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ABSTRACT 

 

 

TOWARDS LEARNING AFFORDANCES: 

DETECTION OF RELEVANT FEATURES AND CHARACTERISTICS FOR REACHABILITY 

 

 

Eren, Selda 

M.S., Department of Information Systems  

Supervisor: Assist. Prof. Dr. Erol Şahin 

 

 

January 2006, 55 pages 

 

 

In this thesis, we reviewed the affordance concept for autonomous robot 

control and proposed that invariant features of objects that support a specific 

affordance can be learned.  We used a physics-based robot simulator to study the 

reachability affordance on the simulated KURT3D robot model. We proposed that, 

through training, the values of each feature can be split into strips, which can 

then be used to detect the relevant features and their characteristics. Our 

analysis showed that it is possible to achieve higher prediction accuracy on the 

affordance support of novel objects by using only the relevant features. This is an 

important gain, since failures can have high costs in robotics and better prediction 

accuracy is desired.  

 

 

Keywords: Affordance, Autonomous Robotics, Cognitive Robotics, Machine 

Learning, Ecological Psychology 
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ÖZ 

 

 

SAĞLARLIKLARI ÖĞRENMEYE DOĞRU:  

ERİŞİLEBİLİRLİK İÇİN İLGİLİ ÖZNİTELİKLERİN VE AYIRICI ÖZELLİKLERİN  

ORTAYA ÇIKARILMASI 

 

 

Eren, Selda 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Yar. Doç. Dr. Erol Şahin 

 

 

Ocak 2006, 55 sayfa 

 

 

Bu tezde, otonom robot kontrolü için sağlarlık kavramını inceledik ve 

objelerin belirli bir sağlarlığı destekleyen değişmez özelliklerinin öğrenilebileceği 

önerdik. Simule edilmiş KURT3D robot modeli üzerinde 'erişilebilirlik' sağlarlığını 

incelemek için fizik tabanlı bir simulatör kullandık. Her bir özellik değerinin 

çalışma yoluyla bantlara ayrılabileceğini ve daha sonra bu bantların ilgili özellikleri 

ve karakteristiklerini ortaya çıkarmak için kullanılabileceğini önerdik. Analizimiz, 

yalnızca ilgili özellikleri kullanarak daha önce karşılaşılmamış objelerin 

sağlarlığının yüksek doğrulukla tahmin edilebileceğini gösterdi. Robot biliminde 

başarısızlığın maliyeti yüksek olabileceğinden ve daha isabetli tahminlere ihtiyaç 

duyulduğundan bu kazanım önemlidir. 

 

 

Anahtar Kelimeler: Sağlarlık, Otonom Robotbilim, Bilişsel Robotbilim, Makine 

Öğrenmesi, Ekolojik Psikoloji 
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CHAPTER 1 

1.        INTRODUCTION 

The dream of building robots that can assist us in our lives is coming true 

day by day. Industrial robots have already been successfully deployed in factory 

environments to do tasks such as assembly and painting with high speed and 

precision. These robots, which can be considered as programmable universal 

manipulators, have already been essential elements of industrial production. 

However, these robots require highly structured operating environments and high-

precision actuators, and therefore can not operate outside of factory floors.  

 

Tele-operated robots, robots that are operated by a human operator from 

a distance, have also been capturing the headlines in their role for inter-planetary 

exploration[1] or mine removal[2]. With assistance from humans, these robots 

assist us to explore dangerous environments, or to rescue people under wrecks. 

These robots send sensor data obtained from the environment to a human 

operator. The operator, in return, sends commands to the robot making it act on 

the environment with its actuators. Such operations keep the humans away from 

dangerous environments. In tasks, where communication between the operator 

and the robot is slow, such as inter-planetary exploration case, the operator can 

send high-level commands to the robot, such as ‘go to that rock’, leaving the 

execution of the command to the robot. Such a mode of operation makes the 

robot more responsive to its environment, and makes the control easier.  
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Ideally, however, we wish to have fully autonomous robots, robots that can 

accomplish tasks in unstructured environment without human operators. The 

entrance of robots into our daily lives has been rather slow when compared to 

their success on the factory floors. Only recently, we began to hear news about 

‘robot cars’ driving autonomously [3], ‘robot dogs’ playing football[4], or 

humanoid robots sharing our daily environments[5].  Despite the availability of 

autonomous ‘robot’ vacuum cleaners[6] to be used at homes, or the ‘robot dogs’ 

for ‘home entertainment’, we are not still satisfied with the current state of  

robots in our daily lives. The robots, such as the ones envisioned in the movie ‘I 

Robot’[7], that can talk to people, do shopping for its owner, and take care of its 

life, have not come to the stage yet. 

 

 

1.1. Autonomous robotics 

Autonomous robots are robots that can sense their environment, make 

plans to accomplish their tasks, and execute these plans through their actuators 

without human intervention in unstructured environments. Therefore, most of the 

challenge in autonomous robotics lies in its control system, making it an excellent 

test-bed for artificial intelligence studies.  

 

The studies on the development of control systems for autonomous robots 

evolved through three main paradigms: hierarchical, reactive and hybrid. One of 

the first examples of hierarchical control systems, was built on the mobile robot 

Shakey, during late 1960’s [8]. Shakey was able to sense its environment with a 

camera, a range finder and bump sensors. It would create a world model using the 

sensory information, make plans to accomplish human-set goals within this world 

model and execute them. The world was represented in predicate logic and 

accomplishing a goal was equivalent to solving a theorem. Despite its 

accomplishments, Shakey was too slow and susceptible to noise in its sensors. The 

reason was not only the hardware limitations, but also the artificial intelligence 

approach of the time. Deliberative reasoning and planning lied at the core of the 

system, and the perception and action modules only translated the world into a 
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symbolic representation space. Researchers believed that the decision making 

process of an intelligent agent should consist of sensing the environment, 

constructing a world model, and then planning for the next action. The type of 

processing isolated the robot from its environment during the planning step. As a 

result, the robot was able to operate only in very structured environments and 

was not very responsive to changes in the environment. 

 

During the 80’s, as a reaction to the hierarchical paradigm, the reactive 

paradigm  was proposed[9] to make the robots be able respond to the demands of 

the environment that is changing and unstructured. The idea came from nature. 

The challenge of operating in unstructured environments has already been 

overcome by living organisms. Braitenberg’s vehicles[10] demonstrated how simply 

wired sensor-motor connections result in complex-appearing behaviors such as 

fear and love. Ronald Arkin introduced ‘behavior-based’ robots[11], which are 

controlled by behaviors that provide sensor-actuator mappings. The common 

belief of these researchers was that the robots do not need to make deliberative 

planning to survive in complex environments. Instead, interaction between the 

environment and the robot is emphasized. Their robots were successful in 

responding to the changes in the environment such as an obstacle coming to the 

robot’s way, and they were fast unlike their predecessors. However, they were 

unable to accomplish high-level goals such as localization, map building and 

object manipulation. 

 

In order to survive in unstructured and dynamic environments, an 

autonomous robot must be both responsive to its environment and capable of 

accomplishing high level goals at the same time. As a result, the hybrid paradigm, 

combining the advantages of both reactive and hierarchical systems, emerged. In 

this paradigm, simple behaviors are implemented reactively and the higher level 

goals are accomplished deliberatively[12]. These hybrid systems generally consist 

of several layers. The arrangement of these layers differ form architecture to 

architecture. For example, in ATLANTIS architecture, there are three layers: 

controller, sequencer and deliberator[13]. Controller is the reactive layer that 

controls simple behaviors, sequencer is the layer that organizes these simple 

behaviors and deliberator is responsible for high-level planning. These hybrid 
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systems proved to be better than reactive and hierarchical systems as 

anticipated[14].  

 

Although the paradigms presented above provided an architectural 

framework for the design and implementation of control algorithms of autonomous 

robots, the problem of how to design controllers for a particular task is still left to 

the designer. This problem still poses a big challenge, since the designer often 

possesses the problem from his viewpoint and is likely to propose solutions that 

are very specific to a domain, and are not very suitable for the robot. For 

example, in order to deal with the variety of entities in the environment, 

considerable effort[15] has been made to classify objects in the environment, 

according to their form or functionality. However, the object classes had to be 

preimplemented in the robot, restricting the types of objects the robot can deal 

with. 

 

In order to build systems that are not restricted to a specific domain, the 

ability of learning seems essential. Humans go through a rather long 

developmental phase before learning to successfully act in the environment. 

Babies learn to control their body parts through years of experimentation. In time, 

they not only discover their own abilities, such as reaching objects within their 

arm-distance proximity, but they also learn about the world, such hollow object 

can be used to hold water. These abilities, which mostly fall under Cognitive 

Science, are also of interest to autonomous robotics. Recently, some of the 

concepts and theories developed within Cognitive Science has been picked up by 

robotics researchers, creating a new sub-field that can be called Cognitive 

Robotics.  

 

 

1.2. Cognitive Robotics 

Cognitive Robotics lies at the intersection of cognitive science and 

autonomous robotics. From the cognitive scientist’s view, the robots can act as a 

test-bed to implement and evaluate ideas from cognitive science on physically 
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embodied and situated agents. This allows constructive testing of the concepts 

and theories proposed. From the autonomous roboticist’s view, learning 

architectures, as good as humans, can be designed with contributions from 

cognitive science. Below, we will review some of the cognitive robotics studies in 

the literature. 

 

In [16], Morales trains a robot torso with various objects to learn how to 

grasp them. A set of features is extracted from the camera data during interaction 

with the objects. Possible grasping configurations are computed and one 

configuration is chosen and tested on the object. The result of the grasping action 

is observed and recorded. For the new objects, the suitable grasp configurations 

are selected by using voting k-nearest neighborhood algorithm. 

 

In [17] Broxvall et. al discuss  the problem of associating the sensor data 

with the symbols representing the objects, namely, perceptual anchoring problem 

and suggest a symbolic planner to overcome perceptual ambiguities like noise in 

sensors. The symbolic planner evaluates the matches between symbols and 

percepts from sensor data according to object properties and properties required 

for the symbol. If some of the object properties are missing, the planner initiates 

a recovery plan where the robot tries to obtain these properties by a more 

detailed examination of the object. After the information is obtained, the planner 

decides the best matching object for a particular symbol.  

 

In another study, Giacomo et. al incorporates Propositional Dynamic 

Logics(PDLs) and Description Logics(DLs) for utilizing information from the 

environment in reasoning[18]. They use PDLs for reasoning about actions and DLs 

for knowledge representation. Both of these studies show the effort on combining 

the powerful decision making benefit of deliberative planning with the useful 

information in the environment. 

 

Some applications in cognitive robotics take a cognitive theory as the 

starting point, and try to implement principles of this theory on a robot. In a 

particular study by Buchsbaum et. al, Simulation Theory has been exploited for 

building “socially intelligent” robots[19]. According to the theory, a person can 
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predict another person’s intentions by thinking himself in the same current 

condition with the other person[20]. The agent in the study of Buchsbaum et. al 

observes the actions of another agent in order to decide his next own action 

accordingly and to learn new actions. First, it perceives the configuration of the 

other agent’s body parts. Then, in his own action repertoire, it searches for the 

action that is initiated by the observed configuration. Thus, it understands which 

action the other agent is starting to do. With this information, it is able to make 

an action that is in accordance with the other agent’s action. 

 

Theory of affordances is one of these theories and utilized by many 

robotics researchers in recent years[21]. The primary significance of this theory 

for robotics among others is that it provides a basis for a complete cognitive 

system. It is not specific to a particular domain or task. It provides clues for 

perception, representation, reasoning and action. It offers a system where 

perception and action together constitute representation, and reasoning is 

assisted by the environment.  

 

The work done in this thesis is conducted within the MACS project, funded 

by the European Commission within the Cognitive Systems call of Information 

Society Technologies programme of  FP6. The project aims to take the affordance 

concept (described in detail in the next chapter) from cognitive science and 

develop a robot control architecture utilizing this concept. In short, an affordance 

is a property of an agent-object system that is defined by both agent properties 

and object properties and gives information to the agent about the possible 

actions that can be performed with this object if perceived. This thesis presents a 

study on the perception and learning of affordances on robots.   

 

There are two objectives of this thesis. The first objective is to gain 

perceptual speed-up by perceiving affordances instead of separately recognizing 

objects and deciding which actions can be performed with these objects. The 

affordance concept provides the interface between the perceived properties of 

the objects and the actions that can be performed with this object. We will 

explain these useful properties of the affordance concept in the next chapter. The 

second objective is to increase the accuracy of prediction of action possibilities, 
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i.e. affordances, by developing a mechanism that is robust in the presence of 

noise and with a short period of training. 

 

The scope of this thesis is to clarify affordance perception issue by 

proposing a method to identify affordances in the environment. This method 

brings a solution to the problem of learning sensory invariants that are necessary 

to support a desired affordance. We explained the method on a specific 

affordance, reachability, and performed experiments using a simulator and 

presented the results of these experiments. 

 

The rest of the thesis is organized as follows. In Chapter 2, the affordance 

concept is described and literature survey on the use of affordance theory in 

robotics is presented. The problem of affordance perception is stated and our 

approach to this problem is identified. In Chapter 3, the proposed affordance 

perception mechanism is introduced. Chapter 4 gives the framework for the 

experiments. The simulation environment and specifications of the simulated 

robot are presented. The object reachability problem is introduced and the nature 

of the initial experimental data is discussed. The results of the experiments and 

discussions on findings are stated in Chapter 5 and finally conclusions are 

presented in Chapter 6.   



 8 

CHAPTER 2 

2.                         AFFORDANCES 

The theory of affordances was introduced by Gibson[22], the founder of 

ecological psychology discipline. Gibson has denied the classical view on 

perception, where physical objects create stimuli to activate particular object 

representations. According to his theory, humans perceive affordances in the 

environment. Perception is direct, explicit object recognition is not required. This 

provides competitive advantage by enabling fast response to the environment, and 

increases chances to survive.  

 

“…The affordances of the environment are what it offers the animal, what it 

provides or furnishes, either for good or ill. The verb to afford is found in the dictionary, 

but the noun affordance is not. I have made it up. I mean by it something that refers to 

both the environment and the animal in a way that no existing term does.” [22] 

 

In this chapter, we will explain the theory of affordances before 

implementing it in an autonomous robot. Following the theory, literature survey 

on the applications of affordance in robotics will be presented. 

 

2.1. Theory of Affordances 

An affordance is what an entity in the environment offers an agent. For 
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example, a stone affords throwing. A doorway affords entry and exit. An obstacle 

affords collision and possible injury. It can be seen from the examples that an 

affordance can be beneficial or harmful to the agent. Thus, perceiving affordances 

provide many advantages to the agent. The agent can see what it should utilize 

and what it should avoid beforehand. By this way, it can obtain a useful entity 

before another agent takes it, or it can avoid a harmful entity before getting 

injury. 

 

Affordances are determined not only by properties of the entities but also 

by the agent’s properties. An entity may not offer the same affordance for 

different agents. For example, a chair affords sitting for an adult human as in 

Figure 1. However, it does not afford sitting for an elephant, an infant or a robot. 

For these agents, a chair may afford blockage or even an injury. The difference is 

due to the physical properties of the agents. The agent should have legs and leg 

height should be within a specific range for the chair to afford sitting. In addition, 

the agent should have a waist. A wheeled mobile robot has neither legs nor a 

waist, thus a chair would not afford sitting for it. An infant has legs, but he is not 

capable of using them yet. A chair would not afford sitting for him until he walks 

on foot and his leg reaches to a certain height. However, a smaller chair may 

afford sitting for a child although he has shorter legs. For the blockage 

affordance, the height and the area covered by the chair are important from the 

entity properties side. From the agent’s part, body height matters. The agent can 

be short enough to pass under the chair. Otherwise, the chair would block the 

passage.   

 

Perceiving affordances enables the agent to see the possible actions it can 

perform in the environment. It is up to the agent to perform these actions or not 

but these possibilities can be utilized as the building blocks of any plan to reach 

some goal. For example, an agent might have a goal of passing over a gap. From 

its previous experiences, it might have learnt that rigid, flat surfaces afford 

support. Thus, the agent searches for rigid and flat surfaces in the environment. A 

plank can be an ideal candidate for affording support. Using the plank, the agent 

can cross over the gap. The ability to “see” affordances of entities enables the 

agent to find quick solutions to emergent problems in the environment, without 
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Figure 1 An affordance is relative to the capabilities of the agent. 

 

elaborate decision making processes. 

 

 A single object may have many affordances. For example, a mug affords 

holding liquid substances inside and also affords throwing as a weapon. These 

affordances do exist at the same time for a single object. An agent may perceive 

the former affordance if it needs to keep water. The latter can be perceived if the 

agent needs to protect itself from an enemy.  Thus, perceived affordances are 

context-dependent, although possibilities for action with the object persist. 

 

According to Gibson, affordances are specified by the invariants in the 

optic array. Here, optic array implies the light received by the eyes. The visual 

system develops in time to be able to identify these invariants[23]. This 

development is the result of the interaction between the infant and the 

environment. 

 

This study focuses on perception of affordances for robots. The robot will 

encounter the challenges that natural agents have encountered such as enormous 

flux of sensor data. From this flux, it will select what it needs, namely, affordances. 
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Figure 2 The experiments in studies of Fitzpatrick and Metta et. 

al. The robot learns direction maps for different hand positions by 

observing initial hand positions and direction of object 

movement[24].  

 

2.2. Related Work 

 In this section, the use affordances in robotics are reviewed.   

 

Fitzpatrick and Metta[24].  et. al define an affordance as “a visual 

characteristic of an object which can elicit an action without necessarily involving 

an object recognition stage”. From this definition, it is possible to infer that by 

perceiving affordances, a robot can decide which action to perform on an object 

without identifying its class label. For perception of affordances, they suggest a  
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Figure 3 A snapshot from the experiments conducted on simulation by Stoytchev. 

The robot learns tools affordances by applying a set of exploratory behaviors and 

observing the results. 

 

learning mechanism and conduct experiments on the object displacement task. 

The robot pushes various objects to discover the mapping between initial hand 

position and direction of object movement as depicted in Figure 2. After a set of 

experiments, the robot obtains a direction map. Through this direction map, the 

robot knows how to orient his arm to move an object to a desired location. Then, 

experimenting with objects of different shapes, the robot learns which action to 

perform on a particular shape. For example, a ball rolls, a cube drags. Thus, the 

robot can perceive displacement affordances of objects as well as the appropriate 

hand positions to realize these affordances.   

 

A more recent study has been published by Stoytchev[25]. The aim of his 

study is to develop and evaluate a way of representing and learning affordances in 

autonomous robots. The primary motivation is that humans learn affordances by 

interacting with them. The most influent ideas in this study are from Gibson’s 

affordances, Arkin’s behavior-based approach and experimental results from 

animal studies on tool using task. Whenever a new object is encountered, the 

robot applies a set of exploratory behaviors and observes the results. The objects 

and the simulation environment are shown in Figure 3. In other terms, the 

representation of the tool is ‘grounded’ in the behavioral and perceptual 

capabilities of the robot[26]. This idea is compatible with theory of affordances 

where animals can utilize affordances of entities if their physical capabilities are 

compatible with the properties of these entities. The method is implemented both 

on simulation and on a real robot, and successful results are obtained in predicting  

the affordances of different tools. 
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Wünstel and Moratz use the affordance concept in object recognition[27]. 

Although they identify their approach as affordance-based, they only use 

affordances as class labels. Their approach is successful in identifying objects in 

unstructured complex environments. However, their method required an initial 

class description for the objects, which is not feasible for autonomous robots. 

Additionally, their approach is not compatible with Gibson’s affordance concept, 

where the affordances are learnt by direct interaction with the objects, and 

learning affordances is not classifying objects. 

 

Lewis argues that robot locomotion is not solely a control problem; rather 

it should be handled as a perceptual process[28]. He treats affordance as an 

example of a ‘percept’ and suggests a way of integrating percepts in the 

environment with motor actions. In his system, percepts in the optic flow are 

extracted, and the association between these percepts and the joint position 

information is learnt by a neural network. So the robot can predict what it will 

‘perceive’ after generation of a self-movement. If the prediction fails, the system 

is fine-tuned to adapt to the new percepts. Although the system is not totally 

affordance-based, the direct link between perception and action and interaction 

with the environment makes it consistent with the theory of affordances. The 

future work offered by Lewis includes determining the appropriate set of percepts 

necessary to guide locomotion. This is similar to determining invariants for an 

affordance. His ideas are worth considering for an affordance-based system and 

his work can be extended by ideas from the theory of affordances. 

 

In a previous work of Lewis, terrain affordances were learnt by a bipedal 

autonomous robot[29]. He points out to the benefits of biologically inspired robot 

design. Affordances are one aspect of his studies. His main emphasis is on 

predicting consequences of an action from visual information. He uses a neural 

method that involves a pattern associator which maps the novel sensory data to 

length of foot steps and is trained whenever a collision occurs. The novel data is 

determined by finding the difference between expected data and the current raw 

data. By this way, the robot can detect collisions before direct contact with the 

obstacles i.e. can perceive affordance of the terrain features.  

Slocum et. al. aims designing agents which can visually judge pass 
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ability of openings relative to their own body size, discriminate between visible 

parts of themselves and other objects in their environment, predict and remember 

the future location of objects in order to catch them blind, and switch their 

attention between multiple distal objects[30]. The robot is controlled by a 

continuous-time recurrent neural network, whose parameters are evolved by a 

genetic algorithm.  

 

The studies on affordance perception in robotics show that the current 

research is directed towards building cognitive systems that can deal with the 

entities in the environment in a more flexible and efficient way than before. 

However, the solutions are proposed for specific tasks. The robot gains the ability 

to learn that task, and other solutions need to be developed for other tasks. In 

order to be an autonomous agent, a robot needs to have ‘core’ abilities that 

enable it to learn different tasks. We propose a method for affordance 

perception, which we believe is core ability for an autonomous robot. The next 

chapter presents our method in detail. 
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CHAPTER 3 

3.                                  AFFORDANCE PERCEPTION 

Autonomous robots face an incoming sensory stream flow from a changing 

environment and they need to process these to act in real-time. Illumination 

changes from place to place as well as at different times of the day creating 

different images of even the same objects. The view of an object changes 

significantly as the robot moves around. As the robot moves around, the robot is 

likely to face with novel objects that it has not encountered in the past. It is not a 

exaggeration to say that, the robot never sees the same scene twice. Despite 

these, the robot still has to operate in its environment in real-time. Hand-made 

controllers are inadequate under these conditions, and robots are required to 

adapt to their operating environment based on their experiences with it.  

 

Adaptation methods that rely on object recognition fail to provide a good 

generalization. Learning functionality of objects from the scene usually 

incorporate a predefined association between prototype forms and their 

functionalities and match the form of observed object with one of the prototypes. 

The problem with these methods is to find an appropriate representation for the 

objects. The representation should not be affected significantly by the change in 

illumination, point of observation and occlusions so that the new observed object 

can be matched to a prototype in the knowledge base properly. Besides, the 

representation should support multiple functionalities since one object can have 

much functionality. A crucial problem is the number of prototypes in the 
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knowledge base. No matter how many prototypes are stored, they will not be 

enough to represent all the objects in the agent’s environment. As a result, a 

robot which learned to roll an orange ball, after experimenting with it, is unlikely 

to generalize its knowledge to a red apple. 

 

The affordance concept has important implications for autonomous robot 

that are expected to operate in unstructured, everyday environments. An 

affordance-based view of robot control indicates that the robot does not need to 

recognize an object in order to know what it can be used for, a.k.a. what it 

affords.  

 

In this thesis, we propose that perception of affordances require both the 

learning of relevant features and the characteristics of these relevant features. 

Affordances in the environment are perceived by detecting the relevant 

information from the stimuli obtained through the sensors. This relevant 

information is learnt by the robot through its interactions with the environment. 

During these interactions, the robot acts on the environment and observes the 

results of its actions. At the same time, the robot has a perception from the 

environment. The stimulus obtained can be of any type: pixel values from camera, 

distance range from infrared or sonar sensors etc.  

 

The question that we tackle in this thesis is: How can a robot learn the 

sensory invariants that are necessary to support a desired affordance? For 

instance, what are the sensory invariants that the robot must check for 

traversability? Although it may seem trivial, to solve this problem, the robot, 

through its experiences, must learn that the roughness of the ground, but not its 

color, is the relevant sensory stimulus that needs to be checked.   

 

We propose a method for robots to perceive affordances of objects. The 

method is novel in terms of representation of the objects since the representation 

tells what the object affords. The robot does not need to make explicit processing 

in order to decide what the object is used for, it will ‘see’ the affordance when 

the object is in its field of view. The time for responding to the environment is 

reduced since there are no separate object recognition and action decision 



 17 

processes. This is important for an autonomous mobile robot since the 

environment is dynamic and any long decision making process can decrease its 

chance of survival. 

 

We present the affordance perception method based on invariant extraction 

from the visual stimulus. The details of the method are explained in the following 

sections. 

 

 

3.1. An Affordance Perception Method 

The affordance perception method proposed in this study consists of three 

phases. In the first phase, the robot interacts with objects and tests them to see if 

they support a desired affordance or not. This phase is similar to the ‘physical 

babbling’ period of babies, where the baby explores his abilities. In the second 

phase, the robot, based on the experimental data obtained from the first phase, 

extracts (1) the relevant features, and (2) the characteristics of the featural 

invariants for that affordance. In the third phase, when the robot is presented 

with novel objects, the robot predicts whether it supports the specific affordance 

or not. 

 

As the robot interacts with the objects, there are some structures in the 

stimulus that persist for a specific outcome of an interaction. For example, 

whenever a robot hits an object that affords blockage, namely an obstacle, the 

object is of a specific height and width, as in Figure 4. These persisting structures 

are called invariants, and these invariants specify the affordances. Note that an 

affordance is relative to the observer, thus the invariants specifying an affordance 

will differ from one robot to another.  

 

In the proposed method, the robot obtains a number of features from the 

continuous flux of data from its sensors. These features can be of any complexity, 

from plain pixel values of regions to the shape of the object. The choice of the 

features to be calculated depends on the task to be performed, or the  
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Figure 4 There are relevant features among the other features in the stimulus that 

support certain affordances. In this figure, the objects afford blockage to the robot. 

The robot can obtain many features from the stimulus it receives, such as color, 

distance, area, shape, and etc. But there is an invariant feature among these features 

that gives information about blocking affordance. It is the height of the objects; no 

matter what the color and shape of the object is, an object of a specific height will 

afford blocking to the robot. 

 

 

environment that the robot operates. Actually, the type of features to be 

calculated from the flux can be adaptive. The complexity of features can be 

increased in time, as the affordance perception of the robot gets more precise. 

 

The robot records the values for each feature during the interaction with an 

object. The interaction will have an affect on the robot or it will satisfy a goal of 

the robot, i.e. the object will afford something to the robot. The robot will record 

this affordance together with the feature values. After several interactions with 

the objects in the environment, a set of feature values are obtained for an 

affordance. Some of these values belong to stimulus obtained from objects that 

have this affordance, and some values obtained from objects that does not have 

this affordance. For each feature, the values are normalized and sorted from the 

smallest to the largest (Figure 5). 
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Figure 5 Feature values are calculated from the visual 

stimulus obtained from the real world entities. The values 

are normalized and sorted after the robot experiments 

with a number of entities. vn
min represents the minimum 

feature value for the nth feature. vn
max represents the 

maximum feature value for the nth feature. 

 

The consequent values that have the same affordance are grouped 

together so that each feature has a set of groups of values that either belongs to 

an affording object or not (Figure 6). We will call each of these groups a strip. For 

example, considering the blockage affordance, the entity_height feature may 

consist of two strips such as one strip from 0-5 cm belonging to objects that do not 

afford blockage, and one strip from 5-50 cm belonging to objects that afford 

blockage. 

 

The number of values that a strip has indicates the relevance of the strip 

to the affordance. If a strip has large number of points compared to other strips, 

we say that this strip is a relevant strip. Consequently, a feature that has a 

relevant strip is called a relevant feature.  
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For the blockage affordance example, consider the entity_color feature. If 

we sort the color values from the smallest to the largest, and form the strips 

according to their affordance, the number of values that falls into any strip will 

not be large, since there is no significant relationship between the object color 

and the blocking affordance. On the other hand, for the entity_height feature, a 

large number of values will gather around 5-50 cm strip that belongs to objects 

having the blockage affordance. Here, the 5-50 cm strip is a relevant strip, and 

the object_height feature is a relevant feature. 

 

These relevant features are the information for affordances in the 

environment. Instead of recognizing the abstract objects or trying to match the 

novel objects to known prototypes, the robot simply identifies the relevant 

features. Thus, what it sees in the environment are the affordances.  

 

The relevant strips that include values from stimulus obtained from objects 

that have the affordance A are referred to as positively relevant strips. 

Oppositely, the relevant strips that include values from stimulus obtained form 

objects that do not have the affordance A are called negatively relevant strips. A 

feature can be both positively and negatively relevant to an affordance A if it 

includes both the positively and negatively relevant strips.  

 

The benefit of considering both the positively and negatively relevant 

features is to have judgments from two different sources and thus to have a more 

confident response. For example, an object of 30 cm height and 2 cm width may 

belong to a positively relevant strip of entity_height feature, and at the same 

time to a negatively relevant strip of entity_width feature. Through this 

conflicting information, the robot understands that there is something about this 

object that it has not discovered yet. It needs to obtain values from this object 

and update the existing strips accordingly. 

 

A drawback of this method is that it assumes slightly accurate feature 

values. For example, if both of the cameras are shaking, the value for object 

center y feature might fall into a negatively relevant strip in one trial and into a 

positively relevant strip in another trial, for the same placement. In this case,  
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Figure 7 An example of feature strip formation. The large 

strip in Feature2 is a candidate for being a positively 

relevant strip and thus Feature2 is a candidate for a 

positively relevant feature. Similarly, the large strip in 

Featuren is a candidate for being a negatively relevant 

strip and thus Featuren is a candidate for a negatively 

relevant feature. 

 

many small strips can be formed with positive and negative values, and thus 

object center y feature would not be considered as a relevant strip. This problem 

can be overcome by taking the camera positions into account while recording the 

feature values. In this study, we assume that camera, crane arm and robot body is 

stable and slightly accurate feature values can be obtained through sensors. 
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CHAPTER 4 

4.                                 EXPERIMENTAL FRAMEWORK 

In this chapter, we describe our experimental framework and present the 

problem that we chose to study. First, we introduce the MACSIM simulator which 

simulates the KURT3D mobile robot platform (Figure 8). Then, we motivate and 

present the affordance of object reachability as our case study. Finally, we 

present an analysis of the sensor data which will provide evidence about its 

informative capability for the affordance under discussion. 

 

Our robot experiments with various objects in order to learn perceiving the 

reachability of objects. Details of the experiments and the simulation environment 

will be explained in the following sections.  

 

4.1. Experimental Framework 

We conducted our experiments using the MACSIM simulator, developed at 

KOVAN Research Laboratory for the MACS Project1.   

                                                 
1  Multi-sensory Autonomous Cognitive Systems interacting with dynamic 

environments for perceiving and using Affordances (MACS) - Specifically Targeted Research 

Project (STReP), IST-2003-2.3.2.4 Cognitive Systems, Project Number: FP6-004381, 

http://www.macs-eu.org 
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Figure 8 KURT3D robot platform. KURT3D is a 6 wheel, differential drive mobile robot. 

It is equipped with a 3D laser scanner (the large cube at the front of the robot), two 

pan-tilt cameras (small spheres), and eight infrared proximity sensors around the robot 

body. A crane, which will allow the robot to handle objects, is already designed and 

will be installed. The robot is controlled by a piggy-back laptop. 

 

 

4.1.1. MACSIM – The simulator 

MACSIM  is a physics-based simulation of the KURT3D mobile robot platform 

A snapshot is shown in Figure 9. MACSIM provides the following facilities for our 

study: 

 

� Creating objects of different size, shape, position and orientation 

� Obtaining online data stream from the sensors 

� A set of behaviours such as reach, lift and drop 

 

MACSIM is built using Open Dynamic Engine (ODE), a library for simulating 

articulated rigid body dynamics[31]. The robot model included a realistic model of 

actuators and sensors on the physical robot, and the physical simulation library 

handles the physical interactions between the objects in the world. As it is, 

MACSIM provided nice test-bed for testing an affordance based perceptual system. 
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Figure 9 A snapshot from the MACSIM simulator. The small 

windows on the upper left and right corners display the left and 

right camera views respectively.  Note that, the simulated robot 

model also included the crane which was not shown on the 

picture of the KURT3D robot. 

 

  

Figure 10 The robot  

(a) Side view – the crane arm and the magnet attached to the 

arm via the rope (b) Front view – laser scanner and cameras 
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4.1.2. Simulated Robot Model 

Since an affordance is determined by both the environmental entity and the 

agent, it is crucial to state what capabilities and constraints are offered by the 

robot. 

 

Sensor configuration 

The robot in the MACSIM simulator has two pan-tilt color cameras and a 3D-Laser 

scanner with 180° horizontal field of view. (see Figure 10) 

 

Manipulators 

The crane robot arm has 3 degrees of freedom. A rope with a magnet at one end is 

attached to the arm. The magnet can be lowered and raised by pulling and leaving 

the rope with a motor. Only magnetizable objects can be manipulated. 

 

 

4.2. Reachability affordance 

We have chosen ‘reachability’ as the affordance to study the learning of 

affordances, since reaching is the first stage of interacting with an object. It is a 

fundamental behavior that initiates exploration. Other behaviors such as grasping 

and lifting require reaching the object first. To realize this behavior, detecting 

reachability of objects is essential. It does not only affect decision about whether 

to reach the object or not, but also determining the appropriate body and arm 

position and configuration as well as the reaching trajectory[32].  

 

Reaching behavior has gained special emphasis in infant development 

literature.  Many studies have been conducted to see whether infants realize 

reachability of objects before trying to reach them[33, 34]. Researchers have also 

investigated reach behavior from the Gibson’s point of view[35, 36]. 
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Figure 11 Reach behavior in infants has been an 

attractive phenomenon for human development 

research. 

 

 

A recent work of Rochat analyses the reaching behavior in infants to show 

that infants can detect whether an object is reachable or not before touching 

it[37]. He refers to Gibson’s affordances and argues that reachability of an object 

is determined by both object properties and infant’s physical capabilities.   

 

Finally, reachability is of interest to the KURT3D robot, since it has a crane 

arm with a magnet attached via a rope to it.  

 

4.3. Implementation 

4.3.1. Scenario 

For the case of reachability, the robot is kept at a fixed point. It can only 

move its arm in the horizontal plane. Objects are placed randomly within a 

specified area. One object is presented at a time (see Figure 12). For each object, 

the robot executes the reach behavior. If the magnet engages with the object, the  
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Figure 12 (a) The range of random object placement  (b) One object is 

presented at a time 

 

 

object is said to be reachable. The robot receives the sensor stream continuously 

throughout the simulation run from the two cameras. 

4.3.2. Initial experimentation 

We will explain implementation of our method within the simulator 

environment under the capabilities and constraints described in the previous 

sections. The robot is presented with a collection of objects randomly placed in 

front of it, one object at a time. Range of object placements is shown in Figure 

13. Firstly, the robot extracts a feature vector representation of the object using 

a number of feature detectors listed below. Then, the robot executes the reach 

behavior on the object. Finally, the robot checks whether the reach behavior 

succeeded or not. 
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Table 1 Features used in the experiments. 

feature explanation values category 

Object color red Red value of the object pixels 0, 255 Camera 

Object color green Green value of the object pixels 0, 255 Camera 

Object color blue Blue value of the object pixels 0, 255 Camera 

Crane color red Red value of the crane pixels 0, 255 Camera 

Crane color green Green value of the crane pixels 0, 255 Camera 

Crane color blue Blue value of the crane pixels 0, 255 Camera 

Object area right Number of pixels occupied by the 
object in the right camera 

0 - 640*640 
 

Camera 

Object area left Number of pixels occupied by the 
object in the left camera 

0 - 640*640 Camera 

Object center x right x pixel-coordinate of object 
center on right camera 

0 - 640 Camera 

Object center y right y pixel-coordinate of object 
center on right camera 

0 - 640 Camera 

Object center x left x pixel-coordinate of object 
center on left camera 

0 - 640 Camera 

Object center y left y pixel-coordinate of object 
center on left camera 

0 - 640 Camera 

Crane area right Number of pixels occupied by the 
crane on the right camera 

0 - 640*640 Crane 

Crane area left Number of pixels occupied by the 
crane on the left camera 

0 - 640*640 Crane 

Crane center x right x pixel-coordinate of crane center 
on the right camera 

0 - 640 Crane 

Crane center y right y pixel-coordinate of crane center 
on the right camera 

0 - 640 Crane 

Crane center x left x pixel-coordinate of crane center 
on the left camera 

0 - 640 Crane 

Crane center y left x pixel-coordinate of crane center 
on the left camera 

0 - 640 Crane 

Rope tension Tension on the crane rope 0 - 10 Crane 

Rope length Magnitude of the extension of the 
crane rope 

0 - 4.5 Crane 

Object distance Distance between the robot body 
and the object 

0 - 10 Range 
sensor 
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feature explanation values category 

Crane distance Distance between the robot body 
and the crane 

0 - 10 Crane 

Object shape box True if the object is a rectangular 
prism  

0, 1 MACSIM 

Object shape cylinder True if the object is a cylinder 0, 1 MACSIM 

Object shape sphere True if the object is a sphere 0, 1 MACSIM 
 

 

Creating feature vector representation of the object 

 

Extracting the features from the raw sensor readings is a field of study 

itself. Our aim is not calculating precise values for the attributes of objects, but 

rather obtaining a set of structures that characterize the current sensory data. We 

have selected a set of features appropriate for using a two camera system. The 

features extracted can be roughly categorized into four:  

 

� Features obtained from the left and right camera images. We 

assumed that the object is segmented from the background, and 

applied crude feature detectors to the segmented image. We also 

assumed that the crane head is tracked and features from that are 

also extracted. 

� Feature obtained from the 3D range sensor. We used the smallest 

range reading from the 3D range sensor. 

� Features obtained from the crane. These include values such as 

rope tension and rope length. 

� Features obtained from MACSIM. Features such as the shape of an 

object are difficult to extract and fall beyond the focus of the 

thesis. We chose to extract the shape of the object from the data 

internal to the MACSIM simulator.  

 

These features are listed in Table 1. 
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a. 
b. c. 

 

Figure 13 Reach behavior (a) Detect position of the object (b) Orient 

crane arm (c) Lower the magnet 

 

 

Executing the reach behavior 

 

Reach behavior is hand coded in MACSIM. It consists of the following steps. 

(1) Detect position of the closest object in the field of view, (2) Orient the crane 

arm towards the object, (3) Lower the magnet (see Figure 13) 

 

Checking result of the behavior 

 

The robot can decide whether the affordance is successful or not, by 

checking position of the magnet with respect to the object. Snapshots from 

successful and failure cases are shown in Figure 15. 

 

Analysis of the feature values 

 

In an experiment with 100 objects, we analyzed the feature values 

calculated from the cameras at the start of reach behavior for each object. We 

will compare values for the successful and failure cases. 
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a. b. 

c. d. 

Figure 14 In (a) and (b) reach behavior is successful. (c) and (d) shows 

the failure case. (a) and (c) are left , (b) and (d) are right camera views.   

 

For the object area right and object area left features, success points show 

a wider distribution whereas values resulting in failure accumulate in the 0-0.2 

range.  This shows that if the object is not reachable, it will probably have a small 

value for the object area right and object area left features. However, the 

opposite is not true. The value of object area is related with the object distance 

and object size. Small object area may mean that the object is small or it is far 

from the robot.   

 

For the object center y right and object center y left features, success 

points gather between 0.4-0.7 whereas fail points accumulate between 0.7-0.9 

values. So we can say that the smaller the value of the object center y, the more 

possible that the object is reachable. Value of these features is smaller as the 

object gets closer to the robot. Oppositely, it will get larger if the object goes 

further. Thus, these features give information about the object distance. 
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Object color red, object color green and object color blue features get 

binary values. Success and fail cases are distributed homogeneously so we can say 

that color features do not give information about reachability. 

 

Values of object center x right and object center x left features are also 

distributed almost uniformly. Success and fail values do not produce clusters. 

Thus, these features do not provide information about reachability. They are 

related to the horizontal placement of the object and reachability is concerned 

with vertical placement. 

 

For the object distance feature, the fail and success values are 

significantly separated. The values for the fail cases are accumulated between 

0.6-0.9 and for the successful cases this range is 0.3-0.6. Thus, if the value of the 

distance feature for an object falls into 0.3-0.6 range, the object would probably 

be reachable.  

 

As seen from the above discussion, some features are more informative 

about the reachability of objects than the others. The proposed mechanism makes 

use of this fact. In the next chapter, details of the mechanism are presented with 

the results of the experiments conducted on the perception of object reachability 

using the proposed affordance perception mechanism.   
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CHAPTER 5 

5.                           EXPERIMENTAL RESULTS 

In this chapter, we apply the proposed relevant feature extraction method 

to the the perception of the reachability affordance on the simulated KURT3D 

robot in MACSIM.  Using the experimental framework described in the previous 

chapter, we presented the robot 200 different objects randomly placed in its front 

and tested the reachability affordance. We saved the features extracted from 

each test and the result of the test (afford/not afford) in a data file. We have 

created 50 different training and testing data sets, each containing 100 data 

points, and used them in the rest of this study. Note that, we envision our method 

to run in real-time on the robot and that the seemingly batch processing is only 

chosen to minimize the simulation costs and to maintain the replicability of our 

experiments. 

 

Our experiments consisted of two steps. In the first step, using the training 

data, shown in Figure 15, we formed strips for each feature using the method 

described in Section 3.1. Here, we chose to work on each feature alone to form 

the strips, since, we would like to identify the relevant feature channels that are 

essential for our affordance. The strips are formed both for positive (afford) data 

points as well as negative (not afford) data points. In the second step, using the 

strips created, we applied four different methods to make predictions about the 

affordances of the objects included in the test data and reported the results. 
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Figure 15 Scatter plot diagram of some of the feature values for the 

success and failure cases. Black triangles represent successful cases and 

grey rounds represent fail cases. 

 

 

5.1. Strip formation 

Strips reflect robot’s experience with training objects. The first phase of 

the experiment consists of forming the strips, after the training is completed. 

Figure 16 demonstrates formed strips after a training phase with 100 objects. 25 

features were calculated from the camera data. The values for color related 

features are gathered in 0 and 1 points, since the objects were either red, green 

or blue.  

 

Features that have the largest strips are considered as relevant. In Figure 

16, distance of the object from the robot, referred to as obj_dist, has the largest 

and most compact strip for both positively and negatively relevant strips. Thus, 

the distance feature is both positively and negatively relevant to the reachability 

affordance. 
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Figure 16 Strips formed after training the robot with 100 objects. Black areas 

represent strips that are positively relevant to the reachability affordance. Grey areas 

represent negatively relevant features. Corresponding feature names are stated under 

each column.  Features related with crane color, crane area, crane distance, rope 

tension and rope length are not shown in this figure since their values are constant for 

all objects. For space reasons, features that are not very relevant are omitted from 

the figure. 
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Table 2 Decision method for the reachability affordance. For the test objects, 

values of the relevant features are examined.  

Belongs to a 

positively relevant strip? 

Belongs to a 

negatively relevant strip? 
Final decision 

Yes No Reachable 

No Yes Not reachable 

Yes Yes Undecided 

No No Undecided 

 

 

Object area and y-dimension of the object center in the left camera follow 

the distance feature, referred to as obj_area_l and obj_center_y_l. As the object 

gets closer to the robot, the area of the object in the camera view gets larger. For 

the y-dimension of the center of the object, there is a large strip containing the 

smaller values of that feature, meaning that the objects for which small y-

dimension values were obtained are reachable. 

 

Note that most of the large strips have many smaller neighbor strips. These 

smaller regions point to two problems that the robot encounters. The first one is 

the sensor noise, when incorrect pixel values are obtained. Second problem is the 

incorrect feedback received from the object. For example, the object may slip in 

the ground or the magnet cannot be precisely inserted onto the object. These 

noisy regions can be minimized as the number of experimented objects increase. 

 

Thus, the relevant features are apparent after the formation of strips. The 

next step is to use these strips in perceiving reachability of new objects. 

 

5.2. Affordance Perception 

Using the strips created, we applied four different methods to detect and 

learn relevant features and their characteristics and evaluated their 

performances. 
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5.2.1. Using relevant features without threshold (STRIP-PASS) 

This method involves taking a number of relevant features and checking 

whether the value of these features in the new object belongs to any of the strips 

in these features. If the object has the desired values for a specified number of 

features, the robot gives a positive response. If the value of these features in the 

new object is not in a positively relevant strip and is in a negatively relevant strip, 

the robot gives a negative response. The decisions of the positively and negatively 

relevant features are integrated for the final decision about the affordance of the 

object.  This method is summarized in Table 2. 

 

We have analyzed the effect of number of relevant features on the 

accuracy of predictions. The mean, maximum and minimum values are calculated 

for 100 trials each having 100 objects. The robot was 85% successful in its positive 

responses and 87% successful in its negative responses when the most relevant 

feature is used in the decisions(see Figure 17). The accuracy of the predictions 

increases as the number of relevant features increases. For 4 relevant features, 

the ratios rise to 92% and 96% for the true positive and true negative ratios 

respectively. 

 

However, the number of responses decreases significantly as the number of 

relevant features increase. Positive responses decrease from 47 to 14 and negative 

responses decrease from 51 to 19 as seen in Figure 19.  

 

5.2.2. STRIP-PASS with threshold 

In this set of experiments, the robot did not check all the strips for the 

relevant features; only the strips whose relevancy exceeds a certain threshold 

were considered. The aim of these experiments is to see whether the robot can 

discard a large number of small strips so that it can detect the affordance of the 

objects in a shorter time.  
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Figure 17 The effect of number of relevant features on the true positive and true 

negative percentages for the STRIP-PASS method.  

  

Figure 18 The effect of number of relevant features on the number of true positives 

and true negatives for the STRIP-PASS method.  

  

Figure 19 The effect of number of relevant features on the number of positive and 

negative responses for the STRIP-PASS method.  
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The performance of the system with threshold was analyzed for 100 trials 

each consisting of 100 objects. The mean, maximum and minimum values are 

shown in Figure 4. The accuracy of predictions now rose to 94% for the positive 

responses and to 98% for the negative responses. The decrease in the number of 

responses is also encountered for the threshold case(see Figure 20). 

 

Compared to the no threshold case, the threshold case has better 

performance. In addition to better averages, the variances are significantly lower. 

However, the number of positive responses decreases from 48 to 25. The robot 

remains undecided for almost half of the reachable objects. 

 

It can be inferred from the results that the number of relevant features 

affects success ratio positively, and number of responses negatively. The choice 

should depend on the precision that we expect from the robot. If the robot is 

required to be more responsive to the environment, a decrease in accuracy should 

be expected. If the robot is required to be as accurate as possible, a decrease in 

the number of responses should be expected. This may be the case when the 

robot’s inaccurate decisions cause fatal outcomes. Another approach to this case 

can be to let the robot continue experimenting if it can not reach a solid decision. 

The robot will respond to more and more objects in time as it collects more 

information for the relevancy of the strips. 

 

5.2.3. WINNOW Algorithm 

The WINNOW algorithm is proven to be successful as a feature selection 

method when there exists a large number of irrelevant features[35]. Actually, it 

does not select the relevant features but assigns weights to each feature and 

update them after each observation. A downside of using Winnow algorithm is that 

it requires discrete values for the features. Thus, we have configured our system 

to better utilize Winnow for our case. 

 

Positively and negatively relevant features were presented to the Winnow 

algorithm separately according to their relevancy determined during the strip 
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Figure 20 The effect of number of relevant features on the true positive and true negative 

percentages for the STRIP-PASS method with threshold.  

  

Figure 21 The effect of number of relevant features on the number of true positives and 

true negatives for the STRIP-PASS method with threshold.  

  

Figure 22 The effect of number of relevant features on the number of positive and 

negative responses for the STRIP-PASS method with threshold.  
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formation phase. When a new object is observed, the values of the relevant 

features in the new object are checked in the strips belonging to these features. If 

the value is found in a positively relevant strip, and not in a negatively relevant 

strip, the robot gave a positive answer. If the value is found in a negatively 

relevant strip, and not in a positively relevant strip, the robot gave a negative 

answer. In case of a wrong answer, the weights of the corresponding features 

were updated. 

 

Results of experiments averaged over 100 trials each consisting of 100 

objects are presented in Figure 23, 24 and 25. The true positive and true negative 

ratios did not change significantly with the change in number of relevant features, 

even when all the features were included. This is compatible with the argument in 

[36] telling that Winnow is robust considering the number of irrelevant features.  

 

Although the performance is consistent when the true positive and negative 

ratios are considered, the number of positive and negative responses changed 

greatly for each trial. For some trials, the robot gave positive response for 90 

objects. 

 

 

The WINNOW algorithm[35] 

 

1. Initialize the weights w1,…, wn of the features to 1. 

2. Given an example (x1,…, xn), output 1 if w1 x1+…+ wn xn >= n, and 

output 0 otherwise. 

3. If the algorithm makes a mistake: 

a. If the algorithm predicts negative on a positive example, 

then for each xi equal to 1, double the value of wi. 

b. If the algorithm predicts positive on a negative example, 

then for each xi equal to 1, cut the value of wi in half. 

4. Go to 2. 
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Figure 23 The effect of number of relevant features on the true positive and true 

negative percentages for the WINNOW algorithm.  

  

Figure 24 The effect of number of relevant features on the number of true positives 

and true negatives for the WINNOW algorithm. 

  

Figure 25 The effect of number of relevant features on the number of positive and 

negative responses for the WINNOW algorithm.  
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5.2.4. WINNOW Algorithm with threshold 

Positively and negatively relevant features were presented to the Winnow 

algorithm separately according to their relevancy determined during the strip 

formation phase just like in the threshold case. The difference is that when the 

new object is observed, the values of the relevant features in the new object are 

checked only in the strips that pass a certain threshold. If the value is found in a 

positively relevant strip, and not in a negatively relevant strip, the robot gave a 

positive answer. If the value is found in a negatively relevant strip, and not in a 

positively relevant strip, the robot gave a negative answer. In case of a wrong 

answer, the weights of the corresponding features were updated. 

 

The average success percentage of true positives is above 85% for any 

number of relevant features. Compared to the no threshold case, there is a 2% 

improvement in averages. There is much better improvement for the variances. 

For 20 relevant features, the worst performance is around 50% for the no 

threshold case and 82% for the threshold case.  

 

There is also a 2% improvement in the true positive percentages. The 

improvement is more significant for the variance of the true negative 

percentages. Worst performance rises from 55% to 93% in the threshold case.  

 

The high variance in positive and negative responses is observed also for 

the threshold case. However, for the case of 10 relevant features, the variance 

improves significantly, pulling the lowest value to 26 from 0 for positive 

responses. 
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Figure 26 The effect of number of relevant features on the true positive and true 

negative percentages for the WINNOW algorithm with threshold.  

  

Figure 27 The effect of number of relevant features on the number of true positives and 

true negatives for the WINNOW algorithm with threshold. 

  

Figure 28 The effect of number of relevant features on the number of positive and 

negative responses for the WINNOW algorithm with threshold.  
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5.2.5. Comparison of the four methods 

Results of experiment are summarized in Figures 29, 30 and 31. For each 

method, best cases are selected. Best case for the STRIP-PASS with threshold, no 

threshold and with example selection is when only one relevant feature is 

selected. Winnow’s best case is determined as when there are 10 relevant 

features.   

 

For true positive and true negative ratios, STRIP-PASS method with 

threshold performs slightly better than other methods. WINNOW with threshold 

follows it.  

 

Considering number of true positives, STRIP-PASS without threshold 

outperforms other methods. WINNOW with selection follows behind. Methods with 

threshold has lower true positive values since applying threshold restricts 

decisions considerably in order to get more accurate responses. For the number of 

true negatives, methods with threshold have higher values. The reason is the fact 

that there are many small negatively relevant strips, unlike positively relevant 

strips. When a threshold is applied, these small strips are discarded, but many 

relevant strips remain. So the number of responses does not decrease significantly 

and at the same time, the performance increases since more relevant features 

remain. 

 

The number of positive and negative responses is higher for STRIP-PASS 

method than the other methods.  
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Figure 29 Comparison of relevant feature utilization methods with respect to the true positive 

and true negative ratios.  

  

Figure 30 Comparison of relevant feature utilization methods with respect to the number of 

true positives and true negatives.  
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Figure 31 Comparison of relevant feature utilization methods with respect to the number of 

positive and negative responses.   
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CHAPTER 6 

6.                                   CONCLUSION 

The affordance concept that has emerged in cognitive science has 

important implications for autonomous robots. In this thesis, we reviewed the 

affordance concept for autonomous robot control and proposed that invariant 

features of objects that support a specific affordance can be learned.  We used a 

physics-based robot simulator to study the reachability affordance on the 

simulated KURT3D robot model. We proposed that, through training, the values of 

each feature can be split into strips, which can then be used to detect the 

relevant features and their characteristics.  

Detection and use of relevant features and their characteristics have 

important implications. First, a robot looking for objects that would support a 

desired affordance can turn on the detectors of only the relevant features while 

leaving the rest turned off. Given that a robot would probably have hundreds of 

feature detectors; such ability allows a great perceptual speed-up.  Second, our 

analysis shows that it is possible to achieve higher prediction accuracy on the 

affordance support of novel objects by using only the relevant features. Use of all 

the features available actually degrades the prediction accuracy. This is an 

important gain, since failures can have high costs in robotics and better prediction 

accuracy is desired.  

The method we proposed enables a robot to perceive specific affordances 

in the environment. The next question is whether the affordances to be perceived 

should be pre-implemented in the robot, or the robot should discover novel 
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affordances itself. The set of affordances that belongs to an agent-object system 

is infinite. If the robot is supposed to discover a subset of this set itself, goals of 

the robot can guide the discovery process. For example, let the goal of the robot 

be to reach from one place to another. If a chair blocks the path, the robot may 

learn that a chair with specific features affords blocking the path. It may not 

analyze the reachability of this chair.  However, the robot needs a mechanism to 

determine that there is a change in its state caused by that object, in this case 

the robot can not continue navigation because it is blocked by the chair. For many 

cases, it may not be easy to decide cause of the change, and which change to 

consider. The chair can be seen responsible for the blocking but there can be 

another object in the ground that is out of view. Besides, the change in robot’s 

state can be deceleration, lowering of magnet, breaking of a wheel, increase in 

the shaking, so the robot should decide which change to consider. 

Finally, the work presented here only scratches the top of an interesting 

topic. Feature selection is already one of the active topics in computer vision and 

will probably be active in robotics, too. Detection of relevant features and their 

characteristics will allow robot to deal with novel objects while being highly 

responsive.  
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