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ABSTRACT 

 

 

DYNAMIC ION BEHAVIOR IN PLASMA SOURCE ION IMPLANTATION 

 

 

 

Bozkurt, Bilge 

M. S., Department of Physics 

Supervisor: Prof. Dr. Sinan Bilikmen 

 

 

 

January 2006, 74 pages 

 

 

 

The aim of this work is to analytically treat the dynamic ion behavior during the 

evolution of the ion matrix sheath, considering the industrial application plasma 

source ion implantation for both planar and cylindrical targets, and then to de-

velop a code that simulates this dynamic ion behavior numerically. If the sepa-

ration between the electrodes in a discharge tube is small, upon the application 

of a large potential between the electrodes, an ion matrix sheath is formed, 

which fills the whole inter-electrode space. After a short time, the ion matrix 

sheath starts moving towards the cathode and disappears there. Two regions 

are formed as the matrix sheath evolves. The potential profiles of these two 

regions are derived and the ion flux on the cathode is estimated. Then, by us-

ing the finite-differences method, the problem is simulated numerically. It has 

been seen that the results of both analytical calculations and numerical simula-

tions are in a good agreement. 

 

Keywords: Ion implantation, Plasma Source Ion Implantation, Plasma Immer-

sion Ion Implantation, Dynamic Ion Behavior, Modeling 
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ÖZ 

 

 

PLAZMA KAYNAKLI İYON EKİMİNDE DİNAMİK İYON HAREKETİ  
 

 

 

Bozkurt, Bilge 

Yüksek Lisans, Fizik Bölümü 

Tez Yöneticisi: Prof. Dr. Sinan Bilikmen 

 

 

 

Ocak 2006, 74 sayfa 

 

 

 

Bu çalõşmanõn amacõ, plazma kaynaklõ iyon ekimi ile düzlemsel ve silindirik 

hedefler için endüstriyel uygulama düşünülerek iyon-matris plakalarõnõn evrimi 

esnasõndaki dinamik iyon hareketini analitik olarak çalõşmak ve sonra bu 

dinamik iyon hareketini sayõsal olarak simüle eden bir kod geliştirmektir. Eğer 

bir deşarj tüpünde elektrotlar arasõ mesafe az ise, elektrotlar arasõna yüksek bir 

potansiyel uygulandõğõnda, tüm elektrotlar arasõ mesafeyi dolduran bir iyon-

matris plakasõ oluşur. Kõsa bir süre sonra iyon-matris plakasõ katoda doğru 

hareket etmeye başlar ve orada kaybolur. Matris plakasõnõn evrimi esnasõnda iki 

bölge oluşur. Bu iki bölgenin potansiyel profili türetilmiş ve katottaki iyon akõsõ 

hesap edilmiştir. Sonra, sonlu farklar metodu kullanõlarak problem sayõsal 

olarak simüle edilmiştir. Analitik hesaplamalarõn sonuçlarõ ile sayõsal 

simülasyonlarõn uyumlu olduğu gözlemlenmiştir.  

 
Anahtar Kelimeler: İyon Ekimi, Plazma Kaynaklõ İyon Ekimi, Dinamik İyon 

Hareketi, Sayõsal Çözümleme, Modelleme 

 

v 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FOR PROF. DR. ORDAL DEMOKAN 
 
 
 
 
 
 
 
 
 
 
 
 

 vi



 

ACKNOWLEDGEMENTS 

 

 

 

I would like to express my deepest gratitude to dear Prof. Dr. Ordal Demokan 

for suggesting this research and his guidance, advice, support and insight in 

this study until his sorrowful demise. 

 

I would like to express my gratitude to my supervisor Prof. Dr. Sinan Bilikmen 

for his guidance, suggestions, comments, contribution and support. 

 

I would also like to express my grateful thanks to Assist. Prof. Dr. İsmail Rafa-

tov and Prof. Dr. Ayşe Karasu for their guidance, contributions and suggestions. 

 

I would like to thank my family and my fiancé for their moral support and en-

couragement. 

 

I would also like to thank İnanç Kanõk and Yasemin Filiz for their invaluable dis-

cussions, suggestions, comments and support. 

 

 vii



TABLE OF CONTENTS 

 

 

 

PLAGIARISM .....................................................................iii 

 

ABSTRACT .........................................................................iv 

 

ÖZ ......................................................................................v 

 

DEDICATION .....................................................................vi 

 

ACKNOWLEDGEMENTS .....................................................vii 

 

TABLE OF CONTENTS .......................................................viii 

 

LIST OF FIGURES .............................................................xii 

 

CHAPTER 

 

 1. INTRODUCTION .................................................... 1 

 

  1.1 Plasma Processing ……………………………………………………. 1 

 

  1.2 Plasma Source Ion Implantation …………………………….. 1 

 

  1.3 Basic Plasma Sheath Physics ………………………………….. 4 

 

 viii



   1.3.1 Phase 1 ……………………………………………………………. 4 

 

   1.3.2 Phase 2 ……………………………………………………………. 6 

 

   1.3.3 Phase 3 ……………………………………………………………. 7 

 

  1.4 The Objectives and Content of the Thesis ……………… 8 

 

 2. THEORY AND CALCULATIONS ………………………….. 9 

 

  2.1 Planar Configuration ……………………………………………. 9 

 
   2.1.1 The Model …………………………………………….…………. 9 

 

   2.1.2 The Determination of Potentials …………………… 11 

 

   2.1.3 The Determination of Ion Velocity and Flux … 17 

 

   2.1.4 Graphical Representation ………….………….……… 19 

 

  2.2 Cylindrical Configuration ………….………….………………. 22 

 

   2.2.1 The Model ………….………….………….………….……… 22 

 

   2.2.2 The Determination of Potentials ………….………. 25 

 

   2.2.3 The Determination of Ion Velocity and Flux … 35 

 

 ix



 3. SIMULATION ………….………….………………………… 46 

 

  3.1 The Basics of Simulation ………….………….……………. 46 

 
   3.1.1 Numerical Analysis ………….………….……………….. 46 

 

   3.1.2 The Finite-Differences Method .……………………. 47 

 

  3.2 Planar Configuration ………………...………………………. 50 

 
   3.2.1 The Model ……………………………………………………… 50 

 

    3.2.1.1 Equations ………………………………………………. 50 

 

    3.2.1.2 Boundary and Initial Conditions …………… 51 

 

   3.2.2 Numerical Procedure ……………………………………. 51 

 

    3.2.2.1 Poisson’s Equation ……………………………….. 53 

 

    3.2.2.2 Continuity Equation ……………………………… 53 

 

    3.2.2.3 Momentum Balance Equation ………………. 55 

 

   3.2.3 Numerical Results …………………………………………. 56 

 

  3.3 Cylindrical Configuration ………………………………………. 60 

 
   3.3.1 The Model ……………………………………………………… 60 

 x



 

    3.3.1.1 Equations ………………………………………………. 60 

 

    3.3.1.2 Boundary and Initial Conditions ………….. 61 

 

   3.3.2 Numerical Procedure ……………………………………. 61 

 

    3.3.2.1 Poisson’s Equation ………………………………… 62 

 

    3.3.2.2 Continuity Equation ……………………………… 63 

 

    3.3.2.3 Momentum Balance Equation ………………. 63 

 

   3.3.3 Numerical Results …………………………………………. 64 

 

 4. CONCLUSIONS …………………………………………….. 67 

 

REFERENCES …………………………………………………………… 71 

 xi



LIST OF FIGURES 

 

 

FIGURES 

 

 

 

Figure 1.1 Block diagram of a typical PSII system ………………………………………… 2 

 

Figure 1.2 When a large negative step potential or a train of high voltage 

negative pulses, , is applied to the cathode, electrons are quickly repelled 

from the cathode on the time scale of electron plasma frequency ………………… 5 

Φ−

 

Figure 1.3 An ion-matrix sheath is left behind ……………………………………………… 5 

 

Figure 1.4 After a time scale of the ion plasma frequency, ions start responding 

and the ion matrix sheath starts to expand …………………….………………………………. 6 

 

Figure 1.5 The steady state potential profile ………………………………………………… 7 

 

Figure 2.1 When the applied potential, 0Φ− , is large (~ 20 kV) and the 

electrode separation is small (~ 10-2 m), the matrix can fill the entire inter-

electrode space ( pipe t ωω /1/1 << ), where peω  and piω  are electron and ion 

plasma frequencies, respectively ……………………………………………………………………… 9 

 

Figure 2.2 After a short time, the matrix starts moving towards the cathode. The 

notation  represents the time-dependent location of the sheath edge ...... 10 )(ts

 

Figure 2.3 The matrix disappears as all ions are implanted …………………………. 10 

 

Figure 2.4 Ion velocity as a function of  at time x 4   maxtt =  ……………………… 20 

 

 xii



Figure 2.5 Ion velocity as a function of  at time x 2maxtt =  …………………………. 20 

 

Figure 2.6 Ion velocity as a function of  at time x 43 maxtt =  ……………………… 21 

 

Figure 2.7 Ion velocity as a function of  at time x maxtt =  …………………………….. 21 

 

Figure 2.8 Ion flux as a function of  at t Lx =  ……………………………………………… 22 

 

Figure 2.9 When the applied potential, 0Φ− , is large (~ 20 kV) and the 

electrode separation is small (~ 10-2 m), the matrix can fill the entire inter-

electrode space ( pipe t ωω /1/1 << ), where peω  and piω  are electron and ion 

plasma frequencies, respectively ……………………………………………………………………… 23 

 

Figure 2.10 After a short time, the matrix starts moving towards the cathode. 

 is the time-dependent location of the sheath edge ………………………………… 23 )(ts

 

Figure 2.11 The matrix disappears as all ions are implanted ……………………… 24 

 

Figure 2.12 The graph of ( )xiErfi lnπ−  where 0/ rrx =  .……………………… 37 

 

Figure 2.13 The graph of ( ))/ln( 0
0

1 rriErfit
r
ar π−=  with  taken as 0r 10 rr =  38 

 

Figure 2.14 A comparison of the graphs of equation (2.2.64) and (2.2.67) for 

 and  …………………………………………………………………………………………… 39 maxtt = 10 rr =

 

Figure 2.15 The graph of )( 00 rrr −  ……………………………………………………………… 42 

 

Figure 2.16 The regions where the roots of  correspond .………………………… 43 0r

 

 xiii



Figure 2.17 The ion velocity as a function of r  at the instants 
4

maxtt = , 
2

maxtt = , 

4
3 maxtt =  and  obtained as a result of numeric calculations ………………… 44 maxtt =

 

Figure 2.18: The ion flux as a function of  at the target surface obtained as a 

result of numeric calculations …………………………………………………………………………… 45 

t

 

Figure 3.1 Computational domain ………………………………………………………………… 52 

 

Figure 3.2 Ion density and ion velocity as a function of  at the instants x

4
maxtt = , 

2
maxtt = , 

4
3 maxtt =  and maxtt =  …………………………………………………………… 57 

 

Figure 3.3 Ion velocity versus position graphs plotted using analytical results 59 

 

Figure 3.4 The analytically calculated ion velocity as a function of position and 

time …………………………………………………………………………………………………………………… 59 

 

Figure 3.5 Computational domain …………………………………………………………………… 62 

 

Figure 3.6 Ion density and ion velocity as a function of r  at the instants 

4
maxtt = , 

2
maxtt = , 

4
3 maxtt =  and maxtt =  …………………………………………………………… 65 

 

Figure 3.7 Ion velocity as a function of r  at four particular instants 
4

maxtt = , 

2
maxtt = , 

4
3 maxtt =  and  …………………………………………………………………………… 66 maxtt =

 

 xiv



CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1. Plasma Processing 

 

Plasma processing is a plasma-based material processing technology, the aim of 

which is to modify the properties of the surfaces of materials such as metals, plas-

tics and ceramics by various processes like deposition, implantation, and etching 

etc [1] – [3].  

 

The principal component of plasma processing is the plasma medium, in which the 

material to be processed is immersed. To maintain the desired plasma medium, 

generally DC and radio frequency (RF) discharges are used. RF discharges are 

used for a broad range of processes such as deposition, etching and treatment 

while DC discharges are preferred in ion implantation processes as DC discharges 

involve large potentials [1].

 

The applications of plasma processing include: the manufacturing of integrated 

circuits; the decontamination of waste materials and surfaces; plasma source ion 

implantation and the etching of silicon wafers for semiconductor fabrication [2, 4].  

 

1.2. Plasma Source Ion Implantation 

 

Plasma source ion implantation (PSII), which was invented by Conrad in 1987 [3], 

has become well-known as one of the well-established plasma-based manufactur-

ing technique, frequently used in the surface modification of materials for indus-

trial applications [5] – [8].  
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PSII is a room temperature surface enhancement technique that uses a plasma 

medium surrounding a target and high-negative-voltage, high-current pulses to 

accelerate ions into a target surface from all directions. PSII modifies the target 

surface in beneficial ways, making it harder, improving wear properties, reducing 

the coefficient of friction, enhancing its resistance to corrosion and dramatically 

improving the wear-life of manufacturing tools in actual industrial applications. 

The block diagram of a typical PSII system is given in figure 1.1 [9] – [11].  

 

 

 

 

Figure 1.1: Block diagram of a typical PSII system. 

 

 

 

PSII departs radically from conventional ion implantation technology in the follow-

ing aspects [7, 10, 11]: 
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1. In PSII, targets are placed directly into a plasma medium and ions are ac-

celerated onto the target through a plasma sheath that surrounds the tar-

get. Hence, PSII is a non-line-of-sight technique which means a path from 

a single ion source to the surface of the target is not required. This enables 

PSII to treat the entire target surface simultaneously without the need of 

the time-consuming rotation of the target and to treat multiple target sur-

faces simultaneously without the need for in-vacuum manipulation of the 

target assembly. 

2. In PSII, the ions are accelerated normal to the surface of the target so 

there is no retained dose problem. Even with target rotation, the conven-

tional ion implantation technique requires target masking in order to mini-

mize the grazing incidence, which produces excessive sputtering, and 

therefore limits the retained dose. 

3. PSII is not limited by ion optics characteristics or by the Child-Langmuir 

space charge limited flow properties of conventional ion implantation tech-

niques. Due to this fact, the average ion flux to the target surface can be 

more than an order of magnitude larger than using conventional tech-

niques at low energies, which significantly reduces the required treatment 

time for large, complex target assemblies and enables PSII to implant ions 

efficiently to concentrations and depths required for surface modification. 

4. PSII is a simple and low-cost technique because at the ion accelerator 

stage, the target rotation apparatus is eliminated in PSII. 

5. Since the target rotation stage does not exist in PSII, large and heavy tar-

gets can also be treated by PSII. The target rotation in conventional ion 

implantation technique adds complexity to the process and reduces the 

size of the target. 

6. PSII is a room temperature process. The rotation problem in the conven-

tional ion implantation technique is aggravated by the need for adequate 

heat sinks at the targets to limit the temperature rise during implantation.  

7. It has high dose rates, intrinsic charge neutralization capability, and 

adaptability to other surface modification processes. 
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1.3. Basic Plasma Sheath Physics 

 

In the PSII technique, the material, whose surface is to be modified, acts as the 

cathode in a grounded vacuum chamber, in which a flow of the gas required for 

implantation is maintained. The gas inside the vacuum chamber is ionized by one 

of the various discharge methods [5, 6, 7, 11].  

 

1.3.1. Phase 1  

 

When a large negative step potential or a train of high voltage negative pulses, 

, that has a magnitude between 10 kV and 100 kV is applied to the cathode 

at time , the electrons are quickly repelled from the cathode on the time 

scale of electron plasma frequency (

Φ−

0=t

peω/1 ) as shown in figure 1.2 [5] – [7]. On 

this time scale, as electrons recede, the ions’ motion is negligible so that the re-

pelled electrons leave behind an electron-free region, namely the ion matrix 

sheath [11]. The ion matrix sheath consists of uniformly distributed, stationary 

ions, conformally mapping the cathode surface, which is shown in figure 1.3 [5] – 

[7]. An ion matrix sheath is a region between a quasi-neutral plasma and a nega-

tive electrode to which a large negative step potential, Φ− , is applied [11].  
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Figure 1.2: When a large negative step potential or a train of high voltage nega-

tive pulses, , is applied to the cathode, electrons are quickly repelled from the 

cathode on the time scale of electron plasma frequency. 

Φ−

 

 

 

 

Figure 1.3: An ion-matrix sheath is left behind. 
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1.3.2. Phase 2 

 

After a time scale of the ion plasma frequency ( piω/1 ), the ions start responding 

to the sheath electric field and start to accelerate towards the cathode [5] – [7], 

which is usually the target in PSII. The decreasing ion density in the sheath region 

causes a decrease in the electron density [11] and consequently the sheath starts 

expanding at approximately the ion acoustic velocity towards the Child– Langmuir 

limit, uncovering ions which are then accelerated towards the cathode by the field 

in the sheath [5] – [7], which is shown in figure 1.4.  

 

 

 

 

Figure 1.4: After a time scale of the ion plasma frequency, ions start responding 

and the ion matrix sheath starts to expand. 

 

 

 

These ions eventually bombard the target cathode perpendicularly and uniformly, 

with sufficient energies to produce implantation. The experimental and numerical 
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[12] – [15] investigations show that the ion-matrix phase plays a vital role in de-

termining the consequent ion flux to the target surface [5, 6, 11]. 

 

1.3.3. Phase 3 

 

After the sheath edge reaches the Child-Langmuir limit, it stops expanding and 

launches an ion-acoustic wave into the plasma, which produces ion rarefication as 

it propagates. This rarefication creates a quasi-neutral presheath region between 

the plasma and the sheath, which accelerates ions up to Bohm’s speed before en-

tering the sheath. The potential profile in this state is given in figure 1.5. 

 

 

 

 

Figure 1.5: The steady state potential profile. 

 

 

 

Sheath voltages are often very large compared to the electron temperature, . 

The potential Φ  in ion matrix sheaths is highly negative with respect to the 

plasma-sheath edge; hence  where  is the electron density and 

 is the density of electrons at the sheath edge, which means that there are only 

ions in the matrix sheath. Therefore, for a high-voltage sheath, the current at the 

cathode is almost all ion current [16]. 

eT

0~ / →Φ eT
se enn en

sn
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1.4. The Objectives and Content of the Thesis 

 

Theoretical investigations of ion-matrix sheaths for planar, cylindrical, and spheri-

cal targets have been successfully carried out by Conrad [11], where the planar 

and cylindrical targets were assumed to have infinite areas and lengths, respec-

tively, reducing the analysis to one-dimensional cases [5]. Sheridan [17] and 

Zeng [18] have applied the same formulation to study the ion-matrix sheaths in 

cylindrical bores, with and without axial electrodes, respectively. Demokan [7] 

and Filiz [4] presented the first analytic treatments of ion-matrix sheaths in two 

dimensions, by considering first a rectangular and then a semi-cylindrical groove 

of infinite lengths in an infinite, planar target. Finally, Demokan [5] represented 

the problem of ion matrix sheaths inside cylindrical bores with small radii and lon-

gitudinal grooves analytically, which treated the problem more realistically to 

promote the application of plasma source ion implantation techniques to a broad 

range of products, especially those concerning defense industries. However, for 

the targets considered in his work, implantation on the side walls of the grooves is 

relatively poor, since the ions are accelerated predominantly in the radial direction 

before entering the grooves [5]. In his paper Demokan suggested maximizing the 

ratio of the ion velocity components inside the grooves by using a new technique, 

increasing the ratio 
0

0

Φ
n

 (where  is initial ion density and  is the target po-

tential) and letting the inter-electrode space approximately equal the target radius 

times the target potential. 

0n 0Φ

 

In this thesis, a new analytical technique to study the evolution of ion matrix 

sheaths will be examined for planar and cylindrical configurations, a computer 

program will be developed to simulate the sheath evolution numerically and a ba-

sis for future studies on the problem of cylindrical bores with small radii and 

grooves will be established.  
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CHAPTER 2 

 

 

THEORY AND CALCULATIONS 

 

 

 

2.1. PLANAR CONFIGURATION 

 

2.1.1. The Model 

 

The problem, subject to our work is illustrated in figures 2.1, 2.2 and 2.3, consid-

ering the initial phase and the proceeding evolution.  

 

 

 

 

Figure 2.1: When the applied potential, 0Φ− , is large (~ 20 kV) and the elec-

trode separation is small (~ 10-2 m), the matrix can fill the entire inter-electrode 

space ( pipe t ωω /1/1 << ), where peω  and piω  are electron and ion plasma fre-

quencies, respectively. 
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Figure 2.2: After a short time, the matrix starts moving towards the cathode. 

The notation  represents the time-dependent location of the sheath edge. )(ts

 

 

 

 

Figure 2.3: The matrix disappears as all ions are implanted. 

 

 

 

The model presented here is a one-dimensional model, with a planar anode of in-

finite area placed at  and a planar cathode where the target to be implanted 

is placed at . The target considered is also a planar plate that has an infinite 

0=x

Lx =

 10



area. The magnitude of  is ~ 10L -2 m. The negative potential applied to the cath-

ode is ~ 20 kV, whereas the anode is kept at zero potential. Potential for 

 is labeled as  and the potential for )(0 tsx << >Φ Lxts <<)(  is labeled as <Φ .  

 

The following assumptions have been made:  

 

1) The ion density , the potentials n <Φ  and >Φ , and the ion velocity  

have a form, which is a zeroth order term that does not take into account the 

contributions from the ion density plus a first order term due to the contributions 

from the ion density;  

iu

2) Since the contribution of n  is already a first order term, any fluctuation 

in this term is a second order term, and can be neglected in Poisson’s Equation;  

3) However, both  and <Φ >Φ  will be time dependent due to .  )(ts

 

Therefore, 

 

)1()0(
<<< Φ+Φ=Φ , (2.1.1) 

)1()0(
>>> Φ+Φ=Φ , (2.1.2) 

0
)1( nnn == , (2.1.3) 

)1()0(
iii uuu += . (2.1.4) 

 

2.1.2. The Determination of Potentials  

 

To determine the potentials in both regions )(0 tsx <<  and , the Pois-

son’s equations in these regions have to be solved and the boundary conditions 

have to be imposed. 

Lxts <<)(
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Since the zeroth order potentials,  and , neglect the effect of n , which is 

a first order term, they are equal, , and the first order potentials 

 and  will depend on time. 

)0(
>Φ

)0(
<Φ

)()( )0()0( xx <> Φ=Φ

)1(
>Φ

)1(
<Φ

 

The Poisson’s Equations for  and  are )0(
>Φ

)0(
<Φ

  

02

)0(2

=
∂
Φ∂ >

x
,  (2.1.5) 

02

)0(2

=
∂
Φ∂ <

x
. (2.1.6) 

 

The boundary conditions to be imposed for  and  are  )0(
>Φ

)0(
<Φ

 

0=x ,        ,  (2.1.7)  0)0()0( =Φ>

Lx = ,        . (2.1.8) 0
)0()0( )()( Φ−=Φ=Φ <> LL

 

Then, the solutions for  and  are found as )0(
>Φ

)0(
<Φ

 

x
L

xx 0)0()0( )()( Φ
−=Φ=Φ <> . (2.1.9) 

 

The Poisson’s equations for  and  are  )1(
>Φ

)1(
<Φ

 

02

)1(2

=
∂
Φ∂ >

x
, (2.1.10) 

0

0

0

)1(

2

)1(2

εε
enen

x
−=−=

∂
Φ∂ < . (2.1.11) 
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The boundary conditions to be imposed for  and  are  )1(
>Φ

)1(
<Φ

 

0=x ,        , (2.1.12) 0),0()1( =Φ> t

)(tsx = ,    
)(

)1(

)(

)1( ),(),(
tsts

txtx <> Φ=Φ , (2.1.13) 

)(tsx = ,     
)(

)1(

)(

)1(

tsts xx ∂
Φ∂

=
∂
Φ∂ <> , (2.1.14) 

Lx = ,         (2.1.15) 0),()1( =Φ< tL

 

Then, the solutions for  and  are found as )1(
>Φ

)1(
<Φ

 

( ) xtsL
L

entx 2

0

0)1( )(
2

),( −=Φ> ε
, (2.1.16) 

( )[ ] ( )2
0

022

0

02

0

0)1( )(
2

 )(
22

),( tsenxLts
L

enxentx
εεε

−++−=Φ< . (2.1.17) 

 

Therefore, the potentials in the regions )(0 tsx <<  and Lxts <<)( , i.e.  and 

, are found as 

>Φ

<Φ

 

( ) xtsL
L

enx
L

tx 2

0

00 )(
2

),( −+
Φ

−=Φ> ε
, (2.1.18) 

( )[ ] ( )2
0

022

0

02

0

00 )(
2

 )(
22

),( tsenxLts
L

enxenx
L

tx
εεε

−++−
Φ

−=Φ< . (2.1.19) 

 

These potentials do not depend on time explicitly. To find the explicit time de-

pendence of the potentials, the explicit form of  must be determined. )(ts

 

 

 

 

 13



To do this, the equation of motion at )(tsx =  is used, which is 

 

)(
2

2

tsxx
e

dt
sdm

=

>

∂
Φ∂

−= . (2.1.20) 

 

Substituting  gives >Φ

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

Φ
−

Φ
=

2

00

2
00

2

2

1)(
2

1
L
tsLen

mL
e

dt
sd

ε
. (2.1.21) 

 

To be consistent,  is also assumed to have a form .  )(ts )()()( )1()0( tststs +=

 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

Φ
−

Φ
=+=

2)1()0(

00

2
00

2

)1(2

2

)0(2

2

2

1)()(
2

1
L

ts
L

tsLen
mL
e

dt
sd

dt
sd

dt
sd

ε
 (2.1.22) 

 

To find the zeroth and first order terms in this differential equation, let us exam-

ine the potential . Since <Φ x
L

xx 0)0()0( )()( Φ
−=Φ=Φ >< , the zeroth order equation 

of motion is  

 

mL
e

dt
sd 0

2

)0(2 Φ
=  (2.1.23)   

 

which gives 

 

t
mL
eu

dt
ds

i
0)0(

)0( Φ
== .  (2.1.24) 
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Rearranging its terms, equation (2.1.17) becomes  

 

 
( ) ( )

⎥
⎦

⎤
⎢
⎣

⎡
−−+−=Φ< x

tsx
L
tsLxentx

22

0

0)1( )()(
2

),(
ε

. (2.1.26) 

 

The terms in brackets have a maximum value of 
( ) ( ) L

x
tsx

L
tsL =⎥

⎦

⎤
⎢
⎣

⎡
−−+

max

22 )()(
. 

Then,  is on the order of )1(
<Φ

0

0

2ε
xLen

, which gives 
00

2
0

)0(

)1(

2 εΦ
≤

Φ
Φ

<

< Len
. So, 1

2 00

2
0 〈〈

Φ ε
Len

 is 

a first order term. 

 

Then, the zeroth order equation of motion is given by equation (2.1.23) and the 

first order equation of motion is given by 

 

 

2)0(

00

2
00

2

)1(2

1)(
2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

Φ
Φ

−=
L

tsLen
mL
e

dt
sd

ε
 (2.1.26) 

 

Therefore, from the differential equations (2.1.23) and (2.1.26),  and 

 are found as given in equations (2.1.27) and (2.1.28). 

)()0( ts

)()1( ts

 

20)0(

2
)( t

mL
ets Φ

=  (2.1.27) 

6
53

23
0

3
4

32

22
0

2
2

2
0)1(

120
)(

12
)(

2
)( t

Lm
Aet

Lm
Aet

mL
Aets Φ

−
Φ

+
Φ

−=  (2.1.28) 

 

where 
00

2
02

2 εΦ
=

LenA , which is a first order term. 
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To compare these terms, maximum time, , involved in this process must be 

estimated. Then, 

maxt

2
max

0
max

)0( )(
2

)( t
mL

eLts Φ
≈≈  gives  

 

2/1

0

2

max
2

⎥
⎦

⎤
⎢
⎣

⎡
Φ

≅
e
mLt . (2.1.29) 

 

So, the terms in , in equation (2.1.28), correspond to 1, 1/3, 1/15, respec-

tively. Then, the first two terms can be considered of equal order and  is 

found as given         

)()1( ts

)(ts

 

22
2

2
020   

6
1

2
)( tt

mL
AeA

mL
ets ⎥

⎦

⎤
⎢
⎣

⎡ Φ
+−

Φ
= . (2.1.30) 

 

Neglecting the second order terms, which come from the square of 2A , the ex-

plicit forms of the potentials >Φ  and <Φ  are given by 

 

 

( )

62
43

0

3
00

4
4

2

32
0

2
00

3

22

0

00
2

0

00

24
)(

38
1)(

                

1
22

),(

xtA
Lm

ne
xtA

Lm
ne

xtA
mL

ne
x

Len
x

L
tx

εε

εε

Φ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

Φ
+

−
Φ

−+
Φ

−=Φ>

, (2.1.31) 

  ( ) ( )

62
43

0

3
00

4
62

53
0

3
00

4

42
22

0

2
00

3
42

32
0

2
00

3
0

02

0

00

24
)(

24
)(               

 21
8

)( 21
8

)(               

22
 ),(

tA
Lm

nextA
Lm

ne

tA
Lm

nextA
Lm

ne

xLenxenx
L

tx

εε

εε

εε

Φ
−

Φ
+

−
Φ

−−
Φ

+

+−
Φ

−=Φ<

. (2.1.32) 
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2.1.3. The Determination of Ion Velocity and Flux 

 

To examine the ion behavior, the ion velocity and the flux must be determined. 

To do this, the equation of motion is considered. 

 

 
xm

e
x
uu

t
u

dt
du i

i
ii

∂
Φ∂

−=
∂
∂

+
∂
∂

= < . (2.1.33) 

 

Substituting equations (2.1.4) and (2.1.32), i.e.  and , the zeroth 

and first order equations of the ion velocity can be found as given by equations 

(2.1.34) and (2.1.35). 

),( txui ),( tx<Φ

 

 
mL
e

x
uu

t
u i

i
i 0

)0(
)0(

)0( Φ
=

∂
∂

+
∂
∂

 (2.1.34) 

 

m
Lnet

Lm
Ane

t
Lm
Anex

m
ne

x
uu

x
uu

t
u

o

oi
i

i
i

i

0

2
4

33
0

2
0

2
0

4

6
54

0

2
0

3
0

5

0

2)1(
)0(

)0(
)1(

)1(

28
)21()(                                              

24
)(

εε

εε

−
−Φ

−

Φ
−=

∂
∂

+
∂
∂

+
∂
∂

 (2.1.35) 

 

Since the right hand side of equation (2.1.34) is a constant, this differential equa-

tion can be written as 
mL
e

dt
dui 0

)0( Φ
= , and imposing the initial condition 

, it has a solution in the form 0)0,()0( =xui

 

 t
mL
etui

0)0( )( Φ
= . (2.1.36) 

 

Substituting this solution, equation (2.1.36), into equation (2.1.35), the differen-

tial equation becomes 
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m
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t
Lm
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m
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x
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e

t
u

o

oii

0

2
4

33
0

2
0

2
0

4

6
54

0

2
0

3
0

5

0

2)1(
0

)1(

28
)21()(                                              

24
)(

εε

εε

−
−Φ

−

Φ
−=

∂
∂Φ

+
∂
∂

. (2.1.37) 

 

The solution of a quasi-linear equation of first order that has a general form of 

),,(),(),(),(),( txuR
t

txutxQ
x

txutxP =
∂

∂
+

∂
∂

 is found by the method of characteris-

tics, that is by simultaneously solving the equations 
R
du

Q
dt

P
dx

== .  

 

Applying this method to our differential equation, equation (2.1.37), and imposing 

the initial condition, , the solution is found to be 0)0,()1( =xui

 

 

t
m
Lnet

Lm
Ane

t
Lm
Anet

mL
e

m
next

m
netxu

o

oo
i

0

25

33
0

2
0

2
0

4

7

54
0

2
0

3
0

53
0

0

2

0

2
)1(

258
)21()(              

724
)(

3
),(

εε

εεε

−
−Φ

−

Φ
−

Φ
−=

. (2.1.38) 

 

Using the estimated value of maximum time, , involved in this process, which 

is given by equation (2.1.29), the terms of  are compared with the 

term of  and the coefficients of and  are found to be negligible. 

Then, the first order ion velocity becomes 

maxt

),( max
)1( txui

)( max
)0( tui

5t 7t

 

 t
m
Lnet

mL
e

m
next

m
netxu ooo

i
0

23
0

0

2

0

2
)1(

23
),(

εεε
−

Φ
−= . (2.1.39) 
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Combining equations (2.1.36) and (2.1.39), the ion velocity has the form 

 

 
3

 
2

),(
3

0

0

2

0

2

0

2
0 t

mL
e

m
next

m
net

m
Lne

mL
etxu ooo

i
Φ

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Φ
=

εεε
. (2.1.40) 

 

Therefore, the ion flux has the form 

 

3
)()( 

2
)(

),(),(
3

0

0

22

0

22

0

2
0

2
00

0

t
mL
e

m
next

m
net

m
Lne

mL
en

txuntx

oo

i

Φ
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

Φ
=

=Γ

εεε
. (2.1.41) 

 

2.1.4. Graphical Representation 

 

The ion velocity is given by equation (2.1.40). At a particular time , this ion ve-

locity has a form 

t

DCxxu
ti +=)(  where C  and D  are constants. In figures 2.4, 

2.5, 2.6, and 2.7, this almost linear dependence is shown graphically at 
4

maxtt = , 

2
maxtt = , 

4
3 maxtt = , and , respectively.  maxtt =

 

In the calculations, the ions are assumed to be titanium ions and the ion mass is 

taken to be 48×1.67×10-27 kg. Also in the calculations, the magnitude of the dis-

tance between the electrodes, , is taken to be ~ 10L -2 m, the negative potential 

applied to the cathode, , is taken to be ~ 20 kV, potential applied to the anode 

is taken to be 0.0 kV, the initial ion velocity is taken to be 0.0 m/s and the initial 

ion density, , is taken to be ~ 10

0Φ

0n 15 /m3. 
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Figure 2.4: Ion velocity as a function of x  at time 4maxtt = . 

 

 

 

 

Figure 2.5: Ion velocity as a function of x  at time 2maxtt = . 
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Figure 2.6: Ion velocity as a function of x  at time 43 maxtt = . 

 

 

 

 

Figure 2.7: Ion velocity as a function of x  at time . maxtt =
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Also, the ion flux is given by equation (2.1.41). Figure 2.8 shows the ion flux as a 

function of time at . Lx =
 

 

 

 

Figure 2.8: Ion flux as a function of  at t Lx = . 

 

 

 

2.2. CYLINDRICAL CONFIGURATION 

 

2.2.1. The Model 

 

The problem subject to our work is illustrated in figures 2.9, 2.10 and 2.11, con-

sidering the initial phase and the proceeding evolution.  
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Figure 2.9: When the applied potential, 0Φ− , is large (~ 20 kV) and the elec-

trode separation is small (~ 10-2 m), the matrix can fill the entire inter-electrode 

space ( pipe t ωω /1/1 << ), where peω  and piω  are electron and ion plasma fre-

quencies, respectively. 

 

 

 

 

Figure 2.10: After a short time, the matrix starts moving towards the cathode. 

 is the time-dependent location of the sheath edge. )(ts
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Figure 2.11: The matrix disappears as all ions are implanted. 

 

 

 

The model presented here is a one-dimensional model, with a cylindrical anode of 

infinite length and radius . The target considered is the internal surface of an 

infinitely long cylinder whose inner radius is . The anode is axially placed inside 

the target. The magnitude of  is ~ 10

1r

2r

1r -2 m,  is ~ 3×102r -2 m, the negative poten-

tial applied to the target, 0Φ , is ~ 20 kV, whereas the anode is kept at zero po-

tential. Potential for )(1 tsrr <<  is labeled as >Φ  and the potential for 

 is labeled as . 2)( rrts << <Φ

 

The following assumptions have been made:  

 

1) The ion density , the potentials n <Φ  and >Φ , and the ion velocity  

have a form, which is a zeroth order term that does not take into account the 

contributions from the ion density plus a first order term due to the contributions 

from the ion density;  

iu

 24



2) Since the contribution of n  is already a first order term, any fluctuation 

in this term is a second order term, and can be neglected in Poisson’s Equation;  

3) However, both  and <Φ >Φ  will be time dependent due to .  )(ts

 

Therefore, equations (2.1.1), (2.1.2), (2.1.3) and (2.1.4) are also assumed to be 

true for the cylindrical case. 

 

2.2.2. The Determination of Potentials  

 

To determine the potentials in both regions )(1 tsrr <<  and , the Pois-

son’s Equations in these regions have to be solved and the boundary conditions 

have to be imposed. 

2)( rrts <<

 

Since  and  neglect the effect of , which is first order,  

and the first order potentials  and  will depend on time.  

)0(
>Φ

)0(
<Φ n )()( )0()0( rr <> Φ=Φ

)1(
>Φ

)1(
<Φ

 

The Poisson’s equations for  and  are )0(
>Φ

)0(
<Φ

 

011 )0()0(

2

)0(2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
Φ∂

∂
∂

=
∂
Φ∂

+
∂
Φ∂ >>>

r
r

rrrrr
, (2.2.1) 

01 )0(

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
Φ∂

∂
∂ <

r
r

rr
. (2.2.2) 

 

The boundary conditions to be imposed for  and  are  )0(
>Φ

)0(
<Φ

 

1rr = ,        ,  (2.2.3)  0)( 1
)0( =Φ> r

2rr = ,        . (2.2.4) 02
)0(

2
)0( )()( Φ−=Φ=Φ <> rr
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Then, the solutions for  and  are found as )0(
>Φ

)0(
<Φ

 

 ( ) ( ) ( )
( )12

1
0

)0()0(

ln
ln

rr
rrrr Φ−=Φ=Φ >< . (2.2.5) 

 

The Poisson’s equations for  and  are )1(
>Φ

)1(
<Φ

 

 01 )1(

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
Φ∂

∂
∂ >

r
r

rr
, (2.2.6) 

 
0

0

0

)1(1
εε
enen

r
r

rr
−=−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
Φ∂

∂
∂ < . (2.2.7) 

 

The boundary conditions to be imposed for  and  are  )1(
>Φ

)1(
<Φ

 

1rr = ,        , (2.2.8) ( ) 0,1
)1( =Φ> tr

)(tsr = ,      
)(

)1(

)(

)1( ),(),(
tsts

trtr <> Φ=Φ , (2.2.9) 

)(tsr = ,    
)(

)1(

)(

)1(

tsts
rr ∂
Φ∂

=
∂
Φ∂ <> , (2.2.10) 

2rr = ,        . (2.2.11) ( ) 0,2
)1( =Φ< tr

 

Then, the solutions for  and  are found as )1(
>Φ

)1(
<Φ

 

 
( )
( ) ( )[ ]

⎭
⎬
⎫

⎩
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+−−=Φ> srsrsen
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2
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, (2.2.12) 
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( ) ( )[

⎭
⎬
⎫

⎩
⎨
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εε
] . (2.2.13) 
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Therefore, the potentials in the regions )(1 tsrr <<  and 2)( rrts << , i.e. >Φ  and 

, are found as <Φ

 

 
( )
( )
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( ) ( )[ ]

⎭
⎬
⎫
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, (2.2.14) 
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ε
. (2.2.15) 

 

These potentials do not depend on time explicitly. To find the explicit time de-

pendence of the potentials, the explicit form of  must be determined. )(ts

 

To do this, the equation of motion at )(tsr =  is used, which is 

 

)(
2

2

tsrr
e

dt
sdm

=

>

∂
Φ∂

−= . (2.2.16) 

 

Substituting  gives >Φ
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] . (2.2.17) 

 

To be consistent,  is also assumed to have a form . Then, )(ts )()()( )1()0( tststs +=
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In , the first order term is much smaller than the zeroth order term. Then, ( )ts
s
1

 

and  can be expanded as given by equations (2.2.19) and (2.2.20). 2s
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Then, the equation of motion at )(tsr =  becomes 
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, which is a first order term.  

 

Then, omitting the second order terms in equation (2.2.21) equation (2.2.2) is 

obtained. 
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Since )0(
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 and 
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 are first order terms, the differential equa-

tion of  is ( )ts )0(
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The differential equation of ( )ts )1(  is 
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Therefore, from the differential equations (2.2.23), to find  let )()0( ts p
dt

ds
=

)0(

, 

then 
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which can be separated as 
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Hence, integrating both sides equation (2.2.27) is obtained. 
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The initial conditions to be imposed for  and )0(s
dt

ds )0(

 are 
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 ,            .  (2.2.29) 0=t 1
)0( )0( rts ==

 

Then, the following results are found. 
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To simplify the equation, the following definitions are made 
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Then, the differential equation (2.2.31) takes the form 

 

 
( ) ( )[ ] 2/1ln xa
dt
xd
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which is given in equation (2.2.35) in integral form. 
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To find the solution of this integral, assumption  

 

 [ ] [ ] [ 1'15.0
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1

'ln
1
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≅ x
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] for 31 ≤≤ x ,  (2.2.36) 

 

is made with a maximum error of 4%.  

 

Then, the integral equation becomes 
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Defining , [ ] 2/11'−= xu [ ] '
1'2

1
2/1 dx

x
du

−
= , the solution is found as 
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which can be written as 
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Note that  and [ ] 4.1max ≅u [ ] ( ) 84.34.1 4
max

4 =≅u  which is very small compared to 

. So it can be ignored. Then,  [ ] 2.376.26 max ≅u
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To get a better result u  is defined as 
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where  
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Substituting these values into equation (2.2.39) and using the fact that 
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Then, u  is found as  
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Since , ( ) 2/11−= xu x  is found as 
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Again using the fact that 
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Remember that ( )1
)0( rsx = . Therefore  is found as )0(s
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where  is defined by the equation (2.2.32). a
 

To find ,  is substituted into equation (2.2.24). )1(s )0(s
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To simplify this equation, the change of variables ( )2at=ω  is made.  
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This equation can be solved using variation of parameters but this is not neces-

sary. 

 

Dividing expressions for  and  by  gives first order terms on the left 

hand side. 
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) will be of second order. Also for this reason, the approximation 
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Then, the explicit forms of the potentials >Φ  and <Φ  are given by 
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2.2.3. The Determination of Ion Velocity and Flux 

 

To examine the ion behavior, the ion velocity and the flux must be determined. 

To do this, the equation of motion is considered. 
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Substituting 
r∂
Φ∂ < , equation (2.2.54) takes the form 
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Using the assumption given by equation (2.1.4), two differential equations for the 

zeroth order ion velocity and for the first order ion velocity are obtained. 
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Equation (2.2.56) is a quasi-linear partial differential equation and can be solved 

by the method of characteristics, i.e. by solving the ordinary differential equations 

given by equation (2.2.58). 
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The differential equation 
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has a solution in the form 
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where  denotes the initial position at 0r 0=t , which can be any point in the inter-

val  ≤ 1r r  ≤ , and  is given by equation (2.2.32).  2r a

 

Using  given by equation (2.2.60), the differential equation )0(
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can be written in integral form as  
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With the simplification , the integral in equation (2.2.62) becomes 0/ rrx =
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The solution of equation (2.2.63) is found to be 

 

 ( xiErfit
r
ar ln

0

1 π−= ). (2.2.64) 

 

Figure 2.12 shows the graph of ( )xiErfi lnπ−  and figure 2.13 shows the 

graph of the solution given by equation (2.2.64). 

 

 

 

 

Figure 2.12: The graph of ( )xiErfi lnπ−  where . 0/ rrx =
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Figure 2.13: The graph of ( ))/ln( 0
0

1 rriErfit
r
ar

π−=  with  taken as 0r 10 rr = . 

 

 

 

The solution given by (2.2.64) cannot be used in this form since it is imaginary. 

When ( ))/ln( 0rriErfi π−  is written in the infinite series form, equation 

(2.2.65), it is observed that the solution is real. 
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Using the fact that  can take values in the interval 0/ rr 3/0 0 ≤≤ rr , )/ln( 0rr  

can take values in the interval 048.1)/ln(0 0 ≤≤ rr . The maximum value of 

)/ln( 0rr  is used to compare the first five terms ( 40 ≤≤ n ) in the infinite series 
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given by equation (2.2.65). These five terms correspond to 1, 0.37, 0.12, 0.03 

and 0.007, respectively. Then, the first three terms ( 2,1,0=n ) can be considered 

of equal orders and the other terms can be excluded. However, it is not possible 

to solve equation (2.2.65) analytically after this approximation unless the third 

term is also excluded. Then, equation (2.2.65) can be written in the form given 

by equation (2.2.66) where only the first two terms in the expansion are taken 

with an error of 9 %. The solution of equation (2.2.64) is given by (2.2.67). 
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When the graphs of equation (2.2.64) and (2.2.67) are plotted for  and 

, the difference in solutions can be seen in figure 2.14. 

maxtt =

10 rr =

 

 

 

 

Figure 2.14: A comparison of the graphs of equation (2.2.64) and (2.2.67) for 

maxtt =  and 10 rr = . 
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Equation (2.2.67) is solved for  by using the mathematical packet program 

Mathematica and thus three roots are obtained. The only real root is given in 

equation (2.2.68). 

)(tr

 

  (2.2.68) )(
0)( tfertr =

 

where 

 

3/1
2

2
0

212

2
0

212

3/1
2

2
0

212

2
0

212

1042.45429161042.454265.0

1042.45429161042.454

78.32)(

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ××
++−+

××
++

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ××
++−+

××
+

+−=

r
t

r
t

r
t

r
t

tf

 (2.2.69) 

 

When equation (2.2.68) is taken as the solution for  and this solution is sub-

stituted into the equation (2.2.60), equation (2.2.70) is obtained. 
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  (2.2.70) [ ] 2/1
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It can be easily seen that this solution method has lead to a solution for the ze-

roth order ion velocity with the form . However, simulations have 

shown that the zeroth order ion velocity has the form . Since solving 

equation (2.2.67) for , which may lead to a solution of the form , 

is not analytically possible, it can be concluded that expressing of the imaginary 

error function in infinite series form will not give an acceptable solution. 

)()0()0( tuu ii =

),()0( trui

),(0 trr ),()0( trui
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To find an acceptable solution for the zeroth order ion velocity, the fact that equa-

tion (2.2.63) has the same form with equation (2.2.35) is taken into account. 

Then, doing similar calculations, ( )0/ rr  is found as 
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where  is given by equation (2.2.32). Equation (2.2.71) can be written in quad-

ratic form as 

a
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This quadratic equation has two roots in the following form 
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To find the root that is valid, the graph of )( 00 rrr − , which is shown in figure 

2.15, is plotted and examined. Note that the graph in figure 2.15 actually belongs 

to 2
2

1
2

00 4
)( trarrr =− . 
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Figure 2.15: The graph of )( 00 rrr − . 

 

 

 

From the graph it is easily seen that both roots of  are valid solutions. The 

negative root corresponds to the region 

0r

20 0 rr ≤≤  and the positive root corre-

sponds to the region rrr ≤≤ 02 . In our model 2rr =  and the regions where 

roots correspond are shown in figure 2.16. 
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Figure 2.16: The regions where the roots of  correspond. 0r

 

 

 

Substituting the roots of  into equation (2.2.60) and using the approximation 

given by equation (2.2.36),  is found 
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where  and  is defined by the equation (2.2.32). However, equation 

(2.2.74), which is obtained analytically under the approximation (2.2.36), needs 

to be studied further because it does not fully satisfy equation (2.2.56).  

tarz 1= a
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Solving equation (2.2.56) and (2.2.57) by using numeric methods, the ion veloc-

ity, , was obtained as shown in figure 2.17. In the numerical calcula-

tions, the ions are assumed to be titanium ions and the ion mass is taken to be 

48×1.67×10

)1()0(
iii uuu +=

-27 kg, the radius of anode, , is taken to be ~101r -2 m, the inner radius 

of cathode, , is taken to be ~3×102r -2 m, the magnitude of the distance between 

the electrodes, , is taken to be ~2×10L -2 m, the negative potential applied to the 

cathode, , is taken to be ~ 20 kV, potential applied to the anode is taken to be 

0.0 kV, the initial ion velocity is taken to be 0.0 m/s and the initial ion density, 

, is taken to be ~ 10

0Φ

0n 15 /m3. 

 

 

 

 

Figure 2.17: The ion velocity as a function of r  at the instants 
4

maxtt = , 
2

maxtt = , 

4
3 maxtt =  and  obtained as a result of numeric calculations. maxtt =

 

 

 

Then, the ion flux on the surface of the target as a function of time is found nu-

merically. Figure 2.18 shows the graph of the ion flux obtained as a result of 

these numeric calculations. 
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Figure 2.18: The ion flux as a function of t  at the target surface obtained as a 

result of numeric calculations. 
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CHAPTER 3 

 

 

SIMULATION 

 

 

 

3.1. THE BASICS OF SIMULATION 

 

3.1.1. Numerical Analysis 

 

Many problems in mathematics do not have a solution in closed form. In these 

situations, an approximate solution using asymptotic analysis or a numerical solu-

tion is sought. The numerical analysis is the study of algorithms for the problems 

of continuous mathematics using basic arithmetical operations [19]. 

 

In numerical analysis, the algorithms that can solve a problem exactly are called 

direct methods; the algorithms that solve the problem by successive approxima-

tions are called iterative methods. The process of replacing a continuous problem 

with a discrete problem whose solution is approximately equal to that of the con-

tinuous problem is called discretization. 

 

Numerical analysis is concerned with computing the solution of both ordinary dif-

ferential equations and partial differential equations in its application areas, which 

include computational physics, computational fluid dynamics, weather forecasting, 

climate models, the analysis and design of molecules (computational chemistry) 

and economy.  

 

Partial differential equations are solved by first discretizing the equation. Three 

common methods of discretization of partial differential equations are the finite 

element method, the finite volume method and the finite-differences method. 
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3.1.2. The Finite-Differences Method 
 

The finite-differences method is a numerical method for solving partial and ordi-

nary differential equations, which aims to replace the continuous derivatives with 

difference equations that involve only the discrete values of the unknown function 

related to the position in the domain of the problem [20].  

 

The finite-differences method discretizes the domain of the problem into a regular 

grid (mesh) defined by a certain number of nodes which are separated in the di-

rection of coordinates by a certain spatial and time interval. For a problem solved 

with the explicit finite-differences method to converge to the exact solution, the 

time step must be smaller than a certain maximal value [21]. For example, the 

stable explicit differencing schemes for solving the advection equation are subject 

to the Courant-Friedrichs-Levy (CFL) condition, which determines the maximum 

allowable time step [22]. The CFL condition, which gives the condition of the con-

vergence of a difference approximation in terms of the concept of domain de-

pendence, states that for a convergent algorithm, the domain of dependence of 

the partial differential equation must lie within the domain of dependence of the 

numerical algorithm. This, in turn implies a condition on the time step, given by 

equation (3.1.1) [23]. 

 

The CFL condition on the time step: 

 

 
v
xt δ

δ ≤   (3.1.1) 

 

where  is a phase speed or an advection velocity and . v 0>v
 

On the other hand, for a problem solved with the implicit finite-differences 

method, there is no stability requirement on the time step; the value of the time 

step is dictated by accuracy only. 
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When the finite-differences method is applied over the mesh, the unknown func-

tion is approximated at each one of the nodes, giving a difference equation that 

relates the value of the function at a particular node with its value at the 

neighboring nodes [24]. This procedure is repeated at each node composing the 

grid resulting in a system of difference equations which may be numerically solved 

either with iterative approximate methods or with direct decomposition methods.  

 

The discretization of one-dimensional partial differential equations usually leads to 

standard three-point problems (also known as tridiagonal equation systems) [25 – 

26] which may be written as 
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In three-point problems, the equation number  involves only the terms with 

numbers ,  and 

j

1−j j 1+j  so that the matrix of the system has non-zero ele-

ments only on the diagonal and in the positions immediately to the left and right 

of the diagonal as shown in equation (3.1.3) [26].  
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To solve three-point problems, tridiagonal matrix algorithms such as the Thomas 

algorithm are used. 

 

The Thomas algorithm, which is a direct method, requires the known coefficients 

,  and  to satisfy the conditions given by equations (3.1.4) and (3.1.5), ja jb jc
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which ensure that the matrix form of the three-point problem is diagonally domi-

nant [26]. 

 

 , ,  (3.1.4) 0>ja 0>jb 0>jc

  (3.1.5) jjj cab +>

 

The Thomas algorithm solves the three-point problem by reducing the system of 

equations to upper triangular form, by eliminating the term  in each equation 

turning them into a new form given by equation (3.1.6) [26]. 

1−jU

 

 , jjjj fUeU =− +1 1,...,2,1 −= nj  (3.1.6) 

 

where  and  satisfy the recurrence relations given by equations (3.1.7) and 

(3.1.8) and have initial values given by equation (3.1.9) [26]. 

je jf

 

 
1−−
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jjj
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j eab
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1

1
0 b

ce =  and 
1

1
0 b

df = . (3.1.9) 

 

After finding the coefficients by using the recurrence relations given by equations 

(3.1.7) and (3.1.8), the values of  are easily calculated using equation (3.1.6).  jU

 

For stability, the condition each 1<je  in equation (3.1.6) must hold, which is 

already guaranteed by the equations (3.1.4) and (3.1.5). 
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3.2. PLANAR CONFIGURATION 

 

3.2.1. The Model 

 

The model presented in the planar part of our problem is a one-dimensional 

model, with a planar anode of infinite area placed at 0=x  and a planar cathode 

at  where the target to be implanted is placed. The target considered is also 

a planar plate that has an infinite area. The magnitude of  is ~ 10

Lx =

L -2 m, and the 

negative potential applied to the cathode, 0Φ , is ~ 20 kV, whereas the anode is 

kept at zero potential, the ion velocity is initially zero and the initial ion density, 

, has a value of ~ 100n 15 /m3.  

 

3.2.1.1. Equations  

 

The equations that have to be solved to simulate the planar part of our problem 

are given by equations (3.2.1) – (3.2.3). 

 

Poisson’s Equation: 
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ε
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Continuity Equation: 
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Momentum Balance Equation: 
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In equations (3.2.1) – (3.2.3), Φ  is the potential,  is the electric charge of an 

ion,  is the ion velocity, n  is the ion density, 

e

u 0ε  is the electric permittivity of 

free space,  is the mass of an ion, and im E  is the electric field between the elec-

trodes. 

 

3.2.1.2. Boundary and Initial Conditions 

 

The boundary conditions to be imposed are given by equations (3.2.4) – (3.2.7). 

 

 , 0=x 0),0( =Φ t ,  (3.2.4) 

 , Lx = 0),( Φ−=Φ tL , (3.2.5) 

 , 0=x 0),0( =tu , (3.2.6) 

 , 0=x 0),0( ntn = . (3.2.7) 

 

The initial conditions to be imposed are given by equations (3.2.8) and (3.2.9). 

 

 ,  0=t 0)0,( =xu , (3.2.8) 

 , 0=t ( )[ ]{ }2
30 1050000arctan)0,( π

π
+−××= −

jxnxn . (3.2.9) 

 

3.2.2. Numerical Procedure 

 

Equations (3.2.1) − (3.2.3), which are subject to the boundary and initial condi-

tions given by equations (3.2.4) – (3.2.9), have been solved numerically using a 

finite-differences technique. The computational domain is estimated to be be-

tween  and , which is illustrated by figure 3.1.  0=x Lx =
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Figure 3.1: Computational domain 

 

 

 

A uniform vertex-centered grid  

 

 NjNLxxjx j ,..,1,0,, ==∆∆=   (3.2.10) 

 

is used where j is the spatial index. 

 

The time level is given by  

 

 ,..1,0,0, =>∆∆= mttmt mmm   (3.2.11) 

 

where subscript  denotes the time level  with a step size . m mt 1−−=∆ mmm ttt

 

Density  and electric potential n Φ  are evaluated at the nodes of the grids, while 

the ion velocity  and the electric field u E  are at the centers of the computational 

cells.  

 

 52



3.2.2.1. Poisson’s Equation 

 

To obtain a finite-differences approximation of Poisson’s equation (3.2.1), which 

has the boundary conditions given by equations (3.2.4) and (3.2.5), a standard 

second order discrete scheme of the form given by equation (3.2.12) is used. 
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As a result, Poisson’s equation turns to the standard three-point problem given by 

equation (3.2.13).  
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Equation (3.2.13) is solved by the Thomas algorithm, using boundary conditions 

described in equations (3.2.4) and (3.2.5) in discrete form, which is given by 

equations (3.2.14) and (3.2.15). 

 

   (3.2.14) 01 =Φm

   (3.2.15) 0Φ−=Φm
N

 

3.2.2.2. Continuity Equation 
 

To obtain a finite-differences representation of equation (3.2.2), it is first inte-

grated over the cell volume 2/12/1 +− ≤≤ jj xxx . As a result, we have  

 

 
x

unun
dt

dn jjj

∆

−
= +− 2/12/1 )()(

 (3.2.16) 
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where u  is the ion velocity and n  is ion density.  

 

A choice of  at the centers of the computational cells determines the con-

crete discretization method for the convective terms of equation (3.2.1). We used 

the third-order upwind-biased scheme [27], which has the form  

2/1±jn

 

 ( ) ( ) ( )[ ]212/1112/12/1 5225
6
1

++
−
++−

+
++ −++++−= jjjjjjjjj nnnunnnuun (3.2.17) 

 

where  

 

 ( )2/12/1 ,0max +
+
+ = jj uu , and ( )2/12/1 ,0max +

−
+ = jj uu . (3.2.18) 

 

For the numerical time integration, the extrapolated second order backward dif-

ferentiation formula (BDF2) is used [28]: 

 

 )2,(
2
12

2
3 2121 −−−− −∆=+− mm

mm
mmm nntFtnnn , . (3.2.19) 2≥m

 

Here,  contains the discretized convective terms. Note, that spatial indices in 

equation (3.2.19) have been dropped.  

F

 

Since two-step method needs  and  as starting values, the explicit Euler 

method given by equation (3.2.20) is used on the first step.  

0n 1n

 

  (3.2.20) ),( 11 −− ∆+= m
mm

mm ntFtnn

 

Because of the explicit time integration, we are restricted by the standard CFL 

condition for stability. 
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3.2.2.3. Momentum Balance Equation  

 

Let us consider the momentum equation, which is given by equation (3.2.3). This 

equation can be rewritten in the form of  
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To have a conservative difference scheme for (3.2.3), it is constructed by the in-

tegro-interpolated method; integrating equation (3.2.3) over the computational 

cell  equation (3.2.22) is obtained. jj xxx ≤≤−1
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Different approximations of the integrals in equation (3.2.22) lead to different dif-

ference schemes. One of them is a scheme implicit in time and of the following 

form: 
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with  

 

 ),( jm
i

m
j xtE

m
ef = . (3.2.24) 

 

It is obvious that equation (3.2.23) represents a quadratic algebraic equation with 

respect to . Using the ion velocity known from the previous time level  m
ju 1−m

ju
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( ), a numerical procedure can be organized by a successive calcula-

tion of  starting from the left boundary (

Nj ,...,2,1=
m
ju 0=x )  

 

   (3.2.25) 01 =mu

 

to the right by the equation 
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where ,  Nj ,...,3,2= ,...3,2,1=m

 

3.2.3. Numerical Results 

 

Numerical procedure is organized as follows. On every new  time step, first, 

Poisson’s equation is solved, using the known ion density  in its source term; 

hence, electric field in the new time step is determined. Then, the momentum 

balance equation is solved, using the known electric field, 

thm
1−mn

mE , and the ion veloc-

ity in the new time step is determined. Finally, the continuity equation is solved, 

using the known ion velocity and therefore the ion density in the new time step, 

, is determined. mn
 

The numerical convergence is checked by performing several calculations using 

refinement of the space grid and different time stepping parameters. The number 

of grid nodes used in the calculations was 200. 

 

In the simulation, the ions are assumed to be titanium ions and the ion mass is 

taken to be 48.00×1.67×10-27 kg, the magnitude of the distance between the elec-

trodes, , is taken to be ~ 1.00×10L -2 m, the negative potential applied to the 

cathode, , is taken to be ~ 20.00 kV, potential applied to the anode is taken to 0Φ
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be 0.00 kV, the initial ion velocity is taken to be 0.00 m/s and the initial ion den-

sity, , is taken to be ~ 1.00×100n 15 /m3  

 

The data obtained from the simulation is used to plot the ion density versus posi-

tion graph and ion velocity versus position graph at a particular time. Figure 3.2 

shows these graphs at the instants 
4

maxtt = , 
2

maxtt = , 
4

3 maxtt =  and .  maxtt =

 

 

 

 

Figure 3.2: Ion density and ion velocity as a function of x  at the instants 

4
maxtt = , 

2
maxtt = , 

4
3 maxtt =  and maxtt = . 

 

 

 

It can be easily seen from figure 3.2 that the ions at a particular position x  move 

with almost the same velocity as they are accelerated towards the target. The 

motion of the matrix sheath and the position of the sheath edge can be seen from 

the density versus position graph in figure 3.2. 

 

The implantation of ions ends, i.e. the ion matrix sheath disappears, at a time 

, which is found as 7.08×10maxt -8 s in the analytical calculations and 6.90×10-8 s in 

the simulation. The final ion velocity at Lx =  and maxtt =  is obtained as 2.80×105 

m/s from the simulation data. The analytically calculated final ion velocity, which 
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is 2.78×105 m/s, is approximately equal to the simulation result with an error of 

0.71 %. It is also observed from figure 3.2 that the ion velocity inside the ion ma-

trix at a particular instant is almost linear. However, the ion velocity versus posi-

tion graphs plotted by using the analytical data, figure 3.3, and the numerical 

data, figure 3.2, indicate different relations between the ion velocity and position. 

The graphs of the analytical data indicate a linear relationship between ion veloc-

ity and position whereas the graphs of the numerical data indicate a curvilinear 

relationship between ion velocity and position. This linearization of analytically 

calculated ion velocity is due to the approximations made in the analytical calcula-

tions. This causes the analytically calculated ion velocity to increase more slowly 

than the simulated velocity in the time interval 
4

30 maxtt <<  and to catch the 

simulated values in the time interval max
max

4
3

tt
t

<< .  

 

The graph in figure 3.4 gives the analytically calculated ion velocity as a function 

of position and time. 

 

Although the analytically calculated ion velocity is slightly different from the simu-

lated ion velocity regarding the dependence on position, it can be concluded that 

there is a good agreement between the analytical and the numerical solutions.  
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Figure 3.3: Ion velocity versus position graphs plotted using analytical results. 

 

 

 

 

Figure 3.4: The analytically calculated ion velocity as a function of position and 

time. 
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3.3. CYLINDRICAL CONFIGURATION 

 

3.3.1. The Model 

 

The model presented here is a one-dimensional model, with a cylindrical anode of 

infinite length and radius  and a cylindrical cathode where the target to be im-

planted is placed. The target considered is the internal surface of an infinitely long 

cylinder whose inner radius is . The anode is axially placed inside the target. 

The magnitude of  is ~10

1r

2r

1r -2 m,  is ~ 3×102r -2 m, the negative potential applied 

to the cathode, , is ~ 20 kV, whereas the anode is kept at zero potential. The 

ion velocity is initially zero and the initial ion density, , has a value of ~10

0Φ

0n 15/m3.  

 

3.3.1.1. Equations  

 

The equations that have to be solved to simulate the cylindrical part of our prob-

lem are given by equations (3.3.1) – (3.3.3). 

 

Poisson’s Equation: 
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Continuity Equation: 
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Momentum Balance Equation: 
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In equations (3.3.1) – (3.3.3), Φ  is the potential,  is the electric charge of an 

ion,  is the ion velocity, n  is the ion density, 

e

u 0ε  is the electric permittivity of 

free space,  is the mass of an ion, and im E  is the electric field between the elec-

trodes. 

 

3.3.1.2. Boundary and Initial Conditions 

 

The boundary conditions to be imposed are given by equations (3.3.4) – (3.3.7). 

 

 , 1rr = 0),( 1 =Φ tr ,  (3.3.4) 

 , 2rr = 02 ),( Φ−=Φ tr , (3.3.5) 

 , 1rr = 0),( 1 =tru , (3.3.6) 

 , 1rr = 01 ),( ntrn = . (3.3.7) 

 

The initial conditions to be imposed are given by equations (3.3.8) and (3.3.9). 

 

 t = 0,  0)0,( =ru , (3.3.8) 

 t = 0, ( )[ ]{ }2
30 1050000arctan)0,( π

π
+−××= −

jrnrn . (3.3.9) 

 

3.3.2. Numerical Procedure 

 

Equations (3.3.1) – (3.3.3), which are subject to the boundary and initial condi-

tions given by equations (3.3.4) – (3.3.9), have been solved numerically using a 

finite-differences technique. The computational domain is estimated to be be-

tween the radius of anode, , and the inner radius of cathode, , where the dis-

tance between the electrodes is 

1r 2r

Lrr =− 12 . The computational domain is given by 

figure 3.5.  
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Figure 3.5: Computational domain 

 

 

 

A uniform vertex-centered grid  

 

 NjNLrrjrj ..,1,0,, ==∆∆=   (3.3.10) 

 

is used where j is the spatial index. The time level is given by equation (3.2.11). 

 

Density  and electric potential n Φ  are evaluated at the nodes of the grids, while 

the ion velocity  and the electric field u E  are at the centers of the computational 

cells.  

 

3.3.2.1. Poisson’s Equation 

 

To obtain a finite-differences approximation of Poisson’s equation (3.3.1), which 

has the boundary conditions given by equations (3.3.4) and (3.3.5), the integro- 

interpolated method is used; integrating equation (3.3.1) over the computational 

cell  equation (3.3.11) is obtained. jj rrr ≤≤−1
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As a result, this problem turns to the standard three-point problem of the form 

(3.1.2) which is again solved by the Thomas algorithm using the formulation 

given by equations (3.2.13) – (3.2.15). 

 

3.3.2.2. Continuity Equation 

 

To obtain a finite-differences representation of equation (3.3.2), it is integrated it 

over the cell volume 2/12/1 +− ≤≤ jj rrr  and equation (3.3.12) is obtained. 
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The third-order upwind-biased scheme [27], which has a form given by equations 

(3.2.17) and (3.2.18), and the extrapolated second order BDF2 [28] given by 

equation (3.3.13) are used. 
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Since the two-step method requires  and  as starting values, the explicit 

Euler method, given by equation (3.2.20), is used again on the first step with the 

standard CFL condition for stability. 

0n 1n

 

3.3.2.3. Momentum Balance Equation  

 

Equation (3.3.3) can be rewritten in the form given by equation (3.2.21). The in-

tegro-interpolated method over the computational cell  and the jj rrr ≤≤−1
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scheme implicit in time given by equations (3.2.23) and (3.2.24) are again used 

in the numerical computation of momentum balance equation by a successive cal-

culation of  starting from the left boundary (m
ju 1rr = ) to the right by the equation 

(3.2.26). 

 

3.3.3. Numerical Results 

 

The numerical procedure is organized in the same form as the numerical proce-

dure given in section 3.2.3.  

 

In the simulation, the ions are assumed to be titanium ions and the ion mass is 

taken to be 48.00×1.67×10-27 kg, the radius of the anode, , is taken to be ~ 

1.00×10

1r
-2 m, the inner radius of the cathode, , is taken to be ~3.00×102r -2 m, the 

magnitude of the distance between the electrodes, , is taken to be ~2.00×10L -2 

m, the negative potential applied to the cathode, 0Φ , is taken to be ~ 20.00 kV, 

potential applied to the anode is taken to be 0.00 kV, the initial ion velocity is 

taken to be 0.00 m/s and the initial ion density, , is taken to be ~ 1.00×100n 15 

/m3. 

 

The data obtained from the simulation is used to plot the ion density versus posi-

tion graph and ion velocity versus position graph at a particular time. Figure 3.6 

shows these graphs at the instants 
4

maxtt = , 
2

maxtt = , 
4

3 maxtt =  and .  maxtt =
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Figure 3.6: Ion density and ion velocity as a function of r  at the instants 

4
maxtt = , 

2
maxtt = , 

4
3 maxtt =  and maxtt = . 

 

 

 

It can easily be seen from figure 3.6 that the ions at a particular r  move with al-

most the same velocity as they are accelerated towards the target. The motion of 

the matrix sheath and the position of the sheath edge can be seen from the den-

sity versus position graph in figure 3.6. 

 

The implantation of ions ends, i.e. the ion matrix sheath disappears, at a time 

, which is found as 1.05×10maxt -7 s in the analytical calculations and 1.25×10-7 s in 

the simulation. This difference is caused because the first order sheath edge, 

, has been ignored since its contribution to the ion velocity is second order. 

The final ion velocity is obtained as 2.71×10

)()1( ts
5 m/s from the simulation data. The 

analytically-calculated final ion velocity, which is 2.75×105 m/s, is approximately 

equal to the simulation result with an error of 1.47 %. In addition to this, the ion 

velocity versus position graph plotted by using the analytical data, which is shown 

in figure 3.7, and the numerical data indicate similar relationships between ion 

velocity and position.  

 

It can be concluded that there is a good agreement between analytical and nu-

merical solutions.  
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Figure 3.7: Ion velocity as a function of r  at four particular instants 
4

maxtt = , 

2
maxtt = , 

4
3 maxtt =  and maxtt = . 
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CHAPTER 4 

 

 

CONCLUSION 

 

 

 

Plasma source ion implantation (PSII), which was invented by Conrad in 1987 

[13], is a well-established plasma-based manufacturing technique, which is fre-

quently used in the surface modification of materials for industrial applications [1, 

3, 4].  

 

PSII is a room temperature surface enhancement technique that uses a plasma 

medium surrounding a target and high-negative-voltage, high-current pulses to 

accelerate ions into a target surface from all directions. PSII modifies the target 

surface in beneficial ways, making it harder, improving wear properties, reducing 

the coefficient of friction, enhancing its resistance to corrosion and dramatically 

improving the wear-life of manufacturing tools in actual industrial applications [9, 

14].  

 

In this work, the dynamic ion behavior during the evolution of the ion matrix 

sheath, considering the industrial application plasma source ion implantation for 

both planar and cylindrical targets, is treated analytically and a code that simu-

lates this dynamic ion behavior numerically is developed.  

 

It is known that if the separation between the electrodes in a discharge tube is 

small, upon the application of a large potential between the electrodes, an ion 

matrix sheath is formed, which fills the whole inter-electrode space. After a short 

time, the ion matrix sheath starts moving towards the cathode and disappears 

there. Two regions are formed as the matrix sheath evolves. We have derived the 

potential profiles of these two regions and estimated the ion flux on the cathode 

for the planar case. Then, by using the finite-differences method, the problem is 

simulated numerically.  
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For the planar case, the potential profile between the electrodes is calculated ana-

lytically and the results are given by equations (2.1.31) and (2.1.32) in the theory 

and calculations chapter. Then, using these potentials and the equation of motion 

of ions, the ion velocity is calculated analytically, equation (2.1.40), and the ion 

flux is estimated, given in equation (2.1.41). Using the analytical data, the ion ve-

locity as a function of x  at the instants 
4

maxtt = , 
2

maxtt = , 
4

3 maxtt = ,  and 

the ion flux as a function of time at the cathode are plotted (figures 2.4, 2.5, 2.6, 

2.7 and 2.8). It is observed both from the analytical results and their graphs that 

the ion velocity increases linearly with distance and the ion flux increases almost 

linearly with time.  

maxtt =

 

Then, a code that simulates the ion behavior for the planar configuration as the 

ion matrix evolves is developed. The data obtained from the simulation is used to 

plot the ion density versus position graph and ion velocity versus position graph at 

four particular times, which is shown in figure 3.2 in the simulation chapter. It is 

observed from these graphs that the ions at a particular position move with al-

most the same velocity when they are accelerated towards the target. The motion 

of the matrix sheath and the position of the sheath edge can be seen from the 

density versus position graph.  

 

The ion matrix sheath disappears, at a time , which is found as 7.08×10maxt -8 s in 

the analytical calculations and 6.90×10-8 s in the simulation. The final ion velocity 

at  and  is obtained as 2.80×10Lx = maxtt = 5 m/s from the simulation data. The 

analytically-calculated final ion velocity, which is 2.78×105 m/s, is approximately 

equal to the simulation result with an error of 0.71 %. It is also observed from 

figure 3.2 that the ion velocity inside the ion matrix at a particular instant is al-

most linear. However, the ion velocity versus position graphs plotted by using the 

analytical data and the numerical data indicate a small difference in the relation-

ships between ion velocity and position. The graphs of the analytical data indicate 

a linear relationship between ion velocity and position whereas the graphs of the 
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numerical data indicate a curvilinear relationship between ion velocity and posi-

tion. This linearization of analytically-calculated ion velocity is due to the approxi-

mations made in the analytical calculations. This causes the analytically-calculated 

ion velocity to increase more slowly than the simulated velocity in the time inter-

val 
4

30 maxtt <<  and to catch the simulated values in the time interval 

max
max

4
3

tt
t

<< . Although the analytically-calculated ion velocity is slightly different 

from the simulated ion velocity regarding the dependence on position, it can be 

concluded that there is a good agreement between analytical and numerical solu-

tions. 

 

For the cylindrical case, the potential profile between the electrodes is calculated 

analytically and the results are given by equations (2.2.52) and (2.2.53) in the 

theory and calculations chapter. Then, using these potentials and the equation of 

motion of ions, the differential equations for the zeroth and first order ion veloci-

ties are derived. The zeroth order ion velocity is calculated analytically, which is 

given by equation (2.2.74) in the theory and calculations chapter. However, it is 

observed that equation (2.2.74), which is obtained analytically under the ap-

proximation (2.2.36), needs to be studied further because it does not fully satisfy 

equation (2.2.56). Therefore, the differential equations for the first order ion ve-

locity and for the zeroth order ion velocity, equations (2.2.56) and (2.2.57), are 

solved numerically. The relationships between the ion velocity and position, and 

the ion flux and time are shown in the figures 2.17 and 2.18. It is observed both 

from the analytical results and their graphs that the ion velocity increases in a 

curvilinear manner with distance and the ion flux increases in a curvilinear man-

ner with time.  

 

Then, a code that simulates the ion behavior for the cylindrical configuration as 

the ion matrix evolves is developed. From the simulation data, it is observed that 

the ions at a particular r move with almost the same velocity when they are ac-

celerated towards the target. The motion of the matrix sheath and the position of 

the sheath edge can be seen from the density versus position graph in figure 3.6 
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in the simulation chapter. The implantation of ions ends, i.e. the ion matrix sheath 

disappears, at a time , which is found as 1.05×10maxt -7 s in the analytical calcula-

tions and 1.25×10-7 s in the simulation. This difference is caused because the first 

order sheath edge, , has been ignored since its contribution to the ion ve-

locity is second order. The final ion velocity is obtained as 2.71×10

)()1( ts
5 m/s from the 

simulation data. The analytically-calculated final ion velocity, which is 2.75×105 

m/s, is approximately equal to the simulation result with an error of 1.47 %. In 

addition to this, the ion velocity versus position graph plotted by using the ana-

lytical data and the numerical data indicate similar relationships between ion ve-

locity and position. Therefore, it can be concluded that there is a good agreement 

between analytical and numerical solutions.  

 

In this work, the constants, such as the inter-electrode separation, used in the 

calculations are chosen to be well-adjusted to the experimental values so that 

these calculations can be used in the experiments as a reference. In the 

calculations, the ions are assumed to be titanium ions. 

 

To conclude, the dynamic ion behavior during the evolution of the ion matrix 

sheath has been analytically treated, considering the industrial application plasma 

source ion implantation for both planar and cylindrical targets, and then a code 

that simulates this dynamic ion behavior numerically is developed. It has been 

observed that the results of both the analytical calculations and the numerical 

simulations are in a good agreement. 
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