°C to induce
optimum pozzolanic activity. During calcination, which may occur naturally or
may need to be carried out as part of a processing operation, the clay
minerals decompose to form an amorphous or disordered aluminosilicate
structure that reacts readily with lime at ordinary temperatures. Opaline
materials, including diatomaceous earths and silica gel, are very reactive to
lime, but typically have a very large surface area which may result in a very

high water demand or requirement when these materials are used in



Portland cement concrete mixtures. It is also often necessary to calcine
these materials (CMP Technologies Ltd., 2003).

2.1.4. Why do we Use Natural Pozzolan in Concrete?

The early known use of natural pozzolan dates back to ancient times. Lime-
natural pozzolan mixtures were used in the masonry construction of
aqueducts, bridges, retaining walls and buildings during roman times. These
binders were strong and durable and had been used for centuries by
different cultures all over the world. The invention of Portland cement in the
19th century resulted in a reduction in the use of lime-pozzolan binders.
Portland cement has a shorter setting time and high early strength compared
to lime-pozzolan mixtures. Today, pozzolans are used in combination with

Portland cement due to their additional technical benefits.

When combined with water Portland cement clinker forms the glue material
which bonds the aggregates. The reaction between water and cement is
hydration. The hydration reaction produces calcium silicate hydrates (C-S-H)
and calcium hydroxide (CH). C-S-H accounts for more than half the volume
of the hydrated cement paste while CH accounts for about 25% of the paste
volume. The remainder of hydrated Portland cement is predominantly
composed of calcium sulfoaluminates (ettringite) and capillary pores. C-S-H
is the main cementitious compound, or glue, that gives concrete its inherent
strength. CH also contributes somewhat to concrete’s inherent strength
because it will form large crystals inside voids, thereby reducing porosity.
However, CH is a soluble compound, meaning it will move throughout the
pore system in the presence of water and increases the concrete’s porosity
thus making it less durable. The pozzolanic reaction converts the soluble CH
to C-S-H which means enhanced ultimate strength and improved durability
for concrete. The reduced porosity means limited water ingress and inhibited
ionic mobility which in return, means increased chemical resistance (i.e.
sulfate attack, alkali-aggregate reaction). The reduced Portland cement in
the system leads to low heat evolution which is very important in mass
concrete production such as dam body. Moreover, cost reduction is achieved

since Portland cement is more expensive than most of the pozzolanic



materials. On top of these, use of pozzolan in cementitious systems is an
environmental friendly approach. It will greatly help the cement industry to

push down its CO, emission resulted from the clinker manufacturing.

2.1.5. Activation of Natural Pozzolan

Addition of natural pozzolan has some major drawbacks particularly when
speed is needed in the construction projects. It leads to prolonged setting
times and lower early strength when compared to pure Portland cement. For
a given binder content, early strength decreases with a retarded setting time
as the quantity of pozzolan increases. This concept is vital when fast
formwork removal in conventional building construction or early opening to
traffic in concrete pavement production is needed. To overcome this problem
and increase pozzolanic activity rate various methods have been proposed
through extensive research. The following section is a brief summary of a

review paper on the activation of reactivity of natural pozzolan (Shi, 2001).

Activation methods can be grouped in three headings - thermal activation,

mechanical activation, and chemical activation.

Thermal activation is the heat treatment of pozzolanic material and can be
classified into two categories - calcination of the raw material and elevated
temperature curing of the product containing natural pozzolan. Some clay
minerals possess pozzolanic property when treated with heat. A good
example to the calcinations is metakaolin which is a very reactive pozzolan
and marketed commercially. The raw material of the metakaolin is kaolin
which exhibits no pozzolanic property in its natural form. By heat treatment,
the crystal structure of the clay minerals is destroyed and an amorphous or
disordered alumino silicate structure is formed leading to pozzolanicity. The
effect of calcination on the pozzolanic reactivity of natural pozzolan is highly
dependent on the material and varies with different pozzolans. The second
thermal activation method is the curing of concrete with elevated
temperatures. Based on the Arrhenius formula which describes the effect of
temperature on reaction kinetics it was found that the hydration of lime-

pozzolan mixtures is more susceptible to temperature than that of the



Portland cement. The research has indicated that the samples containing
natural pozzolan show significant early strength increase when cured at

elevated temperatures.

Mechanical activation refers to prolonged grinding of the parent material. For
a chemical reaction between two materials, the reaction rate increases as
the surface area available for the reaction increases. It is possible to attain a
maximum pozzolanic reactivity with the extended grinding times since the
surface area increases as the material gets finer. Although it is generally
accepted that the pozzolanicity increases with the increased fineness there
are also controversial results in the literature. It is again the nature of the
pozzolanic material controlling the overall behavior. However it is generally
accepted that the early strength is enhanced with the use of finer natural

pozzolan.

The last method is the chemical activation. Either the pozzolanic material is
treated with a chemical compound solution before it is added to the concrete
or the chemical as a separate ingredient is directly put into the concrete
containing natural pozzolan. The former involves the acid-treatment (i.e.
hydrochloric acid) of pozzolans. Acid treatment greatly increases the
reactivity at early ages. However, this method is only effective on low-Ca
pozzolans. In addition, the method is not practical since it is too expensive
and the application is too dangerous. The latter, addition of chemicals into
cementititous mixture, has been found to be effective in increasing the
reactivity of natural pozzolans. CaCl,, and particularly, alkali bearing
compounds such as Na,S0O, and NaOH were found to work well as activators.
Use of chemical activators changes hydration products and accelerates
pozzolanic reaction, which leads to faster strength developments and higher
ultimate strength. In addition, chemical activators dramatically increase the
pozzolanic reactivity when applied in combination with elevated temperature
curing. Based on strength development and cost per unit of strength
increase addition of chemical compounds is the most economical and
effective activation method. It is also the most feasible one among the other

methods due to its ease of application.



2.2. Response Surface Methodology

Response surface methodology (RSM) is a collection of statistical and
mathematical techniques useful for developing, improving and optimizing
processes (Myers and Montgomery, 1995). Methodology is also used in
product development and improvement. Although related works in the field
began with 1930s RSM was formally developed in 1951 and since then it has
been successfully used and applied in many diverse fields such as chemical
engineering, agricultural and biological research, food engineering, computer

simulation and many others (Khuri and Cornell, 1987).

RSM is a high-potential method to explore relationships where a quality
characteristic or performance measure, which is defined as a response in
RSM terminology, is influenced by several input variables. Special
experimental designs are developed for RSM so that the most useful data
can be collected from the specified region of interest at minimum possible
number of runs. Using collected data, regression analysis is used to fit some
form of mathematical model (f) that empirically explains the relationship
between the response (dependent variable) and input (independent)

variables such as:

y = f(Xll XZI---/Xk) + &

where vy is the response; Xi, Xy,...,Xx are independent variables and ¢ is the

random error component. If the expected response is denoted by

E(y) = f (X4, X3,...,Xx) = n, then the surface represented by

n = f (X1, Xz,...,Xx) is called a response surface (Montgomery, 2001).
Regression analysis provides a better understanding of the characteristics of

the response system under study and with this information at hand model

testing procedures and optimization techniques are applied conveniently.



2.2.1. Design of Experiments

Most efficient experimental designs for fitting response surfaces are response
surface designs. Type of the experimental design depends on the region of
interest, experimental conditions and the type of regression model to be
estimated. Since the second-order effects and interaction effects of the
parameters are our research interests a second-order response surface
design is chosen. Among alternatives such as spherical central composite
design, Box-Behnken design or small composite design; a face-centered
central composite design is chosen as the main design for this study. Face-
centered central composite design is a useful variation of the central
composite design. A central composite design consists of a 2 factorial, with
n¢ runs, 2k axial or star runs and nc center runs where k is the number of
independent variables (Fig. 2.1). Two important parameters to be specified
in the design are the distance a of the axial runs from the design center and

number of center runs.
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Figure 2.1 Central composite design for two independent variables

The main design used in this study is a face-centered central composite
design that is composed of 40 runs. First a basic FCCD with 20 runs is
formed by only quantitative factors as (23+2*3+6) where 23 (8) runs

represent the cube points, 2*3 (6) runs represent star points and 6 runs
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represent the center points. By duplicating this design for each level of the
qualitative factor the main design with 40 runs is obtained. 6 replications for
each run is done for both responses; 6*40=240 observations for 7-day
compressive strength, 6*40=240 observations for 28-day compressive

strength, 480 observations in total.

Rotatability is an important concept for second-order response surface
designs. For a rotatable design, variance of the predicted response V[y(x)] is
the same at all points x that are at the same distance from the design
center. Preferably, choice of a is made so that the design is rotatable.
However there are some situations where the region of interest is cuboidal
rather than spherical and level of factors are difficult to change due to
practical considerations such as laboratory conditions. In these cases face-
centered central composite design (FCCD) is an efficient alternative with
a=1. The design is not rotatable; however as Myers and Montgomery state
“rotatability or near-rotatability is not an important priority when the region

of interest is clearly cuboidal” (Myers and Montgomery, 1995).

For this study four parameters that affect the main response of interest are
selected as independent variables. Information on the basis of selection is
provided in section 3.1. In RSM applications, independent variables are
assumed to be quantitative and continuous in nature, in general. However,
there are cases where one (or more) of the independent variables is
qualitative. The case is valid for this study as well where one of the four
parameters is a qualitative one at two levels. Due to this specific property of

designed problem standard designs are not suitable.

“Developing flexible families of designs for use when there are a number of
factors with quantitative levels (response surface) combined with some
factors with qualitative levels” is one of the several open problems outlined
by Cox (1984). Three main approaches in the literature are encountered on
response surface design and analysis including qualitative variables. Box
(1954) believes that there is no way of finding the absolute optimum other
than carrying out separate investigations for each qualitative factor
combination unless some very specialized prior assumptions can be made

about the qualitative factors. He further discusses that the experimenter
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would know whether the response surfaces for different levels of the
qualitative factor are similar or different and encourages separate
investigations for each level of the qualitative factor. This approach restricts
the experimenter in finding out possible interaction effects of the qualitative
factors with quantitative ones since qualitative factors are not defined as
parameters of the experiment. Another approach is employing a basic
response surface design for the quantitative factors and repeating this basic
design for each level of the qualitative factors where qualitative factors are
presented by dummy variables. By this approach, qualitative factor is
included in regression analysis and the experimenter can find out whether
qualitative factor interacts with quantitative factors and changes response
surface (Tunali and Batmaz, 2003). In a third approach smaller response
surface designs with respect to the design in second approach by eliminating
some of the runs under specific considerations are proposed (Draper and
John, 1988; Wu and Ding, 1998).

For this study, as previously stated, the main design is an FCCD with three
quantitative variables and 6 center runs. This main design is repeated for
each level of the qualitative factor during experimentation. Analyses are first
done for this design with 40 runs where qualitative factor is also an
independent variable of the regression model. Then analyses are done for
FCCD of each qualitative level separately to explore the difference of the
same design with different analysis approaches. Finally, the analyses are
done for two economical design alternatives chosen from the works of
Draper and John (1988) and Wu and Ding (1998).

After first regression analyses are completed and the best regression model
for the main design with 40 runs and 240 observations is found; a series of F
tests proposed by Tunali and Batmaz (2003) are applied to the data to check
whether qualitative factor levels have identical response surfaces or not. 3
types of general regression models 1,2 and 3 are presented and definitions
necessary for the F tests and calculation of F statistics in the paper are given
below. These models are built sequentially by adding new terms to the first
quadratic metamodel (1) which contains only k quantitative factors (x). The

second metamodel (2) is built by adding the main effect terms (¥ ) for the g

qualitative variables to the first equation. The third metamodel (3) is
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obtained by adding the interactions between the quantitative and the levels
of the qualitative factors. f,y,0,¢/ and 7 are regression coefficients of

related regression parameters.

k

y:Zﬁixi +Z Bixx, +e (1)
i=1 i<j
k q

yZZﬂi'xi +z IBixixj+z7/iZi+g (2)
=1 i< i

k q
Y= B AD Brx D W A D G+ D Lynx;, +ZZf7ﬂxizzz € (3)
im1 T 7 T i

i<j i i<j

e SSE(1), SSE(2) and SSE(3) are the sum of squares for errors for (1)-
(3) respectively.

e p =[12k+k(k-1)/2+1], p, =[2k+k(k-1)/2+g+1] and
p; ={(g+DI[2k +k(k—1)/2]+ g +1} is the number of parameters of

the same equations respectively.

e N is the total number of simulation experiments.

Test of homogeneity of response curves:

H,:y.=0 (i=1,...,q)and

é'l.j =0 (i=1...,k;j=1,..,q9)and

Eiﬂ =0 (i,j=1,...,ki< j;l=1,..,9)and
n,=0 (=1..kl=1..q)

H , : not all of the parameters tested in the null hypothesis are zero.

F" =[(SSE(1) - SSE(3))/v,1/[SSE(3)/v,]

Where v, = p, —p, and v, =N — p,
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Test of homogeneity for interactions
At this step the interaction parameters of equation (3) are tested for zero

after having decided that each qualitative level has different models.

H,: é‘ij =0 (i=L..,k;j=1,...,q)and
Eijl :O(Z’]:l"kal<],l:1,,q)and
77[[ = 0 (i = 17'--7k;l = 1,...q)

H , : not all of the parameters tested in the null hypothesis are zero.

F" =[(SSE(2) - SSE(3))/v,1/[SSE(3)/v,]

Where v, = p, —p, and v, =N — p,

If calculated F* value is greater than the tabular critical value of F statistic
(at selected level of significance with numerator and denominator degrees of
freedoms, vl and v2 respectively) then the hypothesis that all the

parameters tested are equal to zero is rejected.

Test of homogeneity of intercepts
Having decided that the levels have a common response surface, the

parameters added to (1) to obtain (2) are tested for significance.

H,: Vy,=0 (=1..,9)

H , : notall ¥;'s in the null hypothesis are zero.

F* =[(SSEQ) - SSE(2)) /v, 1/[SSE(2)/v,]

Where v, =q and v, =N —p,

Tests for the differences among the levels of the qualitative factor

This test is applied after having decided that response surfaces are different

for some levels of the qualitative factors or they have similar shapes but

different intercepts.
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Testing parameters of the qualitative factors individually

H,: 7=0 versus H,: 7 #0 (i=L..,9)
The test statisticis ¢ =7, /s{7,}.

If H, holds , ¢ will have a t distribution with N — p, degrees of freedom.

Testing the difference between the parameters of the qualitative

factors

H0: %_7/j:0 Versus HA: %_7I¢O
Vi, j=1,..qand i # j)

The test statisticis t =7, — 7, /s{}. =7}

The first important attempt in constructing response surface designs for
qualitative and quantitative factors of economical size was by Draper and
John (1988). They discussed alternative designs and provided guidelines.
Using a second-order response surface design for each level of the
qualitative factor can take large number of runs and may be impractical (Wu
and Ding, 1998). Wu and Ding further worked on these guidelines and came
up with the below criteria:

e The overall design should be an efficient second-order design in
quantitative factors, should have main effects of qualitative factors
and two way interactions of quantitative factors with qualitative
factors.

e At each combination of the qualitative factors or each level of a
qualitative factor, it should be an efficient first order design in
quantitative factors.

e Overall design consists of two parts: the first part is a first-order
design for both quantitative and qualitative factors and the second
part is a sequential addition to the first part so that the expanded
design is second-order.

e When collapsed over the levels of qualitative factors it is an efficient

second-order design for quantitative factors.
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Wu and Ding (1998) developed a method that starts with an efficient design
for the quantitative factors and then partitions the design points into groups
corresponding to different level combinations of the qualitative factors. By
this method, good designs are picked based on D-optimality from possible
alternatives. D-optimality minimizes the variance in the regression
coefficients of the fitted model. A design is said to be D-optimal if |(X X)}|

is minimized (Montgomery, 2001).

2.2.2. Regression Analysis

After collecting the data according to previously discussed designs, to come
up with an empirical mathematical model between the response and

independent variables, the method of least squares is applied. By this

method, the estimated model

y=L0,+pBx +..+ . x,

is chosen so that it minimizes
A 2
SSE=) (3= %)

SSE is the sum of squares of the errors. Error (y,—¥,)is the difference

between the predicted and observed values of y. A second-order regression
model is preferred for the study. Model building and regression assumptions
are explained in section 4.1.2. Validity of regression assumptions is essential

in order to make hypothesis tests about regression parameters.

The variance of o of the random error € is estimated by s> (MSE, mean

square for error) and s is calculated as:

g2 :MSEzi
n—(k+1)
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Here, n is the number of observations and k is the number of predictors in
the regression. Root MSE, standard deviation s, is the frequently used

measure of variability.

Regression analyses in this study are summarized by two tables. One is for
parameter estimates where estimated predictor coefficients are tabulated
with standard error, t and p values. T values are the test statistics where the
hypothesis that a particular parameter coefficient is zero tested. P values in
the table are corresponding values for this statistic. If a p-value for a
parameter is smaller than pre-selected level of significance (a value which is
usually 0.05 in practice) then the hypothesis is rejected and it is concluded
that the association between the response and predictor is statistically

significant.

The second table is the analysis of variance table for the regression. The
results of the global test where the hypothesis that all regression parameters
are equal to zero is tested are given in this table. If the test statistic F is
greater than the F value for pre-selected level of significance then the
hypothesis is rejected meaning that at least one of the parameter
coefficients in the equation is not zero and hence the regression is

statistically significant.

R? (R-sq, multiple coefficient of determination) and adjusted R? (R-sq(adj))
values represent the proportion of variation in the response data explained
by the predictors. (R-Sq) describes the amount of variation in the observed
response values that is explained by the predictor(s). Adjusted R is a
modified R that has been adjusted for the number of terms in the model. If
unnecessary terms are included, R can be artificially high. Therefore R-

sq(adj) is taken into consideration while evaluating regression models.

Insignificant parameters may be discarded from the regression equation
starting from the one with highest p-value. However, a lower-order term
cannot be excluded as long as its higher order term is included in the model.

This is called response surface hierarchy.
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Lack of fit test is also done when possible to check whether the data fits the
model well. This test is available only when repeated observations (such as
center runs) on the response are available. If the F value is greater than the
F value for chosen level of significance it is concluded that the current model

does not fit the data well.

2.2.3 Response Surface Optimization

The eventual objective of RSM is to determine the optimum operating
conditions for the system under discussion. Theoretically, optimization
process starts with an initial estimate for optimum operating conditions and
searches for points with better response values. The method of steepest
ascent is a sequential procedure for moving along the direction of the
maximum increase in the response. If minimization is desired the technique
is called method of steepest descent. A presentation of the path is given in
Fig. 2.2 (Montgomery, 2001). Iterations follow until no further increase in

the response is observed.
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Region of fitted Path of steepest ascent
first-oxder
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Figure 2.2 First-order response surface and path of steepest ascent
(adapted from Montgomery, 2001)
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Optimization modules in many software commercially available work with this
logic. The experimenter guide the optimization process by defining response
function(s); minimum and maximum or target values for the response(s);

relative importance of the responses (if there are more than one).

In many RSM applications multiple responses are observed so multiple
response techniques are developed to find optimum operating conditions that
satisfy all responses under discussion. A common method is use of
desirability function. Developed by Derringer and Suich (1980), the method
uses a desirability function in which the researchers’ priorities and desires
are built into the optimization procedure. First desirability functions for
individual responses are formed and then they are put into a single
composite response which is the geometric mean of the individual
desirabilities. Then, conditions that maximize composite desirability are

searched.

Another multiple response technique that is employed in the case of two
responses is the dual response approach. This term was introduced by Myers
and Carter in 1973. Since then the approach has been extensively discussed
and considered as an alternative to Taguchi’s robust parameter design
(Vining and Myers, 1990; Myers, Khuri and Vining, 1992). Taguchi’s robust
parameter design seeks for the optimum quality with minimum variance by
signal to noise ratio concept. Noise factors are the external factors that
cause undesirable variation and signal to noise ratio, in a sense, measures
the sensitivity of the quality characteristic to noise factors. The aim is to
achieve highest possible signal to noise ratio so that the signal is dominantly

high with respect to noise factors and eventually robust.

Taguchi suggested three formulations based on mean squared deviation for
three goals in parameter optimization as larger the better, smaller the better
and target is the best. These goals are maximizing the response, minimizing
the response and attaining a certain target value respectively. Since the
1980s the method has always been at the spotlight and had significant
contribution to quality improvement, but on the other hand important
general criticisms of robust parameter design are present. The method is

criticized about the inefficiency of signal to noise ratio, lack of flexibility in
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designing variables, lack of economy in experimental design plan,
preoccupation of optimization and no formal allowance for sequential

experimentation (Myers, Khuri and Vining, 1992).

The dual response surface optimization procedures have been adapted in the
spirit of Taguchi’s RPD where one should simultaneously optimize mean and
standard deviation but by considering both mean and standard deviation
functions separately. Usually the works on dual response surface problems
identify the mean as a primary response and standard deviation as a
secondary response and aim to optimize the primary response with some
restrictions on the secondary response. Restrictions on standard deviation

are not favorable as the interest is on minimizing it as much as possible.

Vining and Myers (1990) formulated the problem as a minimization or
maximization of primary response mean, subject to an equality constraint on
standard deviation. For target is best case, standard deviation was defined as
the primary response to be minimized subject to mean equals target constraint.
Del Castillo and Montgomery (1993) further developed their approach by

introducing flexibility in type of response functions and experimental designs.

Lin and Tu (1995) proposed a composite objective function based on the
mean square error. They developed the formulation by removing the
restriction on standard deviation. However, since the objective function is a
composite one the problem becomes a single response problem rather than a

multiresponse problem and causes undesirable information loss.

Copeland and Nelson (1996) loosened the restriction on standard deviation
constraint as changing the equality to a smaller or equal to type for larger
the better and smaller the better cases. On the other hand the put a

restriction on how far mean may be from target value for target is best case.

Del Castillo, Fan and Sample (1997) and Fan (2000) introduced new
computational methods for a unique global solution within a spherical region
of interest and discussed that some other techniques such as general

nonlinear programming methods may fail to find the global optimum.
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Kim ad Cho (2002) and Tang and Xu (2002) came up with alternative
formulations based on goal programming. Their formulations let the
experimenter to consider meeting the targets for both the mean and the

standard deviation.

Most recently, Koksoy and Doganaksoy (2003) proposed a more flexible
formulation of the problem by considering secondary response as another
primary response. The method generates more alternative solutions with
respect to previous formulations and gives flexibility to decision-maker in
exploring alternative solutions. How controllable variables affect both
responses simultaneously can be examined by this method. Generated
alternative solutions are Pareto optimal solutions. A solution can be
considered Pareto optimal if there is no other solution that performs at least
as well on every criteria and strictly better on at least one criteria (Hofstra
University, 2006). That is, a Pareto-optimal solution cannot be improved
upon without hurting at least one of the criteria. A solution is not Pareto-

optimal if one criterion can be improved without degrading any others.

Formulation of Koksoy and Doganaksoy does not give a direct solution to

target is best case but advises iterative solution. Two other cases are defined

as:

The smaller the better: {Minimize fz , Minimize 6 }
Subject to x e R;

The larger the better: {Maximize {1 , Minimize 6 }

Subject to x € R;

Where fI and & represent the fitted second-order response surface

functions for the mean and standard deviation. Unless a constraint is defined
in addition to above formulation many alternative Pareto optimal solutions
can be found and the decision-maker can choose the optimal solution
according to the case. For instance, if one is willing to increase the mean
response, this is possible by sacrificing from standard deviation since a
bigger mean value can be found but with a bigger standard deviation value

as well, in a maximization problem.
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Koksoy and Doganaksoy’s approach is applied in dual response optimization of
this study. The NIMBUS software is used for nonlinear multiobjective
programming problem. The software can be accessed at WWW-NIMBUS

webpage.

2.3. Literature Review

Literature on pozzolanic activity and chemical activation of natural pozzolans
in specific are reviewed and referred in section 2.1 and chapter 3. This
optimization study about chemical activation of pozzolan is unique with its
multivariate characteristic and optimization approach. Statistical design and
analysis are rarely used in construction materials field and one-factor-at-a-
time approach is the general approach that can be found in the literature.
One-factor-at-a-time experiments succeed each other as a series in which,
at each step, a single factor is changed while other factors remain constant.
Therefore this approach fails in detecting possible relationships between
interaction factors and response variables. Few applications of statistical
design and analysis found in the construction materials literature are

included below.

Soudki et al. (2001) aimed to optimize a concrete mix design for hot
climates by statistical design and analysis. A full factorial experiment with
432 samples of 48 mixes at three levels of temperature was used. The
statistical relationships between the water/cement ratio, coarse
aggregate/total aggregate ratio and total aggregate /cement ratio and
temperature on compressive strength were estimated and analyzed using
polynomial regression. A second-order regression model was developed for
concrete strength as a function of temperature and mix proportion. Response
surface optimization for three different temperatures was performed and

recommendations were provided.

Khan and Lyndsaleb (2002) worked on the optimization of a blended
cementitious system for the development of high-performance concrete.

Blended cementitious systems based on ordinary Portland cement (OPC),
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pulverised fuel ash (PFA) and silica fume (SF) were investigated. Binary and
ternary PFA up to 40% was used, and to these blends, 0%, 5%, 10% and
15% SF were incorporated as partial cement replacements. Experimental
design plan was not reported. Based on the experimentally obtained results,
second-order prediction models were developed for compressive strength,
tensile strength, oxygen permeability and carbonation of concrete where PFA
content and FS content were the only two independent variables used in
model building. Isoresponse contours showing the interaction between the
various parameters were investigated. It was found that the incorporation of
8-12% SF as cement replacement yielded the optimum strength and

permeability values.

Roy et al. (2003) statistically investigated the relationship between alkali-
silica reaction (ASR) expansion and four Portland cement characteristics as
fineness, silica content, C3A content and SO; content. Response surface
modeling has identified a negative trend of clinker SiO, and a direct trend of
Na,Oq as significantly contributing to ASR expansion. The study could not
detect any other significant relation between ASR expansion and cement

characteristics.

Sonebi worked on an optimization for medium strength fresh self-compacting
concrete (SCC). Compressive strength and several other response variables
of filling and passing abilities and segregation were modeled by five key
parameters as contents of cement and pulverized fuel ash (PFA), water-to-
powder (cement + PFA) ratio (W/P), and dosage of superplasticizer. Second-
order prediction models were fit to experimental data based on a central
composite design. The results show that medium strength fresh self-
compacting concrete can be achieved with a 28-day compressive strength of
30 to 35 MPa by using up to 210 kg/m? of PFA.

Lin et al. (2004) adopted Taguchi’s approach with an L16 (2'°) orthogonal
array to decide for an optimum mixture for concrete made with recycled
aggregates that satisfy desired requirements. Five control factors
(water/cement ratio, volume ratio of recycled coarse aggregate, replacement
by river sand, content of crushed brick and cleanness of aggregate) and four

responses (slump and compressive strengths at 7, 14, and 28 days) were
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used. Analysis of variance (ANOVA) and significance test with F statistic were
used to check the existence of interaction and level of significance, and
computed results of total contribution rate to select an optimal mixture of

concrete qualifying the desired engineering properties.

In the study by Carrasco et al. (2005), the interaction between limestone
filler (LF) and blast-furnace slag (BFS) on compressive and flexural strengths
was analyzed in mortars in which Portland cement (PC) was replaced by up
to 22% LF and BFS. A central composite response surface design was used
to fit second-order regression models and to draw the isoresponse curves.
BFS and LF content were two independent variables of the investigation.
Results showed that compressive and flexural strength evaluated at 2, 7, 14,
28, 90 and 360 days are affected by the presence of mineral additions. At all
ages, there is a ternary blend of LF, BFS and PC that present an optimum
strength, better than binary LF or BFS cement and plain Portland cement.
The isoresponse method highlighted the significance of the effect of the
mineral addition and their interactions, and it permitted to obtain the
optimum combination to make a composite cement that meet with the
standard or the user requirement regarding the environmental regulations

(energy saving and emission reducing).
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CHAPTER 3

LABORATORY STUDIES

3.1. Process Parameter Selection

The use of natural pozzolans in cement or concrete systems improves
several important properties of these systems such as low heat of hydration,
high ultimate strength, low permeability, high sulfate resistance and low
alkali-silica activity (ACI Committee, 1994). Furthermore, the use of
pozzolanic materials with high volumes as cement replacement is promising
for sustainable development of the cement and concrete industry (Mehta,
1998). Despite these advantages, broad usage of pozzolans in concrete is
delayed due to a major drawback, low early strength. Eventually, the focus
of this study is selected as optimization of low early strength development.
Since achieving the highest possible ultimate strength has always been the
concern in construction materials, it is selected as the second response of

interest.

In order to overcome low early strength problem of pozzolans; thermal,
mechanical and chemical activation methods are proposed. Among these
three methods chemical activation is reported as the most effective and

cheapest one and hence utilized for this study (Shi, 2001).

For a given binder content, early strength decreases with a retarded setting
time as the quantity of pozzolan increases (Turanli et al., 2005). Therefore
natural pozzolan replacement is selected as the first parameter for
investigation. Activator dosage, activator type and fineness of the pozzolan
are selected as other parameters. Chemical activation is possible by proper
chemicals at specific amounts so the reason to select second and third
parameters is obvious. Past research proved effect of particle size on

pozzolanic activity and fineness of pozzolan is selected as a process
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parameter for this reason (Turanh et al., 2005). Other factors that may
effect compressive strength development kept constant to keep the number

of experimental runs at a manageable level.

Selected parameters, their levels and coded values of these levels with

center coding as -1, 0 and 1 are as follows:

Parameter P: Natural pozzolan replacement (% by weight)
Levels: -1: 35% 0: 45% 1: 55%
Parameter F: Amount of pozzolan passing 45 pm sieve (% by weight,

fineness parameter)

Levels: -1: 70% 0: 80% 1: 90%
Parameter D: Activator dosage (% by weight of binder)
Levels: -1: 0.5% 0: 1% 1: 1.5%

Parameter T: Activator type
Levels: -1: NaOH (sodium hydroxide)
1: Na,S0,4 (sodium sulphate)

Levels of natural pozzolan replacement (P) indicate percentage of natural
pozzolan by weight of blended cement. The levels are chosen in accordance
with past research on blended cements containing high volumes of natural
pozzolans. Amount of pozzolan passing 45 um sieve (F) is preferred as
fineness parameter. Na,S04 and NaOH work well as chemical activators and
they are included as parameter levels for activator type (T). Range for

activator dosage is also decided based on past research.

3.2. Experimental Methods

Natural pozzolan used in the research is a volcanic tuff from Turkish deposits
(Askale Region). The natural pozzolan was received in a bulk form and
crushed into particles less than 16 mm before grinding. X-ray diffraction
pattern identified phases of the pozzolan in its mineralogical composition and
according to the X-ray diffraction data the pozzolan contains some crystalline

minerals and a glassy phase indicated by a raised background of the pattern.
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The pozzolan was ground by a laboratory mill which is 450 mm in length and
420 mm in diameter. A combination of 50 and 20 kg cylindrical steel balls
were used as grinding media. 10 kg of raw ground pozzolan is fed into the
mill at once. Grinding continued until required levels for fineness measured
as amount of pozzolan passing 45 pm sieve was attained. Since there are
three levels for fineness of pozzolan and three levels of natural pozzolan
replacement; 9 different combinations of blended cements with respect to
natural pozzolan replacement and fineness are present in the study.
Chemical composition and physical properties of the Portland cement used in

this study are given in Table 3.1.

Table 3.1 Chemical composition and physical properties of the Portland
cement

PC
SiO,, % 19.94
Al,Os, % 5.34
Fe,0s3, % 3.72
Ca0, % 63.02
MgO, % 2.44
SOs3, % 2.95
Loss on ignition, % 1.02
Insoluble residue, % 0.51
Specific gravity 3.03
Blaine fineness, m?%/kg 313
Initial setting time, min 140
Final setting time, min 205

Compressive Strength, MPa
3 days 26.8
7 days 33.5
28 days 51.1
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The mortar mixtures were prepared by using 0.5 water to cement ratio and
2.75 sand-cement ratio. Mixing and curing of the specimens were carried out
in accordance with ASTM C 109. Chemical activators were also added to
mixing water with specified type and dosage of that particular experimental
run. A sulfonated naphthalene formaldehyde condensate type
superplasticizer in a dry powder form was used during mortar mixing to
obtain adequate workability since fine pozzolan decreases workability of
fresh mortars. Compressive strength is affected by the workability of fresh
mortars therefore it is kept constant during laboratory study for each mortar
mix. Consistency of fresh mortars was measured by flow table according to
ASTM C 109 before casting. The flow was kept constant between 95 to 105%
by arranging the amount of superplasticizer added to mixing water.
Compressive strength of hardened mortars was measured at 7 and 28 days.

For both 7-day and 28-day compressive strength, 40 experimental runs with
6 replicates were done. In total 480 cube (50 mm*50 mm*50 mm)
specimens were produced, cured and finally tested for compressive strength
on the test day in accordance with ASTM C 39. A power operated hydraulic
screw type testing machine is used in compressive strength determination.
The load was applied to the cube specimen at a constant rate and the
maximum load applied to the cube specimen was measured. The
compressive strength of the specimen was calculated by dividing the
maximum load applied to the specimen by cross-sectional are and reported

in MPa as in equation 3.1.

— Pmax
Ceom =% (3.1)

Not to introduce any additional variance to the system or to keep it at the
minimum, each type of job was done by the same person during all through
the experimentation. Experimental runs are randomized during laboratory

studies for the same purpose.

In addition to the 480 specimens above, control runs without chemical

activators added for 9 different blended cement combinations were prepared
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and tested. These control runs were done to see whether chemical activation
was effective in increasing early strength. 128 cube specimens were tested
for control runs. Average of compressive strength for both control and
activated runs at both ages are summarized in Table 3.1. Plots of averages
are presented in Figures 3.1 and 3.2.

Table 3.2 Compressive strength averages for 9 blended cement

combinations at 7 and 28 days
7-day 7-day 28-day 28-day

# P F Control Activated Control Activated
(MPa) (MPa) (MPa) (MPa)

1| 35% | 70% 19.94 22.02 31.90 30.63

2 | 45% | 70% 13.79 16.28 27.39 27.33

3 | 55% | 70% 12.10 12.47 23.80 26.16

4 | 35% | 80% 12.87 12.99 34.26 32.79

5 | 45% | 80% 15.13 15.67 35.70 29.48

6 | 55% | 80% 12.68 13.63 26.87 26.51

7 | 35% | 90% 20.53 22.78 40.80 36.93

8 | 45% | 90% 13.99 17.62 34.85 34.45

9 | 55% | 90% 12.88 15.50 28.64 26.02

Effect of chemical activation (7-day)
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Figure 3.1 Effect of chemical activation plot for 7-day compressive strength
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Effect of chemical activation (28-day)

@ 28-day control
m 28-day activated

Compressive Strength (MPa)

1 2 3 4 5 6 7 8 9

Blended cement combination

Figure 3.2 Effect of chemical activation plot for 28-day compressive
strength

Average of compressive strength for both control and activated runs at both
ages and figures 3.1 and 3.2 show that the chemical activation increased
compressive strength for early strength values. On the other hand, 28-day
compressive strength values were affected negatively, positively or not
affected at all.
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CHAPTER 4

EXPERIMENTAL DESIGN AND ANALYSIS WHEN THE RESPONSE IS
7-DAY COMPRESSIVE STRENGTH

The study focuses on the optimization of two main responses which are 7-
day and 28-day compressive strengths. For consistency, the same
experimental design approach is used for both responses. There are four
main factors as explained in section 3.1 as natural pozzolan replacement,
fineness of pozzolan (indicated as amount of pozzolan passing 45 pm sieve),
activator dosage and activator type. While other three are quantitative
variables, activator type is a qualitative variable. Since effects of these
parameters, their two-way interactions and effect of their quadratic terms to
the responses are research interests, an experimental design for fitting
second-order response surface models is chosen. In Section 4.1, response
surface methodology for mean 7-day compressive strength when face-
centered central composite design (FCCD) is used for each level of the
qualitative factor is explained. In section 4.2, response surface methodology
for mean 7-day compressive strength with economical design alternatives

proposed in the literature is given.

4.1. Response Surface Methodology when FCCD is Used for
Each Level of the Qualitative Factor

4.1.1. Design of Experiments

Since the region of interest and the region of operability for the study is the
same cubical region, the face-centered central composite design which is an
effective second-order design is chosen for the study (Batmaz and Tunali,
2002). The FCCD is constructed for three quantitative variables with 20 runs
and this basic design is repeated for each level of the activator type due to

the qualitative nature of the variable. Though levels of this qualitative factor
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have no quantitative meaning; they are presented as -1 and 1 using center
coding. Main factors for the experiment and their levels are summarized as

follows:

Parameter P: Natural pozzolan replacement (% by weight)
Levels: -1: 35% 0: 45% 1: 55%
Parameter F: Amount of pozzolan passing 45 pum sieve (% by weight)
Levels: -1: 70% 0: 80% 1: 90%
Parameter D: Activator dosage (% by weight of binder)
Levels: -1: 0.5% 0: 1% 1: 1.5%
Parameter T: Activator type
Levels: -1: NaOH (sodium hydroxide)
1: Na,S0, (sodium sulphate)

For each experimental run (parameter level combination) 6 replicates are
performed. Since there are 40 parameter level combinations (rows) in the
specified design, 240 experiments were conducted for each response.
Results of these experiments are presented in Appendix 4.1. Experimental
runs are randomized according to a random string proposed by Design-
Expert Software (Design-Expert, Version 7.0.0, Stat-Ease Inc.) and the
sequence is also presented in Appendix 4.1. Experimentation and regression
analyses in following sections are carried out in accordance with this random
sequence in order to be able to calculate Durbin-Watson statistic and hence

conclude about residual correlation.

4.1.2. Regression Analyses for Mean 7-day Compressive Strength

Mean compressive strength is modeled by general linear regression using the
method of least squares in this study and MINITAB Software is used for the
analysis (MINITAB® Release 14.12.0).

The general regression equation preferred involves main factor terms, two-

way interaction terms and quadratic terms as presented below.

y = Bo + 2 Bi Xi+ > Bii Xiz + zBij Xin + € (41)
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In this equation:

y = the response (mean 7-day compressive strength, will be referred as CS7
henceforth)

X = regression parameters (predictors)

B

€

regression coefficients

error term

Four basic assumptions about the general form of the probability distribution
of the error term have been made and controlled for each regression model
in this study as explained by Mendenhall and Sincich (2003):

1. The mean of the probability distribution of € is zero.

2. The variance of the probability distribution of € is constant for all

settings of the independent variable x.
3. The probability distribution of € is normal.
4. The errors associated with any two different observations are

independent.
These assumptions enable developing measures of reliability for the least
squares estimators and develop hypothesis tests for examining the utility of
least squares line (Mendenhall and Sincich, 2003). Residual plots and test
statistics allows checking validity of these four assumptions.
In order to write a regression equation containing all main factor effects,
two-way interactions and quadratic terms when one of the factors is

qualitative; three stages are followed (Mendenhall and Sincich, 2003) as

explained below:

Stage 1: The second-order model for three quantitative variables is written.

CS; =Bo+ B1 P+ B2F + B3D + BsP?>+ BsF2 + Bs D* + B7 PF + Bg PD + BoFD

Stage 2: Main effect and interaction terms for the qualitative variables are
added.

+ B1o T (Only one qualitative variable hence no interaction terms)
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Stage 3: Interaction terms between qualitative and quantitative variables are
added.

+ B11 PT + B12 FT + By3 DT + Big P°T+ Bys F°T + B16 D°T + By7 PFT + B1g PDT
+B19 FDT

All of the above regression variables may be included in the model since the
experimental design has 39 degrees of freedom that enables the estimation

of all regression coefficients in the model.

Before applying the regression analysis for above regression equation that
includes two way interaction and quadratic terms; a regression analysis for
only first order main factors is employed. The regression equation is found

as:

CS;,=16.8-3.80P+ 0.892F+1.43D +0.601T (4.2)

S = 2.09556 R-Sq = 70.0% R-Sq(adj) = 66.6%

ANOVA for the significance of above regression equation is given in Table
4.1. The hypothesis that all B terms are equal to zero is rejected with a
confidence level of (1-p)*100%, which is 100% for this model. This implies

that at least one coefficient in the model is not zero.

Table 4.1 ANOVA for the significance of the regression model applied for 7-
day mean compressive strength based on face-centered central composite
design with only main factors

Source DF SS MS F P
Regression 4 359.465 | 89.866 20.46 0.000
Residual Error 35 153.698 4.391

Lack of Fit 25 143.986 5.759 5.93 0.003
Pure Error 10 9.712 0.971
Total 39 513.163
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R-Sq(adj) value indicates that 66.6% of the sample variation in the mean 7-
day compressive strength can be explained by the regression model (4.2)
after adjusting for sample size and number of independent variables in the
model.

The significance of B terms of the regression model is presented in Table 4.2.
The normal probability plot of the residuals and the residual versus fitted
values plot of this model are given in Fig. 4.1 and Fig. 4.2. These plots do
not indicate any violation of the basic regression assumptions. The
hypothesis that the residuals follow a normal distribution cannot be rejected
since related p-value for normality test is 0.108 and this value is greater
than pre-selected a-value, 0.05. As it can be seen in Appendix 4.2, lack of fit
test results encourage considering higher order terms of existing predictors
to get a better fit of the data. A p-value which is smaller than a pre-selected
a-level indicates that the linear predictors are not sufficient to explain the
variation in response. Overall lack of fit p-value (0.006) and individual lack
of fit p-values (for P 0.022; for F 0.007 and for D 0.006) are smaller than
pre-selected a-value, 0.05, for this model. Possible curvature in variables P
(natural pozzolan replacement), F (amount of pozzolan passing 45 um sieve)

and D (activator dosage) is also indicated in lack of fit test result.

Table 4.2 Significance of B terms of the regression model based on face-
centered central composite design and applied for mean 7-day compressive
strength

Predictor Coef SE Coef T P
Constant 16.8184 0.3313 50.76 0.000
P -3.7952 0.4686 -8.1 0.000
F 0.8924 0.4686 1.9 0.065
D 1.4318 0.4686 3.06 0.004
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Probability Plot of SRES1
Normal - 95% CI

Mean 0.02311
StDev 1.024
N 40
AD 0.606
P-Value 0.108

Percent
g

Figure 4.1 Normal probability plot of the residuals for the regression model
based on face-centered central composite design and applied for CS7 with
only main factors
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Figure 4.2 Residuals versus the fitted values plot of the regression model
based on face-centered central composite design and applied for CS7 with
only main factors

In Table 4.2 “Coef” refers to the value of B estimate for that particular
predictor, “"SE Coef” refers to the standard error of this estimate, T refers to
the t-value of hypothesis test for the significance of the coefficient and P is
the related p-value for the test. The table shows that except F (amount of
pozzolan passing 45 pm sieve) the relationship between all main factors and

the response is statistically significant at 0.05 a-level.
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As also proposed in the lack of fit test results of the first regression model, a
regression model that involves all two-way interaction and quadratic terms is

employed as the second model. The regression equation is found as:

CS7=154-3.80P + 0.892F + 1.43D + 0.215T + 0.162 Psq + 1.34 Fsq
+ 1.36 Dsq + 0.564 PF + 0.662 PD - 0.382 PT + 0.637 FD - 0.036 FT
-1.21 DT + 0.492 PsqT + 0.230 FsqT + 0.051 DsqT + 0.057 PFT
+ 0.065 FDT - 0.286 PDT (4.3)

where X represents the main effect of a parameter,
Xsq represents the quadratic term for a parameter
XY represents two-way interaction effect of parameters X and Y
and XYZ represents three-way interaction effect of parameters X,Y
and Z

S =1.28716 R-Sq =93.5% R-Sq(adj) = 87.4%
Durbin-Watson statistic = 1.82212

The regression is statistically significant at 100% confidence level. By this
second regression model standard deviation of the error decreased from
2.09556 to 1.28716 and R-Sq(adj) value increased from 66.6% to 87.4%.
There is a considerable improvement with this regression model and 87.4%
of the sample variation in the 7-day compressive strength can be explained
after adjusting for sample size and number of independent variables in the
model. The Durbin-Watson statistic states that there is not any indication of
the presence of residual correlation as statistic (1.82) is above the tabulated
upper bound which is 1.52 with 4 independent variables and 40 observations
at 0.01 significance level. Residuals versus the fitted values plot of the
regression model (Fig. 4.3) and normal probability plot of the residuals (Fig.
4.4) do not indicate any violation of the basic regression assumptions. It can
be said that the residuals are normally distributed and the error term has a
constant variance and a mean of zero and hence basic regression

assumptions are satisfied. Regression analysis can be found in Appendix 4.3.
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Figure 4.3 Normal probability plot of the residuals for the regression model
based on face-centered central composite design and applied for CS7
involving all two-way interaction and quadratic terms
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Figure 4.4 Residuals versus the fitted values plot of the regression model
based on face-centered central composite design and applied for CS7
involving all two-way interaction and quadratic terms

In Table 4.3 ANOVA for the significance of the regression model (4.3) is
given. The hypothesis that all B terms are equal to zero is rejected with a p-

value of 0.00, which is smaller than pre-selected level of significance, 0.05.
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Table 4.3 ANOVA for the significance of the regression model applied for 7-
day mean compressive strength based on the face-centered central
composite design involving all two-way interaction and quadratic terms

Source DF SS MS F P
Regression 19 480.028 | 25.265 15.25 0.000
Residual Error 20 33.135 1.657

Lack of Fit 10 23.423 2.342 2.41 0.091
Pure Error 10 9.712 0.971

Total 39 513.163

In Table 4.4, B estimates and their standard errors are tabulated with related

p-values.

Table 4.4 Significance of B terms of the regression model based on face-
centered central composite design and applied for mean 7-day compressive
strength

Predictor Coef SE Coef T P
Constant 15.3905 0.3129 49,19 0.000
P -3.7952 0.2878 | -13.19 0.000
F 0.8924 0.2878 3.1 0.006
D 1.4318 0.2878 4.97 0.000
T 0.2151 0.3129 0.69 0.500
Psqg 0.162 0.5488 0.3 0.771
Fsq 1.3388 0.5488 2.44 0.024
Dsq 1.3551 0.5488 2.47 0.023
PF 0.5639 0.3218 1.75 0.095
PD 0.6619 0.3218 2.06 0.053
PT -0.3825 0.2878 -1.33 0.199
FD 0.6374 0.3218 1.98 0.062
FT -0.036 0.2878 -0.12 0.902
DT -1.2095 0.2878 -4.2 0.000
PsqT 0.4918 0.5488 0.9 0.381
FsqT 0.2303 0.5488 0.42 0.679
DsqT 0.0505 0.5488 0.09 0.928
PFT 0.0572 0.3218 0.18 0.861
FDT 0.0654 0.3218 0.2 0.841
PDT -0.286 0.3218 -0.89 0.385

From Table 4.4, it is seen that 12 of the 19 predictors have p-values greater
than pre-selected a-value 0.05. The relationship between the response and
these 12 predictors is not statistically significant. Therefore, the model can

be improved by discarding insignificant terms from the regression model
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(Ayan, 2004). The first factor to discard from the regression equation is the
one having the largest p-value. After eliminating this factor a new regression
equation is fit with remaining factors. For the new regression analysis basic
regression assumptions are checked and the second factor to discard from
this new equation is chosen according to the p-values of the significance of 3
terms. Excluding a lower-order term affects the response surface hierarchy.
To include a higher-order term in the model, the lower-order term must also
be included. The procedure follows this sequence until no significant
improvement in multiple coefficient of determination (R-sq(adj)) and
estimate of standard deviation (S) is achieved. The best model in accordance
with this procedure is achieved by pooling DsqT, FT, PFT, FDT, Psq, FsqT,

PDT and PsqT terms to the error term.

The regression equation for the best model chosen results as:

CS7=154-3.80P + 0.892F +1.43D + 0.601 T+ 1.40 Fsq + 1.42 Dsq
+ 0.564 PF + 0.662 PD - 0.382 PT + 0.637 FD - 1.21 DT (4.4)

S =1.18784 R-S5q =92.3% R-Sqg(adj) = 89.3%
Durbin-Watson statistic = 1.67847

Residuals versus fitted values plot of the regression model (Fig. 4.5) and
normal probability plot of the residuals (Fig. 4.6) do not indicate any
violation of the basic regression assumptions. There is not any indication of
the presence of residual correlation as Durbin-Watson statistic (1.68) is
above the tabulated upper bound which is 1.52 with 4 independent variables

and 40 observations at 0.01 significance level.
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Figure 4.5 Normal probability plot of the residuals for the regression model
based on face-centered central composite design and applied for mean 7-day
compressive strength after elimination of insignificant terms
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Figure 4.6 Residuals versus the fitted values plot of the regression model
based on face-centered central composite design and applied for mean 7-day
compressive strength after elimination of insignificant terms

In Tables 4.5 and 4.6 ANOVA results for the significance of the regression
model and significance of B terms are tabulated. The regression is significant
with a p-value of 0.00 and there is no evidence of lack of fit since p-value of
lack of fit test (0.196) is greater than pre-selected a-value of 0.1 (Appendix

4.4). The adjusted multiple coefficient of determination shows that 89.3% of
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the sample variation in the mean 7-day compressive strength can be
explained by this model. This value is 87.4% for the model including all
possible predictors. Standard deviation for current model is 1.19 while it is
1.28 for the previous model. Improvement in explained variation and

standard deviation are achieved by the final model.

Table 4.5 ANOVA for the significance of the regression model applied for 7-
day mean compressive strength based on the face-centered central
composite design after elimination of insignificant terms

Source DF SS MS F P
Regression 11 473.656 43.06 30.52 0.000
Residual Error 28 39.507 1.411
Lack of Fit 18 29.795 1.655 1.700 0.196
Pure Error 10 9.712 0.971
Total 39 513.163

Table 4.6 Significance of B terms of the regression model based on face-
centered central composite design and applied for mean 7-day compressive
strength after elimination of insignificant terms

Predictor Coef SE Coef T P
Constant 15.4107 0.2817 54.7 0.000
P -3.7952 0.2656 | -14.29 0.000
F 0.8924 0.2656 3.36 0.002
D 1.4318 0.2656 5.39 0.000
T 0.6015 0.1878 3.2 0.003
Fsq 1.3995 0.4695 2.98 0.006
Dsq 1.4158 0.4695 3.02 0.005
PF 0.5639 0.297 1.9 0.068
PD 0.6619 0.297 2.23 0.034
PT -0.3825 0.2656 -1.44 0.161
FD 0.6374 0.297 2.15 0.041
DT -1.2095 0.2656 -4.55 0.000

As it is indicated in Table 4.6, activator type and its two-way interactions
with natural pozzolan replacement and activator dosage are significant in the

final regression equation.
Tunali and Batmaz (2003) propose a series of homogeneity tests “to check

whether the effects of quantitative factors remain the same across the levels

of the qualitative factor”. F-tests are performed to check the significance of

42



the interaction between levels of the qualitative factor and quantitative
factors. If such an interaction does not exist, it is concluded that the
regression model has identical response surfaces for the levels of the
qualitative factor. Below, these homogeneity tests are performed for mean
7-day compressive strength. For the calculation of necessary sum of squares
of errors (SSE) for three regression metamodels, regression analyses are
performed. Results are presented in Appendix 4.5. Explanations on these

tests can be found in section 2.2.1.

Test of homogeneity of response curves:

F* = [(SSE(1) - SSE(3)) / v4i] / [SSE(3) / v2] {vi=p3-p1 V2 =N-p3y
= [(86.016-33.135) / 10] / [33.135 / 20]
= 5.288/1.66 = 3.19

Since F* = 3.19 > Fys5,10,20 = 2.35, it is concluded that at least one of the
coefficients of a regression parameter involving the qualitative factor T (T,
xiT, XiX;T, X’T etc. where x represents a quantitative factor) is different from
zero. Therefore, the second-order model for only quantitative factors is not
sufficient to explain the relation between quantitative factors and the

response at each level of the qualitative factor.

Test of homogeneity for interactions:

F* = [(SSE(2) - SSE(3)) / vi] / [SSE(3) / v2] {vi=ps-p2 V2=N-p3
= [(71.545-33.135) / 9] / [33.135/ 20]
=4.27/1.66 = 2.57

Since F* = 2.57 > Fps5,920 = 2.39, the null hypothesis that the response
surfaces at two different level of the qualitative factor have the same shape
is rejected. Since the shapes are different across levels, the test for equality
of the intercept is not performed. Results of the homogeneity tests and final

regression equation verify each other.

After constructing the regression equation where the qualitative factor is
included as a parameter, regression analyses for two activator types and
with only quantitative factors are performed separately for comparison. Two
independent response surfaces are built and examined for each of the

activator type.
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Below regression equation (4.5) is the best model chosen for mean 7-day
compressive strength when activator type is NaOH. Insignificant factors are
discarded while considering adjusted multiple coefficient of determination

and standard deviation estimate of the models.

CS7 = 15.1-3.41 P + 0.928 F + 2.64 D + 0.985 Fsq + 1.18 Dsq + 0.947 PD
+ 0.573 FD (4.5)

S =1.12462 R-Sq =93.6% R-Sg(adj) = 89.9%
Durbin-Watson statistic = 2.03704

Regression results are summarized in Appendix 4.6. The regression is
significant at 100% confidence level and basic regression assumptions are
valid (Fig.s 4.7 and 4.8). Upper bound for Durbin-Watson statistic is 1.41 for
three independent variables and 20 observations at 0.01 significance level.
Since the statistic for this regression model (2.03) is greater than the upper

bound value there is not sufficient evidence for residual correlation.

There is no evidence of lack of fit as it can be seen from the regression
results. Table 4.7 and 4.8 summarize significance of the regression and B

terms of the equation 4.5.

Normal Probability Plot of the Residuals
(response is CS7)

Percent
3

-

-3 -2 -1 0 1 2 3
Standardized Residual

Figure 4.7 Normal probability plot of the residuals for the regression model
based on the design with three quantitative variables for activator type
NaOH for 7-day compressive strength
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Residuals Versus the Fitted Values
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Figure 4.8 Residuals versus the fitted values plot of the regression model
based on the design with three quantitative variables for activator type
NaOH for 7-day compressive strength

Table 4.7 ANOVA for the significance of the regression model applied for 7-
day mean compressive strength when the activator type is NaOH

Source DF SS MS F P
Regression 7 223.332 | 31.905 25.23 0.000
Residual Error 12 15.177 1.265
Lack of Fit 7 8.961 1.28 1.03 0.505
Pure Error 5 6.216 1.243
Total 19 238.509

Table 4.8 Significance of B terms of the regression model for mean 7-day
compressive strength when the activator type is NaOH

Predictor Coef SE Coef T P

Constant 15.135 0.3772 40.12 0.000
P -3.413 0.3556 -9.6 0.000
F 0.928 0.3556 2.61 0.023
D 2.639 0.3556 7.42 0.000
Fsqg 0.985 0.6287 1.57 0.143
Dsq 1.18 0.6287 1.88 0.085
PD 0.9475 0.3976 2.38 0.035
FD 0.5725 0.3976 1.44 0.175
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For activator Na,SO,, chosen best regression model is 4.6 and regression

results are summarized in Appendix 4.7.

CS7 =15.7-4.18P + 0.857 F + 0.223 D + 1.81 Fsq + 1.65 Dsq (4.6)

S = 1.45557 R-Sq = 88.6% R-Sq(adj) = 84.5%

Durbin-Watson statistic = 2.34560

The regression is significant with a p-value of 0.000 and the total sample
variation explained by this regression equation is 84.5%. The p-value for the
Anderson-Darling normality test for residuals is 0.141 as noted in Fig 4.9.
This value is greater than the chosen a-level of 0.10, thus the hypothesis
that the data follows a normal distribution cannot be rejected. Residuals
versus the fitted values plot (Fig. 4.10) does not show a specific pattern and
constant variance of residuals assumption is valid. Significance of the

regression and B terms are summarized in Tables 4.9 and 4.10.

Probability Plot of Standardized Residuals
Normal

Mean 0.003857
StDev 1.030
N 20
AD 0.544
P-Value 0.141

Percent
3

Standardized Residuals

Figure 4.9 Normal probability plot of the residuals for the regression model
based on the design with three quantitative variables for activator type
Na,SO, for 7-day compressive strength
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Residuals Versus the Fitted Values
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Figure 4.10 Residuals versus the fitted values plot of the regression model
based on the design with three quantitative variables for activator type
Na,S0, for 7-day compressive strength

Table 4.9 ANOVA for the significance of the regression model applied for 7-
day mean compressive strength when the activator type is NaOH

Source DF SS MS F P
Regression 5 230.553 | 46.111 21.76 0.000
Residual Error 14 29.662 2.119
Lack of Fit 9 26.187 2.91 4.19 0.065
Pure Error 5 3.475 0.695
Total 19 260.215

Table 4.10 Significance of B terms of the regression model for mean 7-day
compressive strength when the activator type is NaOH

Predictor Coef SE Coef T P
Constant 15.6851 0.4882 32.13 0.000
P -4.178 0.4603 -9.08 0.000
F 0.857 0.4603 1.86 0.084
D 0.223 0.4603 0.48 0.636
Fsq 1.8144 0.8137 2.23 0.043
Dsq 1.6544 0.8137 2.03 0.061
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4.2. Response Surface Methodology with Economical Designs

4.2.1. Design of Experiments

As explained in section 2.2.1, economical design alternatives for response
surface designs with qualitative factors are proposed in the literature. One
design from Draper and John (1988) and one design from Wu and Ding
(2003) with 16 runs and 4 independent variables are adopted for the data
set and related regression analyses are done in the following section. The
design alternative from Draper and John will be referred as D] design and
the alternative from Wu and Ding will be referred as WD design from now
on. These designs are given in Appendix 4.8. Selected design from each
work is the best proposed alternative among others according to alphabetical

optimality criteria (A, D, G and V-optimality criteria).

4.2.2. Regression Analyses

The second-order regression equation with three quantitative and one
qualitative variable has 20 B parameters to estimate so two chosen
economical designs with 16 observations are not capable for fitting such an
equation. At least 21 observations are required to fit such an equation. In
order to decrease the number of potential predictors to a manageable number,
variable screening method as stepwise regression and best subsets regression
are employed. However these procedures are not recommended for final
design selection since the probability of making Type I or Type II errors are
extremely high (Mendenhall and Sincich, 2003). Instead they are employed
for preliminary design decision. Regression equations are fit for alternative
predictor sets and basic regression assumptions are checked. The best model
for D] design that achieves the highest multiple coefficient determination,

minimum standard deviation estimate and significance results as follows:

CS7=16.1-280P+ 1.22F + 0.972D + 0.351 T-1.76 DT + 0.948 PD
+ 0.874 PT + 1.34 Fsq (4.7)
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S =1.13455 R-Sq =95.7% R-Sq(adj) = 90.9%
Durbin-Watson statistic = 1.73984

Regression analysis results are given in Appendix 4.9. Lack of tit test cannot
be performed since there is not enough data and pure error test cannot be
done since there are no replicates. These are shortcomings of this design. On
the other hand 90.9% of the sample variation in mean compressive strength
can be explained by this regression, after adjusting for sample size and
number of independent variables in the model. Standard deviation estimate
and multiple coefficient of determination values are better with respect to
equation 4.4. Durbin-Watson statistic (1.74) is higher than tabulated upper
bound value of 1.66 for 4 independent variables and 16 observations and
hence does not indicate autocorrelation of residuals. Normality and constant
variance assumptions for residuals are satisfied (Fig.s 4.11 and 4.12). Table
4.11 and 4.12 summarize significance of the regression and individual

parameters.

Table 4.11 ANOVA for the significance of the regression model applied for
7-day mean compressive strength based on DJ design

Source DF SS MS F P
Regression 8 202.826 25.353 19.7 0.000
Residual Error 7 9.011 1.287

Total 15 211.837

Table 4.12 Significance of B terms of the regression model based on DJ
design and applied for mean 7-day compressive strength

Predictor Coef SE Coef T P
Constant 16.1468 0.5228 30.89 0.000
P -2.8031 0.4485 -6.25 0.000
F 1.2226 0.3588 3.41 0.011
D 0.9725 0.4485 2.17 0.067
T 0.3509 0.3637 0.96 0.367
DT -1.757 0.4485 -3.92 0.006
PD 0.948 0.4011 2.36 0.050
PT 0.8744 0.4485 1.95 0.092
Fsqg 1.3431 0.7453 1.8 0.115
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Figure 4.11 Normal probability plot of the residuals for the regression model
based on DJ] design and applied for mean 7-day compressive strength
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Figure 4.12 Residuals versus the fitted values plot of the regression model
based on DJ] design and applied for mean 7-day compressive strength

For selection of the best regression model for WD design, the same

procedure followed for D] design is used. The chosen regression model

results as:

CS7 =153-3.56P+1.22F+1.52D + 0.560T - 1.89 DT + 1.74 Dsq

+ 1.05 FD + 1.19 Fsq
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S =1.12158 R-5q =96.9% R-Sq(adj) = 93.3%
Durbin-Watson statistic = 2.12921

Standard deviation estimate is slightly better than equation 4.7 and 93.3%
of the sample variation is explained by this regression model. A violation for
basic regression assumptions is not detected (Fig.s 4.13 and 4.14). Durbin-
Watson statistic is higher than tabulated upper bound value of 1.66 for 4
independent variables and 16 observations and does not indicate
dependency of residuals. ANOVA for the significance of the regression model
is given in Table 4.13 and significance of the f parameters is summarized in
Table 4.14.

Normal Probability Plot of the Residuals
(response is CS7)
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Figure 4.13 Normal probability plot of the residuals for the regression model
based on WD design and applied for mean 7-day compressive strength
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Figure 4.14 Residuals versus the fitted values plot of the regression model

based on WD design and applied for mean 7-day compressive strength

Table 4.13 ANOVA for the significance of the regression model applied for
7-day mean compressive strength based on WD design

Source DF SS MS F P
Regression 8 202.826 | 25.353 19.7 0.000
Residual Error 7 9.011 1.287

Total 15 211.837

Table 4.14 Significance of B terms of the regression model based on WD
design and applied for mean 7-day compressive strength

Predictor Coef SE Coef T P
Constant 15.2764 0.5134 29.76 0.000
P -3.5551 0.3903 -9.11 0.000
F 1.2172 0.3634 3.35 0.012
D 1.5219 0.3606 4.22 0.004
T 0.5603 0.326 1.72 0.129
DT -1.8888 0.3955 -4.78 0.002
Dsq 1.7407 0.6639 2.62 0.034
FD 1.0535 0.4198 2.51 0.040
Fsqg 1.1859 0.6964 1.7 0.132
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4.3. Response Surface Optimization of Mean 7-Day

Compressive Strength

Response surface optimization for the best regression models found for
mean 7-day compressive strength is done by Design-Expert Optimization
Module (Design-Expert, Version 7.0.0, Stat-Ease Inc.). This module searches
for a combination of factor levels that simultaneously satisfy the
requirements placed on each of the responses and factors. To use
optimization, first each response should be analyzed to find an appropriate
model. Optimization of one response or the simultaneous optimization of

multiple responses can be performed by Design-Expert Optimization Module.

First, the desired goal for each factor and response is chosen from the menu.
For compressive strength desired goal is maximization and the goal is
assigned accordingly. For mean 7-day compressive strength, the limits for
minimum and maximum strengths are set to 10 MPa and 30 MPa
respectively. The decision is based on past experience and test results. Then
maximum and minimum levels are assigned for the factors. Design-Expert
Optimization Module differentiates between qualitative and quantitative

factors while defining parameters, which is a great advantage for this study.

The module makes use of desirability function for optimization. Desirability is
an objective function that ranges from zero outside of the limits to one at the
goal. The numerical optimization finds a point that maximizes the desirability
function. The value of desirability function is completely dependent on how

closely the lower and upper limits are set relative to the actual optimum.

The characteristics of a goal may be altered by adjusting the weight or
importance. These adjustments are especially important in simultaneous
optimization of several response variables. A weight can be assigned to a
goal to adjust the shape of its particular desirability function. The default
value of one creates a linear function between the low value and the goal or
the high value and the goal. Increased weight (up to 10) moves the result
towards the goal. Reduced weight (down to 0.1) creates the opposite effect.

The importance of a goal can be changed in relation to the other goals and
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can be assigned from 1 to 5. For several responses and factors, all goals get
combined into one desirability function and this function is tried to be
maximized. In Fig. 4.15, the screenshot of the assignments for mean 7-day
compressive strength (when the experimental design is FCCD with 40
observations) and the desirability function graph formed by related

assignments is given.

The goal seeking begins at a random starting point and proceeds up the
steepest slope to a maximum. There may be two or more maximums
because of curvature in the response surfaces and their combination into the
desirability function. By starting from several points in the design space

chances improve for finding the "best" local maximum.
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Figure 4.15 Goal and limit assignment for CS7 in Design-Expert software
and desirability function for assigned case

In sections 4.1.2. and 4.2.2. best regression models for 5 different sets of
observations are found. Response surface optimization for each regression

model is performed and results are presented below.
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FCCD for Each Level of the Qualitative Factor (40 observations)

The best regression model for the main design in the study is accepted as
(Equation 4.4):

CS7=154-3.80P + 0.892F +1.43D + 0.601 T+ 1.40 Fsq + 1.42 Dsq
+ 0.564 PF + 0.662 PD - 0.382 PT + 0.637 FD - 1.21 DT (4.4)

Example response surface curves of 7-day mean compressive strength for
equation 4.4 are given in Fig. 4.16. For each activator type, all possible
subsets of 2 main factors are assigned to x-axes and y-axis indicates the
response. The level of the third quantitative factor which cannot be assigned
is kept constant at medium level. Fitted response surfaces verify the

significant effect of activator type on the response once again.

Optimum points found by the software are presented in Table 4.15.
Desirability value, 95% confidence and prediction levels for the optimum
points are also indicated in the table. Table 4.16 reports the parameter levels
of these optimum points. In Fig. 4.17 optimum point is also graphically

shown.
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Figure 4.16 Example response surface curves of CS7 for two different types

of activators (FCCD with 40 observations)
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Table 4.15 Optimum CS7 responses with desirability values, 95%
confidence and prediction intervals for main FCCD design for both activator
types

Prediction
# (in MPa) Desirability 959% CI 959% PI
1 23.9821 0.699 | (22.23; 25.73) (20.98; 26.98)
2 23.7533 0.688 | (22.00; 25.51) (20.75; 26.75)
3 23.7203 0.686 | (22.06; 25.38) (20.77; 26.67)
4 23.5314 0.677 | (21.78; 25.28) (20.53; 26.53)
5 23.4665 0.673 | (21.88; 25.05) (20.56; 26.37)
6 23.1352 0.657 | (21.38; 24.89) (20.14; 26.13)
7 23.0252 0.651 | (21.41,; 24.64) (20.11; 25.94)
8 22.9377 0.647 | (21.34; 24.53) (20.03; 25.85)
9 22.5174 0.626 | (20.92; 24.11) (19.61; 25.43)
10 22.4047 0.620 | (20.85; 23.96) (19.52; 25.29)

Table 4.16 Parameter levels of optimum CS7 points for FCCD design at each
activator type

# P F D T Cs7
1 -1.00 1.00 1.00 | NaOH 23.98
2 -1.00 -1.00 -1.00 | Na,SO, 23.75
3 -0.88 1.00 1.00 | NaOH 23.72
4 -1.00 1.00 1.00 | Na,SO, 23.53
5 -0.76 1.00 1.00 | NaOH 23.47
6 -1.00 1.00 -1.00 | Na,SO, 23.14
7 -1.00 1.00 0.82 | NaOH 23.03
8 -1.00 1.00 0.78 | Na,SO, 22.94
9 -1.00 -0.48 -1.00 | Na,S04 22.52

10 -1.00 1.00 -0.66 | Na,S04 22.40
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Figure 4.17 Graphical representation of optimum point for CS7 with FCCD
with 40 observations

In Table 4.16, 4 optimum points are especially important and will be

explained briefly:

Point #1: This point is a combination of minimum pozzolan content (35%),
maximum fineness (90% passing 45 pym sieve), maximum activator dosage
(1.5%) and activator type NaOH. When the response surface examples for
NaOH activator (Fig. 4.16) are considered, the optimum point is expected at
this point as well. The mean value for 6 experiment results performed at this
point is 23.6 MPa, which is very close to predicted value of 23.98 MPa, and
experiment result also falls within 95% confidence interval. Therefore, this
point is very well modeled by chosen regression model. Points 3, 5 and 7 in
Table 4.16 possess same sign combinations for each factor but they have

slightly smaller parameter values with smaller desirability values.

Point #2: For activator type NaOH, quadratic effect of fineness and dosage

push optimum points to the minimum-maximum level combinations of these
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parameters as can be seen in Fig. 4.16. Especially the response curves in
which these two parameters are assighed as independent variables behave
differently and the effect is observed in optimum points for two activator
types. For point #2, pozzolan content is again at its minimum (this is valid
for all optimum points in Table 4.16). Fineness and activator dosage are also
at their minimums while the activator is Na,SO,. Average of 6 experiments
at this point is 24.39, which is a little higher than predicted value, and this

value is in the confidence interval.

Point # 4: At this point pozzolan content is minimum and activator type is
Na,S0, again while fineness and activator dosage are at their maximums.
Average of 6 replicates is 24.78 which is higher the predicted value of 23.53

but within confidence interval.

Point #6: For activator type Na,S0O, at minimum pozzolan content, fineness
is at its maximum and activator dosage is at its minimum for this point.
Average of six replicates is 23.21 which is very close to predicted value of

23.14 and it is safely covered by the confidence interval.

Among all results Point # 1 with highest predicted response, where pozzolan
content is minimum, fineness and activator dosages are maximum and the
activator type is NaOH, is chosen as the optimum point.

FCCD for activator type NaOH (20 observations)

Equation 4.5 below is the best regression model for the FCCD design where

activator type is NaOH. In Fig. 4.18 example response curves are shown and

in Tables 4.17 and 4.18 information on optimum points are summarized.

CS7 = 15.1-3.41 P + 0.928 F + 2.64 D + 0.985 Fsq + 1.18 Dsq + 0.947 PD
+ 0.573 FD (4.5)
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Figure 4.18 Example response surface curves of CS7 for activator type NaOH

responses with desirability values,
confidence and prediction intervals for FCCD design for activator NaOH only

Prediction
# (in MPa) Desirability 95% CI 95% PI
1 23.91 0.695 | (21.91; 25.90) (20.75; 27.06)
2 23.78 0.689 | (21.82; 25.74) (20.64; 26.91)
3 23.73 0.686 | (21.79; 25.67) (20.60; 26.86)
4 23.70 0.685 | (21.76; 25.64) (20.58; 26.82)
5 23.69 0.685 | (21.76; 25.63) (20.57; 26.82)
6 23.54 0.677 | (21.64; 25.44) (20.44; 26.64)
7 23.26 0.663 | (21.43; 25.09) (20.21; 26.32)
8 23.16 0.658 | (21.31, 25.02) (20.09; 26.23)
9 22.18 0.609 | (20.30; 24.06) (19.09; 25.26)
10 21.38 0.569 | (19.44; 23.31) (18.26; 24.50)
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Table 4.18 Parameter levels of optimum CS7 points for FCCD design for
activator NaOH only

# P F D Cs7
1 -1.00 1.00 1.00 23.91
2 -0.97 1.00 0.99 23.78
3 -1.00 1.00 0.96 23.73
4 -1.00 0.94 1.00 23.70
5 -0.91 1.00 1.00 23.69
6 -0.85 1.00 1.00 23.54
7 -0.99 1.00 0.86 23.26
8 -1.00 0.77 1.00 23.16
9 -1.00 0.40 1.00 22.18

10 -1.00 -0.03 1.00 21.38

10 optimum solutions found are very similar when their signs and values are
compared. Point # 1 is the chosen optimum point. This is the same point
found in previous optimization with same parameter levels. Response is
predicted as 23.91 and while average of 6 experiments (23.6) is included in

95% confidence interval.

FCCD for activator type Na,SO, (20 observations)

When the regression is fit for FCCD when activator type is Na,SO,4, best
regression model is Equation (4.6) below. Example response curves are

given in Fig. 4.19. Response surface optimization results are summarized in
Tables 4.19 and 4.20.

CS7 = 15.7-4.18 P + 0.857 F + 0.223 D + 1.81 Fsq + 1.65 Dsq (4.6)
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Figure 4.19 Example response surface curves of CS7 for activator type
Na,SO,4

Table 4.19 Optimum CS7 responses with desirability values, 95%
confidence and prediction intervals for FCCD design for activator Na,SO,4 only

Prediction
# (in MPa) Desirability 95% CI 95% PI
1 24.41 0.695 | (22.40; 26.41) (20.70; 28.12)
2 24.08 0.689 | (22.15; 26.01) (20.41; 27.75)
3 24.03 0.686 | (22.06; 25.99) (20.34; 27.71)
4 23.96 0.685 | (21.96, 25.97) (20.25; 27.67)
5 23.17 0.685 | (21.24, 25.09) (19.50; 26.83)
6 23.03 0.677 | (21.00; 25.06) (19.30; 26.75)
7 22.76 0.663 | (20.76; 24.75) (19.05; 26.46)
8 22.66 0.658 | (20.66; 24.66) (18.95; 26.37)
9 22.60 0.609 | (20.40; 24.79) (18.78; 26.41)
10 22.58 0.569 | (20.61; 24.55) (18.88; 26.27)
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Table 4.20 Parameter levels of optimum CS7 points for FCCD design for
activator Na,S0,4 only

# P F D Cs7

1 -1.00 1.00 1.00 24.41
2 -1.00 1.00 0.90 24.08
3 -0.91 1.00 1.00 24.03
4 -1.00 1.00 -1.00 23.96
5 -1.00 1.00 -0.69 23.17
6 -1.00 1.00 0.48 23.03
7 -1.00 0.55 1.00 22.76
8 -0.99 -1.00 1.00 22.66
9 -1.00 1.00 0.14 22.60

10 -1.00 -1.00 0.97 22.58

Optimum point #1 with predicted value 24.41 has its experimental average
at 24.78. Same point was predicted as 23.53 with the regression equation
where activator type is a parameter so it is better modeled by this
regression. However the confidence and prediction intervals of that

regression are narrower.
Economical Response Surface Designs: DJ Design
Below equation (4.7) is the best regression model fit to D] design. Response

surface curves for this model can be seen in Fig. 4.20. Tables 4.21 and 4.22

outline optimal points.

CS7=16.1-280P+ 1.22F + 0.972D + 0.351 T-1.76 DT + 0.948 PD
+ 0.874 PT + 1.34 Fsq (4.7)
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Table 4.21 Optimum CS7 responses with desirability values, 95%

confidence and prediction intervals for D] design

Prediction
# (in MPa) Desirability 95% CI 95% PI
1 23.73 0.686 | (21.25; 26.20) (19.66; 27.79)
2 23.66 0.683 | (21.22; 26.09) (19.62; 27.70)
3 23.62 0.681 | (21.17; 26.07) (19.57; 27.67)
4 23.43 0.671 | (21.12; 25.74) (19.46; 27.39)
5 23.35 0.668 | (21.08; 25.63) (19.41; 27.30)
6 23.28 0.664 | (20.85; 25.72) (19.24; 27.33)
7 23.06 0.653 | (20.83; 25.28) (19.14,; 26.98)
8 22.94 0.647 | (20.43; 25.45) (18.86; 27.03)
9 22.15 0.608 | (17.49; 26.82) (16.48; 27.82)
10 22.11 0.605 | (20.22; 23.99) (18.37; 25.84)

Table 4.22 Parameter levels of optimum CS7 points for D] design

# P F D T Cs7
1 -1.00 1.00 1.00 NaOH 23.73
2 -1.00 1.00 0.96 NaOH 23.66
3 -1.00 0.96 1.00 NaOH 23.62
4 -1.00 1.00 0.83 NaOH 23.43
5 -1.00 1.00 0.79 NaOH 23.35
6 -1.00 0.82 1.00 NaOH 23.28
7 -0.74 1.00 1.00 NaOH 23.06
8 -1.00 0.67 1.00 NaOH 22.94
9 -1.00 1.00 -1.00 Na,S04 22.15

10 -1.00 1.00 0.09 NaOH 22.11

As it can be seen in Table 4.22, point #1 is the optimum point with highest
desirability. This is the same optimum point found for the best regression
model for FCCD design with 40 observations. However example response
surface curves for two designs have differences (Fig.s 4.16 and 4.19).
Especially when activator type is Na,SO, and one of the independent
parameters is activator dosage, Fig. 4.19 show different response curves
with respect to Fig.s 4.16 and 4.18. Predicted response for optimum point is

23.73, very close to experimental average 23.6.

Economical Response Surface Designs: WD Design

Response surface optimization for the best regression model below for WD

design is again the point where pozzolan content is minimum, activator

65



dosage and fineness are at their maximum levels and NaOH is the activator
(Tables 4.23 and 4.24). However, the optimum point is predicted as 26.88
while the experimental average of six observations for this point is 23.6.
Experimental average is not included in 95% confidence interval and it is
very close to the lower limit of 95% prediction interval. In conclusion, this
point is overestimated by below regression model. On the other hand, when
shape of response curves is concern, response curves of WD design (Fig.
4.21) are much similar to the response curves of the main design (Fig. 4.16)

with respect to the curves found by DJ design (Fig. 4.19).

CS7=153-3.56P +1.22F+1.52D + 0.560 T - 1.89 DT + 1.74 Dsq

+ 1.05 FD + 1.19 Fsq (4.8)
Table 4.23 Optimum CS7 responses with desirability values, 95%
confidence and prediction intervals for WD design
Prediction
# (in MPa) Desirability 95% CI 95% PI
1 26.88 0.844 | (24.56; 29.20) | (23.36; 30.40)
2 26.71 0.835 | (24.34; 28.93) | (23.12; 30.14)
3 26.42 0.821 | (24.26; 28.75) | (23.03; 29.98)
4 26.34 0.817 | (24.19; 28.76) | (22.98; 29.98)
5 26.14 0.807 | (24.16; 28.70) | (22.94; 29.92)
6 25.89 0.794 | (24.01, 28.54) | (22.79; 29.76)
7 25.87 0.794 | (23.84; 28.35) | (22.61; 29.57)
8 25.38 0.769 | (23.92; 28.25) | (22.66; 29.50)
9 24.21 0.711 | (23.44, 27.98) | (22.22; 29.20)
10 24.06 0.703 | (23.36; 27.76) | (22.12; 29.01)

Table 4.24 Parameter levels of optimum CS7 points for WD design

# P F D T Cs7
1 -1.00 1.00 1.00 NaOH 26.88
2 -1.00 0.96 1.00 NaOH 26.71
3 -1.00 0.91 0.99 NaOH 26.42
4 -1.00 1.00 0.93 NaOH 26.34
5 -0.79 1.00 1.00 NaOH 26.14
6 -0.72 1.00 1.00 NaOH 25.89
7 -1.00 0.77 1.00 NaOH 25.87
8 -0.58 1.00 1.00 NaOH 25.38
9 -1.00 1.00 1.00 Na,S04 24.21

10 -0.95 1.00 1.00 Na,SO4 24.06
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Figure 4.21 Example response surface curves of CS7 with WD design

When the total variation explained in the data and standard deviation are

considered for regressions applied for 5 different response surface designs in

it can be said that they are successful and have similar

A

this chapter;

performances. However for response surface optimization as the number of

runs decreases confidence intervals for the mean tend to get wider. Estimated

values are closer to observed values for the main FCCD design with 40 runs.
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CHAPTER 5

EXPERIMENTAL DESIGN AND ANALYSIS WHEN THE
RESPONSE IS 28-DAY COMPRESSIVE STRENGTH

In this chapter, response surface methodology for the second response,
mean 28-day compressive strength, is performed. The same approach in
chapter 4 for experimental design and regression analysis is employed. In
Section 5.1, response surface methodology for mean 28-day compressive
strength when face-centered central composite design (FCCD) is used for
each level of the qualitative factor is explained. In section 5.2, response
surface methodology for mean 28-day compressive strength with economical

design alternatives proposed in the literature is given.

5.1. Response Surface Methodology when FCCD is Used for

Each Level of the Qualitative Factor

5.1.1. Experimental Design

For mean 28-day compressive strength response, the same regression model
in Equation 4.1 with the same independent variables is of interest.
Therefore, the same design is used for experimentation and test results for
240 experiments are presented in Appendix 5.1. The parameters and levels

for experimentation are repeated below for convenience:

Parameter P: Natural pozzolan replacement (% by weight)
Levels: -1: 35% 0: 45% 1: 55%
Parameter F: Amount of pozzolan passing 45 um sieve (% by weight)
Levels: -1: 70% 0: 80% 1: 90%
Parameter D: Activator dosage (% by weight of binder)
Levels: -1: 0.5% 0: 1% 1: 1.5%
Parameter T: Activator type
Levels: -1: NaOH (sodium hydroxide)
1: Na,S0, (sodium sulphate)

68



5.1.2. Regression Analysis

The same approach followed in Chapter 4 for regression analysis is used
again in Chapter 5. As the initial step, a regression analysis for only first

order main factors is employed. The regression equation is found as:

CS28 =29.8-3.70P+ 1.94F + 0.210D + 0.244 T (5.1)

S = 2.20309 R-Sq = 67.5% R-Sq(adj) = 63.8%

Although the regression is significant with a p-value of zero (Table 5.1), it
explains only 63.8% of the total variation in 28-day mean compressive
strength. No violation of basic regression assumptions is detected (Fig.s 5.1
and 5.2). Table 5.2 summarizes the significance of B terms in the model.
Lack of fit (Appendix 5.2) is significant and it also implies considering higher
order terms in regression equation. Therefore a more adequate model with

second-order terms and interactions is searched.

Table 5.1 ANOVA for the significance of the regression model applied for 28-
day mean compressive strength based on face-centered central composite
design with only main factors

Source DF SS MS F P
Regression 4 353.099 | 88.275 | 18.190 0.000
Residual Error 35 169.876 4.854
Lack of Fit 25 132.871 5.315 1.440 0.281
Pure Error 10 37.004 3.7
Total 39 522.975

Table 5.2 Significance of B terms of the regression model for 28-day mean
compressive strength based on face-centered central composite design with
only main factors

Predictor Coef SE Coef T P
Constant 29.8173 0.3483 85.6 0.000
P -3.703 0.4926 -7.52 0.000
F 1.944 0.4926 3.95 0.000
D 0.2105 0.4926 0.43 0.672
T 0.2443 0.3483 0.7 0.488
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Figure 5.1 Normal probability plot of the residuals for the regression model
based on face-centered central composite design and applied for CS28 with
only main factors
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Figure 5.2 Residuals versus the fitted values plot of the regression model
based on face-centered central composite design and applied for CS28 with
only main factors

The regression equation when all second-order effects, two-way interaction
effects for the quantitative variables and their interactions with qualitative
factor are included results as equation 5.2. Regression results are in
Appendix 5.3. The regression is significant at 100% confidence level (Table

5.3). No residual correlation is detected as Durbin-Watson statistic with a
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value of 1.80 is above the tabulated upper bound which is 1.52 with 4
independent variables and 40 observations at 0.01 significance level. Normal
probability plot of residuals (Fig. 5.3) and residuals versus fitted values plot
do not show any violation of basic regression assumptions. R-sq(adj) is
improved with respect to previous equation but there are many insignificant
B terms as it can be seen from Table 5.4. Therefore, a better regression

equation with significant B terms is searched.

CS28 =29.5-3.70P+ 1.94F + 0.210D + 0.446 T - 0.686 Psq + 0.554
Fsq

+ 0.786 Dsq - 1.61 PF + 1.05 PD + 0.116 PT + 0.064 FD + 0.133 FT

- 0.318 DT - 0.690 PsqT + 0.650 FsqT - 0.363 DsqT - 0.398 PFT

- 0.573 FDT - 0.487 PDT (5.2)

S =2.04190 R-Sq = 84.1% R-Sq(adj) = 68.9%

Normal Probability Plot of the Residuals
(response is CS28)
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Figure 5.3 Normal probability plot of the residuals for the regression model
based on face-centered central composite design and applied for CS28
involving all two-way interaction and quadratic terms
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Figure 5.4 Residuals versus the fitted values plot of the regression model
based on face-centered central composite design and applied for CS28
involving all two-way interaction and quadratic terms

Table 5.3 ANOVA for the significance of the regression model applied for 28-
day mean compressive strength based on the face-centered central

composite design involving all two-way interaction and quadratic terms

Source DF SS MS F P
Regression 19 439,588 | 23.136 5.550 0.000
Residual Error 20 83.387 4,169
Lack of Fit 10 46.383 4.638 1.250 0.364
Pure Error 10 37.004 3.7
Total 39 522.975
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Table 5.4 Significance of B terms of the regression model based on face-
centered central composite design and applied for mean 28-day compressive
strength

Predictor Coef SE Coef T P
Constant 29.4905 0.4964 59.41 0.000
P -3.703 0.4566 -8.11 0.000
F 1.944 0.4566 4.26 0.000
D 0.2105 0.4566 0.46 0.650
T 0.4462 0.4964 0.9 0.379
Psq -0.6864 0.8707 -0.79 0.44
Fsq 0.5536 0.8707 0.64 0.532
Dsq 0.7861 0.8707 0.9 0.377
PF -1.6081 0.5105 -3.15 0.005
PD 1.0481 0.5105 2.05 0.053
PT 0.116 0.4566 0.25 0.802
FD 0.0644 0.5105 0.13 0.901
FT 0.133 0.4566 0.29 0.774
DT -0.3175 0.4566 -0.7 0.495
PsqT -0.6905 0.8707 -0.79 0.437
FsqT 0.6495 0.8707 0.75 0.464
DsqT -0.363 0.8707 -0.42 0.681
PFT -0.3981 0.5105 -0.78 0.445
FDT -0.5731 0.5105 -1.12 0.275
PDT -0.4869 0.5105 -0.95 0.352

While searching for the best possible regression model, insignificant
parameters are eliminated one by one from the regression equation, starting
from the one with the highest p-value. The procedure followed in section

4.1.2. is used again in this section.

The best model satisfying basic regression assumptions results as follows:

CS28 =29.8-3.70P + 1.94 F - 1.61 PF (5.3)

S =1.91319 R-Sq = 74.8% R-Sq(adj) = 72.7%

By equation 5.3, 73% of the total variation in mean 28-day compressive
strength is explained after adjusting for sample size and number of
independent variables in the model. Regression analysis is summarized in

Appendix 5.4. Durbin-Watson statistic is 2.19, which is above the tabulated

73



upper bound of 1.52 with 4 independent variables and 40 observations at
0.01 significance level; hence assumption of uncorrelated residuals is
satisfied. Normal probability plot of residuals and the Anderson-Darling test
result for normality supports normality assumption of residuals (Fig. 5.5).
Although a slight pattern in residuals versus fitted values plot is detected,
data transformations such as Vy, In(y), sinVy, Box-Cox (Mendenhall and
Sincich, 2003) do not help in stabilizing the variance. Including other terms
in the regression equation such as D and its two way interactions increase
adjusted multiple coefficient of determination inconsiderably (up to 75 %,
Appendix 5.5) but does not satisfy the normality assumption of residuals (Fig
5.7). In addition, the slight pattern detected in residuals versus fitted values
plot of equation 5.3 is also observed in the similar plot for the regression
equation in Appendix 5.5. Consequently, the regression equation 5.3 which
satisfies the basic regression assumptions and explains the variation in the
response as high as possible is accepted as the final equation. Significance of

this regression and its B parameters are summarized in Tables 5.5 and 5.6.

Probability Plot of SRES1
Normal

Mean 0.003613
StDev 1.011
N 40
AD 0.163
P-Value 0.939

Percent
3

Figure 5.5 Normal probability plot of the residuals for the regression model
based on face-centered central composite design and applied for mean 28-
day compressive strength after elimination of insignificant terms
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Residuals Versus the Fitted Values
(response is CS28)
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Figure 5.6 Residuals versus the fitted values plot of the regression model
based on face-centered central composite design and applied for mean 28-
day compressive strength after elimination of insignificant terms

Probability Plot of Residuals
Normal - 95% CI

Mean 0.007893

StDev 0.9946
N 40
AD 0.917

P-Value 0.018

Percent

Residuals

Figure 5.7 Normal probability plot of the residuals for mean 28-day
compressive strength when activator dosage and its interaction with natural
pozzolan replacement is included in regression parameters
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Figure 5.8 Residuals versus the fitted values plot of the regression model
for mean 28-day compressive strength when activator dosage and its
interaction with natural pozzolan replacement is included in regression
parameters

Table 5.5 ANOVA for the significance of the regression model applied for 28-
day mean compressive strength after elimination of insignificant factors

Source DF SS MS F P
Regression 3 391.2 130.4 35.63 0.000
Residual Error 36 131.77 3.66
Lack of Fit 5 21.47 4.29 1.21 0.329
Pure Error 31 110.3 3.56
Total 39 522.97

Table 5.6 Significance of B terms of the regression model applied for 28-day
mean compressive strength after elimination of insignificant factors

Predictor Coef SE Coef T P
Constant 29.8173 0.3025 98.57 0.000
P -3.703 0.4278 -8.66 0.000
F 1.944 0.4278 4.54 0.000
PF -1.6081 0.4783 -3.36 0.002
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Homogeneity of response surfaces across levels of the qualitative factor
proposed by Tunali and Batmaz (2003) performed again in this section for
the mean 28-day compressive strength as response this time. Regression
analyses to enable the calculation of F values for these tests are performed

and given in Appendix 5.6.

Test of homogeneity of response curves:

F* = [(SSE(1) - SSE(3)) / va] / [SSE(3) / v2] {vi=p3-p1 V2 =N-p3y
= [(105.97-102.711) / 10] / [83.387 / 20]
= 0.3259/ 4.16935 = 0.078

Since F* = 0.078 < Fp.0s,10,20 = 2.35, the hypothesis cannot be rejected at a
= 0.05 level of significance. There is not sufficient evidence to reject that the
second-order regression model built only with quantitative factors
adequately describes the relation between mean 28-day compressive
strength and these factors for each activator type. This result supports the
final regression model 5.3. which does not include activator type or its
interactions as significant parameters for modeling mean 28-day

compressive strength.

Regression analyses for two activator types and with only quantitative
factors are performed separately below. Two independent response surfaces

are built and examined for each of the activator type for comparison.

Below equation is turned out to be the best regression model for mean 28-

day compressive strength where activator type is NaOH (Equation 5.4).

CS28=296-3.82P+1.81F-1.21PF+ 1.53PD + 0.528 D (5.4)

S =1.87784 R-Sq =81.1% R-Sq(adj) = 74.4%

Durbin-Watson statistic = 2.30086
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The total variation explained in the sample with 20 observations is 74.4% by
this regression. Basic regression assumptions hold (Fig.s 5.9 and 5.10) while
the regression is significant at 100% confidence (Table 5.7). Durbin-Watson
statistic (2.3, Appendix 5.7) is greater than the upper bound of 1.41 for three
independent variables and 20 observations at a = 0.01 significance level so
there is not sufficient evidence to claim residual correlation. In Table 5.8

ANOVA for the significance of B parameters of this equation can be found.

Probability Plot of SRES1
Normal - 95% CI

Mean 0.04680
StDev 1.034
N 20
AD 0.434
P-Value 0.272

Percent
3

Figure 5.9 Normal probability plot of the residuals for the regression model
of mean 28-day compressive strength for activator type NaOH
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Figure 5.10 Residuals versus the fitted values plot of the regression model
of mean 28-day compressive strength for activator type NaOH
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Table 5.7 ANOVA for the significance of the regression model applied for 28-
day mean compressive strength when the activator type is NaOH

Source DF SS MS F P
Regression 5 211.995 | 42.399 12.02 0.000
Residual Error 14 49.368 3.526

Lack of Fit 9 27.996 3.111 0.73 0.681
Pure Error 5 21.372 4.274

Total 19 261.363

Table 5.8 Significance of B terms of the regression model for mean 28-day
compressive strength when the activator type is NaOH

Predictor Coef SE Coef T P

Constant 29.573 0.4199 70.43 0.000
P -3.819 0.5938 -6.43 0.000
F 1.811 0.5938 3.05 0.009
PF -1.21 0.6639 -1.82 0.090
PD 1.535 0.6639 2.31 0.037
D 0.528 0.5938 0.89 0.389

When a regression is fit for only the observations when activator type is
Na,S0,, the best model is selected as equation (5.5). This equation can
explain 73.4 % of the variation in the sample. Durbin-Watson statistic (1.56,
Appendix 5.8) is greater than the upper bound of 1.41 for three independent
variables and 20 observations at 0.01 significance level, therefore the
assumption that residuals are not correlated holds. Residuals plots (Fig. 5.11
and 5.12) do not indicate a considerable pattern or violation of the
regression assumptions so the regression analysis is also accepted to be
valid. Table 5.9 and 5.10 summarize the significance of the regression and

parameters.

CS28 = 30.3-3.59P + 2.08 F- 2.01 PF - 0.401 Psq (5.5)

S =1.90467 R-Sq = 79.0% R-Sq(adj) = 73.4%
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Figure 5.11 Normal probability plot of the residuals for the regression model
of mean 28-day compressive strength for activator type Na,SO,

Residuals Versus the Fitted Values
(response is CS28)
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Figure 5.12 Residuals versus the fitted values plot of the regression model
of mean 28-day compressive strength for activator type Na,SO,

Table 5.9 ANOVA for the significance of the regression model applied for 28-
day mean compressive strength when the activator type is NaOH

Source DF SS MS F P
Regression 4 204.809 | 51.202 | 14.110 0.000
Residual Error 15 54.416 3.628

Lack of Fit 4 27.354 6.838 2.780 0.081
Pure Error 11 27.063 2.46

Total 19 259.226
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Table 5.10 Significance of B terms of the regression model for mean 28-day
compressive strength when the activator type is NaOH

Predictor Coef SE Coef T P

Constant 30.262 0.6023 50.24 0.000
P -3.587 0.602 -5.96 0.000
F 2.077 0.602 3.45 0.004
PF -2.0062 0.673 -2.98 0.009
Psqg -0.401 0.852 -0.47 0.645

5.2. Response Surface Methodology with Economical Designs

5.2.1. Experimental Design

Two economical design alternatives referred as D] and WD designs used in
section 4.2.1. are used here again for response mean 28-day compressive
strength. Designs and corresponding test results for parameter level

combinations are given in Appendix 5.9.

5.2.2. Regression Analyses

For D] design, the best regression model among possible other alternatives

is selected as follows:

CS28 = 30.2-3.19P + 1.94 F- 1.21 PF (5.6)

S = 2.29130 R-Sq = 70.6% R-Sq(adj) = 63.3%

The total variation that can be explained by this regression is 63.3%.
Qualitative factor activator type and quantitative factor activator dosage are
not significant for this regression. Normal probability and residuals versus
fitted values plots (Fig.s 5.13 and 5.14) do not indicate any violation against
basic regression assumptions. Independency of residuals assumption is also
valid since the statistic (1.67, Appendix 5.10) is higher than tabulated upper
bound value of 1.66 for 4 independent variables and 16 observations. There
is no evidence of lack of fit at 90 % confidence. ANOVA for the significance of

the regression and B parameters are given in Tables 5.11 and 5.12.
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Figure 5.13 Normal probability plot of the residuals for the regression model
based on DJ] design and applied for mean 28-day compressive strength
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Figure 5.14 Residuals versus the fitted values plot of the regression model
based on DJ] design and applied for mean 28-day compressive strength

Table 5.11 ANOVA for the significance of the regression model applied for
28-day mean compressive strength based on D] design

Source DF SS MS F P
Regression 3 151.315 50.438 9.61 | 0.002
Residual Error 12 63.001 5.25
Lack of Fit 5 24.966 4,993 0.920 0.5
Pure Error 7 38.035 5.434
Total 15 214.316

82




Table 5.12 Significance of B terms of the regression model based on DJ
design and applied for mean 28-day compressive strength

Predictor Coef SE Coef T P

Constant 30.2088 0.5728 52.74 0.000
P -3.192 0.7246 -4.41 0.001
F 1.942 0.7246 2.68 0.020
PF -1.21 0.8101 -1.49 0.161

For WD design, below regression equation (5.7) is the most successful one
when the significance of the parameters and the variation explained by the
regression are considered. Equation 5.5 is significant at 100% confidence
level (Table 5.13) and explains 90.7% of the variation in the sample.
Activator type is not significant again in this regression equation but unlike
equation 5.4 activator dosage (D) is included in the regression equation.
Though activator dosage itself is not significant (Table 5.14) its two-way
interaction with natural pozzolan replacement (P) is significant at 100%
confidence and hence it is included in the equation. Basic regression
assumptions are accepted to be valid (Fig.s 5.15 and 5.16). Durbin-Watson
statistic (1.76) is higher than tabulated upper bound value of 1.66 for 4
independent variables and 16 observations and hence does not indicate

autocorrelation of residuals.

CS28 =29.8-3.89P + 2.03F-0.007D -1.44 PF + 1.80 PD

-1.16 Psq + 1.32 Fsq (5.7)

S =1.25701 R-Sq =95.0% R-Sqg(adj) = 90.7%
Durbin-Watson statistic = 1.76501

Table 5.13 ANOVA for the significance of the regression model applied for
28-day mean compressive strength based on WD design

Source DF SS MS F P
Regression 7 241.329 | 34.476 | 21.820 0.000
Residual Error 8 12.641 1.58
Lack of Fit 7 12.396 1.771 7.230 0.279
Pure Error 1 0.245 0.245
Total 15 253.97
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Figure 5.15 Normal probability plot of the residuals for the regression model
based on WD design and applied for mean 28-day compressive strength
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Figure 5.16 Residuals versus the fitted values plot of the regression model
based on WD design and applied for mean 28-day compressive strength

Table 5.14 Significance of B terms of the regression model based on WD
design and applied for mean 28-day compressive strength

Predictor Coef SE Coef T P
Constant 29.8389 0.5685 52.49 0.000
P -3.891 0.3975 -9.79 0.000
F 2.033 0.3975 5.11 0.001
D -0.007 0.3975 -0.02 0.986
PF -1.4388 0.4444 -3.24 0.012
PD 1.7963 0.4444 4.04 0.004
Psq -1.1566 0.7339 -1.58 0.154
Fsq 1.3234 0.7339 1.8 0.109
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5.3. Response Surface Optimization of Mean 28-Day

Compressive Strength

Response surface optimization for mean 28-day compressive strength is
done by the help of Design-Expert Optimization Module as explained in
section 4.3 and in the same way the optimization for mean 7-day strength

optimization is done.
FCCD for Each Level of the Qualitative Factor (40 observations)
The best regression model for CS28 for the main design in the study is

accepted as (Equation 5.3):

CS28 =29.8-3.70P+ 1.94F - 1.61 PF (5.3)

Example response surface curves of 28-day mean compressive strength are
given in Fig. 5.17. All possible subsets of 2 main quantitative factors are
assigned to x-axes and y-axis indicates the response. Activator type and
dosage are not included in the regression model and hence they do not have

effects on the response curves and optimum result.
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Figure 5.17 Example response surface curves of CS28 for two different

types of activators (FCCD with 40 observations)

10 optimum solutions proposed by the software have the same compressive

strength. Activator type and dosage values change however as previously

stated these variables do not affect the value of the response.

Table 5.15 Optimum CS28 response with desirability value, 95% confidence

and prediction interval for FCCD design at each activator type
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Table 5.16 Parameter levels of optimum CS7 points for FCCD design at each

activator type

# P F D* T* Cs28
1 -1.00 1.00 -0.23 Na,S0, 37.07
2 -1.00 1.00 -0.35 NaOH 37.07
3 -1.00 1.00 0.98 NaOH 37.07
4 -1.00 1.00 0.27 NaOH 37.07
5 -1.00 1.00 -0.75 Na,S0, 37.07
6 -1.00 1.00 -0.49 NaOH 37.07
7 -1.00 1.00 0.14 NaOH 37.07
8 -1.00 1.00 0.45 NaOH 37.07
9 -1.00 1.00 -0.06 NaOH 37.07

10 -1.00 1.00 0.54 Na,S0, 37.07

*Has no effect on optimization results.

Averages of 6 replicates at 4 different activator dosage and type
combinations where pozzolan content is at minimum and fineness is at
maximum are 38.64, 36.68, 35.57 and 36.81. Overall average for the 24
observations is 36.92. All values are covered by the confidence interval of
point #1.

FCCD for activator type NaOH (20 observations)

When the regression equation is fit for only activator type NaOH for the

subset of main design with twenty observations, activator dosage is also

included in the best regression model as follows:

CS28=296-3.82P+ 181 F-1.21PF+ 1.53PD + 0.528 D (5.4)

Example response curves for this equation are given in Fig. 5.18 and

optimization is summarized in Tables 5.17 and 5.18.
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Figure 5.18 Example response surface curves of CS28for activator type NaOH

Table 5.17 Optimum CS28 response with desirability value, 95% confidence
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and prediction interval for FCCD design for only activator NaOH

Prediction

# (in MPa) Desirability 95% CI 95% PI

1 37.42 0.64 | (34.30; 40.54) (32.32; 42.51)
2 37.16 0.63 | (34.31; 40.00) (32.23; 42.09)
3 36.93 0.62 | (33.99; 39.87) (31.94; 41.92)
4 36.60 0.60 | (33.77; 39.44) (31.68; 41.53)
5 36.60 0.60 | (34.11; 39.09) (31.86; 41.33)
6 35.98 0.57 | (33.39; 38.58) (31.19; 40.78)
7 35.67 0.56 | (32.82; 38.51) (30.74; 40.60)
8 35.25 0.54 | (32.19; 38.31) (30.19; 40.31)
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Table 5.18 Parameter levels of optimum CS28 points for FCCD design for
only activator NaOH

# P F D CS28

1 -1.00 1.00 -1.00 37.42
2 -1.00 1.00 -0.74 37.16
3 -1.00 0.84 -1.00 36.93
4 -1.00 0.73 -1.00 36.60
5 -1.00 1.00 -0.18 36.60
6 -1.00 1.00 0.43 35.98
7 -1.00 1.00 0.74 35.67
8 -1.00 0.95 1.00 35.25

Optimum point is chosen as point #1 in Table 5.18. is predicted as 37.42.
The experimental average for this parameter level combination is 35.57. The
point is a bit overestimated by the regression model but 35.57 is included in
the confidence interval. For the 8 optimal solutions proposed, it is observed
that changing activator dosage from minimum to maximum while keeping
pozzolan content at its minimum and fineness at its maximum does not

affect the compressive strength too much.

FCCD for activator type Na,SO, (20 observations)

For the subset of observations with activator Na,SO,, the best regression
model below does not include activator dosage as in the regression model of

main design. Response surface examples are presented in Fig. 5.19 and
optimal points are tabulated (Tables 5.19 and 5.20).

CS28 = 30.3-3.59P + 2.08 F- 2.01 PF - 0.401 Psq (5.5)
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Figure 5.19 Example response surface curves of CS28for activator type

Na,S0,

Table 5.19 Optimum CS28 response with desirability value, 95% confidence

and prediction interval for FCCD design for only activator Na,SO,
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(32.68
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Table 5.20 Parameter levels
only activator Na,SO,4

of optimum CS28 points for FCCD design for

# P F D* CS28
1 -1.00 1.00 -0.68 37.53
2 -1.00 1.00 0.07 37.53
3 -1.00 1.00 0.34 37.53
4 -1.00 1.00 0.78 37.53
5 -1.00 1.00 -0.81 37.53
6 -1.00 1.00 0.23 37.53
7 -1.00 1.00 -0.24 37.53
8 -1.00 1.00 -0.95 37.53
9 -1.00 1.00 -0.47 37.53

10 -1.00 1.00 0.60 37.53

*Has no effect on optimization results.

The optimality condition is again not affected by activator dosage like in the
optimization result of main design and compressive strength is maximum
when pozzolan content is minimum and fineness is maximum. Previously
with the regression model obtained from the main design optimal result was
predicted as 37.07 while prediction is 37.53 here. Optimum values are

reasonably close.

Economical Response Surface Designs: DJ Design

For the first economical design alternative with qualitative variable best

regression model is as follows:

CS28 =30.2-3.19P + 1.94F - 1.21 PF (5.6)

Activator dosage and type are again not significant in defining the relation
between mean 28-day compressive strength and independent variables
hence their level values do not affect optimality condition (Tables 5.21 and
5.22). In Fig. 5.20 example response curves can be found. Response curves
are similar in shape when compared with the response surface curves of

main design (Fig. 5.17).
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Table 5.21 Optimum CS28 response with desirability value, 95% confidence
and prediction interval for DJ design

Prediction
# (in MPa) Desirability 95% CI 95% PI
1 36.553 0.578 | (33.44; 39.66) (30.67; 42.43)

Table 5.22 Parameter levels of optimum CS28 points for FCCD design for D]
design

# P F D* T* CsS28
1 -1.00 1.00 -0.99 Na,S0, 36.553
2 -1.00 1.00 0.21 NaOH 36.553
3 -1.00 1.00 0.80 NaOH 36.553
4 -1.00 1.00 0.91 NaOH 36.553
5 -1.00 1.00 -0.40 NaOH 36.553
6 -1.00 1.00 -0.07 Na,S0, 36.553
7 -1.00 1.00 0.49 Na,S0, 36.553
8 -1.00 1.00 0.89 Na,S0, 36.553
9 -1.00 1.00 0.30 Na,S0, 36.553

10 -1.00 1.00 0.11 NaOH 36.553

*Has no effect on optimization results.
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Figure 5.20 Example response surfaces of CS 28 with D] design

day compressive strength’ is predicted as 36.55 by this

Optimum ‘mean 28-

less when compared with previous

is slightly

Predicted value

model.

predictions at the same combination of fineness and pozzolan content but

closer to the experimental average of 24 observations (36.92) at the

specified combination.

Economical Response Surface Designs: WD Design

Same optimality condition is found again for below regression model (5.7)

for WD design (Tables 5.23 and 5.24).

-1.44PF + 1.80PD - 1.16 Psq +

3.89P + 2.03F-0.007D

29.8

CS28 =

(5.7)

1.32 Fsq
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Activator type is not significant in the regression again and hence does not
affect optimality condition. The predicted response is overestimated when
compared with previous results. Experimental average for same parameter
level combinations is 36.92 while current prediction is 39.17. However
experimental average is included in confidence and prediction intervals.
Response surface examples (Fig. 5.21) have different shapes when
compared with the curves of main design (5.17) due to additional
parameters as activator dosage and quadratic terms of activator dosage and

pozzolan content.

Table 5.23 Optimum CS28 response with desirability value, 95% confidence
and prediction interval for WD design

Prediction
# (in MPa) Desirability 95% CI 95% PI
1 39.17 0.709 | (36.81; 41.53) (35.43; 42.91)
2 39.17 0.709 | (36.81; 41.53) (35.43; 42.91)
3 38.98 0.699 | (36.70; 41.26) (35.29; 42.67)
4 38.76 0.688 | (36.57; 40.96) (35.13; 42.40)
5 38.71 0.686 | (36.54; 40.89) (35.09; 42.34)
6 38.58 0.679 | (36.39; 40.77) (34.95; 42.21)
7 38.51 0.676 | (36.34; 40.69) (34.89; 42.14)
8 38.35 0.667 | (36.29; 40.41) (34.79; 41.90)
9 38.27 0.664 | (36.05; 40.50) (34.62; 41.92)
10 38.14 0.657 | (36.13; 40.15) (34.61; 41.67)

Table 5.24 Parameter levels of optimum CS28 points for FCCD design for
WD design

# P F D T* Cs28
1 -1.00 1.00 -1.00 NaOH 39.17
2 -1.00 1.00 -1.00 Na,S0, 39.17
3 -1.00 1.00 -0.89 NaOH 38.98
4 -1.00 1.00 -0.77 Na,S0, 38.76
5 -1.00 1.00 -0.75 NaOH 38.71
6 -0.88 1.00 -1.00 NaOH 38.58
7 -0.87 1.00 -1.00 Na,S0, 38.51
8 -1.00 1.00 -0.54 NaOH 38.35
9 -1.00 0.85 -1.00 Na,S0, 38.27

10 -1.00 1.00 -0.43 Na,S0, 38.14

*Has no effect on optimization results.
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Figure 5.21 Example response surfaces of CS 28 with WD design

Regression analyses done for 28-day compressive strength for different
designs result in smaller adjusted multiple coefficient of determination values

when compared with 7-day compressive strength regression results.

However these analyses are also successful in explaining a reasonable
variation in the data of about 70 %. Economical designs are successful in

explaining the variation in the data when multiple coefficient of
determination values are concerned but regression analysis with the main

FCCD design is superior in estimating closer values to observed values.
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CHAPTER 6

SIMULTANEOUS OPTIMIZATION OF SEVERAL RESPONSE
VARIABLES

Having defined and optimized two individual compressive strength responses
separately in previous chapters; several responses are considered at the
same time and optimal solutions satisfying all responses are presented in
this chapter. In simultaneous optimization problems, it is not always possible
to find global optimum solutions. In fact a basic concern in simultaneous
optimization problems is to observe how responses change with respect to
each other. Optimum conditions for a problem may change depending on the
desired characteristics of the optimum. For example, one may not afford the
optimum solution with maximum compressive strength and minimum
standard deviation due to cost concerns. As long as previously defined
system of parameter levels and functions are valid, parameter level
selections can be based on present situation. Importance of responses may
also change from time to time. Early strength may be more important than
cost or vice versa for a specific case. A smaller compressive strength value

with a smaller cost might be preferable due to current requirements.

Optimal solution alternatives are presented for different multiresponse
systems in preceding sections. Dual response surface optimization of
compressive strengths at both ages and their standard deviation estimates is

also included.
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6.1. Optimization of 7-Day and 28-Day Compressive Strengths

Maximization of both responses at the same time without any restrictions on
independent and dependent variable space to represent basic general case is
done by Design-Expert Optimization Module. The module makes use of
overall composite desirability function approached which is explained in
chapter 2 for optimization. A set of optimal solutions for maximization of
both strength responses simultaneously when same weight and importance

are assigned for both responses is tabulated in Table 6.1.

Table 6.1 Optimal solutions when both strength functions are maximized
simultaneously

# | P F D T CSs7 CS28 | Desirability
1 -1 1 1 | NaOH 23.9824 | 37.071 0.922
2| -1 1 1| Na,SO, | 23.5312 | 37.0712 0.908
3| -1 1 0.85 | NaOH 23.1731 | 37.0707 0.897
4| -1 1 -1 | Na,SO, | 23.1357 | 37.0712 0.895
5| -1 1| -0.77 | Na,SO, | 22.6129 | 37.0712 0.879
6| -1 1 0.73 | NaOH 22.5979 | 37.0712 0.878
7| -1 1| -0.53| NayS0, | 22.2114 | 37.0707 0.865
8| -1 1 0.09 | Nay;S0O, | 21.9469 | 37.0711 0.857
9| -1 1 0.58 | NaOH 21.9269 | 37.0712 0.856

10| -1 1| -0.24 | NaOH 19.393 | 37.0603 0.767

As it will be recalled, the effect of activator type and dosage does not have
statistical significant effects on compressive strength at 28 days. The
optimum parameter combination (-1, 1, 1, NaOH) which is the optimum of
both responses individually is the optimum solution of this analysis as well
with highest desirability. The effect of activator dosage, activator type and
their interactions on 7-day compressive strength is observed in suboptimal

solutions presented.
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6.2. Optimization of 7-Day, 28-Day Compressive Strengths and

Cost Simultaneously

A simple cost analysis approach that represents the change in cost for
different level combinations of parameters is applied. Costs that are constant
for each experimental run such as labor cost or standard sand cost are not
taken into consideration. For each run costs of cement, natural pozzolan
(taking fineness into account), superplasticizer and activator are combined
into a cost value. Material costs are given in Table 6.2. Energy cost for
pozzolan grinding at different fineness levels is calculated by considering the
time of grinding in the laboratory mill, the power of mill engine and

electricity cost.

The engine of the mill consumes 1.5 kW of electricity in one hour and the
cost per 1 kW consumed electricity is 1.58 TL for December, 2005.
Consequently, the cost for operating the mill for 1 hour is 2.37 TL. For 10kg
batches of pozzolan grinding at 70%, 80% and 90% fineness levels the mill
is operated 75, 115 and 170 minutes respectively. Material costs are given in
Table 6.2.

Table 6.2 Material costs

Material Cost (TL)
Portland Cement (per ton) 105

Bulk form of volcanic tuff (per ton) 11
Superplasticizer (kg) 4.34
Energy cost for pozzolan grinding 3

(F=70%, per 10 kg)

Energy cost for pozzolan grinding 4.54
(F=80%, per 10 kg)
Energy cost for pozzolan grinding 6.72

(F=90%, per 10 kg)

Na,S0. (kg)

NaOH (kg) 2
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Since the amount of superplasticizer used for a particular run does not
depend directly on any design parameter but found by trials to satisfy flow
condition; cost function cannot be written as a direct function of design
parameters. First, cost for each run is calculated. The calculation is done by
adding up all material costs of a run and the cost of energy spent for that
particular run. Cost observations are given in Appendix 6.1. Then, regression
analysis is applied to cost observations. Since only amount of
superplasticizer is not a design parameter but all other parameters are direct
elements of cost function; a regression with a very high adjusted multiple
coefficient of determination of 99.7% is achieved. Regression analysis results

for cost response are given in Appendix 6.2.

NIMBUS software is utilized for this multiresponse optimization. NIMBUS is a
Nondifferentiable Interactive Multiobjective BUndle-based optimization
System which has been developed at the University of Jyvaskylg,
Department of Mathematical Information Technology (WWW-NIMBUS, 2006).
It is suitable for both differentiable and nondifferentiable multiobjective and
single objective optimization problems subject to nonlinear and linear

constraints with bounds for the variables. The problems to be solved are of

the form

optimize ([, [ ()}

subject to g:,(x) <0, j=1,....m;
g,(x)=0, Jj=mj,....m
Ax<b,
Ax=b,,

and x' <x<x"

where k is the number of the objective functions, m is the number of the
nonlinear constraints, decision vector x and its lower and upper bounds are
n-dimensional vectors, b is an I|-dimensional vector and A is an | X n-
dimensional matrix of linear constraint coefficients. Pareto optimality is used

as optimality concept.

99



In the NIMBUS method, the idea is that the user examines the values of the
objective functions calculated at a current solution and divides the objective

functions into up to five classes. The classes are functions whose values

e should be decreased,

¢ should be decreased down till some aspiration level,
e are satisfactory at the moment,

e are allowed to increase up till some upper bound, and

e are allowed to change freely.

A new problem is formed according to the classification and the connected
information. This problem is solved alternatively by a multiobjective proximal

bundle (MPB) method or genetic algorithms.

In Fig. 6.1, flowchart of the NIMBUS algorithm is provided.
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Figure 6.1 Flowchart of NIMBUS algorithm Pareto-optimal solutions for cost

minimization and compressive strength maximization can be seen in Table

6.3.
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Table 6.3 Pareto-optimal solutions when both strength functions are
maximized and cost is minimized simultaneously

COST (TL) | CS7 (MPa) | CS28 (MPa) x'*
1 0.150 22.03 34.11 | (-1, 0.171, -1, 1)
2 0.155 22.08 34.60 | (-1, 0.310, -1, 1)
3 0.158 20.06 35.31 | (-1, 0.509, -1, 0)
4 0.165 20.28 35.89 | (-1, 0.672, -1, 0)
5 0.175 22.70 36.36 | (-1, 0.804, -1, 1)
6 0.184 23.11 37.02 | (-1, 0.990, -1, 1)
7 0.202 23.98 37.05 | (-1, 1, 1, -1)

* x’ represents parameter level combinations as (P,F,D,T)

Pozzolan content is at its lower bound value for all Pareto-optimal solutions
in the set. By increasing fineness, CS28 and cost increase as well however
CS7 first shows a decreasing trend and then increases. Pareto-optimal
solution set provides an understanding of three-response system. For the
optimum point where compressive strengths are at their maximums, cost is
not at its minimum and hence there is not a unique global solution. Decisions
on parameter level combinations should be made considering current

constraints or preferences and should be case based.

6.3. Dual Response Surface Optimization of Compressive

Strength and Standard Deviation

Response surfaces for 7-day and 28-day compressive strengths are already
fitted and optimized. Using 6 replicates for each run, sample standard
deviations are calculated and regression equations are fit for these
observations. Basic regression assumptions are satisfied and regression
outputs are given in Appendix 6.3 and 6.4. Second-order regression
equations are resulted as the best choice for both standard deviations.
Activator type is not significant in standard deviation prediction equations.
For standard deviation modeling, several data transformations are advised in
statistical literature. Although residual plots of both standard deviations does

not indicate a problem, data transformation as square root, log standard
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deviation and log variance are tried but the best result turns out to be when
no transformation is applied to the data considering residual plots and

adjusted multiple coefficient of determination.

Response surface plots for two fitted standard deviations possess different
shapes. Fineness and activator type has no significant effect on standard
deviation response for mean 7-day compressive strength where as fineness
and its quadratic term are significant predictors for the standard deviation of
mean 28-day compressive strength. Joint optimization for maximization of
compressive strength and minimization of standard deviation is performed
by NIMBUS algorithm. However, adjusted multiple coefficient of
determination for both standard deviations are low. Although the regressions
are statistically significant estimated functions are not very successful in

explaining the total variation in the data.
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In Tables 6.4 and 6.5, pareto-optimal solution sets for dual response surface
optimization are indicated. As strength increases standard deviation also
increases so the decision maker should choose among alternatives with

tolerable standard deviation.

Table 6.4 Pareto-optimal solutions for dual response surface optimization

for CS7

# CS7 STDEV x'
1 14.594 1.003 | (1, 1, -0.056, 1)
2 15.861 1.105| (1, 1, 0.364, -1)
3 16.712 1.200 | (1, 1, 0.527, -1)
4 22.892 1.314 | (-1, 1, 0.765, 1)
5 23.146 1.318 | (-1, 1, 0.840, -1)
6 23.588 1.330 | (-1, 1, 0.926, -1)
7 23.757 1.336 | (-1, 1, 0.958, -1)
8 23.864 1.341 | (-1, 1, 0.978, -1)
9 23.980 1.346 | (-1, 1,1, -1)

Table 6.5 Pareto-optimal solutions for dual response surface optimization
for CS28

# | CS28 | STDEV X'
1] 26.102 1.020 | (1, 0.007, 1)
2| 27.507 1.229 | (0.639, 0.081, 1)
3| 29.168 1.471 | (0.227, 0.132, 1)
4| 31.093 1.746 | (-0.232, 0.187, 1)
5| 33.286| 2.053 | (-0.735, 0.244, 1)
6| 34.904| 2.288](-1,0.395, 1)
7| 35.517| 2.437[(-1, 0.568, 1)
8| 35.673| 2.483|(-1,0.612, 1)
9| 36.379| 2.738|(-1,0.811, 1)

10 | 37.050 | 3.047|(-1,1,1,-1)
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6.4. Optimization of Strength to Cost Ratio

In concrete industry, strength to cost ratio is an important parameter.
Achieving a high strength to cost ratio, in another saying spending minimum
per cost of attained strength, is desirable. To present a basic application for
such optimization strength to cost ratios for 7-day and 28-day are calculated
and regressions are fit (named as Ratio 7 and Ratio 28) to the data as it can
be seen in Appendix 6.5 and 6.6. Initially quadratic models are fit to
untransformed data and lack of fit test result is significant. A Box-Cox
transformation applied to both data sets at both ages solves lack of fit
problem and significant models with high multiple coefficient of

determination values are obtained (94% and 93% respectively).

Optimization of strength to cost ratios by Design-Expert Optimization Module
resulted as in Tables 6.6 and 6.7. For both responses the point where
pozzolan content, fineness and activator dosage are at their lower bound

values and when activator type is Na,SQ, is found as the optimum point.

Table 6.6 Optimal solutions when strength to cost ratio is maximized at 7

days

# | Pozzolan | Fineness | Dosage | Type (Ratio 7)%*® | Desirability
1 -1 -1 -1 | Na,S0O, 2.2078 0.9616
2 -1 -0.89 -1 | Na,S0Oq4 2.1966 0.9370
3 -1 -1 -0.82 | Na,S0,4 2.1946 0.9328
4 -1 -1 -0.71 | Na,S0,4 2.1870 0.9162
5 -1 -1 -0.54 | Na,S0O, 2.1761 0.8924
6 -1 -1 -0.3 | Nay,S0,4 2.1627 0.8632
7 -1 -1 -1 | NaOH 2.1531 0.8424
8 -1 -1 -0.08 | Na,S0O,4 2.1517 0.8393
9 -1 -1 1 | NaOH 2.1434 0.8213

10 -1 -1 -0.68 | NaOH 2.1430 0.8205
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Table 6.7 Optimal solutions when strength to cost ratio is maximized at 28

days
# | Pozzolan | Fineness | Dosage | Type* (Ratio 28) %?° | Desirability
1 -1 -1 -1 | Na,S0O, 5.0434 0.9073
2 -1 -1 -1 | NaOH 5.0434 0.9073
3 -1 -0.89 -1 | Na,S0O,4 5.0282 0.8967
4 -1 -0.86 -1 | NaOH 5.0229 0.8930
5 -0.89 -1 -1 | NaOH 5.0103 0.8842
6 -1 -1 -0.75 | NaOH 5.0096 0.8838
7 -1 -0.98 -0.7 | Na,S0,4 5.0004 0.8774
8 -1 -0.69 -1 | Na,S0O, 4.9991 0.8764
9 -1 -1 -0.51 | Na,S0O, 4.9781 0.8618
10 -1 -1 0.1 | Na,S0O,4 4.8953 0.8041
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CHAPTER 7

CONCLUSIONS

Response surface methodology is applied in this study to optimize
parameters of chemically activated mortars containing high volumes of
pozzolan to obtain maximum 7-day and 28-day compressive strengths. A
face-centered central composite design is chosen as the main design of this
study since one of the research interests is to statistically identify potential
relations of two-way interactions and quadratic terms of process parameters
with compressive strength. Special focus is on early strength improvement
by chemical activation because addition of natural pozzolan delays strength
development. Despite this drawback, the use of natural pozzolans in cement
and concrete systems leads to better durability, low permeability and high
ultimate strength. What is more, pozzolan usage is an environment friendly
approach that can reduce the CO, emission produced by the cement
industry. Therefore, efforts to accelerate widespread usage of pozzolan as a
Portland cement replacement are necessary for sustainable development of

concrete industry.

Four process parameters as amount of natural pozzolan replacement,
pozzolan fineness, activator dosage and type are included in this research.
Activator type is a qualitative variable and presence of a qualitative variable
in response surface methodology necessitates special attention in
experimental design and analysis. Regression equations for both responses
are fit considering 5 different experimental designs. These regression
equations, their adjusted multiple coefficient determination (Rzadj) values and
standard deviation of the error estimates are tabulated in Tables 7.1 and
7.2.
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Table 7.1 Comparison of regression equation parameters when the response is 7-day compressive strength

Equation

2
R adj

Coef.

Psq

Fsq

Dsq

PF

PD

FD

PT

FT

DT

4.4
Main FCCD

40 runs

89.3%

1.18

40

15.4

-3.8

0.892

1.43

0.601

1.40

1.42

0.565

0.662

0.637

-0.38

-1.21

4.5
FCCD for only NaOH

20 runs

89.9%

1.12

20

15.1

-3.41

0.928

2.64

0.985

1.18

0.947

0.573

4.6
FCCD for only Na,SO,

20 runs

84.5%

1.46

20

15.7

-4.18

0.857

0.223

1.81

1.65

4.7
DJ design

16 runs

90.9%

1.13

16

16.1

-2.80

1.22

0.972

0.351

1.34

0.948

0.874

-1.76

4.8
WD design

16 runs

93.3%

1.12

16

15.3

-3.56

1.22

1.52

0.56

1.19

1.74

1.05

-1.89
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Table 7.2 Comparison of regression equation parameters when the response is 28-day compressive strength

Equation

2
R%a4j

Coef.

Psq

Fsq

Dsq

PF

PD

FD

PT

FT

DT

5.3
Main FCCD

40 runs

72.7%

1.91

40

29.8

-3.70

1.94

-1.61

5.4
FCCD for only NaOH

20 runs

74.4%

1.88

20

29.6

-3.82

1.81

0.528

-1.21

1.53

5.5
FCCD for only Na,s0,

20 runs

73.4%

1.90

20

30.3

-3.59

2.08

-0.40

-2.01

5.6
DJ design

16 runs

63.3%

2.29

16

30.2

-3.19

1.94

-1.21

5.7
WD design

16 runs

90.7%

1.26

16

29.8

-3.89

2.03

-0.007

-1.16

1.32

-1.44

1.8




Different regression equations fit for 5 different designs are all successful in
statistically explaining the variance in the data with high Rzadj values. 2" and
3" experimental designs are half parts of the main design repeated for two
qualitative levels. Separate analysis for these designs are done to see the
difference in their regression equations and to evaluate the case when the
qualitative factor is not defined as a system parameter. Obviously activator
type cannot appear in the regression equation for these designs. For 7-day
compressive strength response surfaces for different qualitative levels are
different. Estimate of standard deviation (S) for all regression equations is
approximately the same. The highest standard deviation estimate is for the
case when FCCD is analyzed for only Na,SO, activator. The Rzadj value for
this regression is also smaller when compared with others. Overall,
significant regression equations for 7-day compressive strength are found.
Main effects, quadratic effects and two-way interaction effects of variables

appeared in regression equations.

For 28-day compressive strength, regression analyses are carried out with
the same approach. Activator type was not significant at any of the
regression equations. Response surfaces formed by only quantitative factors
are statistically sufficient in explaining the relationship between the response
and parameter for both levels of the qualitative factor. Activator dosage
appeared only when FCCD is analyzed for Na,SO, activator alone, with 20
runs. Rzadj values are smaller for 28-day compressive strength equations.
Pozzolan content and fineness together with their interaction effects explain
about 70 % of the variation in data at average. The maximum Rzadj value is
achieved for the same case again, when regression analysis is separately

done on the data activated by Na,SO,.

In regression analysis mean values for each run are modeled instead of single
observations for this study. Compressive strength measurements of single
mortar cubes show high standard deviations. Even when they are obtained from
the same mixture and kept under the same conditions single observations may
have large deviations from the mean; this is the nature of compressive strength
measurements data. From construction materials point of view, the value of the
average compressive strength measurements of replications is important. When
regression analyses are applied for single observations and for both 7-day and

28-day compressive strengths with the parameters of best regression equations
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of main design; multiple coefficient of determination decreases and standard
deviation increases significantly for both responses (Appendix 7.1). For 7-day
compressive strength multiple coefficient of determination decreases from
89.3% to 71.3% while standard deviation increases from 1.18 to 2.16 MPa
when the regression is applied to single observations. Since the method of least
squares is applied in regression, the same regression equations are obtained
with the same parameters when the mean or single observations are modeled.
For 28-day compressive strength multiple coefficient of determination decreases
to 48.5% from 72.7 % and standard deviation increases to 3.2 from 1.91 MPa.
So, when regression is applied to single observations the same regression
equations are obtained but with poorer standard deviation values and the total
variation explained by the regression equation decreases considerably. The
mean compressive strength value of replications is valuable and used in practice

therefore it is used in regression analyses.

After fitting regression equations for both responses and different designs
response surface optimization for each regression equation is done. Results
are tabulated in Table 7.3.

Table 7.3 Optimum parameter level combinations for compressive strengths

] 0] c
7] c <) .
€ |3 |3 Best levels Estimated
3 | £ | % response 95% CI
8 | ° | & (MPa)
(-4 # w
P F D T
40 | 44 | 100! 1.00] 1.00 | NaOH 23.98 (22.23; 25.73)
20 | 4.5 |-1.00/1.00]| 1.00 * 23.91 (21.91; 25.90)
5 20 | 4.6 | .1.00]1.00/| 1.00 * 24.41 (22.40; 26.41)
16 | 4.7 | -1.00| 1.00 | 1.00 | NaOH 23.73 (21.25; 26.20)
16 | 4.8 | -1.00| 1.00| 1.00 | NaOH 26.88 (24.56; 29.20)
40 | 5.5 | -1.00|1.00|-0.23 Na,SO, 37.07 (35.39; 38.75)
20 | 5.6 | -1.00 | 1.00 | -1.00 * 37.42 (34.30; 40.54)
0
% 20 | 5.7 | -1.00 | 1.00 | -0.68 * 37.53 (34.88; 40.18)
O
16 | 5.8 | -1.00| 1.00 | -0.99 Na,SO. 36.55 (33.44; 39.66)

16 | 59 | _.1.00|1.00| -1.00 | NaOH 39.17 (36.81; 41.53)

* pre-determine, either NaOH or Na,S0., does not affect optimization
(level values in italic: parameter does not appear in regression equation)
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For strength maximization, minimum pozzolan content (35%) and maximum
fineness (90%) are reported as optimum parameter levels for both
responses and for all designs. Activator dosage at its upper bound (1.5%) is
the optimum level for 7-day compressive strength. For 28-day compressive
strength however, activator dosage is at its minimum for strength
maximization for two equations that the dosage is a significant parameter.
NaOH is the optimal chemical activator for 7-day compressive strength
whereas activator type does not affect optimality in 28-day compressive
strength. For optimal parameter levels of CS7, the experimental average is
23.6 MPa. The first 4 regression equations predict close values to this
average however the 5™ (WD design) regression overestimates the
compressive strength. The experimental average is even not in its confidence
level. The experimental compressive strength average of 24 cubes in the
study is 36.92. While the main design and DJ] design estimates close values
to this average; regression by WD design overestimates the strength again
and the experimental average is hardly in the confidence interval. As the
number of runs in the design decreases, confidence intervals tend to get
wider. Confidence intervals as narrow as possible are favorable. This is
another drawback of economical response surface designs. If we compare
the two economical designs, D] design is much more successful in explaining
the variation and estimating reasonable values. Since optimal points are at
the borders of the design, moving in these directions for the parameters and

experimenting more may be a future research.

The economical designs seemed reasonably successful for explaining the
variation in the data with defined process parameters. However, important
problems from response design perspective are present. Due to lack of
repetitions on the same run, lack of fit test cannot be performed. Design
matrix evaluation for response surface quadratic model of both economical
designs and the main FCCD design are presented in Appendix 7.2-7.4. For
three designs, no aliases are found for quadratic model. Main FCCD design
utilized in the study is quite successful with good lack of fit detectability,
Ideal VIF values of 1 for all main terms and two way interactions and very
high power values. On comparison with the same criteria, D] design is
superior to WD design (which is consistent with regression results) but poor

when compared with main design. VIF values are enormously high indicating
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high correlation among factors. Two designs do not have degrees of freedom
for pure error and hence lack of fit test cannot be performed. Power values
for D] design is less than half when compared with the main design and for
WD design they are even worse. Finally standard errors of design plots are
drawn for three designs and compared (Fig.s 7.1-3). The goal for these plots
is contour plots as circles in circles where standard error of two designs are
equal for two points that are at the same distance from the center and this is
called rotatability. The worst case is WD design again. Although main design
is not rotatable, it is nearly rotatable and acceptable according to this
criterion. In conclusion, response surface methodology applications with only
economical designs might be risky so matrix designs should be evaluated
carefully and bigger data sets, like the main design of this study, better be

preferred when affordable.

StdErr of Design
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Figure 7.1 Standard error of design plot for D] design (quadratic model)
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Figure 7.2 Standard error of design plot for WD design (quadratic model)
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Figure 7.3 Standard error of design plot for main FCCD design with 40 runs
(quadratic model)
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After maximizing strength responses individually simultaneous optimization for
several responses is applied. In RSM problems there are usually other
responses to consider while optimizing one. Therefore, exploration of respective
behavior of several responses is enlightening on such systems. Optimal settings
for maximization of both compressive strengths were the same and as a result
of optimization of both, the same level combination where minimum pozzolan
content (35%), maximum fineness (90%) maximum activator dosage (1.5%)
and NaOH as chemical activator is the optimal setting once again. When cost is
introduced to this system as a third response, it is seen that there is a trade off
between cost and 28-day compressive strength for all Pareto-optimal solutions.
Both increase in the same direction so a compromise is necessary. Activator
dosage is set to its minimum for 9 of the Pareto optimal solutions. CS7 first
decreases, then increase by increasing fineness. Optimal settings when several
criteria are considered are shaped according to own judgment but

multiresponse analysis definitely provide an understanding of the system.

Dual response surface optimization is applied for both compressive strength
responses. As strength increases standard deviation also increases so again
a point of compromise should be the optimal setting based on decision

maker’s preference.

Optimal settings for maximization of “strength to cost” ratio is different from
the optimal settings for previous compressive strength maximization cases.
Pozzolan content is reported as minimum (35%) again but activator dosage
(0.5%) and fineness (1.5%) are at their lower bounds unlike previous cases.
On the contrary to previous choice, Na,SOQ, is proposed as the optimal

activator for this case.

Results of simultaneous optimization studies underlined the fact that
systems’ optimal parameter levels for different responses vary and in
addition optimal settings of a system for a particular response may also vary

when considered with any other response on the system.
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Although best chosen regression models are statistically adequate in general,
for standard deviation estimates only, significant models but with low multiple
coefficient of determination values are found. A parameter optimization study
with other parameters that are considered as potential parameters for

standard deviation estimate may be a further study.
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Appendix 4.1 Face-centered central composite design repeated for each

level of the qualitative factor and its results for 7-day compressive strength

Exp. Std. Parameters RESULTS

run Run- Run- Run- Run- Run- Run-

order | OTdeT| P | F | D | T 1 2 3 4 5 6 (M‘I:’a)
4 1] 1| -1|-1]-11] 16,08 18,04 | 20,01 | 20,79 | 20,79 | 16,48 18,70
2 2|1 -1 ]-17]-1 9,02 | 9,81 7,06 | 9,41 | 9,02 | 10,20 9,09
31 3] 1 1 -1 | -1 | 23,93 | 23,93 | 16,08 | 16,08 | 14,91 | 22,36 19,55
30 411 1 -1 | -1 | 10,98 | 12,55 | 10,59 | 10,20 | 10,20 9,41 10,66
32 5] -1 ] 1 1 -1 | 22,75 | 21,57 | 20,79 | 23,93 | 20,01 | 21,57 21,77
33 6| 1 -1 1 -1 | 1491 | 16,08 | 16,08 | 12,94 | 14,51 | 13,34 14,64
3 71 -1 1 1 -1 | 24,32 | 24,71 | 23,54 | 23,93 | 21,97 | 23,14 23,60
40 8| 1 1 1 -1 | 18,44 | 20,01 | 19,22 | 19,61 | 20,40 | 21,18 19,81
15 9] -1 0 0 | -1 | 17,26 16,87 | 1569 | 17,26 | 19,22 | 17,65 17,33
22 10| 1 0 0 | -1 9,02 | 13,34 | 12,94 | 12,16 | 13,73 | 14,51 12,62
29 11 0 | -1 | 0 | -1 | 16,08 | 18,04 | 18,04 | 14,91 | 1530 | 16,48 16,48
23 121 0 1 0 | -1 | 17,26 19,22 | 16,48 | 15,30 | 18,04 | 11,77 16,34
35 13] 0 0 | -1 | -11] 16,87 17,65 | 15,30 | 14,12 | 12,16 9,81 14,32
36 141 0 0 1 -1 | 20,79 | 16,87 | 20,40 | 16,48 | 20,79 | 18,04 18,89
10 151 0 0 0 | -1 | 1491 16,48 | 17,26 | 14,91 | 16,87 | 12,55 15,49
5 16| 0 0 0 | -1 | 18,44 | 14,91 | 14,51 | 16,48 | 15,69 | 15,30 15,89
28 171 0 0 0 | -1 | 16,87 | 17,65| 12,55 | 14,51 | 12,16 | 13,73 14,58
34 18] 0 0 0 | -1 | 13,73 | 13,73 | 13,73 | 14,51 | 14,91 | 14,51 14,19
9 191 0 0 0 | -1 | 16,48 | 17,26 | 18,44 | 16,08 | 18,04 | 13,73 16,67
19 20| 0O 0 0 | -1 | 11,38 12,55| 13,34 | 17,26 | 14,51 | 13,34 13,73
11 21| -1 | -1 ] -1 1 | 30,99 | 25,11 | 25,50 | 18,04 | 22,36 | 24,32 24,39
37 22| 1 -1 -1 1 13,73 | 13,34 | 14,12 9,81 | 13,73 | 12,94 12,94
1 23| -1 1 -1 1 21,97 | 20,01 | 23,93 | 26,28 | 24,32 | 22,75 23,21
39 24| 1 1 | -1 | 1 | 16,08 15,69 | 13,34 | 13,73 | 13,34 | 12,94 14,19
27 25| -1 | -1 1 1 22,36 | 22,75 | 23,14 | 24,32 | 23,54 | 23,14 23,21
12 26| 1 -1 1 1 13,73 | 11,77 | 14,91 | 11,38 | 14,12 | 13,34 13,21
21 27 | -1 1 1 1 21,18 | 21,97 | 25,11 | 27,85 | 25,50 | 27,07 24,78
7 28| 1 1 1 1 19,22 | 14,12 | 18,04 | 17,26 | 19,22 | 16,08 17,33
16 29 | -1 0 0 1 18,44 | 19,61 | 15,69 | 18,44 | 19,61 | 19,22 18,50
25 30| 1 0 0 1 16,87 | 12,94 | 12,94 | 16,08 | 12,55 | 16,48 14,64
26 31 0 | 1 0 1 18,83 | 12,94 | 18,04 | 15,69 | 17,26 | 13,73 16,08
17 32| 0 1 0 1 18,44 | 17,65 | 18,83 | 18,44 | 22,36 | 17,65 18,89
38 33| 0 0| -1 1 22,36 | 18,44 | 21,18 | 16,87 | 16,48 | 13,34 18,11
8 34| 0 0 1 1 | 1961 | 15,69 | 16,08 | 18,04 | 17,65 | 12,16 16,54
13 351 0 0 0 1 | 13,73 | 16,08 | 12,16 | 14,91 | 14,91 | 13,73 14,25
24 36| 0 0 0 1 18,04 | 15,30 | 16,08 | 14,91 | 17,65 | 15,30 16,21
14 371 0 0 0 1 13,34 | 10,59 | 17,26 | 18,83 | 16,48 | 14,51 15,17
6 38| 0 0 0 1 17,26 | 14,91 | 12,94 | 15,30 | 15,30 | 12,55 14,71
18 39| 0 0 0 1 14,12 | 16,87 | 16,08 | 14,91 | 15,30 | 16,87 15,69
20 401 0 0 0 1 18,83 | 15,30 | 16,87 | 16,87 | 15,69 | 14,51 16,34
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Appendix 4.2 The regression analysis for 7-day compressive strength that

includes only main factor terms

The regression equation is
CS7 = 16.8 - 3.80 P + 0.892 F + 1.43 D + 0.601 T

Predictor Coef SE Coef T P VIF
Constant 16.8184 0.3313 50.76 0.000
P -3.7952 0.4686 -8.10 0.000 1.0
F 0.8924 0.4686 1.90 0.065 1.0
D 1.4318 0.4686 3.06 0.004 1.0
T 0.6015 0.3313 1.82 0.078 1.0
S = 2.09556 R-Sg = 70.0% R-Sg(adj) = 66.6%
PRESS = 211.375 R-Sg(pred) = 58.81%
Analysis of Variance
Source DF SS MS F P
Regression 4 359.465 89.866 20.46 0.000
Residual Error 35 153.698 4.391
Lack of Fit 25 143.986 5.759 5.93 0.003
Pure Error 10 9.712 0.971
Total 39 513.163
28 rows with no replicates
Source DF Seq SS
p 1 288.067
F 1 15.928
D 1 40.999
T 1 14.471
Unusual Observations
Obs P CS7 Fit SE Fit Residual St Resid
1 -1.00 24.386 18.891 0.937 5.495 2.93R
40 1.00 19.809 14.746 0.937 5.063 2.70R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 1.24653

Lack of fit test
Possible curvature in variable P (P-Value = 0.022 )

Possible curvature in variable F (P-Value 0.007 )

Possible curvature in variable D (P-Value 0.006 )

Possible lack of fit at outer X-values (P-Value = 0.020)
Overall lack of fit test is significant at P = 0.006
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Appendix 4.3 Regression analysis based on face-centered central composite
design and applied for CS7 involving all two-way interaction and quadratic

terms

The regression equation is

Cs7 = 15.4 - 3.80 P + 0.892 F + 1.43 D + 0.215 T + 0.162 Psq + 1.34 Fsq
+ 1.36 Dsq + 0.564 PF + 0.662 PD - 0.382 PT + 0.637 FD - 0.036 FT
- 1.21 DT + 0.492 PsqT + 0.230 FsqT + 0.051 DsqT + 0.057 PFT
+ 0.065 FDT - 0.286 PDT

Predictor Coef SE Coef T P VIF
Constant 15.3905 0.3129 49.19 0.000

P -3.7952 0.2878 -13.19 0.000 1.0
F 0.8924 0.2878 3.10 0.006 1.0
D 1.4318 0.2878 4.97 0.000 1.0
T 0.2151 0.3129 0.69 0.500 2.4
Psqg 0.1620 0.5488 0.30 0.771 1.8
Fsqg 1.3388 0.5488 2.44 0.024 1.8
Dsqg 1.3551 0.5488 2.47 0.023 1.8
PF 0.5639 0.3218 1.75 0.095 1.0
PD 0.6619 0.3218 2.06 0.053 1.0
PT -0.3825 0.2878 -1.33 0.199 1.0
FD 0.6374 0.3218 1.98 0.062 1.0
FT -0.0360 0.2878 -0.12 0.902 1.0
DT -1.2095 0.2878 -4.20 0.000 1.0
PsqT 0.4918 0.5488 0.90 0.381 3.6
FsqT 0.2303 0.5488 0.42 0.679 3.6
DsqT 0.0505 0.5488 0.09 0.928 3.6
PFT 0.0572 0.3218 0.18 0.861 1.0
FDT 0.0654 0.3218 0.20 0.841 1.0
PDT -0.2860 0.3218 -0.89 0.385 1.0
S = 1.28716 R-Sg = 93.5% R-Sg(adj) = 87.4%
PRESS = 203.932 R-Sg(pred) = 60.26%

Analysis of Variance

Source DF SS MS F P
Regression 19 480.028 25.265 15.25 0.000

Residual Error 20 33.135 1.657
Lack of Fit 10 23.423 2.342 2.41 0.091
Pure Error 10 9.712 0.971

Total 39 513.163

28 rows with no replicates
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Source DF Seq SS

P 1 288.067
F 1 15.928
D 1 40.999
T 1 14.471
Psg 1 31.623
Fsqg 1 21.831
Dsqg 1 10.100
PF 1 5.087
PD 1 7.011
PT 1 2.926
FD 1 6.501
FT 1 0.026
DT 1 29.257
PsqT 1 4.360
FsqgT 1 0.398
DsqT 1 0.014
PFT 1 0.052
FDT 1 0.068
PDT 1 1.309

Unusual Observations

Obs P CS7 Fit SE Fit Residual St Resid
11 -1.00 18.502 20.437 0.902 -1.935 -2.11R
29 1.00 14.645 12.082 0.902 2.563 2.79R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 1.82212

* ERROR * Not enough data for lack of fit test
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Appendix 4.4 Regression analysis for the model applied for 7-day mean
compressive strength based on the face-centered central composite design
after elimination of insignificant terms

The regression equation is

Cs7 = 15.4 - 3.80 P + 0.892 F + 1.43 D + 0.601 T + 1.40 Fsgq + 1.42 Dsqg
+ 0.564 PF + 0.662 PD - 0.382 PT + 0.637 FD - 1.21 DT

Predictor Coef SE Coef T P VIF
Constant 15.4107 0.2817 54.70 0.000
P -3.7952 0.2656 -14.29 0.000 1.0
F 0.8924 0.2656 3.36 0.002 1.0
D 1.4318 0.2656 5.39 0.000 1.0
T 0.6015 0.1878 3.20 0.003 1.0
Fsqg 1.3995 0.4695 2.98 0.006 1.6
Dsqg 1.4158 0.4695 3.02 0.005 1.6
PF 0.5639 0.2970 1.90 0.068 1.0
PD 0.6619 0.2970 2.23 0.034 1.0
PT -0.3825 0.2656 -1.44 0.161 1.0
FD 0.6374 0.2970 2.15 0.041 1.0
DT -1.2095 0.2656 -4.55 0.000 1.0
S = 1.18784 R-Sg = 92.3% R-Sg(adj) = 89.3%
PRESS = 81.9124 R-Sg(pred) = 84.04%
Analysis of Variance
Source DF SS MS F P
Regression 11 473.656 43.060 30.52 0.000
Residual Error 28 39.507 1.411

Lack of Fit 18 29.795 1.655 1.70 0.196

Pure Error 10 9.712 0.971
Total 39 513.163

28 rows with no replicates

Source DF Seq SS

p 1 288.067
F 1 15.928
D 1 40.999
T 1 14.471
Fsqg 1 50.580
Dsqg 1 12.829
PF 1 5.087
PD 1 7.011
PT 1 2.926
FD 1 6.501
DT 1 29.257

Durbin-Watson statistic = 1.67856

No evidence of lack of fit (P >= 0.1).
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Appendix 4.5 Regression analyses in order to check the significance of the
interaction between levels of the qualitative factor and quantitative factors

proposed by Batmaz and Tunali (2003) for mean 7-day compressive strength

Regression Analysis: CS7 versus P, F, D, Psq, Fsq, Dsq, PF, PD, FD
(to calculate SSE1)

The regression equation is
Cs7 = 15.4 - 3.80 P + 0.892 F + 1.43 D + 0.162 Psq + 1.34 Fsqg + 1.36 Dsq
+ 0.564 PF + 0.662 PD + 0.637 FD

Predictor Coef SE Coef T P VIF

Constant 15.3905 0.4116 37.39 0.000

P -3.7952 0.3786 -10.02 0.000 1.0

F 0.8924 0.3786 2.36 0.025 1.0

D 1.4318 0.3786 3.78 0.001 1.0

Psqg 0.1620 0.7220 0.22 0.824 1.8

Fsqg 1.3388 0.7220 1.85 0.074 1.8

Dsqg 1.3551 0.7220 1.88 0.070 1.8

PF 0.5639 0.4233 1.33 0.193 1.0

PD 0.6619 0.4233 1.56 0.128 1.0

FD 0.6374 0.4233 1.51 0.143 1.0

S = 1.69328 R-Sg = 83.2% R-Sg(adj) = 78.2%

PRESS = 190.360 R-Sqg(pred) = 62.90%

Analysis of Variance

Source DF SS MS F P

Regression 9 427.147 47.461 16.55 0.000

Residual Error 30 86.016 2.867
Lack of Fit 5 17.596 3.519 1.29 0.301
Pure Error 25 68.421 2.737

Total 39 513.163

Source DF Seq SS

P 1 288.067

F 1 15.928

D 1 40.999

Psqg 1 31.623

Fsqg 1 21.831

Dsqg 1 10.100

PF 1 5.087

PD 1 7.011

FD 1 6.501

Unusual Observations

Obs P CS7 Fit SE Fit Residual St Resid
1 -1.00 24.386 21.581 1.066 2.805 2.13R
3 -1.00 18.698 21.581 1.066 -2.883 -2.19R

R denotes an observation with a large standardized residual.
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Durbin-Watson statistic = 1.95328

Possible lack of fit at outer X-values (P-Value = 0.086)
Overall lack of fit test is significant at P = 0.086

Regression Analysis: CS7 versus P, F, D, Psq, Fsq, Dsq, PF, PD, FD, T
(to calculate SSE2)

The regression equation is
Cs7 = 15.4 - 3.80 P + 0.892 F + 1.43 D + 0.162 Psq + 1.34 Fsg + 1.36 Dsqgq
+ 0.564 PF + 0.662 PD + 0.637 FD + 0.601 T

Predictor Coef SE Coef T P VIF
Constant 15.3905 0.3818 40.31 0.000
P -3.7952 0.3512 -10.81 0.000 1.0
F 0.8924 0.3512 2.54 0.017 1.0
D 1.4318 0.3512 4.08 0.000 1.0
Psqg 0.1620 0.6697 0.24 0.811 1.8
Fsqg 1.3388 0.6697 2.00 0.055 1.8
Dsqg 1.3551 0.6697 2.02 0.052 1.8
PF 0.5639 0.3927 1.44 0.162 1.0
PD 0.6619 0.3927 1.69 0.103 1.0
FD 0.6374 0.3927 1.62 0.115 1.0
T 0.6015 0.2483 2.42 0.022 1.0
S = 1.57070 R-Sg = 86.1% R-Sg(adj) = 81.3%
PRESS = 162.985 R-Sg(pred) = 68.24%
Analysis of Variance
Source DF SS MS F P
Regression 10 441.618 44.162 17.90 0.000
Residual Error 29 71.545 2.467

Lack of Fit 19 61.833 3.254 3.35 0.027

Pure Error 10 9.712 0.971
Total 39 513.163

28 rows with no replicates

Source DF Seq SS
p 1 288.067
F 1 15.928
D 1 40.999
Psqg 1 31.623
Fsqg 1 21.831
Dsqg 1 10.100
PF 1 5.087
PD 1 7.011
FD 1 6.501
T 1 14.471

Durbin-Watson statistic = 1.80577

Possible lack of fit at outer X-values (P-Value = 0.029)
Overall lack of fit test is significant at P = 0.029
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Regression Analysis: CS7 versus P, F, D, Psq, Fsq, Dsq, PF, PD, FD, T, PT,
FT, DT, PFT, PDT, FDT, PsqT, FsqT, DsqT
(to calculate SSE3)

The regression equation is

Cs7 = 15.4 - 3.80 P + 0.892 F + 1.43 D + 0.162 Psq + 1.34 Fsqg + 1.36 Dsqgq
+ 0.564 PF + 0.662 PD + 0.637 FD + 0.215 T - 0.382 PT - 0.036 FT
- 1.21 DT + 0.057 PFT - 0.286 PDT + 0.065 FDT + 0.492 PsqT
+ 0.230 FsgT + 0.051 DsqT

Predictor Coef SE Coef T P VIF
Constant 15.3905 0.3129 49.19 0.000

P -3.7952 0.2878 -13.19 0.000 1.0
F 0.8924 0.2878 3.10 0.006 1.0
D 1.4318 0.2878 4.97 0.000 1.0
Psqg 0.1620 0.5488 0.30 0.771 1.8
Fsqg 1.3388 0.5488 2.44 0.024 1.8
Dsqg 1.3551 0.5488 2.47 0.023 1.8
PF 0.5639 0.3218 1.75 0.095 1.0
PD 0.6619 0.3218 2.06 0.053 1.0
FD 0.6374 0.3218 1.98 0.062 1.0
T 0.2151 0.3129 0.69 0.500 2.4
PT -0.3825 0.2878 -1.33 0.199 1.0
FT -0.0360 0.2878 -0.12 0.902 1.0
DT -1.2095 0.2878 -4.20 0.000 1.0
PFT 0.0572 0.3218 0.18 0.861 1.0
PDT -0.2860 0.3218 -0.89 0.385 1.0
FDT 0.0654 0.3218 0.20 0.841 1.0
PsqT 0.4918 0.5488 0.90 0.381 3.6
FsqT 0.2303 0.5488 0.42 0.679 3.6
DsqT 0.0505 0.5488 0.09 0.928 3.6
S = 1.28716 R-Sg = 93.5% R-Sg(adj) = 87.4%
PRESS = 203.932 R-Sqg(pred) = 60.26%

Analysis of Variance

Source DF SS MS F P
Regression 19 480.028 25.265 15.25 0.000

Residual Error 20 33.135 1.657
Lack of Fit 10 23.423 2.342 2.41 0.091
Pure Error 10 9.712 0.971

Total 39 513.163
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28 rows with no replicates

Source DF Seq SS

P 1 288.067
F 1 15.928
D 1 40.999
Psg 1 31.623
Fsqg 1 21.831
Dsqg 1 10.100
PF 1 5.087
PD 1 7.011
FD 1 6.501
T 1 14.471
PT 1 2.926
FT 1 0.026
DT 1 29.257
PFT 1 0.052
PDT 1 1.309
FDT 1 0.068
PsqT 1 4.360
FsqT 1 0.398
DsqT 1 0.014

Unusual Observations

Obs P CsS7 Fit SE Fit Residual St Resid
11 -1.00 18.502 20.437 0.902 -1.935 -2.11R
29 1.00 14.645 12.082 0.902 2.563 2.79R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 1.82212

* ERROR * Not enough data for lack of fit test
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Appendix 4.6 Regression analysis for mean 7-day compressive strength

when activator type is NaOH (with basic FCCD design with 20 observations)

The regression equation is
Cs7 = 15.1 - 3.41 P + 0.928 F + 2.64 D + 0.985 Fsq + 1.18 Dsg + 0.947 PD

+ 0.573 FD

Predictor Coef SE Coef T P VIF
Constant 15.1350 0.3772 40.12 0.000
P -3.4130 0.3556 -9.60 0.000 1.0
F 0.9280 0.3556 2.61 0.023 1.0
D 2.6390 0.3556 7.42 0.000 1.0
Fsqg 0.9850 0.6287 1.57 0.143 1.6
Dsqg 1.1800 0.6287 1.88 0.085 1.6
PD 0.9475 0.3976 2.38 0.035 1.0
FD 0.5725 0.3976 1.44 0.175 1.0
S = 1.12462 R-Sg = 93.6% R-Sg(adj) = 89.9%
PRESS = 54.5894 R-Sqg(pred) = 77.11%
Analysis of Variance
Source DF SS MS F P
Regression 7 223.332 31.905 25.23 0.000
Residual Error 12 15.177 1.265

Lack of Fit 7 8.961 1.280 1.03 0.505

Pure Error 5 6.216 1.243
Total 19 238.509

14 rows with no replicates
Source DF Seq SS
P 1 116.486
F 1 8.612
D 1 69.643
Fsqg 1 14.331
Dsqg 1 4.456
PD 1 7.182
FD 1 2.622
Unusual Observations
Obs P CS7 Fit SE Fit Residual St Resid

5 1.00 14.640 15.973 0.915 -1.333 -2.04R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 2.03704

No evidence of lack of fit (P >= 0.1).
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Appendix 4.7 Regression analysis for mean 7-day compressive strength

when activator type Na,S0O, (with basic FCCD design with 20 observations)

The regression equation is
cs7 = 15.7 - 4.18 P + 0.857 F + 0.223 D + 1.81 Fsgq + 1.65 Dsqg

Predictor Coef SE Coef T P VIF
Constant 15.6851 0.4882 32.13 0.000
P -4.1780 0.4603 -9.08 0.000 1.0
F 0.8570 0.4603 1.86 0.084 1.0
D 0.2230 0.4603 0.48 0.636 1.0
Fsqg 1.8144 0.8137 2.23 0.043 1.6
Dsqg 1.6544 0.8137 2.03 0.061 1.6
S = 1.45557 R-Sg = 88.6% R-Sg(adj) = 84.5%
PRESS = 64.1475 R-Sg(pred) = 75.35%
Analysis of Variance
Source DF SS MS F P
Regression 5 230.553 46.111 21.76 0.000
Residual Error 14 29.662 2.119
Lack of Fit 9 26.187 2.910 4.19 0.065
Pure Error 5 3.475 0.695
Total 19 260.215

14 rows with no replicates

Source DF Seq SS
p 1 174.557
F 1 7.344
D 1 0.497
Fsqgq 1 39.396
Dsqg 1 8.758

Durbin-Watson statistic = 2.34560

No evidence of lack of fit (P >= 0.1).
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Appendix 4.8 Economic design alternatives for mean 7-day compressive

strength

Main FCCD (40 Observations)

Condition number: 5.5

D-optimality (determinant of XTX): 1.47640E+17

A-optimality (trace of inv(XTX)): 1.11705

G-optimality (avg leverage/max leverage): 0.612326

V-optimality (average leverage): 0.35

Maximum leverage: 0.571591

WD (16 observations)

Condition number: 68.0873

D-optimality (determinant of XTX): 1.24613E+10

A-optimality (trace of inv(XTX)): 8.36393

G-optimality (avg leverage/max leverage): 0.875

V-optimality (average leverage): 0.875

Maximum leverage: 1

DJ (16 observations)

Condition number: 8.81560

D-optimality (determinant of XTX): 3.99432E+11

A-optimality (trace of inv(XTX)): 3.22110

G-optimality (avg leverage/max leverage): 0.894231

V-optimality (average leverage): 0.875

Maximum leverage: 0.978495

WD Design DJ Design
Parameters Parameters
u (MPa) u (MPa)

P/ F|D|T P|F | D|T
-1 1 -1 1 23.21 -1 0 0 1 18.50
-1 1 1 1 24.78 -1 1 -1 -1 19.55
1] -1 ] 1 1 13.21 S 1| -1 23.60
1 1 1 -1 19.81 0 1 0 1 18.89
-1 -1 -1 -1 18.70 0 0 -1 1 18.11
1] 1] 1| - 9.09 o T T S T A 18.70
A1 21.77 o T N T O 21.77
1 1 -1 -1 10.66 0 0 0 -1 15.09
0 0 0 1 15.40 0 0 0 1 15.40
0 0 0 -1 15.09 1 1 -1 -1 10.66
1 0 0 -1 12.62 1 1 1 -1 19.81
-1 0 0 1 18.50 0 0 1 1 16.54
0 1 0 -1 16.34 0 -1 0 1 16.08
0 -1 0 1 16.08 1 -1 -1 -1 9.09
0 0 1 1 16.54 1 -1 1 -1 14.64
0 0 -1 1 18.11 1 0 0 1 14.64
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Appendix 4.9 Regression analysis for mean 7-day compressive strength
with DJ design
The regression equation is

cs7 = 16.1 - 2.80 P + 1.22 F + 0.972 D + 0.351 T - 1.76 DT + 0.948 PD
+ 0.874 PT + 1.34 Fsqg

Predictor Coef SE Coef T P VIF
Constant 16.1468 0.5228 30.89 0.000

P -2.8031 0.4485 -6.25 0.000 1.6

F 1.2226 0.3588 3.41 0.011 1.0

D 0.9725 0.4485 2.17 0.067 1.6

T 0.3509 0.3637 0.96 0.367 1.6

DT -1.7570 0.4485 -3.92 0.006 1.6

PD 0.9480 0.4011 2.36 0.050 1.0

PT 0.8744 0.4485 1.95 0.092 1.6
Fsg 1.3431 0.7453 1.80 0.115 1.6

S = 1.13455 R-Sg = 95.7% R-Sg(adj) = 90.9%
PRESS = 51.4452 R-Sqg(pred) = 75.71%

Analysis of Variance

Source DF SS MS F P
Regression 8 202.826 25.353 19.70 0.000
Residual Error 7 9.011 1.287

Total 15 211.837

No replicates.
Cannot do pure error test.

Source DF Seq SS

P 1 110.738
F 1 14.947
D 1 41.075
T 1 0.046
DT 1 19.758
PD 1 7.189
PT 1 4.893
Fsqg 1 4.180

Durbin-Watson statistic = 1.73984

* ERROR * Not enough data for lack of fit test
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Appendix 4.10 Regression analysis for mean 7-day compressive strength
with WD design
The regression equation is

Cs7 = 15.3 - 3.56 P + 1.22 F + 1.52 D + 0.560 T - 1.89 DT + 1.74 Dsq
+ 1.05 FD + 1.19 Fsq

Predictor Coef SE Coef T P VIF
Constant 15.2764 0.5134 29.76 0.000

P -3.5551 0.3903 -9.11 0.000 1.2

F 1.2172 0.3634 3.35 0.012 1.0

D 1.5219 0.3606 4.22 0.004 1.0

T 0.5603 0.3260 1.72 0.129 1.4

DT -1.8888 0.3955 -4.78 0.002 1.2
Dsqg 1.7407 0.6639 2.62 0.034 1.3

FD 1.0535 0.4198 2.51 0.040 1.1
Fsqgq 1.1859 0.6964 1.70 0.132 1.4

S = 1.12158 R-Sg = 96.9% R-Sg(adj) = 93.3%
PRESS = 53.4695 R-Sg(pred) = 80.89%

Analysis of Variance

Source DF SS MS F P
Regression 8 271.049 33.881 26.93 0.000
Residual Error 7 8.806 1.258

Total 15 279.854

No replicates.
Cannot do pure error test.

Source DF Seq SS

P 1 172.806
F 1 25.440
D 1 26.700
T 1 0.246
DT 1 16.882
Dsqg 1 18.322
FD 1 7.004
Fsqg 1 3.648

Durbin-Watson statistic = 2.12921

* ERROR * Not enough data for lack of fit test
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Appendix 5.1 Face-centered central composite design repeated for each

level of the qualitative factor and its results for 28-day compressive strength

Exp. Std. Parameters RESULTS
run Run- Run- Run- Run- Run- Run-

order order | P F D T 1 2 3 4 5 6 (M‘I;a)
4 1 -1 -1 -1 -1 29,03 | 34,91 | 28,64 | 34,52 | 37,27 | 36,09 33,41
2 2 1 -1 -1 -1 | 24,71 | 22,75 | 23,14 | 27,07 | 21,57 | 22,75 23,67
31 3 -1 1 -1 -1| 29,03 | 41,97 | 42,36 | 37,66 | 32,17 | 30,20 35,57
30 4 1 1 -1 -1 21,97 | 2589 | 27,46 | 25,89 | 25,50 | 21,97 24,78
32 5 -1 -1 1 -1| 26,67 | 24,32 | 32,17 | 27,46 | 30,60 | 28,64 28,31
33 6 1 -1 1 -1| 29,42 | 28,24 | 30,20 | 27,07 | 29,81 | 26,28 28,50
3 7 -1 1 1 -1| 36,48 | 38,44 | 29,42 | 40,40 | 36,48 | 39,62 36,81
40 8 1 1 1 -1 | 28,64 | 27,46 | 25,50 | 28,64 | 29,42 | 30,60 28,37
15 9 -1 0 0 -1| 33,73 | 32,95 | 37,27 | 33,73 | 32,17 | 36,87 34,45
22 10 1 0 0 -1 | 23,93 | 22,75 | 24,32 | 23,54 | 27,46 | 28,24 25,04
29 11 0 -1 0 -1| 27,07 | 29,81 | 29,42 | 25,50 | 25,50 | 21,18 26,41
23 12 0 1 0 -1| 33,73 | 32,17 | 34,52 | 33,73 | 31,38 | 31,77 32,88
35 13 0 0 -1 -1| 32,56 | 30,60 | 27,46 | 32,17 | 29,81 | 30,60 30,53
36 14 0 0 1 -1| 30,60 | 33,34 | 32,56 | 31,38 | 27,46 | 32,17 31,25
10 15 0 0 0 -1 | 28,64 | 25,11 | 25,89 | 19,61 | 24,71 | 27,07 25,17
5 16 0 0 0 -1| 27,85 | 33,34 | 29,81 | 28,64 | 30,20 | 30,20 30,01
28 17 0 0 0 -1 | 28,24 | 31,38 | 27,46 | 30,60 | 32,56 | 30,60 30,14
34 18 0 0 0 -1 | 25,50 | 29,42 | 26,67 | 25,11 | 27,07 | 28,24 27,00
9 19 0 0 0 -1| 33,34 | 32,56 | 29,03 | 31,77 | 28,24 | 26,28 30,20
19 20 0 0 0 -1| 31,38 | 30,60 | 23,93 | 31,77 | 29,42 | 26,67 28,96
11 21 -1 -1 -1 1| 36,48 | 21,18 | 29,03 | 38,44 | 29,42 | 29,81 30,73
37 22 1 -1 -1 1| 25,69 | 30,99 | 27,85 | 23,54 | 22,36 | 20,01 25,07
1 23 -1 1 -1 1| 40,80 | 36,09 | 38,44 | 40,40 | 40,01 | 36,09 38,64
39 24 1 1 -1 1| 30,60 | 21,57 | 28,64 | 25,11 | 27,46 | 20,79 25,69
27 25 -1 -1 1 1| 29,42 | 29,81 | 23,93 | 32,95 | 34,13 | 30,20 30,07
12 26 1 -1 1 1| 27,07 | 27,07 | 27,07 | 27,46 | 29,42 | 26,28 27,39
21 27 -1 1 1 1| 39,62 | 36,09 | 36,48 | 34,13 | 39,23 | 34,52 36,68
7 28 1 1 1 1| 22,36 | 26,67 | 24,71 | 29,81 | 21,97 | 25,89 25,24
16 29 -1 0 0 1| 28,24 | 34,52 | 32,17 | 31,38 | 31,77 | 28,64 31,12
25 30 1 0 0 1| 29,81 | 27,85 | 24,32 | 28,64 | 27,85 | 29,42 27,98
26 31 0 -1 0 1| 31,77 | 23,93 | 31,38 | 27,07 | 26,67 | 28,64 28,24
17 32 0 1 0 1| 38,44 | 34,52 | 28,64 | 36,48 | 37,27 | 40,80 36,02
38 33 0 0 -1 1| 34,13 | 30,60 | 33,73 | 28,64 | 33,34 | 28,64 31,51
8 34 0 0 1 1| 31,38 | 31,38 | 30,20 | 31,38 | 32,17 | 30,60 31,19
13 35 0 0 0 1| 34,91 | 30,20 | 33,73 | 27,07 | 32,95 | 29,03 31,32
24 36 0 0 0 1| 31,77 | 29,42 | 30,20 | 30,20 | 29,03 | 30,60 30,20
14 37 0 0 0 1| 30,60 | 26,67 | 28,24 | 24,32 | 29,81 | 31,38 28,50
6 38 0 0 0 1| 25,89 | 29,03 | 29,03 | 26,28 | 26,67 | 20,79 26,28
18 39 0 0 0 1| 30,99 | 30,20 | 30,60 | 27,07 | 30,60 | 32,17 30,27
20 40 0 0 0 1| 28,64 | 29,03 | 31,77 | 29,03 | 26,28 | 29,81 29,09
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Appendix 5.2 The regression analysis for 28-day compressive strength that

includes only main factor terms

The regression equation is
Cs28 = 29.8 - 3.70 P + 1.94 F + 0.210 D + 0.244 T

Predictor Coef SE Coef T P VIF

Constant 29.8173 0.3483 85.60 0.000

P -3.7030 0.4926 -7.52 0.000 1.0

F 1.9440 0.4926 3.95 0.000 1.0

D 0.2105 0.4926 0.43 0.672 1.0

T 0.2443 0.3483 0.70 0.488 1.0

S = 2.20309 R-Sg = 67.5% R-Sg(adj) = 63.8%

PRESS = 231.694 R-Sg(pred) = 55.70%

Analysis of Variance

Source DF SS MS F P

Regression 4 353.099 88.275 18.19 0.000

Residual Error 35 169.876 4.854
Lack of Fit 25 132.871 5.315 1.44 0.281
Pure Error 10 37.004 3.700

Total 39 522.975
28 rows with no replicates

Source DF Seq SS

P 1 274.244

F 1 75.583

D 1 0.886

T 1 2.386

Unusual Observations

Obs P CS28 Fit SE Fit Residual St Resid
10 1.00 28.500 24.137 0.985 4.363 2.21R
21 0.00 25.170 29.573 0.493 -4.403 -2.05R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 1.85702

Lack of fit test

Possible interaction in variable P (P-Value = 0.070)

Overall lack of fit test is significant at P = 0.070
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Appendix 5.3 Regression analysis based on face-centered central composite
design and applied for CS28 involving all two-way interactions and quadratic

terms

Regression Analysis: CS28 versus P, F, ...

The regression equation is

CS28 = 29.5 - 3.70 P + 1.94 F + 0.210 D + 0.446 T - 0.686 Psg + 0.554
Fsqg

+ 0.786 Dsg — 1.61 PF + 1.05 PD + 0.116 PT + 0.064 FD + 0.133 FT
- 0.318 DT - 0.690 PsqgT + 0.650 FsgT - 0.363 DsqgT - 0.398 PFT
- 0.573 FDT - 0.487 PDT
Predictor Coef SE Coef T P VIF
Constant 29.4905 0.4964 59.41 0.000
P -3.7030 0.4566 -8.11 0.000 1.0
F 1.9440 0.4566 4.26 0.000 1.0
D 0.2105 0.4566 0.46 0.650 1.0
T 0.4462 0.4964 0.90 0.379 2.4
Psqg -0.6864 0.8707 -0.79 0.440 1.8
Fsqg 0.5536 0.8707 0.64 0.532 1.8
Dsqg 0.7861 0.8707 0.90 0.377 1.8
PF -1.6081 0.5105 -3.15 0.005 1.0
PD 1.0481 0.5105 2.05 0.053 1.0
PT 0.1160 0.4566 0.25 0.802 1.0
FD 0.0644 0.5105 0.13 0.901 1.0
FT 0.1330 0.4566 0.29 0.774 1.0
DT -0.3175 0.4566 -0.70 0.495 1.0
PsqT -0.6905 0.8707 -0.79 0.437 3.6
FsqgT 0.6495 0.8707 0.75 0.464 3.6
DsqT -0.3630 0.8707 -0.42 0.681 3.6
PFT -0.3981 0.5105 -0.78 0.445 1.0
FDT -0.5731 0.5105 -1.12 0.275 1.0
PDT -0.4869 0.5105 -0.95 0.352 1.0
S = 2.04190 R-Sg = 84.1% R-Sg(adj) = 68.9%
PRESS = 475.818 R-Sqg(pred) = 9.02%
Analysis of Variance
Source DF SS MS F P
Regression 19 439.588 23.136 5.55 0.000
Residual Error 20 83.387 4.169
Lack of Fit 10 46.383 4.638 1.25 0.364
Pure Error 10 37.004 3.700
Total 39 522.975

28 rows with no replicates
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Source DF Seq SS

P 1 274.244
F 1 75.583
D 1 0.886
T 1 2.386
Psqg 1 0.138
Fsqg 1 4.607
Dsqg 1 3.399
PF 1 41.377
PD 1 17.577
PT 1 0.269
FD 1 0.066
FT 1 0.354
DT 1 2.016
PsqT 1 2.688
FsqT 1 1.687
DsqT 1 0.725
PFT 1 2.536
FDT 1 5.256
PDT 1 3.793

Unusual Observations

Obs P CS28 Fit SE Fit Residual St Resid
21 0.00 25.170 29.044 0.702 -3.874 -2.02R
29 1.00 27.980 24.973 1.431 3.007 2.06R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 1.80818

* ERROR * Not enough data for lack of fit test
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Appendix 5.4 Regression analysis for the model applied for 28-day mean
compressive strength based on the face-centered central composite design

after elimination of insignificant terms

The regression equation is
CsS28 = 29.8 - 3.70 P + 1.94 F - 1.61 PF

Predictor Coef SE Coef T P VIF
Constant 29.8173 0.3025 98.57 0.000
P -3.7030 0.4278 -8.66 0.000 1.0
F 1.9440 0.4278 4.54 0.000 1.0
PF -1.6081 0.4783 -3.36 0.002 1.0
S = 1.91319 R-Sg = 74.8% R-Sg(adj) = 72.7%
PRESS = 162.638 R-Sg(pred) = 68.90%
Analysis of Variance
Source DF SS MS F P
Regression 3 391.20 130.40 35.63 0.000
Residual Error 36 131.77 3.66
Lack of Fit 5 21.47 4.29 1.21 0.329
Pure Error 31 110.30 3.56
Total 39 522.97
Source DF Seqg SS
P 1 274.24
F 1 75.58
PF 1 41.38
Unusual Observations
Obs P CS28 Fit SE Fit Residual St Resid
21 0.00 25.170 29.817 0.303 -4.647 -2.46R
35 0.00 36.020 31.761 0.524 4.259 2.31R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 2.19336

No evidence of lack of fit (P >= 0.1).

140



Appendix 5.5 Regression analysis for mean 28-day compressive strength
when activator dosage and its interaction with natural pozzolan content is

included in regression parameters

Regression Analysis: CS28 versus P, F, D, PF, PD

The regression equation is
Cs28 = 29.8 - 3.70 P + 1.94 F + 0.210 D - 1.61 PF + 1.05 PD

Predictor Coef SE Coef T P VIF

Constant 29.8173 0.2886 103.30 0.000

P -3.7030 0.4082 -9.07 0.000 1.0

F 1.9440 0.4082 4.76 0.000 1.0

D 0.2105 0.4082 0.52 0.609 1.0

PF -1.6081 0.4564 -3.52 0.001 1.0

PD 1.0481 0.4564 2.30 0.028 1.0

S = 1.82554 R-Sg = 78.3% R-Sg(adj) = 75.1%

PRESS = 148.735 R-Sqg(pred) = 71.56%

Analysis of Variance

Source DF SS MS F P

Regression 5 409.667 81.933 24.59 0.000

Residual Error 34 113.308 3.333
Lack of Fit 9 41.125 4.569 1.58 0.175
Pure Error 25 72.182 2.887

Total 39 522.975

Source DF Seq SS

P 1 274.244

F 1 75.583

D 1 0.886

PF 1 41.377

PD 1 17.577

Unusual Observations

Obs P CS28 Fit SE Fit Residual St Resid
21 0.00 25.170 29.817 0.289 -4.647 -2.58R
35 0.00 36.020 31.761 0.500 4.259 2.43R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 1.91513

No evidence of lack of fit (P >= 0.1).
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Appendix 5.6 Regression analyses in order to check the significance of the
interaction between levels of the qualitative factor and quantitative factors
proposed by Batmaz and Tunali (2003) for mean 28-day compressive

strength

Regression Analysis: CS28 versus P, F, D, Psq, Fsq, Dsq, PF, PD, FD
(to calculate SSE1)

The regression equation is
Cs28 = 29.5 - 3.70 P + 1.94 F + 0.210 D - 0.686 Psg + 0.554 Fsg + 0.786
Dsqg

- 1.61 PF + 1.05 PD + 0.064 FD

Predictor Coef SE Coef T P VIF

Constant 29.4905 0.4550 64.82 0.000

P -3.7030 0.4185 -8.85 0.000 1.0

F 1.9440 0.4185 4.64 0.000 1.0

D 0.2105 0.4185 0.50 0.619 1.0

Psqg -0.6864 0.7981 -0.86 0.397 1.8

Fsqg 0.5536 0.7981 0.69 0.493 1.8

Dsqg 0.7861 0.7981 0.99 0.332 1.8

PF -1.6081 0.4679 -3.44 0.002 1.0

PD 1.0481 0.4679 2.24 0.033 1.0

FD 0.0644 0.4679 0.14 0.891 1.0

S = 1.87170 R-Sg = 79.9% R-Sg(adj) = 73.9%

PRESS = 183.405 R-Sqg(pred) = 64.93%

Analysis of Variance

Source DF SS MS F P

Regression 9 417.878 46.431 13.25 0.000

Residual Error 30 105.097 3.503
Lack of Fit 5 32.915 6.583 2.28 0.077
Pure Error 25 72.182 2.887

Total 39 522.975

Source DF Seq SS

P 1 274.244

F 1 75.583

D 1 0.886

Psqg 1 0.138

Fsqg 1 4.607

Dsqg 1 3.399

PF 1 41.377

PD 1 17.577

FD 1 0.066

Unusual Observations

Obs P CS28 Fit SE Fit Residual St Resid
21 0.00 25.170 29.491 0.455 -4.321 -2.38R
35 0.00 36.020 31.988 0.927 4.032 2.48R

R denotes an observation with a large standardized residual.
Durbin-Watson statistic = 1.98380

No evidence of lack of fit (P >= 0.1).
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Regression Analysis: CS28 versus P, F, D, Psq, Fsq, Dsq, PF, PD, FD, T
(to calculate SSE2)

The regression equation is
Cs28 = 29.5 - 3.70 P + 1.94 F + 0.210 D - 0.686 Psg + 0.554 Fsg + 0.786

Dsqg

- 1l.61

Predictor
Constant
P

F

D

Psqg

Fsqg

Dsqg

PF

PD

FD

Coef
29.4905
-3.7030

1.9440
0.2105
-0.6864
0.5536
0.7861
-1.6081
1.0481
0.0644
0.2443

S = 1.88196 R-Sq

PRESS = 194.247

SE Coef
.4575
.4208
.4208
.4208
.8025
.8025
.8025
.4705
.4705
.4705
.2976

[eNeoNeoNoNoNoNolNoNolNoNoN|

= 80.4%
R-Sqg(pred) = 62.8

Analysis of Variance

Source

Regression
Residual Error 29
Lack of Fit 19
Pure Error 10

Total

DF
10

39

Ss
420.264
102.711

65.707
37.004
522.975

28 rows with no replicates

Source DF

P

F

D
Psqg
Fsqg
Dsqg
PF
PD
FD
T

PR R R R PR R

Seq SS
274.244
75.583
0.886
0.138
4.607
3.399
41.377
17.577
0.066
2.386

Unusual Observations

Obs P
21 0.00
35 0.00
38 1.00

R denotes

Cs28
25.170
36.020
25.240

Fit
29.246
32.232
28.344

T
64.46
-8.80

4.62
0.50
-0.86
0.69
0.98
-3.42
2.23
0.14
0.82

R-Sg(a

MS
.026
.542
.458
.700

w w w N

SE Fit
0.546
0.979
1.222

PF + 1.05 PD + 0.064 FD + 0.244 T

P VIF
0.000
0.000 1.0
0.000 1.0
0.621 1.0
0.399 1.8
0.496 1.8
0.335 1.8
0.002 1.0
0.034 1.0
0.892 1.0
0.418 1.0

dj) = 73.6%
6%
F P

11.87 0.000

0.93 0.571

Residual St Resid

-4.076 -2.26R
3.788 2.36R
-3.104 -2.17R

an observation with a large standardized residual.

Durbin-Watson statistic =1

No evidence of lack of fit

.90645

(P >= 0.

1).
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Regression Analysis: CS28 versus P, F, D, Psq, Fsq, Dsq, PF, PD, FD, T,
PT, FT, DT, PFT, PDT, FDT, PsqT, FsqT, DsqT
(to calculate SSE3)

The regression equation is
cs28 = 29.5 - 3.70 P + 1.94 F + 0.210 D + 0.446 T - 0.686 Psg + 0.554
Fsqg

+ 0.786 Dsg — 1.61 PF + 1.05 PD + 0.116 PT + 0.064 FD + 0.133 FT
- 0.318 DT - 0.690 PsqT + 0.650 FsgT - 0.363 DsqgT - 0.398 PFT
- 0.573 FDT - 0.487 PDT
Predictor Coef SE Coef T P VIF
Constant 29.4905 0.4964 59.41 0.000
P -3.7030 0.4566 -8.11 0.000 1.0
F 1.9440 0.4566 4.26 0.000 1.0
D 0.2105 0.4566 0.46 0.650 1.0
T 0.4462 0.4964 0.90 0.379 2.4
Psqg -0.6864 0.8707 -0.79 0.440 1.8
Fsg 0.5536 0.8707 0.64 0.532 1.8
Dsqg 0.7861 0.8707 0.90 0.377 1.8
PF -1.6081 0.5105 -3.15 0.005 1.0
PD 1.0481 0.5105 2.05 0.053 1.0
PT 0.1160 0.4566 0.25 0.802 1.0
FD 0.0644 0.5105 0.13 0.901 1.0
FT 0.1330 0.4566 0.29 0.774 1.0
DT -0.3175 0.4566 -0.70 0.495 1.0
PsqT -0.6905 0.8707 -0.79 0.437 3.6
FsqT 0.6495 0.8707 0.75 0.464 3.6
DsqgT -0.3630 0.8707 -0.42 0.681 3.6
PFT -0.3981 0.5105 -0.78 0.445 1.0
FDT -0.5731 0.5105 -1.12 0.275 1.0
PDT -0.4869 0.5105 -0.95 0.352 1.0
S = 2.04190 R-Sg = 84.1% R-Sg(adj) = 68.9%
PRESS = 475.818 R-Sg(pred) = 9.02%
Analysis of Variance
Source DF SS MS F P
Regression 19 439.588 23.136 5.55 0.000
Residual Error 20 83.387 4.169
Lack of Fit 10 46.383 4.638 1.25 0.364
Pure Error 10 37.004 3.700
Total 39 522.975

28 rows with no replicates
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Source DF Seq SS

P 1 274.244
F 1 75.583
D 1 0.886
T 1 2.386
Psqg 1 0.138
Fsqg 1 4.607
Dsqg 1 3.399
PF 1 41.377
PD 1 17.577
PT 1 0.269
FD 1 0.066
FT 1 0.354
DT 1 2.016
PsqT 1 2.688
FsqT 1 1.687
DsqT 1 0.725
PFT 1 2.536
FDT 1 5.256
PDT 1 3.793

Unusual Observations

Obs P CS28 Fit SE Fit Residual St Resid
21 0.00 25.170 29.044 0.702 -3.874 -2.02R
29 1.00 27.980 24.973 1.431 3.007 2.06R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 1.80818

* ERROR * Not enough data for lack of fit test
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Appendix 5.7 Regression analysis for activator type NaOH

Regression Analysis: CS28 versus P, F, PF, PD, D

The regression equation is
Cs28 = 29.6 - 3.82 P + 1.81 F - 1.21 PF + 1.53 PD + 0.528 D

Predictor Coef SE Coef T P VIF
Constant 29.5730 0.4199 70.43 0.000
P -3.8190 0.5938 -6.43 0.000 1.0
F 1.8110 0.5938 3.05 0.009 1.0
PF -1.2100 0.6639 -1.82 0.090 1.0
PD 1.5350 0.6639 2.31 0.037 1.0
D 0.5280 0.5938 0.89 0.389 1.0
S = 1.87784 R-Sg = 81.1% R-Sg(adj) = 74.4%
PRESS = 123.368 R-Sqg(pred) = 52.80%
Analysis of Variance
Source DF SS MS F P
Regression 5 211.995 42.399 12.02 0.000
Residual Error 14 49.368 3.526
Lack of Fit 9 27.996 3.111 0.73 0.681
Pure Error 5 21.372 4.274
Total 19 261.363

14 rows with no replicates

Source DF Seq SS

P 1 145.848
F 1 32.797
PF 1 11.713
PD 1 18.850
D 1 2.788

Durbin-Watson statistic = 2.30086

No evidence of lack of fit (P >= 0.1).
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Appendix 5.8 Regression analysis for activator type Na,SO,4

The regression equation is
Cs28 = 30.3 - 3.59 P + 2.08 F - 2.01 PF - 0.401 Psqgq

Predictor Coef SE Coef T P VIF
Constant 30.2620 0.6023 50.24 0.000
P -3.5870 0.6023 -5.96 0.000 1.0
F 2.0770 0.6023 3.45 0.004 1.0
PF -2.0062 0.6734 -2.98 0.009 1.0
Psqg -0.4010 0.8518 -0.47 0.645 1.0
S = 1.90467 R-Sg = 79.0% R-Sg(adj) = 73.4%
PRESS = 89.8529 R-Sqg(pred) = 65.34%
Analysis of Variance
Source DF SS MS F P
Regression 4 204.809 51.202 14.11 0.000
Residual Error 15 54.416 3.628
Lack of Fit 4 27.354 6.838 2.78 0.081
Pure Error 11 27.063 2.460
Total 19 259.226

4 rows with no replicates

Source DF Seq SS

P 1 128.666
F 1 43.139
PF 1 32.200
Psqg 1 0.804
Obs P CS28 Fit SE Fit Residual St Resid
1 -1.00 30.730 29.365 1.242 1.365 0.95
2 -1.00 30.070 29.365 1.242 0.705 0.49
3 0.00 28.240 28.185 0.852 0.055 0.03
4 1.00 25.070 26.203 1.242 -1.133 -0.78
5 1.00 27.390 26.203 1.242 1.187 0.82
6 -1.00 31.120 33.448 0.852 -2.328 -1.37
7 0.00 31.510 30.262 0.602 1.248 0.69
8 0.00 31.320 30.262 0.602 1.058 0.59
9 0.00 30.200 30.262 0.602 -0.062 -0.03
10 0.00 28.500 30.262 0.602 -1.762 -0.98
11 0.00 26.280 30.262 0.602 -3.982 -2.20R
12 0.00 30.270 30.262 0.602 0.008 0.00
13 0.00 29.090 30.262 0.602 -1.172 -0.65
14 0.00 31.190 30.262 0.602 0.928 0.51
15 1.00 27.980 26.274 0.852 1.706 1.00
16 -1.00 38.640 37.531 1.242 1.109 0.77
17 -1.00 36.680 37.531 1.242 -0.851 -0.59
18 0.00 36.020 32.339 0.852 3.681 2.16R
19 1.00 25.690 26.345 1.242 -0.655 -0.45
20 1.00 25.240 26.345 1.242 -1.105 -0.76

R denotes an observation with a large standardized residual.
Durbin-Watson statistic = 1.98417

No evidence of lack of fit (P >= 0.1).
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Appendix 5.9 Economic design alternatives for mean 28-day compressive

strength

Main FCCD (40 Observations)

Condition number: 5.5
D-optimality (determinant of XTX): 1.47640E+17
A-optimality (trace of inv (XTX)): 1.11705
G-optimality (avg leverage/max leverage) : 0.612326
V-optimality (average leverage): 0.35
Maximum leverage: 0.571591
WD (16 observations)

Condition number: 68.0873
D-optimality (determinant of XTX): 1.24613E+10
A-optimality (trace of inv(XTX)): 8.36393
G-optimality (avg leverage/max leverage) : 0.875
V-optimality (average leverage): 0.875
Maximum leverage: 1

DJ (16 observations)

Condition number: 8.81560
D-optimality (determinant of XTX): 3.99432E+11
A-optimality (trace of inv (XTX)): 3.22110
G-optimality (avg leverage/max leverage) : 0.894231
V-optimality (average leverage): 0.875
Maximum leverage: 0.978495
WD Design DJ Design
Parameters Parameters
u (MPa) u (MPa)
P F D T P F D T
-1 1 -1 1 38.64 -1 0 0 1 31.12
-1 1 1 1 36.68 -1 1 -1 -1 35.57
1 -1 1 1 27.39 -1 1 1 -1 36.81
1 1 1 -1 28.37 0 1 0 1 36.02
-1 -1 -1 -1 33.41 0 0 -1 1 31.51
1 -1 -1 -1 23.67 -1 -1 -1 -1 33.41
-1 -1 1 -1 28.31 -1 -1 1 -1 28.31
1 1 -1 -1 24.78 0 0 0 -1 28.58
0 0 0 1 29.28 0 0 0 1 29.28
0 0 0 -1 28.58 1 1 -1 -1 24.78
1 0 0 -1 25.04 1 1 1 -1 28.37
-1 0 0 1 31.12 0 0 1 1 31.19
0 1 0 -1 32.88 0 -1 0 1 28.24
0 -1 0 1 28.24 1 -1 -1 -1 23.67
0 0 1 1 31.19 1 -1 1 -1 28.50
0 0 -1 1 31.51 1 0 0 1 27.98
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Appendix 5.10 Regression analysis for D] design

The regression equation is
Cs28 = 30.2 - 3.19 P + 1.94 F - 1.21 PF

Predictor Coef SE Coef T P VIF
Constant 30.2088 0.5728 52.74 0.000
P -3.1920 0.7246 -4.41 0.001 1.0
F 1.9420 0.7246 2.68 0.020 1.0
PF -1.2100 0.8101 -1.49 0.161 1.0
S = 2.29130 R-Sg = 70.6% R-Sg(adj) = 63.3%
PRESS = 132.341 R-Sqg(pred) = 38.25%
Analysis of Variance
Source DF SS MS F P
Regression 3 151.315 50.438 9.61 0.002
Residual Error 12 63.001 5.250
Lack of Fit 5 24.966 4.993 0.92 0.520
Pure Error 7 38.035 5.434
Total 15 214.316

4 rows with no replicates

Source DF Seq SS
P 1 101.889
F 1 37.714
PF 1 11.713

Durbin-Watson statistic = 1.67027

No evidence of lack of fit (P >= 0.1).
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Appendix 5.11 Regression analysis for WD design

The regression equation is
cs28 = 29.8 - 3.89 P + 2.03 F - 0.007 D - 1.44 PF + 1.80 PD — 1.16 Psqgq

+ 1.32 Fsqg

Predictor Coef SE Coef T P VIF
Constant 29.8389 0.5685 52.49 0.000
P -3.8910 0.3975 -9.79 0.000 1.0
F 2.0330 0.3975 5.11 0.001 1.0
D -0.0070 0.3975 -0.02 0.986 1.0
PF -1.4388 0.4444 -3.24 0.012 1.0
PD 1.7963 0.4444 4.04 0.004 1.0
Psqg -1.1566 0.7339 -1.58 0.154 1.3
Fsqgq 1.3234 0.7339 1.80 0.109 1.3
S = 1.25701 R-Sg = 95.0% R-Sg(adj) = 90.7%
PRESS = 48.6838 R-Sg(pred) = 80.83%
Analysis of Variance
Source DF SS MS F P
Regression 7 241.329 34.476 21.82 0.000
Residual Error 8 12.641 1.580

Lack of Fit 7 12.396 1.771 7.23 0.279

Pure Error 1 0.245 0.245
Total 15 253.970

14 rows with no replicates

Source DF Seq SS
P 1 151.399
F 1 41.331
D 1 0.000
PF 1 16.560
PD 1 25.812
Psqg 1 1.089
Fsqg 1 5.137

Durbin-Watson statistic = 1.76501
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Appendix 6.1. Observations of standard deviation estimates of 7-day and

28-day compressive strengths (MPa) and cost values (TL)

S;d R;” p F D T Stdev7 | Stdev28 | COST
1 4| -1.00| -1.00] -1.00| -1|2.12935 |3.6749 | 0.11525
2 2| 1.00| -1.00| -1.00| -1]1.0932 1.94821 | 0.13802
3| 31| -1.00| 1.00]| -1.00| -1 4.2857 5.91095 | 0.18035
4| 30| 1.00| 1.00| -1.00| -1]1.06467 |2.27942 | 0.24032
5| 32| -1.00]| -1.00| 1.00| -1]1.39792 | 2.81139 | 0.14044
6| 33| 1.00| -1.00| 1.00| -1]1.32831 | 1.58209 | 0.16647
7 3| -1.00| 1.00] 1.00| -1]0.974105 |3.95716 | 0.20554
8| 40| 1.00| 1.00| 1.00| -10.952811 | 1.74841 | 0.26877
9 15| -1.00| 0.00| 0.00| -1]1.14812 |2.1112 | 0.14286
10| 22| 1.00| 0.00] 0.00| -1]1.92836 | 2.25226 | 0.18884
11| 29| 0.00| -1.00| 0.00| -1 1.33601 | 3.16417 | 0.13150
12| 23| 0.00] 1.00] 0.00| -1]2.60987 |1.27512 | 0.21564
13| 35| 0.00] 0.00] -1.00| -1]2.95374 | 1.83011 | 0.15912
14| 36| 0.00] 0.00] 1.00| -1]2.00657 |2.08554 |0.18192
15 10| 0.00| 0.00| 0.00| -1|1.74988 | 3.07289 | 0.16737
16 5/ 0.00| 0.00] 0.00| -1]1.41976 |1.88533 | 0.16737
17| 28| 0.00] 0.00| 0.00| -1]2.25226 | 1.92836 | 0.16737
18| 34| 0.00] 0.00] 0.00] -1]0.521384 |1.6347 |0.16737
19 9| 0.00] 0.00]| 0.00| -1]1.6963 2.77374 | 0.16737
20 19| 0.00| 0.00| 0.00| -1]2.0155 3.07289 | 0.16737
21 11| -1.00| -1.00| -1.00| 1 |4.23514 | 6.15078 | 0.11775
22| 37| 1.00| -1.00] -1.00| 1| 1.58856 | 3.9625 | 0.14399
23 1| -1.00| 1.00| -1.00| 1|2.15449 |2.13055 | 0.18285
24| 39| 1.00| 1.00] -1.00| 1]1.34557 | 3.92854 | 0.24846
25| 27| -1.00| -1.00| 1.00| 1]0.675639 | 3.54923 | 0.13601
26 12| 1.00| -1.00| 1.00| 1]1.37386 | 1.06467 | 0.16203
27| 21| -1.00| 1.00| 1.00| 1|2.68829 | 2.31071 | 0.19959
28 7| 1.00| 1.00| 1.00| 1]1.97566 |2.92144 | 0.26693
29 16| -1.00| 0.00| 0.00| 1|1.47644 | 2.34923 | 0.15003
30| 25| 1.00| 0.00]| 0.00| 1]2.02565 | 1.96394 | 0.19523
31| 26| 0.00] -1.00] 0.00| 1]2.3796 2.99769 | 0.13989
32 17| 0.00]| 1.00| 0.00| 1]|1.76156 | 4.1766 | 0.22407
33| 38| 0.00| 0.00] -1.00| 1 |3.30452 | 2.55023 | 0.16487
34 8| 0.00] 0.00] 1.00| 1]2.57126 | 0.690655 | 0.18456
35 13| 0.00| 0.00]| 0.00| 1]1.35128 | 3.03257 | 0.17411
36| 24| 0.00] 0.00] 0.00| 1]1.32831 | 0.960851 | 0.17411
37 14| 0.00| 0.00| 0.00| 1]2.97364 | 2.65662 | 0.17411
38 6| 0.00| 0.00]| 0.00]| 1]1.7322 3.01815 | 0.17411
39 18| 0.00| 0.00| 0.00] 1]1.1095 1.70835 | 0.17411
40| 20| 0.00] 0.00| 0.00]| 11.52261 |1.77895 |0.17411
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Appendix 6.2. Regression output for cost function from Design-Expert software

Response

Source
Model
A-Pozzolan
B-Fineness
C-Dosage
D-Type

AB

CD

B2

C2
Residual
Lack of Fit
Pure Error
Cor Total

1 COST
ANOVA for Response Surface Reduced Quadratic Model
Analysis of variance table [Partial sum of squares - Type III]

Sum of
Squares
0.051
0.01
0.035
2.45E-03
1.67E-04
1.50E-03
7.56E-05
4.54E-04
6.81E-05
1.46E-04
1.46E-04
0
0.051

df

8
1
1
1
1
1
1
1

1
31
21
10
39

Mean

Square
6.35E-03
0.01
0.035
2.45E-03
1.67E-04
1.50E-03
7.56E-05
4.54E-04
6.81E-05
4.72E-06
6.97E-06
0

F
Value
1344.78
2130.27
7496.64
518.7
35.31
318.56
16.02
96.19
14.43

p-value

Prob > F

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001
0.0004

< 0.0001
0.0006

The Model F-value of 1344.78 implies the model is significant. There is only
a 0.01% chance that a "Model F-Value" this large could occur due to noise.
Values of "Prob > F" less than 0.0500 indicate model terms are significant.

In this case A, B, C, D, AB, CD, B2, C2 are significant model terms.

Values greater than 0.1000 indicate the model terms are not significant.

If there are many insignificant model terms (not counting those required to support

hierarchy),

model reduction may improve your model.

Std. Dev.
Mean
CV. %
PRESS

2.17E-03
0.18
1.23

2.82E-04

R-Squared
Adj R-
Squared
Pred R-
Squared
Adeq
Precision

0.9971
0.9964
0.9945

150.58

significant

The "Pred R-Squared" of 0.9945 is in reasonable agreement with the "Adj R-Squared" of

0.9964.

"Adeq Precision" measures the signal to noise ratio. A ratio greater than 4 is desirable. Your
ratio of 150.580 indicates an adequate signal. This model can be used to navigate the design

space.

Factor
Intercept
A-Pozzolan
B-Fineness
C-Dosage
D-Type
AB
CD
B2
C2

Coefficient
Estimate
0.17
0.022
0.042
0.011
2.04E-03
9.69E-03
-1.94E-03
8.42E-03
3.26E-03

df

— e e e e e e e

Standard

Error
5.15E-04
4.86E-04
4.86E-04
4.86E-04
3.44E-04
5.43E-04
4.86E-04
8.59E-04
8.59E-04
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95% CI 95% CI
Low High

0.17 0.17
0.021 0.023
0.041 0.043
0.01 0.012
1.34E-03  2.74E-03
8.59E-03 0.011
-2.94E-03  -9.54E-04
6.67E-03 0.01
1.51E-03  5.01E-03

VIF

—_— e

1.56
1.56



Final Equation in Terms of Coded Factors:

COST
0.17
0.022
0.042
0.011
2.04E-03
9.69E-03
-1.94E-03
8.42E-03
3.26E-03

*A
*B
*C
*D
*A*B
*C*D
*B2
*C2

Final Equation in Terms of Actual Factors:

Type
COST
0.16812
0.02242
0.042058
0.013007
9.69E-03
8.42E-03
3.26E-03

Type

COST
0.1722
0.02242
0.042058
9.12E-03
9.69E-03
8.42E-03
3.26E-03

NaOH

* Pozzolan

* Fineness

* Dosage

* Pozzolan * Fineness
* Fineness2

* Dosage2

Na2S04

* Pozzolan

* Fineness

* Dosage

* Pozzolan * Fineness
* Fineness2

* Dosage2
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Appendix 6.3. Regression output for standard deviation of CS7 from

Design-Expert software

Response 1 STDEV-CS7
ANOVA for Response Surface Reduced Quadratic Model
Analysis of variance table [Partial sum of squares - Type III]

Sum of Mean F p-value
Source Squares df Square Value Prob>F
Model 11.42913 5 2.285827 4.6967 0.0023 significant
A-Pozzolan 2.105047 1 2.105047 4.325252 0.0452
C-Dosage 3.370616 1 3.370616 6.925622 0.0127
AC 3.617009 1 3.617009 7.431888 0.0101
AN2 1.506694 1 1.506694 3.095813 0.0875
Ccr2 2.146861 1 2.146861 4.411168 0.0432
Residual 16.54739 34 0.486688
Lack of Fit  12.46461 24 0.519359 1.272071 0.3581 not significant
Pure Error 4.08278 10 0.408278
Cor Total 27.97652 39

The Model F-value of 4.70 implies the model is significant. There is only
a 0.23% chance that a "Model F-Value" this large could occur due to noise.

The "Lack of Fit F-value" of 1.27 implies the Lack of Fit is not significant relative to the pure
error. There is a 35.81% chance that a "Lack of Fit F-value" this large could occur due
to noise. Non-significant lack of fit is good -- we want the model to fit.

Std. Dev. 0.69763 R-Squared 0.408526
Mean 1.86094 Adj R-Squared  0.321544
CV. % 37.48806 Pred R-Squared  0.142562
PRESS 23.98813 Adeq Precision  7.824155

The "Pred R-Squared" of 0.1426 is in reasonable agreement with the "Adj R-Squared" of 0.3215.

"Adeq Precision" measures the signal to noise ratio. A ratio greater than 4 is desirable. Your
ratio of 7.824 indicates an adequate signal. This model can be used to navigate the design space.

Coefficient Standard 95% CI  95% CI

Factor Estimate df Error Low High VIF
Intercept 1.813952 1 0.165458 1.477702 2.150202

A-Pozzolan -0.32443 1 0.155995 -0.64145 -0.00741 1
C-Dosage -0.41053 1 0.155995 -0.72754 -0.09351 1
AC 0.475461 1 0.174408 0.121022 0.8299 1
AN2 -0.4852 1 0.275763 -1.04562 0.075215 1.5625
Ccn2 0.579178 1 0.275763 0.018761 1.139595 1.5625
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Final Equation in Terms of Coded Factors:

STDEV-CS7=

1.813952

-0.32443  * A

-0.41053 *C

0.475461 *A*C
-0.4852  * AN2

0.579178 *C"2
Final Equation in Terms of Actual Factors:

STDEV-CS7=

1.813952

-0.32443  * Pozzolan

-0.41053  * Dosage

0.475461  * Pozzolan * Dosage
-0.4852  *Pozzolan”2

0.579178  * Dosage™2
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Appendix 6.4 Regression output for standard deviation of CS28 from

Design-Expert software

ANOVA for Response Surface Reduced Quadratic Model
Analysis of variance table [Partial sum of squares - Type Ill]

Sum of Mean F p-value
Source Squares  df Square Value Prob > F
Model 21.44354 4 5360885 5.925107 0.0009 significant
A-
Pozzolan 6.389731 1 6.389731 7.062237 0.0118
B-

Fineness  0.003558 1 0.003558 0.003932 0.9504

C-Dosage 6.780193 1 6.780193 7.493794 0.0097

Br2 8.270057 1 8.270057 9.140464 0.0047

Residual 31.6671 35 0.904774

Lack of

Fit 26.02381 25 1.040953 1.844585 0.1564 not significant
Pure

Error 5.643288 10 0.564329

Cor Total 53.11064 39

The Model F-value of 5.93 implies the model is significant. There is only
a 0.09% chance that a "Model F-Value" this large could occur due to noise.

Values of "Prob > F" less than 0.0500 indicate model terms are significant.

In this case A, C, Bl ++2[1+- are significant model terms.

Values greater than 0.1000 indicate the model terms are not significant.

If there are many insignificant model terms (not counting those required to support hierarchy),
model reduction may improve your model.

The "Lack of Fit F-value" of 1.84 implies the Lack of Fit is not significant relative to the pure
error. There is a 15.64% chance that a "Lack of Fit F-value" this large could occur due
to noise. Non-significant lack of fit is good -- we want the model to fit.

Std. Dev. 0.951196 R-Squared 0.403752
Mean 2.622527 Adj R-Squared 0.33561
CV. % 36.27021 Pred R-Squared 0.165484
PRESS 44.32169 Adeq Precision 7.887209

The "Pred R-Squared" of 0.1655 is in reasonable agreement with the "Adj R-Squared" of 0.3356.

"Adeq Precision” measures the signal to noise ratio. A ratio greater than 4 is desirable. Your
ratio of 7.887 indicates an adequate signal. This model can be used to navigate the design space.

Coefficient Standard 95% Cl 95% ClI
Factor Estimate df Error Low High VIF
Intercept  2.167828 1 0.212694 1.736036 2.59962
A- -0.56523 1 0.212694 -0.99702 -0.13344 1
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Pozzolan

B-

Fineness -0.01334
C-Dosage -0.58225
B2 0.909399

1 0.212694 -0.44513 0.418455
1 0.212694 -1.01404 -0.15045
1 0.300795 0.298753 1.520044

Final Equation in Terms of Coded Factors:

STDEV-CS28=

2.167828
-0.56523
-0.01334
-0.58225

0.909399

*A
*B
*C
* B2

Final Equation in Terms of Actual Factors:

STDEV-CS28=

2.167828
-0.56523
-0.01334

-0.58225
0.909399

* Pozzolan
* Fineness

*

Dosage
* Fineness"2
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Appendix 6.5 Regression output for strength to cost ratio at 7 days

Use your mouse to right click on individual cells for definitions.

Response 2 Ratio7

Transform: Power Lambda: 0.15 Constant: 0
ANOVA for Response Surface Reduced Quadratic Model

Analysis of variance table [Partial sum of squares - Type Ill]

Sum of Mean F p-value
Source Squares df Square Value Prob > F
Model 0.299012 9 0.033224  63.5373 < 0.0001 significant
A-Pozzolan 0.213492 1 0.213492  408.285 < 0.0001
B-Fineness 0.057662 1 0.057662 110.2737 < 0.0001
C-Dosage 0.001042 1 0.001042 1.992447 0.1684
D-Type 0.002377 1 0.002377 4.546576 0.0413
AC 0.005538 1 0.005538 10.59077 0.0028
BC 0.002753 1 0.002753 5.264072 0.0289
CD 0.007731 1 0.007731 14.78573 0.0006
BA2 0.001772 1 0.001772 3.388324 0.0756
cr2 0.001597 1 0.001597  3.05391 0.0908
Residual 0.015687 30 0.000523

not

Lack of Fit 0.012045 20 0.000602 1.653904 0.2081 significant
Pure Error 0.003642 10 0.000364
Cor Total 0.314699 39

The Model F-value of 63.54 implies the model is significant. There is only
a 0.01% chance that a "Model F-Value" this large could occur due to noise.

Values of "Prob > F" less than 0.0500 indicate model terms are significant.

In this case A, B, D, AC, BC, CD are significant model terms.

Values greater than 0.1000 indicate the model terms are not significant.

If there are many insignificant model terms (not counting those required to support hierarchy),
model reduction may improve your model.

The "Lack of Fit F-value" of 1.65 implies the Lack of Fit is not significant relative to the pure
error. There is a 20.81% chance that a "Lack of Fit F-value" this large could occur due
to noise. Non-significant lack of fit is good -- we want the model to fit.

Std. Dev. 0.022867 R-Squared 0.950153

Mean 1.982738 Adj R-Squared  0.935198
Pred R-

CV. % 1.153304 Squared 0.906489

PRESS 0.029428 Adeq Precision 37.80189

The "Pred R-Squared" of 0.9065 is in reasonable agreement with the "Adj R-Squared" of 0.9352.

"Adeq Precision" measures the signal to noise ratio. A ratio greater than 4 is desirable. Your
ratio of 37.802 indicates an adequate signal. This model can be used to navigate the design space.
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Factor
Intercept
A-Pozzolan
B-Fineness
C-Dosage
D-Type

AC

BC

CD

B2

cn2

Coefficient
Estimate
1.966521
-0.10332
-0.05369
0.007218
0.007709
0.018604
0.013116
-0.01966
0.016638
0.015796

df

—_ ke e e ks

Standard

Error

Final Equation in Terms of Coded Factors:

(Ratio 7)*0.15
1.966521
-0.10332
-0.05369
0.007218
0.007709
0.018604
0.013116
-0.01966
0.016638
0.015796

*A
*B
*C
*D
*A*C
*B*C
*C*D
*Br2
*Ch2

159

0.005423
0.005113
0.005113
0.005113
0.003616
0.005717
0.005717
0.005113
0.009039
0.009039

95% Cl
Low
1.955445
-0.11376
-0.06414
-0.00323
0.000325
0.006929
0.001441
-0.0301
-0.00182
-0.00266

95% Cl
High
1.977597
-0.09288
-0.04325
0.01766
0.015093
0.030279
0.024791
-0.00922
0.035098
0.034256

VIF

[ G G T WU (I G G §

1.5625
1.5625



Appendix 6.6 Regression output for strength to cost ratio at 28 days

Response 3 Ratio 28

Transform: Power Lambda: 0.29 Constant: 0
ANOVA for Response Surface Reduced 2FI Model

Analysis of variance table [Partial sum of squares - Type Ill]

Sum of Mean F p-value
Source Squares df Square Value Prob > F
Model 3.180808 5 0.636162 101.0892 < 0.0001 significant
A-Pozzolan 1.942042 1 1.942042 308.5998 < 0.0001
B-Fineness 0.973213 1 0.973213 154.6483 < 0.0001
C-Dosage 0.11046 1 0.11046 17.55265 0.0002
AB 0.097939 1 0.097939 15.56297 0.0004
AC 0.057154 1 0.057154 9.082084 0.0049
Residual 0.213965 34 0.006293

not

Lack of Fit 0.13791 24 0.005746 0.755541 0.7262 significant
Pure Error 0.076055 10 0.007605
Cor Total 3.394773 39

The Model F-value of 101.09 implies the model is significant. There is only
a 0.01% chance that a "Model F-Value" this large could occur due to noise.

Values of "Prob > F" less than 0.0500 indicate model terms are significant.

In this case A, B, C, AB, AC are significant model terms.

Values greater than 0.1000 indicate the model terms are not significant.

If there are many insignificant model terms (not counting those required to support hierarchy),
model reduction may improve your model.

The "Lack of Fit F-value" of 0.76 implies the Lack of Fit is not significant relative to the pure
error. There is a 72.62% chance that a "Lack of Fit F-value" this large could occur due
to noise. Non-significant lack of fit is good -- we want the model to fit.

Std. Dev. 0.079329 R-Squared 0.936972

Mean 4.45538 Adj R-Squared  0.927704
Pred R-

CV. % 1.780519 Squared 0.913225

PRESS 0.294583 Adeq Precision  39.48194

The "Pred R-Squared" of 0.9132 is in reasonable agreement with the "Adj R-Squared" of 0.9277.

"Adeq Precision” measures the signal to noise ratio. A ratio greater than 4 is desirable. Your
ratio of 39.482 indicates an adequate signal. This model can be used to navigate the design space.

Coefficient Standard 95% ClI 95% ClI
Factor Estimate df Error Low High VIF
Intercept 4.45538 1 0.012543 4.429889  4.48087
A-Pozzolan -0.31161 1 0.017738 -0.34766 -0.27556 1
B-Fineness -0.22059 1 0.017738 -0.25664 -0.18454 1
C-Dosage -0.07432 1 0.017738 -0.11037 -0.03827 1
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AB -0.07824 1 0.019832 -0.11854 -0.03793
AC 0.059767 1 0.019832 0.019463 0.100071

Final Equation in Terms of Coded Factors:

(Ratio 28)10.29 =
4.45538
-0.31161  *A
-0.22059 *B
-0.07432 *C
-0.07824 *A*B
0.059767 *A*C

Final Equation in Terms of Actual Factors:

(Ratio 28)"0.29 =
4.45538
-0.31161 * Pozzolan
-0.22059 * Fineness

*

-0.07432 Dosage
-0.07824 * Pozzolan * Fineness
0.059767 * Pozzolan * Dosage
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Appendix 7.1 Regression analyses for both responses when the regression

is applied to single observations instead of mean values of replications

Regression Analysis: CS7 versus P; F; D; T; Fsq; Dsq; PF; PD; PT; FD; DT

The regression equation is
cs7 = 15,4 - 3,80 P + 0,893 F + 1,43 D + 0,602 T + 1,40 Fsg + 1,42 Dsqg
+ 0,563 PF + 0,662 PD - 0,382 PT + 0,638 FD - 1,21 DT

Predictor Coef SE Coef T P VIF
Constant 15,4110 0,2097 73,48 0,000

P -3,7956 0,1977 -19,20 0,000 1,0
F 0,8926 0,1977 4,51 0,000 1,0
D 1,4316 0,1977 7,24 0,000 1,0
T 0,6015 0,1398 4,30 0,000 1,0
Fsg 1,3992 0,3495 4,00 0,000 1,6
Dsqg 1,4159 0,3495 4,05 0,000 1,6
PF 0,5634 0,2211 2,55 0,011 1,0
PD 0,6622 0,2211 3,00 0,003 1,0
PT -0,3824 0,1977 -1,93 0,054 1,0
FD 0,6376 0,2211 2,88 0,004 1,0
DT -1,2098 0,1977 -6,12 0,000 1,0
S = 2,16594 R-Sq = 72,7% R-Sg(adj) = 71,3%

PRESS = 1190, 96 R-Sg(pred) = 69,56%

Analysis of Variance

Source DF SS MS F P

Regression 11 2842,32 258,39 55,08 0,000

Residual Error 228 1069,062 4,69
Lack of Fit 18 178,83 9,94 2,34 0,002
Pure Error 210 890,78 4,24

Total 239 3911,093

Source DF Seq SS

P 1 1728,77

F 1 95, 60

D 1 245,93

T 1 86,84

Fsqgq 1 303,41

Dsqg 1 76,98

PF 1 30,48

PD 1 42,10

PT 1 17,55

FD 1 39,03

DT 1 175,62

Unusual Observations

Obs P CS7 Fit SE Fit Residual St Resid
1 -1,00 30,990 23,754 0,637 7,236 3,50R
4 -1,00 18,040 23,754 0,637 -5,714 -2,76R
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63 -1,00 15,690 20,191 0,376
73 0,00 22,360 17,207 0,464

98 0,00 10,590 16,013 0,252
162 0,00 12,160 17,650 0,464
169 1,00 16,870 11,835 0,376
174 1,00 16,480 11,835 0,376
190 -1,00 27,850 23,532 0,637
193 -1,00 23,930 18,750 0,637
194 -1,00 23,930 18,750 0,637
216 0,00 11,770 17,101 0,419

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 1,69377

Lack of fit test
Possible interaction in variable P

Possible interaction in wvariable D

Possible interaction in variable F

Possible interaction in wvariable D

(P

(P

59

sq

-4,501
5,153
-5,423
-5,490
5,035
4,645
4,318
5,180
5,180
-5,331

-Value

-Value

(P-Val

(P-Val

Overall lack of fit test is significant at P

Regression Analysis: CS28 versus P; F; PF

The regression equation is
cs28 = 29,8 - 3,70 P + 1,94 F - 1,

Predictor Coef SE Coef

Constant 29,8178 0,2072 143,9
P -3,7018 0,2930 -12,6
F 1,9435 0,2930 6,6
PF -1,6074 0,3276 -4,9

S = 3,20994 R-Sq = 49,1% R-Sq(

PRESS = 2528,94 R-Sqg(pred) = 47,

Analysis of Variance

Source DF SS
Regression 3 2345,73 781,
Residual Error 236 2431,68 10,
Lack of Fit 5 129,03 25,
Pure Error 231 2302,04 9,
Total 239 4777,41

Source DF Seq SS

P 1 1644,43
F 1 453,26
PF 1 248,04

61 P

T

1 0
3 0
3 0
1 0

adj)

06%

MS
91
30
81
97

163

F

P
, 000
, 000
, 000
, 000

= 48,

F
75,89

2,59

= 0,0

= 0,0

0

ue

ue = 0

= 0,0

VIF

5%

P
0,000

0,027

2,11R
2,44R
2,52R
2,59R
2,36R
2,18R
2,09R
2,50R
2,50R
2,51R

11 )

08 )

, 056

, 007

07

)
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Unusual Observations

Obs P CS28 Fit SE Fit Residual St Resid
1 -1,00 36,480 29,969 0,567 6,511 2,06R
2 -1,00 21,180 29,969 0,567 -8,789 -2, 78R
4 -1,00 38,440 29,969 0,567 8,471 2, 68R
17 -1,00 37,270 29,969 0,567 7,301 2,31R
36 0,00 21,180 27,874 0,359 -6,694 -2,10R
108 0,00 20,790 29,818 0,207 -9,028 -2,82R
124 0,00 19,610 29,818 0,207 -10,208 -3,19R
193 -1,00 29,030 37,071 0,567 -8,041 -2,54R
198 -1,00 30,200 37,071 0,567 -6,871 -2,17R
201 -1,00 29,420 37,071 0,567 -7,651 -2,42R
205 0,00 38,440 31,761 0,359 6,679 2,09R
210 0,00 40,800 31,761 0,359 9,039 2,83R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 1,70858

Possible lack of fit at outer X-values (P-Value = 0,024)
Overall lack of fit test is significant at P = 0,024
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Appendix 7.2 Design matrix evaluation for response surface quadratic
model (Main FCCD design with 40 runs)

4 Factors: A,B,C, D
Design Matrix Evaluation for Response Surface Quadratic Model
No aliases found for Quadratic Model
Aliases are calculated based on your response selection,
taking into account missing datapoints, if necessary.

Watch for aliases among terms you need to estimate.

Degrees of Freedom for Evaluation

Model 13
Residuals 26
Lack Of Fit 16
Pure Error 10
Corr Total 39

A recommendation is a minimum of 3 lack of fit df and 4 df for pure error.
This ensures a valid lack of fit test.
Fewer df will lead to a test that may not detect lack of fit.

Power at 5 % alpha level for effect of

0.5 Std. 1 Std.
Term StdErr**  VIF Squared Dev. Dev. 2 Std. Dev.
A 0.22 1 0 19.0% 57.7 % 99.0 %
B 0.22 1 0 19.0% 57.7 % 99.0 %
C 0.22 1 0 19.0% 57.7 % 99.0 %
D 0.16 1 0 331% 86.1 % 99.9 %
AB 0.25 1 0 16.1% 48.6 % 971 %
AC 0.25 1 0 16.1% 48.6 % 971 %
AD 0.22 1 0 19.0% 57.7 % 99.0 %
BC 0.25 1 0 16.1% 48.6 % 971 %
BD 0.22 1 0 19.0% 57.7 % 99.0 %
CD 0.22 1 0 19.0% 57.7 % 99.0 %
AN2 0.43 1.818182 0.45 20.4% 61.7 % 99.5 %
B”2 0.43 1.818182 0.45 20.4% 61.7 % 99.5 %
cr2 0.43 1.818182 0.45 20.4 % 61.7 % 99.5 %

**Basis Std. Dev. =1.0
For Categorical Terms, The minimum Power for each group of terms is reported.
Standard errors should be similar within type of coefficient. Smaller is better.
Ideal VIF is 1.0. VIF's above 10 are cause for alarm,
indicating coefficients are poorly estimated due to multicollinearity.
Ideal Ri-squared is 0.0. High Ri-squared means terms are correlated with each other,
possibly leading to poor models.
Power should be approximately 80% for the effect you want to detect.

Be sure to set the Model (on previous screen) to be an estimate of the terms you expect to be

significant.
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Appendix 7.3 Design matrix evaluation for response surface quadratic

model (DJ design wit 16 runs)

4 Factors: A,B,C, D
Design Matrix Evaluation for Response Surface Quadratic Model
No aliases found for Quadratic Model
Aliases are calculated based on your response selection,
taking into account missing datapoints, if necessary.

Watch for aliases among terms you need to estimate.

Degrees of Freedom for Evaluation

Model 13
Residuals 2
Lack Of Fit 2
Pure Error 0
Corr Total 15

A recommendation is a minimum of 3 lack of fit df and 4 df for pure error.
This ensures a valid lack of fit test.
Fewer df will lead to a test that may not detect lack of fit.

Power at 5 % alpha level for effect of

Ri- 0.5 Std. 1 Std.

Term StdErr**  VIF Squared Dev. Dev. 2 Std. Dev.
A 0.979796 9.6 0.895833 7.7% 15.5 % 40.6 %
B 0.395285 1.5625 036 7.9% 15.9 % 41.7 %
C 0.395285 1.5625 036 7.9% 15.9 % 41.7 %
D 0.583095 5.1 0.803922 6.7 % 11.8 % 29.4 %
AB 0.353553 1 0 73% 13.8 % 35.7 %
AC 0.353553 1 0 73% 13.8 % 35.7 %
AD 1.05 10.74938 0.906971 5.3 % 6.0 % 9.1%
BC 0.353553 1 0 73% 13.8 % 35.7 %
BD 0.395285 1.5625 0.36 6.8% 121 % 30.5 %
CD 0.395285 1.5625 0.36 6.8% 12.1 % 30.5 %
AN2 1.386542 7.209375 0.861292 5.6 % 7.4 % 14.2 %
B"2 0.707107 1.875 0.466667 7.3 % 13.8 % 35.7 %
cr2 0.707107 1.875 0.466667 7.3 % 13.8 % 35.7 %

**Basis Std. Dev. =1.0
For Categorical Terms, The minimum Power for each group of terms is reported.
Standard errors should be similar within type of coefficient. Smaller is better.
Ideal VIF is 1.0. VIF's above 10 are cause for alarm,
indicating coefficients are poorly estimated due to multicollinearity.
Ideal Ri-squared is 0.0. High Ri-squared means terms are correlated with each other,
possibly leading to poor models.

Power should be approximately 80% for the effect you want to detect.
Be sure to set the Model (on previous screen) to be an estimate of the terms you expect to be
significant.
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Appendix 7.4 Design matrix evaluation for response surface quadratic

model (WD design wit 16 runs)

4 Factors: A,B,C, D
Design Matrix Evaluation for Response Surface Quadratic Model
No aliases found for Quadratic Model
Aliases are calculated based on your response selection,
taking into account missing datapoints, if necessary.

Watch for aliases among terms you need to estimate.

Degrees of Freedom for Evaluation

Model 13
Residuals 2
Lack Of Fit 2
Pure Error 0
Corr Total 15

A recommendation is a minimum of 3 lack of fit df and 4 df for pure error.
This ensures a valid lack of fit test.
Fewer df will lead to a test that may not detect lack of fit.

Power at 5 % alpha level for effect of

Ri- 0.5 Std. 1 Std.

Term StdErr** VIF Squared  Dev. Dev. 2 Std. Dev.
A 0.90 8.12 0.88 6.1% 9.4 % 21.3%
B 0.68 4.61 0.78 6.1 % 9.4 % 21.5%
C 0.41 1.71 0.41 7.3% 14.0 % 36.1 %
D 0.60 5.85 0.83 6.8% 12.2 % 30.6 %
AB 0.72 4.16 0.76 5.6 % 7.2% 13.5%
AC 0.53 2.26 0.56 6.0% 9.0 % 20.1 %
AD 0.94 7.97 0.87 53% 6.3 % 10.1 %
BC 0.53 2.26 0.56 6.0% 9.0 % 20.1 %
BD 1.00 10.02 0.90 53% 6.1 % 9.5%
CD 0.43 1.79 0.44 6.6 % 11.1 % 271 %
AN2 1.05 4.13 0.76 6.0 % 9.1 % 20.4 %
B"2 0.93 3.22 0.69 6.3% 10.2 % 24.3 %
cr2 1.06 4.23 0.76 6.0% 9.0 % 20.1 %

**Basis Std. Dev. =1.0
For Categorical Terms, The minimum Power for each group of terms is reported.
Standard errors should be similar within type of coefficient. Smaller is better.
Ideal VIF is 1.0. VIF's above 10 are cause for alarm,
indicating coefficients are poorly estimated due to multicollinearity.
Ideal Ri-squared is 0.0. High Ri-squared means terms are correlated with each other,
possibly leading to poor models.

Power should be approximately 80% for the effect you want to detect.
Be sure to set the Model (on previous screen) to be an estimate of the terms you expect to be
significant.
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