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ABSTRACT

CONSTRUCTIONS OF BENT FUNCTIONS

SULAK, Fatih
M.Sc., Department of Cryptography
Supervisor: Assoc. Prof. Dr. Ali DOGANAKSOY

January 2006, 49 pages

In cryptography especially in block cipher design, Boolean functions are the
basic elements. A cryptographic function should have high nonlinearity as it can
be attacked by linear attack.

In this thesis the highest possible nonlinear boolean functions in the even
dimension, that is bent functions, basic properties and construction methods of
bent functions are studied. Also normal bent functions and generalized bent

functions are presented.

Keywords: Cryptography, Boolean functions, Bent Functions, Nonlinearity,
Walsh-Hadamard transformation, Normal Bent Functions, Generalized Bent Fuc-

tions, Bent Function Constructions.
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Oz

BUKUK FONKSIYONLARIN OLUSTURULMASI

SULAK, Fatih
Yiiksek Lisans, Kriptografi Boliimii
Tez Yéneticisi: Doc. Dr. Ali DOGANAKSOY

Ocak 2006, 49 sayfa

Kriptografide ve ozellikle de blok sifre tasariminda Boole fonksiyonlar: temel
unsurlardir. Kriptografik bir fonksiyonun dogrusal saldirilara karsi dayanikh ol-
masi i¢in nonlineeritesinin yiiksek olmasi gerekmektedir.

Bu tezde de miimkiin olan en yiiksek nonlineeriteye sahip olan fonksiyonlar
yani biikiik fonksiyonlar, onlarin 6zellikleri ve olugturulmasi incelenmistir. Ayrica

normal biikiik fonksiyonlar ve genellestirilmig biikiik fonksiyonlar da sunulmustur.

Anahtar Kelimeler: Kriptografi, Boole fonksiyonlari, Biikiik Fonksiyonlar, Nonli-
neerite, Walsh-Hadamard dontisiimii, Normal Biikiik Fonksiyonlar, Genellestiril-

mis Biikiik Fonksiyonlar, Biikiik Fonksiyonlarin Olugturulmasi.
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CHAPTER 1

INTRODUCTION

A Boolean function maps a number of input bits into a single bit. In cryptog-
raphy especially in block cipher design, Boolean functions are the basic elements.
A cryptographic function should have high nonlinearity in order to prevent at-
tacks based on linear approximation. In this thesis the highest possible nonlinear
Boolean functions, that is, bent functions are studied.

Bent functions are first studied by Dillon [6] in 1974 and Rothaus [16] in 1976.
The word “bent” is first used by Rothaus. Further properties and constructions
of bent functions can be found in [2], [§8]. Kumar, Scholtz and Welch [11] defined
and studied generalized bent functions.

Our thesis is organized as follows:

In Chapter 2, we establish some notations which are used throughout the
thesis and recall the properties of Boolean functions. Then, we state linear and
affine functions. Later, we present nonlinearity and the Walsh-Hadamard trans-
form of Boolean functions, its properties and relations with Sylvester-Hadamard
matrices.

In Chapter 3 basic properties of bent functions are given.

In Chapter 4, we present the construction methods of Bent functions.

In Chapter 5, we present normal bent functions and their properties.



In Chapter 6, generalized bent functions and their properties are investigated.
Some constructions of generalized bent functions in [11] are also given.

We summarize the thesis in chapter 7.



CHAPTER 2

PRELIMINARIES

In this chapter we state the definitions and the notation we use in the following

chapters. The reader may refer to [17] and [19] for further information.

2.1 Boolean Functions

Let V,, be the vector space composed of all n-tuples of elements from GF'(2).
An element oy = (ay,a9,...,a,) in V,, can be represented by the integer k =
S a:2"". With this representation, the natural ordering of integers induces
an ordering on V,, so called the lexicographic ordering. We denote the element
of V, corresponding to the integer k by a4 so that V,, = {ag, a1, -+, en_1} and
apg < ag < - < Qgn_y.

For a,3 € V,, the sum a & 3 € V), is obtained by adding corresponding
components of o and 4 modulo 2.

The standard basis of V, is denoted by {ey,es,...,e,}, where e; represents
the vector having all zero’s except a 1 at the i-th position.

The Hamming weight of an element o € V, is the number of components
that are equal to 1 and is denoted by w(a). The Hamming distance between
two elements «, 5 € V), is the number of unequal components and is denoted by

d(a, 3). Obviously, d(a, 3) is the Hamming weight of o & . From now on “the



weight” and “the distance” will mean the Hamming weight and the Hamming

distance, respectively.

Let o = (ay, a9, ...,a,), B = (b1,bs,...,b,) € V,. The standard inner product
(,) on V), is defined as

<Oé, ﬁ> = Z (lzbz

i=1
A Boolean function is a GF(2) valued map, with domain V,,. The set of all
Boolean functions is denoted by F,,. From now on, unless otherwise stated, by

“a function” we mean a Boolean function in F,,

Any f € F, has a unique representation in each of the following forms:

e The ordered tuple,

Ty = (f(awo), fleu), ..., flagn-1))

is called the truth table of f.

e Sometimes instead of 7%, it may be more convenient to use the real valued
function of f, which is called the sign function f . It is defined as f (o) =
(=1)7(@) =1 —2f(a) for all & € V,. The truth table of the sign function f

is called the sequence of f and is denoted by (. That is

(= ((=1)fle0) (—q)fe) (= 1)/(een-0)y,
e The polynomial representation

f({lf) = apDa 121D - - DapTpDa1201X2D" - -Da12..nT1T2 - - Ty



where ag, ay,- -, a12.., € GF(2), is called the algebraic normal form (ANF)
of f. In this representation each product of variables appearing as a part
of the sum is called a term. Number of variables in each term is called the
degree of that term and the degree of a function is the degree of the term

(not necessarily unique) with largest degree and is denoted by deg(f).

The weight of a function is defined as the number of nonzero entries in 7% and
is denoted by w(f). If the weight of a function is 2"~1, that is the numbers of 0’s
and 1’s are equal, then the function is called balanced. We denote the set of all
balanced functions by B,,. Obviously, |B,| = (23711)

Let f,g € F,. Then by the distance between f and g, we mean the distance
between Ty and T, on Vsn, which is donated by d(f, g). Thus, d(f,g) = w(f®g).

The following lemma is immediate from the definition.
Lemma 2.1.1. For any f,g € Fy, d(f,g) = 2" — 1 (¢4, ().

Two constant functions, whose weights are equal to 0 and 2" will be denoted
by 0, and 1,, respectively. For a function f € F,, the complement function f is
defined to be f = f @ 1,,. Trivially, it follows that w(f) = 2" — w(f).

The support of f is defined to be the set {a € V,,|f(a) = 1} and is denoted

by Supp(f). It is clear that |Supp(f)| = w(f) and that Supp(f) N Supp(f) = 0.

2.2 Linear and Affine Functions

A function f € F, is called linear if f(a ® ) = f(a) @ f(F) holds for all
a, €V, and such a function is of the form f(z) = a121 @ agxs ® -+ © a, 2y,

a; € GF(2). The set of all linear functions is denoted by L,.



A function f € F, is called affine if f(a & 3) = f(a) ® f(8) & a holds
for all o, € V, and a € {0,1} and such a function is of the form f(z) =
ap B a1y B asxe B -+ B apxy,, a; € GF(2). The set of all affine functions is
denoted by A,. Obviously £, C A, and |A,| = 2|L,| = 2"}

From the above definition, it is clear that any linear function f can be written

in the form f(z) = a - x for some a € V,, and this linear function is denoted by

ly,.
Theorem 2.2.1. Any non-constant affine function is balanced.

Theorem 2.2.2. For any fa,;, fo; € Ln we have the following:

0 Zf o = Oy,
d(fam faj) =
on—1 otherwise.
The set {£y, 1, ..., ¢an_1} of sequences of all linear functions, forms an orthog-

onal basis for R?" over the set of real numbers R with respect to the standard
inner product on R?". It follows that the sign function of any function can be
written uniquely as a linear combination of £y, {1, ..., lon_1.
Let f (x) = Zia Yeil;, where ¢; € R are the coefficients. If we calculate the
inner product of f (x) and /; for any j, we obtain:
an—1
<f($)75j> = )

1=0

Using the theorem 2.2.2; the above sum simplifies into:

(f@),t5) = 2!



S0,

c; = 27" <f(x),fj> :

2.3 Walsh Spectrum and Nonlinearity

One of the most important concepts of the Boolean functions is nonlinearity.
Nonlinearity Ny of a function is the distance between the function and the set

A,. In particular Ny is defined as:

Ny = min d(f,g). (2.3.1)

High nonlinearity is a very important design criteria, as it is a measure for
linear cryptanalysis introduced by Matsui [12]. By definition, it is clear that
Ny =0 if and only if f is an affine function.

Nonlinearity simply divides functions into two parts: “affine(linear) functions”
and “nonaffine(nonlinear) functions”. Furthermore as nonlinearity measures the
distance of a function to A, it also measures how well a function is linearly

approximated.

Definition 2.3.1. An 2" x 2" matrix H, with all entries 1 or —1 is called a
Hadamard matrix if H,, - H: = 2" ., where H! is the transpose of H,, and I is

the 2™ x 2™ identity matrix.

Definition 2.3.2. The Walsh transform of a real-valued function f :V, — R, is



again a real-valued function Wy : V,, — R defined by:
Wi(w) = > fla)(=1)), (23.2)
acVn,

where w € V,.

Also the inverse Walsh transform is defined by:
flay=27"% Wyw) (=1,
wEVn

Observe that, the Walsh transform and its inverse are defined for real valued
functions. Therefore, for a Boolean function f, while computing its Walsh trans-
form, the sum and values of inner product are treated as integers. We denote the
Walsh transform of f and f by W; and Wy, respectively. Similarly, we denote

the inverse Walsh transform by W U and VVf_1 .

Lemma 2.3.3. [ff 1s the sign function of f, then
Wi(w) = —2Wy(w) + 2"0(w),
which is equivalent to
n—1 1
Wi(w) =2""0(w) = SWi(w),

where §(w) is the Kronecker delta function.

The ordered tuple, (Wi(ao), Wi(an), ..., Wi(agn-1)), is called the Walsh spec-

trum of f and is denoted by Tw;-

The following theorem gives a necessary and sufficient condition for a Walsh



transform to belong to sign function of a Boolean function:

Theorem 2.3.4. g : V, — R s the Walsh transform of sign function f of a

function f if and only if the following holds for all X in V,:

. 2" for A =«
S gw)glw +A) = 2%(N) =
WEVy 0 otherwise

If we re-compute the equation for A = «, we get the following identity which

is known as Parseval identity.

Corollary 2.3.5.

3 <Wf(w)>2 — 92 (2.3.3)

wEVp

It is obvious that, for any f € F,,

Wf(ai) — Z (=1)7B)(—1)Be)

BEVn

— Z (_1)f(ﬁ)(_1)eai(ﬂ)

BEVn

= <<f7£z>

Thus, Wf(ai) is in fact, nothing but the difference between the number of 0’s and

the number of 1’s in T{q, ). Then, it is easy to see that:
1 n
d(f,ls,) = 5(2 — Wi(ai)) (2.3.4)
From the equation above, it follows that:



Another criterion, a cryptographically good Boolean function should satisfy is
correlation immunity. A Boolean function, whose output distribution probability
is unchanged when any m of input bits are kept constant, is called m-th order
correlation immune where m € {1,2,...,n}. Furthermore, if a balanced Boolean
function is m-th order correlation immune, f is then said to be m-resilient.

Correlation immunity and resiliency of a function f can be characterized

through the Walsh transform of f as follows,

Theorem 2.3.6. Any f € F, is m-th order correlation immune where m &

{1,2,...,n} if and only if W; satisfies

Wi(w) =0, forallw €V, with 1 < w(w) < m.

l
Theorem 2.3.7. Let H, = ' be the matriz of order 2" (n > 0) where

lon_1q

the i'" row is the sequence l; of the linear function fo. () = (o, x) for i =

0,1,---,2" — 1 where o; € V,,.

The matrix H, defined in the above theorem is called Slyvester-Hadamard
matrix or order n. This theorem is very useful since it says that the n'® order
Slyvester-Hadamard matrix is the complete table of the sequences of all linear
functions in F,,. Since H,, is a symmetric matrix, the above theorem is also valid
for the columns of H,,.

One asks the natural question: What is the maximum possible value of the

nonlinearity of a function?

10



Theorem 2.3.8. For any function f € F,, Ny satisfies the following inequality:

Ny <ont 2571

Proof: Combining equation 2.3.1 and 2.3.4, we conclude that

(2.3.5)

From Parseval identity we know that

Z <Wf(w)>2 — 2,

wEVy

In this summation there are 2" terms. So the maximum term is not less than

222—: = 2™ Then

max ’Wf(ai)‘ > on/2

fo; €EAR

Then 2.3.5 yields

11



CHAPTER 3

PROPERTIES OF BENT FUNCTIONS

One of the most important class of Boolean functions is bent functions. They
play an important role in cryptography. Bent functions are first studied by Dillon
[6] and Rothaus [16] in seventies. Rothaus used the word “bent” for the first time
and gave constructions of bent functions of degree 3 on Fg.

In a private communication to Dillon, Maiorana generalized a class of Rothaus’
bent functions. The general theory of bent functions are studied by Kumar,

Scholtz and Welch [11].

3.1 Basic Properties of Bent Functions

Definition 3.1.1. A function f is called bent if the components of the Walsh

spectrum of f all have the same magnitude, up to the absolute value.

Example 3.1.2. Let f € F; be defined as f(z) = x129+x2. Since Ty = (0, 1,0, 0)

and Walsh spectrum = [2,2-2,2], f is a bent function.

Example 3.1.3. Let f € F; be defined as f(z) = z1 + x129 + 324 + 24. Since

Ty =(0,1,0,0,0,1,0,0,1,0,1,1,0,1,0,0)

12



and

W; = 4,4, —4,4,—4,—4,4,—4,4,4, —4 4,4, 4, —4, 4]
f is a bent function.
Using the Parseval identity one easily obtains:

Theorem 3.1.4. f € F, is a bent function if and only if

Wf(oz)’ =22 for all

a€eV,.

Rothaus gave the basic properties of bent functions in his article [16]. Follow-

ing theorems are due to him and Dillon [5], [6].

Theorem 3.1.5. ([16]) Let f be a bent function. g, defined by setting (—1)9) =

Wi
on/2

for all a € V,, is also a bent function.

Proof: Since f is bent, by theorem 3.1.4 g is in F,.

. 1 1 1
F@) = 50 30 WH@)(=1)@ = o 37 (—1peres = ()

a€Vn, a€Vn,

Thus, g is bent. O
The function ¢ in the previous theorem is called the dual of f. The dual of a
bent function will be used to construct new bent functions, in the next chapter.

Also it is easy to observe that if ¢ is the dual of a function f then the dual of g
is f.

Lemma 3.1.6. (/16/) A function f is bent if and only if the matriz A = (a;;) of

order 2" where a;; = #Wf(ozi +ay) for 0 <i,j <2"—1 is a Hadamard matriz.

13



Proof:  Let AA" = (z;;) where z;; = 5 2 Wiy + a)Wi(a; + ay). But

f f
since
220 if =0,
> Wia)Wila+g) = |
A€V, 0 otherwise.
we get:
2" af i =7,
xij =
0 otherwise.
We conclude that A is a Hadamard matrix. The converse is trivial. O

Given f € F,, the function f, € F, defined by g.(x) = f(x) + f(x + «) is

called the directional derivative of f in the direction o € V.
Theorem 3.1.7. (/5]) All directional derivatives of a bent function are balanced.

Theorem 3.1.8. ([16]) A function f is bent if and only if the matriz defined by
My = (my;); where my; = (—1)7@ite) 0 < j<2m—1

is a Hadamard matrix.

Proof:  Let MM = (v;;) where

T = Z (_1)f(ai+at)+f(aj+0¢t)

at€Vy

If we change the variable we get:

Tij = Z (_1)f(9)+f(041'+0¢j+9)
0V,

But the function inside the summation is nothing but a directional derivative of

14



f. By using theorem 3.1.7 we get:

2" af 1=,
ill'ij =
0 otherwise.
We conclude that M is a Hadamard matrix. The converse is trivial. O

Theorem 3.1.9. ([16]) If f € F,, is a bent function, then n is even, n = 2k; the

degree of f is at most k, except for the case k = 1.

Proof: That n is even follows from the observation that ’Wf(oz)‘ = 2"2 is an
integer. For the second statement, let n > r > k > 1. We define the functions f

and g:

f(wlax%"' axT70>0a"' 70) :g(xlax%"' 7xr)

and put

1
(-1)9(“”3) = Z Wg(Oél, g, -+ ’Oér)(_1)041'I1+az~x2+~--+ar-xr'

a17a27... 7aT:071

(-1)f(x) R Z I/I/'f(oé17 Qg - - 7an)(_1>a1'$1+a2~x2+~-+an~xn'

ag,az,,an=0,1

Comparing these equations and using the uniqueness of the Walsh transform,

15



we conclude

1
Wi(ar, ag, -+, ay) Z Wilan, ag, -+, ap). (3.1.1)

o 271—7‘
041,042, ,an=0,1

At this point letting w = 0 in 2.3.2, we get:

W;(0) = Z (=1)9) = number of 0's — number of 1's. (3.1.2)

But also

number of 0's + number of 1's = 2". (3.1.3)

Then we find that
! n—1 1
number of 0's =2""" 4+ §Wg(0).

If we combine this result with equation 3.1.1, the number of 0’s of g is equal

to

- 1
21+ i1 Z W5(0,0, -, g1, Qo - Q).

Qr41,Qr42, " ,an=0,1

Since f is bent,

W30,0, - qryr, Qpyg, oo )| = 272 for all 2" sum-

mands. So the number of 0’s of g and the weight of ¢ is even for n > 2. However

w(g) = ara.(mod 2) where ajo._, is the coefficient of zyzy... 2z, [17]. Thus,

a1o.» = 0 and the degree of g is less than r for any arbitrary r > k. We conclude
that deg(f) < k.

OJ

Since bent functions are defined only for even values of n, from now on unless

otherwise stated explicitly we assume that n is even and n > 2. Also we find that

16



this theorem gives us an obvious upper bound for the number of bent functions,

that is the number of bent functions is at most 2(3>+(T)+"'+("7/L2).
Fact 3.1.10. A function f is bent if and only if the complement f of f, is bent.

Example 3.1.11. Let f € F; be defined as f(x) = z125 + x324. Since

Ty = (0,0,0,1,0,0,0,1,0,0,0,1,1,1,1,0)

and

W= [4,4,4,-4,4,4,4,—4,4,4,4,—4,—4,—4, -4, 4],

f is a bent function.

Let g € F4 be defined as g(z) = 1 + x1x9 + x3xy. Since

T,=(1,1,1,0,1,1,1,0,1,1,1,0,0,0,0,1)

and

Wﬁ = [_47 _47 _47 47 _47 _47 _47 47 _47 _47 _47 47 47 47 47 _4]7

g is also a bent function.
Fact 3.1.12. A bent function cannot be correlation immune.

The following theorem is very important because it enables us to obtain many
new bent functions once we have one. Moreover, in the next chapter completeness

of a class of bent functions will be obtained on the basis of this theorem.

17



Theorem 3.1.13. [16] A bent function is invariant

e under a linear or an affine transformation in coordinates, that is f is bent
if and only if the function h = f o 0 is bent where 0(x) = tA+a, A is a

nonsingular matriz of order n and « is any vector in V,.

e by adding an affine function, that is [ is bent if and only if f + ¢ is bent

for any affine function ¢.

Example 3.1.14. Let f € F; be defined as f(x) = z129 + 2123 + 2024. f is a

bent function. Let g € F, be defined as g(z) = x1x9 + x123 + 2224 + x1. Since
T, = (0,0,0,0,0,1,0,1,1,1,0,0,0,1,1,0)

and
WQ = [47 47 _4a 47 47 _47 _47 _47 47 47 4) _4) 47 _47 47 4]7
g is also a bent function.

The following theorem says that bent functions are the furthest functions to

the set of all affine functions.

Theorem 3.1.15. Let f be a function. Then f is bent if and only if d(f, A,) =

Nyppaw where Nopaw = 271 — 2571 s the largest value of nonlinearity.
The following theorem says that bent functions are not balanced.
Theorem 3.1.16. Let f be a bent function. Then w(f) =214+ 2:71,

Proof: If we combine equation 3.1.2 and 3.1.3 we find that
= b l's= 21— 1w o
w(f) = number of 1's = 5 #(0)

18



But since W;(0) = £2"2 we conclude
w(f) =2""t+2571

O

A main obstacle in the study of bent functions is the lack of recurrence laws.
There are few constructions deriving bent functions from smaller ones. But it
seems that most of them appear without any roots to bent functions in lower

dimensions. In the next chapter, construction methods will be given.

Theorem 3.1.17. ([16]) Let the function h be defined as h(z) = f(x)+ g(y) for

z=(x,y) € Vi ® V.. Then h is bent if and only if f and g are bent.

Definition 3.1.18. A function f is said to be decomposable if there is a linear
transformation on the input coordinates such that h can be written as a sum of
functions on disjoint variables as in Theorem 3.1.17.

In other words h € F,, is decomposable if there exists a binary matrix of order
n such that h(zA) = f(x)+g(y) where z = (z,y) € V,, for x € V}, y € V; satisfying

k 4+t = n. If there exists no such matrix, then h is said to be indecomposable.

If h is a decomposable bent function for n = 2k, then by Theorem 3.1.17
deg(f) < k and deg(g) < k if k # 2. So we obtain:

Theorem 3.1.19. (/16]) If f is a bent function in F, where n = 2k for k > 3,

then f is indecomposable.

19



CHAPTER 4

CONSTRUCTIONS OF BENT

FUNCTIONS

4.1 Rothaus’ Bent Function Classes

In 1975, Rothaus [16] presented the first two classes of bent functions. He
made an exhaustive search on all polynomials in V. It was feasible due to the
observation that the degree three part of any bent function in Vg could be brought

into one of the following four forms by a linear transformation in coordinates:
1. T1T2T3
2. L1T2Z3 + T4T5Xe
3. T1X2T3 + XaTaTs
4. T1X903 + XoTaTs + T3X4T6

Then all of the 2! possible quadratic parts were tried. Answers were found

in classes 1,3 and 4 of which typical ones are listed below:
1. T1ToX3 + T1X4 + ToX5 + T3Tg

2. T1X2x3 + X2TaTs + T1T9 + T1X4 + ToXg + T3X5 + Taxs
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3. T1Tox3 + ToxsTs + X3T4xg + T1X4 + ToXe + T3T4 + X3T5 + XaTe + Tals + T4Te

It is observed that all the members in a class are related to each other by
an affine transformation of coordinates followed by the addition of linear terms.
Also, since all quadratic bent functions are known [14], all bent functions in V,
for n < 6 are known. For case n = 8 Hou [10] classified bent functions of degree
lees than or equal to 3. It is still an open problem to classify all bent functions
in Vs.

Finally, two general classes of bent functions are presented in [16].

Theorem 4.1.1 (Rothaus Class I). ([16]) Let n = 2k and z,y € Vi and f
be any function in Fy. Then the function Q(x,y) € Fa given by Q(x,y) =

T1Y1 + TaYo + - - - + xpyr + f 1S bent.

Example 4.1.2. Let’s take k = 2. Then f = zix5 + x324, whose truth table is
given by
T =[0,0,0,1,0,0,0,1,0,0,0,1,1,1,1,0]

and whose Walsh spectrum is given by

Wf = [47 47 47 _47 47 47 47 _47 47 47 4a _47 _47 _4a _47 4]

is a bent function.

Theorem 4.1.3 (Rothaus Class II). (/16]) Let A(x), B(x),C(z) be bent functions

on Fyy such that A(x)+ B(x)+C(x) is also bent. Lety,z € Vy. Then the function

Qz,y,2) = Ax)B(z) + B(x)C(x) + C(x)A(z)

+[A(z) + B(x)]y + [A(z) + C(2)]z + yz
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1s a bent function in Foyyo.

Example 4.1.4. Let’s take k = 2, A(x) = B(x) = x129 + 2324 and C(x) =
1Ty + 324 + x123. Then A(z) + B(x) + C(x) = C(x) is a bent function. Let

x5,76 € V1. Then Q(x) = x1x9 + w374 + T526 + T17376 is a bent function in Fy

4.2 Maiorana McFarland’s Class

Maiorana McFarland’s class of bent functions is a generalization of Rothaus’
class I. This class is not complete (recall theorem 3.1.13) and denoted by M; its

completed version is denoted by M.

Theorem 4.2.1 (Maiorana McFarland Class). (/13]) Let k be an arbitrary posi-

tive integer and n = 2k. Then the function f € F,, given by
f(x) = xy - m(a1) + g(a1)
where x1, 9 € Vi are defined by
xr =[x, 9]

w15 an arbitrary permutation of Vi and g € Fy is an arbitrary function, is bent.

The number of functions in F,,/; is 22"% and the number of permutations in
V2 is 2(n/2)1 " So the number of functions satisfying the condition in the above

theorem is 22"/°2(n/2)1.
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Example 4.2.2. Lets consider the vector space V,. First we divide y;’s into two:
w1 = [y1,y2] and x3 = [ys, yu
Let m(x1) = [y2, 41] and g(z1) = y1 + y1y2. Then
fy) =9 m(x1) + g(21) = [y3, Y] - [y2, 1] +y1 + Y1v2 = Yoys + Y1ya + Y1 + 192,
whose truth table is given by
Ty =[0,0,0,0,0,0,1,1,1,0,1,0,0,1, 1, 0]
and whose Walsh spectrum is given by
Wi=1[4,-4,4,4,4,—4,—-4,-4,4,4,4,—4,4,4, -4, 4],

is a bent function.

4.3 Partial Spreads (PS)

Dillon [6] defines Partial Spreads as union of two disjoint classes PS™ and

PST:

e the elements of PS™ are those functions whose supports are the unions of
2k=1 disjoint k-dimensional subspaces of V,, less the point 0 (k = n/2). In
this definition disjoint means that any two of these spaces have only 0 as

common element and therefore their sum is direct and equal to V), that is
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they are the sums of 28! characteristic functions of disjoint k-dimensional

subspaces.

e the elements of PS™ are those functions whose supports are the unions
of 2¥=1 + 1 disjoint k-dimensional subspaces of V,. They are the sums of

2F=1 + 1 characteristic functions of disjoint k-dimensional subspaces.

The Walsh transform of any function of PS is deduced from the function itself
by replacing the spaces by their duals, PS is not complete but the completed
version, which is denoted by PS¥, can be obtained by changing the subspaces
into flats, two of them having a single (fixed) point in common, and by adding

affine functions. PS” does not include M# and M# does not include PS.

Example 4.3.1. Let’s try to construct a bent function in PS™ for k = 3, that
is f € Fs. We start by choosing 4 disjoint 3-dimensional subspaces. Let the

subspaces of Fg are defined as

G, = {(0,0,0,0,0,0),(0,0,1,0,0,0),(0,1,0,0,0,0),(1,0,0,0,0,0),

(0,1,1,0,0,0),(1,0,1,0,0,0), (1,1,0,0,0,0), (1,1,1,0,0,0)}

G, = {(0,0,0,0,0,0),(0,0,0,0,0,1),(0,0,0,0,1,0),(0,0,0,1,0,0),

(0,0,0,0,1,1),(0,0,0,1,0,1),(0,0,0,1,1,0), (0,0,0,1,1, 1)}
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Gs = {(0,0,0,0,0,0),(0,0,1,0,0,1),(0,1,0,0,1,0),(1,0,0,1,0,0),

(0,1,1,0,1,1),(1,0,1,1,0,1),(1,1,0,1,1,0),(1,1,1,1,1,1)}

G, = {(0,0,0,0,0,0),(0,0,1,1,0,0),(0,1,0,0,0,1),(1,0,0,1,1,0),

(0,1,1,1,0,1),(1,0,1,0,1,0),(1,1,0,1,1,1),(1,1,1,0,1,1)}

Then the truth table of the function f is given by

Ty = (1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,1,1,1,0,0,0,0,0,1,0,0,1,0,1,0,0,1,

0,0,0,1,0,1,0,1,0,1,0,0,1,0,0,1,0,0,0,0,0,1,1,1,0,0,1,0,0,0, 1, 0)

is a bent function.

PS is a very important class of bent functions but it is not defined expilicitly.

But Dillon defines an explicit subclass of PS™ denoted by PS,,.

Definition 4.3.2. PS,, is the set of all the functions of the form g(), (with
% = 0if 2 = 0 or y = 0) where g is a balanced function on V, /» which vanishes

at 0 (g(0) =0).
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4.4 Carlet’s Bent Functions

Carlet [2] used known bent functions and altered them to obtain new bent
functions. Dillon [6] presented a result in this sense, which may be stated as
follows: “Let f be a bent function on F,; suppose its support contains a k-
dimensional linear subspace E of F,,. Then, denoting by ¢g the function of
support E, the function f + ¢g is bent”. Carlet used this result to obtain new

classes.

Theorem 4.4.1. ([2]) Let E be a (n/2)-dimensional linear subspace of F,, and
7 be a permutation on F, o such that, for any (z,y) in E, the number: - w(y)

equals 0. Then the function defined on F, as:

flx,y) =z 7(y) + ¢z, y)

1s bent, where ¢ denotes the function of support E.

This class does not lead to an effective construction method since there is no
simple description of all the subspaces and permutations satisfying the condition

of theorem 4.4.1. But there is a simple subcase of the theorem.

Definition 4.4.2. Class D consists of all functions f € F,, of the form:

f(x,y) = dp(r,y) + - 7(y)

where F is a subspace of F,, equal to E; x F,, F, and E5 being subspaces of
Fns2 with dim Ey + dim E, = n/2 and 7 is any permutation on Fn/2 such that
7T(E2) = Ef‘
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Class Dg consists of all the functions f € F,, of the form:
n/2
fay) =[] +1) +2- )
i=1

Dy corresponds to the case: E'=0 x F, .

By theorem 4.4.1 D and Dy are bent function classes. Carlet [2] showed that
D and D, are neither included in M?#, nor included in PS#. Also he showed
that the bent functions of degree 3 on Fy all belong to class D# :

The sizes of D and M have approximately same order since the number 92"/
of functions in F,, 5 is small, compared with the number of permutations on the

same space: (27/2)!.

Theorem 4.4.3. ([2]) Let L be any linear subspace of F,, /2 and w be a permuta-
tion on Fpjo such that, for any element X of Fy 2, the set 71 (A + L) is a flat.

Then the function defined on F,, as:

flz,y) =z 7(y) + ¢p(z,y)

18 bent.

Definition 4.4.4. Class C consists of all functions f € F,, of the form:

flz,y) =z-7(y) + ¢p(x,y)

where L and 7 satisfy the conditions of theorem 4.4.3.

Class C contains Dy (which corresponds to the case L = F, /), so it is not

included in classes M# and PS#. As well, C is not included in class D# since it
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contains functions of degrees less than n/2.
The following theorem Carlet [3] proved that from a set {f,, 2’ € V,} of bent
functions on V, (n,r even) and under a certain condition, we can deduce the

bentness of the function (z,2") — fu (z) on V4.

Theorem 4.4.5. ([3]) Let n and r be two positive even integers and f be a
function on V, 1. = V, X V,. such that, for any element z’ of V., the function on
V, defined as fu : x — f(x,2’) is bent. Then f is bent if and only if for any

element s of V,, the function

s 2 & — fu(s)

s bent on V.

Example 4.4.6. Let us choose n = 2 and replace x with (z1,x2), ' with z and

r with n. Take:

fay, xa, ) = g(x)h(x)+g(x) k() +h(w)k(2)+[g () +h(z)]ei+[g(2)+h()|vatz12

We know that any function of the form zi25 4 a2 4+ asxs+as is bent on V. So f
is bent for any x. It is trivial to check that the dual of the function xyxs + ayx; +
asTo+as is 172+ asx1 + a9 +ajas +as. Here a; = g(x)+h(x), as = g(x)+ k()
and ag = g(z)h(z) + g(x)k(x) + h(z)k(z).

According to theorem 4.4.5, f is bent if and only if the following functions

are bent:
o for s = s, =0: ajas + a3 = g(z)

o for s =0, s =1: a; + ajas + az = h(x)
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o for sy =1, s =0: ag + ajas + az = k(x)

o for s = sy =1: 1+as+a; +ajas+az =1+ g(z) + h(z) + k(z). And

1+ g(z) + h(z) + k() is bent if and only if g(x) + h(z) + k(z) is bent.
So it leads to the Rothaus Class II.

Carlet [3] used this theorem to construct new classes. He used M, PS,, and

Dy as known classes. The first proposition uses classes M and D,.

Proposition 4.4.7. ([3]) Let n be a positive even integer and m,r two positive
integers whose sum is equal to n. The elements of V,, are written in the form
(z,y,2",y"), where x,y are elements of V)2 and x',y" are elements of V, 2. Let
7 and 7 be permutations on V2 and V, s respectively and h be a function in

Fir 2. Then the following function f € JF, is bent:

[y, 2" y") = -7w(y) + 2" - 7'(y) + do(x)h(y).

The definition of f in the proposition 4.4.7 is very similar to that of Maiorana
McFarland class but it is not included in M#.

Second proposition uses the single class PS,,,.

Proposition 4.4.8. ([3]) Let n be any positive even integer and m,r two positive
integers whose sum is equal to n. Let k be a function in F, o X F, /o such that
for any element x of V)2, the function o' — k(x,2') is balanced on V.o and for
any element x' of Vyja, the function x — k(x,2') is balanced on V,, 2. Then the

following function f € F, is bent:

flxy, 2’ y') = k(
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Third proposition uses classes M, PS,, and D.

Proposition 4.4.9. ([3/) Assume n =4q. Let ™ and ' be two permutations on

V, and g € F, be a balanced function. Then the following function f € F, = (F,)*

ey~ o [yex ()] +ain ()

4.5 Dobbertin’s Bent Functions

18 bent:

Definition 4.5.1. ([7]) Let o, ¢ and v be chosen such that:

oV, — V; balanced,
¢V, — V, bijective,

v : Vy — V, arbitrary.
The function f, 4, on Vs, associated to the triple (o, ¢, ) is defined as follows:

o (Z20) if yAo,

0 otherwise.

This construction is called triple construction. If f, 4 is a bent function then

(0,¢,7) is called a bent triple associated to fy 4.,

Lemma 4.5.2. ([7]) Let U be a subspace of V,, and yo € V,,. Then there is an
onto linear mapping p : V, — U such that a one to one correspondence between

all functions o € F,, with

Supp(W,) Cyo +U
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and all functions T on U 1is given by setting

Moreover, all o are balanced if and only if yo ¢ U.

Theorem 4.5.3. ([7]) Let (o, ¢,7) be given as described in the triple construction.
Suppose ¢(z) = 2, y(x) = a¥ (ory =0) ford,d < 2" — 1 and let a non-trivial
subspace U of V,, and yg € V,, — U be given such that the following conditions are
satisfied:

1. ¢ is bijective, that is d is relatively prime to 2™ — 1.

2. ¢ and vy are not affine, that is d and d' are not powers of 2.

3. ¢ and 7y are affine on yo + U.
Define o : 'V, — V1 as a nonaffine balanced function such that the support of
W, is a subset of yo + U. This means that o is of the form

o(x) =7p(x) + Tr(zy),

where p : V, — U is an onto linear mapping chosen according to the previous
lemma and T is an arbitrary nonaffine function on U. Then (o,¢,7) is a bent
triple. The explicit definition of the corresponding bent function is:
7p (£ + yd'”) +Tr ((E + yd'*l)yo) if y#0,
fla,y®) = ! !

0 otherwise.
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This class is a generalization of PS,,. Dobbertin denotes this class by N/. He

proved that class N is not contained in M# [7].

4.6 Constructions of Bent Functions from Two
Known Bent Functions

If we are given two bent functions, we can construct another bent function of

higher dimension. The results of this sections can be found in [18].

Definition 4.6.1. We call the sequence of a function a bent sequence if the
function is bent. A sequence is called an affine sequence (a linear sequence) if it

is the sequence of an affine function (a linear function).

Definition 4.6.2. We call a (1, —1) matrix of order 2" x 2" a bent type matrix
if each row is a bent sequence of length 2" and each column is a bent sequence

of length 2.

Definition 4.6.3. We call a (1, —1) matrix of order 2™ x 2" an affine type matrix
if each row is an affine sequence of length 2" and each column is an affine sequence

of length 2.

Definition 4.6.4. Let A; and As be affine type matrices of order 2™ x 2". If
Ay = QAP where Q and P are diagonal matrices of order 2™ and 2" whose

diagonals consist of £1, we say A; and Ay are equivalent.

Lemma 4.6.5. ([18]) Let by, by, -+ ,ban_1 be a bent sequence and co, ¢y, -+ ,Con_1

be an affine sequence. Then bycg, bicy, -+ ,bon_1con_1 18 a bent sequence.
Y 7 ?

32



Theorem 4.6.6. ([18])

Let B = (b;j) be a bent type matrixz of order 2™ x 2™. Write

ﬁj: (blja"' >b2mj>7 J:1727 72n and

Q; = (bily"' ,bign), Z: 172’... ,Qm
Then both

(272" B Hypy -, 272" Byu Hyy) and

(27%n051Hn, ey 27%"a2mHn)

are bent sequences of length 2™ x 2™

Theorem 4.6.7. ([18]) Let A be an affine type matriz of order 2™ x 2", P be a
diagonal matrixz of order 2™ whose diagonal is a bent sequence of length 2", say
ag, a1, -+ ,asm_1 and Q be a diagonal matriz of order 2™ whose diagonal is a bent
sequence of length 2™, say by, by, -+ ,bam_1. Then QAP is a bent type matriz of

order 2™ x 2™.

Theorem 4.6.8. ([18]) Let ai, as,- -+ , ayn—1 be the B, B, -+ i, | entries
of m respectively and let by, by, - -+ bozr—s be the Bip oy, B s o s Basnor_,

entries of ny respectively.

Next let the B, Bi", -, Bt _,_| entries of m be a1, as,- -+, agen—1 respectively
th th th '
and let the By oy, Bysk—2,0s s Oyon-1_y entries of my be —by, —ba, -+, —byar—
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respectively.

Set n = (n1,m2). Then n is a bent sequence of length 2%,

Theorem 4.6.9. ([18]) Let ai, as,- -+ , azn—1 be the B, B, -+ Bt , | entries
of m respectively and let by, by, -+ ,byr—1 be the ﬁg’;k_2+1,ﬁ;’;k_2+2, e g;k_l_l

entries of ny respectively.

Next let the 5§, 31", - - -, Bih | entries of iy be —ay, —as, - -+, —agec—1 respec-
~ th th th '
tively and let the ﬁQ%,QH, ok—2p9s " s Dgae1_q €NETIES of n1 be by, by, -+ by2n—

respectively.

Set n = (n1,m2). Then n is a bent sequence of length 2%,

34



CHAPTER b

NORMAL BENT FUNCTIONS

Normality is first introduced by Dobbertin [8]. Bent functions, we have studied
until here are all normal functions and Dobbertin proposed the conjecture that
any normal bent function is normal. But then some examples of non-normal bent
functions are given using a specific algorithm. It is still an open problem to find

an infinite class of non-normal bent functions.

5.1 Introduction of Normality

Definition 5.1.1. ([4]) A function f € F, is said to be normal when it is constant
on an affine subspace U of F,, of dimension [n/2] where [n/2] is equal to n/2
for even n and to (n + 1)/2 for odd n. In this case f is said to be normal with
respect to U. The function f is said weakly normal when it is affine, and not

constant, on a flat U of dimension [n/2].

The normality is connected with the problem of the determination of the

highest dimension of the affine space where f is constant.

Definition 5.1.2. ([4]) A function f € F, is said to be k-normal, &k < m if there
exists a k-dimensional flat on which f is constant. The function f is said weakly

k-normal if it is affine, and not constant, on some k-dimensional flat.
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Theorem 5.1.3. ([{]) Let f € F,,. Then fis k-normal with respect to U if and
only if there is v € F,, such that f + @, is affine on U where p,, denotes a linear
function in F,, that is o, : © € Fpy — v-x. Whenv & V+, where V denotes the

subspace which has U as a coset, then f 4+ ¢, is affine and not constant on U.

Example 5.1.4. Let f € Fg given by
f(z) = xymowsry + Towyxs + 1123 + T5T + TeT7 + T7Ts.

Let U be a subspace of dimension 4, defined by xy = 24 = x5 = x7y = 0. Since
each term of f contains at least one z;,7 € 1,4,5,7, f(0,x2,23,0,0,26,0,25) =0

for all z. Then f is normal with respect to U.

We see an obvious property here. If
f(mla"'axm) :a’:lAl_‘_"'_'—xtAt

where t = n/2 for even n and t = (n — 1)/2 for odd n and each A; denotes the
function of n — 1 variables {z;|1 < j <mn,j #i}. Then f is normal with respect
to U, the subspace defined by z; =--- =2, = 0.

We obtain a general result easily.

Theorem 5.1.5. ([{]) Let k be an integer and 1 < k < n and let f € F,, given

by,

flzy, e x,) = Z Au (Hxi“) , A €40,1}
)>k

wEFn,w(u =1
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Then f is k-normal, equal to zero, with respect to any subspace U defined by

Ty ==z ,=0; 1<i; <n.

Proof: Each term of f is of degree strictly greater than k. So each term is
Z€ro. 0
It is known that for n > 4 any function is 2-normal and for n > 6 any function

is 3-normal [4]. This result is based on Dubuc’s [9] theorem.

Theorem 5.1.6. ([9]) For n <7, any function of n variables is |[n/2| -normal.

5.2 Normal Bent Functions

Theorem 5.2.1. ([4]) Let n = 2t and assume that f € F,, is bent. We denote

by V any subspace of dimension t. Then we have:

1. f is normal with respect to V if and only if its dual function f is normal

with respect to V=*;

2. f is normal with respect to a +V, a ¢ V' if and only if f+ Yq 1S normal

with respect to V*;

3. f is normal with respect to a+V, a ¢ V if and only if f is weakly normal

with respect to V.

The previous theorem is important because it leads to an improvement when

we want to check if any bent function is normal.

Corollary 5.2.2. ([4]) Let f € Fn, n = 2t, be a bent function and let f be its

dual. Let'V be a subspace of dimension t. Then f is not normal with respect to
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any coset of V' if and only if f 1s neither normal nor weakly normal with respect

to V*.
Theorem 5.2.3. ([4]) Any cubic function of 8 variables is normal.

If there exists non-normal bent functions of 8 variables the degree should be
greater than 3. But since maximum degree of bent functions of 8 variables is 4,
the degree should be equal to 4. It is still an open problem whether there exists
non-normal bent bunctions of 8 variables and degree 4 or not. It is known that
there exists non-normal bent functions of 10 variables [1]. Canteut [1] presented

a class of weakly non-normal class of bent functions of 14 variables.
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CHAPTER 6

(GENERALIZED BENT FUNCTIONS

6.1 Introduction

All definitions in this thesis considers binary bent functions but sometimes
it may be useful to study generalized bent functions. The general theory of the
bent functions from Z to Z, is developed by Kumar, Scholtz and Welch [11].

Then, generalized bent functions are studied by Nyberg [15].

6.2 Basic Definitions

Let ¢ be a positive integer and Z, denote the set of integers modulo ¢q. Let

27
u=ce€c 1

be the ¢'* root of unity in C, where i = v/—1 and C denotes the set of complex
numbers. Let f be a function from the set Z;' of n-tuples of integers modulo g to

Z

q-

Definition 6.2.1. The Walsh Transform of u/ is defined as follows:

1
F(w) = = Zuf(m)_wm,w €7z,

NC&

39



Definition 6.2.2. A function f: Z)' — Z%is bent if |[F'(w)| = 1 for all w € Z'.

Definition 6.2.3. Let f be a function mapping from Z into Z,. For each pair

of elements Z in Z and C' in Z,, the function fzc given by
fZ,C(X> = f(X) +7Z-X+C, foral X € Zgb

with the arithmetic being in modulo ¢, is called an affine (C' # 0) or linear

(C =0,7 #0) translate of f.

Definition 6.2.4. A n x n matrix H whose entries are integral powers of a

" root of unity and which satisfies

complex primitive n'

HH* =nl

is called a generalized Hadamard matrix.

Definition 6.2.5. f is called a regular bent function if the Walsh transform F

of uf can be expressed in the form
F(A) =w'™, forall X € Z7,

for some function mapping Z; into Z,.

6.3 Properties
All of the properties given in this section can be found in [11].

1. Every affine or linear translate of a bent function is also bent.
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2. A bent function remains bent under a linear or affine transformation in

coordinates.

3. If f and g are bent functions over Z" and Z] respectively, the function
f+g over ZgnJrn defined by (f—l—g)(xlax?v e 7mm+n) = f(l‘hx% e ,I’m)"‘
9(Tmg1, Tmga, o+, Tingn) 5 for all (1,29, -+, Zpyn) € 277" is a bent func-

tion.

4. A function f with values in Z9 is bent if and only if the matrix H whose

(z,y)™ entry is wf*=¥) is a generalized Hadamard matrix.

5. If f is a bent function defined on Z, the Walsh coefficients of v/ have unit

magnitude for every choice of complex primitive ¢"* root v of unity.

6. Let n be odd ¢ = 2(mod4). In addition, let ¢ satisfy either of the following

two conditions:
o =2
e ¢ # 2 but such that there exists and integer b satisfying

20 — —l(mod%)

Then bent functions over Z(? do not exist.

7. Let f be a bent function over Z' and let ¢ and n satisfies any one of the

following conditions:

e ¢ =p", p prime, ¢ # 2,
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° g = H;lef", r>1,p; prime all ¢,(: = 1,2,---,r) with the primes
pi being such that for each integer 7, (i = 1,2,--- ,r) there exists an

integer f; for which

Then each Walsh coefficient F(A), A € Z]' of w/ is a root of unity.

. Let w = ei%ﬂ,’y = ¢'% and 6 = e'1. Let \ € Z; be fixed and let f be a
bent function over Z7 whose Walsh coefficient F'(A) is a root of unity. Then

F(\) is of the form

e = ", if both m and ¢ are even,

= ~*_if m is even but ¢ is odd,

= w"* if m is odd and ¢ = 0 (mod 4),

o =% if misodd and ¢ = 1 (mod 4),
o =%+ if m is odd and ¢ = 2 (mod 4),

= 6%+ if m is odd and ¢ = 3 (mod 4),

for some integer k.

. Let f be a regular bent function defined on Z;' having Walsh transform F'.

Let g be the function given by
F(\) =w'™, forall X e Zy,

Then g is also a regular bent function over Z
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6.4 Constructions

In this section constructions for bent functions over Z for every possible value

of ¢ and n excepting the case when n is odd and ¢ = 2 (mod4) are given.

Theorem 6.4.1. ([11]) Let q and k be arbitrary positive integers. Set n = 2k.

Then the function f over Z; given by
f(@) =x2 - m(21) + g(71) (6.4.1)
where x1,x9 € Z; are defined by
T =[x, 2]

and 7 is an arbitrary permutation of the elements of Zé“ and g is an arbitrary

function mapping from Zé“ into Zy, is bent.

Proof:  ([11]) The Walsh Transform F of w’ is given by

1
F(\) = 7 D wlore (6.4.2)

acEZg

Let A € Z} be fixed and A, \; € Zé“ be defined by

Replacing the sum over x in equation 6.4.2 with the sums over components x1, o

of x and substituting the expressions for f(-) and A\ contained in equation 6.4.2
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and equation 6.4.3, one obtains

1
F()\) _ q_k Z WI@)=Aa Z Wt (m(@1)=A2)

$1EZ§ IEQGZ!;

The inner sum vanishes unless m(z;) = A(2) or equivalently unless
zr =1 (M),
and therefore
F(A) = w9 Q2= A1 02)
so that
[F(A)] = 1.

Since A is chosen arbitrarily, f is bent. OJ

Theorem 6.4.2. ([11]) Let q be odd. Then the function f over Z, defined by
f(k) =K+ ck

is bent for all c in Z,.
Definition 6.4.3. 7' = {kec Z7|0 <k <t —1}.

Theorem 6.4.4. ([11]) Let q be a perfect square and r be defined by q = r?.
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Then the function f over Z, given by
f(k) =r-kim(kz) + g(k2)

where ki, ko € Z;’T are defined by k = rky + ko and 7 is an arbitrary permutation
of the elements of Z;’T and g is an arbitrary integer-valued function defined on

Z;””, 18 bent.

Theorem 6.4.5. ([11]) Let ¢ = 2***1 &k > 0. Let the function h mapping the

integers 0,1 into qu78, be given by
h(z)=cdz+2z,2€0,1
where c is either 0 or 1. Let the function f over Z, be defined by

J@) = glyn) + o+ Sh(a)

where x;,7 = 0,1,2,--- 2k are digits in the binary representation of z, that is

2k
— J
T = g x;27,
J=0

Y1, Y2 and ys are the partial sums,

k—1 2k
hn = Z%’Qja Y2 = Ik2k and ys = Z $j2j
j=0 j=k+1

and g is an arbitrary integer-valued function defined on Z,. Then f is bent.
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CHAPTER 7

CONCLUSION

In this thesis we investigated bent functions from the cryptographic view. We
presented the most important properties of bent functions. We include the proofs
of important properties and theorems. We also gave examples.

We presented the most important construction methods of bent functions.
Although there exists some other construction methods, we have not considered
them since they mostly do not lead to new classes.

We cover normal bent functions since Dobbertin [8] uses such functions to
achieve highly nonlinear balanced functions. These functions are very important
in cryptography.

In cryptography we focus on binary functions. But there is a general theory
of bent functions introduced by Kumar, Scholtz and Welch [11]. We include this

study in the thesis, for completeness.
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