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ABSTRACT 
 

 

 

COMPUTATIONAL REPRESENTATION OF PROTEIN SEQUENCES FOR 

HOMOLOGY DETECTION AND CLASSIFICATION 

 

 

 

Oğul, Hasan 

Ph.D., Department of Information Systems 

Supervisor: Assist. Prof. Dr. Erkan Ü. MUMCUOĞLU 

 

 

 

January 2006, 102 pages 

 

 

 

Machine learning techniques have been widely used for classification problems in 

computational biology. They require that the input must be a collection of fixed-

length feature vectors. Since proteins are of varying lengths, there is a need for a 

means of representing protein sequences by a fixed-number of features. This thesis 

introduces three novel methods for this purpose: n-peptide compositions with 

reduced alphabets, pairwise similarity scores by maximal unique matches, and 

pairwise similarity scores by probabilistic suffix trees. 
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New sequence representations described in the thesis are applied on three 

challenging problems of computational biology: remote homology detection, 

subcellular localization prediction, and solvent accessibility prediction, with some 

problem-specific modifications. Rigorous experiments are conducted on common 

benchmarking datasets, and a comparative analysis is performed between the new 

methods and the existing ones for each problem. 

 

On remote homology detection tests, all three methods achieve competitive 

accuracies with the state-of-the-art methods, while being much more efficient. A 

combination of new representations are used to devise a hybrid system, called 

PredLOC, for predicting subcellular localization of proteins and it is tested on two 

distinct eukaryotic datasets. To the best of author’s knowledge, the accuracy 

achieved by PredLOC is the highest one ever reported on those datasets. The 

maximal unique match method is resulted with only a slight improvement in 

solvent accessibility predictions. 

 

Keywords: n-peptide composition, maximal unique match, probabilistic suffix tree, 

remote homology, subcellular localization. 
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ÖZ 
 

 

 

PROTEİN DİZİLİMLERİNİN HOMOLOJİ SEZİMİ VE SINIFLANDIRMA 

AMAÇLI BİLİŞİMSEL GÖSTERİMİ 
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Tez Yöneticisi: Yrd. Doç. Dr. Erkan Ü. MUMCUOĞLU 

 

 

 

Ocak 2006, 102 sayfa 

 

 

 

Otomatik öğrenme yöntemleri bilişimsel biyolojide sınıflandırma problemleri için 

sıkça kullanılmaktadır. Bu yöntemlerin girdilerinin sabit uzunlukta özellik 

vektörlerinden oluşması gerekir. Proteinler farklı uzunluklarda olabileceği için, 

protein dizilimlerini sabit sayıdaki özelliklerle temsil edecek yöntemlere ihtiyaç 

duyulmaktadır. Bu tezde bu amaçla üç farklı yöntem sunulmaktadır. Bunlardan 

birincisi azaltıltılmış alfabelerle n-peptid bileşimi, ikincisi en büyük benzersiz 

eşleşmelere göre ikili benzerlik değerleri, ve üçüncüsü ise olasılıksal sonek ağaçları 

ile ikili benzerlik değerleridir. 
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Tezde tarif edilen yeni dizilim gösterim yöntemleri, probleme özgü değişiklilerle 

birlikte, bilişimsel biyolojinin üç önemli problemi üzerinde uygulanmıştır; uzak 

homoloji sezimi, hücresel konumlanma tahmini, çözgen erişebilirlik tahmini. Her 

problem için, ortak kıyaslama kümeleri üzerinde yapılan deneyler sonucunda, 

mevcut yöntemlerle yeni yöntemler arasında karşılaştırma analizleri sunulmuştur. 

 

Uzak homoloji sezimi testlerinde, üç yeni yöntemin hepsi mevcut en iyi 

yöntemlerle karşılaştırılabilir doğruluk değerleri elde ederken, bunların çok daha 

verimli çalıştıkları gözlenmiştir. Yeni yöntemlerin bir kombinasyonu, proteinlerin 

hücresel konumlanmalarını tahmin eden PredLOC isimli sistemi geliştirmek için 

kullanılmış ve bu sistem iki farklı ökaryotik protein kümesi için test edilmiştir. 

PredLOC her iki veri kümesi için de şu ana kadar elde edilen en iyi doğruluk 

değerine ulaşmıştır. En büyük benzersiz eşleşmelerin kullanımı, çözgen erişebilirlik 

tahmininde az miktarda iyileştirme sağlayabilmiştir. 

 

Anahtar kelimeler: n-peptid bileşimi, en büyük benzersiz eşleşme, olasılıksal sonek 

ağacı, uzak homoloji, hücresel konumlanma. 
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CHAPTER 1 
 

 

Introduction 
 

 

 

High-throughput genome sequencing projects have been resulted with the 

accumulation of a large amount of raw sequence data in many databases. Owing to 

the experimental complications and obstacles in the structural and functional 

analysis of proteins, the amount of discrepancy between the number of known 

protein sequences and the number of experimentally determined structures has 

steadily increased in recent years. This situation has given occasion to the 

emergence of computational tools and methodologies that make automated 

annotations on structure and function of proteins using the sequence information 

available in public databases.  

1.1 Scope and Organization of the Thesis 

This thesis deals with developing accurate and efficient representations for protein 

sequences to be used for automated protein classification systems. Throughout the 

thesis, three novel sequence representation schemes are introduced and their 

applicability on various protein-related problems is discussed. Besides the generic 

representations that suit many applications, several problem-specific modification 
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strategies are proposed. The new representations are applied on three challenging 

problems of computational biology and experimental results are presented.  

 

The next section of this chapter follows with the introduction of some biological 

concepts and definitions that are frequently referred and related at several parts of 

the thesis. This chapter ends with the introduction of some publicly available 

databases that were used to create the data sets on which the experiments were 

carried out. 

 

The second chapter is where the new sequence representations are described. The 

first representation with n-peptide compositions is defined in Section 2.1. 

Similarity-based representations are described in Section 2.2. Among them, the 

maximal unique match model is described in Section 2.2.2 and the pairwise 

probabilistic suffix tree model is described in Section 2.2.3. Although alignment-

based sequence comparison techniques are not original to this study, they are also 

introduced in Section 2.2.1 to give a historical perspective in sequence analysis. 

 

The next chapters deal with the application of new representations on three 

important biological problems; remote homology detection (Chapter 3), subcellular 

localization prediction (Chapter 4) and residue solvent accessibility prediction 

(Chapter 5). For all applications, rigorous analyses are presented as a result of 

experiments conducted on common benchmarking data sets. 

1.2 Contributions 

The thesis introduces novel approaches for protein sequence analysis. Moreover, it 

provides significantly improved solutions for some biologically important 

problems. The contributions of the thesis can be summarized as follows: 

• n-peptide compositions are made usable for n>3 with gradually simplified 

amino acid alphabets. This provides both the advantage of reduced 

complexity and the opportunity to evaluate evolutionarily possible 



 3

mismatches which has never considered in compositional representations in 

previous studies. 

• The maximal unique match definition is used for the first time for protein 

sequences to infer remote homologies and shown to be very useful in spite 

of its simplicity and efficiency. 

• This study is the first use of probabilistic suffix trees for pairwise sequence 

comparison. With some modifications, pairwise probabilistic suffix tree 

model is shown to be better than original family-based probabilistic suffix 

tree model when integrated into a discriminative framework for protein 

classification. 

• New methods provide more efficient solution to discriminative remote 

homology detection problem, while their accuracies are comparable to that 

of the state-of-the-art methods. 

• A new system for predicting subcellular localization of eukaryotic proteins 

is designed using new sequence representations and its Linux-compatible 

source codes and binaries are made freely available for academic users. In 

the experiments, the new system provided the best accuracy ever reported 

on the benchmark datasets. 

• Solvent accessibility problem is revisited. In addition to a simple and 

slightly improved residue representation scheme, a prediction refinement 

strategy is proposed based on the maximal unique matches. 

1.3 Biological Background 

The genetic information which we inherit from our parents and passes to our 

children is carried by a long molecule called as deoxyribonucleic acid or DNA. 

DNA has two long strands, each of which is made up from chemical units called 

phosphates, deoxyribose sugars, and nucleotides linked as a sequence. The 

nucleotides in DNA are of four kinds; Adenine, Guanine, Cytosine, and Thymine, 

and they are abbreviated by A, G, C, T, respectively. The DNA molecule is 
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composition of these two strands which lie in an antiparallel orientation to form a 

double helix. This conformation follows strict base pairing rules such that A can 

only make a pair with T and G can only make a pair with C. Thus, each strand is 

actually a complementary sequence of other strand. One of the strands in DNA 

helix is called as template and the other is called as coding strand. Figure 1 shows a 

simplified view of a DNA molecule. 

 

Figure 1. Two different views of a DNA molecule.*  

Many of the chemical reactions in a cell are mainly the result of proteins. The basic 

role of DNA in an organism is to control the activities in cells by specifying the 

synthesis of proteins. However, a DNA does not directly produce a protein; instead 

it generates a template in the form of a strand of RNA, which in turn codes the 

protein synthesis. In general, the information flows from DNA to proteins through 

RNA molecules. 

                                                      
* The figure was obtained from http://www.accessexcellence.org/AB/GG/dna2.html 
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The generation of template RNA from DNA is called transcription. Transcription 

is the mechanism by which a template strand of DNA is utilized to form one the 

three different classifications of RNA. These classes are as follows:  

1. mRNAs are the genetic coding templates used by translational 

machinery to determine the order of amino acids incorporated into 

protein polypeptide chain.  

2. tRNAs are small structures used to recognize the encoded sequence of 

mRNAs to allow correct insertion of amino acids into the elongating 

polypeptide chain.  

3. rRNAs are assembled, together with numerous ribosomal proteins, to 

form a catalytic domain into which the tRNAs enter with their attached 

amino acids. The ribosomes catalyze all the functions of protein 

synthesis.  

 

After transcription, the resulting RNA is complementary to the template strand of 

the DNA duplex and identical to the non-template strand. The non-template strand 

of DNA refers to coding strand because all the sequence in this strand would then 

be translated into proteins through mRNA. However, urasil (U) is substituted for 

timing (T) in RNA. The synthesis of protein is directed by RNAs and the process is 

called as translation. This process requires all three classes of RNA, however, the 

template for correct addition of individual amino acids is the mRNA. In 

eukaryotes, mRNA sequence is exported out of the nucleus to the cytoplasm for 

translation into a protein primary sequence. The RNA then translated as a series of 

three-letter codons, where each codon represents a particular amino acid. The list of 

amino acids and the abbreviations used are given in Table 1.  

 

Although 64 possible combinations of the 3 nucleotides code for amino acids are 

available, the code is degenerate since there are only 20 amino acids in nature. All 

possible codon sequences and corresponding amino acid representatives are give in 

Table 2. It is experimentally shown that some amino acids are encoded by more 

than one triplet codon, hence the degeneracy of the genetic code. A special codon 
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called as start codon signals the starting of point of translation. The process of 

translation terminates with another special codon called as stop codon. 

Table 1. Amino acids and their abbreviations. 

Nonpolar Amino Acids (hydrophobic) 

amino acid three letter code Single letter code 

Glycine Gly G 

Alanine Ala A 

Valine Val V 

Leucine Leu L 

Isoleucine Ile I 

Methionine Met M 

Phenylalanine Phe F 

Tryptophan Trp W 

Proline Pro P 

Polar Amino Acids (hydrophilic) 

Serine Ser S 

Threonine Thr T 

Cysteine Cys C 

Tyrosine Tyr Y 

Asparagine Asn N 

Glutamine Gln Q 

Electrically Charged Amino Acids (negative and hydrophilic) 

Aspartic acid Asp D 

Glutamic acid Glu E 

Electrically Charged Amino Acids (positive and hydrophilic) 

Lysine Lys K 

Arginine Arg R 

Histidine His H 

 

To summarize the process, the information-storage molecule (DNA) transfers its 

information through a transfer molecule (RNA) to a functional, noncoding product 

(protein). For example; if the DNA template sequence is as; 

AGTAATCTCGTTACT, 
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then the RNA sequence will be same as DNA template sequence, except that all Ts 

are replaced by Us; 

AGU AAU CUC GUU ACU. 

And the protein sequence would be as the sequence of corresponding amino acid 

abbreviations for the triplet codons in RNA; 

S N L V T. 

Table 2.  The genetic code. 

 Middle  

First U C A G Last 

U Phe Ser Tyr Cys U 

 Phe Ser Tyr Cys C 

 Leu Ser Stop Stop A 

 Leu Ser Stop Trp G 

C Leu Pro His Arg U 

 Leu Pro His Arg C 

 Leu Pro Gln Arg A 

 Leu Pro Gln Arg G 

A Ile Thr Asn Ser U 

 Ile Thr Asn Ser C 

 Ile Thr Lys Arg A 

 Met Thr Lys Arg G 

G Val Ala Asp Gly U 

 Val Ala Asp Gly C 

 Val Ala Glu Gly A 

 Val Ala Glu Gly G 

 

The structure of a protein is visualized in four levels. The primary structure of a 

protein refers to the linear number and order of amino acids present in the 

polypeptide chain. The convention for the designation of the order of amino acids 

is from the N-terminal end, i.e. the end residue with the free amino group, to the C-

terminal end, i.e. the end residue with carboxyl group. 
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The ordered array of amino acids in a protein confers regular conformational forms 

upon that protein. These conformations constitute the secondary structure of a 

protein. In general, proteins fold into two broad class of structure termed as 

globular proteins or fibrous proteins. Globular proteins are compactly folded and 

coiled, whereas, fibrous proteins are more filamentous and elongated. It is the 

partial double-bond character of the peptide bond that defines the conformations a 

protein chain may assume. Within a single protein, different regions of the 

polypeptide chain may assume different conformations determined by the primary 

sequence of the amino acids.  

 

The common secondary structure elements are α-helices, extended β-sheets, bends, 

bridges, turns and loops. Of these, α-helices and β-sheets are more definite 

structure elements. The others are not so easily described and, most commonly, 

they all are called as “others” or “coils”.  

 

The α-helix is encountered in proteins of globular class. The formation of α-helix 

is spontaneous and is stabilized by H-bonding between amide nitrogens and 

carbonyl carbons of peptide bonds spaced four residues apart. Whereas an α-helix 

is composed of a single linear array of helically disposed amino acids, β-sheets are 

composed of 2 or more different regions of stretches of at least 5-10 amino acids.  

 

Tertiary structure refers to the complete three dimensional structure of the 

polypeptide units of a given protein. Included in this description is the spatial 

relationship of different secondary structures to one another within a polypeptide 

chain and how these secondary structures themselves fold into the three-

dimensional form of the proteins. Secondary structure of proteins often constitutes 

distinct domains. Therefore, tertiary structure also describes the relationship of 

different domains to one another within a protein. The interactions of different 

domains is governed by several forces, including H-bonding, hydrophobic 

interactions, electrostatic interactions and Van Der Waals forces. Figure 2 shows an 
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example tertiary structure on which the local secondary structure elements are 

depicted by different shapes. 

 

 

 

 

 

 

 

 

 

 

Figure 2. The view of protein 2gpr (from CATH database). 

Proteins may contain 2 or more different polypeptide chains that are held in 

association by the same non-covalent forces that stabilize the tertiary structure of 

proteins. The structure formed by more than one polypeptide chains is known as 

quaternary structure. 

 

The higher level structures of a protein are important to identify the function, 

activity or environmental interactions of that protein. The functions of proteins are 

the essence of life itself. Many of the proteins in an organism are enzymes, specific 

proteins that speed up the rate of chemical reactions in the cell. Enzymes are tiny 

molecular tools that temporarily combine with the ingredients for a specific 

reaction and hold them at the correct angle for a reaction to occur. They also lower 

the amount of energy needed for reaction to proceed so it can occur at a much 

lower temperature than would be necessary without enzyme. In addition, proteins 

play many other roles in the cell. Proteins may be classified with respect to those 

activities realized in the cell; some categories are enzymes, structural proteins, 

hormones, transport proteins, etc. Each type of proteins may further be categorized 

according to their functions. For instance, transport proteins may further be referred 

as oxygen transporters or fatty acid transporters, etc.  
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It is already stated that the structure determines the function of a protein. However, 

the next,  maybe the more important, question is what determines the structure of a 

protein. It is shown for many proteins that the primary structure (amino acid 

sequence) of a protein is major determinant for the tertiary structure (Anfinsen, 

1973). However, knowledge of the primary structure is not sufficient; the native 

solution environment also plays a role in the three-dimensional conformation of a 

protein.  

1.4 Source of Data 

There are many databases to store and efficiently retrieve the biological data. 

Whereas some databases are specialized to store a specific kind of information, the 

others are of general purpose and serve many facilities to search much kind of data. 

Many of the databases can be accessed online via their web sites. Almost all of 

them are arranged so that you can download their data into your local workstations. 

Since proteins are our concern, some of the important protein-related databases are 

listed and briefly introduced in Appendices. 

 

Throughout the thesis, many of those databases have been frequently accessed 

either to obtain experimental data or to verify the results. Protein family and 

superfamily definitions are obtained from SCOP database (Murzin et al. 1995) for 

remote homology detection tests. Protein sequences were downloaded from either 

PDB (Berman et al., 2000) or SWISSPROT (Bairoch and Apweiler, 1999) in fasta 

format. The subcellular localizations were annotated from SWISSPROT database. 

The relative solvent accessibility values were obtained from DSSP (Kabsch and 

Sander, 1983) and reorganized. In addition to those databases which were used as 

the source of experimental data, CATH (Orengo, Michie, Jones, Jones, Swindells 

and Thornton, 1997), NCBI and Pfam (Bateman et al., 2002) databases and their 

tools were frequently used to check the correctness and integrity of the data used in 

the experiments. 
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CHAPTER 2 
 

 

Protein Sequence Representations 
 

 

 

Automated categorization of proteins into their structural or functional classes is an 

important challenge for computational biology. Most of the recent methods that 

have been developed to assign proteins into well-known classes are based on the 

machine learning techniques such as neural networks, Bayesian classifiers and 

support vector machines. The classification theory suggests that the input to a 

classifier must be a collection of fixed-length feature vectors. Both the training and 

testing samples are required to satisfy this condition. Since a protein is an ordered 

chain of varying number of amino acids, the sequence itself is not a consistent data 

such that it can not be directly fed into a machine learning classifiers. Therefore, 

there is a need for a means of representing proteins by a fixed-length feature vector. 

2.1 Compositional Representation 

Many methods have been proposed for protein sequence representation. Amino 

acid composition of a protein may be the most widely used method to represent 

protein sequences. In this scheme, each protein is represented by a 20 dimensional 

feature vector where each dimension is the fraction of corresponding amino acid in 

the sequence. In spite of its basic definition, amino acid composition has been 



 12

successfully applied in many problems (Bahar, Atilgan, Jernigan, Erman, 1997; 

Zhang, Chou and Maggiora, 1995; Reinhardt and Hubbard, 1998; Hua and Sun, 

2001) and still considered to be a sufficient knowledge in the detection of structural 

classes such as all-alpha, all-beta or alpha+beta proteins. The main problem with 

this scheme is that it ignores the local order of amino acid along the sequence. To 

include the effect of local amino acid orders, dipeptide compositions have been 

utilized as a single representation or in a combination vector with amino acid 

composition. Dipeptide composition is a vector having 400 dimensions each of 

which represents the fraction of one of the possible 2-length amino acid strings. 

Dipeptide composition has also been used in many problems (Nakashima and 

Nishikawa, 1994; Park and Kanehisa, 2003; Jin, Weiwu and Tang, 2003; Yu, Lin, 

Hwang, 2004) and shown to perform better than amino acid composition in most 

cases. However, it still lacks of the information about the order of amino acids in 

longer peptides. 

 

Another protein representation scheme built on the sequence content is based on 

the use of known physicochemical properties of proteins. Ding and Dubchak 

(2001) used six properties: amino acids, predicted secondary structure, 

hydrophobicity, normalized van der Waal volume, polarity and polarizability. For 

each property, they extracted features from primary sequence based on three 

descriptors; percent composition of three constituents (e.g. polar, neutral and 

hydrophobic residues in hyrophobicity), the transition frequencies (polar to neutral, 

neutral to hydrophobic, etc) and the distribution patterns of constituents. They 

applied this scheme for multi-class protein fold recognition with support vector 

machines and neural networks. Similar representation was used for protein function 

classification via support vector machines (Cai, Wang, Sun, Chen, 2003). Bashin 

and Raghava (2004) used 33 different physico-chemical properties and built an 

input vector having 33 scalar values, each representing the average value of a 

distinct property contained in the protein to predict subcellular localizations. 

 

Motif-based protein representations are also related to the sequence content. In 

these methods, instead of searching all possible amino acid or dipeptide 
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combinations, some previously annotated and structurally known or deposited to be 

important sequence patterns, which are available in public databases such as 

PROSITE (Falquet et al., 2002),  I-SITES (Bystroff and Baker, 1998), BLOCKS 

(Henikoff, Henikoff, Pietrokovski, 1999), eMOTIF (Huang and Brutlag, 2001), are 

searched in the sequence and a boolean value that indicates the existence of the 

corresponding motif inside the sequence is associated with each dimension of the 

feature vector (Ben-hur and Brutlag, 2003; Hou, Hsu, Lee, Bystroff, 2003). In this 

case, the number of dimensions in the feature vector becomes equal to the number 

of available motifs in the database used. In spite of their remarkable success, motif-

based approaches has the disadvantage that the resulting feature vectors often 

contain too many sparse data, since many of the given motifs are not necessarily to 

be included in the target sequence. 

 

In this study, proteins are represented by their n-peptide compositions, which is a 

generalization of amino acid and dipeptide compositions. For each value of n, 

corresponding feature vector contains the fraction of each possible n-length 

substring in the sequence. For example, the feature vector refers to amino acid 

composition for n=1, and dipeptide composition for n=2. As mentioned above, n-

peptide compositions have been used extensively for many problems with n=1 and 

n=2, however, composition of longer n-peptides could not be used efficiently since 

the time and memory requirements exponentially increase with the value of n. The 

number of dimensions in the feature vector corresponding to n-peptide composition 

is 20n. The memory space complexity of the training step then becomes O(k20n), 

where k is the number of proteins in the training set. This leads to formation of 

high-dimensional feature vectors even for small values of n, which makes the 

system difficult to implement with conventional memory resources. To overcome 

this problem, the size of amino acid alphabet is gradually reduced for increasing 

values of n such that the resulting vector for each n-peptide composition will have a 

dimension lower than a constant value of t, so getting an upper bound on the space 

complexity by O(kt). In other words, we use an alphabet size of r that satisfies the 

condition rn < t for n-peptide composition. Not only providing an efficient space 

complexity, this scheme also allows the evaluation of possible mismatches in 
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longer n-peptides, which is a natural case in the evolution of proteins. Table 3 gives 

the reduced amino acid alphabet sizes and resulting feature vector dimensions for 

different values of t to be used in the construction of n-peptide compositions. 

Table 3.  The amino acid alphabet sizes and resulting feature vector dimensions used for each 

n-peptide composition with varying thresholds of dimension 

t=1000 t=5000 t=10000 n 

Alphabet 

Size 

Vector 

dimension

Alphabet

size 

Vector 

dimension

Alphabet 

size 

Vector 

dimension

1 20 20 20 20 20 20 

2 20 400 20 400 20 400 

3 10 1000 15 3375 20 8000 

4 5 625 8 4096 10 10000 

5 3 243 5 3125 6 7776 

6 3 729 4 4096 4 4096 
 

Another problem with the use of n-peptide compositions is the exponential time 

complexity of the protein vectorization. A naive algorithm that searches all possible 

n-peptides in a protein sequence of length m has a time complexity of O(m20n). We 

use a hash structure indexed by a sorted array of all possible n-peptides and 

sequentially traced the sequence to update the counts of the observed n-peptide. 

With this scheme, the time complexity is reduced to O(mn). Since we use only 

small values of n, the time complexity can be simply regarded as O(m).  

 

We use the amino acid grouping method provided by Murphy, Wallqvist and Levy 

(2000) in order to reduce the alphabets. These alphabets have been produced using 

statistical techniques based on the information of certain BLOSUM matrices 

(Henikoff and Henikoff, 1992) and justified by well-known biochemical amino 

acid classes. The procedure for grouping similar amino acids has two steps: first, 

the correlation coefficients between substitution matrix elements are calculated for 

all pairs of amino acids by the following formula, where M(x,y) denotes the 
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corresponding BLOSUM matrix entry for two amino acids x and y (BLOSUM 

matrices are described in detail in Section 2.2.1), 
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(2.1) 

 

In the second step, the two amino acids with the highest correlation coefficient are 

grouped together, then, the pair with the next correlation is either added to the first 

group if one member is already on the group or separated into a new group if not. 

The same process is repeated until all amino acids are partitioned into desired 

number of groups.  Table 4 lists some of the reduced amino acid alphabets obtained 

from this grouping scheme.  

Table 4. Reduced amino acid alphabets used in our method. 

Size Alphabet 
20 L V I M C A G S T P F Y W E D N Q K R H 

15 (LVIM) C A G S T P (FY) W E D N Q (KR) H 

8 (LVIMC) (AG) (ST) P (FYW) (EDNQ) (KR) H 

6 (LVIM) (AGST) (PHC) (FYW) (EDNQ) (KR) 

5 (LVIMC) (AGSTP) (FYW) (EDNQ) (KRH) 

4 (LVIMC) (AGSTP) (FYW) (EDNQKRH) 

3 (LVIMCAGSTP) (FYW) (EDNQKRH) 

2 (LVIMCAGSTPFYW) (EDNQKRH) 

2.2 Empirical Representation by Pairwise Similarities 

In 2003, Liao and Noble suggested a new but quite simple methodology to 

represent proteins by a fixed-length vector. In their scheme, each protein is 

represented by a set of pairwise similarity scores between the target protein and 

some other annotated proteins. This scheme does not consider any observed 

property of amino acid sequences but rather uses an empirical feature map on the 
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basis of a set of known  proteins. Each protein, Px, in the data set is vectorized by 

ϕ(Px) with the following equation: 

ϕ(Px) =[S(Px,P1),  S(Px,P2),…,S(Px,Pn)]  (2.2) 

where Pi is ith protein sequence in the labeled protein set, n is the total number of 

proteins in the labeled set, and S(Px,Pi) is the alignment score between any protein 

sequences Px and Pi. Liao and Noble have shown in their work that the sequence 

alignment with dynamic programming is the most accurate way of inferring 

similarity between two sequences as a result of remote homology detection tests. 

This result was not surprising because dynamic-programming-based alignment had 

been previously shown to be the optimal solution for sequence similarity in subject 

to a given objective function. However, as Liao and Noble also stated in their 

article, the system works very slowly due to the computational inefficiency of 

dynamic programming algorithm. It is likely for this reason that this method could 

not find any application in later studies in protein classification.  

 

In this study, two efficient methods for inferring similarity between protein 

sequences are proposed and they are adopted in the empirical feature representation 

scheme introduced by Liao and Noble. Main goal of these attempts is to make this 

powerful strategy practical to use in real-world applications. After giving the 

fundamental concepts of sequence alignment, following two sections describe the 

novel methods for measuring sequence similarity.  

2.2.1 Sequence Alignment 

The degree of similarity of two protein sequences is determined by their 

alignments. The problem of sequence alignment has been studied extensively in 

previous three decades (Needleman and Wunch, 1970; Hirschberg, 1977; Smith 

and Waterman, 1981; Myers and Miller, 1988; Myers,1991;  Lipman and Pearson, 

1985; Altschul, Gish, Miller, Myers and Lipman, 1990; Delcher, Kasif, Fleishman, 

Peterson, White and Salzberg, 1999).  
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AC--BCDDDB
 |  | | | 
-CADB-DAD- 

2.2.1.2 Pairwise Alignment 

The pairwise sequence alignment is the problem of comparing two sequences while 

allowing certain mismatches between the two.  

 

Definition  Given the sequences A=a1a2…am and B=b1b2…bn, the alignment of A 

and B finds a set of evolutionary operations, called as mutations, that converts A to 

B and minimizes the sum of the cost of the total operations, which, in fact, 

maximizes the similarity.  

 

The operations may be substitution, replacing one letter to another; deletion, 

removing one letter; or insertion, adding a new letter. Since insertion and deletion 

are dual of each other, the term indel is commonly used. 

 

 

 

 

 

Figure 3. An example alignment 

Informally, an alignment of two strings A and B is obtained by first inserting 

chosen spaces, either into or at the ends of A and B so the length of the strings will 

match, and then placing the two resulting strings one above the other so that every 

character or space in one of the strings is matched to a unique character or a unique 

space in the other string. In Figure 3, one possible alignment of the sequences 

"ACBCDDDB" and  "CADBDAD" is given, where (-) denotes a gap and ( | ) 

shows a match of two symbols. 

 

There are two variants of biologically motivated sequence alignment; global 

alignment and local alignment. Global alignment optimizes the score for similarity 

(or distance) over the full length of both sequences. It is appropriate when the two 
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sequences are known to be similar and of roughly the same length. Needleman and 

Wunsch (1970) are the first who formulized the problem.  

 

Definition  Let A and B are two sequences with |A|=m and |B|=n, m and n are 

roughly the same value, σ(ak,bk) is the score of the alignment of character ak with 

character bk, and V(i,j) is the optimal score of the alignment of a1a2…ai and 

b1b2…bj (0<=i<=n, 0<=j<=m). Then, 

 

                              V(i-1,j-1)+ σ (ai,bi) 

V(i,j) =max           V(i,j+1)+ σ (ai,-)     (2.3) 

                              V(i-1,j)+ σ (-,bi)  

 

where – refers to a space character.  

 

Representing V(i,j) as an n x m matrix, with indices i and j, the alignment with 

highest score is found by tracing back through the matrix. The space and time 

complexity of alignment is O(mn); the algorithms needs O(mn) time and O(m+n) 

space for filling the matrix and O(mn) space for tracing back the alignment.  

Hirschberg first discovered a linear-space algorithm for the sequence alignment 

(Hirschberg, 1977), which was then extended with use of edit graphs by Myers and 

Miller (Myers and Miller, 1988). However, reducing space requirement increased 

the time complexity.  

 

Definition  Let A and B are two sequences, the optimal score of the local alignment 

of a1a2…ai and b1b2…bj (0<=i<=n, 0<=j<=m) is, denoted by V(i,j), given by the 

recursive formula; 

 

                           V(i-1,j-1)+ σ (ai,bi) 

V(i,j)= max        V(i,j+1)+ σ (ai,-)    (2.4) 

                           V(i-1,j)+ σ (-,bi) 

                           0 
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Local alignment finds the similar subregions and optimizes the alignment score for 

them. It is appropriate when it is not known in advance if the sequences being 

compared are similar. The Smith & Waterman algorithm is the most widely used 

local alignment algorithm (Smith and Waterman, 1981). The most important trick 

for local alignment is to rate the expectation value for a random alignment 

negative. That causes random alignments and other stretches of mismatches to 

decrease the path score. Best local alignment is identified by storing the entire 

V(i,j) matrix, finding the maximum element, then tracing back through the matrix 

until the path score has dropped to zero.  

Alignment Heuristics 

Dynamic programming methods are feasible when the sequences are short. 

However, for comparing a sequence with a whole database of hundreds of 

sequences, they are inefficient. To solve this problem some heuristic approaches 

such as FASTA (Lipman and Pearson, 1985) or BLAST (Altschul et al., 1990) are 

used. FASTA considers exact matches between short substrings of two sequences. 

If a significant number of such exact matches is found, FASTA uses the dynamic 

programming algorithm to compute optimal alignments. BLAST is another 

heuristic based on a similar idea. It focuses on no-gap alignment of a certain, fixed 

length k. Rather than requiring exact matches, BLAST uses a scoring function to 

measure similarity. In particular for proteins, one can argue that segment pairs with 

no gaps and a high similarity score indicates regions of functional similarity. For a 

given threshold parameter t, BLAST reports to the user all database entries which 

have a segment pair with the query sequence that scores higher than t.  

Score Matrices for Proteins 

A simple way to define σ(ai,bj) scores is to set it to +1 for matches, -1 for 

mismatches and –2 for indels. However, depending on the context, some changes 

may be more plausible than others. The exchange of an amino acid by the one with 

similar properties (size, charge, etc.) may be more possible than the exchange by 

the one with opposite properties. Several scoring schemes have been proposed to 
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describe different exchange possibilities. Most popular of those schemes is PAM 

(Point Accepted Mutations) matrices. In the 1970s, a research team lead by M. 

Dayoff carefully studied the evolution of sequences of amino acids and constructed 

some matrices to show the exchange probabilities between individual amino acids 

(Dayoff, Schwartzi and Orcutt, 1978). PAM or PAM1 is the length of time for 1% 

of the amino acids to mutate. One estimate that a PAM is that about a billion years. 

PAM1 matrix is a matrix with column and row headings of the amino acids where 

matrix cells refer to the amount of evolution over one PAM period of time, or for 

one mutation per hundred amino acids. Some extensions are possible over  PAM1 

matrix. A PAM70 matrix, for example, contains scoring information on the amount 

of evolution over 70 PAM period of time. Any of PAM<X> matrix can be obtained 

by raising the PAM1 matrix to the X. power. Figure 4 shows a smaller part of the 

PAM70 matrix. As shown in the matrix, exchange of E by D is more possible than 

exchange of E by C, since E-D score, 3, is higher than E-C score, -9. Choosing a 

proper PAM matrix depends on the application data. If the sequences are known to 

be similar at advance, a PAM matrix with smaller index is preferable. Otherwise, a 

high index should be chosen. BLOSUM series of substitution matrices were later 

introduced by Henikoff and Henikof (1992) which is believed to be more precise 

for distantly related protein sequences. 

 

 

 

 

 

 

 

 

Figure 4. A part of PAM70 matrix. 

Multiple Sequence Alignment 

Multiple sequence alignment is simply the extension of pairwise global alignment 

with k sequences instead of two.  

  A   R   N   D   C   Q 

A   5  -4  -2  -1  -4  -2 

R  -4   8  -3  -6  -5   0 

N  -2  -3   6   3  -7  -1 

D  -1  -6   3   6  -9   0 

C  -4  -5  -7  -9   9  -9 

Q  -2   0  -1   0  -9   7
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Definition  Given a set S={s1,s2,…,sk} of k sequences, such that the sequences are 

known to be similar to each other, a multiple alignment M maps the set S to a new 

set S’={s1’,s2’,…,sk’}, such that; 

 

i. all the sequences in S’ are of equal length, and 

ii. the removal of spaces from si’ leaves si, for 1 ≤ i ≤ k. 

 

Since there are so many possibilities for such an alignment, the next problem is to 

design a scoring function which determines the quality of the alignment. If we 

define a distance (similarity) function σ(x,y), which measure the distance 

(similarity) between the individual characters, a pairwise alignment score between 

s’ and t’; 

 

 ∑ σ(si’,ti’), 1 ≤ i ≤ L, L=|s’|=|t’| 

 

is to be minimized (maximized). σ(x,y) score is usually obtained by a substitution 

matrix, like PAM, described in previous sections.  

 

For the alignment of k sequences, a sum of pairs (SP) score of multiple alignment 

M is defined as the sum the scores of all pairwise alignments induced by M. Then, 

the multiple alignment is to find the alignment M of {s1,s2,…,sk} which has the 

minimum possible (SP) score for these k sequences. 

The number of available methods for multiple sequence alignment has steadily 

increased over the last 20 years. The methods can be grouped into three; 

progressive algorithms, exact algorithms and iterative algorithms. 

 

The progressive algorithms (Higgins, Thompson, Gibson, 1994, Löytynoja and 

Milinkovitch, 2003) attempt to optimize the weighted sum of the pairwise 

similarities. The sequences are added one by one to the multiple alignment 

according to the order indicated by a precomputed dendogram. Sequence addition 

is made using a pairwise sequence alignment method, such as dynamic 
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programming. This method is simple and effective, however, it has a problem that 

once a sequence is added to alignment, it will never be modified even if it conflicts 

with the sequences added later. 

 

The exact algorithms attempt to find optimal alignment, instead of approximating 

to it. The use of dynamic programming in k dimensional space (where k stands for 

the number of sequences) is very inefficient in time and space. This is acceptable 

for a maximum of three sequences. This limit can be extended a little bit further by 

finding a way to identify in advance the portion of the hyperspace that does not 

contribute to the solution and exclude it from computation (Carillo and Lipman, 

1988). 

 

The iterative algorithms, in general, are based on the idea that the solution to a 

given problem can be computed by modifying an already existing sub-optimal 

solution. The modifications can be made using dynamic programming or in a 

stochastic way. There are some proposed methods which use Hidden Markov 

Models (Krogh, Brown, Mian, Sjölander and Haussler, 1994), simulated annealing 

(Kim, Pramanik and Chung, 1994), Gibbs sampling (Lawrence, Altschul, Boguski, 

Liu, Neuwald and Wootton, 1993) or genetic algorithms (Notredame and Higgins., 

1996). Among these, HMM approach is limited in practice to cases with many 

sequences (>100). The others give effective results with properly chosen 

parameters. 

2.2.2 A Conservative Definition for Similarity: Maximal Unique Matches 

Definition  Given two sequences A and B, a substring that appears only once in 

both A and B is called a unique match between A and B, and a unique match is 

called as a maximal unique match  if it is not contained in any longer unique match.  

 

With this definition, a maximal unique match (MUM) can be considered as one of 

the core part in an alignment and yields an important evidence for the homology 

between the sequences. The definition is more strict than the alignment since it 
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does not allow any substitution and repetition in the sequences when evaluating the 

similarity between them. However, when the we deal with the sequences that have 

less similarity, the allowance of any mutation may lead to by-chance matches 

between the sequences. Therefore, this strict definition is expected to show more 

evidently the local relationships between the divergent proteins. The definition of 

MUM has been originally introduced by Delcher et al. (1999) to accelerate the 

alignment of long DNA strands. In this study, we adopt their definition for the 

protein sequences to represent the conservative relationships between them. 

 

Once identified, the length of all non-overlapping maximal unique matches can be 

used to compare two protein sequences; S(Px,Pi) score in Equation 2.1 is replaced 

by the total length of all MUMs, M(Px,Pi), for protein vectorization; 

 

ϕ(Px) = M(Px,P1),  M(Px,P2),…, M(Px,Pn) (2.5) 

 

The simple sum of all MUM lengths leads to a problem when two or more MUMs 

overlap since the overlapping residues would be counted more than once. To 

overcome this problem, we modify the definition of M(Px,Pi) as the number of the 

residues contained in a maximal unique match between Px and Pi.  

Finding MUMs  

To find the maximal unique matches, a special data structure called suffix tree is 

used. A suffix tree is a compact tree that stores all suffixes of a given text string. It 

is a powerful and versatile data structure which finds application in many string 

processing algorithms (Gusfield, 1997). An example suffix tree for “abab$” is 

shown in Figure 5. 

 

Definition  Let A be string of n characters, A=s1s2…sn, from an ordered alphabet Σ 

except sn. Let $ be a special character, matching no character in Σ, and sn be $. The 

suffix tree T of A is a tree with n leaves such that; 
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• Each path from the root to a leaf of T represents a different suffix of A. 

• Each edge of T represents a non-empty string of A. 

• Each non-leaf node of T, except the root, must have at least two children. 

• Substrings represented by two sibling edges must begin with different 

characters. 

 

 

Figure 5. Suffix tree of  “abab$”. 

 

The definition of a suffix tree can be easily extended to represent the suffixes of a 

set {A1,A2,…,An} of strings. This kind of suffix tree is called as a generalized suffix 

tree. 

 

To find maximal unique matches between any two sequences, first, a generalized 

suffix tree (Bieganski, Riedl, Carlis and Retzael, 1994) is constructed for the 

sequences. This is simply done by concatenating two sequences with a dummy 

character (not contained in the alphabet) between them and constructing a suffix 

tree for the newly created sequence. In our representation, a maximal unique match 

is a maximal pair in the concatenated sequence one of which appears before the 

dummy character and the other appears after that. The algorithm to find maximal 

pairs is given by Gusfield (1997). We used a variation of this algorithm considering 

the fact that each of the pair should appear in different sequences. The leaves of the 

suffix tree are numbered according to the position of the suffix which they 

represent. The algorithm used to find the unique matches is given in Figure 6. 
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# finding unique matches (S_unique) 
s1 <- first sequence 
s2 <- second sequence 
sc <- concatenate s1, #, s2 (# is a dummy character) 
ST <- construct suffix tree for sc 
sep <- leaf number of the node representing #s2 
for each node, n, in ST 
 if n has exactly two leaf childs (c1,c2) then 
  L1 <- leaf number of c1 
  L2 <- leaf number of c2 
  if ((c1>sep and c2<sep) or (c1<sep and c2>sep)) then 
   n is a matching node 
   add the path from root to n to S_unique list 
  end if 
 end if 
end for 
 

Figure 6. Algorithm for finding unique matches 

Given a generalized suffix tree for two sequences, unique matches between them 

can be found linear time. Since the construction of a suffix tree can also be 

completed in linear time (Weiner, 1977; McCreight, 1976; Ukkonen, 1995), the 

algorithm for finding unique matches would have a linear time complexity. The 

maximality of unique matches can be determined simply by mismatches at their 

left and right ends. 

2.2.3 Pairwise Probabilistic Suffix Trees (PSTs) 

The PST method was introduced by Bejerano and Yona (2000) to model the 

protein families. The original PST model was based on identifying significant short 

segments among the many input sequences, regardless of the relative positions of 

these segments within the different proteins. The model induces a probability 

distribution on the next symbol to appear right after a length segment with a length 

of no more than a predefined value, say L. To classify a sequence into one of the 

families, a separate PST is constructed for each family in the data set, and 

according to the probability distribution over PST, a probability that the sequence 

belongs to that family is assigned to the query sequence. By comparing this 
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probability score against a threshold value (predetermined by applying an 

equivalence criterion), the sequence is determined as belonging to that family or 

not. 

 

Defined over a finite alphabet, a PST contains edges labeled by a single symbol of 

the alphabet, such that no symbol is represented by more than one edge branching 

out of any single node. Each node in the PST, varying in degree between zero and 

the size of the alphabet, is labeled by a string, which is the one generated by 

traversing the tree from that node to the root. The nodes are also attached with a 

conditional empirical probability vector of the same size as the alphabet. The 

probability distribution vector contains the probability of each symbol to appear 

after a subsequence represented in the current node.  

 

An example PST is given in Figure 7. For example, the probability vector 

associated with the node “bea” is (0.1, 0.1, 0.35, 0.35, 0.1). In other words, 

according to given PST, the probability of observing the symbol a after the 

segment bea is 0.1, whereas the probability of observing d after bea is 0.35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. An example PST over the alphabet {a,b,c,d,e} 

 

 root

   a 

  ca   ea 

   e 

  bea 

[0.2,0.2,0.2,0.2,0.2] 

[0.6,0.1,0.1,0.1,0.1] 

[0.05,0.5,0.15,0.2,0.1] 

[0.5,0.25,0.4,0.25,0.05] [0.05,0.4,0.05,0.4,0.1] 

[0.1,0.1,0.35,0.35,0.1] 
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In this study, we propose a variant form of the PST method for pairwise sequence 

comparison. To infer the similarity between two sequences, the query sequence is 

predicted using the PST constructed from the source sequence and the predicted 

probability score is taken as the similarity score between them. The probability of a 

sequence is calculated by the average of the probability of each letters: 

 

℘(Px,PT
y )= (γs1(x1)+ γ s2(x2)+…+ γ sk(xk)) / k  (2.6) 

 

where ℘(Px,PT
y ) is the probability score of protein sequence Px over the PST of 

protein sequence Py, γi(xi) is the probability of ith symbol xi in protein sequence Px, 

calculated by scanning the tree to search for the longest subsequence (si) that 

appears in the tree and ends just before the symbol xi, and k is the length of the 

protein sequence Px.  

 

To adopt the new sequence similarity measure into the feature representation 

scheme introduced by Liao and Noble, we built a separate PST for each sequence 

in the training set and modified the protein vectorization given in Equation 2.2 by 

the following: 

 

ϕ(Px) = [℘(Px,PT
1 ), ℘(Px,PT

2 ),…, ℘(Px,PT
n )]  (2.7) 

 

An ideal PST for a single sequence contains a leaf labeled by whole sequence and a 

node for each prefix of the sequence. Since this leads to an enormous amount of 

memory use even for small sequence input, a PST construction parameter, so-

called short memory length, has been provided in Bejerano and Yona’s 

implementation. This parameter, denoted by L, restricts the degree of the PST 

nodes by a constant value, which also refers to the maximum length used for the 

suffixes to be used in the prediction step. Another parameter in the PST 

construction algorithm is Pmin, which denotes the minimum probability with which 

strings are required to appear in the PST input to be represented by a node in the 

resulting PST. This probability is calculated by dividing the number of appearances 
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of the related string by the number of all possible strings with the same length. 

Since the appearance of a string only once in the source sequence is even essential 

for pairwise comparison, we set Pmin to zero in our pairwise application. Although 

many other parameters have been provided by Bejerano and Yona to optimize the 

space complexity of the PST construction algorithm with multiple sequence input, 

these did not require further optimization since we use only a single-sequence input 

for pairwise comparison. Thus, we adjust all these parameters so that all strings 

shorter than L are represented by a node in the resulting PST. 

 Modifications on PST 

Some modifications in the prediction phase of the PSTs are proposed for single-

sequence application of PSTs into pairwise comparison.  

 

1. Maximizing probability: One of the problems with PSTs is that the probability 

of observing a specific residue after a significant segment with a length of L may 

be zero. Since the original PST approach is family based, this scoring may be 

reasonable to penalize a residue that diverges too much from the family profile. 

However, in our pairwise application, penalizing a residue that has a possibility of 

getting a higher score with a shorter suffix is not reasonable. To overcome this, we 

search the maximum possible probability score for each residue in the proteins. 

This is done by comparing the probabilities obtained for all suffixes preceding the 

target residue.  

 

2. Average degree as a multiplication factor: Considering that the use of larger 

suffixes preceding the residue under consideration may constitute a better 

indication for homology, we put the average degree of the nodes used in the 

prediction of each residue within the sequence as a multiplication factor to the final 

similarity score: 

 

℘(Px,PT
y ) = ((γ s1(x1)+ γ s2(x2)+…+ γ sk(xk)) / k ) * (∑ωi)/k   (2.8) 
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where ωi as the length of the preceding segment used for calculating the probability 

of next symbol in position i. This scheme rewards the appearance of longer 

segments in the query sequence. 

 

3. Two-way similarity: Until now, all the similarity calculations are defined in 

one way. That is, to compare the protein sequence Px with the protein sequence Py, 

we have used the PST constructed from the protein sequence Py to find the 

probability of protein sequence Px to be produced from that PST. Owing to the 

nature of PSTs, it is obvious that the probability of protein sequence Py to be 

produced from the PST of the protein sequence Px will be different. This problem 

becomes more serious when the length difference between the sequences is high. 

Considering this, we use both scores in our vectorization: 

 

ϕ(Px) =[(℘(Px,PT
1 ),℘(P1,PT

x )), (℘(Px,PT
2 ),℘(P2,PT

x )),…, (℘(Px,PT
n ),℘(Pn,PT

x ))] (2.9) 

 

4. Adding biological considerations. The PST based scoring scheme does not 

consider any biological priori information, instead uses only the probability 

distribution on the source and query sequences. The biological considerations can 

also be incorporated to the PST scoring scheme using well-known substitution 

matrices such as PAM or BLOSUM (see Section 2.2.1). This approach aims to 

enhance the similarity score by allowing the possible point mutations. Assuming 

that any mutation between two amino acid a and b has a substitution score of 

∂(a,b), we can replace the probability of the symbol γs(a) after a segment s with the 

γ s(b) if γ s(b). ∂(a,b) >  γ s(a). ∂(a,a). In this case, the probability of a sequence is 

calculated by  

 

℘(Px,PT
y ) = (γ’s(x1)+ γ’s(x2)+…+ γ’s(xk)) / k  (2.10) 

 

where  

 

γ’s(xi)= maxof { γs(xi), (γs(aa1).∂(xi,aa1)/∂(xi,xi)),..., (γs(aa20).∂(xi,aa20)/ ∂(xi,xi)) } 
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and aak is the kth amino acid in the protein alphabet. It should be noted that this 

scheme can be applied only when all substitution scores between amino acids are 

positive. Hence, a substitution matrix whose values are normalized between 0 and a 

positive number should be used if this modification is intended to apply. Another 

remark is that this modification can not be used at the same time with the first 

modification which is suggested to get the highest possible score for each residue. 

Thus, the choice between two modifications is left as an option in the PST 

prediction step.  

 

The protein sequence representation scheme based on the PST-based sequence 

similarity scores is utilized in SVM-based remote homology detection and 

subcellular localization prediction systems. The similarity scores for N-terminal 

parts of the sequences are also employed in subcellular localization predictions 

knowing that the localization process is oriented by some targeting signals 

generally occurring in this region (Emanuelsson, Nielsen, Brunak and Gunnar, 

2000). The accuracy and efficiency of this approach are evaluated in the following 

chapters. 
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CHAPTER 3 
 

 

Remote Homology Detection 
 

 

 

Two proteins are said to be homolog if they share a common evolutionary origin. 

Homology information is important in that it may imply a common structure and 

function between two proteins. Since we are often supplied only the sequence 

information, inferring homology using solely the sequence has been one of the 

central problems in computational biology. If we are able to find some number of 

similar proteins whose structural and functional analyses are already completed, the 

target protein can be easily annotated using the assumption that the sequence is the 

main determinant of the structure. However, there are two main problems with this 

argument. First, the target protein may be entirely new and its structure is different 

from all of the proteins available in the databases. Second, in spite of the weak 

similarity between two protein sequences they may still have evolutionary 

relationships. The first problem is a bottleneck of computational biology and there 

is no method that works well at the moment. The second problem is known as 

remote homology detection problem, and various methods have been proposed in 

recent years. In spite of several successful attempts, they are either computationally 

inefficient or insufficient to work for all cases. The previous methods can be 

grouped into three stages; pairwise methods, generative methods and 

discriminative methods. A taxonomy of the methods are given in Figure 8 and the 

following section is devoted to their descriptions. 
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Figure 8. A taxonomy of the existing homology detection methods 

3.1 Previous Studies 

The early methods for homology detection were based on the pairwise sequence 

similarity inferred by dynamic programming based sequence alignment (Smith and 

Waterman, 1981). While the dynamic programming method finds an optimal score 

for similarity according to a predefined objective function, it suffers from long 

computation times for relatively long sequences. To speed up the alignment, some 

heuristic methods, such as BLAST (Altschul et al. 1990), have been developed to 

find a near-optimal alignment within a reasonable time. The general assumption is 

that two proteins are homolog if the sequence identity (the percentage of identical 

residues after the alignment of two sequences) is above 40%. The problem with 

pairwise sequence alignment is biological inaccuracy of evaluation with respect to 

only one known protein homolog. Considering only one protein to annotate a 

newly sequenced protein may lead to biologically uncertain results. This 

uncertainty comes from the fact that the twilight zone of sequence alignment sets a 

boundary for confidence levels for the detection of evolutionary relatedness of 

proteins (Rost, 1999). In most alignments this twilight zone falls between 20-40% 

sequence identity. Despite two proteins are not similar in terms of their sequences, 

i.e. the sequence identity is below 40%, they may still share some important 

structural or functional features, which actually refers to remote or distant 

homology between proteins.  
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To take apart from the twilight zone of pairwise sequence alignment, family based 

comparisons have been proposed (Grundy, 1998). To improve the sensitivity of 

homology results, a representative set of sequences from the family is incorporated 

into the comparison, that is, the new protein is aligned concurrently with all (or 

some) of the protein sequences in a specified family. The utilization of multiple 

comparisons have increased three times the sensitivity of homology detection 

compared to pairwise comparisons (Park et al., 1998). Indeed, most of the proteins 

are classified within a protein family in available databases and the actual 

annotations are made over those families, thus, it seems more appropriate to use all 

family knowledge in homology modeling. 

 

Since the concurrent alignment of new sequence to all members of a family may 

disrupt the actual properties of the family, an alternative approach would be to 

construct family profiles and align the new sequence with this profile (Gribskov, 

Lüthy and Eisenberg, 1990, Eddy, 1998). For this, the common properties of the 

sequences in a family are encompassed in a family profile and the new sequence is 

tested to check whether or not it belongs to the family by comparing to its profile. 

These methods are based on the similarity statistics derived upon more than one 

homolog examples, that is, all statistical information is generated from a set of 

sequences that are known or posited to be evolutionary related to another. These 

probabilistic methods are often called as generative because they induce a 

probability distribution over the protein family and try to generate the unknown 

protein as a new member of the family from this stochastic model.  

 

Additional accuracy can be gained by iteratively searching the available database 

for homologs and refining the central profile model in each iteration. SAM-T98 

method is an example of iterative family refinement methods (Karplus, Barett and 

Hughey, 1998). In this method, sequences are first aligned to an initial model 

which is constructed based on some background distributions and then the model is 

improved iteratively by aligning the sequences to the current model to which the 

new statistical results are incorporated. Another iterative method PSI-BLAST 

deploys BLAST search and refine the results iteratively (Altschul et al., 1997). 
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Integrated sequence/structure alignments are iteratively performed for the search of 

homologs in another method (Walqvist et al., 2000). 

 

The main problem with generative approaches is the fact that they produce so much 

false positives, that is, they report a number of homologs though they are not. For 

this reason, the recent works on remote homology detection have begun to use a 

discriminative framework to make separation between homolog (positive) and non-

homolog (negative) classes. In contrast to generative methods, the discriminative 

methods focus on learning the combination of features that discriminate between 

the classes. These methods attempt to establish a model that differentiates between 

positive and negative examples. In other words, non-homologs are also taken into 

account.  

 

 

 

 

 

 

 

 

 

 

Figure 9. Discriminative homology detection model 

In discriminative homology detection methods, there are two main phases: training 

and testing. The training phase constructs a machine learning classifier for the 

specified family, and the testing phase uses this classifier to decide whether the test 

protein is belonging to this family or not. In general, a machine learning classifier 

is constructed for each family in the database and the protein is checked if it is 

belonging to any of those known protein classes. Both phases require the extraction 

of some informative features from the protein sequence and the representation of 
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these features in a suitable way. Figure 9 gives an overview of the discriminative 

homology detection approach.  

 

The current methods using the discriminative approach differ in the feature 

extraction methods, the feature representation schemes and the type of the machine 

learning classifiers they have used. Among k-nearest neighbor method, neural 

networks and support vector machine, the last one has been reported as 

outperforming the others in many applications concerning with protein 

classification (Liao and Noble, 2003; Ding and Dubchak, 2001).  

 

Discriminative methods are more successful than generative methods in terms of 

separation accuracy between true positives (homologs that are correctly predicted) 

and false positives (non-homologs that are incorrectly predicted as homolog). 

However, the training and testing phases require so much time with conventional 

workstations, which makes them inappropriate to use in practice. Thus, more 

efficient methods are required that preserve the classification accuracy. 

 

First discriminative approach (SVM-Fisher) represents each protein by a vector of 

Fisher scores extracted from a profile Hidden Markov model constructed for a 

protein family and utilizes SVMs to classify the protein with those feature vectors 

(Jaakola, Diekhans and Haussler, 2000). A recent and more successful work, called 

SVM-Pairwise (Liao and Noble, 2003), combines the sequence similarity with the 

SVMs to discriminate between positive and negative examples. Detailed 

description of the feature representation based on pairwise similarity scores is 

given in Section 2.2.3. In SVM-Pairwise, both the training and test sets include 

positive and negative examples. This method was tested for dynamic-

programming-based alignment scores and BLAST scores. Note that the latter one is 

referred as SVM-BLAST in the following sections. SVM-Pairwise approach is 

among the best methods in terms of accuracy, but it suffers from computational 

inefficiency since the alignment takes too much time for long sequences. Another 

drawback of this approach is that the alignment may force some residues to match 

even if they are evolutionary not related.  
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3.2 Systems and Methods 

In this study, three new methods for feature vectorization; (1) n-peptide 

compositions, (2) MUM-based similarity scores, and (3) PST-based similarity 

scores, described in Chapter 2 are employed for remote homology detection in the 

discriminative framework explained above. For convenience, the new systems are 

named as SVM-n-peptide, SVM-MUM and SVM-PST respectively. A comparative 

analysis with the other methods is presented in the following sections. 

3.2.1 Binary Classification with SVMs 

To discriminate between positive and negative examples SVMs are used. SVMs 

are binary classifiers that work based on the structural risk minimization principle 

(Vapnik, 1995; Vapnik and Cortes, 1995). They have been extensively used and 

shown to be a powerful tool in many bioinformatics problems (Hua and Sun, 2001; 

Ward, McGuffin, Buxton and Jones, 2003; Yuan, Burrage and Mattick, 2002; 

Karchin, Karplus and Haussler, 2002; Bock and Gough, 2001). An SVM classifier 

is generated by a two-step procedure: first, the high-dimensional input space of the 

SVM is non-linearly mapped into a higher dimensional feature space. In the second 

step, a linear hyperplane is constructed in this feature space with the largest 

possible margin separating the classes of the data. The points classified by the 

SVM can be divided into two groups; support vectors and nonsupport vectors. 

Nonsupport vectors are perfectly classified by the hyperplane and are located 

outside the separating margin. Parameters of the hyperplane do not depend on 

them, even if their position is changed, provided that these points will stay outside 

the margin. Support vectors are the points that are difficult to classify and therefore 

they are used to determine the exact position of the hyperplane. In other words, 

support vectors contain the information for the classification task. The main 

advantage of SVM is its better generalization ability owing to fact that it finds the 

separating hyperplane with the largest margin using support vectors, as opposed to 
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neural networks at which all possible hyperplanes are evaluated. Thus, SVM is said 

to be less prone to overfitting than other classifiers. 

 

To train the SVMs, an open-source software called SVM-Gist, available at 

www.cs.columbia.edu/compbio/svm, is used. In the SVM-Gist software, a kernel 

function acts as the similarity score between pairs of input vectors. The base kernel 

is normalized in order to make that each vector has a length of 1 in the feature 

space, that is, 
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where X and Y are the input vectors, K(.,.) is the kernel function, and “.” denotes 

the dot product. This kernel is then transformed into a radial basis kernel K’(X,Y), 

as follows: 
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where the width σ is the median Euclidean distance from any positive training 

example to the nearest negative example. Since the separating hyperplane of SVM 

is required to pass from the origin, the constant 1 is added to the kernel so that the 

data goes away from the origin. An asymmetric soft margin is implemented by 

adding to the diagonal of the kernel matrix a value 0.02*ρ, where ρ is the fraction 

of training set proteins that have the same label with the current protein, as done in 

the previous SVM classification methods (SVM-Pairwise, SVM-BLAST, SVM-

Fisher). The SVM output is a list of discriminant scores corresponding to each 

protein in the test set.   

3.2.2 Implementations and Experimental Setup 

n-peptide compositions were constructed with a computer program implemented by 

standard library functions of Perl language for SVM-n-peptide system. To find 
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MUM-based similarities, another Perl program was written based on the suffix tree 

algorithm described in Section 2.2.2. To implement SVM-PST, the PST source 

codes provided by Bejerano (2004) were recompiled with the modifications defined 

in Section 2.2.3. All programs were run on a Linux system under the supervision of 

bash process. 

 

  

Figure 10. An illustration of how remote homology detection is simulated with SCOP 

database hierarchy. 

The methods were tested to discern their ability to classify proteins into families on 

a subset of the SCOP family database (Murzin et al., 1995). Remote homology is 

simulated by excluding same family members from the training set and leaving 

proteins from same superfamily in the positive set. To make a fair comparison, we 

worked on the same experimental setup as the one used by SVM-Pairwise and 

SVM-BLAST. The experiments are performed on a subset of the SCOP1.53 

database including no protein pair with a pairwise similarity higher than an E-value 

of 10-25. The training and test sets were separated as done in Liao and Noble’s 

works resulting with 54 families to test.  
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Table 5. Number of samples in the SCOP data set. 

 Positive Set Negative Set Positive Set Negative Set 

Family 

ID Train Test Train Test 

Family 

ID Train Test Train Test

1.27.1.1 12 6 2890 1444 2.9.1.4 21 10 2928 1393

1.27.1.2 10 8 2408 1926 3.1.8.1 19 8 3002 1263

1.36.1.2 29 7 3477 839 3.1.8.3 17 10 2686 1579

1.36.1.5 10 26 1199 3117 3.2.1.2 37 16 3002 1297

1.4.1.1 26 23 2256 1994 3.2.1.3 44 9 3569 730

1.4.1.2 41 8 3557 693 3.2.1.4 46 7 3732 567

1.4.1.3 40 9 3470 780 3.2.1.5 46 7 3732 567

1.41.1.2 36 6 3692 615 3.2.1.6 48 5 3894 405

1.41.1.5 17 25 1744 2563 3.2.1.7 48 5 3894 405

1.45.1.2 33 6 3650 663 3.3.1.2 22 7 3280 1043

2.1.1.1 90 31 3102 1068 3.3.1.5 13 16 1938 2385

2.1.1.2 99 22 3412 758 3.32.1.1 42 9 3542 759

2.1.1.3 113 8 3895 275 3.32.1.11 46 5 3880 421

2.1.1.4 88 33 3033 1137 3.32.1.13 43 8 3627 674

2.1.1.5 94 27 3240 930 3.32.1.8 40 11 3374 927

2.28.1.1 18 44 1246 3044 3.42.1.1 29 10 3208 1105

2.28.1.3 56 6 3875 415 3.42.1.5 26 13 2876 1437

2.38.4.1 30 5 3682 613 3.42.1.8 34 5 3761 552

2.38.4.3 24 11 2946 1349 7.3.10.1 11 95 423 3653

2.38.4.5 26 9 3191 1104 7.3.5.2 12 9 2330 1746

2.44.1.2 11 140 307 3894 7.3.6.1 33 9 3203 873

2.5.1.1 13 11 2345 1983 7.3.6.2 16 26 1553 2523

2.5.1.3 14 10 2525 1803 7.3.6.4 37 5 3591 485

2.52.1.2 12 5 3060 1275 7.39.1.2 20 7 3204 1121

2.56.1.2 11 8 2509 1824 7.39.1.3 13 14 2083 2242

2.9.1.2 17 14 2370 1951 7.41.5.1 10 9 2241 2016

2.9.1.3 26 5 3625 696 7.41.5.2 10 9 2241 2016
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For each family, the proteins within the family are taken as positive test examples, 

and the proteins outside the family but within the same superfamily are considered 

positive training examples. Negative examples are selected from outside of the 

superfamily. Figure 10 gives the hierarchy SCOP database and an illustration of 

how the data set was constructed. For each family, at least 10 positive training 

examples are selected. The negative examples are randomly separated into training 

and test sets in the same ratio as the positive examples. The numbers of training 

and test samples are given in Table 5. Corresponding family names are given in 

Table 6.  

3.3 Results and Discussion 

Upon completion of SCOP family classification tests, ROC scores were calculated 

for each family in the dataset with all methods mentioned in this chapter. In Table 

7, the ROC scores achieved by the SVM methods based on pairwise similarity 

scores are given. According to the table, the average ROC score achieved by SVM-

PST is higher than SVM-BLAST and SVM-MUM, and it is very close to SVM-

Pairwise. When the standard deviation in the ROC scores and the worst case scores 

are evaluated, SVM-PST is the best among four methods compared. This indicates 

the superiority of this method to the others in terms of the robustness to the errors 

due to varying family characteristics. SVM-MUM performs better than SVM-

BLAST for most of the families, although MUM-based comparison has a simpler 

but more conservative definition in comparison with BLAST. 

 

For further investigation of the results, the methods were compared by their relative 

performances using the plots of the number of families for which a given method 

exceeds a threshold ROC score. The plots are depicted in Figure 11.  

 

In each plot, a higher curve corresponds to more accurate homology detection 

performance. According to the curves, SVM-PST performs nearly as well as SVM-

Pairwise and better than the others. 
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Table 6. Family names used in the experiments 

ID Family name
1.27.1.1  Long-chain cytokines
1.27.1.2  Short-chain cytokines
1.36.1.2  Phage repressors
1.36.1.5  Bacterial repressors 
1.4.1.1  Homeodomain 
1.4.1.2  Recombinase DNA-binding domain
1.4.1.3  Myb 
1.41.1.2  S100 proteins
1.41.1.5  Calmodulin-like
1.45.1.2  Bacterial repressors 
2.1.1.1  V set domains (antibody variable domain-like)
2.1.1.2  C1 set domains (antibody constant domain-like)
2.1.1.3  C2 set domains
2.1.1.4  I set domains
2.1.1.5  E set domains
2.28.1.1  Legume lectins
2.28.1.3  Galectin (animal S-lectin)
2.38.4.1  Anticodon-binding domain
2.38.4.3  Single strand DNA-binding domain, SSB
2.38.4.5  Cold shock DNA-binding domain-like
2.44.1.2  Eukaryotic proteases 
2.5.1.1  Plastocyanin/azurin-like
2.5.1.3  Multidomain cupredoxins
2.52.1.2  Phosphotyrosine-binding domain (PTB)
2.56.1.2  Fatty acid binding protein-like
2.9.1.2  Plant virus proteins
2.9.1.3  Insect virus proteins
3.1.8.1  alpha-Amylases, N-terminal domain
3.1.8.3  beta-glycanases
3.2.1.2  Tyrosine-dependent oxidoreductases
3.2.1.3  Glyceraldehyde-3-phosphate dehydrogenase-like, N-terminal domain 
3.2.1.4  Formate/glycerate dehydrogenases, NAD-domain
3.2.1.5  Lactate & malate dehydrogenases, N-terminal domain
3.2.1.6  6-phosphogluconate dehydrogenase-like, N-terminal domain
3.2.1.7  Amino-acid dehydrogenase-like, C-terminal domain
3.3.1.2  FAD-linked reductases, N-terminal domain
3.3.1.5  FAD/NAD-linked reductases, N-terminal and central domains
3.32.1.1  Nucleotide and nucleoside kinases
3.32.1.11  RecA protein-like (ATPase-domain)
3.32.1.13  Extended AAA-ATPase domain
3.32.1.8  G proteins
3.42.1.1  Thioltransferase
3.42.1.5  Glutathione S-transferases, N-terminal domain
3.42.1.8  Glutathione peroxidase-like
7.3.10.1  EGF-type module
7.3.5.2  Spider toxins
7.3.6.1  Long-chain scorpion toxins
7.3.6.2  Short-chain scorpion toxins
7.3.6.4  Plant defensins 
7.39.1.2  Nuclear receptor
7.39.1.3  LIM domain
7.41.5.1  Rubredoxin
7.41.5.2  Desulforedoxin  
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Table 7. Comparison of pairwise-similarity-based feature representations for dicriminative 

remote homology detection 

Family SVM-Pairwise SVM-BLAST SVM-MUM SVM-PST 
1.27.1.1 0.971 0.890 0.950 0.948 
1.27.1.2 0.918 0.779 0.889 0.974 
1.36.1.2 0.935 0.870 0.955 0.772 
1.36.1.5 0.976 0.708 0.913 0.957 
1.4.1.1 0.968 0.878 0.980 0.970 
1.4.1.2 0.814 0.810 0.834 0.898 
1.4.1.3 0.944 0.999 0.970 0.842 

1.41.1.2 0.999 1.000 0.954 0.954 
1.41.1.5 0.998 0.996 0.927 0.963 
1.45.1.2 0.971 0.729 0.921 0.732 
2.1.1.1 0.978 0.949 0.883 0.923 
2.1.1.2 0.994 0.972 0.970 0.941 
2.1.1.3 0.985 0.907 0.966 0.991 
2.1.1.4 0.974 0.947 0.886 0.901 
2.1.1.5 0.832 0.790 0.799 0.797 

2.28.1.1 0.815 0.389 0.559 0.612 
2.28.1.3 0.829 0.412 0.543 0.493 
2.38.4.1 0.697 0.702 0.780 0.716 
2.38.4.3 0.707 0.764 0.681 0.831 
2.38.4.5 0.877 0.668 0.786 0.878 
2.44.1.2 0.146 0.925 0.403 0.935 
2.5.1.1 0.925 0.899 0.840 0.744 
2.5.1.3 0.896 0.826 0.782 0.791 

2.52.1.2 0.643 0.641 0.793 0.829 
2.56.1.2 0.844 0.878 0.839 0.838 
2.9.1.2 0.874 0.543 0.887 0.876 
2.9.1.3 0.970 0.909 0.989 0.996 
2.9.1.4 0.918 0.645 0.926 0.987 
3.1.8.1 0.963 0.406 0.990 0.990 
3.1.8.3 0.931 0.345 0.986 0.976 
3.2.1.2 0.838 0.842 0.806 0.892 
3.2.1.3 0.898 0.746 0.807 0.828 
3.2.1.4 0.964 0.969 0.850 0.935 
3.2.1.5 0.932 0.854 0.879 0.911 
3.2.1.6 0.912 0.776 0.822 0.874 
3.2.1.7 0.909 0.812 0.922 0.962 
3.3.1.2 0.937 0.847 0.836 0.897 
3.3.1.5 0.917 0.709 0.828 0.857 

3.32.1.1 0.946 0.866 0.826 0.863 
3.32.1.11 0.880 0.888 0.947 0.937 
3.32.1.13 0.836 0.646 0.901 0.880 
3.32.1.8 0.901 0.776 0.781 0.858 
3.42.1.1 0.886 0.923 0.795 0.794 
3.42.1.5 0.811 0.580 0.665 0.677 
3.42.1.8 0.760 0.930 0.710 0.780 
7.3.10.1 0.986 0.997 0.978 0.991 
7.3.5.2 0.996 0.992 0.919 0.977 
7.3.6.1 0.998 0.999 0.945 0.972 
7.3.6.2 0.994 0.997 0.969 0.973 
7.3.6.4 0.992 1.000 0.993 0.993 

7.39.1.2 0.928 0.877 0.898 0.854 
7.39.1.3 0.990 0.985 0.922 0.820 
7.41.5.1 0.791 0.916 0.505 0.756 
7.41.5.2 0.943 0.999 0.605 0.976 
average 0.893 0.817 0.846 0.876 
std. dev. 0.133 0.171 0.133 0.105 

min 0.146 0.345 0.403 0.493 
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Figure 11. Relative performances of SVM methods based on the pairwise similarity scores 

that are depicted by the plots of the number of families for which a given method exceeds a 

threshold ROC score.  

The results were also compared in family-by-family using pairwise comparison 

plots. As it is seen from the plots, the family classification performance of SVM-

MUM is comparable to that of SVM-Pairwise for some of the SCOP families 

(Figure 12), while it is apparently better than SVM-Fisher (Figure 13). The plots of 

SVM-MUM vs. SVM-BLAST (Figure 14) justifies our above argument that 

MUM-based comparison provides a more accurate solution to eliminating twilight 

zone of sequence comparisons in comparison with BLAST. 
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Figure 12. SVM-MUM vs. SVM-Pairwise 
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Figure 13. SVM-MUM vs. SVM-Fisher 

 



 45

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

SVM-BLAST ROC scores

SV
M

-M
U

M
 R

O
C

 s
co

re
s

 

Figure 14. SVM-MUM vs. SVM-BLAST 

Figure 15, Figure 16 and Figure 17 illustrate the family-by-family comparison of 

SVM-PST with SVM-Pairwise, SVM-Fisher and SVM-BLAST. As shown, SVM-

PST performs better than SVM-Fisher for all families and better than SVM-

BLAST for most of the families. An interesting point is observed in the comparison 

of SVM-PST and SVM-Pairwise for the family of eukaryotic proteases. The new 

method provides a remarkable improvement for this family.  
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Figure 15. SVM-PST vs. SVM-Pairwise 
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Figure 16. SVM-PST vs. SVM-Fisher 
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Figure 17. SVM-PST vs. SVM-BLAST 

To compare the classification performance of SVM-PST with the original family-

based PST approach, we constructed PSTs from multiple sequences in the training 

set of each family and produced prediction probabilities for each protein in the test 
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set. The proteins were sorted by their resulting probabilities and the ROC scores 

were calculated for each family. The average ROC score obtained with this method 

was 0.508, which is far less than the score achieved by SVM-PST (p=2.41E-12). 

This emphasizes the superior performance of pairwise PSTs when combined with 

SVMs in comparison with the family-based PST approach. 

 

The SVM performances for varying compositional encoding parameters are given 

in Table 8. As shown in the table, the system’s performance increases until the 

inclusion of n-peptide composition with n=6 and degrades after n becomes larger 

than 8. With a threshold of 5000 in vector dimensions, the number of letters in the 

simplified alphabet for n>7 must be reduced to 2. Since an alphabet size of 2 does 

not carry any information about the protein evolution, this is possibly the reason for 

decrease in the accuracy after n>7. A comparison between the cases for different 

dimension thresholds applied is also presented in the table. According to the 

results, when the threshold is increased to 10000 no improvement is observed. On 

the other hand, the accuracy reduces when the threshold is lowered into 1000. 

Therefore, the threshold value of 5000 seems to be a good selection for satisfying 

both the accuracy and efficiency requirement of the system. The table also 

demonstrates the surprising success of amino acid composition (n=1) alone in 

homology detection task.  The accuracy achieved with the use of amino acid 

composition is better than many of the more complicated methods included in our 

comparative study. 

 

SVM-n-peptide performs better than SVM-Pairwise for almost half of the SCOP 

families used in the experiments. When the results are investigated in superfamily 

level, it is observed that SVM-n-peptide is more successful for all families in 

homeodomain-like proteins (1.4.1.x), nucleic acid-binding proteins (2.38.4.x), viral 

coat and capsid proteins (2.9.1.x), glycosyltransferases (3.1.8.x) and P-loop 

containing nucleotide triphosphate hydrolases (3.32.1.x). This result would be 

useful when selecting the appropriate method in any application that requires an 

automated or semi-automated search in SCOP database. 
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Table 8.   Comparison of composition-based feature representations for dicriminative remote 

homology detection 

  family n=1 n=2 n=3 
n=1-3 
t=5000 

n=1-4 
t=5000 

n=1-6 
t=1000 

n=1-6 
t=5000 

n=1-6 
t=10000 

n=1-7 
t=5000 

n=1-10 
t=5000 

1.27.1.1 0,829 0,914 0,731 0,931 0,952 0,891 0,948 0,938 0,947 0,930
1.27.1.2 0,931 0,973 0,852 0,969 0,967 0,937 0,962 0,958 0,957 0,928
1.36.1.2 0,755 0,837 0,543 0,868 0,842 0,910 0,916 0,841 0,908 0,874
1.36.1.5 0,660 0,934 0,467 0,873 0,873 0,917 0,961 0,920 0,961 0,951
1.4.1.1 0,990 0,970 0,818 0,993 0,987 0,924 0,977 0,986 0,984 0,976
1.4.1.2 0,916 0,907 0,913 0,949 0,958 0,919 0,976 0,977 0,982 0,962
1.4.1.3 0,969 0,838 0,869 0,974 0,967 0,984 0,973 0,987 0,974 0,942

1.41.1.2 0,781 0,989 0,959 0,976 0,991 0,998 0,994 0,996 0,994 0,992
1.41.1.5 0,924 0,965 0,963 0,988 0,993 0,985 0,990 0,991 0,993 0,989
1.45.1.2 0,869 0,897 0,445 0,951 0,936 0,708 0,810 0,949 0,926 0,876
2.1.1.1 0,700 0,833 0,888 0,864 0,905 0,900 0,892 0,909 0,903 0,888
2.1.1.2 0,904 0,943 0,973 0,968 0,976 0,987 0,985 0,989 0,985 0,978
2.1.1.3 0,903 0,964 0,946 0,984 0,985 0,966 0,976 0,981 0,981 0,971
2.1.1.4 0,760 0,835 0,867 0,869 0,895 0,866 0,894 0,895 0,909 0,895
2.1.1.5 0,685 0,640 0,832 0,711 0,768 0,784 0,807 0,809 0,831 0,808

2.28.1.1 0,496 0,670 0,335 0,685 0,723 0,415 0,637 0,570 0,644 0,662
2.28.1.3 0,832 0,563 0,743 0,756 0,767 0,802 0,865 0,822 0,860 0,855
2.38.4.1 0,810 0,538 0,496 0,581 0,672 0,792 0,766 0,738 0,756 0,866
2.38.4.3 0,823 0,769 0,532 0,820 0,773 0,755 0,779 0,736 0,739 0,750
2.38.4.5 0,844 0,831 0,666 0,842 0,861 0,816 0,916 0,869 0,886 0,821
2.44.1.2 0,296 0,394 0,296 0,231 0,215 0,300 0,259 0,203 0,187 0,167
2.5.1.1 0,869 0,901 0,697 0,921 0,933 0,854 0,896 0,918 0,899 0,824
2.5.1.3 0,745 0,755 0,729 0,797 0,805 0,759 0,783 0,784 0,772 0,767

2.52.1.2 0,564 0,718 0,852 0,822 0,786 0,714 0,783 0,762 0,792 0,738
2.56.1.2 0,849 0,743 0,682 0,888 0,893 0,911 0,855 0,929 0,851 0,800
2.9.1.2 0,919 0,950 0,771 0,953 0,948 0,938 0,951 0,940 0,951 0,956
2.9.1.3 0,993 0,998 0,970 0,999 0,997 0,995 0,996 0,998 0,998 0,996
2.9.1.4 0,983 0,985 0,918 0,992 0,992 0,983 0,984 0,989 0,983 0,975
3.1.8.1 0,969 0,973 0,942 0,990 0,991 0,992 0,987 0,993 0,987 0,973
3.1.8.3 0,967 0,956 0,964 0,978 0,980 0,967 0,973 0,985 0,976 0,956
3.2.1.2 0,718 0,790 0,774 0,832 0,847 0,875 0,887 0,853 0,886 0,868
3.2.1.3 0,755 0,744 0,720 0,773 0,783 0,841 0,859 0,817 0,875 0,872
3.2.1.4 0,712 0,929 0,902 0,941 0,940 0,943 0,939 0,939 0,938 0,940
3.2.1.5 0,885 0,879 0,860 0,896 0,920 0,911 0,914 0,909 0,915 0,909
3.2.1.6 0,779 0,763 0,833 0,866 0,891 0,886 0,903 0,901 0,892 0,888
3.2.1.7 0,852 0,942 0,979 0,966 0,956 0,957 0,955 0,949 0,940 0,913
3.3.1.2 0,774 0,818 0,788 0,895 0,885 0,804 0,916 0,913 0,934 0,929
3.3.1.5 0,704 0,900 0,811 0,897 0,910 0,900 0,943 0,933 0,948 0,931

3.32.1.1 0,888 0,910 0,909 0,932 0,954 0,933 0,952 0,945 0,946 0,940
3.32.1.11 0,846 0,944 0,948 0,975 0,989 0,982 0,973 0,983 0,968 0,947
3.32.1.13 0,659 0,882 0,829 0,886 0,905 0,907 0,938 0,950 0,949 0,949
3.32.1.8 0,764 0,810 0,874 0,877 0,915 0,914 0,912 0,902 0,906 0,899
3.42.1.1 0,706 0,686 0,576 0,755 0,839 0,780 0,840 0,817 0,846 0,830
3.42.1.5 0,599 0,713 0,480 0,673 0,712 0,594 0,624 0,631 0,648 0,636
3.42.1.8 0,758 0,688 0,650 0,690 0,734 0,675 0,674 0,713 0,696 0,682
7.3.10.1 0,987 0,984 0,970 0,991 0,991 0,981 0,985 0,991 0,987 0,973
7.3.5.2 0,926 0,987 0,990 0,978 0,992 0,981 0,987 0,994 0,992 0,992
7.3.6.1 0,953 0,966 0,988 0,990 0,994 0,997 0,978 0,995 0,973 0,971
7.3.6.2 0,808 0,951 0,952 0,962 0,967 0,979 0,965 0,975 0,966 0,967
7.3.6.4 0,996 0,979 0,985 0,996 0,996 0,994 0,995 0,998 0,998 0,993

7.39.1.2 0,979 0,917 0,794 0,938 0,904 0,910 0,863 0,908 0,776 0,778
7.39.1.3 0,820 0,835 0,931 0,829 0,813 0,792 0,870 0,846 0,836 0,833
7.41.5.1 0,832 0,847 0,577 0,841 0,826 0,800 0,841 0,825 0,830 0,822
7.41.5.2 0,744 0,982 0,683 0,981 0,953 0,931 0,860 0,957 0,909 0,914
average   0,814 0,851 0,786 0,879 0,888 0,869 0,890 0,889 0,890 0,879
std.dev   0,139 0,132 0,180 0,134 0,128 0,138 0,125 0,136 0,132 0,133

min   0,296 0,394 0,296 0,231 0,215 0,300 0,259 0,203 0,187 0,167
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Figure 18 compares the performance of new method for n=1-6 and t=5000 with the 

existing methods using the plots of the number of families for which a given 

method exceeds a threshold ROC score. 
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Figure 18. Relative performances of different classification methods that are depicted by the 

plots of the number of families for which a given method exceeds a threshold ROC score. 

Family-by-family comparisons between SVM-n-peptide and SVM-Pairwise, SVM-

Fisher and SVM-BLAST are also provided in Figure 19, Figure 20 and Figure 21. 

Both average ROC scores and the comparison plots demonstrate that the new 

method significantly outperforms all given methods except SVM-Pairwise, while 

being competitive and complementary for many of the SCOP families included in 

the experimental setup. 
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Figure 19. SVM-n-peptide vs. SVM-pairwise 
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Figure 20. SVM-n-peptide vs. SVM-Fisher 
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Figure 21. SVM-n-peptide vs. SVM-BLAST 

In order to see the effect of different amino acid groupings, we also applied the 

schemes provided by Li, Fan, Wang and Wang (2003) and Liu, Liu, Qi and Zheng 

(2002) for reducing alphabets. The results are shown in Table 9. For the homology 

detection tests with n=1-6 and t=5000, former scheme provided an average ROC 

score of 0.893 with 0.132 standard deviation and the latter one provided 0.889 

average ROC score with 0.134 standard deviation. Although we do not observe a 

statistically significant difference between them (p>0.05 for all paired T-tests), the 

ROC score deviations with the alphabets of Murphy et al. is lower than those with 

other alphabets. 

 

When the new methods are compared to each other by pairwise comparison plots, it 

is observed that SVM-n-peptide performs slightly better than SVM-PST (Figure 

19), while both achieve a greater accuracy than SVM-MUM for most of the SCOP 

families (Figure 20, Figure 21). The reasons for the superiority of SVM-n-peptide 

to SVM-MUM are likely the possibility of evaluating certain mismatches in 

searched substrings and inclusion of higher number of motifs in the sequence 

feature representation. 
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Table 9.   Comparison of composition-based feature representations (n=1-6 t=5000) with 

different amino acid grouping schemes 

family Murphy et al. Li at al. Liu et al. 
1.27.1.1 0,948 0,945 0,948 
1.27.1.2 0,962 0,967 0,985 
1.36.1.2 0,916 0,862 0,842 
1.36.1.5 0,961 0,937 0,920 
1.4.1.1 0,977 0,986 0,987 
1.4.1.2 0,976 0,958 0,931 
1.4.1.3 0,973 0,989 0,988 

1.41.1.2 0,994 0,998 0,995 
1.41.1.5 0,990 0,992 0,997 
1.45.1.2 0,810 0,972 0,938 
2.1.1.1 0,892 0,903 0,927 
2.1.1.2 0,985 0,991 0,980 
2.1.1.3 0,976 0,989 0,987 
2.1.1.4 0,894 0,913 0,892 
2.1.1.5 0,807 0,809 0,743 

2.28.1.1 0,637 0,647 0,551 
2.28.1.3 0,865 0,783 0,811 
2.38.4.1 0,766 0,703 0,652 
2.38.4.3 0,779 0,764 0,751 
2.38.4.5 0,916 0,826 0,830 
2.44.1.2 0,259 0,202 0,283 
2.5.1.1 0,896 0,912 0,926 
2.5.1.3 0,783 0,807 0,810 

2.52.1.2 0,783 0,809 0,862 
2.56.1.2 0,855 0,894 0,949 
2.9.1.2 0,951 0,939 0,927 
2.9.1.3 0,996 0,996 0,999 
2.9.1.4 0,984 0,989 0,985 
3.1.8.1 0,987 0,994 0,985 
3.1.8.3 0,973 0,983 0,982 
3.2.1.2 0,887 0,847 0,830 
3.2.1.3 0,859 0,843 0,823 
3.2.1.4 0,939 0,950 0,954 
3.2.1.5 0,914 0,908 0,882 
3.2.1.6 0,903 0,884 0,882 
3.2.1.7 0,955 0,964 0,950 
3.3.1.2 0,916 0,911 0,938 
3.3.1.5 0,943 0,931 0,940 

3.32.1.1 0,952 0,946 0,939 
3.32.1.11 0,973 0,991 0,981 
3.32.1.13 0,938 0,964 0,942 
3.32.1.8 0,912 0,891 0,926 
3.42.1.1 0,840 0,772 0,826 
3.42.1.5 0,624 0,643 0,583 
3.42.1.8 0,674 0,780 0,789 
7.3.10.1 0,985 0,991 0,992 
7.3.5.2 0,987 0,993 0,996 
7.3.6.1 0,978 0,993 0,996 
7.3.6.2 0,965 0,977 0,973 
7.3.6.4 0,995 1,000 1,000 

7.39.1.2 0,863 0,896 0,965 
7.39.1.3 0,870 0,870 0,778 
7.41.5.1 0,841 0,862 0,818 
7.41.5.2 0,860 0,975 0,991 
average 0,890 0,893 0,890 
std.dev 0,125 0,132 0,134 

min 0,259 0,202 0,283 
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Figure 22. SVM-PST vs. SVM-n-peptide 

 

 

 

 

0,0

0,2

0,4

0,6

0,8

1,0

0 0,2 0,4 0,6 0,8 1

SVM-MUM ROC scores

SV
M

-P
ST

 R
O

C
 s

co
re

s

 

Figure 23. SVM-PST vs. SVM-MUM 
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Figure 24. SVM-MUM vs. SVM-n-peptide 

To explore the statistical significance of differences between the results, paired-

samples T-tests were carried out between SVM-based methods with a p-value 

threshold of 0.05. According to Table 10, the difference between SVM-n-peptide 

and SVM-BLAST and that between SVM-PST and SVM-BLAST are statistically 

significant. The difference between SVM-n-peptide and SVM-Fisher and the one 

between SVM-PST and SVM-Fisher are more apparent. On the other hand, no 

significant difference is observed between SVM-n-peptide, SVM-PST and SVM-

Pairwise.  

Table 10. Paired-samples T-test results for comparison of SVM-based remote homology 

detection methods 

p-value SVM-n-pep. SVM-PST SVM-MUM SVM-BLAST SVM-Fisher

SVM-pairwise 3,70E-01 3,83E-01 9,88E-04 5,41E-03 6,62E-13 

SVM-n-peptide  3,94E-01 3,96E-03 5,00E-03 3,90E-12 

SVM-PST   5,08E-02 8,55E-03 2,70E-11 

SVM-MUM    2,64E-01 2,92E-08 

SVM-BLAST         7,70E-10 

SVM-Fisher         - 
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Computational efficiency 

Computational efficiency is another important aspect in the evaluation of methods. 

The crucial step in the SVM system we used is the vectorization of proteins. The 

time complexities are given in Table 11.  

Table 11. Time complexities of discriminative remote homology detection methods in 

vectorization step 

Method Time complexity 

SVM-Fisher O(mp) 
SVM-BLAST O(km) 
SVM-Pairwise O(km2) 
SVM-MUM O(km) 
SVM-PST O(kLm) 
SVM-n-peptide O(m) 

 

The vectorization step has a complexity of O(mp) in SVM-Fisher, where m is the 

length of the longest training set sequence and p is the number of parameters used 

in the profile HMM. SVM-Pairwise and SVM-BLAST calculate all pairwise 

similarity scores between the target sequence and the sequences in the training set. 

Each similarity calculation is O(m2) in SVM-Pairwise and O(m) in SVM-BLAST. 

Thus, total vectorization time is O(km2) for SVM-Pairwise and O(km) for SVM-

BLAST, where k is the number of proteins in the training set. On the other hand, all 

MUMs can be identified in O(m) time, which constitutes a O(km) time complexity 

in the vectorization phase of SVM-MUM. PST comparison is completed in two 

stages; while the PST construction for the first sequence is completed in O(m) time, 

the prediction of the second sequence also takes O(m) time (Apostolico and 

Bejerano, 2000). With our modification that maximizes the probability scores for 

each residue, the complexity of the prediction step increase to O(Lm) for the worst 

case. Then, the complexity of SVM-PST in vectorization phase becomes O(kLm). 

SVM-n-peptide constructs n-peptide compositions for feature vectorization. This 

scheme has a time complexity of O(m) as described in Section 2.1. The complexity 

analysis reveals that SVM-n-peptide is the most efficient system among all 
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compared methods. This result is mainly due to that compositional representation 

of a sequence is independent from the size of the training set. According to the 

analysis, the complexities of SVM-MUM, SVM-PST, SVM-BLAST and SVM-

Fisher are in the same order, while all of them are more efficient than SVM-

Pairwise. 

 

An empirical comparison in terms of computation time may be invalid since much 

of the work in our implementation contains file processing owing to large amount 

of data that can not be handled by memory. However, to make an intuition, we can 

report that all training time is at most one hour for a family with SVM-n-peptide, 

whereas it takes at least 20 days with SVM-Pairwise in a workstation having 1GHz 

CPU and 1GB memory. SVM-MUM completes all training stage in 4 days on 

average, while SVM-PST performs similarly and can complete the training in 5 

days. 
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Figure 25. Computation times for protein vectorization with pairwise alignment scores, 

PST-based similarity scores and MUM-based scores. 
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To make an empirical comparison in terms of testing time, we randomly selected 

some proteins with varying lengths between 20 and 1000 and measured the user 

CPU times (in seconds) spent for the vectorization of these proteins. We did not 

use the training set of a specific family, but rather used all proteins in the data set  

to vectorize a test protein. In other words, the vectorization mentioned for this 

performance test refers to computing the similarity scores between the test protein 

and all other proteins in the data set. The computation times are given in Figure 25 

with the associated protein labels and their lengths (SVM-n-peptide measurements 

are not shown because it requires much less time). As illustrated in the figure, the 

vectorization time increases more drastically with the sequence length when the 

dynamic-programming-based alignment scores are used. PST-based and MUM-

based comparisons become apparently more advantageous when the sequence 

length gets higher than 100. Since the SVM-related computations require much less 

time (only a few seconds for testing one protein) than the vectorization process, we 

can conclude that the SVM-n-peptide, SVM-PST and SVM-MUM methods 

substantially reduce the computation time needed for both training and testing 

phases while mostly preserving the accuracy achieved by SVM-Pairwise. 
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CHAPTER 4  
 

 

Subcellular Localization Prediction 
 

 

 

When the translation process completes, a protein may reside in several locations in 

the cell. The subcellular localization of a protein is one of the key characteristics in 

elucidating its function. The knowledge of protein localization may provide 

valuable information in the target identification process for drug discovery. Owing 

to the fact that the experimental analysis of subcellular localization is a costly and 

time consuming process, developing automated tools for classifying proteins into 

their subcellular localization sites has become increasingly important in recent 

years. 

 

This study aims to show the applicability of new sequence representations in 

subcellular localization prediction problem. In addition to the generic 

representations introduced in earlier chapters, some problem-specific modifications 

are also proposed. Finally, a hybrid system that combines several sequence 

representation schemes is presented. The new system, called as PredLOC, is 

compiled for the prediction of subcellular location in eukaryotic proteins and 

shown to outperform all existing methods in the experiments carried on two 

distinct benchmarking data sets, which are based on four experimentally 

characterized subcellular localization. 
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4.1 Previous Studies 

Various methods have been introduced for predicting subcellular localization of 

proteins. Some of the methods are based on the existence of targeting signals 

appearing in N-terminal sequences (PSORT-Horton and Nakai, 1999, TargetP-

Emanuelsson et al., 2000). By the identification of localization specific targeting 

signals, a statistical analysis is performed to predict subcellular localization. Two 

main problems exist with this approach. First, the reliability of predictions is highly 

correlated with the type of the proteins to be predicted. The methods require a 

priori information about which kind of signals are to be searched for the given type 

of organisms and their specific localization sites. The second problem is the fact 

that the non-existence of certain signals in the target protein makes it difficult to 

classify the protein into given localizations, which reduces the coverage of the 

prediction system. The PSORT method was later improved by adding some other 

analytical modules each of which analyzes a distinct feature known to influence or 

be characteristic of subcellular localization (PSORTB-Gardy et al., 2003; 

PSORTII-Gardy et al., 2005). Other methods are based on the use of machine 

learning classifiers with compositional features of the protein sequences. 

Nakashima and Nishikwa (1994) showed that the amino acid composition of a 

protein is an important feature in the determination of its being intracellular or 

extracellular. Reinhard and Hubbard used the amino acid composition to train 

neural networks for classifying proteins into known subcellular localizations 

(NNPSL-Reinhard and Hubbard, 1998). Later, same feature representation scheme 

was used with SVM (SubLoc-Hua and Sun, 2001) and fuzzy k-NN (Huang and Li, 

2004). Dipeptide composition, biochemical properties and PSI-BLAST homology 

search results were additionally used to train the SVMs in ESLPred (Bhasin and 

Raghava, 2004) and PSLPred (Bhasin, Garg and Raghava, 2005) systems. Similar 

idea was used in the development of LOCSVMPSI (Xie, Wang, Fan and Feng, 

2005), which integrates PSSM (Position Specific Scoring Matrix- Gribskov et al., 

1990) output of homology searches instead of binary search results into SVM. Park 

and Kanehisa (2003) used a voting scheme between different SVM predictions 
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based on amino acid composition, dipeptide composition and gapped pair 

composition for final prediction.  Nair and Rost (2003) used neural networks in the 

LOCnet system with predicted 1D structure information and evolutionary profiles. 

A new kernel based on implicit motif distribution were used with SVMs in P2SL 

(Atalay and Atalay, 2005). SVM-based methods are currently among the best 

methods in terms of prediction accuracy. They differ only on the protein encoding 

schemes they have used.  

4.2 Systems and Methods 

Two novel sequence representation schemes that are introduced in Chapter 2 are 

used in the SVM-based subcellular localization prediction framework. The first 

representation scheme uses n-peptide compositions of proteins with reduced amino 

acid alphabets for larger values of n. The second one is based on the pairwise 

similarity scores between the target protein and the other proteins in the training 

set, in which the pairwise similarity scores are calculated using new probabilistic 

suffix tree model described in Section 2.2.3. We also developed a hybrid system; 

we called as PredLOC, which combines the results of the distinct SVMs based on 

the two encoding schemes presented. 

4.2.1 Multi-class Prediction with SVMs 

As described in Chapter 3, SVM is a binary classifier; that is, it can separate 

between two classes. The SVM output is a discriminant score corresponding to the 

test sample to be classified. In a binary classification task, a positive value of this 

score indicates that the test sample belongs to that class. For an N-class problem, a 

separate support vector machine SVMi is constructed for each class i, where i is 

between 1 and N. In the prediction phase, a discriminant score of di, which is 

obtained from the SVMi, is assigned to the test sample. There are several methods 

for evaluating N discriminant scores and selecting most appropriate class for the 

test samples. The most common solution is selecting the class for which the highest 
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score is attained. Since the problem of predicting subcellular localization is a multi-

class problem, we adopt this solution for the assignment of proteins into most 

appropriate localization site. That is, a separate support vector machine, SVMi, is 

constructed for each localization site i in the data set, and the target protein is 

categorized into the localization site x for which the test protein attains the 

maximum discriminant value, dx, from its SVMx. An overview of the system is 

illustrated in Figure 26. 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Multi-class SVM prediction system for subcellular localization 

4.2.2 Feature Representations 

In the first scheme, we represent proteins by their n-peptide compositions. Owing 

to the lessons learned from the results of remote homology detection experiments, 

the parameters for n-peptide composition construction for this problem are selected 

as n=1-6 and t=5000. The reduced amino acid alphabet set given by Murphy et al. 

(2000) is used since it provided the most reliable classification in remote homology 

detection tests. 

 

The sequence representation based on pairwise similarity scores is employed as the 

second method for feature vectorization. For this scheme, it was already stated that 

dx=max(d1..dn) 
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the alignment scores are most accurate way of construction pairwise similarity 

scores in the SVM-Pairwise framework for family classification task. By two 

reasons, we adopt the new definition for sequence similarity based on the pairwise 

PSTs for subcellular localization prediction problem. First, it is obvious that the 

alignment with dynamic programming is an inefficient way of measuring 

similarity; calculating all pairwise similarity scores would take several days in a 

conventional workstation. Second, the alignment does not allow changing the order 

of segments and may force some residues to match even if they are unrelated in 

localization point of view. Thus, a new method should have been provided which 

addresses the problem of measuring the level of significant matches regardless of 

their relative positions in the sequences. In this respect, the PST-based sequence 

similarity model is considered to be well-suited for this application.  

  

Since the subcellular localization of a protein has been shown to be closely related 

to its N-terminal sequence for most of the localization sites, we also incorporate the 

similarity scores between the fixed-length N-terminal parts of the protein sequences 

to be compared. For convenience, we will use PSTwhole for the encoding formed by 

the comparison of whole sequences and PSTK for the cases only first K letters of 

sequences are used for comparison. 

4.2.3 Implementations and Experimental Setup 

Same implementations with remote homology detection experiments were used for 

building n-peptide compositions. For PST-based comparisons, we ignored the two-

way similarity approach proposed for distantly related sequences in order to reduce 

the memory requirements. A short memory length L of 7 was used in the PST 

construction and other parameters were adjusted so that all substrings shorter than 

L are represented by a node in the tree. SVM-Gist software was employed with the 

same parameters described in Section 3.1. 

 

The data set we used contains 2427 eukaryotic proteins, which were extracted from 

SWISSPROT release 33.0 (Bairoch and Apweiler, 1999), with no pairwise 
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sequence identity of more than 90% between them. The proteins are classified into 

four experimentally determined localization sites: nuclear, cytoplasmic, 

mitochondrial and extracellular. The numbers of proteins in each localization are 

1097, 684, 321 and 325 respectively. This data set was constructed by Reinhardt 

and Hubbard for developing and testing their neural-network-based prediction 

system NNPSL and used later in the development of many methods such as 

SubLoc and ESLPred. We also used a new-unique proteins set, from SWISSPROT 

release 40 and 41, provided by Nair and Rost (2003) for testing only. This data set 

contains 512 samples having 146 cytoplasmic, 128 extracellular, 60 mitochondrial, 

and 178 nuclear proteins. This data set is compromised to be a more difficult set 

since it contains proteins with less identity which thus eliminating possible biases 

in the predictions. 

 

The performance of the methods was evaluated through 5-fold cross validation test. 

In 5-fold cross-validation tests, 4/5 of the data set is chosen for training, and the 

remaining samples are used to evaluate the accuracy of the method.  This 

evaluation is repeated five times by changing the partitions until all of the samples 

are run through a prediction process. The results were evaluated by accuracy 

measures and Matthew’s correlation coefficients (Matthew, 1975) using the 

following equations: 
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where, Nij is the number of proteins in location i and predicted in location j, c is the 

number of classes (i.e. distinct locations), n is the number samples, pi is the number 

of correctly predicted proteins in location i, ni is the number of correctly predicted 
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proteins not in location i, ui is the number of under-predicted proteins and oi is the 

number of over-predicted proteins. That is; 
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It is also important to know the prediction reliability when machine learning 

methods are used for subcellular localization. One of the common methods to 

evaluate the reliability is to use a reliability index (RI) which is calculated using the 

difference between the largest and second largest output of the system. Since an 

SVM system produce a single output, we can consider the difference between the 

discriminant scores produced by distinct SVMs devised for each localization site. 

Then, RI is calculated by the formula;  

 

 

RI= 

INTEGER(diff*5/2)   , if diff<5 

 

5 , if diff>=5 

 

(4.8) 

 

where diff = dmax-dsecondmax. 

 

The RI assignment provides useful information about the level of certainty in the 

prediction for a certain sequence. In other words, one can evaluate the prediction 

output of submitted sequence at which degree he can be confident about the result. 

After the experiments were completed, the prediction reliability of the proposed 

SVM system with new representation schemes were evaluated with plots of 

accuracy vs. RI and accuracy vs. percentage of predicted sequences with given RI. 
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4.3 Results and Discussion 

In Table 12, the accuracies achieved by the SVM predictions based on n-peptide 

compositions are compared with the results of previous encoding schemes using 

amino acid composition, dipeptide composition, biochemical properties and their 

combination. As the table depicts, the new encoding scheme provided better 

accuracy than other representations for all localization sites. 

Table 12. Comparison of SVM prediction accuracies for different encoding schemes for 2427 

proteins set through 5-fold cross-validation tests. 

 

Location 

Amino acid 

composition 

(a) 

Dipeptide 

composition 

(b) 

Biochemical 

properties  

(c) 

Combination 

of a, b and c 

n-peptide 

compositions

Nuclear 86.1 92.7 85.6 93.2 94.3 

Cytoplasmic 76.9 80.2 74.6 80.6 84.5 

Mitochondrial 55.5 58.8 59.2 65.1 66.4 

Extracellular 76.0 79.0 76.6 83.4 88.9 

Overall 78.1 82.9 78.8 84.6 87.1 

Results of (a),(b), and (c) were obtained from Bhasin and Raghava (2004). They used 33 different 
biochemical properties to obtain the representation in (c).  
 

The prediction results with the pairwise similarity representations by PST20, PST30, 

PST40, PST50, PSTwhole and some of their combinations are given in Table 13. When 

used with separate SVMs, PSTwhole provided a higher overall accuracy compared 

with all PSTK encoding schemes, while the accuracies for individual locations 

might vary. The most notable result from the table is that nuclear proteins could be 

predicted more successfully by the PSTwhole encoding in comparison with PST20, 

PST30, PST40 and PST50. This result is consistent with the argument that nuclear 

proteins are destined by the specific motifs that may occur anywhere in the 

sequence (Weis, 1998; Cokol, Nair and Rost, 2000). It was also observed that the 

prediction accuracy increased when N-terminal and whole sequence similarity 

scores were combined into a single feature vector. Although PST50 and PST40 

performed slightly better than PST30 in the individual tests, PST30 and PST40 
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provided the same level of improvement when combined with PSTwhole. The 

combination vector of PST50 and PSTwhole achieved less accuracy. These 

observations are most likely due to the fact that PSTK and PSTwhole carry almost the 

same information when K is increased, for especially short sequences. 

Table 13. Comparison of PST-comparison-based SVM prediction accuracies for different N-

terminal sequence lengths used for similarity calculation. 

 

Location 

 

PST20 

 

PST30

 

PST40

 

PST50

 

PSTwhole

PST20 

+ 

PSTwhole

PST30 

+ 

PSTwhole 

PST40 

+ 

PSTwhole 

PST50 

+ 

PSTwhole

Nuclear 76.7 80.9 81.9 82.7 92.0 89.6 90.5 90.6 90.6 

Cytoplasmic 68.0 69.1 72.8 70.9 74.6 82.0 83.6 82.5 66.8 

Mitochondrial 78.2 81.6 85.4 86.3 83.8 85.4 87.9 88.6 88.8 

Extracellular 86.2 86.8 86.8 87.1 73.2 88.0 87.7 89.1 87.7 

Overall 75.7 78.5 80.4 80.4 83.6 86.7 87.8 87.8 83.3 
 

 

When we compare the new methods to each other, we observe that n-peptide 

composition and PST encoding (with PST30+PSTwhole) provided same overall 

accuracy whereas they showed disparate performance for individual locations. n-

peptide composition achieved a higher accuracy for nuclear proteins possibly due 

to the same reason that is explained above for the difference between PSTK and 

PSTwhole. On the other hand, the PST encoding is absolutely superior to 

compositional representations in predicting mitochondrial proteins. For 

cytoplasmic and extracellular proteins they perform nearly although the method 

based on n-peptide composition is slightly better. 

 

For final prediction system, called PredLOC, we devised a decision rule that is 

based on the results of two independent SVM sets; SVM1 and SVM2, where SVM1 

uses n-peptide compositions and SVM2 uses the combination vector of  PST30 and 

PSTwhole. The final decision is made over the average of discriminant scores 

obtained from SVM1 and SVM2. This system achieved a 91.3% overall accuracy for 

2427 proteins-set through 5-fold cross-validation tests. According to the PredLOC 
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test results, pi, ni, oi and ui values and accuracies for individual localizations are 

given in Table 14. 

Table 14. PredLOC performance on 2427 proteins set 

Location pi ni oi ui Accuracy (%) 

Nuclear 1041 1240 90 56 94.9 

Cytoplasmic 595 1654 89 89 87.0 

Mitochondrial 277 2085 21 44 86.3 

Extracellular 301 2089 13 24 94.9 
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Figure 27. Expected localization prediction accuracy with a reliability index (RI) that is 

greater than a given value 

To evaluate the reliability of the methods, two plots are presented. In Figure 27, 

overall accuracy measurements are plotted with respect to given RI values. Figure 

28 gives the prediction accuracy of the methods versus the percentage of sequences 
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that are predicted with a threshold reliability index. The prediction with n-peptide 

composition is more sensitive for higher RI, whereas its coverage falls for lower RI 

values. With PredLOC system, nearly 75% of the proteins have RI>=3, and 

expected accuracy for these proteins is 96.7%. As another result, approximately 

40% of the sequences have RI>=5 and they can be predicted with 99% accuracy. 
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Figure 28. Expected localization prediction accuracy vs. the percentage of predicted 

sequences with a given RI. 

Comparison with other methods 

SubLoc reported an accuracy of 79.4% on the same dataset with a jackknife test. In 

the 5-fold cross-validation test results (Table 12), overall SVM prediction accuracy 

with amino acid composition, which is the method used by SubLoc, was 78.5%. In 
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either case, PredLOC achieved nearly 12% greater accuracy than SubLoc. We 

presented a detailed comparison with ESLPred, which was tested on the same data 

set with 5-fold cross-validation procedure (Table 15). As seen from the table, 

PredLOC performed better than ESLPred for all localization sites except nucleus, 

with a 3.3% improvement in overall accuracy. A significant improvement was 

observed in prediction of mitochondrial proteins. The MCCs obtained from 

PredLOC were higher than those of ESLPred for all locations. 

Table 15. Comparison of PredLOC with ESLPred on 2427 eukaryotic proteins through 5-

fold cross-validation tests. 

ESLPred PredLOC 
 

 

Location Accuracy MCC Accuracy MCC 

Nuclear 95.3 0.87 94.9 0.88 

Cytoplasmic 85.2 0.79 87.0 0.83 

Mitochondrial 68.2 0.69 86.3 0.88 

Extracellular 88.9 0.91 94.9 0.94 

Overall 88.0 - 91.3 - 

 

We also evaluated the performance of the new system on the new-unique 

SWISSPROT set by using all 2427 proteins as the training set. The prediction 

results were compared with many of the existing methods (Table 16). As shown, 

PredLOC performed better than all other methods in terms of overall accuracy. For 

individual locations, PredLOC performed best except extracellular location, for 

which LOCnet achieved a higher accuracy than PredLOC.  

 

For the new-unique test set, three encoding schemes achieved different accuracies. 

With n-peptide compositions, the system achieved 69.2, 64.1, 70.0 and 79.8% 

accuracies for cytoplasmic, extracellular, mitochondrial and nuclear proteins 

respectively, and an overall accuracy of 71.7%. PSTwhole encoding provided 57.5, 

32.8, 81.7 and 82.6% for individual locations and 62.9% overall accuracy, where 

PST30 achieved a greater overall accuracy with 67.9% and provided 58.2, 73.4, 81.7 
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and 67.4% individual accuracies. Similar to the results in previous data set, 

PSTwhole encoding is more successful in nuclear proteins, while it does not perform 

well in the detection of extracellular proteins due to the lack of homolog proteins in 

the training set.  

Table 16. Comparison of prediction results on new-unique SWISSPROT test set. 

Accuracy  

Method Overall Nuclear Cytoplasmic Mitochondrial Extracellular

NNPSL* 51.5 58 40 68 62 

SubLoc* 57.4 71 57 63 52 

PSORT 53.2 74 51 62 72 

TargetP - - - 78 77 

LOCnet 64.2 73 56 53 86 

LOCSVMPSI* 73.2 79 69 85 64 

PredLOC* 78.1 80 74 87 76 

* NNPSL, SubLoc, LOCSVMPSI and PredLOC were trained using the same data set consisted of 
2427 eukaryotic proteins. Results were obtained from Nair and Rost (2003) and Xie et al. (2005) for 
comparison with those of PredLOC. 
 
 

Linux-compatible source codes and training files for PredLOC system are made 

available in www.ii.metu.edu.tr/~hogul/predLOC.htm, for non-commercial use of 

PredLOC system. 
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CHAPTER 5 
 

 

Solvent Accessibility Prediction 
 

 

 

Proteins are not alone when performing their biological activities. An important 

interaction occurs with the water molecules. Waters can touch residues at the 

surface of proteins. Each atom can potentially be touched by water, and the area of 

an atom on the surface that can be touched by water is called accessible surface 

area, or solvent-exposed area. The degree to which residues in the structure interact 

with solvent molecules, called solvent accessibility. Key functional properties of 

proteins and so-called active sites are strongly correlated with the solvent 

accessibility.  

 

Solvent accessibility can be defined in two different ways. One is solvent 

accessibility percentage and it is defined as the ratio between the solvent accessible 

surface area of a residue and that in an extended tripeptide conformation. The 

second way is using relative categories in terms of a predefined threshold value of 

solvent accessibility. This categorization may be binary; buried or exposed, or 

ternary; buried, partially exposed, or exposed.  

 

In this part of the thesis, the maximal unique match model that is introduced in 

Section 2.2.2 is evaluated such that it whether implies a conservation in residue 

interactions in protein sequence. Although solvent accessibility prediction is not a 



 72

whole-sequence classification problem, rather it aims to classify a single residue 

inside the sequence, this problem is selected to discern the ability of maximal 

unique matches to detect the strict conservations over the sequence segments. 

Furthermore, residue feature representations are investigated and a slightly 

improved solution is presented. 

5.1 Previous Studies 

A few methods have been proposed for the prediction of solvent accessibility from 

the primary sequence of proteins (Chen, Zhou, Hu and Yoo, 2004). One group of 

methods is based on the single sequence prediction the solvent accessibility from 

local amino acid properties. Single sequence methods identify local statistics from 

amino acid sequences and predict the solvent accessibility using different 

classification schemes, such as Neural Networks (Rost and Sander, 1994; Ahmad 

and Gromiha, 2002; Ahmad, Gromiha, Sarai, 2003; Ahmad, Gromiha, Fawareh and 

Sarai, 2004), Bayesian statistics (Thomston and Goldstein, 1996) or Support Vector 

Machines (Yuan et al, 2002). The single sequence prediction accuracy is about 

71% and this can be increased using multiple sequence information in the data set. 

Multiple sequence predictions use evolutionary information inferred from the 

profiles constructed by multiple sequence alignments (see Section 2.2.1). Multiple 

sequence methods increase the prediction accuracy up to about 79%. However, 

using multiple alignments is computationally inefficient and it is not always 

guaranteed that informative profiles are constructed in the given dataset. 

5.2 Systems and Methods 

A two-stage method is developed for the single sequence prediction of two-class 

(exposed or buried) solvent accessibility and ~73% accuracy is achieved with a 

20% threshold in a nonredundant data set of 420 proteins. The first stage uses 
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support vector machines to predict the two-class solvent accessibility using the 

residue features such as hydropathy scale and residue mass, as well as the 

neighborhood information from the left and right side of an amino acid. The second 

stage searches the maximal unique matches between the target protein and the data 

set. The SVM-based predictions are refined using the conservations over the 

maximal unique matches.  

 

Baseline, SVM-based and MUM-based methods are evaluated for the prediction of 

solvent accessibility. Methods are applied individually and as an ensemble to test 

their performance over the protein data set. 

5.2.1 Baseline Predictions  

The baseline predictions can be obtained using the solvent accessibility statistics of 

each amino acid in the selected data set. Solvent accessibility values are taken from 

DSSP database (Kabsch and Sander, 1983) and the statistics are extracted from the 

training set. DSSP gives a solvent accessibility value between 0 and 9 for each 

residue of the proteins such that the value of 0 refers to a completely buried (0%) 

residue, 1 refers to a solvent accessibility of (0-11.1]%, 2 refers to (11.1-22.2]% 

and so on. The tendency of an amino acid to be buried is determined simply by 

comparing the counts of buried and exposed occurrences of that amino acid in the 

training set. If the number of buried occurrences is higher than exposed ones, this 

amino acid is predicted as buried for all test cases. Otherwise, it is marked as 

exposed. According to the statistics, V, I, L, F, M, W, C are buried and G, A, P, S, 

T, N, Q, Y, H, D, E, K, R are exposed amino acids with an accessibility threshold 

of 22.2%. For 0% threshold, all are marked as buried, whereas only G is exposed 

for 55.5% threshold. 

5.2.2 SVM-based Prediction 

To train the SVM classifier which makes a separation between buried and exposed 

classes (exposed used for positive and buried for negative classes), we used the 
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feature vectors which represent the physicochemical properties of the amino acid, 

the amino acid itself and the properties of left and right neighbors of center amino 

acid to be predicted. In the previous work of Yuan et al (2002), only amino acid 

representations within a window are used for feature vectorization. The properties 

used in our vectorization step are listed in Table 17, where the hydropathy scales 

(free energy change for transfer from oil to water for each amino acids) are taken 

from the book of Horton, Moran, Ochs, Rawn and Scrimgeour (2002) and relative 

residue mass values are given by Li and Pan (2001). For each 3-length amino acid 

strings, a feature vector with a length of 66 is used. 20 of vector elements represent 

one of the 20 different amino acids and 2 elements are physicochemical properties 

explained before.  

Table 17. Chemical and physical properties of amino acids used for feature vactorization 

 
Amino acid Hydropathy 

Scale 
Relative 

residue mass 
(W as 1.0) 

G 0.67 0.00076 
A 1.0 0.115 
V 2.3 0.33 
I 3.1 0.13 
L 2.2 0.13 
F 2.5 0.7 
P -0.29 0.323 
M 1.1 0.577 
W 0.0 1.0 
S -1.1 0.238 
T -0.75 0.346 
N -2.7 0.446 
Q -2.9 0.55 
Y 0.08 0.82 
H -1.7 0.63 
D -3.0 0.446 
E -2.6 0.55 
K -4.6 0.48 
R -7.5 0.777 
C 0.17 0.36 
X 0.0 0.5 
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5.2.3 MUM-based Refinement 

In spite of the fact that the data set we used is composed of non-homolog or remote 

homolog proteins, they still share some conservative sub-patterns between them. If 

these kinds of sequence conservations refer also to the conservations in solvent 

accessible surfaces, we can use the statistics obtained from them to refine the 

incorrectly identified residues.  

 

Since we have already trained 3-letter strings in SVM applications, here, we extract 

only the matches longer than 5 amino acids and calculate the solvent accessibility 

statistics obtained from the middle-point of each maximal unique match. Among 

all maximal unique matches extracted from the dataset, the percentage of correctly 

identified residues are 79.4%. For any homolog data set, this percentage promises 

good prediction accuracies for solvent accessibility. However, in our data set, 

containing less or no homology, the number of maximal unique matches is 

relatively low. Therefore, the information obtained from maximal unique matches 

can only be used for the refinement of the predictions made by other methods. 

  

In MUM-based refinement stage, each protein in the test set is searched for 

maximal unique matches with all other proteins in a pairwise fashion. The solvent 

accessibility of a residue appearing in the middle of a maximal unique match is 

determined by a simple averaging scheme.  

5.3 Experiments 

The baseline predictions, SVM-based predictions, and MUM-based refinements are 

applied into data set for a solvent accessibility threshold of 22.2%. The data set 

contains 420 proteins which have no pair with a sequence similarity above 25%.  In 

SVM-based prediction stage, 15 proteins which are randomly selected from the 

dataset are used for training the SVM. Total number of training examples is 3067, 

where 1564 of them are exposed and 1503 of them are buried with 22.2% 
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threshold. The remaining proteins are used for the tests. The proteins in the training 

and test sets are given in the Table 18 with their Protein Data Bank  identification 

numbers. 
  
All resulting predictions are compared with the actual values of solvent 

accessibilities obtained from DSSP database. The accuracy is defined as the 

percentage of number of correctly identified residues among all residues.  

Table 18. Data set used in solvent accessibility prediction tests. 

Training Set  1acx, 1amp, 1aya, 1ctf, 1hmp, 1hmy, 1hnf, 1hor, 5lyz, 6cpa, 6dfr, 6tmn, 7rsa, 
9api, 9wga 

Test Set   154l, 1aaz, 1add, 1ade, 1ahb, 1alk, 1amg, 1aor, 1aoz, 1asw, 1atp, 1avh, 1azu, 
1bam, 1bbp, 1bcx, 1bdo, 1bds, 1bet, 1bfg, 1bmv, 1bnc, 1bov, 1bph, 1brs, 
1bsd, 1cbg, 1cbh, 1cc5, 1cdl, 1cdt, 1cei, 1cel, 1cem, 1ceo, 1cew, 1cfb, 1cfr, 
1cgu, 1chb, 1chd, 1chk, 1chm, 1cks, 1clc, 1cns, 1coi, 1col, 1com, 1cpc, 1cpn, 
1cqa, 1crn, 1cse, 1csm, 1cth, 1ctn, 1ctm, 1ctn, 1ctu, 1cxs, 1cyx, 1daa, 1dar, 
1del, 1dfj, 1dfn, 1dih, 1dik, 1din, 1dkz, 1dlc, 1dnp, 1dpg, 1dsb, 1dts, 1dup, 
1dyn, 1eca, 1ece, 1ecl, 1ecp, 1edd, 1edm, 1edn, 1eft, 1efu, 1epb, 1ese, 1esl, 
1etu, 1euu, 1fba, 1fbl, 1fc2, 1fdl, 1fdt, 1fdx, 1fin, 1fjm, 1fkf, 1fnd, 1fua, 
1fuq, 1fxi, 1gal, 1gcb, 1gcm, 1gd1, 1gdj, 1gep, 1gfl, 1ghs, 1gky, 1gln, 1gmp, 
1gnd, 1gog, 1gp1, 1gp2, 1gpc, 1gpm, 1grj, 1gtm, 1gtq, 1gym, 1han, 1hip, 
1hcg, 1hcr, 1hiw, 1hjr, 1hpl, 1hsl, 1htr, 1hup, 1hvq, 1hxn, 1hyp, 1il8, 1ilk, 
1inp, 1irk, 1isa, 1isu, 1jud, 1kin, 1knb, 1kpt, 1krc, 1kte, 1ktq, 1kuh, 1l58, 
1lap, 1lat, 1lba, 1lbu, 1leh, 1lib, 1lis, 1lki, 1lpb, 1lpe, 1mai, 1mas, 1mct, 
1mda, 1mdt, 1mjc, 1mla, 1mmo, 1mns, 1mof, 1mrr, 1mrt, 1msp, 1nal, 1nar, 
1nba, 1ncg, 1ndh, 1nfp, 1nga, 1nlk, 1nol, 1nox, 1noz, 1oac, 1onr, 1otg, 1ovb, 
1ovo, 1oxy, 1oyc, 1paz, 1pbp, 1pbw, 1pda, 1pdn, 1pdo, 1pga, 1pht, 1pii, 
1pky, 1pmi, 1pnm, 1pnt, 1poc, 1pow, 1ppi, 1ppt, 1ptr, 1ptx, 1pyp, 1pyt, 
1qbb, 1qrd, 1r09, 1rbp, 1rec, 1reg, 1req, 1rhd, 1rhg, 1rie, 1ris, 1rld, 1rlr, 1rpo, 
1rsy, 1rvv, 1s01, 1scu, 1sei, 1ses, 1sfe, 1sft, 1sh1, 1smn, 1smp, 1spb, 1sra, 
1srj, 1stf, 1stm, 1svb, 1tab, 1taq, 1tcb, 1tcr, 1tfr, 1tht, 1thx, 1tie, 1tif, 1tig, 
1tii, 1tml, 1tnd, 1tnf, 1tpl, 1trb, 1trh, 1trk, 1tsp, 1tss, 1tul, 1tup, 1ubd, 1ubq, 
1udh, 1umu, 1vca, 1vcc, 1vhh, 1vhr, 1vid, 1vjs, 1vmo, 1vnc, 1vok, 1vpt, 
1wap, 1wfb, 1whi, 1wsy, 1xva, 1ypt, 1yrn, 1znb, 1zym, 256b, 2aai, 2aat, 
2abk, 2adm, 2afn, 2ak3, 2alp, 2asr, 2bat, 2blt, 2bop, 2cab, 2ccy, 2cmd, 2cpo, 
2cyp, 2dkb, 2dln, 2dnj, 2ebn, 2end, 2erl, 2fox, 2fxb, 2gbp, 2gcr, 2gls, 2gn5, 
2gsq, 2hft, 2hhm, 2hip, 2hmz, 2hpr, 2i1b, 2ltn, 2mev, 2mhu, 2mlt, 2mta, 
2nad, 2npx, 2olb, 2pab, 2pgd, 2phh, 2phy, 2pol, 2reb, 2rsl, 2rsp, 2scp, 2sil, 
2sns, 2sod, 2spt, 2stv, 2tgi, 2tgp, 2tmd, 2tmv, 2trt, 2tsc, 2utg, 2wrp, 2yhx, 
3ait, 3b5c, 3bcl, 3blm, 3cd4, 3chy, 3cla, 3cln, 3cox, 3eca, 3gap, 3hmg, 3icb, 
3ink, 3mdd, 3pgk, 3pgm, 3pmg, 3rnt, 3tim, 4bp2, 4cpa, 4fis, 4gr1, 4pfk, 
4rhv, 4rxn, 4sdh, 4sgb, 4ts1, 4xia, 5cyt, 5er2, 5ldh, 5sic, 6acn, 6cpp, 6cts, 
6hir, 6rlx, 7cat, 7icd, 821p, 8adh, 9ins, 9pap 

5.4 Results and Discussion 

The experimental results are given in Table 19 with varying threshold values. As 

we can see from the table, SVM-based predictions give an improvement of 2.8% 
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over baseline predictions for a 22.2% threshold, which is the case of evenly 

distribution of buried and exposed classes. When applied on the baseline 

predictions, MUM-based refinement improves the baseline accuracy by 0.5%. The 

MUM-based refinement improves the SVM-based predictions by 0.4%. Overall 

improvement achieved by the combination of SVM-based and MUM-based 

predictions over the baseline accuracy is 3.2%. The methods are also tested for 0% 

and 55.5% thresholds and the results are given in the Table 19. For those threshold 

values, same improvement can not be achieved with SVM. This is probably due to 

the fact that the positive and negative examples are not evenly distributed for those 

threshold values. 

Table 19. Results showing the accuracies achieved with different solvent accessibility 

thresholds 

Threshold

Method 

0% 22.2% 55.5% 

Baseline 75.3% 69.5% 79.6% 

Previous SVM method (Yuan et al, 2002) 70.9% 71.4% 78.7% 

New SVM method with extended features 71.6% 72.3% 79.1% 

MUM-refinement over baseline 75.7% 70.0% 79.8% 

MUM-refinement over new SVM 72.3% 72.7% 79.3% 

 

Since there is no common benchmarking set for the solvent accessibility prediction, 

a direct comparison with the previous methods that used different data sets is not 

valid. According to the recent review of Chen et al. (2004), which reports a 

baseline prediction accuracy of 69.6% in their data set, the accuracies achieved 

with the tested methods are 71.5% for decision tree model and 71.2% for Bayesian 

statistics with a 20% threshold. We could make a fair comparison only with the 

baseline method and the previous SVM method of Yuan et al. (2002) with the same 

threshold over the same experimental setup (Table 19). Comparing with these 

results, new methods achieve slightly better accuracy. 
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CHAPTER 6 
 

 

Conclusions and Final Remarks 
 

 

 

Throughout the thesis, three novel methods are introduced for computational 

representation of protein sequences and their applicability are discussed as a result 

of various practical applications that are severely important in computational 

biology. In this chapter, the conclusions inferred from the conducted research are 

presented together with the recommendations related to further studies. 

 

Composition gives important clues. Amino acid composition has been surprisingly 

effective in structural classification, however it has failed due the lack of local 

order information when the sequences become more divergent. Motivating from 

the fact that dipeptide composition has provided a greater accuracy, longer n-

peptides are employed in this study over a common SVM-based classification 

framework. This scheme is shown to provide a significant improvement in the 

prediction accuracy comparing with amino acid and dipeptide compositions in both 

experiments conducted for remote homology detection and subcellular localization 

prediction. Moreover, the homology detection accuracy achieved by n-peptide 

composition is comparable to that of the feature representations based on pairwise 

similarity scores, whereas it provides much more efficient solution due to the 

reasons explained below. 
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Use of  reduced amino acid alphabets has many advantages. Main disadvantage 

of using n-peptide compositions, which is possibly the reason for the non-existence 

of any previous attempt to use them, is the time and space complexity of extraction 

and management of corresponding feature vectors. The proposal of this thesis on 

the gradual reduction of amino acid alphabets for larger values of n provides a 

complete solution to these problems. With this solution, the feature space becomes 

linearly dependent on the length of the n-peptides to be searched. Not only 

providing an efficient space complexity, this scheme also allows the evaluation of 

possible mismatches in longer n-peptides, which is a natural case in the evolution 

of proteins. The possibility of implementing n-peptide searches with a hash 

structure also reduces the time complexity of the feature vector construction.  

 

Maximal unique match approach is simple but successful for measuring distant 

similarities. This thesis is the first time that the maximal unique match definition is 

applied for protein sequence similarity scoring. In spite of their simplicity and 

efficiency, the MUM-based similarity scores provided better accuracy than most 

widely used BLAST scores over the discriminative homology detection framework 

and performed nearly as well as the dynamic-programming-based alignment scores. 

When used for the refinement of residue solvent accessibility predictions, MUMs 

became successful to identify most conserved residues although their use did not 

make a significant improvement in resulting prediction accuracy due to the small 

and non-redundant dataset. The refinement methodology promises better 

improvements in protein residue classification when larger datasets are made 

available. 

 

Pairwise probabilistic suffix trees are much more efficient yet accurate. Another 

sequence comparison method introduced in the thesis is based on the probabilistic 

suffix trees. To our knowledge, this is the first application of PSTs for pairwise 

sequence comparison. A number of modifications are described in the tree 

construction and prediction phases of original family-based PST method so that it 

can be adopted for detecting distant pairwise similarities. When combined with 

SVMs, pairwise PST scores provided greater accuracy for detecting remote 
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homologies in comparison with the family-based PST model. The same 

representation was used in subcellular localization prediction tests, and became the 

core part of the new prediction tool, called PredLOC. 

 

Homology modeling will probably remain central for long years. Owing to many 

unsuccessful attempts for ab inito prediction of protein structure, sequence-based 

homology modeling via sequence similarity is still considered to be the best 

solution for protein structure annotations. Although the system fails when no 

homolog is found, a significant improvement has been achieved in the detection of 

distant relationships in recent years. This study makes a valuable contribution to 

the studies on remote homology detection. While most accurate methods suffer 

from the computational inefficiency, which makes the methods impractical to use, 

the new methods introduced in this thesis provide considerably improved 

efficiency with preserved level of accuracy as the state-of-the-art methods have 

achieved. With these significant progress either made by this study or other 

researches, it is expected that homology modeling will continue to be used for 

many years as long as the real biochemical and biophysical processes behind 

protein folding and functioning remain unsolved. 

 

Many thing effects subcellular localization. Varying techniques and ideas, such as 

targeting signal detection, homology modeling, amino acid and dipeptide 

compositions with machine learning algorithms, were used for the prediction of 

subcellular localization of proteins in the past years. Some of the studies attempted 

to integrate multiple modules that use different approaches to increase the accuracy 

of the predictions. In this study, a new method, called as PredLOC, is introduced 

and its prediction accuracy is reported on two independent test sets. The new 

method combines, either in an implicit or explicit way, many of the ideas used in 

the previous works into a single module. First, homology information is used by 

realizing pairwise sequence comparisons in given data set. These pairwise 

similarity scores are combined into feature vectors to train SVM, which is a 

common machine learning technique used by many of the recent and relatively 

successful systems. For pairwise sequence comparison, a new technique based on 
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PSTs is used. In contrast to sequence alignment, the PST-based comparison does 

not care of the order of residue or segment matches in the sequences being 

compared. This provides the opportunity of incorporating the effect of some 

problem specific motifs into the prediction model by rewarding the significant 

matches between the sequences. Targeting signals generally occurring in N-

terminal sequences are also taken into account by integrating N-terminal similarity 

scores into feature vectors. The use of reduced alphabets in n-peptide compositions 

for larger values of n provides the opportunity to evaluate the longer local amino 

acid ordering properties with evolutionarily possible modifications, which are not 

taken into account in the PST-based comparison. According to the experimental 

results, PredLOC significantly outperforms many of the existing methods and 

apparently becomes a powerful alternative to available subcellular localization 

predictors. All previous studies, in consistent with the results of this thesis, suggest 

that many parameters take role in subcellular localization of proteins. In the light of 

those discussions, it is believed that the protein encoding schemes presented in this 

thesis can also be combined with other schemes for further improvements in the 

prediction accuracy. 

 

Solvent accessibility prediction is a difficult problem. Protein solvent accessibility 

is an important property for the annotation of newly extracted protein sequences. A 

new computational method is introduced for the prediction of solvent accessibility 

using solely the sequence information and the results of the tests performed on a 

non-redundant protein set are presented. The new method uses an improved SVM 

approach with extended features for the prediction of the accessibilities and refines 

the SVM predictions along with the pairwise conservations, i.e. maximal unique 

matches, between the sequences. The main reason for the improvement in SVM 

predictions is the incorporation of new physicochemical features of the protein 

residues in the vectorization phase. Although the maximal unique match refinement 

does not make a significant improvement on the accuracy, it promises good results 

when the sufficient number of homologs is found. On the other hand, we could not 

witness a significant improvement on the prediction of solvent accessibility in the 

last decade. This disappointment suggests that the solvent accessibility is a hard 
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problem in that only local sequence information can not provide sufficient 

knowledge. Indeed, it is currently not clear that what other properties of proteins 

play role in solvent accessibility. 

  

New methods will find applications in many other problems. Novel sequence 

representations introduced in this thesis were employed for different biological 

problems and they are shown to be valuable especially in sequence-based protein 

classification problems. Moreover, the new methods are believed to find 

applications in many other problems related with biomolecular sequences.  

 

There are many categorization problems in which the proteins are required to be 

assigned to one of the well-known classes; recognizing protein folds (Wallqvist, 

Fukunishi, Murphy, Fadel and Levy, 2002; Schonbrun, Wedemeyer and Baker, 

2002; Ding and Dubchak, 2001), identifying functional categories (Cai et al., 2003; 

Cathy, Wu, Huang, Yeh and Barker, 2003), predicting enzyme classes (Ben-hur 

and Brutlag, 2003), detecting membrane and outer-membrane proteins (Gromiha 

and Suwa, 2005), predicting biological process that the protein is involved etc. 

Although two protein classification problems were examined in this thesis for the 

applicability of the new sequence representation schemes, the methods can simply 

be adopted for all other problems exemplified above. 

 

In spite of the fact that the PST-based sequence comparison method is devised to 

be adopted in the similarity-score-based sequence representation scheme, it is 

applicable to other problems regarding sequence analysis. The pairwise PST model 

may provide a detailed view of highly correlated segments between the sequences. 

Therefore, it can be used for detecting subtle motifs that may be evolutionarily 

related. While the sequence alignment methods attempt to keep the order of 

residues unchanged, the new method does not consider the global positions of 

amino acids in the sequences. This fact brings up with a potential ability of the new 

scheme to identify the possible rearrangement mutations, which cannot be detected 

by an alignment. Not only for proteins, the methods can also be used for the 
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problems related to DNA and RNA sequences by only replacing the amino acid 

alphabets with the corresponding 4-letter alphabets. 

 

Cooperation between computer scientists and bioscientists is severely important. 

Bioinformatics is an emerging field and becoming increasingly important with the 

continuous accumulation of genetics and proteomics data. Drug discovery is 

expected to be one of the central problem on which the scientists will focus over 

the next century. This and related problems will require an extensive support of 

computer and information sciences. In this respect, it can not be thought that 

computer scientists and bioscientists work independently to make a significant 

progress in the field. Higher synergy between them will be resulted in the 

inventions that are more beneficial to human life. 
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APPENDICES 

APPENDIX A. NCBI 

National Center for Biotechnology Information provides an integrated tool for all 

kind of biological information. There are several databases and search tools in the 

online NCBI web page. The tools in NCBI include: 

• Literature database; an extended searchable literature library of life 

sciences, 

• Entrez database; a retrieval system designed for searching several linked 

databases including PDB, SwissProt, PIR, 

• Nucleotide database; accepted genome data from sequencing projects from 

around the world, 

• Genome-specific resources, 

• Tools for data mining,  

• Tools for sequence analysis, e.g. BLAST searches all databases for similar 

sequences for a given sequence. 

• Tools for 3D structure display and similarity searching 

The NCBI home page is http://www.ncbi.nlm.nih.gov. An example search result of 
NCBI for protein 2mm1 is given in Figure 29. 
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LOCUS       2MM1                     153 aa            linear   PRI 07-OCT-1998 
DEFINITION  Myoglobin Mutant With Lys 45 Replaced By Arg And Cys 110 Replaced 
            By Ala (K45r, C110a Mutant). 
ACCESSION   2MM1 
VERSION     2MM1  GI:230638 
DBSOURCE    pdb: molecule 2MM1, chain 32, release Feb 19, 1991; 
            deposition: Feb 19, 1991; 
            class: Oxygen Transport; 
            source: Human (Homo sapiens) Recombinant Form Expressed In 
            (Escherichia coli); 
            Exp. method: X-Ray Diffraction. 
KEYWORDS    . 
SOURCE      Homo sapiens (human) 
  ORGANISM  Homo sapiens 
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; 
            Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. 
REFERENCE   1  (residues 1 to 153) 
  AUTHORS   Hubbard,S.R., Hendrickson,W.A., Lambright,D.G. and Boxer,S.G. 
  TITLE     X-ray crystal structure of a recombinant human myoglobin mutant at 
            2.8 A resolution 
  JOURNAL   J. Mol. Biol. 213 (2), 215-218 (1990) 
  MEDLINE   90258028 
   PUBMED   2342104 
REFERENCE   2  (residues 1 to 153) 
  AUTHORS   Hubbard,S.R., Hendrickson,W.A., Lambright,D.G. and Boxer,S.G. 
  TITLE     Direct Submission 
  JOURNAL   Submitted (19-FEB-1991) 
COMMENT     Revision History: 
            JAN 15 93 Initial Entry. 
FEATURES             Location/Qualifiers 
     source          1..153 
                     /organism="Homo sapiens" 
                     /db_xref="taxon:9606" 
     SecStr          4..14 
                     /sec_str_type="helix" 
                     /note="helix 1" 
     SecStr          21..36 
                     /sec_str_type="helix" 
                     /note="helix 2" 
     SecStr          59..76 
                     /sec_str_type="helix" 
                     /note="helix 3" 
     SecStr          87..95 
                     /sec_str_type="helix" 
                     /note="helix 4" 
     Het             bond(93) 
                     /heterogen="(HEM, 154 ) Protoporphyrin Ix Contains Fe And 
                     Water" 
     SecStr          102..119 
                     /sec_str_type="helix" 
                     /note="helix 5" 
     SecStr          125..149 
                     /sec_str_type="helix" 
                     /note="helix 6" 
ORIGIN       
        1 glsdgewqlv lnvwgkvead ipghgqevli rlfkghpetl ekfdrfkhlk sedemkased 
       61 lkkhgatvlt alggilkkkg hheaeikpla qshatkhkip vkylefisea iiqvlqskhp 
      121 gdfgadaqga mnkalelfrk dmasnykelg fqg 

Figure 29. NCBI search result for 2mm1. 
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APPENDIX B. PDB 

Protein Data Bank (Berman et al., 2000) is one of the largest protein database in the 

world. A primary key, named as PDB ID, is maintained for each protein in the 

database, which unifies the protein entries. The database contains many 

information about the proteins; primary sequence, tertiary structure, i.e. all atomic 

positions of proteins in xyz coordinate space, source of organism, deposition and 

release dates, compounds, classifications and authors, links to other databases, etc. 

A sample view of PDB entry is given in Figure 30. The database is available online 

in http://www.rcsb.org/pdb/. 

 

 

Figure 30. PDB search result for 2mm1. 
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APPENDIX C. SWISSPROT 

SWISSPROT is an annotated protein sequence database. Two classes of data can 

be distinguished: the core data and the annotation. For each sequence entry the core 

data consists of: 

• The sequence data;  

• The citation information; 

• The taxonomic data; 

The annotation consists of the description of the following items: 

• Functional annotations of the protein;  

• Posttranslational modifications; 

• Domains and sites; 

• Secondary structure; 

• Quaternary structure;  

• Subcellular localizations; 

• Similarities to other proteins;  

• Diseases associated with any number of deficiencies in the protein;  

• Sequence variants, etc.   

SWISSPROT can be accessible via www.expassy.org/sprot. An example entry is 

shown in Figure 31. 
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Entry information  

Entry name 12S1_ARATH 
Primary accession number P15455 
Secondary accession number Q9FFH7 
Entered in Swiss-Prot in Release 14, April 1990 
Sequence was last modified in Release 41, February 2003 
Annotations were last modified in    Release 47, May 2005 
Name and origin of the protein  
Protein name 12S seed storage protein CRA1 [Precursor] 

Contains 

12S seed storage protein CRA1 alpha chain 
     (12S seed storage protein CRA1 acidic chain) 
    12S seed storage protein CRA1 beta chain 
     (12S seed storage protein CRA1 basic chain) 

Gene name Name: CRA1 
OrderedLocusNames: At5g44120

ORFNames: MLN1.4  
From Arabidopsis thaliana (Mouse-ear cress)  [TaxID: 3702] 
Taxonomy Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; 

Spermatophyta; Magnoliophyta; eudicotyledons; core eudicotyledons; rosids; 
eurosids II; Brassicales; Brassicaceae; Arabidopsis.   

Features  

Feature table viewer Feature aligner 
Key From   To  Length   Description  FTId 
SIGNAL    1    24   24     Potential.   
CHAIN    25   282   258     12S seed storage protein 

CRA1 alpha chain (By 
similarity). 

 PRO_0000031999

CHAIN    283   472   190     12S seed storage protein 
CRA1 beta chain (By 
similarity). 

 PRO_0000032000

DISULFID   112   289         Interchain (between alpha 
and beta chains) (Potential). 

  

CONFLICT   167   167         E -> Q (in Ref. 1).   
CONFLICT   356   356         V -> E (in Ref. 1).     
Sequence information  
Length: 472 AA [This is the 

length of the unprocessed 
precursor] 

Molecular weight: 52595 Da [This is 
the MW of the unprocessed precursor] 

CRC64: 700B468E4D251994 [This is 
a checksum on the sequence] 

 
        10         20         30         40         50         60  
MARVSSLLSF CLTLLILFHG YAAQQGQQGQ QFPNECQLDQ LNALEPSHVL KSEAGRIEVW  
        70         80         90        100        110        120  
DHHAPQLRCS GVSFARYIIE SKGLYLPSFF NTAKLSFVAK GRGLMGKVIP GCAETFQDSS  
       130        140        150        160        170        180  
EFQPRFEGQG QSQRFRDMHQ KVEHIRSGDT IATTPGVAQW FYNDGQEPLV IVSVFDLASH  
       190        200        210        220        230        240  
QNQLDRNPRP FYLAGNNPQG QVWLQGREQQ PQKNIFNGFG PEVIAQALKI DLQTAQQLQN  
       250        260        270        280        290        300  
QDDNRGNIVR VQGPFGVIRP PLRGQRPQEE EEEEGRHGRH GNGLEETICS ARCTDNLDDP  
       310        320        330        340        350        360  
SRADVYKPQL GYISTLNSYD LPILRFIRLS   

Figure 31. SWISSPROT entry for 12S1_ARATH 
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APPENDIX D. DSSP 

The DSSP (Dictionary of Secondary Structure of Proteins) program was designed 

Kabsch and Sander (1983) to standardize secondary structure assignment. The 

DSSP database is a database of secondary structure assignments for all protein 

entries in the Protein Data Bank (PDB). The secondary structure codes used in 

DSSP are H, alpha helix; B, residue in isolated beta-bridge; E, extended strand, 

participates in beta ladder; G, 3-helix (3/10 helix); I, 5 helix (pi helix); T, hydrogen 

bonded turn; S, bend. 

 

In addition to secondary structure assignments, a number of residue properties are 

given in DSSP. These are entropies, conservation weights, crystal contacts, solvent 

accessibilities (either in percentage or relative between 0 and 9), B-factors, angle 

deviations, torsions, Phi/Psi scores, planarities, chiralities, rotamers, bumps, H-

bonds, and the number of similar backbone conformations found in the database for 

all residues of the sequence. 

  

There is no search tool for DSSP, but all files can be downloaded via FTP in text or 

XML format via http://www.cmbi.kun.nl/gv/dssp. An example entry of DSSP for 

protein 103L is given in 0. 
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ID           : 103L 
Header       : HYDROLASE(O-GLYCOSYL) 
 Date        : 1992-09-29 
Compound     : Phage t4 lysozyme insertion mutant with ser, leu, 
and asp inserted after asn 40, cys 54 replaced by thr, cys 97 
replaced by ala, (ins(n40-sld),C54t,C97a) 
Source       : Bacteriophage t4  
Author       : D.W.Heinz 
Author       : B.W.Matthews 
Exp-Method   : X 
 Resolution  : 1.90 
 R-Factor    : 0.182 
Ref-Prog     : TNT 
HSSP-N-Align : 7 
T-Frac-Helix : 0.67 
T-Frac-Beta  : 0.08 
T-Nres-Prot  : 159 
T-Water-Mols : 128 
HET-Groups   : 3 
 Het-Id      : 900 
  Natom      : 4 
  Name       : BETA-MERCAPTOETHANOL 
 Het-Id      : 173 
  Natom      : 1 
  Name       : CHLORIDE ION 
 Het-Id      : 178 
  Natom      : 1 
  Name       : CHLORIDE ION 
Chain        : _ 
 Sec-Struc   : 159 
  Helix      : 106 
  Beta       : 13 
   B-Bridge  : 1 
   Anti-Hb   : 12 
 Amino-Acids : 159 
  Break      : 1 
 Substrate   : 6 
 Water-Mols  : 128 
Sequence:MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTXSLDAAKSELDKAIGRNTNGVITK
DEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWD
EAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYK 
DSSP:   HHHHHHHHH  EEEEEE TTS EEEETTEE  - HHHHHHHHHHHHTS  TTB  
HHHHHHHHHHHHHHHHHHHHH TTTHHHHHHS HHHHHHHHHHHHHHHHHHHHT HHHHHHHHTT 
HHHHHHHHHSSHHHHHSHHHHHHHHHHHHHSSSGGG  

 

Figure 32. DSSP entry for 103L. 
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APPENDIX E. SCOP 

SCOP (Structural Classification of Proteins) is a database of proteins given as a 

structural classification in four-level hierarchy (Murzin et al., 1995). The highest 

level, named as class, provides the information about the secondary structure 

content of the protein, e.g. all-alpha, all-beta, alpha/beta, alpha+beta,… etc. The 

second level is fold level. In this level, fold structure of the protein is described. All 

proteins fit into one of the finite number of folds in this level. The third level, 

called as superfamily, classifies the proteins with low sequence similarity, which is 

below 30%, but having structural or functional features suggesting a common 

evolutionary origin. The lowest level is simply the family in which the proteins 

having a significant sequence similarity and a clear evolutionary common origin 

are classified. The organization of SCOP is like a three, on the top of all classes the 

SCOP root exists. The classification of SCOP is made manually by molecular 

biology experts. The database is available online in http://scop.berkeley.edu. An 

example output of SCOP for the protein 2mm1 is given in Figure 33. 

 

 

Figure 33. SCOP output for 2mm1. 
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APPENDIX F. CATH 

CATH (Orengo et al., 1997) is similar to SCOP, but it is partitioned into a different 

four-level hierarchy. The “class” level is same with the one in SCOP and gives 

secondary structure composition of the protein. The second level is “architecture” 

level and the structures are classified based on the overall shape of the domain 

structures. The third level, called as “topology”, groups the proteins in terms of 

their fold structures. And the lowest level, named as homology, collects the 

proteins with high sequence similarity in the same group. The name of the database 

is coming from the names of the levels; Class, Architecture, Topology, Homology. 

The construction of the database is semi-automatic, that is, in the highest two 

levels, some manual constructions are made whereas the low levels are built 

automatically using similarity considerations. The database is available online in 

http://www.biochem.ucl.ac.uk. An example output of CATH for 2mm1 is given in 

Figure 34. 

 

Figure 34. CATH output for 2mm1. 
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APPENDIX G. Pfam 

Pfam (Bateman et al., 2002) is a database of protein families. The families are 

given in the form of alignments and HMM (Hidden Markov Model), which is a 

probabilistic model to describe the consensus sequences between a group of 

proteins, profiles. An HMM model consisted of finite number of states which are 

differentiated as begin state, end state, match state, insert state and delete state. The 

last three ones are invisible, so called hidden states. Each state has a transition 

probability associated with it. This probability is position specific in terms of the 

sequence. The match state has a probability of matching a particular amino acid, 

which refers to emitting probability. Similarly insert state has a probability 

associated with each amino acid. The probability of no amino acid associated with 

a position is represented by the transition probability to a delete state. HMMs are 

constructed automatically by supervised learning methods based on the multiple 

alignment results. The database is available online in 

http://www.sanger.ac.uk/software/pfam. 
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